51
|
Agathokleous E, Kitao M, Calabrese EJ. Hormesis: Highly Generalizable and Beyond Laboratory. TRENDS IN PLANT SCIENCE 2020; 25:1076-1086. [PMID: 32546350 DOI: 10.1016/j.tplants.2020.05.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 05/13/2020] [Accepted: 05/20/2020] [Indexed: 05/17/2023]
Abstract
Hormesis is a biphasic dose-response relationship with contrasting effects of low versus high doses of stress. Hormesis is rapidly developing in plant science research and has wide implications for risk assessment, stress biology, and agriculture. Here, we explore selected areas of importance to the concept of hormesis and suggest that hormesis is a highly generalizable phenomenon. We address the questions of whether hormesis occurs in high-risk groups or in response to mixtures of stress-inducing agents, whether there is a single biological mechanism of hormesis, and what the temporal features of hormesis are.
Collapse
Affiliation(s)
- Evgenios Agathokleous
- Key Laboratory of Agrometeorology of Jiangsu Province, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Mitsutoshi Kitao
- Hokkaido Research Center, Forestry and Forest Products Research Institute (FFPRI), Forest Research and Management Organization, 7 Hitsujigaoka, Sapporo, Hokkaido 062-8516, Japan
| | - Edward J Calabrese
- Department of Public Health, Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
52
|
Wu J, Ren Z, Zhang C, Motelica-Heino M, Deng T, Wang H, Dai J. Effects of soil acid stress on the survival, growth, reproduction, antioxidant enzyme activities, and protein contents in earthworm (Eisenia fetida). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33419-33428. [PMID: 30838490 DOI: 10.1007/s11356-019-04643-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
This study focused on the study of earthworm survival, growth, reproduction, enzyme activities, and protein contents to evaluate and predict the effects of different soil pH levels and determine the optimal risk assessment indicators for the effects. Survival rate, growth rate, and cocoon number as well as four enzyme (glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT)) activities and two proteins (total protein (TP) and metallothionein (MT)) contents in earthworms were determined to characterize the responses of earthworm activity to five soil pH levels. These biological datasets (survival, growth, and reproduction) were compared with biochemical indexes (GSH-PX, SOD, POD, CAT, TP, and MT), mainly using biphasic dose-response models. The results indicated that the soil pH value had significant inhibitory effects on the survival, growth, and reproduction of earthworms beginning with 3.0, 4.0, and 5.2, respectively. The dose-response models (J-shaped and inverted U-shaped curves) statistics indicated that the critical values (ECZEP) of the GSH-PX, SOD, POD, CAT, TP, and MT inhibited by soil acid stress were 3.46, 3.76, 3.35, 3.54, 3.50, and 3.96 (average 3.60), respectively. In the present study, the fitting curve analysis showed that the responses of the CAT activities and TP and MT contents in earthworm in response to soil pH have the behavior of hormesis.
Collapse
Affiliation(s)
- Jialong Wu
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
- Key Laboratory of Arable Land Conservation in South China, Ministry of Agriculture People's Republic of China, Guangzhou, 510642, China
- Key Laboratory of the Ministry of Land and Resources for Construction Land Transformation, Guangzhou, 510640, China
- Guangdong Province Key Laboratory of Land Use and Consolidation, Guangzhou, 510140, China
| | - Zongling Ren
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
- Key Laboratory of Arable Land Conservation in South China, Ministry of Agriculture People's Republic of China, Guangzhou, 510642, China.
- Key Laboratory of the Ministry of Land and Resources for Construction Land Transformation, Guangzhou, 510640, China.
- Guangdong Province Key Laboratory of Land Use and Consolidation, Guangzhou, 510140, China.
| | - Chi Zhang
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
- Key Laboratory of Arable Land Conservation in South China, Ministry of Agriculture People's Republic of China, Guangzhou, 510642, China
- Key Laboratory of the Ministry of Land and Resources for Construction Land Transformation, Guangzhou, 510640, China
- Guangdong Province Key Laboratory of Land Use and Consolidation, Guangzhou, 510140, China
| | - Mikael Motelica-Heino
- Université d'Orléans, CNRS/INSU Institut des Sciences de la Terre d'Orléans, UMR 6113, Campus Géosciences, 1A rue de la Férollerie, 41071, Orléans, France
| | - Ting Deng
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
- Key Laboratory of Arable Land Conservation in South China, Ministry of Agriculture People's Republic of China, Guangzhou, 510642, China
- Key Laboratory of the Ministry of Land and Resources for Construction Land Transformation, Guangzhou, 510640, China
- Guangdong Province Key Laboratory of Land Use and Consolidation, Guangzhou, 510140, China
| | - Haoyu Wang
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China
- Key Laboratory of Arable Land Conservation in South China, Ministry of Agriculture People's Republic of China, Guangzhou, 510642, China
- Key Laboratory of the Ministry of Land and Resources for Construction Land Transformation, Guangzhou, 510640, China
- Guangdong Province Key Laboratory of Land Use and Consolidation, Guangzhou, 510140, China
| | - Jun Dai
- College of Natural Resources and Environment, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou, 510642, China.
- Key Laboratory of Arable Land Conservation in South China, Ministry of Agriculture People's Republic of China, Guangzhou, 510642, China.
- Key Laboratory of the Ministry of Land and Resources for Construction Land Transformation, Guangzhou, 510640, China.
- Guangdong Province Key Laboratory of Land Use and Consolidation, Guangzhou, 510140, China.
| |
Collapse
|
53
|
Calabrese EJ, Mattson MP, Dhawan G, Kapoor R, Calabrese V, Giordano J. Hormesis: A potential strategic approach to the treatment of neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:271-301. [PMID: 32854857 DOI: 10.1016/bs.irn.2020.03.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review describes neuroprotective effects mediated by pre- and post-conditioning-induced processes that act via the quantitative features of the hormetic dose response. These lead to the development of acquired resilience that can protect neuronal systems from endogenous and exogenous stresses and insult. Particular attention is directed to issues of dose optimization, inter-individual variation, and potential ways to further study and employ hormetic-based preconditioning approaches in medical and public health efforts to treat and prevent neurodegenerative disease.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, United States.
| | - Mark P Mattson
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Gaurav Dhawan
- Human Research Protection Office, Research Compliance, University of Massachusetts, Hadley, MA, United States
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center Hartford, Hartford, CT, United States
| | - Vittorio Calabrese
- Department of Biomedical & Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - James Giordano
- Departments of Neurology & Biochemistry, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
54
|
Bownik A, Jasieczek M, Kosztowny E. Ketoprofen affects swimming behavior and impairs physiological endpoints of Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 725:138312. [PMID: 32304961 DOI: 10.1016/j.scitotenv.2020.138312] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/19/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
Ketoprofen (KET) is a nonsteroidal anti-inflammatory and analgesic drug commonly used in human and veterinary medicine. This compound is detected in aquatic reservoirs however, little is known about its influence on cladocerans. Therefore, the aim of our study was to determine the influence of KET at concentrations of 0.005 mg/L, 0.05 mg/L, 0.5 mg/L, 5 mg/L and 50 mg/L on behavioral (swimming speed, hopping frequency) and physiological endpoints (heart rate, thoracic limb activity, mandible movements) of Daphnia magna after 24 h and 48 h exposure. The study showed that swimming speed frequency was decreased after 24 h and 48 h at all the concentrations used in the experiment. Hopping frequency was also inhibited, however the lowest amount of the drug induced transient increase of the parameter after 24 h and its subsequent decrease to the control level after 48 h. Although after 24 h of the exposure physiological parameters: heart rate, thoracic limb activity and mandible movements showed slightly lower sensitivity to KET than the behavioral endpoints: were found to be inhibited after 48 h. The results revealed that both behavioral and physiological endpoints of daphnids responded to KET also at the environmental level, therefore in natural conditions this drug should be considered as a hazardous toxicant to crustaceans.
Collapse
Affiliation(s)
- Adam Bownik
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, ul. Dobrzańskiego 37, 20-262 Lublin, Poland.
| | - Magdalena Jasieczek
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, ul. Dobrzańskiego 37, 20-262 Lublin, Poland
| | - Ewelina Kosztowny
- Department of Hydrobiology and Protection of Ecosystems, University of Life Sciences in Lublin, ul. Dobrzańskiego 37, 20-262 Lublin, Poland
| |
Collapse
|
55
|
Dresler S, Strzemski M, Kováčik J, Sawicki J, Staniak M, Wójciak M, Sowa I, Hawrylak-Nowak B. Tolerance of Facultative Metallophyte Carlina acaulis to Cadmium Relies on Chelating and Antioxidative Metabolites. Int J Mol Sci 2020; 21:E2828. [PMID: 32325661 PMCID: PMC7215424 DOI: 10.3390/ijms21082828] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/17/2022] Open
Abstract
The impact of long-term chronic cadmium stress (ChS, 0.1 µM Cd, 85 days) or short-term acute cadmium stress (AS, 10 µM Cd, 4 days) on Carlina acaulis (Asteraceae) metabolites was compared to identify specific traits. The content of Cd was higher under AS in all organs in comparison with ChS (130 vs. 16 µg·g-1 DW, 7.9 vs. 3.2 µg·g-1 DW, and 11.5 vs. 2.4 µg·g-1 DW in roots, leaves, and trichomes, respectively) while shoot bioaccumulation factor under ChS (ca. 280) indicates efficient Cd accumulation. High content of Cd in the trichomes from the AS treatment may be an anatomical adaptation mechanism. ChS evoked an increase in root biomass (hormesis), while the impact on shoot biomass was not significant in any treatment. The amounts of ascorbic acid and sum of phytochelatins were higher in the shoots but organic (malic and citric) acids dominated in the roots of plants from the ChS treatment. Chlorogenic acid, but not ursolic and oleanolic acids, was elevated by ChS. These data indicate that both chelation and enhancement of antioxidative power contribute to protection of plants exposed to long-term (chronic) Cd presence with subsequent hormetic effect.
Collapse
Affiliation(s)
- Sławomir Dresler
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (M.S.); (J.S.); (M.S.); (M.W.); (I.S.)
| | - Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43 Trnava, Slovakia;
| | - Jan Sawicki
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (M.S.); (J.S.); (M.S.); (M.W.); (I.S.)
| | - Michał Staniak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (M.S.); (J.S.); (M.S.); (M.W.); (I.S.)
| | - Magdalena Wójciak
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (M.S.); (J.S.); (M.S.); (M.W.); (I.S.)
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland; (M.S.); (J.S.); (M.S.); (M.W.); (I.S.)
| | - Barbara Hawrylak-Nowak
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland;
| |
Collapse
|
56
|
Lee J, Hong S, Kim T, Lee C, An SA, Kwon BO, Lee S, Moon HB, Giesy JP, Khim JS. Multiple Bioassays and Targeted and Nontargeted Analyses to Characterize Potential Toxicological Effects Associated with Sediments of Masan Bay: Focusing on AhR-Mediated Potency. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4443-4454. [PMID: 32167753 DOI: 10.1021/acs.est.9b07390] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An enhanced, multiple lines of evidence approach was applied to assess potential toxicological effects associated with polluted sediments. Two in vitro bioassays (H4IIE-luc and Vibrio fischeri) and three in vivo bioassays (microalgae: Isochrysis galbana and Phaeodactylum tricornutum; zebrafish embryo: Danio rerio) were applied. To identify causative chemicals in samples, targeted analyses (polycyclic aromatic hydrocarbons (PAHs), styrene oligomers (SOs), and alkylphenols) and nontargeted full-scan screening analyses (FSA; GC- and LC-QTOFMS) were performed. First, great AhR-mediated potencies were observed in midpolar and polar fractions of sediment extracts, but known and previously characterized AhR agonists, including PAHs and SOs could not fully explain the total potencies of samples. Enoxolone was identified as a novel AhR agonist in a highly potent sediment fraction by use of FSA. Enoxolone has a relative potency of 0.13 compared to benzo[a]pyrene (1.0) in the H4IIE-luc bioassay. Nonylphenols associated with membrane damage that influenced the viability of the microalgae were also observed. Finally, inhibitions of bioluminescence of V. fischeri and lethality of D. rerio embryos were strongly related to nonpolar compounds. Overall, the present work addressed assay- and end point-specific variations and sensitivities for potential toxicities of mixture samples, warranting a significant utility of the "multiple lines of evidence" approach in ecological risk assessment.
