51
|
Myers AK, Ray J, Kulesza RJ. Neonatal conductive hearing loss disrupts the development of the Cat-315 epitope on perineuronal nets in the rat superior olivary complex. Brain Res 2012; 1465:34-47. [DOI: 10.1016/j.brainres.2012.05.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 05/08/2012] [Accepted: 05/13/2012] [Indexed: 01/22/2023]
|
52
|
Greene NT, Davis KA. Discharge patterns in the lateral superior olive of decerebrate cats. J Neurophysiol 2012; 108:1942-53. [PMID: 22745462 DOI: 10.1152/jn.00908.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anatomical and pharmacological studies have shown that the lateral superior olive (LSO) receives inputs from a number of sources and that LSO cells can alter the balance of their own excitatory and inhibitory drive. It is thus likely that the ongoing sound-evoked responses of LSO cells reflect a complex interplay of excitatory and inhibitory events, which may be affected by anesthesia. The goal of this study was to characterize the temporal discharge patterns of single units in the LSO of unanesthetized, decerebrate cats in response to long-duration ipsilateral best-frequency tone bursts. A decision tree is presented to partition LSO units on the basis of poststimulus time histogram shape, adaptation of instantaneous firing rate as a function of time, and sustained discharge rate. The results suggest that LSO discharge patterns form a continuum with four archetypes: sustained choppers that show two or more peaks of activity at stimulus onset and little adaptation of rate throughout the response, transient choppers that undergo a decrease in rate that eventually stabilizes with time, primary-like units that display an initial peak of activity followed by a monotonic decline in rate to a steady-state value, and onset-sustained units that exhibit an initial peak of activity at stimulus onset followed by a low sustained activity. Compared with the chopper units, the nonchopper units tend to show longer first-spike latencies, lower peak firing rates, and more irregular sustained discharge patterns. Modeling studies show that the full range of LSO response types can be obtained from an underlying sustained chopper by varying the strength and latency of a sound-driven ipsilateral inhibition relative to that of excitation. Together, these results suggest that inhibition plays a major role in shaping the temporal discharge patterns of units in unanesthetized preparations.
Collapse
Affiliation(s)
- Nathaniel T Greene
- Department of Biomedical Engineering, University of Rochester, Rochester, New York 14642, USA
| | | |
Collapse
|
53
|
Similar intracellular Ca2+ requirements for inactivation and facilitation of voltage-gated Ca2+ channels in a glutamatergic mammalian nerve terminal. J Neurosci 2012; 32:1261-72. [PMID: 22279211 DOI: 10.1523/jneurosci.3838-11.2012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) of the P/Q-type, which are expressed at a majority of mammalian nerve terminals, show two types of Ca2+-dependent feedback regulation-inactivation (CDI) and facilitation (CDF). Because of the nonlinear relationship between Ca2+ influx and transmitter release, CDI and CDF are powerful regulators of synaptic strength. To what extent VGCCs inactivate or facilitate during spike trains depends on the dynamics of free Ca2+ ([Ca2+]i) and the Ca2+ sensitivity of CDI and CDF, which has not been determined in nerve terminals. In this report, we took advantage of the large size of a rat auditory glutamatergic synapse--the calyx of Held--and combined voltage-clamp recordings of presynaptic Ca2+ currents (ICa(V)) with UV-light flash-induced Ca2+ uncaging and presynaptic Ca2+ imaging to study the Ca2+ requirements for CDI and CDF. We find that nearly half of the presynaptic VGCCs inactivate during 100 ms voltage steps and require several seconds to recover. This inactivation is caused neither by depletion of Ca2+ ions from the synaptic cleft nor by metabotropic feedback inhibition, because it is resistant to blockade of metabotropic and ionotropic glutamate receptors. Facilitation of ICa(V) induced by repetitive depolarizations or preconditioning voltage steps decays within tens of milliseconds. Since Ca2+ buffers only weakly affect CDI and CDF, we conclude that the Ca2+ sensors are closely associated with the channel. CDI and CDF can be induced by intracellular photo release of Ca2+ resulting in [Ca2+]i elevations in the low micromolar range, implying a surprisingly high affinity of the Ca2+ sensors.
Collapse
|
54
|
Typlt M, Englitz B, Sonntag M, Dehmel S, Kopp-Scheinpflug C, Ruebsamen R. Multidimensional characterization and differentiation of neurons in the anteroventral cochlear nucleus. PLoS One 2012; 7:e29965. [PMID: 22253838 PMCID: PMC3253815 DOI: 10.1371/journal.pone.0029965] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 12/09/2011] [Indexed: 11/21/2022] Open
Abstract
Multiple parallel auditory pathways ascend from the cochlear nucleus. It is generally accepted that the origin of these pathways are distinct groups of neurons differing in their anatomical and physiological properties. In extracellular in vivo recordings these neurons are typically classified on the basis of their peri-stimulus time histogram. In the present study we reconsider the question of classification of neurons in the anteroventral cochlear nucleus (AVCN) by taking a wider range of response properties into account. The study aims at a better understanding of the AVCN's functional organization and its significance as the source of different ascending auditory pathways. The analyses were based on 223 neurons recorded in the AVCN of the Mongolian gerbil. The range of analysed parameters encompassed spontaneous activity, frequency coding, sound level coding, as well as temporal coding. In order to categorize the unit sample without any presumptions as to the relevance of certain response parameters, hierarchical cluster analysis and additional principal component analysis were employed which both allow a classification on the basis of a multitude of parameters simultaneously. Even with the presently considered wider range of parameters, high number of neurons and more advanced analytical methods, no clear boundaries emerged which would separate the neurons based on their physiology. At the current resolution of the analysis, we therefore conclude that the AVCN units more likely constitute a multi-dimensional continuum with different physiological characteristics manifested at different poles. However, more complex stimuli could be useful to uncover physiological differences in future studies.
Collapse
Affiliation(s)
- Marei Typlt
- Institute of Biology, University of Leipzig, Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
55
|
Felix RA, Kadner A, Berrebi AS. Effects of ketamine on response properties of neurons in the superior paraolivary nucleus of the mouse. Neuroscience 2011; 201:307-19. [PMID: 22123167 DOI: 10.1016/j.neuroscience.2011.11.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 11/19/2022]
Abstract
The superior paraolivary nucleus (SPON; alternative abbreviation: SPN for the same nucleus in certain species) is a prominent brainstem structure that provides strong inhibitory input to the auditory midbrain. Previous studies established that SPON neurons encode temporal sound features with high precision. These earlier characterizations of SPON responses were recorded under the influence of ketamine, a dissociative anesthetic agent and known antagonist of N-methyl-d-aspartate glutamate (NMDA) receptors. Because NMDA alters neural responses from the auditory brainstem, single unit extracellular recordings of SPON neurons were performed in the presence and absence of ketamine. In doing so, this study represents the first in vivo examination of the SPON of the mouse. Herein, independent data sets of SPON neurons are characterized that did or did not receive ketamine, as well as neurons that were recorded both prior to and following ketamine administration. In all conditions, SPON neurons exhibited contralaterally driven spikes triggered by the offset of pure tone stimuli. Ketamine lowered both evoked and spontaneous spiking, decreased the sharpness of frequency tuning, and increased auditory thresholds and first-spike latencies. In addition, ketamine limited the range of modulation frequencies to which neurons phase-locked to sinusoidally amplitude-modulated tones.
Collapse
Affiliation(s)
- R A Felix
- Department of Otolaryngology-Head and Neck Surgery, and the Sensory Neuroscience Research Center, PO Box 9303 Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | | | | |
Collapse
|
56
|
Kraus KS, Ding D, Jiang H, Lobarinas E, Sun W, Salvi RJ. Relationship between noise-induced hearing-loss, persistent tinnitus and growth-associated protein-43 expression in the rat cochlear nucleus: does synaptic plasticity in ventral cochlear nucleus suppress tinnitus? Neuroscience 2011; 194:309-25. [PMID: 21821100 PMCID: PMC3390756 DOI: 10.1016/j.neuroscience.2011.07.056] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/22/2011] [Accepted: 07/23/2011] [Indexed: 10/17/2022]
Abstract
Aberrant, lesion-induced neuroplastic changes in the auditory pathway are believed to give rise to the phantom sound of tinnitus. Noise-induced cochlear damage can induce extensive fiber growth and synaptogenesis in the cochlear nucleus, but it is currently unclear if these changes are linked to tinnitus. To address this issue, we unilaterally exposed nine rats to narrow-band noise centered at 12 kHz at 126 dB sound pressure level (SPL) for 2 h and sacrificed them 10 weeks later for evaluation of synaptic plasticity (growth-associated protein 43 [GAP-43] expression) in the cochlear nucleus. Noise-exposed rats along with three age-matched controls were screened for tinnitus-like behavior with gap prepulse inhibition of the acoustic startle (GPIAS) before, 1-10 days after, and 8-10 weeks after the noise exposure. All nine noise-exposed rats showed similar patterns of severe hair cell loss at high- and mid-frequency regions in the exposed ear. Eight of the nine showed strong up-regulation of GAP-43 in auditory nerve fibers and pronounced shrinkage of the ventral cochlear nucleus (VCN) on the noise-exposed side, and strong up-regulation of GAP-43 in the medial ventral VCN, but not in the lateral VCN or the dorsal cochlear nucleus. GAP-43 up-regulation in VCN was significantly greater in Noise-No-Tinnitus rats than in Noise-Tinnitus rats. One Noise-No-Tinnitus rat showed no up-regulation of GAP-43 in auditory nerve fibers and only little VCN shrinkage, suggesting that auditory nerve degeneration plays a role in tinnitus generation. Our results suggest that noise-induced tinnitus is suppressed by strong up-regulation of GAP-43 in the medial VCN. GAP-43 up-regulation most likely originates from medial olivocochlear neurons. Their increased excitatory input on inhibitory neurons in VCN may possibly reduce central hyperactivity and tinnitus.
