51
|
Odegaard JI, Chawla A. Connecting type 1 and type 2 diabetes through innate immunity. Cold Spring Harb Perspect Med 2013; 2:a007724. [PMID: 22393536 DOI: 10.1101/cshperspect.a007724] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The escalating epidemic of obesity has driven the prevalence of both type 1 and 2 diabetes mellitus to historically high levels. Chronic low-grade inflammation, which is present in both type 1 and type 2 diabetics, contributes to the pathogenesis of insulin resistance. The accumulation of activated innate immune cells in metabolic tissues results in release of inflammatory mediators, in particular, IL-1β and TNFα, which promote systemic insulin resistance and β-cell damage. In this article, we discuss the central role of innate immunity and, in particular, the macrophage in insulin sensitivity and resistance, β-cell damage, and autoimmune insulitis. We conclude with a discussion of the therapeutic implications of this integrated understanding of diabetic pathology.
Collapse
Affiliation(s)
- Justin I Odegaard
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
52
|
Kataoka HU, Noguchi H. ER Stress and β-Cell Pathogenesis of Type 1 and Type 2 Diabetes and Islet Transplantation. CELL MEDICINE 2013; 5:53-7. [PMID: 26858865 DOI: 10.3727/215517913x666512] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Endoplasmic reticulum (ER) stress affects the pathogenesis of diabetes. ER stress plays important roles, both in type 1 and type 2 diabetes, because pancreatic β-cells possess highly developed ER for insulin secretion. This review summarizes the relationship between ER stress and the pathogenesis of type 1 and type 2 diabetes. In addition, the association between islet transplantation and ER stress is discussed.
Collapse
Affiliation(s)
- Hitomi Usui Kataoka
- Department of Primary Care and Medical Education, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Hirofumi Noguchi
- † Department of Surgery, Clinical Research Center, Chiba-East Hospital, National Hospital Organization , Chiba , Japan
| |
Collapse
|
53
|
Ngamjariyawat A, Turpaev K, Vasylovska S, Kozlova EN, Welsh N. Co-culture of neural crest stem cells (NCSC) and insulin producing beta-TC6 cells results in cadherin junctions and protection against cytokine-induced beta-cell death. PLoS One 2013; 8:e61828. [PMID: 23613946 PMCID: PMC3629122 DOI: 10.1371/journal.pone.0061828] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/13/2013] [Indexed: 01/31/2023] Open
Abstract
Purpose Transplantation of pancreatic islets to Type 1 diabetes patients is hampered by inflammatory reactions at the transplantation site leading to dysfunction and death of insulin producing beta-cells. Recently we have shown that co-transplantation of neural crest stem cells (NCSCs) together with the islet cells improves transplantation outcome. The aim of the present investigation was to describe in vitro interactions between NCSCs and insulin producing beta-TC6 cells that may mediate protection against cytokine-induced beta-cell death. Procedures Beta-TC6 and NCSC cells were cultured either alone or together, and either with or without cell culture inserts. The cultures were then exposed to the pro-inflammatory cytokines IL-1β and IFN-γ for 48 hours followed by analysis of cell death rates (flow cytometry), nitrite production (Griess reagent), protein localization (immunofluorescence) and protein phosphorylation (flow cytometry). Results We observed that beta-TC6 cells co-cultured with NCSCs were protected against cytokine-induced cell death, but not when separated by cell culture inserts. This occurred in parallel with (i) augmented production of nitrite from beta-TC6 cells, indicating that increased cell survival allows a sustained production of nitric oxide; (ii) NCSC-derived laminin production; (iii) decreased phospho-FAK staining in beta-TC6 cell focal adhesions, and (iv) decreased beta-TC6 cell phosphorylation of ERK(T202/Y204), FAK(Y397) and FAK(Y576). Furthermore, co-culture also resulted in cadherin and beta-catenin accumulations at the NCSC/beta-TC6 cell junctions. Finally, the gap junction inhibitor carbenoxolone did not affect cytokine-induced beta-cell death during co-culture with NCSCs. Conclusion In summary, direct contacts, but not soluble factors, promote improved beta-TC6 viability when co-cultured with NCSCs. We hypothesize that cadherin junctions between NCSC and beta-TC6 cells promote powerful signals that maintain beta-cell survival even though ERK and FAK signaling are suppressed. It may be that future strategies to improve islet transplantation outcome may benefit from attempts to increase beta-cell cadherin junctions to neighboring cells.
Collapse
Affiliation(s)
| | - Kyril Turpaev
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden, and Science For Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
- Center for Theoretical Problems of Physicochemical Pharmacology Russian Academy of Sciences, Moscow, Russia
| | | | - Elena N. Kozlova
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
- * E-mail: (NW); (ENK)
| | - Nils Welsh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden, and Science For Life Laboratory (SciLifeLab), Uppsala University, Uppsala, Sweden
- * E-mail: (NW); (ENK)
| |
Collapse
|
54
|
Barcala Tabarrozzi AE, Castro CN, Dewey RA, Sogayar MC, Labriola L, Perone MJ. Cell-based interventions to halt autoimmunity in type 1 diabetes mellitus. Clin Exp Immunol 2013; 171:135-46. [PMID: 23286940 DOI: 10.1111/cei.12019] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2012] [Indexed: 12/13/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) results from death of insulin-secreting β cells mediated by self-immune cells, and the consequent inability of the body to maintain insulin levels for appropriate glucose homeostasis. Probably initiated by environmental factors, this disease takes place in genetically predisposed individuals. Given the autoimmune nature of T1DM, therapeutics targeting immune cells involved in disease progress have been explored over the last decade. Several high-cost trials have been attempted to prevent and/or reverse T1DM. Although a definitive solution to cure T1DM is not yet available, a large amount of information about its nature and development has contributed greatly to both the improvement of patient's health care and design of new treatments. In this study, we discuss the role of different types of immune cells involved in T1DM pathogenesis and their therapeutic potential as targets and/or modified tools to treat patients. Recently, encouraging results and new approaches to sustain remnant β cell mass and to increase β cell proliferation by different cell-based means have emerged. Results coming from ongoing clinical trials employing cell therapy designed to arrest T1DM will probably proliferate in the next few years. Strategies under consideration include infusion of several types of stem cells, dendritic cells and regulatory T cells, either manipulated genetically ex vivo or non-manipulated. Their use in combination approaches is another therapeutic alternative. Cell-based interventions, without undesirable side effects, directed to block the uncontrollable autoimmune response may become a clinical reality in the next few years for the treatment of patients with T1DM.
Collapse
Affiliation(s)
- A E Barcala Tabarrozzi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA), CONICET, Instituto Partner de la Sociedad Max Planck, Buenos Aires
| | | | | | | | | | | |
Collapse
|
55
|
La Torre D. Immunobiology of beta-cell destruction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 771:194-218. [PMID: 23393680 DOI: 10.1007/978-1-4614-5441-0_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type 1 diabetes is a chronic disease characterized by severe insulin deficiency and hyperglycemia, due to autoimmune destruction of pancreatic islets of Langerhans. A susceptible genetic background is necessary, but not sufficient, for the development of the disease. Epidemiological and clinical observations underscore the importance of environmental factors as triggers of type 1 diabetes, currently under investigation. Islet-specific autoantibodies precede clinical onset by months to years and are established tools for risk prediction, yet minor players in the pathogenesis of the disease. Many efforts have been made to elucidate disease-relevant defects in the key immune effectors of islet destruction, from the early failure of specific tolerance to the vicious circle of destructive insulitis. However, the events triggering islet autoimmunity as well as the transition to overt diabetes are still largely unknown, making prevention and treatment strategies still a challenge.
Collapse
Affiliation(s)
- Daria La Torre
- Lund University, Clinical Research Center (CRC), Department of Clinical Sciences, Malmö, Sweden.
| |
Collapse
|
56
|
Wong FS, Wen L. Type 1 diabetes therapy beyond T cell targeting: monocytes, B cells, and innate lymphocytes. Rev Diabet Stud 2012; 9:289-304. [PMID: 23804267 DOI: 10.1900/rds.2012.9.289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Recent clinical trials, investigating type 1 diabetes (T1D), have focused mainly on newly diagnosed individuals who have developed diabetes. We need to continue our efforts to understand disease processes and to rationally design interventions that will be safe and specific for disease, but at the same time not induce undesirable immunosuppression. T cells are clearly involved in the pathogenesis of T1D, and have been a major focus for both antigen-specific and non-antigen-specific therapy, but thus far no single strategy has emerged as superior. As T1D is a multifactorial disease, in which multiple cell types are involved, some of these pathogenic and regulatory cell pathways may be important to consider. In this review, we examine evidence for whether monocytes, B cells, and innate lymphocytes, including natural killer cells, may be suitable targets for intervention.