Collapse
Affiliation(s)
- Junghyun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Taewoo Kim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Changkeun Lee
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| | - Seong-Ah An
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Bong-Oh Kwon
- Department of Marine Biotechnology, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Sunggyu Lee
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - John P Giesy
- Department of Veterinary Biomedical Sciences & Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5B4, Canada
- Department of Environmental Sciences, Baylor University, Waco, Texas 76706, United States
- Department of Zoology and Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jong Seong Khim
- School of Earth and Environmental Sciences & Research Institute of Oceanography, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
57
|
Guo X, Cui X, Li H. Effects of fillers combined with biosorbents on nutrient and heavy metal removal from biogas slurry in constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134788. [PMID: 31733500 DOI: 10.1016/j.scitotenv.2019.134788] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
The performance of fillers (biochar and zeolite) and their combinations with biosorbents (compound microbial agent and chlorella) in nutrients and heavy metals removal from biogas slurry in constructed wetlands (CWs) planted water spinach (Ipomoea aquatica) and plant uptake of heavy metals was investigated. The results demonstrated that the removal rate of nutrients in CWs was all above 60%. COD removal efficiencies were not significantly affected by fillers and biosorbents, all above 80%. The removal rates of TN and NH4+-N were the highest when the two fillers and two biosorbents were added, and the combination of biochar and chlorella presented the optimal removal effect on TP. The efficiency of removing heavy metals from biogas slurry in CWs was As > Zn > Cu, and their removal rates were 35.38%-83.89%, 8.15%-23.69% and 0.32%-0.88%, respectively. The removal efficiency of As by the combination of biochar and composite microbial agent was high. The combination of the two fillers and two biosorbents had the best effect on reducing Cu and Zn enrichment in the aboveground part of water spinach in each treatment, while biochar alone had the best effect on reducing As enrichment in the aboveground and underground parts of water spinach. This study can provide a basis for the application of fillers and biosorbents in the treatment of biogas slurry in livestock and poultry farms in wetlands.
Collapse
Affiliation(s)
- Xiongfei Guo
- College of Resources and Environmental Sciences, South China Agricultural University, Guangzhou 510642, PR China; College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, PR China.
| | - Xingyi Cui
- College of Resources and Environmental Sciences, South China Agricultural University, Guangzhou 510642, PR China.
| | - Huashou Li
- College of Resources and Environmental Sciences, South China Agricultural University, Guangzhou 510642, PR China.
| |
Collapse
|
58
|
Dresler S, Hawrylak-Nowak B, Strzemski M, Wójciak-Kosior M, Sowa I, Hanaka A, Gołoś I, Skalska-Kamińska A, Cieślak M, Kováčik J. Metabolic Changes Induced by Silver Ions in Carlina acaulis. PLANTS 2019; 8:plants8110517. [PMID: 31744231 PMCID: PMC6918347 DOI: 10.3390/plants8110517] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 01/30/2023]
Abstract
Silver is one of the most toxic heavy metals for plants, inducing various toxic symptoms and metabolic changes. Here, the impact of Ag(I) on Carlina acaulis physiology and selected metabolites was studied using two Ag concentrations (1 or 10 µM) after 14 days of exposure. The higher concentration of Ag(I) evoked reduction of growth, while 1 µM Ag had a growth-promoting effect on root biomass. The translocation factor (<0.04) showed that Ag was mainly retained in the roots. The 1 µM Ag concentration increased the level of low-molecular-weight organic acids (LMWOAs), while 10 µM Ag depleted these compounds in the roots. The increased concentration of Ag(I) elevated the accumulation of phytochelatins (PCs) in the roots and reduced glutathione (GSH) in the shoots (but not in the roots). At 1 µM, Ag(I) elevated the level of phenolic and triterpene acids, while the 10 µM Ag treatment increased the carlina oxide content in the roots. The obtained results indicate an alteration of metabolic pathways of C. acaulis to cope with different levels of Ag(I) stress. Our data imply that the intracellular binding of Ag(I) and nonenzymatic antioxidants contribute to the protection against low concentrations of Ag ions.
Collapse
Affiliation(s)
- Sławomir Dresler
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (A.H.); (I.G.)
- Correspondence: (S.D.); (B.H.-N.); Tel.: +48-81-537-5078 (S.D.); +48-81-445-60-96 (B.H.-N.)
| | - Barbara Hawrylak-Nowak
- Department of Botany and Plant Physiology, Faculty of Environmental Biology, University of Life Sciences in Lublin, Akademicka 15, 20-950 Lublin, Poland
- Correspondence: (S.D.); (B.H.-N.); Tel.: +48-81-537-5078 (S.D.); +48-81-445-60-96 (B.H.-N.)
| | - Maciej Strzemski
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.S.); (M.W.-K.); (I.S.); (A.S.-K.)
| | - Magdalena Wójciak-Kosior
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.S.); (M.W.-K.); (I.S.); (A.S.-K.)
| | - Ireneusz Sowa
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.S.); (M.W.-K.); (I.S.); (A.S.-K.)
| | - Agnieszka Hanaka
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (A.H.); (I.G.)
| | - Iwona Gołoś
- Department of Plant Physiology and Biophysics, Institute of Biological Science, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (A.H.); (I.G.)
| | - Agnieszka Skalska-Kamińska
- Department of Analytical Chemistry, Medical University of Lublin, 20-093 Lublin, Poland; (M.S.); (M.W.-K.); (I.S.); (A.S.-K.)
| | - Małgorzata Cieślak
- Łukasiewicz—Textile Research Institute, Scientific Department of Unconventional Technologies and Textiles, Brzezińska 5/15, 92-103 Łódź, Poland;
| | - Jozef Kováčik
- Department of Biology, University of Trnava, Priemyselná 4, 918 43 Trnava, Slovak Republic;
| |
Collapse
|
59
|
Chae Y, Kim D, An YJ. Effects of micro-sized polyethylene spheres on the marine microalga Dunaliella salina: Focusing on the algal cell to plastic particle size ratio. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 216:105296. [PMID: 31541944 DOI: 10.1016/j.aquatox.2019.105296] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 08/22/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
There is increasing concern about how microplastics (MPs) are impacting marine ecosystems. In particular, studies on how MPs impact microalgae are required because of the abundance of MPs and importance of green microalgae as primary producers. This study investigated how MPs that are larger (200 μm) than algal cells impact them, using the marine microalga Dunaliella salina as the test species. The microalga was exposed to polyethylene MPs for 6 days. Of interest, the growth and photosynthetic activity of D. salina was enhanced with exposure to MPs, while cell morphology (size and granularity) was not impacted. This phenomenon might be explained by trace concentrations of additive chemicals (endocrine disruptors, phthalates, stabilizers) that possibly leached from MPs promoting the growth and photosynthetic activity of D. salina. We also confirmed that MP size contributes towards determining how plastics affect microalgae. Specifically, as MP size shrinks compared to algal cell size, MPs have increasingly adverse effects. MPs of very small size (like nanoplastics) induce particularly adverse effects on algae. Further studies are required to establish the relationship between algal cell size and MP size.
Collapse
Affiliation(s)
- Yooeun Chae
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Dasom Kim
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
60
|
Concetta Scuto M, Mancuso C, Tomasello B, Laura Ontario M, Cavallaro A, Frasca F, Maiolino L, Trovato Salinaro A, Calabrese EJ, Calabrese V. Curcumin, Hormesis and the Nervous System. Nutrients 2019; 11:2417. [PMID: 31658697 PMCID: PMC6835324 DOI: 10.3390/nu11102417] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/01/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022] Open
Abstract
Curcumin is a polyphenol compound extracted from the rhizome of Curcuma longa Linn (family Zingiberaceae) commonly used as a spice to color and flavor food. Several preclinical studies have suggested beneficial roles for curcumin as an adjuvant therapy in free radical-based diseases, mainly neurodegenerative disorders. Indeed, curcumin belongs to the family of hormetins and the enhancement of the cell stress response, mainly the heme oxygenase-1 system, is actually considered the common denominator for this dual response. However, evidence-based medicine has clearly demonstrated the lack of any therapeutic effect of curcumin to contrast the onset or progression of neurodegeneration and related diseases. Finally, the curcumin safety profile imposes a careful analysis of the risk/benefit balance prior to proposing chronic supplementation with curcumin.
Collapse
Affiliation(s)
- Maria Concetta Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy.
| | - Cesare Mancuso
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy.
- Institute of Pharmacology, Catholic University of Sacred Heart, 00168 Roma, Italy.
| | - Barbara Tomasello
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy.
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy.
| | - Andrea Cavallaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy.
| | - Francesco Frasca
- Department of Clinical and experimental Medicine, Division of Endocrinology, University of Catania, 95125 Catania, Italy.
| | - Luigi Maiolino
- Department of Medical and Surgery Sciences, University of Catania, 95125 Catania, Italy.
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy.
| | - Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Science, University of Massachusetts, Amherst, MA 01003, USA.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Torre Biologica, Via Santa Sofia, 97-95125 Catania, Italy.
| |
Collapse
|
61
|
Di GQ, Qin ZQ. Influences of combined traffic noise on the ability of learning and memory in mice. Noise Health 2019; 20:9-15. [PMID: 29457601 PMCID: PMC5843988 DOI: 10.4103/nah.nah_27_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objective: The present study aimed to evaluate the influences of combined traffic noise (CTN) on the ability of learning and memory in mice. Materials and Methods: The Institute of Cancer Research (ICR) mice were exposed to CTN from highways and high-speed railways for 42 days, whose day–night equivalent continuous A-weighted sound pressure level (Ldn) was 70 dB(A). On the basis of behavioral reactions in Morris water maze (MWM) and the concentrations of amino acid neurotransmitters in the hippocampus, the impacts of CTN on learning and memory in mice were examined. Results: The MWM test showed that the ability of learning and memory in mice was improved after short-term exposure (6–10 days, the first batch) to 70 dB(A) CTN, which showed the excitatory effect of stimuli. Long-term exposure (26–30 days, the third batch; 36–40 days, the fourth batch) led to the decline of learning and memory ability, which indicated the inhibitory effect of stimuli. Assays testing amino acid neurotransmitters showed that the glutamate level of the experimental group was higher than that of the control group in the first batch. However, the former was lower than the latter in the third and fourth batches. Both, behavioral reactions and the concentrations of amino acid neurotransmitters, testified that short-term exposure and long-term exposure resulted in excitatory effect and inhibitory effect on the ability of learning and memory, respectively. Conclusion: The effects of 70 dB(A) CTN on the ability of learning and memory were closely related to the exposure duration. Furthermore, those effects were regulated and controlled by the level of glutamate in the hippocampus.