Collapse
Affiliation(s)
- Kari Suzanne Kraus
- Center for Hearing and Deafness, SUNY at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, United States
| | - Dalian Ding
- Center for Hearing and Deafness, SUNY at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, United States
| | - Haiyan Jiang
- Center for Hearing and Deafness, SUNY at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, United States
| | - Ed Lobarinas
- Center for Hearing and Deafness, SUNY at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, United States
| | - Wei Sun
- Center for Hearing and Deafness, SUNY at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, United States
| | - Richard J Salvi
- Center for Hearing and Deafness, SUNY at Buffalo, 137 Cary Hall, 3435 Main Street, Buffalo, NY 14214, United States
| |
Collapse
|
57
|
Sound rhythms are encoded by postinhibitory rebound spiking in the superior paraolivary nucleus. J Neurosci 2011; 31:12566-78. [PMID: 21880918 DOI: 10.1523/jneurosci.2450-11.2011] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The superior paraolivary nucleus (SPON) is a prominent structure in the auditory brainstem. In contrast to the principal superior olivary nuclei with identified roles in processing binaural sound localization cues, the role of the SPON in hearing is not well understood. A combined in vitro and in vivo approach was used to investigate the cellular properties of SPON neurons in the mouse. Patch-clamp recordings in brain slices revealed that brief and well timed postinhibitory rebound spiking, generated by the interaction of two subthreshold-activated ion currents, is a hallmark of SPON neurons. The I(h) current determines the timing of the rebound, whereas the T-type Ca(2+) current boosts the rebound to spike threshold. This precisely timed rebound spiking provides a physiological explanation for the sensitivity of SPON neurons to sinusoidally amplitude-modulated (SAM) tones in vivo, where peaks in the sound envelope drive inhibitory inputs and SPON neurons fire action potentials during the waveform troughs. Consistent with this notion, SPON neurons display intrinsic tuning to frequency-modulated sinusoidal currents (1-15Hz) in vitro and discharge with strong synchrony to SAMs with modulation frequencies between 1 and 20 Hz in vivo. The results of this study suggest that the SPON is particularly well suited to encode rhythmic sound patterns. Such temporal periodicity information is likely important for detection of communication cues, such as the acoustic envelopes of animal vocalizations and speech signals.
Collapse
|
58
|
Abstract
The middle ear muscle (MEM) reflex is one of two major descending systems to the auditory periphery. There are two middle ear muscles (MEMs): the stapedius and the tensor tympani. In man, the stapedius contracts in response to intense low frequency acoustic stimuli, exerting forces perpendicular to the stapes superstructure, increasing middle ear impedance and attenuating the intensity of sound energy reaching the inner ear (cochlea). The tensor tympani is believed to contract in response to self-generated noise (chewing, swallowing) and non-auditory stimuli. The MEM reflex pathways begin with sound presented to the ear. Transduction of sound occurs in the cochlea, resulting in an action potential that is transmitted along the auditory nerve to the cochlear nucleus in the brainstem (the first relay station for all ascending sound information originating in the ear). Unknown interneurons in the ventral cochlear nucleus project either directly or indirectly to MEM motoneurons located elsewhere in the brainstem. Motoneurons provide efferent innervation to the MEMs. Although the ascending and descending limbs of these reflex pathways have been well characterized, the identity of the reflex interneurons is not known, as are the source of modulatory inputs to these pathways. The aim of this article is to (a) provide an overview of MEM reflex anatomy and physiology, (b) present new data on MEM reflex anatomy and physiology from our laboratory and others, and (c) describe the clinical implications of our research.
Collapse
Affiliation(s)
- Sudeep Mukerji
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Alanna Marie Windsor
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| | - Daniel J. Lee
- Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, MA, USA
| |
Collapse
|
59
|
Xiao L, Han Y, Runne H, Murray H, Kochubey O, Luthi-Carter R, Schneggenburger R. Developmental expression of Synaptotagmin isoforms in single calyx of Held-generating neurons. Mol Cell Neurosci 2010; 44:374-85. [DOI: 10.1016/j.mcn.2010.05.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 04/26/2010] [Accepted: 05/01/2010] [Indexed: 01/26/2023] Open
|
60
|
Abstract
The ability to determine the location of a sound source is fundamental to hearing. However, auditory space is not represented in any systematic manner on the basilar membrane of the cochlea, the sensory surface of the receptor organ for hearing. Understanding the means by which sensitivity to spatial cues is computed in central neurons can therefore contribute to our understanding of the basic nature of complex neural representations. We review recent evidence concerning the nature of the neural representation of auditory space in the mammalian brain and elaborate on recent advances in the understanding of mammalian subcortical processing of auditory spatial cues that challenge the “textbook” version of sound localization, in particular brain mechanisms contributing to binaural hearing.
Collapse
Affiliation(s)
- Benedikt Grothe
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-Universitaet, Munich, Germany; and UCL Ear Institute, University College London, United Kingdom
| | - Michael Pecka
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-Universitaet, Munich, Germany; and UCL Ear Institute, University College London, United Kingdom
| | - David McAlpine
- Division of Neurobiology, Department of Biology II, Ludwig-Maximilians-Universitaet, Munich, Germany; and UCL Ear Institute, University College London, United Kingdom
| |
Collapse
|
61
|
Krützfeldt NOE, Logerot P, Kubke MF, Wild JM. Connections of the auditory brainstem in a songbird, Taeniopygia guttata. II. Projections of nucleus angularis and nucleus laminaris to the superior olive and lateral lemniscal nuclei. J Comp Neurol 2010; 518:2135-48. [PMID: 20394062 DOI: 10.1002/cne.22324] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Three nuclei of the lateral lemniscus are present in the zebra finch, ventral (LLV), intermediate (LLI), and dorsal (LLD). LLV is separate from the superior olive (OS): it lies closer to the spinal lemniscus and extends much further rostrally around the pontine periphery. LLI extends from a caudal position ventrolateral to the principal sensory trigeminal nucleus (LLIc) to a rostral position medial to the ventrolateral parabrachial nucleus (LLIr). LLD consists of posterior (LLDp) and anterior (LLDa) parts, which are largely coextensive rostrocaudally, although LLDa lies medial to LLDp. All nuclei are identifiable on the basis of cytochrome oxidase activity. The cochlear nucleus angularis (NA) and the third-order nucleus laminaris (NL) project on OS predominantly ipsilaterally, on LLV and LLI predominantly contralaterally, and on LLD contralaterally only. The NA projections are heavier than those of NL and differ from them primarily in their terminations within LLD: NA projects to LLDp, whereas NL projects to LLDa. In this the projections are similar to those in the barn owl (Takahashi and Konishi [1988] J Comp Neurol 274:212-238), in which time and intensity pathways remain separate as far as the central nucleus of the inferior colliculus (MLd). In contrast, in the zebra finch, although NA and NL projections remain separate within LLD, the projections of LLDa and LLDp become intermixed within MLd (Wild et al., J Comp Neurol, this issue), consistent with the intermixing of the direct NA and NL projections to MLd (Krützfeldt et al., J Comp Neurol, this issue).
Collapse
Affiliation(s)
- Nils O E Krützfeldt
- Department of Anatomy, Faculty of Medical and Health Sciences, University of Auckland, PB 92019 Auckland, New Zealand
| | | | | | | |
Collapse
|
62
|
Inhibitory projections from the ventral nucleus of the lateral lemniscus and superior paraolivary nucleus create directional selectivity of frequency modulations in the inferior colliculus: a comparison of bats with other mammals. Hear Res 2010; 273:134-44. [PMID: 20451594 DOI: 10.1016/j.heares.2010.03.083] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Revised: 03/02/2010] [Accepted: 03/02/2010] [Indexed: 11/21/2022]
Abstract
This review considers four auditory brainstem nuclear groups and shows how studies of both bats and other mammals have provided insights into their response properties and the impact of their convergence in the inferior colliculus (IC). The four groups are octopus cells in the cochlear nucleus, their connections with the ventral nucleus of the lateral lemniscus (VNLL) and the superior paraolivary nucleus (SPON), and the connections of the VNLL and SPON with the IC. The theme is that the response properties of neurons in the SPON and VNLL map closely onto the synaptic response features of a unique subpopulation of cells in the IC of bats whose inputs are dominated by inhibition. We propose that the convergence of VNLL and SPON inputs generates the tuning of these IC cells, their unique temporal responses to tones, and their directional selectivities for frequency modulated (FM) sweeps. Other IC neurons form directional properties in other ways, showing that selective response properties are formed in multiple ways. In the final section we discuss why multiple formations of common response properties could amplify differences in population activity patterns evoked by signals that have similar spectrotemporal features.
Collapse
|
63
|
Dondzillo A, Sätzler K, Horstmann H, Altrock WD, Gundelfinger ED, Kuner T. Targeted three-dimensional immunohistochemistry reveals localization of presynaptic proteins Bassoon and Piccolo in the rat calyx of Held before and after the onset of hearing. J Comp Neurol 2010; 518:1008-29. [PMID: 20127803 DOI: 10.1002/cne.22260] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Bassoon and Piccolo contribute to the cytomatrix of active zones (AZ), the sites of neurotransmitter release in nerve terminals. Here, we examined the 3D localization of Bassoon and Piccolo in the rat calyx of Held between postnatal days 9 and 21, the period of hearing onset characterized by pronounced structural and functional changes. Bassoon and Piccolo were identified by immunohistochemistry (IHC) on slices of the brainstem harboring calyces labeled with membrane-anchored green fluorescent protein (mGFP). By using confocal microscopy and 3D reconstructions, we examined the distribution of Bassoon and Piccolo in calyces delineated by mGFP. This allowed us to discriminate calyceal IHC signals from noncalyceal signals located in the spaces between the calyceal stalks, which could mimic a calyx-like distribution. We found that both proteins were arranged in clusters resembling the size of AZs. These clusters were located along the presynaptic membrane facing the principal cell, close to or overlapping with synaptic vesicle (SV) clusters. Only about 60% of Bassoon and Piccolo clusters overlapped, whereas the remaining clusters contained predominantly Bassoon or Piccolo, suggesting differential targeting of these proteins within a single nerve terminal and potentially heterogeneous AZs functional properties. The total number of Bassoon and Piccolo clusters, which may approximate the number of AZs, was 405 +/- 35 at P9 and 601 +/- 45 at P21 (mean +/- SEM, n = 12). Normalized to calyx volume at P9 and P21, the density of clusters was similar, suggesting that the absolute number of clusters, not density, may contribute to the functional maturation associated with hearing onset.
