51
|
Bernstein D, Golson ML, Kaestner KH. Epigenetic control of β-cell function and failure. Diabetes Res Clin Pract 2017; 123:24-36. [PMID: 27918975 PMCID: PMC5250585 DOI: 10.1016/j.diabres.2016.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes is a highly heritable disease, but only ∼15% of this heritability can be explained by known genetic variant loci. In fact, body mass index is more predictive of diabetes than any of the common risk alleles identified by genome-wide association studies. This discrepancy may be explained by epigenetic inheritance, whereby changes in gene regulation can be passed along to offspring. Epigenetic changes throughout an organism's lifetime, based on environmental factors such as chemical exposures, diet, physical activity, and age, can also affect gene expression and susceptibility to diabetes. Recently, novel genome-wide assays of epigenetic marks have resulted in a greater understanding of how genetics, epigenetics, and the environment interact in the development and inheritance of diabetes.
Collapse
Affiliation(s)
- Diana Bernstein
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria L Golson
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
52
|
Ozanne SE, Rahmoune H, Guest PC. Multiplex Biomarker Approaches in Type 2 Diabetes Mellitus Research. Methods Mol Biol 2017; 1546:37-55. [PMID: 27896756 DOI: 10.1007/978-1-4939-6730-8_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Type 2 diabetes mellitus is a multifactorial condition resulting in high fasting blood glucose levels. Although its diagnosis is straightforward, there is not one set of biomarkers or drug targets that can be used for classification or personalized treatment of individuals who suffer from this condition. Instead, the application of multiplex methods incorporating a systems biology approach is essential in order to increase our understanding of this disease. This chapter reviews the state of the art in biomarker studies of human type 2 diabetes from a proteomic and metabolomic perspective. Our main focus was on biomarkers for disease prediction as these could lead to early intervention strategies for the best possible patient outcomes.
Collapse
Affiliation(s)
- Susan E Ozanne
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, UK. .,Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QR, UK.
| | - Hassan Rahmoune
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge, UK
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
53
|
Turcatel G, Millette K, Thornton M, Leguizamon S, Grubbs B, Shi W, Warburton D. Cartilage rings contribute to the proper embryonic tracheal epithelial differentiation, metabolism, and expression of inflammatory genes. Am J Physiol Lung Cell Mol Physiol 2016; 312:L196-L207. [PMID: 27941074 DOI: 10.1152/ajplung.00127.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 12/05/2016] [Accepted: 12/06/2016] [Indexed: 11/22/2022] Open
Abstract
The signaling cross talk between the tracheal mesenchyme and epithelium has not been researched extensively, leaving a substantial gap of knowledge in the mechanisms dictating embryonic development of the proximal airways by the adjacent mesenchyme. Recently, we reported that embryos lacking mesenchymal expression of Sox9 did not develop tracheal cartilage rings and showed aberrant differentiation of the tracheal epithelium. Here, we propose that tracheal cartilage provides local inductive signals responsible for the proper differentiation, metabolism, and inflammatory status regulation of the tracheal epithelium. The tracheal epithelium of mesenchyme-specific Sox9Δ/Δ mutant embryos showed altered mRNA expression of various epithelial markers such as Pb1fa1, surfactant protein B (Sftpb), secretoglobulin, family 1A, member 1 (Scgb1a1), and trefoil factor 1 (Tff1). In vitro tracheal epithelial cell cultures confirmed that tracheal chondrocytes secrete factors that inhibit club cell differentiation. Whole gene expression profiling and ingenuity pathway analysis showed that the tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), and transforming growth factor-β (TGF-β) signaling pathways were significantly altered in the Sox9 mutant trachea. TNF-α and IFN-γ interfered with the differentiation of tracheal epithelial progenitor cells into mature epithelial cell types in vitro. Mesenchymal knockout of Tgf-β1 in vivo resulted in altered differentiation of the tracheal epithelium. Finally, mitochondrial enzymes involved in fat and glycogen metabolism, cytochrome c oxidase subunit VIIIb (Cox8b) and cytochrome c oxidase subunit VIIa polypeptide 1 (Cox7a1), were strongly upregulated in the Sox9 mutant trachea, resulting in increases in the number and size of glycogen storage vacuoles. Our results support a role for tracheal cartilage in modulation of the differentiation and metabolism and the expression of inflammatory-related genes in the tracheal epithelium by feeding into the TNF-α, IFN-γ, and TGF-β signaling pathways.
Collapse
Affiliation(s)
- Gianluca Turcatel
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California;
| | - Katelyn Millette
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, Los Angeles, California
| | - Matthew Thornton
- Keck School of Medicine, University of Southern California, Department of Obstetrics and Gynecology, Maternal-Fetal Medicine Division, Los Angeles, California
| | | | - Brendan Grubbs
- Keck School of Medicine, University of Southern California, Department of Obstetrics and Gynecology, Maternal-Fetal Medicine Division, Los Angeles, California
| | - Wei Shi
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, and Keck School of Medicine, Ostrow School of Dentistry, University of Southern California, Los Angeles, California
| | - David Warburton
- Developmental Biology and Regenerative Medicine Program, The Saban Research Institute, Children's Hospital Los Angeles, and Keck School of Medicine, Ostrow School of Dentistry, University of Southern California, Los Angeles, California
| |
Collapse
|
54
|
Cameron RB, Beeson CC, Schnellmann RG. Development of Therapeutics That Induce Mitochondrial Biogenesis for the Treatment of Acute and Chronic Degenerative Diseases. J Med Chem 2016; 59:10411-10434. [PMID: 27560192 DOI: 10.1021/acs.jmedchem.6b00669] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mitochondria have various roles in cellular metabolism and homeostasis. Because mitochondrial dysfunction is associated with many acute and chronic degenerative diseases, mitochondrial biogenesis (MB) is a therapeutic target for treating such diseases. Here, we review the role of mitochondrial dysfunction in acute and chronic degenerative diseases and the cellular signaling pathways by which MB is induced. We then review existing work describing the development and application of drugs that induce MB in vitro and in vivo. In particular, we discuss natural products and modulators of transcription factors, kinases, cyclic nucleotides, and G protein-coupled receptors.