Collapse
Affiliation(s)
- Guo-Qing Di
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, PR China
| | - Zhao-Qi Qin
- Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, PR China
| |
Collapse
|
62
|
Diosgenin and Its Fenugreek Based Biological Matrix Affect Insulin Resistance and Anabolic Hormones in a Rat Based Insulin Resistance Model. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7213913. [PMID: 31080828 PMCID: PMC6475550 DOI: 10.1155/2019/7213913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 03/21/2019] [Indexed: 01/02/2023]
Abstract
Fenugreek is known since ancient times as a traditional herbal medicine of its multiple beneficial effects. Fenugreek's most studied and employed effect is its hypoglycemic property, but it can also be useful for the treatment of certain thyroid disorders or for the treatment of anorexia. The regulation of glucose homeostasis is a complex mechanism, dependent on the interaction of different types of hormones and neurotransmitters or other compounds. For the study of how diosgenin and fenugreek seeds modify insulin sensitivity, we used a rat insulin resistance model induced by high-fat diet. Diosgenin in three different doses (1mg/bwkg, 10mg/bwkg, and 50 mg/bwkg, respectively) and fenugreek seed (0.2 g/bwkg) were administered orally for 6 weeks. Insulin sensitivity was determined by hyperinsulinemic euglycemic glucose clamp method. Our research group found that although glucose infusion rate was not significantly modified in either group, the increased insulin sensitivity index and high metabolic clearance rate of insulin found in the 1 mg/kg diosgenin and the fenugreek seed treated group suggested an improved peripheral insulin sensitivity. Results from the 10 mg/kg diosgenin group, however, suggest a marked insulin resistance. Fenugreek seed therapy results on the investigated anabolic hormones support the theory that, besides insulin and gastrointestinal peptides, the hypothalamic-hypopituitary axis regulated hormones synchronized action with IGF-1 also play an important role in the maintaining of normal glucose levels. Both diosgenin and fenugreek seeds are capable of interacting with substrates of the above-mentioned regulatory mechanisms, inducing serious hormonal disorders. Moreover, fenugreek seeds showed the ability to reduce the thyroid hormone levels at the periphery and to modify the T4/T3 ratio. It means that in healthy people this effect could be considered a severe side effect; however, in hypothyroidism this effect represents a possibility of alternative natural therapy.
Collapse
|
63
|
Van Ginneken M, Blust R, Bervoets L. The impact of temperature on metal mixture stress: Sublethal effects on the freshwater isopod Asellus aquaticus. ENVIRONMENTAL RESEARCH 2019; 169:52-61. [PMID: 30415100 DOI: 10.1016/j.envres.2018.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 06/09/2023]
Abstract
Chemical and natural factors have been demonstrated to interact and potentially change the toxicity of the individual stressors. Yet, while there exists a multitude of papers studying the temperature-dependent toxicity of single chemicals, little research exists on the impact of temperature on chemical mixtures. This paper investigates the effect of temperature on environmentally-relevant mixtures of Cd, Cu and Pb. We linked the effects on respiration, growth, feeding rate and activity of Asellus aquaticus to the free ion activities, as a measure for the bioavailability of the metals, and the body concentrations. We observed interactions of temperature and metal body concentrations on all sublethal endpoints, except activity. Mixture effects on accumulation and feeding rate were observed as well and even an interaction between metal body burden, mixture and temperature treatment was revealed for the feeding rate of Pb exposed isopods. This research adds to a growing body of evidence that the current chemical-based monitoring is insufficient to estimate chemical toxicity in aquatic ecosystems and must, therefore, be complemented with effect-based tools.
Collapse
Affiliation(s)
- M Van Ginneken
- Department of Biology, Systemic Physiological and Ecotoxicological Research (SPHERE), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - R Blust
- Department of Biology, Systemic Physiological and Ecotoxicological Research (SPHERE), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - L Bervoets
- Department of Biology, Systemic Physiological and Ecotoxicological Research (SPHERE), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
64
|
Ding J, Zhao Y, Zhang Z, Xu C, Mu W. Sublethal and Hormesis Effects of Clothianidin on the Black Cutworm (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2809-2816. [PMID: 30551214 DOI: 10.1093/jee/toy254] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Indexed: 06/09/2023]
Abstract
The black cutworm, Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), has been considered a major insect pest in China that causes damage to corn at the seeding stage. The present study measured the lethal and sublethal effects of the neonicotinoid insecticide clothianidin on A. ipsilon. Clothianidin, incorporated using an artificial diet, exhibited signs of active toxicity on fourth-instar larvae of A. ipsilon, with a 50%-lethal concentration (LC50) of 27.77 µg/g. Clothianidin at the LC20 and LC40 levels impaired the normal development of A. ipsilon by prolonging the larval period, decreasing the rate of pupation and eclosion, reducing longevity, shortening the oviposition period, and reducing the fecundity of female adults. Consequently, these effects resulted in the reduction of some population parameter values of A. ipsilon, including the intrinsic rate of increase (r), finite rate of increase (λ), and net reproductive rate (R0), along with an increase in the mean generation time (T). However, stimulatory effects, i.e., hormesis, on reproduction were observed in A. ipsilon exposed to an LC5 level based on the fecundity (2,213.62 eggs per female) and net reproductive rate (R0) (863.04 offspring per individual), which were significantly higher than values in the control group (1,344.77 eggs per female and 591.82 offspring per individual). Therefore, the results obtained in this study may assist in the development of optimized integrated pest management strategies, although the results require further study for corroboration under real cropping conditions.
Collapse
Affiliation(s)
- Jinfeng Ding
- College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong, P.R. China
| | - Yunhe Zhao
- College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong, P.R. China
| | - Zhengqun Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Daizong Street, Tai'an, Shandong, P.R. China
| | - Chunmei Xu
- College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong, P.R. China
| | - Wei Mu
- College of Plant Protection, Shandong Agricultural University, 61 Daizong Street, Tai'an, Shandong, P.R. China
| |
Collapse
|
65
|
Xu YQ, Liu SS, Wang ZJ, Li K, Qu R. Commercial personal care product mixtures exhibit hormetic concentration-responses to Vibrio qinghaiensis sp.-Q67. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:304-311. [PMID: 30005403 DOI: 10.1016/j.ecoenv.2018.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/29/2018] [Accepted: 07/01/2018] [Indexed: 05/03/2023]
Abstract
The biological effects related to personal care products (PCPs) are almost induced by some active ingredients in the PCPs rather than the PCP itself. In this study, 23 common and widely used toner, skin water, and make-up water (TSM) commodities were directly taken as mixture samples, and Vibrio qinghaiensis sp.-Q67 (Q67) was used as the test organism. The toxicities of the TSMs to Q67 were determined via microplate toxicity analysis at 0.25 h and 12 h. Each TSM commodity can be regarded as a complicated mixture (relative concentration is 1). It was shown that the concentration-response curves (CRCs) of 23 TSMs are monotonic sigmoid-shaped (S-shaped) at 0.25 h, the CRCs of six TSMs are also S-shaped but the other 17 TSMs are non-monotonic hormetic or J-shaped at 12 h. In addition, to effectively characterize the nature of the stimulation and inhibition phases, it is suggested that five parameters such as the ECL (the median stimulation effective concentration (left)), Emin (the maximum stimulation effect), ECmin (the maximum stimulation effective concentration), ZEP (zero effect point where the effect is 0 and the concentration is ZEP), and EC50 can depict the non-monotonic CRC. To the best of our knowledge, this is the first study about the hormetic CRCs of commercial PCP mixtures.
Collapse
Affiliation(s)
- Ya-Qian Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shu-Shen Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Ze-Jun Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Kai Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rui Qu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
66
|
Vélez M, Botina LL, Turchen LM, Barbosa WF, Guedes RNC. Spinosad- and Deltamethrin-Induced Impact on Mating and Reproductive Output of the Maize Weevil Sitophilus zeamais. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:950-958. [PMID: 29365148 DOI: 10.1093/jee/tox381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Assessments of acute insecticide toxicity frequently focus on the lethal effects on individual arthropod pest species and populations neglecting the impacts and consequences of sublethal exposure. However, the sublethal effects of insecticides may lead to harmful, neutral, or even beneficial responses that may affect (or not) the behavior and sexual fitness of the exposed insects. Intriguingly, little is known about such effects on stored product insect pests in general and the maize weevil in particular. Thus, we assessed the sublethal effects of spinosad and deltamethrin on female mate-searching, mating behavior, progeny emergence, and grain consumption by maize weevils. Insecticide exposure did not affect the resting time, number of stops, and duration of mate-searching by female weevils, but their walking velocity was compromised. Maize weevil couples sublethally exposed to deltamethrin and spinosad exhibited altered reproductive behavior (walking, interacting, mounting, and copulating), but deltamethrin caused greater impairment. Curiously, higher grain consumption and increased progeny emergence were observed in deltamethrin-exposed insects, suggesting that this pyrethroid insecticide elicits hormesis in maize weevils that may compromise control efficacy by this compound. Although spinosad has less of an impact on weevil reproductive behavior than deltamethrin, this bioinsecticide also benefited weevil progeny emergence, but did not affect grain consumption. Therefore, our findings suggest caution using either compound, and particularly deltamethrin, for controlling the maize weevil, as they may actually favor this species population growth when in sublethal exposure requiring further assessments. The same concern may be valid for other insecticides as well, what deserves future attention.
Collapse
Affiliation(s)
- Mayra Vélez
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Lorena L Botina
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Leonardo M Turchen
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Wagner F Barbosa
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Raul Narciso C Guedes
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
- USDA-ARS San Joaquin Valley Agricultural Sciences Center, Parlier, CA
| |
Collapse
|
67
|
Fan D, Han J, Chen Y, Zhu Y, Li P. Hormetic effects of Cd on alkaline phosphatase in soils across particle-size fractions in a typical coastal wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:792-797. [PMID: 28942313 DOI: 10.1016/j.scitotenv.2017.09.089] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/09/2017] [Accepted: 09/09/2017] [Indexed: 06/07/2023]
Abstract
Hormetic responses in soil ecosystem are increasingly reported recently. Soil enzymes are involved in almost all biochemical reactions, but insufficient investigations were conducted to define its hormetic responses. The objective of this study is to investigate the hormetic responses across soil particle-size fractions with cadmium (Cd) as a stressor and alkaline phosphatase (ALP) as a potential endpoint. Soils were treated by adding CdCl2·2.5H2O solution with 0, 0.003, 0.03, 0.3, 3.0 and 30.0mg·kg-1 of Cd, respectively. A low-power ultrasonic method was used to separate the bulk soil into 0.1-2, 2-63, 63-200 and 200-2000μm fractions. In 2-63μm, ALP activity at doses of 0.3-3.0mg·kg-1 of Cd was significantly higher than that of CK (0.0mg·kg-1 of Cd), showing a typical U-shaped dose-response with the amplitude of 72.3-118.6%. Similarly, ALP activity at 0.003-0.3mg·kg-1 of Cd was 36.4-66.1% higher than that of CK in 63-200μm. However, no similar phenomenon was observed in 0.1-2 and 200-2000μm fractions. This suggested that low doses of Cd induced the hormetic responses of soil ALP, particularly in 2-63 and 63-200μm. In addition, analysis of the microbial community structure and diversity indicates that, at genus level, the relative abundance (RA) of Gillisia at 0.03-0.3mg·kg-1 of Cd was significantly higher than that of CK with the amplitude of 3.7-37.5% in 2-63μm. The similar responses were observed that the RA of Pontibacter at 0.003-0.03mg·kg-1 of Cd was 4.0-85.4% higher than that of CK in 63-200μm. This showed that Gillisia and Pontibacter possibly contribute to the hormetic responses of soil ALP when low contents of Cd presented in soils. This study will provide a good insight into the hormetic phenomenon at soil ecosystem scales.