Collapse
Affiliation(s)
- Anna Dondzillo
- Department of Anatomy and Cell Biology, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
64
|
Mauger SJ, Shivdasani MN, Rathbone GD, Argent RE, Paolini AG. An in vivo investigation of first spike latencies in the inferior colliculus in response to multichannel penetrating auditory brainstem implant stimulation. J Neural Eng 2010; 7:036004. [PMID: 20440054 DOI: 10.1088/1741-2560/7/3/036004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The cochlear nucleus (CN) is the first auditory processing site within the brain and the target location of the auditory brainstem implant (ABI), which provides speech perception to patients who cannot benefit from a cochlear implant (CI). Although there is variance between ABI recipient speech performance outcomes, performance is typically low compared to CI recipients. Temporal aspects of neural firing such as first spike latency (FSL) are thought to code for many speech features; however, no studies have investigated FSL from CN stimulation. Consequently, ABIs currently do not incorporate CN-specific temporal information. We therefore systematically investigated inferior colliculus (IC) neuron's FSL response to frequency-specific electrical stimulation of the CN in rats. The range of FSLs from electrical stimulation of many neurons indicates that both monosynaptic and polysynaptic pathways were activated, suggesting initial activation of multiple CN neuron types. Electrical FSLs for a single neuron did not change irrespective of the CN frequency region stimulated, indicating highly segregated projections from the CN to the IC. These results present the first evidence of temporal responses to frequency-specific CN electrical stimulation. Understanding the auditory system's temporal response to electrical stimulation will help in future ABI designs and stimulation strategies.
Collapse
Affiliation(s)
- Stefan J Mauger
- School of Psychological Science, La Trobe University, VIC 3086, Australia. The Bionic Ear Institute, East Melbourne, VIC 3002, Australia
| | | | | | | | | |
Collapse
|
65
|
Schmidt E, Wolski TP, Kulesza RJ. Distribution of perineuronal nets in the human superior olivary complex. Hear Res 2010; 265:15-24. [PMID: 20307636 DOI: 10.1016/j.heares.2010.03.077] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 03/17/2010] [Accepted: 03/17/2010] [Indexed: 10/19/2022]
Abstract
Perineuronal nets (PNNs) are specialized assemblies of chondroitin sulfate proteoglycans (CSPGs) in the central nervous system that form a lattice-like covering over the cell body, primary dendrites and initial axon segment of select neuronal populations. PNNs appear to play significant roles in development of the central nervous system, neuronal protection, synaptic plasticity and local ion homeostasis. In seven human brainstems (average age=81 years), we have utilized Wisteria floribunda (WFA) histochemistry and immunocytochemistry for CSPG to map the distribution of PNNs within the nuclei of the human superior olivary complex (SOC). Within the SOC, the majority of net-bearing neurons are situated in the most medially situated nuclei, especially the superior paraolivary nucleus and medial nucleus of the trapezoid body. Net-bearing neurons are consistently found in the ventral nucleus of the trapezoid body and posterior periolivary nucleus, but to a lesser extent in the lateral nucleus of the trapezoid body. Finally, perineuronal nets are typically absent from the lateral and medial superior olives.
Collapse
Affiliation(s)
- Elise Schmidt
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA
| | | | | |
Collapse
|
66
|
Abstract
Geometry of the dendritic tree and synaptic organization of afferent inputs are essential factors in determining how synaptic input is integrated by neurons. This information remains elusive for one of the first brainstem neurons involved in processing of the primary auditory signal from the ear, the bushy cells (BCs) of the ventral cochlear nucleus (VCN). Here, we labeled the BC dendritic trees with retrograde tracing techniques to analyze their geometry and synaptic organization after immunofluorescence for excitatory and inhibitory synaptic markers, electron microscopy, morphometry, double tract-tracing methods, and 3D reconstructions. Our study revealed that BC dendrites provide space for a large number of compartmentalized excitatory and inhibitory synaptic interactions. The dendritic inputs on BCs are of cochlear and noncochlear origin, and their proportion and distribution are dependent on the branching pattern and orientation of the dendritic tree in the VCN. Three-dimensional reconstructions showed that BC dendrites branch and cluster with those of other BCs in the core of the VCN. Within the cluster, incoming synaptic inputs establish divergent multiple-contact synapses (dyads and triads) between BCs. Furthermore, neuron-neuron connections including puncta adherentia, sarcoplasmic junctions, and gap junctions are common between BCs, which suggests that these neurons are electrically coupled. Overall, our study demonstrates the existence of a BC network in the rat VCN. This network may establish the neuroanatomical basis for acoustic information processing by individual BCs as well as for enhanced synchronization of the output signal of the VCN.
Collapse
Affiliation(s)
- Ricardo Gómez-Nieto
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269-3156, USA
| | | |
Collapse
|
67
|
Bal R, Baydas G, Naziroglu M. Electrophysiological properties of ventral cochlear nucleus neurons of the dog. Hear Res 2009; 256:93-103. [DOI: 10.1016/j.heares.2009.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 06/22/2009] [Accepted: 07/12/2009] [Indexed: 11/24/2022]
|
68
|
Saldaña E, Aparicio MA, Fuentes-Santamaría V, Berrebi AS. Connections of the superior paraolivary nucleus of the rat: projections to the inferior colliculus. Neuroscience 2009; 163:372-87. [PMID: 19539725 PMCID: PMC2778228 DOI: 10.1016/j.neuroscience.2009.06.030] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Revised: 06/10/2009] [Accepted: 06/11/2009] [Indexed: 11/21/2022]
Abstract
GABAergic neurotransmission contributes to shaping the response properties of inferior colliculus (IC) neurons. In rodents, the superior paraolivary nucleus (SPON) is a prominent and well-defined cell group of the superior olivary complex that sends significant but often neglected GABAergic projections to the IC. To investigate the trajectory, distribution and morphology of these projections, we injected the neuroanatomical tracer biotinylated dextran amine into the SPON of albino rats. Our results demonstrate that: (1) the SPON innervates densely all three subdivisions of the ipsilateral IC: central nucleus (CNIC), dorsal cortex (DCIC) and external cortex (ECIC). The SPON also sends a sparse projection to the contralateral DCIC via the commissure of the IC. (2) SPON axons are relatively thick (diameter >1.2 microm), ascend to the midbrain tectum in the medial aspect of the lateral lemniscus, and, for the most part, do not innervate the nuclei of the lateral lemniscus. (3) SPON fibers ramify profusely within the IC and bear abundant en passant and terminal boutons. (4) The axons of neurons in discrete regions of the SPON form two laminar terminal plexuses in the ipsilateral IC: a medial plexus that spans the CNIC and DCIC parallel to the known fibrodendritic laminae of the CNIC, and a lateral plexus located in the ECIC and oriented more or less parallel to the surface of the IC. (5) The projection from SPON to the ipsilateral IC is topographic: medial SPON neurons innervate the ventromedial region of the CNIC and DCIC and the ventrolateral region of the ECIC, whereas more laterally situated SPON neurons innervate more dorsolateral regions of the CNIC and DCIC and more dorsomedial regions of the ECIC. Thus, SPON fibers follow a pattern of distribution within the IC similar to that previously reported for intracollicular and corticocollicular projections.
Collapse
Affiliation(s)
- E Saldaña
- Laboratory for the Neurobiology of Hearing, Neuroscience Institute of Castilla y León (INCyL), University of Salamanca, 37007-Salamanca, Spain.
| | | | | | | |
Collapse
|
69
|
Hatano M, Furukawa M, Ito M. Changes in calbindin-D28k and parvalbumin expression in the superior olivary complex following unilateral cochlear ablation in neonatal rats. Acta Otolaryngol 2009; 129:839-45. [PMID: 18923944 DOI: 10.1080/00016480802455283] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
CONCLUSION Unilateral congenital deafness with a volume reduction in cochlear nucleus (CN) induced changes in the calcium-binding proteins (CaBPs) in the contralateral superior olivary complex (SOC) in the rat. With the loss of neurons and a volume reduction in the CN, a decrease in the input to the contralateral SOC may occur, which results in the down-regulation of CaBPs in these nuclei. This study may provide some implications regarding the neurochemistry in the auditory brainstem of deaf children. OBJECTIVE Hearing loss produced by cochlear damage during early development can result in persistent changes in the organization of the central auditory system in adults. The purpose of the present study was to investigate the neurochemical changes produced in the auditory brainstem of rats with unilateral cochlear ablation conducted before the onset of hearing. MATERIALS AND METHODS Following unilateral cochlear ablation during early development, we examined the changes in the distribution of two CaBPs, calbindin-D28k (CB) and parvalbumin (PV), in the SOC. RESULTS Upon reaching adulthood, a marked decrease in CB- and PV-immunoreactive neurons was observed in the contralateral SOC, particularly in the medial nucleus of the trapezoid body (MNTB), although no neuronal cell death was observed. A volume reduction in the ipsilateral CN was also observed.
Collapse
|
70
|
Kutscher A, Covey E. Functional role of GABAergic and glycinergic inhibition in the intermediate nucleus of the lateral lemniscus of the big brown bat. J Neurophysiol 2009; 101:3135-46. [PMID: 19369365 PMCID: PMC2694106 DOI: 10.1152/jn.00766.2007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Accepted: 03/22/2009] [Indexed: 11/22/2022] Open
Abstract
The intermediate nucleus of the lateral lemniscus (INLL) is a major input to the inferior colliculus (IC), the auditory midbrain center where multiple pathways converge to create neurons selective for specific temporal features of sound. However, little is known about how INLL processes auditory information or how it contributes to integrative processes at the IC. INLL receives excitatory projections from the cochlear nucleus and inhibitory projections from the medial nucleus of the trapezoid body (MNTB), so it must perform some form of integration. To address the question of what role inhibitory synaptic inputs play in the INLL of the big brown bat (Eptesicus fuscus), we recorded sound-evoked responses of single neurons and iontophoretically applied bicuculline to block GABA(A) receptors or strychnine to block glycine receptors. Neither bicuculline nor strychnine had a consistent effect on response latency or frequency response areas. Bicuculline increased spike counts and response durations in most units, suggesting that GABAergic input suppressed the late part of the response and provided some gain control. Strychnine reduced the responses of some units with sustained discharge patterns to one or a few spikes at stimulus onset, but increased others. INLL is the only part of the auditory system where reduced responsiveness has been seen in vivo while blocking glycine. However, in vitro studies in the MNTB suggest that glycine can be facilitatory, possibly through presynaptic action. These results show that GABA consistently reduces spike counts and response durations, whereas glycine is suppressive in some INLL neurons but facilitatory in others.