Collapse
Affiliation(s)
- Robert B Cameron
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States.,College of Pharmacy, University of Arizona , 1295 N. Martin Avenue, Tucson, Arizona 85721, United States
| | - Craig C Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States
| | - Rick G Schnellmann
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina , 280 Calhoun Street, Charleston, South Carolina 29425, United States.,College of Pharmacy, University of Arizona , 1295 N. Martin Avenue, Tucson, Arizona 85721, United States
| |
Collapse
|
55
|
Carter HN, Chen CCW, Hood DA. Mitochondria, muscle health, and exercise with advancing age. Physiology (Bethesda) 2016; 30:208-23. [PMID: 25933821 DOI: 10.1152/physiol.00039.2014] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle health is dependent on the optimal function of its mitochondria. With advancing age, decrements in numerous mitochondrial variables are evident in muscle. Part of this decline is due to reduced physical activity, whereas the remainder appears to be attributed to age-related alterations in mitochondrial synthesis and degradation. Exercise is an important strategy to stimulate mitochondrial adaptations in older individuals to foster improvements in muscle function and quality of life.
Collapse
Affiliation(s)
- Heather N Carter
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Chris C W Chen
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - David A Hood
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| |
Collapse
|
56
|
Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nat Commun 2016; 7:11089. [PMID: 27029739 PMCID: PMC4821875 DOI: 10.1038/ncomms11089] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/19/2016] [Indexed: 12/18/2022] Open
Abstract
Aging associates with impaired pancreatic islet function and increased type 2 diabetes (T2D) risk. Here we examine whether age-related epigenetic changes affect human islet function and if blood-based epigenetic biomarkers reflect these changes and associate with future T2D. We analyse DNA methylation genome-wide in islets from 87 non-diabetic donors, aged 26-74 years. Aging associates with increased DNA methylation of 241 sites. These sites cover loci previously associated with T2D, for example, KLF14. Blood-based epigenetic biomarkers reflect age-related methylation changes in 83 genes identified in human islets (for example, KLF14, FHL2, ZNF518B and FAM123C) and some associate with insulin secretion and T2D. DNA methylation correlates with islet expression of multiple genes, including FHL2, ZNF518B, GNPNAT1 and HLTF. Silencing these genes in β-cells alter insulin secretion. Together, we demonstrate that blood-based epigenetic biomarkers reflect age-related DNA methylation changes in human islets, and associate with insulin secretion in vivo and T2D.
Collapse
|
57
|
Mirabella AC, Foster BM, Bartke T. Chromatin deregulation in disease. Chromosoma 2016; 125:75-93. [PMID: 26188466 PMCID: PMC4761009 DOI: 10.1007/s00412-015-0530-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 12/21/2022]
Abstract
The regulation of chromatin by epigenetic mechanisms plays a central role in gene expression and is essential for development and maintenance of cell identity and function. Aberrant chromatin regulation is observed in many diseases where it leads to defects in epigenetic gene regulation resulting in pathological gene expression programmes. These defects are caused by inherited or acquired mutations in genes encoding enzymes that deposit or remove DNA and histone modifications and that shape chromatin architecture. Chromatin deregulation often results in neurodevelopmental disorders and intellectual disabilities, frequently linked to physical and developmental abnormalities, but can also cause neurodegenerative diseases, immunodeficiency, or muscle wasting syndromes. Epigenetic diseases can either be of monogenic origin or manifest themselves as complex multifactorial diseases such as in congenital heart disease, autism spectrum disorders, or cancer in which mutations in chromatin regulators are contributing factors. The environment directly influences the epigenome and can induce changes that cause or predispose to diseases through risk factors such as stress, malnutrition or exposure to harmful chemicals. The plasticity of chromatin regulation makes targeting the enzymatic machinery an attractive strategy for therapeutic intervention and an increasing number of small molecule inhibitors against a variety of epigenetic regulators are in clinical use or under development. In this review, we will give an overview of the molecular lesions that underlie epigenetic diseases, and we will discuss the impact of the environment and prospects for epigenetic therapies.
Collapse
Affiliation(s)
- Anne C Mirabella
- Chromatin Biochemistry Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Benjamin M Foster
- Chromatin Biochemistry Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Till Bartke
- Chromatin Biochemistry Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
58
|
Pennington KL, DeAngelis MM. Epigenetic Mechanisms of the Aging Human Retina. J Exp Neurosci 2016; 9:51-79. [PMID: 26966390 PMCID: PMC4777243 DOI: 10.4137/jen.s25513] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/07/2016] [Accepted: 01/13/2016] [Indexed: 12/20/2022] Open
Abstract
Degenerative retinal diseases, such as glaucoma, age-related macular degeneration, and diabetic retinopathy, have complex etiologies with environmental, genetic, and epigenetic contributions to disease pathology. Much effort has gone into elucidating both the genetic and the environmental risk factors for these retinal diseases. However, little is known about how these genetic and environmental risk factors bring about molecular changes that lead to pathology. Epigenetic mechanisms have received extensive attention of late for their promise of bridging the gap between environmental exposures and disease development via their influence on gene expression. Recent studies have identified epigenetic changes that associate with the incidence and/or progression of each of these retinal diseases. Therefore, these epigenetic modifications may be involved in the underlying pathological mechanisms leading to blindness. Further genome-wide epigenetic studies that incorporate well-characterized tissue samples, consider challenges similar to those relevant to gene expression studies, and combine the genome-wide epigenetic data with genome-wide genetic and expression data to identify additional potentially causative agents of disease are needed. Such studies will allow researchers to create much-needed therapeutics to prevent and/or intervene in disease progression. Improved therapeutics will greatly enhance the quality of life and reduce the burden of disease management for millions of patients living with these potentially blinding conditions.