Collapse
Affiliation(s)
- Diwu Fan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China; Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China
| | - Jiangang Han
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China; Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China.
| | - Yuan Chen
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China
| | - Yongli Zhu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China
| | - Pingping Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China; Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, Jiangsu 210037, PR China.
| |
Collapse
|
68
|
Mennillo E, Arukwe A, Monni G, Meucci V, Intorre L, Pretti C. Ecotoxicological properties of ketoprofen and the S(+)-enantiomer (dexketoprofen): Bioassays in freshwater model species and biomarkers in fish PLHC-1 cell line. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:201-212. [PMID: 28796322 DOI: 10.1002/etc.3943] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/21/2017] [Accepted: 08/08/2017] [Indexed: 06/07/2023]
Abstract
The increased use of nonsteroidal anti-inflammatory drugs (NSAIDs) has resulted in their ubiquitous presence in the environment. The toxicological properties of these 2 widely prescribed NSAIDs, namely racemic ketoprofen and its enantiomer S(+)-ketoprofen (dexketoprofen), were evaluated, firstly, by acute and chronic toxicity tests using 3 representative model organisms (Vibrio fischeri, Pseudokirchneriella subcapitata, and Ceriodaphnia dubia) and, secondly, by evaluating the responses of biotransformation systems and multidrug resistance-associated proteins (MRP1/MRP2) using the Poeciliopsis lucida hepatocellular carcinoma 1 (PLHC-1) fish hepatic cell line. Toxicity data from both acute and chronic dexketoprofen exposure indicated higher sensitivity through inhibition of bioluminescence and algal growth and through increased mortality/immobilization compared to racemic ketoprofen exposure. The growth inhibition test showed that racemic ketoprofen and dexketoprofen exhibited different effect concentration values (240.2 and 65.6 μg/L, respectively). Furthermore, racemic ketoprofen and dexketoprofen did not exert cytotoxic effects in PLHC-1 cells and produced compound-, time-, and concentration-specific differential effects on cytochrome P450 1A (CYP1A) and glutathione S-transferase levels. For CYP1A, the effects of racemic ketoprofen and dexketoprofen differed at the transcriptional and catalytic levels. Exposure to racemic ketoprofen and dexketoprofen modulated MRP1 and MRP2 mRNA levels, and these effects were also dependent on compound, exposure time, and concentration of the individual drug. The present study revealed for the first time the interactions between these NSAIDs and key detoxification systems and different sensitivity to the racemic mixture compared to its enantiomer. Environ Toxicol Chem 2018;37:201-212. © 2017 SETAC.
Collapse
Affiliation(s)
- Elvira Mennillo
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Italy
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Gianfranca Monni
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Italy
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Italy
| | - Luigi Intorre
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Italy
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Italy
- Interuniversity Center of Marine Biology (CIBM) "G. Bacci," Livorno, Italy
| |
Collapse
|
69
|
Yan Z, Yan K, He X, Liu Y, Zhang J, Lopez Torres O, Guo R, Chen J. The impact assessment of anticancer drug imatinib on the feeding behavior of rotifers with an integrated perspective: Exposure, post-exposure and re-exposure. CHEMOSPHERE 2017; 185:423-430. [PMID: 28710991 DOI: 10.1016/j.chemosphere.2017.07.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 07/01/2017] [Accepted: 07/10/2017] [Indexed: 06/07/2023]
Abstract
The anticancer drugs are getting increasing attention as an emerging contaminant in the aquatic environments. In the present study, feeding behavior of the rotifer Brachionus calyciflorus under the impact of anticancer drug imatinib was evaluated. Traditional toxicological studies usually focus on dose-effect relationship at a given exposure time, while ignore the possible impact after the exposure. Thus, how the impact varied in the post-exposure and re-exposure was also considered in the present study. The feeding depression of the rotifers was attributed to the increased concentration of imatinib. Although the filtration and ingestion rate of the rotifers recovered to a certain extent after the exposure, the significant feeding inhibition still persisted even if the exposure was ended. In the re-exposure period, the feeding behavior was less depressed than those of the exposure period, which implied that rotifers might develop a tolerance to the same toxics. The activities of acetylcholine esterase (AchE) and the levels of reactive oxygen species (ROS) in rotifers were also detected. Imatinib inhibited the activities of AchE in the exposure and re-exposure while ROS levels increased significantly in the re-exposure period. Our present study provided an integrated assessment the potential environmental risks of imatinib at a new perspective.
Collapse
Affiliation(s)
- Zhengyu Yan
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China
| | - Kun Yan
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China
| | - Xingliang He
- Nanjing Police Dog Research Institute of the Ministry of Public Security, Nanjing 210012, China
| | - Yanhua Liu
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China
| | - Jie Zhang
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China
| | - Oscar Lopez Torres
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China
| | - Ruixin Guo
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China.
| | - Jianqiu Chen
- China Pharmaceutical University, Key Laboratory of Drug Quality Control and Pharmacovigilance (Ministry of Education), Nanjing 210009, China.
| |
Collapse
|
70
|
Arunbabu V, Indu KS, Ramasamy EV. Leachate pollution index as an effective tool in determining the phytotoxicity of municipal solid waste leachate. WASTE MANAGEMENT (NEW YORK, N.Y.) 2017; 68:329-336. [PMID: 28736051 DOI: 10.1016/j.wasman.2017.07.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/24/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Phytoremediation is a promising option for the treatment of municipal solid waste leachate. Combining the leachate pollution index with the phytotoxicity data will be useful in predicting the suitable concentration of leachate for the phytoremediation applications. Understanding the tolerant mechanisms of plants to leachate stress will further help to select the appropriate dose. The aim of the study was to investigate the effect of different concentrations of leachate on germination, growth, chlorophyll content and antioxidant enzyme activities in the plant Vigna unguiculata. The crude leachate has an LPI value of 31.99 with high concentration of organic matter, ammonia and dissolved solids. The results of the phytotoxicity study suggest that at lower concentrations the leachate enhanced the germination and promoted plant growth. Up to 5% concentration (v/v) of the leachate which had a LPI value of 11.84 the growth promotion was observed in V. unguiculata. This was made possible by the controlled modulation of reactive oxygen species through the enhanced antioxidant enzyme activities. However at higher concentration, the pollutants in leachate disrupt the enzyme activities and leads to the peroxidation of membrane lipids and significantly affected the plant growth. The study suggest that phytotoxic effects in plants are directly related to the LPI value and leachate with LPI values less than 10 are likely to promote plant growth and LPI values greater than 10 are likely to exert detrimental effect on the plant.
Collapse
Affiliation(s)
- V Arunbabu
- School of Environmental Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala 686560, India
| | - K S Indu
- School of Environmental Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala 686560, India
| | - E V Ramasamy
- School of Environmental Sciences, Mahatma Gandhi University, Priyadarsini Hills P.O., Kottayam, Kerala 686560, India.
| |
Collapse
|
71
|
Mitz C, Thome C, Cybulski ME, Somers CM, Manzon RG, Wilson JY, Boreham DR. Is There a Trade-Off between Radiation-Stimulated Growth and Metabolic Efficiency? Radiat Res 2017; 188:486-494. [PMID: 28877005 DOI: 10.1667/rr14665.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Beneficial protective effects may result from an adaptive respose to low dose radiation exposure. However, such benefits must be accompanied by some form of cost because the responsible biological mechanisms are not normally maintained in an upregulated state. It has been suggested that stimulation of adaptive response mechanisms could be metabolically costly, or that the adaptive response could come at a sacrifice to other physiological processes. We exposed developing lake whitefish embryos to a fractionated regime of gamma radiation (662 keV; 0.3 Gy min-1) to determine whether radiation-stimulated growth was accompanied by a trade-off in metabolic efficiency. Developing embryos were exposed at the eyed stage to different radiation doses delivered in four fractions, ranging from 15 mGy to 8 Gy per fraction, with a 14 day separation between dose fractions. Dry weight and standard length measurements were taken 2-5 weeks after delivery of the final radiation exposure and yolk conversion efficiency was estimated by comparing the unpreserved dry weight of the yolk to the unpreserved yolk-free dry weight of the embryos and normalizing for size-related differences in somatic maintenance. Our results show that the irradiated embryos were 8-10% heavier than the controls but yolk conversion efficiency was slightly improved. This finding demonstrates that stimulated growth in developing lake whitefish embryos is not "paid for" by a trade-off in the efficiency of yolk conversion.
Collapse
Affiliation(s)
- Charles Mitz
- a Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada, L8S 4L8
| | - Christopher Thome
- a Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada, L8S 4L8
| | - Mary Ellen Cybulski
- a Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada, L8S 4L8
| | - Christopher M Somers
- b Department of Biology, University of Regina, Regina, Saskatchewan, Canada, S4S 0A2
| | - Richard G Manzon
- b Department of Biology, University of Regina, Regina, Saskatchewan, Canada, S4S 0A2
| | - Joanna Y Wilson
- c Department of Biology, McMaster University, Hamilton, Ontario, Canada, L8S 4K1
| | - Douglas R Boreham
- a Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada, L8S 4L8.,d Northern Ontario School of Medicine, Sudbury, Ontario, Canada, P3E 2C6
| |
Collapse
|
72
|
Chikramane PS, Suresh AK, Kane SG, Bellare JR. Metal nanoparticle induced hormetic activation: a novel mechanism of homeopathic medicines. HOMEOPATHY 2017; 106:135-144. [PMID: 28844286 DOI: 10.1016/j.homp.2017.06.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/19/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND High-potency homeopathic remedies, 30c and 200c have enormous dilution factors of 1060 and 10400 respectively. Therefore, the presence of physical entities in them is inconceivable. As a result, their efficacy is highly debated and often dismissed as a placebo. Despite several hypotheses postulated to explain the claimed homeopathic efficacy, none have satisfactorily answered the qualms of the sceptics. Against all beliefs and principles of conventional dilution, we have shown that nanoparticles (NPs) of the starting metals are unequivocally found in the 30c and 200c remedies at concentrations of a few pg/ml. In this paper, our aim was to answer the important question of whether such negligible metal concentrations elicit a biological response. METHODS Metal-based homeopathic medicines (30c and 200c) were analysed at doses between 0.003%v/v and 10%v/v in in-vitro HepG2 cell-line. Upon treatment, cell response was estimated by MTT assay, FACS and total intracellular protein. Experiments were performed to discern whether the hormesis was a cell-activation or a proliferation effect. RESULTS Remedies at doses containing a few femtograms/ml levels of the starting metals induced a proliferation-independent hormetic activation by increasing the intracellular protein synthesis. The metal concentrations (at fg/ml) were a billion-fold lower than the studies with synthetic NPs (at μg/ml). Further, we also highlight a few plausible mechanisms initiating a hormetic response at a billion-fold lower dose. CONCLUSIONS Hormetic activation has been shown for the first time with standard homeopathic high-potency remedies. These findings should have a profound effect in understanding these extreme dilutions from a biological perspective.