Collapse
Affiliation(s)
- Andrew Kutscher
- Department of Psychology, University of Washington, Seattle, Washington 98195-1525, USA
| | | |
Collapse
|
71
|
Kelly JB, van Adel BA, Ito M. Anatomical projections of the nuclei of the lateral lemniscus in the albino rat (rattus norvegicus). J Comp Neurol 2009; 512:573-93. [DOI: 10.1002/cne.21929] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
72
|
Benson CG, Cant NB. The ventral nucleus of the lateral lemniscus of the gerbil (Meriones unguiculatus): organization of connections with the cochlear nucleus and the inferior colliculus. J Comp Neurol 2008; 510:673-90. [PMID: 18709666 PMCID: PMC2562217 DOI: 10.1002/cne.21820] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The spatial organization of projections from the ventral cochlear nucleus (VCN) to the ventral nucleus of the lateral lemniscus (VNLL) and from the VNLL to the central nucleus of the inferior colliculus (CNIC) was investigated by using neuroanatomical tracing methods in the gerbil. In order to label cells in the VNLL that project to the CNIC, focal injections of biotinylated dextran amine (BDA) were made into different CNIC regions. Retrogradely labeled cells were distributed throughout the dorsal-to-ventral axis of the VNLL in all cases. In contrast, the distribution of labeled cells across the lateral-to-medial dimension of the VNLL was related to the location of the injection site along the dorsolateral to ventromedial (frequency) axis of the CNIC. Cells projecting to dorsolateral (low-frequency) regions of the CNIC were located peripherally in the VNLL, mainly laterally and caudally, whereas those projecting to ventromedial (high-frequency) regions of the CNIC tended to be clustered centrally. Projections to the VNLL were labeled anterogradely following injections of BDA in the VCN. The distribution of terminal fields in the VNLL closely paralleled the topographic arrangement of cells projecting to the CNIC; projections from ventrolateral (low-frequency) areas of the VCN terminated mainly along the lateral and caudal borders of the VNLL, whereas projections from dorsomedial (high-frequency) areas terminated in more central regions. The results demonstrate a topographic organization of the major afferent and efferent connections of the gerbil VNLL.
Collapse
Affiliation(s)
- Christina G Benson
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
73
|
Haustein MD, Reinert T, Warnatsch A, Englitz B, Dietz B, Robitzki A, Rübsamen R, Milenkovic I. Synaptic transmission and short-term plasticity at the calyx of Held synapse revealed by multielectrode array recordings. J Neurosci Methods 2008; 174:227-36. [DOI: 10.1016/j.jneumeth.2008.07.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Revised: 07/08/2008] [Accepted: 07/15/2008] [Indexed: 11/29/2022]
|
74
|
Joris PX, Smith PH. The volley theory and the spherical cell puzzle. Neuroscience 2008; 154:65-76. [PMID: 18424004 PMCID: PMC2486254 DOI: 10.1016/j.neuroscience.2008.03.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 03/05/2008] [Accepted: 03/05/2008] [Indexed: 11/26/2022]
Abstract
Temporal coding in the auditory nerve is strikingly transformed in the cochlear nucleus. In contrast to fibers in the auditory nerve, some neurons in the cochlear nucleus can show "picket fence" phase-locking to low-frequency pure tones: they fire a precisely timed action potential at every cycle of the stimulus. Such synchronization enhancement and entrainment is particularly prominent in neurons with the spherical and globular morphology, described by Osen [Osen KK (1969) Cytoarchitecture of the cochlear nuclei in the cat. J Comp Neurol 136:453-483]. These neurons receive large axosomatic terminals from the auditory nerve--the end bulbs and modified end bulbs of Held--and project to binaural comparator nuclei in the superior olivary complex. The most popular model to account for picket fence phase-locking is monaural coincidence detection. This mechanism is plausible for globular neurons, which receive a large number of inputs. We draw attention to the existence of enhanced phase-locking and entrainment in spherical neurons, which receive too few end-bulb inputs from the auditory nerve to make a coincidence detection of end-bulb firings a plausible mechanism of synchronization enhancement.
Collapse
Affiliation(s)
- P X Joris
- Laboratory of Auditory Neurophysiology, K.U.Leuven, Campus GHB O&N2, Herestraat 49 bus 1021, B-3000 Leuven, Belgium.
| | | |
Collapse
|
75
|
Youssoufian M, Couchman K, Shivdasani MN, Paolini AG, Walmsley B. Maturation of auditory brainstem projections and calyces in the congenitally deaf (dn/dn) mouse. J Comp Neurol 2008; 506:442-51. [PMID: 18041784 DOI: 10.1002/cne.21566] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The deaf dn/dn mouse is a valuable model of human congenital deafness. In this study we used the lipophylic dye DiA to trace auditory nerve and cochlear nucleus projections in the dn/dn mouse. In both normal and deaf mice, the ipsilateral projections from the anteroventral cochlear nucleus (AVCN) to the lateral superior olive (LSO), and the contralateral projections from the AVCN to the medial nucleus of the trapezoid body (MNTB) were intact. With age, there was a noted increase in the fenestration of the endbulb and calyx of Held, and this morphological maturation was also observed in the deaf mice, although there was a significant difference in total endbulb volume at P20 between normal and deaf mice. However, total calyceal volume was not significantly different between normal and deaf mice. There was electrophysiological evidence of in vivo spontaneous ventral cochlear nucleus activity in normal and deaf animals, indicating that this activity may be responsible for the appropriate connectivity in the deaf mice. Our results indicate that congenital deafness caused by the dn/dn mutation does not result in aberrant projections between the AVCN and the ipsilateral MNTB and contralateral LSO but can cause abnormalities in endbulb size.
Collapse
Affiliation(s)
- Monique Youssoufian
- The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Canberra, ACT, Australia
| | | | | | | | | |
Collapse
|
76
|
Saul SM, Brzezinski JA, Altschuler RA, Shore SE, Rudolph DD, Kabara LL, Halsey KE, Hufnagel RB, Zhou J, Dolan DF, Glaser T. Math5 expression and function in the central auditory system. Mol Cell Neurosci 2008; 37:153-69. [PMID: 17977745 PMCID: PMC2266824 DOI: 10.1016/j.mcn.2007.09.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 09/04/2007] [Accepted: 09/07/2007] [Indexed: 01/25/2023] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factor Math5 (Atoh7) is required for retinal ganglion cell (RGC) and optic nerve development. Using Math5-lacZ knockout mice, we have identified an additional expression domain for Math5 outside the eye, in functionally connected structures of the central auditory system. In the adult hindbrain, the cytoplasmic Math5-lacZ reporter is expressed within the ventral cochlear nucleus (VCN), in a subpopulation of neurons that project to medial nucleus of the trapezoid body (MNTB), lateral superior olive (LSO), and lateral lemniscus (LL). These cells were identified as globular and small spherical bushy cells based on their morphology, abundance, distribution within the cochlear nucleus (CN), co-expression of Kv1.1, Kv3.1b and Kcnq4 potassium channels, and projection patterns within the auditory brainstem. Math5-lacZ is also expressed by cochlear root neurons in the auditory nerve. During embryonic development, Math5-lacZ was detected in precursor cells emerging from the caudal rhombic lip from embryonic day (E)12 onwards, consistent with the time course of CN neurogenesis. These cells co-express MafB and are post-mitotic. Math5 expression in the CN was verified by mRNA in situ hybridization, and the identity of positive neurons was confirmed morphologically using a Math5-Cre BAC transgene with an alkaline phosphatase reporter. The hindbrains of Math5 mutants appear grossly normal, with the exception of the CN. Although overall CN dimensions are unchanged, the lacZ-positive cells are significantly smaller in Math5 -/- mice compared to Math5 +/- mice, suggesting these neurons may function abnormally. The auditory brainstem response (ABR) of Math5 mutants was evaluated in a BALB/cJ congenic background. ABR thresholds of Math5 -/- mice were similar to those of wild-type and heterozygous mice, but the interpeak latencies for Peaks II-IV were significantly altered. These temporal changes are consistent with a higher-level auditory processing disorder involving the CN, potentially affecting the integration of binaural sensory information.
Collapse
Affiliation(s)
- Sara M. Saul
- Departments of Human Genetics and Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Joseph A. Brzezinski
- Departments of Human Genetics and Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | | | - Susan E. Shore
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109
| | - Dellaney D. Rudolph
- Departments of Human Genetics and Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Lisa L. Kabara
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109
| | - Karin E. Halsey
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109
| | - Robert B. Hufnagel
- Children's Hospital Research Foundation and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229
| | - Jianxun Zhou
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109
| | - David F. Dolan
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI 48109
| | - Tom Glaser
- Departments of Human Genetics and Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
77
|
Abstract
Persons who lack an auditory nerve cannot benefit from cochlear implants, but a prosthesis utilizing an electrode array implanted on the surface of the cochlear nucleus can restore some hearing. Worldwide, more than 500 persons have received these "auditory brainstem implants," most commonly after removal of the tumors that occur with Type 2 Neurofibromatosis (NF2). Typically, the ABIs provide these individuals with improved speech perception when combined with lip-reading and useful perception of environmental sounds, but little open-set speech recognition. The feasibility of supplementing the array of surface electrodes with penetrating microstimulating electrodes has been investigated in animal studies, and 10 persons with NF2 have received implants that include a surface array and an array of penetrating microelectrodes. Their speech perception is not significantly better than that of the NF2 patients who have only the surface arrays, but the findings do validate the concept of intranuclear stimulation and suggest how such prostheses might be improved by modifying the microstimulating array and also by optimizing the sound processing strategies. Recent publications have described ABI patients with deafness of etiologies other than NF2 who have achieved open-set speech recognition. This suggests that the cochlear nuclei of the NF2 patients are damaged by the disease process or during surgical removal of the tumor.