Collapse
Affiliation(s)
- F Susan Wong
- Institute of Molecular and Experimental Medicine, Cardiff School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | | |
Collapse
|
57
|
Lightfoot YL, Chen J, Mathews CE. Immune-mediated β-cell death in type 1 diabetes: lessons from human β-cell lines. Eur J Clin Invest 2012; 42:1244-51. [PMID: 22924552 PMCID: PMC3703770 DOI: 10.1111/j.1365-2362.2012.02711.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Type 1 diabetes (T1D) is a chronic, multifactorial disorder that results from a contretemps of genetic and environmental factors. Autoimmune attack and functional inhibition of the insulin-producing β cells in the pancreas lead to the inability of β cells to metabolize glucose, and thus results the hallmark clinical symptom of diabetes: abnormally high blood glucose levels. Treatment and protection from T1D require a detailed knowledge of the molecular effectors and the mechanism(s) of cell death leading to β-cell demise. Primary islets and surrogate β cells have been utilized in vitro to investigate in isolation-specific mechanisms associated with progression to T1D in vivo. This review focuses on the data obtained from these experiments. Studies using transformed β cells of human sources are described.
Collapse
Affiliation(s)
- Yaíma L Lightfoot
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| | | | | |
Collapse
|
58
|
Abstract
Type 1 diabetes (T1D) is a multi-factorial, organ-specific autoimmune disease in genetically susceptible individuals, which is characterized by a selective and progressive loss of insulin-producing β-cells. Cells mediating innate as well as adaptive immunity infiltrate pancreatic islets, thereby generating an aberrant inflammatory process called insulitis that can be mirrored by a pathologic autoantibody production and autoreactive T-cells. In tight cooperation with infiltrating innate immune cells, which secrete high levels of pro-inflammatory cytokines like IL-1β, TNFα, and INFγ effector T-cells trigger the fatal destruction process of β-cells. There is ongoing discussion on the contribution of inflammation in T1D pathogenesis, ranging from a bystander reaction of autoimmunity to a dysregulation of immune responses that initiate inflammatory processes and thereby actively promoting β-cell death. Here, we review recent advances in anti-inflammatory interventions in T1D animal models and preclinical studies and discuss their mode of action as well as their capacity to interfere with T1D development.
Collapse
Affiliation(s)
- Bernd Baumann
- Institute of Physiological Chemistry, Ulm University, Albert Einstein Allee 11, 89081, Ulm, Germany.
| | | | | |
Collapse
|
59
|
Rani PS, Tulsian NK, Sechi LA, Ahmed N. In vitro cytokine profiles and viability of different human cells treated with whole cell lysate of Mycobacterium avium subsp. paratuberculosis. Gut Pathog 2012; 4:10. [PMID: 23006537 PMCID: PMC3495707 DOI: 10.1186/1757-4749-4-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 09/10/2012] [Indexed: 12/21/2022] Open
Abstract
Mycobacterium avium subsp. paratuberculosis (MAP) is a zoonotic pathogen, a very slow growing bacterium which is difficult to isolate and passage in conventional laboratory culture. Although its association with Johne's disease or paratuberculosis of cattle is well established, it has been only putatively linked to Crohn's disease in humans. Further, MAP has been recently suggested to be a trigger for other autoimmune diseases such as type-1 diabetes mellitus (T1DM). Recently, some studies have indicated that exposure to MAP is associated with elevated levels of antibodies against MAP lysate although the exact mechanism and significance of the same remains unclear. Further, the cytokine profiles relevant in MAP associated diseases of humans and their exact role in the pathophysiology are not clearly known. We performed in vitro cytokine analyses after exposing different cultured human cells to the whole cell lysate of MAP and found that MAP lysate induces secretion of cytokines IL-1β, IL-6, IL-8, IL-10 and TNF-α by human peripheral blood mononuclear cells (PBMCs). Also, it induces secretion of IL-8 by cultured human stomach adenocarcinoma cells (AGS) and PANC-1(human pancreatic carcinoma cell line) cells. We also found that MAP lysate induced cytotoxicity in PANC-1cells. Collectively, these results provide a much needed base-line data set of cytokines broadly signifying a MAP induced cellular response by human cells.
Collapse
Affiliation(s)
- Pittu Sandhya Rani
- Pathogen Biology Laboratory, Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Nikhil Kumar Tulsian
- Pathogen Biology Laboratory, Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Leonardo A Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Niyaz Ahmed
- Pathogen Biology Laboratory, Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad, India
- Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
60
|
Thole A, Rodrigues-Cunha A, Carvalho S, Garcia-Souza E, Cortez E, Stumbo A, Carvalho L, Moura A. Progenitor cells and TNF-alpha involvement during morphological changes in pancreatic islets of obese mice. Tissue Cell 2012; 44:238-48. [DOI: 10.1016/j.tice.2012.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 03/30/2012] [Accepted: 04/02/2012] [Indexed: 12/28/2022]
|
61
|
Korf H, Wenes M, Stijlemans B, Takiishi T, Robert S, Miani M, Eizirik DL, Gysemans C, Mathieu C. 1,25-Dihydroxyvitamin D3 curtails the inflammatory and T cell stimulatory capacity of macrophages through an IL-10-dependent mechanism. Immunobiology 2012; 217:1292-300. [PMID: 22944250 DOI: 10.1016/j.imbio.2012.07.018] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Revised: 07/18/2012] [Accepted: 07/18/2012] [Indexed: 01/01/2023]
Abstract
The vitamin D receptor (VDR) is a hormone nuclear receptor regulating bone and calcium homeostasis. Studies revealing the expression of VDR on immune cells point toward a role for VDR-dependent signaling pathways in immunity. Here we verified the ability of the natural VDR ligand, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) to interfere in inflammatory and T cell stimulatory capacity of macrophages, in particular within a chronic inflammatory disease features of experimental type 1 diabetes (T1D). We demonstrated that VDR is constitutively expressed in macrophages and both the levels of VDR and its downstream targets, are clearly induced by 1,25(OH)(2)D(3). In control mice, macrophage programming with 1,25(OH)(2)D(3) partially abrogated the activation-provoked expression of IL-12p40, TNFα and iNOS as well as the effector T cell-recruiting chemokines, CXCL9, CXCL10 and CXCL11. Targeting VDR signaling in macrophages counteracted their T-cell stimulatory ability despite essentially unaltered expression of antigen-presenting and costimulatory molecules. Furthermore, even in non-obese diabetic (NOD) mice, where macrophages/monocytes featured a heightened responsiveness toward danger signals and a superior T cell stimulatory capacity, 1,25(OH)(2)D(3) successfully curtailed these basic macrophage-mediated functions. Interestingly, the inhibitory action of the active compound was associated with an IL-10-dependent mechanism since 1,25(OH)(2)D(3)-treatment of IL-10-deficient macrophages failed to reproduce the characteristic repression on inflammatory mediators or T cell proliferation. Combined, these results highlight the possible therapeutic applicability of this natural immunomodulator, due to its ability to counteract macrophage inflammatory and T cell-activating pathways.
Collapse
Affiliation(s)
- Hannelie Korf
- Laboratory of Clinical and Experimental Endocrinology, Campus Gasthuisberg O&N1, Katholieke Universiteit Leuven (KU LEUVEN), Leuven, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Lenzen H, Lünnemann M, Bleich A, Manns MP, Seidler U, Jörns A. Downregulation of the NHE3-binding PDZ-adaptor protein PDZK1 expression during cytokine-induced inflammation in interleukin-10-deficient mice. PLoS One 2012; 7:e40657. [PMID: 22848392 PMCID: PMC3407152 DOI: 10.1371/journal.pone.0040657] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 06/11/2012] [Indexed: 12/21/2022] Open
Abstract
Background Impaired salt and water absorption is an important feature in the pathogenesis of diarrhea in inflammatory bowel disease (IBD). We analyzed the expression of proinflammatory cytokines in the infiltrating immune cells and the function and expression of the Na+/H+ exchanger isoform 3 (NHE3) and its regulatory PDZ-adaptor proteins NHERF1, NHERF2, and PDZK1 in the colon of interleukin-10–deficient (IL-10−/−) mice. Methodology/Principal Findings Gene and protein expression were analyzed by real-time reverse transcription polymerase chain reaction (qRT-PCR), in situ RT-PCR, and immunohistochemistry. NHE3 activity was measured fluorometrically in apical enterocytes within isolated colonic crypts. Mice developed chronic colitis characterized by a typical immune cell infiltration composed of T-lymphocytes and macrophages, with high levels of gene and protein expression of the proinflammatory cytokines interleukin-1β and tumor necrosis factor-α. In parallel, inducible nitric oxide synthase expression was increased while procaspase 3 expression was unaffected. Interferon-γ expression remained low. Although acid-activated NHE3 activity was significantly decreased, the inflammatory process did not affect its gene and protein expression or its abundance and localization in the apical membrane. However, expression of the PDZ-adaptor proteins NHERF2 and PDZK1 was downregulated. NHERF1 expression was unchanged. In a comparative analysis we observed the PDZK1 downregulation also in the DSS (dextran sulphate sodium) model of colitis. Conclusions/Significance The impairment of the absorptive function of the inflamed colon in the IL-10−/−mouse, in spite of unaltered NHE3 expression and localization, is accompanied by the downregulation of the NHE3-regulatory PDZ adaptors NHERF2 and PDZK1. We propose that the downregulation of PDZ-adaptor proteins may be an important factor leading to NHE3 dysfunction and diarrhea in the course of the cytokine-mediated inflammatory process in these animal models of IBD.