Collapse
Affiliation(s)
- Prashant S Chikramane
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Bombay, Adi Shankaracharya Marg, Powai, Mumbai 400076, Maharashtra, India.
| | - Akkihebbal K Suresh
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Bombay, Adi Shankaracharya Marg, Powai, Mumbai 400076, Maharashtra, India; Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Adi Shankaracharya Marg, Powai, Mumbai 400076, Maharashtra, India.
| | - Shantaram G Kane
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Bombay, Adi Shankaracharya Marg, Powai, Mumbai 400076, Maharashtra, India.
| | - Jayesh R Bellare
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Bombay, Adi Shankaracharya Marg, Powai, Mumbai 400076, Maharashtra, India; Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Bombay, Adi Shankaracharya Marg, Powai, Mumbai 400076, Maharashtra, India.
| |
Collapse
|
73
|
Dai H, Yang Z. Variation in Cd accumulation among radish cultivars and identification of low-Cd cultivars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:15116-15124. [PMID: 28497327 DOI: 10.1007/s11356-017-9061-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/18/2017] [Indexed: 06/07/2023]
Abstract
Heavy metals have serious health consequences and ecosystem impacts. A pot experiment was conducted to investigate the variation of cadmium (Cd) uptake and accumulation among 40 cultivars of radish (Raphanus sativus L.) at three Cd levels, including 0.31 (T1), 0.83 (T2), and 1.13 (T3) mg kg-1. Most of the tested cultivars had higher taproot biomass in the T3 treatment when compared to those in the T1 treatment, indicating a Cd stress-induced growth in radish. Taproot Cd concentrations in 95 and 5% of the tested cultivars were lower than 0.1 mg kg-1 (fresh weight, FW) in the T1 and T2 treatments, respectively; however, there was no cultivar suitable for safe consumption in the T3 treatment. Radish production showed potential risk of Cd pollution as high as some leafy vegetables when grown in the soils where Cd concentration exceeded 0.8 mg kg-1. When compared with Chinese heat-resisting or imported cultivars, Chinese common cultivars had significantly higher taproot Cd concentrations. Three low-Cd cultivars and five high-Cd cultivars were identified. Taproot Cd concentrations showed significant correlations between any two of the three treatments (p < 0.01), suggesting that Cd accumulation in taproot of radish was genotype-dependent.
Collapse
Affiliation(s)
- Hongwen Dai
- Research Center for Environmental Pollution Control Technology, School of Safety and Environmental Engineering, Hunan Institute of Technology, Hengyang, 421002, China
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhongyi Yang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
74
|
Calabrese EJ, Calabrese V, Giordano J. The role of hormesis in the functional performance and protection of neural systems. Brain Circ 2017; 3:1-13. [PMID: 30276298 PMCID: PMC6126232 DOI: 10.4103/2394-8108.203257] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/06/2016] [Accepted: 12/13/2016] [Indexed: 02/03/2023] Open
Abstract
This paper addresses how hormesis, a biphasic dose response, can protect and affect performance of neural systems. Particular attention is directed to the potential role of hormesis in mitigating age-related neurodegenerative diseases, genetically based neurological diseases, as well as stroke, traumatic brain injury, seizure, and stress-related conditions. The hormetic dose response is of particular significance since it mediates the magnitude and range of neuroprotective processes. Consideration of hormetic dose-response concepts can also enhance the quality of study designs, including sample size/statistical power strategies, selection of treatment groups, dose spacing, and temporal/repeat measures’ features.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Viale Andrea Doria, Catania, Italy
| | - James Giordano
- Department of Neurology and Biochemistry, Georgetown University Medical Center, Washington, DC 20057, USA
| |
Collapse
|
75
|
Hormesis, cellular stress response and neuroinflammation in schizophrenia: Early onset versus late onset state. J Neurosci Res 2016; 95:1182-1193. [DOI: 10.1002/jnr.23967] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 12/27/2022]
|
76
|
Yu Z, Mo L, Zhang J, Liu S. Time- and anion-dependent stimulation on triphosphopyridine nucleotide followed by antioxidant responses in Vibrio fischeri after exposure to 1-ethyl-3-methylimidazolium salts. CHEMOSPHERE 2016; 163:452-460. [PMID: 27565313 DOI: 10.1016/j.chemosphere.2016.08.061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 07/03/2016] [Accepted: 08/13/2016] [Indexed: 06/06/2023]
Abstract
A toxicity database of over 157 ionic liquids (ILs) was established on Vibrio fischeri (VF). The database contained mainly monotonic concentration-response relationship, and its application in risk assessment was challenged by potential non-monotonic hormetic effects of ILs. In the present study, the hormetic effects of 1-ethyl-3-methylimidazolium salts ([emim]X, X = BF4, Cl and Br) were confirmed on VF, and biochemical explanations were explored in a time-dependent manner. On luminescence, [emim]BF4 showed inhibitory effects compared with the control, and the median effective concentration (EC50) increased from 3.15E-02 to 8.88E-02 mol/L from 0.25 to 24 h. Notably, [emim]BF4 also showed stimulatory effects at 18 h when the maximum stimulation (Emin) was 51.8% higher than the control, and at 24 h when the Emin increased to 120% higher than the control. Compared with [emim]BF4, [emim]Cl had higher EC50 values which increased over time, while it had less maximum stimulation which also increased over time. In results of [emim]Br, there were only inhibitory effects. At the biochemical level, the stimulatory effects of [emim]BF4 and [emim]Cl on triphosphopyridine nucleotide (NADPH) and nicotinamide adenine dinucleotide (NADH) were earlier than those on luminescence. Moreover, NAD(P)H showed stimulation in [emim]Br which did not have hormetic effects on luminescence. Meanwhile, the effects of [emim]X on flavin mononucleotide, adenosine-triphosphate, reactive oxygen species, superoxide dismutase, catalase, reduced glutathione and lipid peroxidases showed consistent time-dependent changes with those on luminescence. The results indicated different roles between NAD(P)H and other biochemical indices, e.g., the antioxidant responses, in the stimulation of [emim]X on luminescence.
Collapse
Affiliation(s)
- ZhenYang Yu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - LingYun Mo
- The Guangxi Key Laboratory of Environmental Engineering, Protection and Assessment, College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, PR China
| | - Jing Zhang
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai 201418, PR China.
| | - ShuShen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
77
|
Liu Z, Yang Y, Bai Y, Huang Y, Nan Z, Zhao C, Ma J, Wang H. The effect of municipal sludge compost on the mobility and bioavailability of Cd in a sierozem-wheat system in an arid region northwest of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:20232-20242. [PMID: 27443858 DOI: 10.1007/s11356-016-7231-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/11/2016] [Indexed: 06/06/2023]
Abstract
The effect of sewage sludge on the mobility and the bioavailability of trace metals in plant-soil systems have aroused wide interested and been widely explored. Based on a wheat-cultivating experiment, the effect of municipal sludge compost (MSC) on the mobility and bioavailability of Cd in a soil-wheat system was studied. With the application of MSC, soil organic matter (SOM), total nitrogen (TN), and total phosphorus (TP) in the soil increased significantly, while concentrations of trace metals (Cu, Zn, Ni, Pb, Cd) were below the China's minimum thresholds. The application of MSC could improve wheat growth. The application of MSC at the rate of 0.5 % had no significant effect on the chemical fraction distribution of Cd in soil. In two soil treatments, Cd mainly existed in the labile chemical fractions (exchangeable chemical fraction (EXCF) and carbonate chemical fraction (CABF)). However, the application of MSC could reduce accumulation of Cd by wheat. Cd contents in each part of the MSC-applied wheat were significantly less than that of non-MSC-applied wheat. In the tested soils, the extractable concentrations decreased in the order: EDTA > MgCl2 ≈ NH4OAc > DTPA. There were no significant differences between soil treatments in the amounts of extractable Cd when the extraction was done under neutral conditions, although significant differences were observed when the extraction was done under alkaline conditions. In this study, the DTPA extraction procedure provided a good indication of Cd bioavailability. Our results suggest that, in the short term at least, amending soils with MSC may benefit crop dry matter production while not increasing the risk of human exposure to Cd through consumption of wheat grown on MSC-amended soils.
Collapse
Affiliation(s)
- Zheng Liu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yang Yang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ying Bai
- Gansu Academy of Environmental Science, Lanzhou, 730030, China
| | - Yu Huang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhongren Nan
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| | - Chuanyan Zhao
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Jianmin Ma
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Houcheng Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
78
|
Mohammed Abdullah Christensen I, Swayne Storgaard M, Fauser P, Foss Hansen S, Baatrup E, Sanderson H. Acute toxicity of sea-dumped chemical munitions: luminating the environmental toxicity of legacy compounds. GLOBAL SECURITY: HEALTH, SCIENCE AND POLICY 2016. [DOI: 10.1080/23779497.2016.1219962] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Ilias Mohammed Abdullah Christensen
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
- Danish Centre for Environment and Energy, Aarhus University, Roskilde, Denmark
| | - Morten Swayne Storgaard
- Department of Biological Sciences, Zoophysiology, Aarhus University, Aarhus C, Denmark
- Danish Centre for Environment and Energy, Aarhus University, Roskilde, Denmark
| | - Patrik Fauser
- Danish Centre for Environment and Energy, Aarhus University, Roskilde, Denmark
| | - Steffen Foss Hansen
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Erik Baatrup
- Department of Biological Sciences, Zoophysiology, Aarhus University, Aarhus C, Denmark
| | - Hans Sanderson
- Danish Centre for Environment and Energy, Aarhus University, Roskilde, Denmark
| |
Collapse
|
79
|
Calabrese V, Giordano J, Signorile A, Laura Ontario M, Castorina S, De Pasquale C, Eckert G, Calabrese EJ. Major pathogenic mechanisms in vascular dementia: Roles of cellular stress response and hormesis in neuroprotection. J Neurosci Res 2016; 94:1588-1603. [PMID: 27662637 DOI: 10.1002/jnr.23925] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/25/2016] [Accepted: 08/25/2016] [Indexed: 12/18/2022]
Abstract
Vascular dementia (VaD), considered the second most common cause of cognitive impairment after Alzheimer disease in the elderly, involves the impairment of memory and cognitive function as a consequence of cerebrovascular disease. Chronic cerebral hypoperfusion is a common pathophysiological condition frequently occurring in VaD. It is generally associated with neurovascular degeneration, in which neuronal damage and blood-brain barrier alterations coexist and evoke beta-amyloid-induced oxidative and nitrosative stress, mitochondrial dysfunction, and inflammasome- promoted neuroinflammation, which contribute to and exacerbate the course of disease. Vascular cognitive impairment comprises a heterogeneous group of cognitive disorders of various severity and types that share a presumed vascular etiology. The present study reviews major pathogenic factors involved in VaD, highlighting the relevance of cerebrocellular stress and hormetic responses to neurovascular insult, and addresses these mechanisms as potentially viable and valuable as foci of novel neuroprotective methods to mitigate or prevent VaD. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy.
| | - James Giordano
- Departments of Neurology and Biochemistry and Neuroethics Studies Program, Pellegrino Center for Clinical Bioethics, Georgetown University Medical Center, Washington, DC
| | - Anna Signorile
- Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Sergio Castorina
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Concetta De Pasquale
- Department of Medical, Surgical Sciences and Advanced Technologies, University of Catania, Italy
| | - Gunter Eckert
- Institute of Nutrition Sciences, Justus-Liebig-University of Giessen, Giessen, Germany
| | - Edward J Calabrese
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts
| |
Collapse
|
80
|
Deng ZZ, Zhang F, Wu ZL, Yu ZY, Wu G. Chlorpyrifos-induced hormesis in insecticide-resistant and -susceptible Plutella xylostella under normal and high temperatures. BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:378-386. [PMID: 27241230 DOI: 10.1017/s000748531600002x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hormesis induced by insecticides at the dosage lower than what ostensibly directly causes death on insects was studied. This paper reports the effects of the in vivo application of varied concentrations of chlorpyrifos (CPF) on Plutella xylostella (DBM). The insecticide concentrations applied included 0.000025-2.5 mg l-1, which are far lower than LC1 (7.2 mg l-1), for the CPF-susceptable (Si) DBM, and 250 mg l-1 which is far below LC1 (1286 mg l-1), for the CPF-resistant (Rc) DBM, as well as LC10- and LC50-doses for both strains. Significant hormesis was found with the 'hermetic-CPFs', i.e., 0.0025 mg l-1 for Si DBM and 2.5 mg l-1 for Rc DBM, at the normal or high temperature either in a 24 h or under a long-term treatment. These doses of CPF significantly stimulated the development and increased the fecundity of Si and Rc DBM at 25°C with approximately 23.5-29.8% activity increase on acetylcholinesterase (AChE) and 30.5-91.3% increase on glutathione S-transferases (GSTs) at 25 or 38°C in 4-24 h. The enzymatic activities were significantly reduced by LC50-CPF at 25°C in vivo, but the inhibition was relieved significantly, if the insects were first subjected to a hormetic-CPF pretreatment. It was remarkable that the average rates of enzymatic activity increase were 67.5-76.6% for AChE and 366-546% for GSTs. Consequently, it was concluded that the hormesis on Si and Rc DBM could be induced by CPF doses far below LC1 at normal or high temperature in short- or long-term treatment. These findings might help to improve the current insect control practices in the field.