Collapse
Affiliation(s)
- Katie L Pennington
- Postdoctoral Fellow, Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Margaret M DeAngelis
- Associate Professor, Department of Ophthalmology & Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
59
|
Li J, Li S, Hu Y, Cao G, Wang S, Rai P, Wang X, Sun K. The Expression Level of mRNA, Protein, and DNA Methylation Status of FOSL2 of Uyghur in XinJiang in Type 2 Diabetes. J Diabetes Res 2016; 2016:5957404. [PMID: 28050569 PMCID: PMC5168477 DOI: 10.1155/2016/5957404] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/25/2016] [Accepted: 11/10/2016] [Indexed: 11/17/2022] Open
Abstract
Objective. We investigated the expression levels of both FOSL2 mRNA and protein as well as evaluating DNA methylation in the blood of type 2 diabetes mellitus (T2DM) Uyghur patients from Xinjiang. This study also evaluated whether FOSL2 gene expression had demonstrated any associations with clinical and biochemical indicators of T2DM. Methods. One hundred Uyghur subjects where divided into two groups, T2DM and nonimpaired glucose tolerance (NGT) groups. DNA methylation of FOSL2 was also analyzed by MassARRAY Spectrometry and methylation data of individual units were generated by the EpiTyper v1.0.5 software. The expression levels of FOS-like antigen 2 (FOSL2) and the protein expression levels were analyzed. Results. Significant differences were observed in mRNA and protein levels when compared with the NGT group, while methylation rates of eight CpG units within the FOSL2 gene were higher in the T2DM group. Methylation of CpG sites was found to inversely correlate with expression of other markers. Conclusions. Results show that a correlation between mRNA, protein, and DNA methylation of FOSL2 gene exists among T2DM patients from Uyghur. FOSL2 protein and mRNA were downregulated and the DNA became hypermethylated, all of which may be involved in T2DM pathogenesis in this population.
Collapse
Affiliation(s)
- Jun Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
- *Jun Li: and
| | - Siyuan Li
- Medical College, Shihezi University, Shihezi 832002, China
| | - Ying Hu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Guolei Cao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
- The First Department of General Medicine, The Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Siyao Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital, Xinjiang Medicine University, Urumqi, Xinjiang 830000, China
| | - Partab Rai
- Medical College, Shihezi University, Shihezi 832002, China
| | - Xiaoli Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
| | - Kan Sun
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang 832002, China
- *Kan Sun:
| |
Collapse
|
60
|
Zhang W, Hou L, Wang T, Lu W, Tao Y, Chen W, Du X, Huang Y. The expression characteristics of mt-ND2 gene in chicken. Mitochondrial DNA A DNA Mapp Seq Anal 2015; 27:3787-92. [PMID: 26332376 DOI: 10.3109/19401736.2015.1079904] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Subunit 2 of NADH dehydrogenase (ND2) is encoded by the mt-ND2 gene and plays a critical role in controlling the production of the mitochondrial reactive oxygen species. Our study focused on exploring the mt-ND2 tissue expression patterns and the effects of energy restriction and dietary fat (linseed oil, corn oil, sesame oil or lard) level (2.5% and 5%) on its expression in chicken. The results showed that mt-ND2 gene was expressed in the 15 tissues of hybrid chickens with the highest level in heart and lowest level in pancreas tissue; 30% energy restriction did not significantly affect mt-ND2 mRNA level in chicken liver tissue. Both the mt-ND2 mRNA levels in chicken pectoralis (p < 0.05) and hepatic tissues (p < 0.05) at 42 d-old were affected by the type of dietary fats in 5% level, while not in abdominal fat tissues. The expression of mt-ND2 in hepatic tissues was down-regulated with chicken age (p < 0.01). The interactive effect of dietary fat types with chicken age (p < 0.05) was significant on mt-ND2 mRNA level. The study demonstrated that mt-ND2 gene was extensively expressed in tissues, and the expression was affected by dietary fat types and chicken age.