Collapse
|
78
|
Howell DM, Morgan WJ, Jarjour AA, Spirou GA, Berrebi AS, Kennedy TE, Mathers PH. Molecular guidance cues necessary for axon pathfinding from the ventral cochlear nucleus. J Comp Neurol 2007; 504:533-49. [PMID: 17701984 DOI: 10.1002/cne.21443] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During development, multiple guidance cues direct the formation of appropriate synaptic connections. Factors that guide developing axons are known for various pathways throughout the mammalian brain; however, signals necessary to establish auditory connections are largely unknown. In the auditory brainstem the neurons whose axons traverse the midline in the ventral acoustic stria (VAS) are primarily located in the ventral cochlear nucleus (VCN) and project bilaterally to the superior olivary complex (SOC). The circumferential trajectory taken by developing VCN axons is similar to that of growing axons of spinal commissural neurons. Therefore, we reasoned that netrin-DCC and slit-robo signaling systems function in the guidance of VCN axons. VCN neurons express the transcription factor, mafB, as early as embryonic day (E) 13.5, thereby identifying the embryonic VCN for these studies. VCN axons extend toward the midline as early as E13, with many axons crossing by E14.5. During this time, netrin-1 and slit-1 RNAs are expressed at the brainstem midline. Additionally, neurons within the VCN express RNA for DCC, robo-1, and robo-2, and axons in the VAS are immunoreactive for DCC. VCN axons do not reach the midline of the brainstem in mice mutant for either the netrin-1 or DCC gene. VCN axons extend in pups lacking netrin-1, but most DCC-mutant samples lack VCN axonal outgrowth. Stereological cell estimates indicate only a modest reduction of VCN neurons in DCC-mutant mice. Taken together, these data show that a functional netrin-DCC signaling system is required for establishing proper VCN axonal projections in the auditory brainstem.
Collapse
Affiliation(s)
- David M Howell
- Sensory Neuroscience Research Center, West Virginia University, Morgantown, West Virginia 26506, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Shivdasani MN, Mauger SJ, Rathbone GD, Paolini AG. Inferior colliculus responses to multichannel microstimulation of the ventral cochlear nucleus: implications for auditory brain stem implants. J Neurophysiol 2007; 99:1-13. [PMID: 17928560 DOI: 10.1152/jn.00629.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multichannel techniques were used to assess the frequency specificity of activation in the central nucleus of the inferior colliculus (CIC) produced by electrical stimulation of localized regions within the ventral cochlear nucleus (VCN). Data were recorded in response to pure tones from 141 and 193 multiunit clusters in the rat VCN and the CIC, respectively. Of 141 VCN sites, 126 were individually stimulated while recording responses in the CIC. A variety of CIC response types were seen with an increase in both electrical and acoustic stimulation levels. The majority of sites exhibited monotonic rate-level types acoustically, whereas spike rate saturation was achieved predominantly with electrical stimulation. In 20.6% of the 364 characteristic frequency aligned VCN-CIC pairs, the CIC sites did not respond to stimulation. In 26% of the 193 CIC sites, a high correlation was observed between acoustic tuning and electrical tuning obtained through VCN stimulation. A high degree of frequency specificity was found in 58% of the 118 lowest threshold VCN-CIC pairs. This was dependent on electrode placement within the VCN because a higher degree of frequency specificity was achieved with stimulation of medial, central, and posterolateral VCN regions than more anterolateral regions. Broadness of acoustic tuning in the CIC played a role in frequency-specific activation. Narrowly tuned CIC sites showed the lowest degree of frequency specificity on stimulation of the anterolateral VCN regions. These data provide significant implications for auditory brain stem implant electrode placement, current localization, power requirements, and facilitation of information transfer to higher brain centers.
Collapse
Affiliation(s)
- Mohit N Shivdasani
- The Bionic Ear Institute, East Melbourne Victoria, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
80
|
Billig I, Yeager MS, Blikas A, Raz Y. Neurons in the cochlear nuclei controlling the tensor tympani muscle in the rat: a study using pseudorabies virus. Brain Res 2007; 1154:124-36. [PMID: 17482147 PMCID: PMC3005211 DOI: 10.1016/j.brainres.2007.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 04/04/2007] [Accepted: 04/04/2007] [Indexed: 10/23/2022]
Abstract
The middle ear muscle reflex has been implicated in modulation of auditory input and protection of the inner ear from acoustic trauma. However, the identification of neurons in the cochlear nuclei participating in this reflex has not been fully elucidated. In the present study, we injected the retrograde transynaptic tracer pseudorabies virus into single tensor tympani (TT) muscles, and identified transynaptically labeled cochlear nucleus neurons at multiple survival times. Motoneurons controlling TT were located ventral to the ipsilateral motor trigeminal nucleus and extended rostrally towards the medial aspect of the lateral lemniscus. Transynaptically labeled neurons were observed bilaterally in the dorsal and dorso-medial parts of ventral cochlear nuclei as early as 48 h after virus injection, and had morphological features of radiate multipolar cells. After >or=69 h, labeled cells of different types were observed in all cochlear nuclei. At those times, labeling was also detected bilaterally in the medial nucleus of the trapezoid body and periolivary cell groups in the superior olivary complex. Based on the temporal course of viral replication, our data strongly suggest the presence of a direct projection of neurons from the ventral cochlear nuclei bilaterally to the TT motoneuron pool in rats. The influence of neurons in the cochlear nuclei upon TT activity through direct and indirect pathways may account for multifunctional roles of this muscle in auditory functions.
Collapse
Affiliation(s)
- I Billig
- Department of Neurobiology, University of Pittsburgh, 4074 BST3, 3501 Fifth Avenue, Pittsburgh, PA 15261, USA, and Otolaryngologic Clinic Athens Naval and Veterans Hospital, Greece.
| | | | | | | |
Collapse
|
81
|
Meyer K, Rouiller EM, Loquet G. Direct comparison between properties of adaptation of the auditory nerve and the ventral cochlear nucleus in response to repetitive clicks. Hear Res 2007; 228:144-55. [PMID: 17391881 DOI: 10.1016/j.heares.2007.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 02/07/2007] [Accepted: 02/09/2007] [Indexed: 10/23/2022]
Abstract
The present study was designed to complete two previous reports [Loquet, G., Rouiller, E.M., 2002. Neural adaptation to pulsatile acoustical stimulation in the cochlear nucleus of the rat. Hear. Res. 171, 72-81; Loquet, G., Meyer, K., Rouiller, E.M., 2003. Effects of intensity of repetitive acoustic stimuli on neural adaptation in the ventral cochlear nucleus of the rat. Exp. Brain Res. 153, 436-442] on neural adaptation properties in the auditory system of the rat. Again, auditory near-field evoked potentials (ANEPs) were recorded in response to 250-ms trains of clicks from an electrode chronically implanted in the ventral cochlear nucleus (VCN). Up to now, our interest had focused on the adaptive behavior of the first one (N1) of the two negative ANEP components. A re-examination of our data for the second negative component (N2) was now undertaken. Results show that the adaptation time course observed for N2 displayed the same three-stage pattern previously reported for N1. Similarly, adaptation became more pronounced and occurred faster as stimulus intensity and/or repetition rate were increased. Based on latency data which suggest N1 and N2 to be mainly due to the activity of auditory-nerve (AN) fibers and cochlear nucleus neurons, respectively, it was concluded that neural adaptation assessed by gross-potentials was similar in the AN and VCN. This finding is meaningful in the context of our search to restore normal adaptation phenomena via electro-auditory hearing with an auditory brainstem implant on the same lines as our work in cochlear implants.
Collapse
Affiliation(s)
- K Meyer
- Unit of Physiology, Department of Medicine, University of Fribourg, Chemin du Musée 5, CH-1700 Fribourg, Switzerland
| | | | | |
Collapse
|
82
|
Erazo-Fischer E, Striessnig J, Taschenberger H. The role of physiological afferent nerve activity during in vivo maturation of the calyx of Held synapse. J Neurosci 2007; 27:1725-37. [PMID: 17301180 PMCID: PMC6673733 DOI: 10.1523/jneurosci.4116-06.2007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 12/14/2006] [Accepted: 12/15/2006] [Indexed: 11/21/2022] Open
Abstract
We studied how afferent nerve activity affects the in vivo maturation of a fast glutamatergic CNS synapse, the calyx of Held. To address this question, we exploited the distinct presynaptic Ca2+ channel subtypes governing transmitter release at the cochlear inner hair cell (IHC)-spiral neuron synaptic junction compared with those at higher synapses along the auditory pathways. We characterized the functional properties of calyx synapses in wild type (wt) compared with those developing in Ca(V)1.3 subunit-deficient (Ca(V)1.3-/-) mice. Ca(V)1.3-/- mice are deaf because of an absence of glutamate release from IHC, which results in a complete lack of cochlea-driven nerve activity. Presynaptic Ca2+ channel properties, Ca2+ dependence of exocytosis, number of readily releasable quanta, and AMPA mEPSCs were unchanged in postnatal day 14 (P14) to P17 calyx synapses of Ca(V)1.3-/- mice. However, synaptic strength was augmented because presynaptic action potentials were broader, leading to increased quantal release, consistent with lower paired-pulse ratios and stronger depression during repetitive synaptic stimulation. Furthermore, asynchronous release after trains was elevated presumably because of higher residual Ca2+ accumulating in the presynaptic terminals. Finally, we measured larger NMDA EPSCs with higher sensitivity to the NR2B subunit-specific antagonist ifenprodil in P14-P17 synapses of Ca(V)1.3-/- compared with wt mice. These results suggest that auditory activity is required for the adjustment of synaptic strength as well as for the downregulation of synaptic NMDA receptors during postnatal development of the calyx of Held. In contrast, properties of the presynaptic release machinery and postsynaptic AMPA receptors are unaffected by chronic changes in the level of afferent activity at this synapse.
Collapse
Affiliation(s)
| | - Jörg Striessnig
- Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria
| | | |
Collapse
|
83
|
Pocsai K, Pál B, Pap P, Bakondi G, Kosztka L, Rusznák Z, Szucs G. Rhodamine backfilling and confocal microscopy as a tool for the unambiguous identification of neuronal cell types: a study of the neurones of the rat cochlear nucleus. Brain Res Bull 2006; 71:529-38. [PMID: 17259023 DOI: 10.1016/j.brainresbull.2006.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 10/17/2006] [Accepted: 11/19/2006] [Indexed: 10/23/2022]
Abstract
Adequate interpretation of the functional data characterising the projection neurones of the cochlear nucleus (CN) is impossible without the unequivocal classification of these cell types at the end of the experiments. In this study, morphological criteria applicable for unambiguous identification of CN neurones have been sought. The neurones were labelled with rhodamine from incisions severing the projection pathways of the individual cell types, allowing their selective labelling and morphological characterisation. Confocal microscopy was employed for the investigation of the rhodamine-filled cells whose morphology was assessed after reconstructing the three-dimensional images of the cell bodies and proximal processes. The diameters of the somata and the number of processes originating from the cell bodies were also determined. In most of the cases, unambiguous identification of the bushy, octopus and Purkinje-like cells was relatively straightforward. On the other hand, precise classification of the pyramidal cells was often difficult, especially because giant cells could easily possess morphological features resembling pyramidal neurones. Occasionally, giant cells also mimicked the appearance of octopus neurones, which may be another important source of identification error, especially as these two cell types are often situated close to each other in the CN. It is concluded that morphological criteria defined in the present work may be effectively applied for the unambiguous identification of the projection neurones of the CN, even following functional measurements, when the correct cell classification is essential for the interpretation of the experimental data. Moreover, the present study also confirmed that Purkinje-like cells project to the cerebellum.