Collapse
Affiliation(s)
- Z Z Deng
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education),Fujian Agriculture and Forestry University,Fuzhou,Fujian 350002,China
| | - F Zhang
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education),Fujian Agriculture and Forestry University,Fuzhou,Fujian 350002,China
| | - Z L Wu
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education),Fujian Agriculture and Forestry University,Fuzhou,Fujian 350002,China
| | - Z Y Yu
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education),Fujian Agriculture and Forestry University,Fuzhou,Fujian 350002,China
| | - G Wu
- Key Laboratory of Biopesticide and Chemical Biology (Ministry of Education),Fujian Agriculture and Forestry University,Fuzhou,Fujian 350002,China
| |
Collapse
|
81
|
Díaz-Garduño B, Rueda-Márquez JJ, Manzano MA, Garrido-Pérez C, Martín-Díaz ML. Are combined AOPs effective for toxicity reduction in receiving marine environment? Suitability of battery of bioassays for wastewater treatment plant (WWTP) effluent as an ecotoxicological assessment. MARINE ENVIRONMENTAL RESEARCH 2016; 114:1-11. [PMID: 26741736 DOI: 10.1016/j.marenvres.2015.12.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/11/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
Ecotoxicological assessment of three different wastewater treatment plant (WWTP) effluents D1, D2 and D3 was performed before and after tertiary treatment using combination of advanced oxidation processes (AOPs). A multibarrier treatment (MBT) consisting of microfiltration (MF), hydrogen peroxide photolysis (H2O2/UVC) and catalytic wet peroxide oxidation (CWPO) was applied for all effluents. Sparus aurata, Paracentrotus lividus, Isochrysis galbana and Vibrio fischeri, representing different trophic levels, constituted the battery of bioassays. Different acute toxicity effects were observed in each WWTP effluents tested. The percentage of sea urchin larval development and mortality fish larvae were the most sensitive endpoints. Significant reduction (p < 0.05) of effluent's toxicity was observed using a classification pT-method after MBT process. Base on obtained results, tested battery of bioassays in pT-method framework can be recommended for acute toxicity preliminary evaluation of WWTP effluents for the marine environment.
Collapse
Affiliation(s)
- B Díaz-Garduño
- Physical Chemical Department, Centro Andaluz de Ciencia y Tecnología Marina (CACYTMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Campus Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain.
| | - J J Rueda-Márquez
- Environmental Technologies Department, Centro Andaluz de Ciencia y Tecnología Marina (CACYTMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz. Campus Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain
| | - M A Manzano
- Environmental Technologies Department, Centro Andaluz de Ciencia y Tecnología Marina (CACYTMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz. Campus Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain
| | - C Garrido-Pérez
- Environmental Technologies Department, Centro Andaluz de Ciencia y Tecnología Marina (CACYTMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz. Campus Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain
| | - M L Martín-Díaz
- Physical Chemical Department, Centro Andaluz de Ciencia y Tecnología Marina (CACYTMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Universidad de Cádiz, Campus Universitario de Puerto Real, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
82
|
Maleva MG, Malec P, Prasad MNV, Strzałka K. Kinetics of nickel bioaccumulation and its relevance to selected cellular processes in leaves of Elodea canadensis during short-term exposure. PROTOPLASMA 2016; 253:543-551. [PMID: 25985854 DOI: 10.1007/s00709-015-0832-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 05/07/2015] [Indexed: 06/04/2023]
Abstract
Elodea canadensis is an aquatic macrophyte used widely as a bioindicator for the monitoring of water quality and in the phytoremediation of metal-contaminated waters. This study considers the kinetics of nickel bioaccumulation and changes in accompanying metabolic and stress-related physiological parameters. These include photosynthetic activity, pigment content, the accumulation of thiol-containing compounds, thiobarbituric acid-reactive substance (TBARS) products, and the activity of selected antioxidant enzymes (catalase, glutathione reductase, superoxide dismutase). Elodea leaves accumulated nickel according to pseudo-second-order kinetics, and the protective responses followed a time sequence which was related to the apparent rates of nickel accumulation. The applicability of second-order kinetics to the Ni uptake by Elodea leaves during the first 8 h of exposure to the metal suggested that the passive binding of metal ions (chemisorption) was a rate-limiting step at the initial phase of Ni accumulation. This phase was accompanied by an increase in photosynthetic activity together with elevated photosynthetic pigments and protein synthesis, the enhanced activity of antioxidant enzymes, and increased thiol concentration. In contrast, there was a decrease in metabolic activity upon the accumulation of TBARS, and the decline in enzyme activity was observed in the saturation phase of Ni accumulation (8-24 h). These results show that a correlation exists between the protective response and the apparent kinetic rate of Ni uptake. Thus, the time of exposure to the toxicant is a crucial factor in the activation of specific mechanisms of Ni detoxification and stress alleviation.
Collapse
Affiliation(s)
- Maria G Maleva
- Department of Plant Physiology and Biochemistry, Ural Federal University named after the first President of Russia B.N. Yeltsin, Lenin av. 51, Ekaterinburg, Russia, 620000
| | - Przemysław Malec
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Majeti Narasimha Vara Prasad
- Department of Plant Physiology and Biochemistry, Ural Federal University named after the first President of Russia B.N. Yeltsin, Lenin av. 51, Ekaterinburg, Russia, 620000
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, 500 046, India
| | - Kazimierz Strzałka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
83
|
Pradas Del Real AE, García-Gonzalo P, Gil-Díaz MM, González-Rodríguez Á, Lobo C, Pérez-Sanz A. ECO-physiological response of S. vulgaris to CR(VI): Influence of concentration and genotype. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:567-574. [PMID: 26375321 DOI: 10.1080/15226514.2015.1086299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The objective of this work is to study the response of Silene vulgaris to a range of environmentally relevant concentrations of Cr(VI) in order to evaluate its potential use in the phytomanagement of Cr polluted sites. Cuttings of six homogenous genotypes from Madrid (Spain) have been used as plant material. The eco-physiological response of S. vulgaris to Cr(VI) changed with the genotype. The yield dose-response curve was characterized by stimulation at low doses of Cr(VI). The effects of metal concentration were quantified on root dry weight, water content and chlorophyll content, determined by SPAD index. The response was not homogeneous for all studied genotypes. At high doses of Cr(VI), plants increased micronutrient concentration in dry tissues which suggested that nutrient balance could be implicated in the alleviation of Cr toxicity. This work highlights the importance of studying the eco-physiological response of metallophytes under a range of pollutant concentrations to determine the most favorable traits to be employed in the phytomanagement process.
Collapse
Affiliation(s)
- Ana E Pradas Del Real
- a Dpto. de Investigación Agroambiental. IMIDRA , Finca "El Encín" , Alcalá de Henares, Madrid , Spain
| | - Pilar García-Gonzalo
- a Dpto. de Investigación Agroambiental. IMIDRA , Finca "El Encín" , Alcalá de Henares, Madrid , Spain
| | - M Mar Gil-Díaz
- a Dpto. de Investigación Agroambiental. IMIDRA , Finca "El Encín" , Alcalá de Henares, Madrid , Spain
| | - Águeda González-Rodríguez
- a Dpto. de Investigación Agroambiental. IMIDRA , Finca "El Encín" , Alcalá de Henares, Madrid , Spain
| | - Carmen Lobo
- a Dpto. de Investigación Agroambiental. IMIDRA , Finca "El Encín" , Alcalá de Henares, Madrid , Spain
| | - Araceli Pérez-Sanz
- a Dpto. de Investigación Agroambiental. IMIDRA , Finca "El Encín" , Alcalá de Henares, Madrid , Spain
| |
Collapse
|
84
|
Ortiz de García S, García-Encina PA, Irusta-Mata R. Dose-response behavior of the bacterium Vibrio fischeri exposed to pharmaceuticals and personal care products. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:141-162. [PMID: 26518677 DOI: 10.1007/s10646-015-1576-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/20/2015] [Indexed: 06/05/2023]
Abstract
The presence of pharmaceuticals and personal care products (PPCPs) in the environment has become a real and widespread concern in recent years. Therefore, the primary goal of this study was to investigate 20 common and widely used PPCPs to assess their individual and combined effect on an important species in one trophic level, i.e., bacteria. The ecotoxicological effects of PPCPs at two different concentration ranges were determined in the bacterium Vibrio fischeri using Microtox(®) and were statistically analyzed using three models in the GraphPad Prism 6 program for Windows, v.6.03. A four-parameter model best fit the majority of the compounds. The half maximal effective concentration (EC50) of each PPCP was estimated using the best-fitting model and was compared with the results from a recent study. Comparative analysis indicated that most compounds showed the same level of toxicity. Moreover, the stimulatory effects of PPCPs at environmental concentrations (low doses) were assessed. These results indicated that certain compounds have traditional inverted U- or J-shaped dose-response curves, and 55% of them presented a stimulatory effect below the zero effect-concentration point. Effective concentrations of 0 (EC0), 5 (EC5) and 50% (EC50) were calculated for each PPCP as the ecotoxicological points. All compounds that presented narcosis as a mode of toxic action at high doses also exhibited stimulation at low concentrations. The maximum stimulatory effect of a mixture was higher than the highest stimulatory effect of each individually tested compound. Moreover, when the exposure time was increased, the hormetic effect decreased. Hormesis is being increasingly included in dose-response studies because this may have a harmful, beneficial or indifferent effect in an environment. Despite the results obtained in this research, further investigations need to be conducted to elucidate the behavior of PPCPs in aquatic environments.
Collapse
Affiliation(s)
- Sheyla Ortiz de García
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Dr. Mergelina s/n, 47011, Valladolid, Spain.