Collapse
Affiliation(s)
- Wenwen Zhang
- a College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University , Zhengzhou, Henan , China and
| | - Lingling Hou
- b Animal Science College, Sichuan Agricultural University , Ya'an, Sichuan China
| | - Ting Wang
- a College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University , Zhengzhou, Henan , China and
| | - Weiwei Lu
- a College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University , Zhengzhou, Henan , China and
| | - Yafei Tao
- a College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University , Zhengzhou, Henan , China and
| | - Wen Chen
- a College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University , Zhengzhou, Henan , China and
| | - Xiaohui Du
- b Animal Science College, Sichuan Agricultural University , Ya'an, Sichuan China
| | - Yanqun Huang
- a College of Livestock Husbandry and Veterinary Engineering, Henan Agricultural University , Zhengzhou, Henan , China and
| |
Collapse
|
61
|
Dayeh T, Ling C. Does epigenetic dysregulation of pancreatic islets contribute to impaired insulin secretion and type 2 diabetes? Biochem Cell Biol 2015; 93:511-21. [PMID: 26369706 DOI: 10.1139/bcb-2015-0057] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
β cell dysfunction is central to the development and progression of type 2 diabetes (T2D). T2D develops when β cells are not able to compensate for the increasing demand for insulin caused by insulin resistance. Epigenetic modifications play an important role in establishing and maintaining β cell identity and function in physiological conditions. On the other hand, epigenetic dysregulation can cause a loss of β cell identity, which is characterized by reduced expression of genes that are important for β cell function, ectopic expression of genes that are not supposed to be expressed in β cells, and loss of genetic imprinting. Consequently, this may lead to β cell dysfunction and impaired insulin secretion. Risk factors that can cause epigenetic dysregulation include parental obesity, an adverse intrauterine environment, hyperglycemia, lipotoxicity, aging, physical inactivity, and mitochondrial dysfunction. These risk factors can affect the epigenome at different time points throughout the lifetime of an individual and even before an individual is conceived. The plasticity of the epigenome enables it to change in response to environmental factors such as diet and exercise, and also makes the epigenome a good target for epigenetic drugs that may be used to enhance insulin secretion and potentially treat diabetes.
Collapse
Affiliation(s)
- Tasnim Dayeh
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Jan Waldenströms gata 35, CRC 91:12, 205 02 Malmö, Sweden.,Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Jan Waldenströms gata 35, CRC 91:12, 205 02 Malmö, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Jan Waldenströms gata 35, CRC 91:12, 205 02 Malmö, Sweden.,Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Jan Waldenströms gata 35, CRC 91:12, 205 02 Malmö, Sweden
| |
Collapse
|
62
|
Rea IM, Dellet M, Mills KI. Living long and ageing well: is epigenomics the missing link between nature and nurture? Biogerontology 2015; 17:33-54. [PMID: 26133292 DOI: 10.1007/s10522-015-9589-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 06/22/2015] [Indexed: 12/12/2022]
Abstract
Human longevity is a complex trait and increasingly we understand that both genes and lifestyle interact in the longevity phenotype. Non-genetic factors, including diet, physical activity, health habits, and psychosocial factors contribute approximately 50% of the variability in human lifespan with another 25% explained by genetic differences. Family clusters of nonagenarian and centenarian siblings, who show both exceptional age-span and health-span, are likely to have inherited facilitatory gene groups, but also have nine decades of life experiences and behaviours which have interacted with their genetic profiles. Identification of their shared genes is just one small step in the link from genes to their physical and psychological profiles. Behavioural genomics is beginning to demonstrate links to biological mechanisms through regulation of gene expression, which directs the proteome and influences the personal phenotype. Epigenetics has been considered the missing link between nature and nurture. Although there is much that remains to be discovered, this article will discuss some of genetic and environmental factors which appear important in good quality longevity and link known epigenetic mechanisms to themes identified by nonagenarians themselves related to their longevity. Here we suggest that exceptional 90-year old siblings have adopted a range of behaviours and life-styles which have contributed to their ageing-well-phenotype and which link with important public health messages.
Collapse
Affiliation(s)
- Irene Maeve Rea
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland, UK. .,School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK.
| | - Margaret Dellet
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland, UK.,Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queens University Belfast , Belfast, Northern Ireland, UK
| | - Ken I Mills
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland, UK.,Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland, UK
| | | |
Collapse
|
63
|
Hwang HJ, Lynn SG, Vengellur A, Saini Y, Grier EA, Ferguson-Miller SM, LaPres JJ. Hypoxia Inducible Factors Modulate Mitochondrial Oxygen Consumption and Transcriptional Regulation of Nuclear-Encoded Electron Transport Chain Genes. Biochemistry 2015; 54:3739-48. [PMID: 26030260 PMCID: PMC5957085 DOI: 10.1021/bi5012892] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hypoxia inducible factor-1 (HIF1) is a stress-responsive nuclear transcription factor that is activated with a decrease in oxygen availability. HIF1 regulates the expression of genes involved in a cell's adaptation to hypoxic stress, including those with mitochondrial specific function. To gain a more comprehensive understanding of the role of HIF1 in mitochondrial homeostasis, we studied the link between hypoxia, HIF1 transactivation, and electron transport chain (ETC) function. We established immortalized mouse embryonic fibroblasts (MEFs) for HIF1α wild-type (WT) and null cells and tested whether HIF1α regulates mitochondrial respiration by modulating gene expressions of nuclear-encoded ETC components. High-throughput quantitative real-time polymerase chain reaction was performed to screen nuclear-encoded mitochondrial genes related to the ETC to identify those whose regulation was HIF1α-dependent. Our data suggest that HIF1α regulates transcription of cytochrome c oxidase (CcO) heart/muscle isoform 7a1 (Cox7a1) under hypoxia, where it is induced 1.5-2.5-fold, whereas Cox4i2 hypoxic induction was HIF1α-independent. We propose that adaptation to hypoxic stress of CcO as the main cellular oxygen consumer is mediated by induction of hypoxia-sensitive tissue-specific isoforms. We suggest that HIF1 plays a central role in maintaining homeostasis in cellular respiration during hypoxic stress via regulation of CcO activity.