Collapse
Affiliation(s)
- Henrike Lenzen
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | |
Collapse
|
63
|
Irvine KM, Gallego P, An X, Best SE, Thomas G, Wells C, Harris M, Cotterill A, Thomas R. Peripheral blood monocyte gene expression profile clinically stratifies patients with recent-onset type 1 diabetes. Diabetes 2012; 61:1281-90. [PMID: 22403299 PMCID: PMC3331753 DOI: 10.2337/db11-1549] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Novel biomarkers of disease progression after type 1 diabetes onset are needed. We profiled peripheral blood (PB) monocyte gene expression in six healthy subjects and 16 children with type 1 diabetes diagnosed ∼3 months previously and analyzed clinical features from diagnosis to 1 year. Monocyte expression profiles clustered into two distinct subgroups, representing mild and severe deviation from healthy control subjects, along the same continuum. Patients with strongly divergent monocyte gene expression had significantly higher insulin dose-adjusted HbA(1c) levels during the first year, compared with patients with mild deviation. The diabetes-associated expression signature identified multiple perturbations in pathways controlling cellular metabolism and survival, including endoplasmic reticulum and oxidative stress (e.g., induction of HIF1A, DDIT3, DDIT4, and GRP78). Quantitative PCR (qPCR) of a 9-gene panel correlated with glycemic control in 12 additional recent-onset patients. The qPCR signature was also detected in PB from healthy first-degree relatives. A PB gene expression signature correlates with glycemic control in the first year after diabetes diagnosis and is present in at-risk subjects. These findings implicate monocyte phenotype as a candidate biomarker for disease progression pre- and postonset and systemic stresses as contributors to innate immune function in type 1 diabetes.
Collapse
Affiliation(s)
- Katharine M. Irvine
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Patricia Gallego
- Mater Children’s Hospital, Brisbane, Queensland, Australia
- The University of Western Ontario Department of Pediatrics, London Health Sciences Centre, Children's Hospital, London, Ontario, Canada
| | - Xiaoyu An
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Shannon E. Best
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Gethin Thomas
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
| | - Christine Wells
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark Harris
- Mater Children’s Hospital, Brisbane, Queensland, Australia
| | | | - Ranjeny Thomas
- The University of Queensland Diamantina Institute, Brisbane, Queensland, Australia
- Corresponding author: Ranjeny Thomas,
| |
Collapse
|
64
|
Coculture of insulin-producing RIN5AH cells with neural crest stem cells protects partially against cytokine-induced cell death. Pancreas 2012; 41:490-2. [PMID: 22415669 DOI: 10.1097/mpa.0b013e31823fcf2a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
65
|
Cytokine-induced human islet cell death in vitro correlates with a persistently high phosphorylation of STAT-1, but not with NF-κB activation. Biochem Biophys Res Commun 2012; 418:845-50. [DOI: 10.1016/j.bbrc.2012.01.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 01/26/2012] [Indexed: 11/24/2022]
|
66
|
Ghosh K, Kanapathipillai M, Korin N, McCarthy JR, Ingber DE. Polymeric nanomaterials for islet targeting and immunotherapeutic delivery. NANO LETTERS 2012; 12:203-8. [PMID: 22196766 PMCID: PMC3280082 DOI: 10.1021/nl203334c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Here we report a proof-of-concept for development of pancreatic islet-targeting nanoparticles for immunomodulatory therapy of autoimmune type 1 diabetes. Modified with a unique islet-homing peptide, these polymeric nanomaterials exhibit 3-fold greater binding to islet endothelial cells and a 200-fold greater anti-inflammatory effect through targeted islet endothelial cell delivery of an immunosuppressant drug. Our findings also underscore the need to carefully tailor drug loading and nanoparticle dosage to achieve maximal vascular targeting and immunosuppression.
Collapse
Affiliation(s)
- Kaustabh Ghosh
- Vascular Biology Program, Departments of Pathology & Surgery, Children’s Hospital and Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | | | - Netanel Korin
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
| | - Jason R. McCarthy
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Donald E. Ingber
- Vascular Biology Program, Departments of Pathology & Surgery, Children’s Hospital and Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, USA
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- To whom correspondence should be sent ()
| |
Collapse
|
67
|
Abstract
The appearance of multicellular organisms imposed the development of several mechanisms for cell-to-cell communication, whereby different types of cells coordinate their function. Some of these mechanisms depend on the intercellular diffusion of signal molecules in the extracellular spaces, whereas others require cell-to-cell contact. Among the latter mechanisms, those provided by the proteins of the connexin family are widespread in most tissues. Connexin signaling is achieved via direct exchanges of cytosolic molecules between adjacent cells at gap junctions, for cell-to-cell coupling, and possibly also involves the formation of membrane "hemi-channels," for the extracellular release of cytosolic signals, direct interactions between connexins and other cell proteins, and coordinated influence on the expression of multiple genes. Connexin signaling appears to be an obligatory attribute of all multicellular exocrine and endocrine glands. Specifically, the experimental evidence we review here points to a direct participation of the Cx36 isoform in the function of the insulin-producing β-cells of the endocrine pancreas, and of the Cx40 isoform in the function of the renin-producing juxtaglomerular epithelioid cells of the kidney cortex.
Collapse
Affiliation(s)
- Domenico Bosco
- Department of Surgery, University of Geneva Medical School, Geneva, Switzerland
| | | | | |
Collapse
|
68
|
Korczak DJ, Pereira S, Koulajian K, Matejcek A, Giacca A. Type 1 diabetes mellitus and major depressive disorder: evidence for a biological link. Diabetologia 2011; 54:2483-93. [PMID: 21789690 DOI: 10.1007/s00125-011-2240-3] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 05/27/2011] [Indexed: 12/19/2022]
Abstract
AIMS/HYPOTHESIS A growing body of research suggests that the prevalence of major depressive disorder (MDD) in children and youth with type 1 diabetes mellitus is significantly higher than that of youth without type 1 diabetes and is associated with increased illness severity. The objective of this article is to review the current literature on the pathophysiology of these two common diseases with respect to potential areas of overlapping biological dysfunction. METHODS A search of English language articles published between 1966 and 2010 was conducted and augmented with manual review of reference lists from the identified publications. RESULTS The evidence suggests plausible mechanisms whereby a biological relationship between type 1 diabetes and MDD may exist. These include the effects of circulating cytokines associated with autoimmune diabetes, the direct impact of insulin deficiency on neurogenesis/neurotransmitter metabolism, the effects of the chronic hyperglycaemic state, occurrence of iatrogenic hypoglycaemia and the impact of basal hyperactivity of the hypothalamic-pituitary-adrenal axis. CONCLUSIONS/INTERPRETATION Shared biological vulnerabilities may be implicated in the comorbidity of type 1 diabetes and MDD. Further research is warranted to determine the magnitude of associations and confirm their observation in clinical populations.