- Department of Chemistry, Faculty of Sciences and Technology, University of Carabobo, Av. Salvador Allende, Campus Bárbula, Valencia, Carabobo State, Bolivarian Republic of Venezuela.
| | - Pedro A García-Encina
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Dr. Mergelina s/n, 47011, Valladolid, Spain.
| | - Rubén Irusta-Mata
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Paseo del Cauce 59, 47011, Valladolid, Spain.
| |
Collapse
|
85
|
Tang Q, Xiang M, Hu H, An C, Gao X. Evaluation of Sublethal Effects of Sulfoxaflor on the Green Peach Aphid (Hemiptera: Aphididae) Using Life Table Parameters. JOURNAL OF ECONOMIC ENTOMOLOGY 2015; 108:2720-2728. [PMID: 26470367 DOI: 10.1093/jee/tov221] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/07/2015] [Indexed: 06/05/2023]
Abstract
The green peach aphid, Myzus persicae (Sulzer), is an important insect pest of many crops around the world. Pesticide-induced hormesis may be an alternative mechanism for pest resurgence. In this study, life table parameters were applied to the estimation of sulfoxaflor-induced hormesis of adult M. persicae following 2-d LC25 concentration exposure. Leaf-dip bioassays showed that the sulfoxaflor possessed high toxicity against M. persicae, with an LC50 of 0.059 mg/liter. The results indicated that the exposure of the parent generation of M. persicae to sublethal sulfoxaflor induced increase in reproduction and prolongation of immature development duration in the first progeny generation. Both R0 and GRR of aphids for treatment group were significantly higher than for the control in F1 generation, and the mean generation time was significantly postponed in treated group. These results suggest a hormesis induced by lower concentration of sulfoxaflor in M. persicae. It would be useful for assessing the overall effects of sulfoxaflor on M. persicae.
Collapse
Affiliation(s)
- Qiuling Tang
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Min Xiang
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Huimin Hu
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Chunju An
- Department of Entomology, China Agricultural University, Beijing 100193, PR China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
86
|
Dattilo S, Mancuso C, Koverech G, Di Mauro P, Ontario ML, Petralia CC, Petralia A, Maiolino L, Serra A, Calabrese EJ, Calabrese V. Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases. Immun Ageing 2015; 12:20. [PMID: 26543490 PMCID: PMC4634585 DOI: 10.1186/s12979-015-0046-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 10/15/2015] [Indexed: 12/16/2022]
Abstract
Modulation of endogenous cellular defense mechanisms via the vitagene system represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. The possibility of high-throughoutput screening using proteomic techniques, particularly redox proteomics, provide more comprehensive overview of the interaction of proteins, as well as the interplay among processes involved in neuroprotection. Here by introducing the hormetic dose response concept, the mechanistic foundations and applications to the field of neuroprotection, we discuss the emerging role of heat shock protein as prominent member of vitagene network in neuroprotection and redox proteomics as a tool for investigating redox modulation of stress responsive vitagenes. Hormetic mechanisms are reviewed as possibility of targeted therapeutic manipulation in a cell-, tissue- and/or pathway-specific manner at appropriate points in the neurodegenerative disease process.
Collapse
Affiliation(s)
- Sandro Dattilo
- />Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria, 95100 Catania, Italy
| | - Cesare Mancuso
- />Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy
| | - Guido Koverech
- />Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria, 95100 Catania, Italy
| | - Paola Di Mauro
- />Department of Medical and Surgery Specialties, University of Catania, Catania, Italy
| | - Maria Laura Ontario
- />Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria, 95100 Catania, Italy
| | | | - Antonino Petralia
- />Department of Clinical and Experimental Medicine, School of Medicine, University of Catania, Catania, Italy
| | - Luigi Maiolino
- />Department of Medical and Surgery Specialties, University of Catania, Catania, Italy
| | - Agostino Serra
- />Department of Medical and Surgery Specialties, University of Catania, Catania, Italy
| | - Edward J. Calabrese
- />Environmental Health Sciences Division, School of Public Health, University of Massachusetts, Amherst, MA USA
| | - Vittorio Calabrese
- />Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria, 95100 Catania, Italy
| |
Collapse
|
87
|
Oberbaum M, Gropp C. Update on hormesis and its relation to homeopathy. HOMEOPATHY 2015; 104:227-33. [DOI: 10.1016/j.homp.2015.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 11/15/2022]
|
88
|
What is hormesis and its relevance to healthy aging and longevity? Biogerontology 2015; 16:693-707. [PMID: 26349923 DOI: 10.1007/s10522-015-9601-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/21/2015] [Indexed: 12/16/2022]
Abstract
This paper provides a broad overview of hormesis, a specific type of biphasic dose response, its historical and scientific foundations as well as its biomedical applications, especially with respect to aging. Hormesis is a fundamental component of adaptability, neutralizing many endogenous and environmental challenges by toxic agents, thereby enhancing survival. Hormesis is highly conserved, broadly generalizable, and pleiotrophic, being independent of biological model, endpoint measured, inducing agent, level of biological organization and mechanism. The low dose stimulatory hormetic response has specific characteristics which defines both the quantitative features of biological plasticity and the potential for maximum biological performance, thereby estimating the limits to which numerous medical and pharmacological interventions may affect humans. The substantial degrading of some hormetic processes in the aged may profoundly reduce the capacity to respond effectively to numerous environmental/ischemic and other stressors leading to compromised health, disease and, ultimately, defining the bounds of longevity.
Collapse
|
89
|
Chen F, Liu SS, Yu M, Qu R, Wang MC. Blocking the entrance of AMP pocket results in hormetic stimulation of imidazolium-based ionic liquids to firefly luciferase. CHEMOSPHERE 2015; 132:108-113. [PMID: 25835270 DOI: 10.1016/j.chemosphere.2015.03.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 06/04/2023]
Abstract
The hormesis characterized by low-concentration stimulation and high-concentration inhibition has gained significant interest over the past decades. Some organic solvents and ionic liquids (ILs) have hormetic concentration responses (HCR) to bioluminescence such as firefly luciferase and Vibrio qinghaiensis sp.-Q67. In this study, we determine the effects of 1-alkyl-3-methylimidazolium chlorine ILs ([Cnmim]Cl, n=2, 4, 6, 8, 10 and 12) to firefly luciferase in order to verify the mechanism of hormesis. The luminescence inhibition toxicity tests show that the stimulation effects of [C8mim]Cl and [C10mim]Cl are obvious, [C6mim]Cl and [C12mim]Cl are minor, and [C2mim]Cl and [C4mim]Cl are rare. The enzyme kinetics show that [C8mim]Cl and [C10mim]Cl are the competitive inhibitors with ATP while [C2mim]Cl and [C4mim]Cl are the noncompetitive ones. Molecular dynamics simulation results reveal that imidazolium rings of [C8mim] and [C10mim] locate at the entrance of luciferin pocket which is adjacent to AMP pocket, while alkyl-chains insert into the bottom of the luciferin pocket. Combining the results from inhibition test, kinetics assay and molecular simulation, we can deduce that occupying AMP pocket by imidazolium ring is responsible for hormetic stimulation.
Collapse
Affiliation(s)
- Fu Chen
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Mo Yu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Rui Qu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Meng-Chao Wang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
90
|
Calabrese EJ. Hormesis: principles and applications. HOMEOPATHY 2015; 104:69-82. [DOI: 10.1016/j.homp.2015.02.007] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/19/2014] [Accepted: 02/04/2015] [Indexed: 10/23/2022]
|
91
|
Gupta A, Rajamani P. Toxicity Assessment of Municipal Solid Waste Landfill Leachate Collected in Different Seasons from Okhala Landfill Site of Delhi. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jbise.2015.86034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
92
|
Duff MC, Kuhne WW, Halverson NV, Chang CS, Kitamura E, Hawthorn L, Martinez NE, Stafford C, Milliken CE, Caldwell EF, Stieve-Caldwell E. mRNA Transcript abundance during plant growth and the influence of Li(+) exposure. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:262-279. [PMID: 25443852 DOI: 10.1016/j.plantsci.2014.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 10/06/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
Lithium (Li) toxicity in plants is, at a minimum, a function of Li(+) concentration, exposure time, species and growth conditions. Most plant studies with Li(+) focus on short-term acute exposures. This study examines short- and long-term effects of Li(+) exposure in Arabidopsis with Li(+) uptake studies and measured shoot mRNA transcript abundance levels in treated and control plants. Stress, pathogen-response and arabinogalactan protein genes were typically more up-regulated in older (chronic, low level) Li(+)-treatment plants and in the much younger plants from acute high-level exposures. The gene regulation behavior of high-level Li(+) resembled prior studies due to its influence on: inositol synthesis, 1-aminocyclopropane-1-carboxylate synthases and membrane ion transport. In contrast, chronically-exposed plants had gene regulation responses that were indicative of pathogen, cold, and heavy-metal stress, cell wall degradation, ethylene production, signal transduction, and calcium-release modulation. Acute Li(+) exposure phenocopies magnesium-deficiency symptoms and is associated with elevated expression of stress response genes that could lead to consumption of metabolic and transcriptional energy reserves and the dedication of more resources to cell development. In contrast, chronic Li(+) exposure increases expression signal transduction genes. The identification of new Li(+)-sensitive genes and a gene-based "response plan" for acute and chronic Li(+) exposure are delineated.
Collapse
Affiliation(s)
- M C Duff
- Savannah River National Laboratory, Aiken, SC 29808, United States.
| | - W W Kuhne
- Savannah River National Laboratory, Aiken, SC 29808, United States
| | - N V Halverson
- Savannah River National Laboratory, Aiken, SC 29808, United States
| | - C-S Chang
- Integrated Genomics Core, Georgia Regents University Cancer Center, Augusta, GA 30912, United States
| | - E Kitamura
- Integrated Genomics Core, Georgia Regents University Cancer Center, Augusta, GA 30912, United States
| | - L Hawthorn
- Integrated Genomics Core, Georgia Regents University Cancer Center, Augusta, GA 30912, United States
| | - N E Martinez
- Savannah River National Laboratory, Aiken, SC 29808, United States; Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, United States
| | - C Stafford
- Savannah River National Laboratory, Aiken, SC 29808, United States; University of South Carolina Medical School, Columbia, SC 29208, United States
| | - C E Milliken
- Savannah River National Laboratory, Aiken, SC 29808, United States
| | - E F Caldwell
- Savannah River National Laboratory, Aiken, SC 29808, United States
| | | |
Collapse
|
93
|
Guedes RNC, Cutler GC. Insecticide-induced hormesis and arthropod pest management. PEST MANAGEMENT SCIENCE 2014; 70:690-7. [PMID: 24155227 DOI: 10.1002/ps.3669] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/07/2013] [Accepted: 10/23/2013] [Indexed: 05/17/2023]
Abstract
Ecological backlashes such as insecticide resistance, resurgence and secondary pest outbreaks are frequent problems associated with insecticide use against arthropod pest species. The last two have been particularly important in sparking interest in the phenomenon of insecticide-induced hormesis within entomology and acarology. Hormesis describes a biphasic dose-response relationship that is characterized by a reversal of response between low and high doses of a stressor (e.g. insecticides). Although the concept of insecticide-induced hormesis often does not receive sufficient attention, or has been subject to semantic confusion, it has been reported in many arthropod pest species and natural enemies, and has been linked to pest outbreaks and potential problems with insecticide resistance. The study of hormesis remains largely neglected in entomology and acarology. Here, we examined the concept of insecticide-induced hormesis in arthropods, its functional basis and potential fitness consequences, and its importance in arthropod pest management and other areas.