Collapse
Affiliation(s)
- Hye Jin Hwang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, United States
- Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan 48824-1319, United States
| | - Scott G. Lynn
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, United States
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824-1319, United States
| | - Ajith Vengellur
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, United States
| | - Yogesh Saini
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, United States
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824-1319, United States
| | - Elizabeth A. Grier
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, United States
| | - Shelagh M. Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, United States
- Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan 48824-1319, United States
| | - John J. LaPres
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, United States
- Center for Integrative Toxicology, Michigan State University, East Lansing, Michigan 48824-1319, United States
- Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, Michigan 48824-1319, United States
| |
Collapse
|
64
|
Zheng LD, Linarelli LE, Liu L, Wall SS, Greenawald MH, Seidel RW, Estabrooks PA, Almeida FA, Cheng Z. Insulin resistance is associated with epigenetic and genetic regulation of mitochondrial DNA in obese humans. Clin Epigenetics 2015; 7:60. [PMID: 26110043 PMCID: PMC4479353 DOI: 10.1186/s13148-015-0093-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/02/2015] [Indexed: 12/18/2022] Open
Abstract
Background Mitochondrial alterations have been observed in subjects with metabolic disorders such as obesity and diabetes. Studies on animal models and cell cultures suggest aberrant glucose and lipid levels, and impaired insulin signaling might lead to mitochondrial changes. However, the molecular mechanism underlying mitochondrial aberrance remains largely unexplored in human subjects. Results Here we show that the mitochondrial DNA copy number (mtDNAn) was significantly reduced (6.9-fold lower, p < 0.001) in the leukocytes from obese humans (BMI >30). The reduction of mtDNAn was strongly associated with insulin resistance (HOMA-IR: −0.703, p < 0.05; fasting insulin level: −0.015, p < 0.05); by contrast, the correlation between fasting glucose or lipid levels and mtDNAn was not significant. Epigenetic study of the displacement loop (D-loop) region of mitochondrial genome, which controls the replication and transcription of the mitochondrial DNA as well as organization of the mitochondrial nucleoid, revealed a dramatic increase of DNA methylation in obese (5.2-fold higher vs. lean subjects, p < 0.05) and insulin-resistant (4.6-fold higher vs. insulin-sensitive subjects, p < 0.05) individuals. Conclusions The reduction of mtDNAn in obese human subjects is associated with insulin resistance and may arise from increased D-loop methylation, suggesting an insulin signaling-epigenetic-genetic axis in mitochondrial regulation. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0093-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Louise D Zheng
- Department of Human Nutrition, Foods and Exercise, Fralin Translational Obesity Research Center, College of Agriculture and Life Science, Virginia Tech, Blacksburg, Virginia USA
| | - Leah E Linarelli
- Department of Human Nutrition, Foods and Exercise, Fralin Translational Obesity Research Center, College of Agriculture and Life Science, Virginia Tech, Blacksburg, Virginia USA
| | - Longhua Liu
- Department of Human Nutrition, Foods and Exercise, Fralin Translational Obesity Research Center, College of Agriculture and Life Science, Virginia Tech, Blacksburg, Virginia USA
| | - Sarah S Wall
- Department of Human Nutrition, Foods and Exercise, Fralin Translational Obesity Research Center, College of Agriculture and Life Science, Virginia Tech, Blacksburg, Virginia USA
| | - Mark H Greenawald
- Department of Family and Community Medicine, Carilion Clinic, Roanoke, Virginia, USA
| | - Richard W Seidel
- Department of Psychiatry, Carilion Clinic, Roanoke, Virginia, USA
| | - Paul A Estabrooks
- Department of Human Nutrition, Foods and Exercise, Fralin Translational Obesity Research Center, College of Agriculture and Life Science, Virginia Tech, Blacksburg, Virginia USA ; Department of Family and Community Medicine, Carilion Clinic, Roanoke, Virginia, USA
| | - Fabio A Almeida
- Department of Human Nutrition, Foods and Exercise, Fralin Translational Obesity Research Center, College of Agriculture and Life Science, Virginia Tech, Blacksburg, Virginia USA
| | - Zhiyong Cheng
- Department of Human Nutrition, Foods and Exercise, Fralin Translational Obesity Research Center, College of Agriculture and Life Science, Virginia Tech, Blacksburg, Virginia USA
| |
Collapse
|
65
|
Rönn T, Ling C. DNA methylation as a diagnostic and therapeutic target in the battle against Type 2 diabetes. Epigenomics 2015; 7:451-60. [DOI: 10.2217/epi.15.7] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Type 2 diabetes (T2D) develops due to insulin resistance and impaired insulin secretion, predominantly in genetically predisposed subjects exposed to nongenetic risk factors like obesity, physical inactivity and ageing. Emerging data suggest that epigenetics also play a key role in the pathogenesis of T2D. Genome-wide studies have identified altered DNA methylation patterns in pancreatic islets, skeletal muscle and adipose tissue from subjects with T2D compared with nondiabetic controls. Environmental factors known to affect T2D, including obesity, exercise and diet, have also been found to alter the human epigenome. Additionally, ageing and the intrauterine environment are associated with differential DNA methylation. Together, these data highlight a key role for epigenetics and particularly DNA methylation in the growing incidence of T2D.