Collapse
Affiliation(s)
- Krisztina Pocsai
- Department of Physiology, Medical and Health Science Centre, University of Debrecen, PO Box 22, H-4012 Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
84
|
Zhang H, Kelly JB. Responses of Neurons in the Rat's Ventral Nucleus of the Lateral Lemniscus to Amplitude-Modulated Tones. J Neurophysiol 2006; 96:2905-14. [PMID: 16928797 DOI: 10.1152/jn.00481.2006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recordings were made from single neurons in the rat's ventral nucleus of the lateral lemniscus (VNLL) to determine responses to amplitude-modulated (AM) tones. The neurons were first characterized on the basis of their response to tone bursts presented to the contralateral ear and a distinction was made between those with transient onset responses and those with sustained responses. Sinusoidal AM tones were then presented to the contralateral ear with a carrier that matched the neuron's characteristic frequency (CF). Modulation transfer functions were generated on the basis of firing rate (MTFFR) and vector strength (MTFVS). Ninety-two percent of onset neurons that responded continuously to AM tones had band-pass MTFFRs with best modulation frequencies from 10 to 300 Hz. Fifty-four percent of sustained neurons had band-pass MTFFRs with best modulation frequencies from 10 to 500 Hz; other neurons had band-suppressed, all-pass, low-pass, or high-pass functions. Most neurons showed either band-pass or low-pass MTFVS. Responses were well synchronized to the modulation cycle with maximum vector strengths ranging from 0.37 to 0.98 for sustained neurons and 0.78 to 0.99 for onset neurons. The upper frequency limit for response synchrony was higher than that reported for inferior colliculus, but lower than that seen in more peripheral structures. Results suggest that VNLL neurons, especially those with onset responses to tone bursts, are sensitive to temporal features of sounds and narrowly tuned to different modulation rates. However, there was no evidence of a topographic relation between dorsoventral position along the length of VNLL and best modulation frequency as determined by either firing rate or vector strength.
Collapse
Affiliation(s)
- Huiming Zhang
- Department of Psychology, Carleton University, 329 Life Science Research Building, Ottawa, Ontario, Canada K1S 5B6
| | | |
Collapse
|
85
|
Kulesza RJ, Kadner A, Berrebi AS. Distinct roles for glycine and GABA in shaping the response properties of neurons in the superior paraolivary nucleus of the rat. J Neurophysiol 2006; 97:1610-20. [PMID: 17122321 DOI: 10.1152/jn.00613.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The superior paraolivary nucleus (SPON) is a prominent periolivary cell group of the superior olivary complex. SPON neurons use gamma-aminobutyric acid (GABA) as their neurotransmitter and are contacted by large numbers of glycinergic and GABAergic punctate profiles, representing a dense inhibitory innervation from the medial nucleus of the trapezoid body (MNTB) and from collaterals of SPON axons, respectively. SPON neurons have low rates of spontaneous activity, respond preferentially to the offset of pure tones, and phase-lock to amplitude-modulated tones. To determine the roles of glycine and GABA in shaping SPON responses, we recorded from single units in the SPON of anesthetized rats before, during, and after application of the glycine receptor antagonist strychnine, the GABA(A) receptor antagonist bicuculline, or both drugs applied simultaneously. Strychnine caused a major increase in spike counts during the stimulus presentation, followed by the disappearance of offset spikes. In half of the recorded units, bicuculline caused moderately increased firing during the stimulus. However, in 86% of units bicuculline also caused a large increase in the magnitude of the offset response. Application of the drug cocktail caused increased spontaneous activity, dramatically increased spike counts during the stimulus presentation, and eliminated the offset response in most units. We conclude that glycinergic inhibition from the MNTB suppresses SPON spiking during sound stimulation and is essential in generating offset responses. GABAergic inhibition, presumably from intrinsic SPON collaterals, plays a subtler role, contributing in some cells to suppression of firing during the stimulus and in most cells to restrict firing after stimulus offset.
Collapse
Affiliation(s)
- Randy J Kulesza
- Sensory Neuroscience Research Center, PO Box 9303, Health Sciences Center, West Virginia University School of Medicine, Morgantown, WV 26506-9303, USA
| | | | | |
Collapse
|
86
|
Abstract
The calyx of Held is a large glutamatergic synapse in the mammalian auditory brainstem. By using brain slice preparations, direct patch-clamp recordings can be made from the nerve terminal and its postsynaptic target (principal neurons of the medial nucleus of the trapezoid body). Over the last decade, this preparation has been increasingly employed to investigate basic presynaptic mechanisms of transmission in the central nervous system. We review here the background to this preparation and summarise key findings concerning voltage-gated ion channels of the nerve terminal and the ionic mechanisms involved in exocytosis and modulation of transmitter release. The accessibility of this giant terminal has also permitted Ca(2+)-imaging and -uncaging studies combined with electrophysiological recording and capacitance measurements of exocytosis. Together, these studies convey the panopoly of presynaptic regulatory processes underlying the regulation of transmitter release, its modulatory control and short-term plasticity within one identified synaptic terminal.
Collapse
Affiliation(s)
- Ralf Schneggenburger
- Laboratory of Synaptic Mechanisms, Ecole Polytechnique Fédérale de Lausanne (EPFL), Brain Mind Institute, Bâtiment AAB, Station 15, CH-1015 Lausanne, Switzerland.
| | | |
Collapse
|
87
|
Rodríguez-Contreras A, de Lange RPJ, Lucassen PJ, Borst JGG. Branching of calyceal afferents during postnatal development in the rat auditory brainstem. J Comp Neurol 2006; 496:214-28. [PMID: 16538676 DOI: 10.1002/cne.20918] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cells in the anteroventral cochlear nucleus (aVCN) send out calyceal axons that form large excitatory somatic terminals, the calyces of Held, onto principal cells of the contralateral medial nucleus of the trapezoid body (MNTB). It is unclear which fraction of these axons might form more than one calyx and whether this fraction changes during development. We combined in vitro anterograde tracing, stereological cell counts, analysis of apoptosis, and immunohistochemistry to study the development of calyceal afferents in rats of different postnatal ages. We found that some principal cells were contacted by multiple large axosomatic inputs, but these invariably originated from the same axon. Conversely, at least 18% of traced afferents branched to form multiple calyces, independently of age. Calyces from the same axon generally innervated nearby principal cells, and most of these branch points were <50 microm away from the synaptic terminals. Our results show that the projection from the aVCN to the MNTB is divergent, both when calyces have just been formed and in the adult. Cell counts did not provide evidence for principal cell loss during development, although analysis of apoptosis showed a large increase in nonneuronal cell death around the onset of hearing. Our data suggest that, once a calyceal synapse forms in the MNTB, it stays.
Collapse
Affiliation(s)
- Adrián Rodríguez-Contreras
- Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam, 3000 DR Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
88
|
Hoffpauir BK, Grimes JL, Mathers PH, Spirou GA. Synaptogenesis of the calyx of Held: rapid onset of function and one-to-one morphological innervation. J Neurosci 2006; 26:5511-23. [PMID: 16707803 PMCID: PMC6675295 DOI: 10.1523/jneurosci.5525-05.2006] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptogenesis during early development is thought to follow a canonical program whereby synapses increase rapidly in number and individual axons multiply-innervate nearby targets. Typically, a subset of inputs then out-competes all others through experience-driven processes to establish stable, long-lasting contacts. We investigated the formation of the calyx of Held, probably the largest nerve terminal in the mammalian CNS. Many basic functional and morphological features of calyx growth have not been studied previously, including whether mono-innervation, a hallmark of this system in adult animals, is established early in development. Evoked postsynaptic currents, recorded from neonatal mice between postnatal day 1 (P1) and P4, increased dramatically from -0.14 +/- 0.04 nA at P1 to -6.71 +/- 0.65 nA at P4 with sharp jumps between P2 and P4. These are the first functional assays of these nascent synapses for ages less than P3. AMPA and NMDA receptor-mediated currents were prominent across this age range. Electron microscopy (EM) revealed a concomitant increase, beginning at P2, in the prevalence of postsynaptic densities (16-fold) and adhering contacts (73-fold) by P4. Therefore, both functional and structural data showed that young calyces could form within 2 d, well before the onset of hearing around P8. Convergence of developing calyces onto postsynaptic targets, indicative of competitive processes that precede mono-innervation, was rare (4 of 29) at P4 as assessed using minimal stimulation electrophysiology protocols. Serial EM sectioning through 19 P4 cells further established the paucity (2 of 19) of convergence. These data indicate that calyces of Held follow a noncanonical program to establish targeted innervation that occurs over a rapid time course and precedes auditory experience.