Collapse
|
94
|
Wu L, Jiang Y, Zhang L, Chen L, Zhang H. Toxicity of urban highway runoff in Shanghai to Zebrafish (Danio rerio ) embryos and luminous bacteria (Vibrio qinghaiensis.Q67). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:2663-76. [PMID: 24122161 DOI: 10.1007/s11356-013-2193-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/24/2013] [Indexed: 05/03/2023]
Abstract
Pollution from urban highway runoff has been identified as one of the major causes of the deterioration of receiving water quality. The purpose of this study is to assess the toxicity of urban storm water samples in Shanghai using the zebrafish (Danio rerio ) embryo test and the bacterial luminescence (Vibrio qinghaiensis ) assay. The toxicity of highway runoff from seventeen storm events was investigated in both grab and composite samples. Zebrafish embryos were exposed to the runoff samples and development parameters including lethality, spontaneous movements in 20 s, heart beat rate, hatching rate, and abnormality of zebrafish embryos were observed after 24, 48, 72, and 96 h of exposure. Inhibition rates of luminescence intensity were also recorded. The results showed that in the zebrafish embryo toxicity tests, both grab and composite samples increased the lethality, reduced the percentage with spontaneous movements and heart beats, inhibited the hatching of embryos, and induced morphological abnormalities. In the Vibrio qinghaiensis toxicity test, all the grab samples inhibited the luminescence, while some of the composite samples promoted it, which indicated that different types of toxicants might have been affecting the species. The multivariate statistics analysis indicated that heavy metal (zinc, manganese, and copper) and PAHs might mainly contribute to the toxicity of runoff samples.
Collapse
|
95
|
Narracci M, Acquaviva MI, Cavallo RA. Mar Piccolo of Taranto: Vibrio biodiversity in ecotoxicology approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:2378-2385. [PMID: 24072640 DOI: 10.1007/s11356-013-2049-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/31/2013] [Indexed: 06/02/2023]
Abstract
Microorganisms play an indispensable role in the ecological functioning of marine environment. Some species are sensitive while others are insensitive for a specific pollutant. The aim of this work is a preliminary study of the quantitative and qualitative distribution of cultivable vibrios in sediments and water samples characterized by different toxicity levels. For 1 year, in three suitably selected sampling stations of Mar Piccolo in Taranto (Ionian Sea, Italy), we have evaluated the toxicity level by Microtox® system, vibrios, total, and fecal coliform densities. The results of the Microtox® tests showed sediments characterized by an elevated level of toxicity, while the interstitial water of the same sites always showed biostimulatory phenomenon. The quantitative results show that vibrios and coliforms are more abundant in water than in sediment samples. The most often isolated strains were: Vibrio alginolyticus, Vibrio mediterranei, Vibrio metschinkovii, and Vibrio splendidus II. This work is the first example of study on the distribution of Vibrio species related to toxicity evaluation conducted by the Microtox® bioassay. The results show the different distribution of Vibrionaceae in two environmental matrices analyzed and characterized by different levels of toxicity.
Collapse
Affiliation(s)
- M Narracci
- , CNR-IAMC-Taranto, Via Roma 3, 74100, Taranto, Italy
| | - M I Acquaviva
- , CNR-IAMC-Taranto, Via Roma 3, 74100, Taranto, Italy.
| | - R A Cavallo
- , CNR-IAMC-Taranto, Via Roma 3, 74100, Taranto, Italy
| |
Collapse
|
96
|
Calabrese EJ. Biphasic dose responses in biology, toxicology and medicine: accounting for their generalizability and quantitative features. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 182:452-460. [PMID: 23992683 DOI: 10.1016/j.envpol.2013.07.046] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/23/2013] [Accepted: 07/26/2013] [Indexed: 06/02/2023]
Abstract
The most common quantitative feature of the hormetic-biphasic dose response is its modest stimulatory response which at maximum is only 30-60% greater than control values, an observation that is consistently independent of biological model, level of organization (i.e., cell, organ or individual), endpoint measured, chemical/physical agent studied, or mechanism. This quantitative feature suggests an underlying "upstream" mechanism common across biological systems, therefore basic and general. Hormetic dose response relationships represent an estimate of the peak performance of integrative biological processes that are allometrically based. Hormetic responses reflect both direct stimulatory or overcompensation responses to damage induced by relatively low doses of chemical or physical agents. The integration of the hormetic dose response within an allometric framework provides, for the first time, an explanation for both the generality and the quantitative features of the hormetic dose response.
Collapse
Affiliation(s)
- Edward J Calabrese
- Environmental Health Sciences Program, School of Public Health, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
97
|
Sun HX, Tang WC, Chen H, Chen W, Zhang M, Liu X, Zhang GR. Food utilization and growth of cutworm Spodoptera litura Fabricius larvae exposed to nickel, and its effect on reproductive potential. CHEMOSPHERE 2013; 93:2319-2326. [PMID: 24103438 DOI: 10.1016/j.chemosphere.2013.08.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 08/09/2013] [Accepted: 08/10/2013] [Indexed: 06/02/2023]
Abstract
Food utilization and growth of the 5th and 6th instar Spodoptera litura Fabricius larvae, and its effect on reproduction potential was evaluated by feeding larvae diets with different doses of Ni for 3 generations. Dose-dependent relationships between Ni levels and food consumption and growth were variable with different larval developmental period and Ni exposure duration. RCR, AD and RGR of the 6th instar larvae were much more affected by Ni exposure than those of 5th instar larvae, and the effects were strongest in the 3rd generation. It was found that RCR was significantly stimulated after 1 and 20 mg kg(-1) Ni exposure, while AD was significantly inhibited after 1, 5, 10 and 40 mg kg(-1) Ni exposure. However, lower levels of Ni (≤5 mg kg(-1)) significantly increased and higher levels of Ni (≥10 mg kg(-1)) significantly decreased RGR. In 3 successive generations, 10 mg kg(-1) Ni significantly increased the ECI and ECD of the 5th instar larvae, and 5 mg kg(-1) Ni significantly increased the ECD of the 6th instar larvae. However, ECD were all significantly inhibited with 20 mg kg(-1) Ni exposure. Results also revealed that durations of larvae were shortened at low levels of Ni, but extended at high levels of Ni. Fecundity was inhibited by the highest Ni doses in each generation, while improved by low Ni doses in the 3rd generation. Hatching rates in all treatments were significantly decreased in a Ni dose-dependent manner. Study indicated that effects of Ni on these parameters were predominant with the increasing Ni exposure period.
Collapse
Affiliation(s)
- Hong Xia Sun
- Food and Health Engineering Research Center of State Education Ministry, Sun Yat-sen University, Guangzhou 510275, PR China; State Key Laboratory for Biological Control & Institute of Entomology, Sun Yat-sen University, Guangzhou 510275, PR China
| | | | | | | | | | | | | |
Collapse
|
98
|
Zhang J, Liu SS, Yu ZY, Liu HL, Zhang J. The time-dependent hormetic effects of 1-alkyl-3-methylimidazolium chloride and their mixtures on Vibrio qinghaiensis sp. -Q67. JOURNAL OF HAZARDOUS MATERIALS 2013; 258-259:70-76. [PMID: 23721728 DOI: 10.1016/j.jhazmat.2013.02.057] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 12/01/2012] [Accepted: 02/27/2013] [Indexed: 06/02/2023]
Abstract
The hormetic effects of ionic liquids (ILs) were paid more ecological attentions. However, the time-dependent hormetic effects of ILs and their mixtures remained to be studied. In this paper, the time-dependent toxicities of five single ILs, 1-ethyl-, 1-butyl-, 1-hexyl-, 1-octyl-, and 1-dodecyl-3-methylimidazolium chlorides (named as [C2mim]Cl, [C4mim]Cl, [C6mim]Cl, [C8mim]Cl, and [C12mim]Cl, respectively), and their five-component mixtures to Vibrio qinghaiensis sp.-Q67 were determined at five exposure time points. For single ILs, [C2mim]Cl displayed significant hormetic effects at 2, 4, 8, and 12h; and [C4mim]Cl exhibited significant hormetic effects at 4, 8 and 12h; while [C6mim]Cl, [C8mim]Cl and [C12mim]Cl have not significant hormetic effects. At the same time point, the longer the side chain is, the larger the inhibition at high concentration is, and the less the stimulation at low concentration is. Meanwhile, the maximum stimulation effects were found between 4 and 8h. All six IL mixtures designed by uniform design ray showed significant hormetic effects at 8 and 12h. By means of the variable selection and modeling method based on the prediction (VSMP), it was found that the higher the concentration of [C2mim]Cl is, the stronger the mixture hormetic effect is and the higher the concentration of [C12mim]Cl is, the weaker the hormetic effect is.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | | | | | | | | |
Collapse
|
99
|
Zhang J, Liu SS, Yu ZY, Zhang J. Time-dependent hormetic effects of 1-alkyl-3-methylimidazolium bromide on Vibrio qinghaiensis sp.-Q67: luminescence, redox reactants and antioxidases. CHEMOSPHERE 2013; 91:462-467. [PMID: 23273740 DOI: 10.1016/j.chemosphere.2012.11.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/12/2012] [Accepted: 11/16/2012] [Indexed: 06/01/2023]
Abstract
The green credentials of ionic liquids (ILs) are being challenged due to the increasing evidence of their toxicity. The hormetic effects further raised their ecological concern. However, it remained poorly studied on the time-dependent changes of the hormetic effects and the mechanisms. In this study, we investigated the time-dependent hormetic effects of four 1-alkyl-3-methylimidazolium bromide ([amim]Br), including 1-ethyl ([emim]Br), -butyl ([bmim]Br), -hexyl ([hmim]Br) and -octyl ([omim]Br), on the luminescence of Vibrio qinghaiensis sp.-Q67. The results showed that [amim]Br with shorter side chains, [emim]Br and [bmim]Br, caused obvious hormetic time-dependent toxicities. The effective concentration (EC) values for the hormetic effects of [emim]Br and [bmim]Br increased with time. [amim]Br with longer side chains, [hmim]Br and [omim]Br, produced sigmoid concentration-dependent inhibitions on the luminescence, and the EC50 values almost unchanged. To illustrate the mechanism, we subsequently examined the responses of redox reactants and antioxidases. [emim]Br and [bmim]Br significantly induced FMN (flavin mononucleotide), NADH (reduced nicotinamide adenine dinucleotide), SOD (superoxide dismutase) and CAT (catalase), and the inductions increased with time, which is similar to the time-dependent changes of their hormetic effects on Q67. Meanwhile, [hmim]Br and [omim]Br did not cause significant effects on the redox reactants and antioxidases. In conclusion, the hormetic effects of [amim]Br on the luminescence, redox reactants and antioxidases showed the dependence on both exposure time and side chains. Our findings provided insights into the time-dependent biological process of the hormetic effects of [emim]Br and [bmim]Br on the photobacterium and its biochemical indicators.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | | | | | | |
Collapse
|
100
|
Zanuncio JC, Jusselino-Filho P, Ribeiro RC, Castro AA, Zanuncio TV, Serrão JE. Fertility and life expectancy of a predatory stinkbug to sublethal doses of a pyrethroid. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 90:39-45. [PMID: 23132367 DOI: 10.1007/s00128-012-0883-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Accepted: 11/01/2012] [Indexed: 06/01/2023]
Abstract
Podisus distinctus (Heteroptera: Pentatomidae) is an important predator used in biological control of eucalypt defoliating caterpillars, exposed the insecticides. Lower doses of permethrin not affect the values of generation time (T), time necessary to double the population in number of individuals (DT) and intrinsic rate of population increase (r ( m )). Moreover, females of P. distinctus derived from nymphs treated with lower doses of permethrin were more fertile, triggering the effect hormetic in net reproductive rates (Ro). Results showed that low permethrin doses can be used alongside the predatory stinkbug in Integrated Pest Management programs.
Collapse
Affiliation(s)
- José C Zanuncio
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 35670-000, Brazil.
| | | | | | | | | | | |
Collapse
|