Collapse
Affiliation(s)
- D J Korczak
- Department of Psychiatry, The Hospital for Sick Children, Rm 1145 Burton Wing, 555 University Avenue, Toronto, ON, Canada, M5G 1X8.
| | | | | | | | | |
Collapse
|
69
|
Rakyan VK, Beyan H, Down TA, Hawa MI, Maslau S, Aden D, Daunay A, Busato F, Mein CA, Manfras B, Dias KRM, Bell CG, Tost J, Boehm BO, Beck S, Leslie RD. Identification of type 1 diabetes-associated DNA methylation variable positions that precede disease diagnosis. PLoS Genet 2011; 7:e1002300. [PMID: 21980303 PMCID: PMC3183089 DOI: 10.1371/journal.pgen.1002300] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Accepted: 08/03/2011] [Indexed: 12/24/2022] Open
Abstract
Monozygotic (MZ) twin pair discordance for childhood-onset Type 1 Diabetes (T1D) is ∼50%, implicating roles for genetic and non-genetic factors in the aetiology of this complex autoimmune disease. Although significant progress has been made in elucidating the genetics of T1D in recent years, the non-genetic component has remained poorly defined. We hypothesized that epigenetic variation could underlie some of the non-genetic component of T1D aetiology and, thus, performed an epigenome-wide association study (EWAS) for this disease. We generated genome-wide DNA methylation profiles of purified CD14+ monocytes (an immune effector cell type relevant to T1D pathogenesis) from 15 T1D–discordant MZ twin pairs. This identified 132 different CpG sites at which the direction of the intra-MZ pair DNA methylation difference significantly correlated with the diabetic state, i.e. T1D–associated methylation variable positions (T1D–MVPs). We confirmed these T1D–MVPs display statistically significant intra-MZ pair DNA methylation differences in the expected direction in an independent set of T1D–discordant MZ pairs (P = 0.035). Then, to establish the temporal origins of the T1D–MVPs, we generated two further genome-wide datasets and established that, when compared with controls, T1D–MVPs are enriched in singletons both before (P = 0.001) and at (P = 0.015) disease diagnosis, and also in singletons positive for diabetes-associated autoantibodies but disease-free even after 12 years follow-up (P = 0.0023). Combined, these results suggest that T1D–MVPs arise very early in the etiological process that leads to overt T1D. Our EWAS of T1D represents an important contribution toward understanding the etiological role of epigenetic variation in type 1 diabetes, and it is also the first systematic analysis of the temporal origins of disease-associated epigenetic variation for any human complex disease. Type 1 diabetes (T1D) is a complex autoimmune disease affecting >30 million people worldwide. It is caused by a combination of genetic and non-genetic factors, leading to destruction of insulin-secreting cells. Although significant progress has recently been made in elucidating the genetics of T1D, the non-genetic component has remained poorly defined. Epigenetic modifications, such as methylation of DNA, are indispensable for genomic processes such as transcriptional regulation and are frequently perturbed in human disease. We therefore hypothesized that epigenetic variation could underlie some of the non-genetic component of T1D aetiology, and we performed a genome-wide DNA methylation analysis of a specific subset of immune cells (monocytes) from monozygotic twins discordant for T1D. This revealed the presence of T1D–specific methylation variable positions (T1D–MVPs) in the T1D–affected co-twins. Since these T1D–MVPs were found in MZ twins, they cannot be due to genetic differences. Additional experiments revealed that some of these T1D–MVPs are found in individuals before T1D diagnosis, suggesting they arise very early in the process that leads to overt T1D and are not simply due to post-disease associated factors (e.g. medication or long-term metabolic changes). T1D–MVPs may thus potentially represent a previously unappreciated, and important, component of type 1 diabetes risk.
Collapse
Affiliation(s)
- Vardhman K Rakyan
- Blizard Institute of Cell and Molecular Science, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Abstract
The histopathology of type 1 diabetes is defined by a decreased β-cell mass in association with insulitis, a characteristic lymphocytic infiltration limited to the islets of Langerhans and prominent in early stage disease in children. A cytotoxic T-cell mediated destruction of insulin-producing β-cells is thought to be initiated by an unknown (auto)antigen, leading to the destruction > 75% of β-cell mass at clinical diagnosis. Although considered to be pathognomonic for recent onset disease, insulitis has only been described in approximately 150 cases over the past century. This review describes the quest for this elusive lesion and gives its incidence in various patient subpopulations stratified for age of onset and duration of the disease. It discusses recent new insights into the regenerative capacity of the β-cell mass in the pre-clinical stages of the disease and relates these findings to the inflammatory processes within the islet tissue.
Collapse
Affiliation(s)
- Peter In't Veld
- Department of Pathology, Diabetes Research Center, Free University of Brussels, Belgium.
| |
Collapse
|
71
|
Abstract
OBJECTIVES To compare the effects of glucocorticoids and thyroid hormones on the regulation of the beta cell mass in the pancreas, the rats were treated and analyzed for cell cycle changes in islet and duct cells as a source for beta cell neogenesis. METHODS Different rat pancreases were morphometrically analyzed after immunohistochemical staining for markers of proliferation and apoptosis. RESULTS Hydrocortisone increased the beta cell mass of rat pancreases through an increase of proliferation. This effect was counteracted by an increase of apoptosis. In contrast, thyroxine decreased the beta cell mass through an increase of apoptosis. This effect was counteracted by an increased rate of proliferation. Combined treatment with both hormones nullified the antagonistic effects on proliferation, apoptosis, and beta cell mass, thereby contributing to the maintenance of a stable total beta cell volume of the pancreas. CONCLUSIONS Hydrocortisone and thyroxine induced analogous changes in pancreatic duct cells, which represent a crucial pool for new beta cells through neogenesis. This may explain the positive effects of glucocorticoids in the immunosuppressive therapy regimen after whole pancreas transplantation upon long-term insulin independence, which is not achievable with isolated islets because of the loss of duct cells during the islet process before transplantation.
Collapse
|
72
|
Altered Toll-like receptor signaling pathways in human type 1 diabetes. J Mol Med (Berl) 2010; 88:1221-31. [PMID: 20725710 DOI: 10.1007/s00109-010-0666-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 07/02/2010] [Accepted: 07/19/2010] [Indexed: 01/04/2023]
Abstract
There is compelling evidence from animal models of type 1 diabetes (T1D) that the innate immune system plays a key role in early mechanisms triggering islet destruction. Very little is known, however, about innate immune subsets and pathways potentially involved in mechanisms leading to human T1D. The present study used a comprehensive approach to analyze innate immune functions in primary monocytes and dendritic cells (DCs) from newly diagnosed patients with T1D versus age-matched healthy individuals. We observed that incubation of PBMCs in the presence of the TLR7/8 agonist R848 led to increased proportion of plasmacytoid dendritic cells (pDCs) expressing IFN-α in patients versus healthy control subjects. We also found that TLR4 activation induced a higher frequency of IL-1β expressing monocytes and a reduction in the percentage of IL-6 expressing myeloid dendritic cells (mDCs). The altered TLR responsiveness was not due to aberrant proportions of peripheral DC subsets and monocytes in the blood and did not correlate with altered hemoglobin A1c and the expression of diabetes susceptibility genes but could potentially be associated with enhanced nuclear factor-kappa B signaling. Finally, we observed that levels of serum IFN-α2, IL-1β, IFN-γ, and CXCL-10 were elevated in new onset patients versus the control group. Taken together, our observations provide evidence that altered innate immunity exists in mDCs and pDCs from T1D and raise the possibility that these alterations may be associated with disease mechanisms.
Collapse
|
73
|
Jörns A, Rath KJ, Terbish T, Arndt T, Meyer Zu Vilsendorf A, Wedekind D, Hedrich HJ, Lenzen S. Diabetes prevention by immunomodulatory FTY720 treatment in the LEW.1AR1-iddm rat despite immune cell activation. Endocrinology 2010; 151:3555-65. [PMID: 20501676 DOI: 10.1210/en.2010-0202] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The prevention of diabetes by the immunomodulatory agent FTY720 (fingolimod) was studied in the LEW.1AR1-iddm (IDDM) rat, an animal model of human type 1 diabetes. Immune cell subtypes and cytokine profiles in pancreatic islets, secondary lymphoid tissue, and serum were analyzed for signs of immune cell activation. Animals were treated with FTY720 (1 mg/kg body weight) for 40 d starting on d 50 of life. Changes in gene and protein expression of cytokines, CD8 markers, monocyte chemoattractant protein-1, inducible NO synthase, and caspase 3 were evaluated. Treatment with FTY720 prevented diabetes manifestation and islet infiltration around d 60 of life, the usual time of spontaneous diabetes development. On d 120, 30 d after the end of FTY720 therapy, diabetes prevention persisted. However, six of 12 treated animals showed increased gene expression of IL-1beta, TNF-alpha, and CD8 markers in pancreas-draining lymph nodes, indicating immune cell activation. In parallel, serum concentrations of these proinflammatory cytokines were increased. These six animals also showed macrophage infiltration without proinflammatory cytokine expression in a small minority (2-3%) of islets. Interestingly, regulatory T lymphocytes were significantly increased in the efferent vessels of the pancreas-draining lymph nodes only in animals without signs of immune cell activation but not in the rats with immune cell activation. This provides an indication for a lack of protective capacity in the animals with activated immune cells. Thus, FTY720 treatment prevented the manifestation of diabetes by promoting the retention of activated immune cells in the lymph nodes, thereby avoiding islet infiltration and beta-cell destruction by proinflammatory cytokines.
Collapse
Affiliation(s)
- Anne Jörns
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Abstract
The development of type 1 diabetes involves a complex interaction between pancreatic beta-cells and cells of both the innate and adaptive immune systems. Analyses of the interactions between natural killer (NK) cells, NKT cells, different dendritic cell populations and T cells have highlighted how these different cell populations can influence the onset of autoimmunity. There is evidence that infection can have either a potentiating or inhibitory role in the development of type 1 diabetes. Interactions between pathogens and cells of the innate immune system, and how this can influence whether T cell activation or tolerance occurs, have been under close scrutiny in recent years. This Review focuses on the nature of this crosstalk between the innate and the adaptive immune responses and how pathogens influence the process.