Collapse
|
89
|
Doucet JR, Ryugo DK. Structural and functional classes of multipolar cells in the ventral cochlear nucleus. THE ANATOMICAL RECORD. PART A, DISCOVERIES IN MOLECULAR, CELLULAR, AND EVOLUTIONARY BIOLOGY 2006; 288:331-44. [PMID: 16550550 PMCID: PMC2566305 DOI: 10.1002/ar.a.20294] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Multipolar cells in the ventral cochlear nucleus (VCN) are a structurally and functionally diverse group of projection neurons. Understanding their role in the ascending pathway involves partitioning multipolar cells into distinct populations and determining where in the brain each sends its coded messages. In this study, we used retrograde labeling techniques in rats to identify multipolar neurons that project their axons to the ipsilateral dorsal cochlear nucleus (DCN), the contralateral CN, or both structures. Three rats received injections of biotinylated dextran amine in the ipsilateral DCN and diamidino yellow in the contralateral CN. Several radiate multipolar neurons (defined by their axonal projections to the ipsilateral DCN and their dendrites that traverse VCN isofrequency sheets) were double-labeled but over 70% were not. This result suggests two distinct populations: (1) radiate-commissural (RC) multipolar cells that project to the ipsilateral DCN and the contralateral CN, and (2) radiate multipolar cells that project exclusively (in this context) to the ipsilateral DCN. In a different group of animals, we retrogradely labeled multipolar neurons that project their axons to the contralateral CN and measured the size of their cell bodies. The mean size of this population (266 +/- 156 microm2) was significantly smaller than those of RC-multipolar cells (418 +/- 140 microm2). We conclude that the CN commissural pathway is composed of at least two components: (1) RC multipolar cells and (2) commissural multipolar cells that are small- and medium-sized neurons that project exclusively (in this context) to the contralateral CN. These results identify separate structural groups of multipolar cells that may correspond to physiological unit types described in the literature. They also provide protocols for isolating and studying different populations of multipolar cells to determine the neural mechanisms that govern their responses to sound.
Collapse
Affiliation(s)
- John R Doucet
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
90
|
Spirou GA, Rager J, Manis PB. Convergence of auditory-nerve fiber projections onto globular bushy cells. Neuroscience 2006; 136:843-63. [PMID: 16344156 DOI: 10.1016/j.neuroscience.2005.08.068] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 06/27/2005] [Accepted: 08/25/2005] [Indexed: 10/25/2022]
Abstract
Globular bushy cells are a key element of brainstem circuits that mediate the early stages of sound localization. Many of their physiological properties have been attributed to convergence of inputs from the auditory nerve, many of which are large with complex geometry, but the number of these terminals contacting individual cells has not been measured directly. Herein we report, using cats as the experimental model, that this number ranged greatly (9-69) across a population of 12 cells, but over one-half of the cells (seven of 12) received between 15 and 23 inputs. In addition, we provide the first measurements of cell body surface area, which also varies considerably within this population and is uncorrelated with convergence. For one cell, we were able to document axonal structure over a distance greater than 100 microm, between the soma and the location where the axon expanded to its characteristic large diameter. These data were combined with accumulated physiological information on vesicle release, receptor kinetics and voltage-gated ionic conductances, and incorporated into computational models for four cells that are representative of the structural variation within our sample population. This predictive model reveals that basic physiological features, such as precise first spike latencies and peristimulus time histogram shapes, including primary-like with notch and onset-L, can be generated in these cells without including inhibitory inputs. However, phase-locking is not significantly enhanced over auditory-nerve fibers. These combined anatomical and computational approaches reveal additional parameters, such as active zone density, nerve terminal size, numbers and sources of inhibitory inputs and their activity patterns, that must be determined and incorporated into next-generation models to understand the physiology of globular bushy cells.
Collapse
Affiliation(s)
- G A Spirou
- Sensory Neuroscience Research Center, West Virginia University School of Medicine, PO Box 9303 Health Sciences Center, One Medical Center Drive, Morgantown, WV 26506-9303, USA.
| | | | | |
Collapse
|
91
|
Korogod N, Lou X, Schneggenburger R. Presynaptic Ca2+ requirements and developmental regulation of posttetanic potentiation at the calyx of Held. J Neurosci 2006; 25:5127-37. [PMID: 15917453 PMCID: PMC6724817 DOI: 10.1523/jneurosci.1295-05.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Large excitatory synapses in the auditory system, such as the calyx of Held, faithfully transmit trains of action potentials up to a frequency of a few hundred hertz, and these synapses are thought to display a limited repertoire of synaptic plasticity. Here, we show that brief trains of 100 Hz stimulation induce posttetanic potentiation (PTP) of transmitter release at the calyx of Held. In young rats [postnatal day 4 (P4) to P6], PTP could be induced with shorter 100 Hz trains compared with older age groups (P8-P10 and P12-P14), but the maximal amount of PTP was similar, with 200% of control EPSC amplitude. The size of the readily releasable pool of vesicles was not increased significantly during PTP. Bath application of the membrane-permeable Ca2+ chelator EGTA-AM suppressed PTP, indicating a role for presynaptic Ca2+ in PTP at the calyx of Held. Presynaptic Ca2+ imaging showed that the intracellular Ca2+ concentration, [Ca2+]i, was increased by 40-120 nM at the peak of PTP, and this "residual" [Ca2+]i decayed in parallel with PTP, with time constants in the range of 10-60 s. During whole-cell recording of the presynaptic calyx of Held, PTP was absent, and the decay of residual [Ca2+]i was strongly accelerated. The data show that the calyx of Held expresses a mechanism of transmitter release potentiation in which a small, sustained elevation of basal [Ca2+]i increases the transmitter release probability after trains of high-frequency stimulation.
Collapse
Affiliation(s)
- Natalya Korogod
- AG Synaptische Dynamik und Modulation and Abteilung Membranbiophysik, Max-Planck-Institut für Biophysikalische Chemie, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
92
|
Zhang H, Kelly JB. Responses of neurons in the rat's ventral nucleus of the lateral lemniscus to monaural and binaural tone bursts. J Neurophysiol 2006; 95:2501-12. [PMID: 16394068 DOI: 10.1152/jn.01215.2005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Responses to monaural and binaural tone bursts were recorded from neurons in the rat's ventral nucleus of the lateral lemniscus (VNLL). Most of the neurons (55%) had V- or U-shaped frequency-tuning curves with a single clearly defined characteristic frequency (CF). However, many neurons had more complex, multipeaked tuning curves (37%), or other patterns (8%). Temporal firing patterns included both onset and sustained responses to contralateral tone bursts. Onset and sustained responses were distributed along the dorsoventral length of VNLL with no indication of segregation into different regions. Onset neurons had shorter average first-spike latencies than neurons with sustained responses (means, 8.3 vs. 14.8 ms). They also had less jitter, as reflected in the SD of first-spike latencies, than neurons with sustained responses (means, 0.59 and 4.2 ms, respectively). The extent of jitter decreased with an increase in stimulus intensity for neurons with sustained responses, but remained unchanged for onset neurons tested over the same range. Many neurons had binaural responses, primarily of the excitatory/inhibitory (EI) type, widely distributed along the dorsoventral extent of VNLL. Local application of the AMPA receptor antagonist NBQX reduced excitatory responses, indicating that responses were dependent on synaptic activity and not recorded from passing fibers. The results show that many neurons in VNLL have a precision of timing that is well suited for processing auditory temporal information. In the rat, these neurons are intermingled among cells with less precise temporal response features and include cells with binaural as well as monaural responses.
Collapse
Affiliation(s)
- Huiming Zhang
- Laboratory of Sensory Neuroscience, Department of Psychology, Carleton University, Ottawa, Ontario, Canada
| | | |
Collapse
|
93
|
Lee DJ, de Venecia RK, Guinan JJ, Brown MC. Central auditory pathways mediating the rat middle ear muscle reflexes. ACTA ACUST UNITED AC 2006; 288:358-69. [PMID: 16550576 DOI: 10.1002/ar.a.20296] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The middle ear muscle (MEM) reflexes function to protect the inner ear from intense acoustic stimuli and to reduce acoustic masking. Sound presented to the same side or to the opposite side activates the MEM reflex on both sides. The ascending limbs of these pathways must be the auditory nerve fibers originating in the cochlea and terminating in the cochlear nucleus, the first relay station for all ascending auditory information. The descending limbs project from the motoneurons in the brainstem to the MEMs on both sides, causing their contraction. Although the ascending and descending pathways are well described, the cochlear nucleus interneurons that mediate these reflex pathways have not been identified. In order to localize the MEM reflex interneurons, we developed a physiologically based reflex assay in the rat that can be used to determine the integrity of the reflex pathways after experimental manipulations. This assay monitored the change in tone levels and distortion product otoacoustic emissions within the ear canal in one ear during the presentation of a reflex-eliciting sound stimulus in the contralateral ear. Preliminary findings using surgical transection and focal lesioning of the auditory brainstem to interrupt the MEM reflexes suggest that MEM reflex interneurons are located in the ventral cochlear nucleus.
Collapse
Affiliation(s)
- Daniel J Lee
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, USA.
| | | | | | | |
Collapse
|
94
|
Green JS, Sanes DH. Early Appearance of Inhibitory Input to the MNTB Supports Binaural Processing During Development. J Neurophysiol 2005; 94:3826-35. [PMID: 16120660 DOI: 10.1152/jn.00601.2005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite the peripheral and central immaturities that limit auditory processing in juvenile animals, they are able to lateralize sounds using binaural cues. This study explores a central mechanism that may compensate for these limitations during development. Interaural time and level difference processing by neurons in the superior olivary complex depends on synaptic inhibition from the medial nucleus of the trapezoid body (MNTB), a group of inhibitory neurons that is activated by contralateral sound stimuli. In this study, we examined the maturation of coding properties of MNTB neurons and found that they receive an inhibitory influence from the ipsilateral ear that is modified during the course of postnatal development. Single neuron recordings were obtained from the MNTB in juvenile (postnatal day 15–19) and adult gerbils. Approximately 50% of all recorded MNTB neurons were inhibited by ipsilateral sound stimuli, but juvenile neurons displayed a much greater suppression of firing as compared with those in adults. A comparison of the prepotential and postsynaptic action potential indicated that inhibition occurred at the presynaptic level, likely within the cochlear nucleus. A simple linear model of level difference detection by lateral superior olivary neurons that receive input from MNTB suggested that inhibition of the MNTB may expand the response of LSO neurons to physiologically realistic level differences, particularly in juvenile animals, at a time when these cues are reduced.