Collapse
Affiliation(s)
- Tina Rönn
- Epigenetics & Diabetes, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, CRC, Jan Waldenströms gata 35, 205 02 Malmö, Sweden
| | - Charlotte Ling
- Epigenetics & Diabetes, Department of Clinical Sciences in Malmö, Lund University Diabetes Centre, Lund University, CRC, Jan Waldenströms gata 35, 205 02 Malmö, Sweden
| |
Collapse
|
66
|
Lin X, Zhou S, Wen L, Davie A, Yao X, Liu W, Zhang Y. Potential role of maternal lineage in the thoroughbred breeding strategy. Reprod Fertil Dev 2015; 28:RD15063. [PMID: 25940872 DOI: 10.1071/rd15063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 04/01/2015] [Indexed: 02/28/2024] Open
Abstract
Many studies have focused on identifying the genes or single nucleotide polymorphisms associated with the athletic ability of thoroughbreds, but few have considered differences in maternal and paternal heritability of athletic ability. Herein, we report on our association study of career race performances of 675 Australian thoroughbreds with their pedigrees. Racing performance data (prize money per start) were collected from the Bloodhound database. The performance of all horses was categorised as either poor or elite athletic achievement. Then, 675 foals were divided by their parents' performance (elite or poor) into four groups: (1) elite dams and elite sires; (2) elite dams and poor sires; (3) poor dams and elite sires; and (4) poor dams and poor sires. The performance of foals was then compared between the four groups. The results show that the heritability of race performance between dams and foals (r = 0.141, P < 0.001) is much higher than that between sires and foals (r = 0.035, P = 0.366), and that this difference is statistically significant (P < 0.05). We also examined the effect of the child-bearing age of dams and sires on the ratio of elite foals. We found a strong correlation between the number of elite foals and dams' child-bearing age (r = -0.105, P < 0.001), with the ratio of elite offspring reaching a high level between a child-bearing age of 8 and 11 years (χ2 = 14.31, d.f. = 1, P < 0.001). These findings suggest that the maternal line may play an important role in the selective breeding of athletic performance in thoroughbreds.
Collapse
|
67
|
Rönn T, Volkov P, Gillberg L, Kokosar M, Perfilyev A, Jacobsen AL, Jørgensen SW, Brøns C, Jansson PA, Eriksson KF, Pedersen O, Hansen T, Groop L, Stener-Victorin E, Vaag A, Nilsson E, Ling C. Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood. Hum Mol Genet 2015; 24:3792-813. [PMID: 25861810 DOI: 10.1093/hmg/ddv124] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/07/2015] [Indexed: 01/03/2023] Open
Abstract
Increased age, BMI and HbA1c levels are risk factors for several non-communicable diseases. However, the impact of these factors on the genome-wide DNA methylation pattern in human adipose tissue remains unknown. We analyzed the DNA methylation of ∼480 000 sites in human adipose tissue from 96 males and 94 females and related methylation to age, BMI and HbA1c. We also compared epigenetic signatures in adipose tissue and blood. Age was significantly associated with both altered DNA methylation and expression of 1050 genes (e.g. FHL2, NOX4 and PLG). Interestingly, many reported epigenetic biomarkers of aging in blood, including ELOVL2, FHL2, KLF14 and GLRA1, also showed significant correlations between adipose tissue DNA methylation and age in our study. The most significant association between age and adipose tissue DNA methylation was found upstream of ELOVL2. We identified 2825 genes (e.g. FTO, ITIH5, CCL18, MTCH2, IRS1 and SPP1) where both DNA methylation and expression correlated with BMI. Methylation at previously reported HIF3A sites correlated significantly with BMI in females only. HbA1c (range 28-46 mmol/mol) correlated significantly with the methylation of 711 sites, annotated to, for example, RAB37, TICAM1 and HLA-DPB1. Pathway analyses demonstrated that methylation levels associated with age and BMI are overrepresented among genes involved in cancer, type 2 diabetes and cardiovascular disease. Our results highlight the impact of age, BMI and HbA1c on epigenetic variation of candidate genes for obesity, type 2 diabetes and cancer in human adipose tissue. Importantly, we demonstrate that epigenetic biomarkers in blood can mirror age-related epigenetic signatures in target tissues for metabolic diseases such as adipose tissue.
Collapse
Affiliation(s)
- Tina Rönn
- Department of Clinical Sciences, Epigenetics and Diabetes and
| | - Petr Volkov
- Department of Clinical Sciences, Epigenetics and Diabetes and
| | - Linn Gillberg
- Department of Endocrinology, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Milana Kokosar
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, Box 434, 405 30 Gothenburg, Sweden
| | | | - Anna Louisa Jacobsen
- Department of Endocrinology, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark
| | - Sine W Jørgensen
- Department of Endocrinology, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark, Steno Diabetes Center, Niels Steensensvej 2, DK-2820 Gentofte, Denmark
| | - Charlotte Brøns
- Department of Endocrinology, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark
| | - Per-Anders Jansson
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Karl-Fredrik Eriksson
- Department of Clinical Sciences, Vascular Diseases, Lund University, 205 02 Malmö, Sweden
| | - Oluf Pedersen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Universitetsparken 1, 2100 Copenhagen, Denmark and
| | - Torben Hansen
- The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, University of Copenhagen, Universitetsparken 1, 2100 Copenhagen, Denmark and
| | - Leif Groop
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, CRC, 205 02 Malmö, Sweden
| | - Elisabet Stener-Victorin
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Medicinaregatan 11, Box 434, 405 30 Gothenburg, Sweden, Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Allan Vaag
- Department of Endocrinology, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark, Faculty of Health Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | - Emma Nilsson
- Department of Clinical Sciences, Epigenetics and Diabetes and Department of Endocrinology, Rigshospitalet, Tagensvej 20, DK-2200 Copenhagen, Denmark
| | - Charlotte Ling
- Department of Clinical Sciences, Epigenetics and Diabetes and
| |
Collapse
|
68
|
Zampieri M, Ciccarone F, Calabrese R, Franceschi C, Bürkle A, Caiafa P. Reconfiguration of DNA methylation in aging. Mech Ageing Dev 2015; 151:60-70. [PMID: 25708826 DOI: 10.1016/j.mad.2015.02.002] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/20/2015] [Accepted: 02/19/2015] [Indexed: 12/12/2022]
Abstract
A complex interplay between multiple biological effects shapes the aging process. The advent of genome-wide quantitative approaches in the epigenetic field has highlighted the effective impact of epigenetic deregulation, particularly of DNA methylation, on aging. Age-associated alterations in DNA methylation are commonly grouped in the phenomenon known as "epigenetic drift" which is characterized by gradual extensive demethylation of genome and hypermethylation of a number of promoter-associated CpG islands. Surprisingly, specific DNA regions show directional epigenetic changes in aged individuals suggesting the importance of these events for the aging process. However, the epigenetic information obtained until now in aging needs a re-consideration due to the recent discovery of 5-hydroxymethylcytosine, a new DNA epigenetic mark present on genome. A recapitulation of the factors involved in the regulation of DNA methylation and the changes occurring in aging will be described in this review also considering the data available on 5 hmC.