Collapse
Affiliation(s)
- Agnès Lehuen
- Institut National de la Santé et de la Recherche Médicale (INSERM) U986, Hôpital Saint Vincent de Paul, Bâtiment Petit, 82 Avenue Denfert-Rochereau, 75014 Paris, France.
| | | | | | | |
Collapse
|
75
|
Schulte BM, Kramer M, Ansems M, Lanke KH, van Doremalen N, Piganelli JD, Bottino R, Trucco M, Galama JM, Adema GJ, van Kuppeveld FJ. Phagocytosis of enterovirus-infected pancreatic beta-cells triggers innate immune responses in human dendritic cells. Diabetes 2010; 59:1182-91. [PMID: 20071599 PMCID: PMC2857898 DOI: 10.2337/db09-1071] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE Type 1 diabetes is a chronic endocrine disorder in which enteroviruses, such as coxsackie B viruses and echoviruses, are possible environmental factors that can trigger or accelerate disease. The development or acceleration of type 1 diabetes depends on the balance between autoreactive effector T-cells and regulatory T-cells. This balance is particularly influenced by dendritic cells (DCs). The goal of this study was to investigate the interaction between enterovirus-infected human pancreatic islets and human DCs. RESEARCH DESIGN AND METHODS In vitro phagocytosis of human or porcine primary islets or Min6 mouse insuloma cells by DCs was investigated by flow cytometry and confocal analysis. Subsequent innate DC responses were monitored by quantitative PCR and Western blotting of interferon-stimulated genes (ISGs). RESULTS In this study, we show that both mock- and coxsackievirus B3 (CVB3)-infected human and porcine pancreatic islets were efficiently phagocytosed by human monocyte-derived DCs. Phagocytosis of CVB3-infected, but not mock-infected, human and porcine islets resulted in induction of ISGs in DCs, including the retinoic acid-inducible gene (RIG)-I-like helicases (RLHs), RIG-I, and melanoma differentiation-associated gene 5 (Mda5). Studies with murine Min6 insuloma cells, which were also efficiently phagocytosed, revealed that increased ISG expression in DCs upon encountering CVB-infected cells resulted in an antiviral state that protected DCs from subsequent enterovirus infection. The observed innate antiviral responses depended on RNA within the phagocytosed cells, required endosomal acidification, and were type I interferon dependent. CONCLUSIONS Human DCs can phagocytose enterovirus-infected pancreatic cells and subsequently induce innate antiviral responses, such as induction of RLHs. These responses may have important consequences for immune homeostasis in vivo and may play a role in the etiology of type 1 diabetes.
Collapse
Affiliation(s)
- Barbara M. Schulte
- Department of Medical Microbiology, Nijmegen Centre for Molecular Life Sciences and Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Matthijs Kramer
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences and Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Marleen Ansems
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences and Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Kjerstin H.W. Lanke
- Department of Medical Microbiology, Nijmegen Centre for Molecular Life Sciences and Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Neeltje van Doremalen
- Department of Medical Microbiology, Nijmegen Centre for Molecular Life Sciences and Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Jon D. Piganelli
- Department of Pediatrics, Diabetes Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rita Bottino
- Department of Pediatrics, Diabetes Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Massimo Trucco
- Department of Pediatrics, Diabetes Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jochem M.D. Galama
- Department of Medical Microbiology, Nijmegen Centre for Molecular Life Sciences and Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Gosse J. Adema
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences and Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Frank J.M. van Kuppeveld
- Department of Medical Microbiology, Nijmegen Centre for Molecular Life Sciences and Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
- Corresponding author: Frank J.M. van Kuppeveld,
| |
Collapse
|
76
|
Richardson SJ, Willcox A, Bone AJ, Morgan NG, Foulis AK. Immunopathology of the human pancreas in type-I diabetes. Semin Immunopathol 2010; 33:9-21. [DOI: 10.1007/s00281-010-0205-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 03/18/2010] [Indexed: 12/27/2022]
|
77
|
Ortis F, Naamane N, Flamez D, Ladrière L, Moore F, Cunha DA, Colli ML, Thykjaer T, Thorsen K, Ørntoft TF, Eizirik DL. Cytokines interleukin-1beta and tumor necrosis factor-alpha regulate different transcriptional and alternative splicing networks in primary beta-cells. Diabetes 2010; 59:358-74. [PMID: 19934004 PMCID: PMC2809955 DOI: 10.2337/db09-1159] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Cytokines contribute to pancreatic beta-cell death in type 1 diabetes. This effect is mediated by complex gene networks that remain to be characterized. We presently utilized array analysis to define the global expression pattern of genes, including spliced variants, modified by the cytokines interleukin (IL)-1beta + interferon (IFN)-gamma and tumor necrosis factor (TNF)-alpha + IFN-gamma in primary rat beta-cells. RESEARCH DESIGN AND METHODS Fluorescence-activated cell sorter-purified rat beta-cells were exposed to IL-1beta + IFN-gamma or TNF-alpha + IFN-gamma for 6 or 24 h, and global gene expression was analyzed by microarray. Key results were confirmed by RT-PCR, and small-interfering RNAs were used to investigate the mechanistic role of novel and relevant transcription factors identified by pathway analysis. RESULTS Nearly 16,000 transcripts were detected as present in beta-cells, with temporal differences in the number of genes modulated by IL-1beta + IFNgamma or TNF-alpha + IFN-gamma. These cytokine combinations induced differential expression of inflammatory response genes, which is related to differential induction of IFN regulatory factor-7. Both treatments decreased the expression of genes involved in the maintenance of beta-cell phenotype and growth/regeneration. Cytokines induced hypoxia-inducible factor-alpha, which in this context has a proapoptotic role. Cytokines also modified the expression of >20 genes involved in RNA splicing, and exon array analysis showed cytokine-induced changes in alternative splicing of >50% of the cytokine-modified genes. CONCLUSIONS The present study doubles the number of known genes expressed in primary beta-cells, modified or not by cytokines, and indicates the biological role for several novel cytokine-modified pathways in beta-cells. It also shows that cytokines modify alternative splicing in beta-cells, opening a new avenue of research for the field.
Collapse
Affiliation(s)
- Fernanda Ortis
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Najib Naamane
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Daisy Flamez
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Ladrière
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Fabrice Moore
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Daniel A. Cunha
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Maikel L. Colli
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Thomas Thykjaer
- CMO Aros Applied Biotechnology A/S, Science Park Skejby Brendstrupgaardsvej, Aarhus, Denmark
| | - Kasper Thorsen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Torben F. Ørntoft
- CMO Aros Applied Biotechnology A/S, Science Park Skejby Brendstrupgaardsvej, Aarhus, Denmark
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Decio L. Eizirik
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Brussels, Belgium
- Corresponding author: Decio L. Eizirik,
| |
Collapse
|
78
|
Siqueira MF, Li J, Chehab L, Desta T, Chino T, Krothpali N, Behl Y, Alikhani M, Yang J, Braasch C, Graves DT. Impaired wound healing in mouse models of diabetes is mediated by TNF-alpha dysregulation and associated with enhanced activation of forkhead box O1 (FOXO1). Diabetologia 2010; 53:378-88. [PMID: 19902175 PMCID: PMC3130195 DOI: 10.1007/s00125-009-1529-y] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Accepted: 08/05/2009] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS The role of TNF-alpha in impaired wound healing in diabetes was examined by focusing on fibroblasts. METHODS Small excisional wounds were created in the db/db mice model of type 2 diabetes and normoglycaemic littermates, and in a streptozotocin-induced type 1 diabetes mouse model and control mice. Fibroblast apoptosis was measured by the TUNEL assay, proliferation by detection of proliferating cell nuclear antigen, and forkhead box O1 (FOXO1) activity by DNA binding and nuclear translocation. TNF-alpha was specifically inhibited by pegsunercept. RESULTS Diabetic wounds had increased TNF-alpha, fibroblast apoptosis, caspase-3/7 activity and activation of the pro-apoptotic transcription factor FOXO1, and decreased proliferating cell nuclear antigen positive fibroblasts (p < 0.05). TNF-alpha inhibition improved healing in the diabetic mice and increased fibroblast density. This may be explained by a decrease in fibroblast apoptosis and increased proliferation when TNF-alpha was blocked (p < 0.05). Although decreased fibroblast proliferation and enhanced FOXO1 activity were investigated in type 2 diabetes, they may also be implicated in type 1 diabetes. In vitro, TNF-alpha enhanced mRNA levels of gene sets related to apoptosis and Akt and p53 but not mitochondrial or cell-cycle pathways. FOXO1 small interfering RNA reduced gene sets that regulate apoptosis, Akt, mitochondrial and cell-cycle pathways. TNF-alpha also increased genes involved in inflammation, cytokine, Toll-like receptor and nuclear factor-kB pathways, which were significantly reduced by FOXO1 knockdown. CONCLUSIONS/INTERPRETATION These studies indicate that TNF-alpha dysregulation in diabetic wounds impairs healing, which may involve enhanced fibroblast apoptosis and decreased proliferation. In vitro, TNF-alpha induced gene sets through FOXO1 that regulate a number of pathways that could influence inflammation and apoptosis.