Collapse
Affiliation(s)
- Joshua S Green
- Center for Neural Science, New York University, NY 10003, USA
| | | |
Collapse
|
95
|
Mulders WHAM, Robertson D. Catecholaminergic innervation of guinea pig superior olivary complex. J Chem Neuroanat 2005; 30:230-42. [PMID: 16236480 DOI: 10.1016/j.jchemneu.2005.09.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Revised: 08/25/2005] [Accepted: 09/05/2005] [Indexed: 11/22/2022]
Abstract
In mammals, olivocochlear neurons in the superior olivary complex project to the cochlea, providing input to outer hair cells and auditory afferents contacting inner hair cells. In the rat it has been demonstrated that olivocochlear neurons receive noradrenergic input, arising from the locus coeruleus and it has been demonstrated in this species using in vitro brain slices that noradrenaline exerts a direct, mostly excitatory effect on an olivocochlear subpopulation. The guinea pig is a more commonly used animal in auditory physiology than the rat and anatomical data on noradrenaline in the auditory brainstem in this species are lacking. Because it has been shown that a compact locus coeruleus is not present in the guinea pig, subtle species differences might be expected. Therefore, using immunohistochemical and tracing techniques we have investigated in the guinea pig (1) the noradrenergic and dopaminergic innervation of the superior olivary complex, (2) the anatomical relationship between noradrenergic fibres and olivocochlear neurons and (3) the origin of the noradrenergic input to this brainstem region. The results show that the guinea pig superior olivary complex receives moderately dense noradrenergic innervation and no dopaminergic innervation. In addition, noradrenergic fibres and varicosities were observed in close contact with both somata and dendrites of olivocochlear neurons, strongly suggestive of synaptic contacts. Finally the results show that a significant component of the noradrenergic innervation of the guinea pig superior olivary complex arises in the locus subcoeruleus, which is a structure likely to be the homologue of the locus coeruleus in rats and other species.
Collapse
Affiliation(s)
- W H A M Mulders
- The Auditory Laboratory, Discipline of Physiology, School of Biomedical and Chemical Sciences, The University of Western Australia, Crawley, WA 6009, Australia.
| | | |
Collapse
|
96
|
Irfan N, Zhang H, Wu SH. Synaptic transmission mediated by ionotropic glutamate, glycine and GABA receptors in the rat’s ventral nucleus of the lateral lemniscus. Hear Res 2005; 203:159-71. [PMID: 15855041 DOI: 10.1016/j.heares.2004.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2004] [Accepted: 11/30/2004] [Indexed: 01/22/2023]
Abstract
The synaptic pharmacology of the ventral nucleus of the lateral lemniscus (VNLL) was investigated in brain slices obtained from rats of 14-37 days old using intracellular recording techniques. Excitatory and inhibitory synaptic potentials (EPSPs and IPSPs) were elicited by electrical stimulation of the lemniscal pathway and recorded from neurons with five types of intrinsic firing patterns (onset, pause, adapting, regular and bursting types). Synaptic receptors that mediated the EPSPs and IPSPs were identified using AMPA, NMDA, GABA(A) and glycine receptor antagonists. The early/short EPSPs were mediated by AMPA receptors. The late/long EPSPs, encountered only in neurons of younger animals, were mediated by NMDA receptors. The IPSPs in most neurons were mediated by glycine receptors. In some neurons the IPSPs were mediated by GABA(A) receptors or both glycine and GABA(A) receptors. The temporal dynamics of fast AMPA EPSPs and glycinergic IPSPs were very similar. AMPA EPSPs and glycinergic (and/or GABAergic) IPSPs could be encountered in a single neuron. The results suggest that the VNLL not only relays incoming signals rapidly from the lower brainstem to the inferior colliculus, but also integrates excitatory and inhibitory inputs to modify and process auditory information.
Collapse
Affiliation(s)
- Nashwa Irfan
- Institute of Neuroscience, Carleton University, 335 Life Sciences Research Building, 1125 Colonel By Drive, Ottawa, Ont., Canada
| | | | | |
Collapse
|
97
|
Abstract
The calyx of Held serves as a model for synaptic transmission in the mammalian central nervous system. While offering unique access to the biophysics of presynaptic function, studies addressing the molecular mechanisms of neurotransmitter exocytosis in this model have been mainly limited to pharmacological interventions. To overcome this experimental limitation we used stereotaxic delivery of viral gene shuttles to rapidly and selectively manipulate protein composition in the calyx terminal in vivo. Sindbis or Semliki Forest viruses encoding enhanced green fluorescent protein (EGFP) were injected into the ventral cochlear nucleus (VCN) of rats (postnatal days 7-21) and yielded bright fluorescence in cells of the VCN, including globular bushy cells with their axon and calyx terminal. Fluorescence imaging and three dimensional reconstructions visualized developmental changes in calyx morphology. Small cytoplasmic and synaptic vesicle proteins were successfully overexpressed in the calyx. We extended two-photon microscopy to obtain simultaneous fluorescence and infrared scanning gradient contrast images, allowing for efficient patch-clamp recordings from EGFP-labelled calyces in acute brain slices (postnatal days 9-14). Recordings of spontaneous miniature excitatory postsynaptic currents and short-term depression in synapses overexpressing EGFP or synaptophysin-EGFP revealed normal synaptic function. Thus, Sindbis and Semliki Forest virus-directed overexpression of proteins in the calyx of Held provides a new avenue for molecular structure-function studies of mammalian central synapses.
Collapse
Affiliation(s)
- Verena C Wimmer
- Abteilung Zellphysiologie, Max-Planck-Institut für medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
98
|
Smith PH, Massie A, Joris PX. Acoustic stria: anatomy of physiologically characterized cells and their axonal projection patterns. J Comp Neurol 2005; 482:349-71. [PMID: 15669051 DOI: 10.1002/cne.20407] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The mammalian cochlear nucleus (CN) has been a model structure to study the relationship between physiological and morphological cell classes. Several issues remain, in particular with regard to the projection patterns and physiology of neurons that exit the CN dorsally via the dorsal (DAS), intermediate (IAS), and commissural stria. We studied these neurons physiologically and anatomically using the intra-axonal labeling method. Multipolar cells with onset chopper (O(C)) responses innervated the ipsilateral ventral and dorsal CN before exiting the CN via the commissural stria. Upon reaching the midline they turned caudally to innervate the opposite CN. No collaterals were seen innervating any olivary complex nuclei. Octopus cells typically showed onset responses with little or no sustained activity. The main axon used the IAS and followed one of two routes occasionally giving off olivary complex collaterals on their way to the contralateral ventral nucleus of the lateral lemniscus (VNLL). Here they can have elaborate terminal arbors that surround VNLL cells. Fusiform and giant cells have overlapping but not identical physiology. Fusiform but not giant cells typically show pauser or buildup responses. Axons of both cells exit via the DAS and take the same course to reach the contralateral IC without giving off any collaterals en route.
Collapse
Affiliation(s)
- Philip H Smith
- Department of Anatomy, University of Wisconsin, Medical School-Madison, 1300 University Ave., Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|
99
|
Billups B. Colocalization of vesicular glutamate transporters in the rat superior olivary complex. Neurosci Lett 2005; 382:66-70. [PMID: 15911123 DOI: 10.1016/j.neulet.2005.02.071] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 02/09/2005] [Accepted: 02/27/2005] [Indexed: 10/25/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) are responsible for the accumulation of the excitatory neurotransmitter glutamate into synaptic vesicles. It is currently controversial whether the two isoforms found in glutamatergic neurons, VGLUT1 and VGLUT2, are present at the same synapse or have entirely complementary patterns of distribution. Using fluorescent immunohistochemistry, this study examines the colocalization of these two transporters in the rat superior olivary complex (SOC) between postnatal day (P) 5 and 29. The medial and lateral superior olives (MSO; LSO) stain for both VGLUT1 and VGLUT2 at all ages studied, with VGLUT1 levels doubling over this developmental period and VGLUT2 levels remaining unchanged. The ventral nucleus of the trapezoid body (VNTB) strongly labels only for VGLUT2, despite the fact that glutamatergic synapses are present that are formed from collaterals of axons that go on to form synapses containing both VGLUT1 and VGLUT2. Principal neurons of the medial nucleus of the trapezoid body (MNTB) are surrounded by the calyx of Held presynaptic terminal, which is large enough to allow examination of VGLUT localization within a synapse. Throughout its postnatal developmental period a single calyx synapse contains both VGLUT1 and VGLUT2. Whereas VGLUT1 levels are greatly up-regulated from P5 to P29, VGLUT2 levels remain high. As the abundance of VGLUT determines the quantal size, this up-regulation will increase excitatory postsynaptic currents (EPSCs) and have influences on synaptic physiology.
Collapse
Affiliation(s)
- Brian Billups
- Department of Cell Physiology and Pharmacology, University of Leicester, P.O. Box 138, Leicester LE1 9HN, UK.
| |
Collapse
|
100
|
Blaesse P, Ehrhardt S, Friauf E, Nothwang HG. Developmental pattern of three vesicular glutamate transporters in the rat superior olivary complex. Cell Tissue Res 2005; 320:33-50. [PMID: 15714284 DOI: 10.1007/s00441-004-1054-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Accepted: 11/15/2004] [Indexed: 11/29/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) mediate the packaging of the excitatory neurotransmitter glutamate into synaptic vesicles. Three VGLUT subtypes have been identified so far, which are differentially expressed in the brain. Here, we have investigated the spatiotemporal distribution of the three VGLUTs in the rat superior olivary complex (SOC), a prominent processing center, which receives strong glutamatergic inputs and which lies within the auditory brainstem. Immunoreactivity (ir) against all three VGLUTs was found in the SOC nuclei throughout development (postnatal days P0-P60). It was predominantly seen in axon terminals, although cytoplasmic labeling also occurred. Each transporter displayed a characteristic expression pattern. In the adult SOC, VGLUT1 labeling varied from strong in the medial nucleus of the trapezoid body, lateral superior olive, and medial superior olive (MSO) to moderate (ventral and lateral nuclei of the trapezoid body) to faint (superior paraolivary nucleus). VGLUT2-ir was moderate to strong throughout the SOC, whereas VGLUT3 was only weakly expressed. These results extend previous reports on co-localization of VGLUTs in the auditory brainstem. As in the adult, specific features were seen during development for all three transporters. Intensity increases and decreases occurred with both VGLUT1 and VGLUT3, whereas VGLUT2-ir remained moderately high throughout development. A striking result was obtained with VGLUT3, which was only transiently expressed in the different SOC nuclei between P0 and P12. A transient occurrence of VGLUT1-immunoreactive terminals on somata of MSO neurons was another striking finding. Our results imply a considerable amount of synaptic reorganization in the glutamatergic inputs to the SOC and suggest differential roles of VGLUTs during maturation and in adulthood.
Collapse
Affiliation(s)
- Peter Blaesse
- Abteilung Tierphysiologie, Fachbereich Biologie, Technische Universität Kaiserslautern, Kaiserslautern, Deutschland
| | | | | | | |
Collapse
|