Collapse
Affiliation(s)
- Michele Zampieri
- Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome, Rome 00161, Italy; Pasteur Institute-Fondazione Cenci Bolognetti, Rome 00161, Italy
| | - Fabio Ciccarone
- Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome, Rome 00161, Italy; Pasteur Institute-Fondazione Cenci Bolognetti, Rome 00161, Italy
| | - Roberta Calabrese
- Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome, Rome 00161, Italy; Pasteur Institute-Fondazione Cenci Bolognetti, Rome 00161, Italy
| | - Claudio Franceschi
- Department of Experimental Pathology, Alma Mater Studiorum, University of Bologna, Bologna 40126, Italy
| | - Alexander Bürkle
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz D-78457, Germany
| | - Paola Caiafa
- Department of Cellular Biotechnologies and Hematology, "Sapienza" University of Rome, Rome 00161, Italy; Pasteur Institute-Fondazione Cenci Bolognetti, Rome 00161, Italy.
| |
Collapse
|
69
|
Gillberg L, Ling C. The potential use of DNA methylation biomarkers to identify risk and progression of type 2 diabetes. Front Endocrinol (Lausanne) 2015; 6:43. [PMID: 25870586 PMCID: PMC4378313 DOI: 10.3389/fendo.2015.00043] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/11/2015] [Indexed: 12/29/2022] Open
Abstract
Type 2 diabetes mellitus (T2D) is a slowly progressive disease that can be postponed or even avoided through lifestyle changes. Recent data demonstrate highly significant correlations between DNA methylation and the most important risk factors of T2D, including age and body mass index, in blood and human tissues relevant to insulin resistance and T2D. Also, T2D patients and individuals with increased risk of the disease display differential DNA methylation profiles and plasticity compared to controls. Accordingly, the novel clues to DNA methylation fingerprints in blood and tissues with deteriorated metabolic capacity indicate that blood-borne epigenetic biomarkers of T2D progression might become a reality. This Review will address the most recent associations between DNA methylation and diabetes-related traits in human tissues and blood. The overall focus is on the potential of future epigenome-wide studies, carried out across tissues and populations with correlations to pre-diabetes and T2D risk factors, to build up a library of epigenetic markers of risk and early progression of T2D. These markers may, tentatively in combination with other predictors of T2D development, increase the possibility of individual-based lifestyle prevention of T2D and associated metabolic diseases.
Collapse
Affiliation(s)
- Linn Gillberg
- Diabetes and Metabolism, Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Linn Gillberg, Diabetes and Metabolism, Department of Endocrinology, Rigshospitalet, Tagensvej 20, Section 7652, Copenhagen, DK-2200, Denmark e-mail:
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden
| |
Collapse
|
70
|
Gong YY, Liu YY, Li J, Su L, Yu S, Zhu XN, Cao XP, Xiao HP. Hypermethylation of Cox5a promoter is associated with mitochondrial dysfunction in skeletal muscle of high fat diet-induced insulin resistant rats. PLoS One 2014; 9:e113784. [PMID: 25436770 PMCID: PMC4249960 DOI: 10.1371/journal.pone.0113784] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 10/29/2014] [Indexed: 01/04/2023] Open
Abstract
High-fat diet (HFD) is an environmental factor that contributes to the pathogenesis of obesity and type 2 diabetes. A number of genes influencing oxidative phosphorylation (OXPHOS) were found to be downregulated in skeletal muscle of humans and rats treated with HFD and have been implicated in mitochondrial dysfunction, insulin resistance, and consequent type 2 diabetes. In this study, we hypothesized that DNA methylation plays a crucial role in the regulation of OXPHOS genes in skeletal muscle of rats exposed to HFD. Using whole genome promoter methylation analysis of skeletal muscle followed by qPCR and bisulfite sequencing analysis, we identified hypermethylation of Cox5a in HFD rats. Furthermore, we found that Cox5a hypermethylation was associated with downregulation of Cox5a expression at the mRNA and protein level, and a reduction in mitochondrial complex IV activity and ATP content in HFD-induced insulin resistant rats compared to controls. Moreover, we found that while exposure to palmitate resulted in hypermethylation of the Cox5a promoter in rat myotubes, demethylation with 5-aza-2′-deoxycytidine was associated with preserved Cox5a expression, as well as restoration of complex IV activity and cellular ATP content. These novel observations indicate that Cox5a hypermethylation is associated with mitochondrial dysfunction in skeletal muscle of HFD-induced insulin resistant rats.