Collapse
Affiliation(s)
- M F Siqueira
- Department of Periodontology and Oral Biology, Boston University School of Dental Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Zipris D. Toll-like receptors and type 1 diabetes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:585-610. [PMID: 20217515 DOI: 10.1007/978-90-481-3271-3_25] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that results in the progressive loss of insulin producing cells. Studies performed in humans with T1D and animal models of the disease over the past two decades have suggested a key role for the adaptive immune system in disease mechanisms. The role of the innate immune system in triggering T1D was shown only recently. Research in this area was greatly facilitated by the discovery of toll-like receptors (TLRs) that were found to be a key component of the innate immune system that detect microbial infections and initiate antimicrobial host defense responses. New data indicate that in some situations, the innate immune system is associated with mechanisms triggering autoimmune diabetes. In fact, studies preformed in the BioBreeding Diabetes Resistant (BBDR) and LEW1.WR1 rat models of T1D demonstrate that virus infection leads to islet destruction via mechanisms that may involve TLR9-induced innate immune system activation. Data from these studies also show that TLR upregulation can synergize with virus infection to dramatically increase disease penetrance. Reports from murine models of T1D implicate both MyD88-dependent and MyD88-independent pathways in the course of disease. The new knowledge about the role of innate immune pathways in triggering islet destruction could lead to the discovery of new molecules that may be targeted for disease prevention.
Collapse
Affiliation(s)
- Danny Zipris
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO 80045, USA.
| |
Collapse
|
80
|
Uno S, Imagawa A, Saisho K, Okita K, Iwahashi H, Hanafusa T, Shimomura I. Expression of chemokines, CXC chemokine ligand 10 (CXCL10) and CXCR3 in the inflamed islets of patients with recent-onset autoimmune type 1 diabetes. Endocr J 2010; 57:991-6. [PMID: 20966598 DOI: 10.1507/endocrj.k10e-076] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The aim of this study is to present direct evidence for the involvement of CXC chemokine ligand 10 (CXCL10) and CXCR3 in human autoimmune type 1 diabetes. We examined five patients with recent-onset type 1 diabetes and five control subjects without diabetes. Islet cell antibodies or GAD antibodies or both were detected in all five patients. We used double-immunofluorescence to detect the expression of CXCL10 and CXCR3 (the receptor of CXCL10). CXCL10 was detected in the islets of all five patients. Almost all (84.2 ± 10.3 %, mean ± SD) CXCL10-positive cells were insulin-positive in the islet area. CXCL10-positive cells with glucagons, somatostatins or pancreatic polypeptides were not detected at all. CXCL10 expression was not seen in any islet without beta cells. CXCR3 was detected in the islet areas of all five patients. Almost all (80.3 ± 13.4 %, mean ± SD) CXCR3-positive cells were CD3-positive T cells. Our study showed that CXCL10 was expressed in the remaining beta cells, and the infiltrating T cells expressed CXCR3, in pancreatic islets of patients with recent-onset type 1 diabetes. The interaction of CXCL10 and CXCR3 would contribute to the selective destruction of beta cells in the development of type 1 diabetes.
Collapse
Affiliation(s)
- Sae Uno
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, 2-2-B5 Yamadaoka, Suita, Japan
| | | | | | | | | | | | | |
Collapse
|
81
|
La Torre D, Lernmark A. Immunology of beta-cell destruction. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:537-83. [PMID: 20217514 DOI: 10.1007/978-90-481-3271-3_24] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The pancreatic islet beta-cells are the target for an autoimmune process that eventually results in an inability to control blood glucose due to the lack of insulin. The different steps that eventually lead to the complete loss of the beta-cells are reviewed to include the very first step of a triggering event that initiates the development of beta-cell autoimmunity to the last step of appearance of islet-cell autoantibodies, which may mark that insulitis is about to form. The observations that the initial beta-cell destruction by virus or other environmental factors triggers islet autoimmunity not in the islets but in the draining pancreatic lymph nodes are reviewed along with possible basic mechanisms of loss of tolerance to islet autoantigens. Once islet autoimmunity is established the question is how beta-cells are progressively killed by autoreactive lymphocytes which eventually results in chronic insulitis. Many of these series of events have been dissected in spontaneously diabetic mice or rats, but controlled clinical trials have shown that rodent observations are not always translated into mechanisms in humans. Attempts are therefore needed to clarify the step 1 triggering mechanisms and the step to chronic autoimmune insulitis to develop evidence-based treatment approaches to prevent type 1 diabetes.
Collapse
Affiliation(s)
- Daria La Torre
- Lund University, CRC, Department of Clinical Sciences, University Hospital MAS, SE-205 02, Malmö, Sweden.
| | | |
Collapse
|
82
|
Bradshaw EM, Raddassi K, Elyaman W, Orban T, Gottlieb PA, Kent SC, Hafler DA. Monocytes from patients with type 1 diabetes spontaneously secrete proinflammatory cytokines inducing Th17 cells. THE JOURNAL OF IMMUNOLOGY 2009; 183:4432-9. [PMID: 19748982 DOI: 10.4049/jimmunol.0900576] [Citation(s) in RCA: 218] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Autoimmune diseases including type 1 diabetes (T1D) are thought to have a Th1/Th17 bias. The underlying mechanisms driving the activation and differentiation of these proinflammatory T cells are unknown. We examined the monocytes isolated directly from the blood of T1D patients and found they spontaneously secreted the proinflammatory cytokines IL-1beta and IL-6, which are known to induce and expand Th17 cells. Moreover, these in vivo-activated monocytes from T1D subjects induced more IL-17-secreting cells from memory T cells compared with monocytes from healthy control subjects. The induction of IL-17-secreting T cells by monocytes from T1D subjects was reduced in vitro with a combination of an IL-6-blocking Ab and IL-1R antagonist. In this study, we report a significant although modest increase in the frequency of IL-17-secreting cells in lymphocytes from long-term patients with T1D compared with healthy controls. These data suggest that the innate immune system in T1D may drive the adaptive immune system by expanding the Th17 population of effector T cells.
Collapse
Affiliation(s)
- Elizabeth M Bradshaw
- Division of Molecular Immunology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Coppieters KT, von Herrath MG. Histopathology of type 1 diabetes: old paradigms and new insights. Rev Diabet Stud 2009; 6:85-96. [PMID: 19806238 DOI: 10.1900/rds.2009.6.85] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Although our knowledge on the various aspects of diabetes development in the NOD mouse model is substantial and keeps expanding at a dramatic pace, the dataset on histopathologic features of type 1 diabetes (T1D) in patients remains largely stagnant. Early work has established an array of common aspects that have become epitomic in the absence of new patient material. There is a growing consensus that an updated and more detailed view is required that challenges and expands our understanding. Comprehensive initiatives are currently ongoing to address these issues in pre-diabetic, recent onset and longstanding type 1 diabetic individuals, and some of the old data have been recently revisited. In this review article, we wish to provide an overview of where we stand today and how we can correlate the various cross-sectional studies from the past with contemporary models of the disease. We believe an enhanced understanding of the many histopathological particularities in patients as compared to animal models will ultimately lead, not only to more fundamental insights, but also to an improved ability to translate pre-clinical data from bench to bedside.
Collapse
Affiliation(s)
- Ken T Coppieters
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | | |
Collapse
|
84
|
Moëll A, Skog O, Ahlin E, Korsgren O, Frisk G. Antiviral effect of nicotinamide on enterovirus-infected human islets in vitro: effect on virus replication and chemokine secretion. J Med Virol 2009; 81:1082-7. [PMID: 19382275 DOI: 10.1002/jmv.21476] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Type 1 diabetes is a chronic disease characterized by the selective destruction of insulin-producing cells in the pancreas. Enterovirus (EV) is the prime candidate to initiate this destruction and several inflammatory chemokines are induced by EV infection. Nicotinamide has been shown to protect isolated human islets, and to modulate chemokine expression. The aim of this study was to evaluate the effect of nicotinamide on EV replication and EV-induced chemokine secretion and cytolysis of human islets. Two EV strains were used to infect human islets in vitro, one lytic (Adrian) isolated from a child at onset of type 1 diabetes, and one non-lytic (VD2921). Secretion of the chemokines IP-10 and MCP-1, viral replication, and virus-induced cytopathic effect (CPE), were measured at different time points post-infection. Addition of nicotinamide to the culture medium reduced viral replication and virus-induced islet destruction/CPE, significantly. Both EV strains increased secretion of IP-10 and MCP-1, when measured days 2-3, and days 5-7 post infection, compared to mock-infected control islets. IP-10 was not produced by uninfected isolated islets, whereas a basal secretion of MCP-1 was detected. Interestingly, addition of nicotinamide blocked completely (Adrian), or reduced significantly (VD2921), the virus-induced secretion of IP-10. Secretion of MCP-1 was also reduced in the presence of nicotinamide, from infected and uninfected islets. The reported antiviral effects of nicotinamide could have implications for the treatment/prevention of virus- and immune-mediated disease. Also, this study highlights a possible mechanism of virus-induced type 1 diabetes through the induction of MCP-1 and IP-10 in pancreatic islets.
Collapse
Affiliation(s)
- Annika Moëll
- Department of Radiology, Oncology and Clinical Immunology, Division of Clinical Immunology, The Rudbeck Laboratory, University Hospital, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
85
|
Melli K, Friedman RS, Martin AE, Finger EB, Miao G, Szot GL, Krummel MF, Tang Q. Amplification of autoimmune response through induction of dendritic cell maturation in inflamed tissues. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:2590-600. [PMID: 19234153 PMCID: PMC3057894 DOI: 10.4049/jimmunol.0803543] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Dendritic cells (DCs) are essential in T cell-mediated destruction of insulin-producing beta cells in the islets of Langerhans in type 1 diabetes. In this study, we investigated T cell induction of intra-islet DC maturation during the progression of the disease in both autoimmune-prone NOD and resistant C57BL/6 mice. We demonstrated steady-state capture and retention of unprocessed beta cell-derived proteins by semimature intra-islet DCs in both mouse strains. T cell-mediated intra-islet inflammation induced an increase in CD40 and CD80 expression and processing of captured Ag by resident DCs without inducing the expression of the p40 subunit of IL-12/23. Some of the CD40(high) intra-islet DCs up-regulated CCR7, and a small number of CD40(high) DCs bearing unprocessed islet Ags were detected in the pancreatic lymph nodes in mice with acute intra-islet inflammation, demonstrating that T cell-mediated tissue inflammation augments migration of mature resident DCs to draining lymph nodes. Our results identify an amplification loop during the progression of autoimmune diabetes, in which initial T cell infiltration leads to rapid maturation of intra-islet DCs, their migration to lymph nodes, and expanded priming of more autoreactive T cells. Therapeutic interventions that intercept this process may be effective at halting the progression of type 1 diabetes.
Collapse
Affiliation(s)
- Kristin Melli
- Department of Surgery, University of California, San Francisco, CA 94143
| | - Rachel S. Friedman
- Department of Pathology, University of California, San Francisco, CA 94143
| | - Ashley E. Martin
- Department of Surgery, University of California, San Francisco, CA 94143
| | - Erik B. Finger
- Department of Surgery, University of California, San Francisco, CA 94143
| | - Gang Miao
- Department of Surgery, University of California, San Francisco, CA 94143
| | - Gregory L. Szot
- University of California Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143
| | - Matthew F. Krummel
- Department of Pathology, University of California, San Francisco, CA 94143
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, CA 94143
| |
Collapse
|
86
|
Mensah-Brown E, Al Rabesi Z, Shahin A, Al Shamsi M, Arsenijevic N, Hsu D, Liu FT, Lukic M. Targeted disruption of the galectin-3 gene results in decreased susceptibility to multiple low dose streptozotocin-induced diabetes in mice. Clin Immunol 2009; 130:83-8. [DOI: 10.1016/j.clim.2008.08.024] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Accepted: 06/15/2008] [Indexed: 11/30/2022]
|
87
|
|
88
|
Martin AP, Rankin S, Pitchford S, Charo IF, Furtado GC, Lira SA. Increased expression of CCL2 in insulin-producing cells of transgenic mice promotes mobilization of myeloid cells from the bone marrow, marked insulitis, and diabetes. Diabetes 2008; 57:3025-33. [PMID: 18633103 PMCID: PMC2570399 DOI: 10.2337/db08-0625] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To define the mechanisms underlying the accumulation of monocytes/macrophages in the islets of Langerhans. RESEARCH DESIGN AND METHODS We tested the hypothesis that macrophage accumulation into the islets is caused by overexpression of the chemokine CCL2. To test this hypothesis, we generated transgenic mice and evaluated the cellular composition of the islets by immunohistochemistry and flow cytometry. We determined serum levels of CCL2 by enzyme-linked immunosorbent assay, determined numbers of circulating monocytes, and tested whether CCL2 could mobilize monocytes from the bone marrow directly. We examined development of diabetes over time and tested whether CCL2 effects could be eliminated by deletion of its receptor, CCR2. RESULTS Expression of CCL2 by beta-cells was associated with increased numbers of monocytes in circulation and accumulation of macrophages in the islets of transgenic mice. These changes were promoted by combined actions of CCL2 at the level of the bone marrow and the islets and were not seen in animals in which the CCL2 receptor (CCR2) was inactivated. Mice expressing higher levels of CCL2 in the islets developed diabetes spontaneously. The development of diabetes was correlated with the accumulation of large numbers of monocytes in the islets and did not depend on T- and B-cells. Diabetes could also be induced in normoglycemic mice expressing low levels of CCL2 by increasing the number of circulating myeloid cells. CONCLUSIONS These results indicate that CCL2 promotes monocyte recruitment by acting both locally and remotely and that expression of CCL2 by insulin-producing cells can lead to insulitis and islet destruction.
Collapse
Affiliation(s)
- Andrea P Martin
- Immunology Institute, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
89
|
Affiliation(s)
- Li-Jun Yang
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
90
|
Mokhtari D, Myers JW, Welsh N. MAPK kinase kinase-1 is essential for cytokine-induced c-Jun NH2-terminal kinase and nuclear factor-kappaB activation in human pancreatic islet cells. Diabetes 2008; 57:1896-904. [PMID: 18420486 PMCID: PMC2453607 DOI: 10.2337/db07-1670] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Accepted: 04/08/2008] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The transcription factor nuclear factor-kappaB (NF-kappaB) and the mitogen-activated protein kinases (MAPKs) c-Jun NH(2)-terminal kinase (JNK) 1/2 are known to play decisive roles in cytokine-induced damage of rodent beta-cells. The upstream events by which these factors are activated in response to cytokines are, however, uncharacterized. The aim of the present investigation was to elucidate a putative role of the MAPK kinase kinase-1 (MEKK-1) in cytokine-induced signaling. RESEARCH DESIGN AND METHODS To establish a functional role of MEKK-1, the effects of transient MEKK-1 overexpression in betaTC-6 cells, achieved by lipofection and cell sorting, and MEKK-1 downregulation in betaTC-6 cells and human islet cells, achieved by diced-small interfering RNA treatment, were studied. RESULTS We observed that overexpression of wild-type MEKK-1, but not of a kinase dead MEKK-1 mutant, resulted in potentiation of cytokine-induced JNK activation, inhibitor of kappaB (IkappaB) degradation, and cell death. Downregulation of MEKK-1 in human islet cells provoked opposite effects, i.e., attenuation of cytokine-induced JNK and MKK4 activation, IkappaB stability, and a less pronounced NF-kappaB translocation. betaTC-6 cells with a downregulated MEKK-1 expression displayed also a weaker cytokine-induced iNOS expression and lower cell death rates. Also primary mouse islet cells with downregulated MEKK-1 expression were protected against cytokine-induced cell death. CONCLUSIONS MEKK-1 mediates cytokine-induced JNK- and NF-kappaB activation, and this event is necessary for iNOS expression and cell death.
Collapse
Affiliation(s)
- Dariush Mokhtari
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Jason W. Myers
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California
| | - Nils Welsh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
91
|
Sanlioglu AD, Dirice E, Elpek O, Korcum AF, Balci MK, Omer A, Griffith TS, Sanlioglu S. High levels of endogenous tumor necrosis factor-related apoptosis-inducing ligand expression correlate with increased cell death in human pancreas. Pancreas 2008; 36:385-393. [PMID: 18437085 DOI: 10.1097/mpa.0b013e318158a4e5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Type 1 diabetes (T1D) has been characterized by the T cell-mediated destruction of pancreatic beta cells. Although various members of the tumor necrosis factor (TNF) family, such as Fas ligand or TNF, have recently been implicated in the development of T1D, the lack of TNF-related apoptosis-inducing ligand (TRAIL) expression or function facilitates the onset of T1D. Thus, the goal of the present study was to investigate the expression profiles of TRAIL and its receptors in human pancreas. METHODS Pancreata of 31 patients were analyzed by immunohistochemistry using antibodies developed against TRAIL and its receptors. Apoptosis was confirmed by Annexin V-fluorescein isothiocyanate binding and terminal deoxynucleotidyl transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end labeling assays. RESULTS Acinar cells displayed high levels of TRAIL and death receptor 4, but only low levels of death receptor 5. In contrast, only TRAIL and TRAIL decoy receptors (DcR1, DcR2) were detected in ductal cells. Similarly, Langerhans islets expressed only TRAIL and TRAIL decoy receptor. High levels of TRAIL expression in pancreas correlated with increased number of apoptotic cells. CONCLUSIONS Although the expression of TRAIL decoy receptors might be necessary for defense from TRAIL-induced apoptosis, high levels of TRAIL may provide protection for Langerhans islets from the immunological attack of cytotoxic T cells.
Collapse
Affiliation(s)
- Ahter Dilsad Sanlioglu
- Human Gene Therapy Unit, Departments of Medical Biology and Genetics, Akdeniz University, Faculty of Medicine, Antalya, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Pirot P, Cardozo AK, Eizirik DL. Mediators and mechanisms of pancreatic beta-cell death in type 1 diabetes. ACTA ACUST UNITED AC 2008; 52:156-65. [DOI: 10.1590/s0004-27302008000200003] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Accepted: 12/03/2007] [Indexed: 12/27/2022]
Abstract
Type 1 diabetes mellitus (T1D) is characterized by severe insulin deficiency resulting from chronic and progressive destruction of pancreatic beta-cells by the immune system. The triggering of autoimmunity against the beta-cells is probably caused by environmental agent(s) acting in the context of a predisposing genetic background. Once activated, the immune cells invade the islets and mediate their deleterious effects on beta-cells via mechanisms such as Fas/FasL, perforin/granzyme, reactive oxygen and nitrogen species and pro-inflammatory cytokines. Binding of cytokines to their receptors on the beta-cells activates MAP-kinases and the transcription factors STAT-1 and NFkappa-B, provoking functional impairment, endoplasmic reticulum stress and ultimately apoptosis. This review discusses the potential mediators and mechanisms leading to beta-cell destruction in T1D.
Collapse
|
93
|
Abstract
Accumulating evidence suggests that endoplasmic reticulum (ER) stress plays a role in the pathogenesis of diabetes, contributing to pancreatic beta-cell loss and insulin resistance. Components of the unfolded protein response (UPR) play a dual role in beta-cells, acting as beneficial regulators under physiological conditions or as triggers of beta-cell dysfunction and apoptosis under situations of chronic stress. Novel findings suggest that "what makes a beta-cell a beta-cell", i.e., its enormous capacity to synthesize and secrete insulin, is also its Achilles heel, rendering it vulnerable to chronic high glucose and fatty acid exposure, agents that contribute to beta-cell failure in type 2 diabetes. In this review, we address the transition from physiology to pathology, namely how and why the physiological UPR evolves to a proapoptotic ER stress response and which defenses are triggered by beta-cells against these challenges. ER stress may also link obesity and insulin resistance in type 2 diabetes. High fat feeding and obesity induce ER stress in liver, which suppresses insulin signaling via c-Jun N-terminal kinase activation. In vitro data suggest that ER stress may also contribute to cytokine-induced beta-cell death. Thus, the cytokines IL-1beta and interferon-gamma, putative mediators of beta-cell loss in type 1 diabetes, induce severe ER stress through, respectively, NO-mediated depletion of ER calcium and inhibition of ER chaperones, thus hampering beta-cell defenses and amplifying the proapoptotic pathways. A better understanding of the pathways regulating ER stress in beta-cells may be instrumental for the design of novel therapies to prevent beta-cell loss in diabetes.
Collapse
Affiliation(s)
- Décio L Eizirik
- Laboratory of Experimental Medicine, Université Libre de Bruxelles, Route de Lennik, 808-CP-618, 1070 Brussels, Belgium.
| | | | | |
Collapse
|
94
|
|
95
|
Reddy S, Chai RCC, Rodrigues JA, Hsu TH, Robinson E. Presence of residual beta cells and co-existing islet autoimmunity in the NOD mouse during longstanding diabetes: a combined histochemical and immunohistochemical study. J Mol Histol 2007; 39:25-36. [PMID: 17891462 DOI: 10.1007/s10735-007-9122-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 07/06/2007] [Indexed: 12/01/2022]
Abstract
During type 1 diabetes, most beta cells die by immune processes. However, the precise fate and characteristics of beta cells and islet autoimmunity after onset are unclear. Here, the extent of beta cell survival was determined in the non-obese diabetic (NOD) mouse during increasing duration of disease and correlated with insulitis. Pancreata from female NOD mice at diagnosis and at 1, 2, 3 and 4 weeks thereafter were analysed immunohistochemically for insulin, glucagon and somatostatin cells and glucose transporter-2 (glut2) and correlated with the degree of insulitis and islet immune cell phenotypes. Insulitis, although variable, persisted after diabetes and declined with increasing duration of disease. During this period, beta cells also declined sharply whereas glucagon and somatostatin cells increased, with occasional islet cells co-expressing insulin and glucagon. Glut2 was absent in insulin-containing cells from 1 week onwards. CD4 and CD8 T cells and macrophages persisted until 4 weeks, in islets with residual beta cells or extensive insulitis. We conclude that after diabetes onset, some beta cells survive for extended periods, with continuing autoimmunity and expansion of glucagon and somatostatin cells. The absence of glut2 in several insulin-positive cells suggests that some beta cells may be unresponsive to glucose.
Collapse
Affiliation(s)
- Shiva Reddy
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
96
|
Zhang J, Tokui Y, Yamagata K, Kozawa J, Sayama K, Iwahashi H, Okita K, Miuchi M, Konya H, Hamaguchi T, Namba M, Shimomura I, Miyagawa JI. Continuous stimulation of human glucagon-like peptide-1 (7-36) amide in a mouse model (NOD) delays onset of autoimmune type 1 diabetes. Diabetologia 2007; 50:1900-1909. [PMID: 17632702 DOI: 10.1007/s00125-007-0737-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Accepted: 05/14/2007] [Indexed: 01/11/2023]
Abstract
AIMS/HYPOTHESIS We examined the effect of glucagon-like peptide-1 (GLP-1) on the development of diabetes and islet morphology in NOD mice by administering GLP-1 to prediabetic mice. METHODS Eight-week-old female NOD mice were infused subcutaneously with human GLP-1 via a mini-osmotic pump for 4 or 8 weeks. In mice treated with GLP-1 for 4 weeks, blood glucose levels and body weight were measured. An intraperitoneal glucose tolerance test (IPGTT) and evaluation of insulitis score were also performed. Beta cell area, proliferation, apoptosis, neogenesis from ducts and subcellular localisation of forkhead box O1 (FOXO1) were examined by histomorphometrical, BrdU-labelling, TUNEL, insulin/cytokeratin and FOXO1/insulin double-immunostaining methods, respectively. RESULTS Mice treated with human GLP-1 for 4 weeks had lower blood glucose levels until 2 weeks after completion of treatment, showing improved IPGTT data and insulitis score. This effect continued even after cessation of the treatment. In addition to the increase of beta cell neogenesis, BrdU labelling index was elevated (0.24 vs 0.13%, p < 0.001), while apoptosis was suppressed by 54.2% (p < 0.001) in beta cells. Beta cell area was increased in parallel with the translocation of FOXO1 from the nucleus to the cytoplasm. The onset of diabetes was delayed in mice treated with GLP-1 for 4 weeks, while mice treated with GLP-1 for 8 weeks did not develop diabetes by age 21 weeks compared with a 60% diabetes incidence in control mice at this age. CONCLUSIONS/INTERPRETATION Continuous infusion of human GLP-1 to prediabetic NOD mice not only induces beta cell proliferation and neogenesis, but also suppresses beta cell apoptosis and delays the onset of type 1 diabetes.
Collapse
Affiliation(s)
- J Zhang
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Y Tokui
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - K Yamagata
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - J Kozawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - K Sayama
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - H Iwahashi
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - K Okita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - M Miuchi
- Division of Diabetes and Metabolism, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - H Konya
- Division of Diabetes and Metabolism, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - T Hamaguchi
- Division of Diabetes and Metabolism, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - M Namba
- Division of Diabetes and Metabolism, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - I Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - J-I Miyagawa
- Division of Diabetes and Metabolism, Department of Internal Medicine, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
97
|
Bibliography. Current world literature. Diabetes and the endocrine pancreas II. Curr Opin Endocrinol Diabetes Obes 2007; 14:329-57. [PMID: 17940461 DOI: 10.1097/med.0b013e3282c3a898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|