Collapse
Affiliation(s)
- Ying-ying Gong
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Yuan-yuan Liu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jin Li
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lei Su
- Department of Geriatrics, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shuang Yu
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao-nan Zhu
- Department of Pharmacology, Zhong-shan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiao-pei Cao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hai-peng Xiao
- Department of Endocrinology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- * E-mail:
| |
Collapse
|
71
|
Nilsson E, Jansson PA, Perfilyev A, Volkov P, Pedersen M, Svensson MK, Poulsen P, Ribel-Madsen R, Pedersen NL, Almgren P, Fadista J, Rönn T, Klarlund Pedersen B, Scheele C, Vaag A, Ling C. Altered DNA methylation and differential expression of genes influencing metabolism and inflammation in adipose tissue from subjects with type 2 diabetes. Diabetes 2014; 63:2962-76. [PMID: 24812430 DOI: 10.2337/db13-1459] [Citation(s) in RCA: 278] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Genetics, epigenetics, and environment may together affect the susceptibility for type 2 diabetes (T2D). Our aim was to dissect molecular mechanisms underlying T2D using genome-wide expression and DNA methylation data in adipose tissue from monozygotic twin pairs discordant for T2D and independent case-control cohorts. In adipose tissue from diabetic twins, we found decreased expression of genes involved in oxidative phosphorylation; carbohydrate, amino acid, and lipid metabolism; and increased expression of genes involved in inflammation and glycan degradation. The most differentially expressed genes included ELOVL6, GYS2, FADS1, SPP1 (OPN), CCL18, and IL1RN. We replicated these results in adipose tissue from an independent case-control cohort. Several candidate genes for obesity and T2D (e.g., IRS1 and VEGFA) were differentially expressed in discordant twins. We found a heritable contribution to the genome-wide DNA methylation variability in twins. Differences in methylation between monozygotic twin pairs discordant for T2D were subsequently modest. However, 15,627 sites, representing 7,046 genes including PPARG, KCNQ1, TCF7L2, and IRS1, showed differential DNA methylation in adipose tissue from unrelated subjects with T2D compared with control subjects. A total of 1,410 of these sites also showed differential DNA methylation in the twins discordant for T2D. For the differentially methylated sites, the heritability estimate was 0.28. We also identified copy number variants (CNVs) in monozygotic twin pairs discordant for T2D. Taken together, subjects with T2D exhibit multiple transcriptional and epigenetic changes in adipose tissue relevant to the development of the disease.
Collapse
Affiliation(s)
- Emma Nilsson
- Epigenetics and Diabetes, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Clinical Research Centre, Malmö, Sweden Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet, Copenhagen, Denmark
| | - Per Anders Jansson
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Alexander Perfilyev
- Epigenetics and Diabetes, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Clinical Research Centre, Malmö, Sweden
| | - Petr Volkov
- Epigenetics and Diabetes, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Clinical Research Centre, Malmö, Sweden
| | - Maria Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Maria K Svensson
- Institute of Medicine, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | | | - Rasmus Ribel-Madsen
- Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet, Copenhagen, Denmark
| | - Nancy L Pedersen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Peter Almgren
- Diabetes and Endocrinology, Department of Clinical Sciences, Lund University Diabetes Centre, Clinical Research Centre, Lund University, Malmö, Sweden
| | - João Fadista
- Diabetes and Endocrinology, Department of Clinical Sciences, Lund University Diabetes Centre, Clinical Research Centre, Lund University, Malmö, Sweden
| | - Tina Rönn
- Epigenetics and Diabetes, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Clinical Research Centre, Malmö, Sweden
| | - Bente Klarlund Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Scheele
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Department of Infectious Diseases, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Allan Vaag
- Department of Endocrinology, Diabetes and Metabolism, Rigshospitalet, Copenhagen, Denmark
| | - Charlotte Ling
- Epigenetics and Diabetes, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Clinical Research Centre, Malmö, Sweden
| |
Collapse
|
72
|
Luttmer R, Spijkerman AM, Kok RM, Jakobs C, Blom HJ, Serne EH, Dekker JM, Smulders YM. Metabolic syndrome components are associated with DNA hypomethylation. Obes Res Clin Pract 2014; 7:e106-e115. [PMID: 24331772 DOI: 10.1016/j.orcp.2012.06.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Revised: 05/25/2012] [Accepted: 06/04/2012] [Indexed: 01/22/2023]
Abstract
BACKGROUND Disturbances of DNA methylation have been associated with multiple diseases, including cardiovascular disease, cancer and, as some have suggested, glucometabolic disturbances. Our aim was to assess the association of the metabolic syndrome and its individual components with DNA methylation in a population-based study. MATERIALS AND METHODS In a human population (n = 738) stratified by age, sex and glucose metabolism, we explored associations of the metabolic syndrome according to National Cholesterol Education Program/Adult Treatment Panel-III criteria and its individual components (fasting glucose, high-density lipoprotein cholesterol, triglycerides, blood pressure, waist circumference) with global leukocyte DNA methylation. DNA methylation was measured as the methylcytosine/cytosine ratio in peripheral leukocytes using liquid chromatography-tandem mass spectrometry. RESULTS Individuals with the metabolic syndrome had relative DNA hypomethylation compared to participants without the syndrome (β = -0.05; p = 0.01). This association was mainly attributable to linear associations of two metabolic syndrome components with DNA methylation: fasting plasma glucose (β = -0.02; p = 0.004) and high-density lipoprotein cholesterol (β = 0.07; p = 0.004). People with type 2 diabetes or impaired glucose metabolism had DNA hypomethylation compared to normoglycemic individuals (β = -0.05; p = 0.004). CONCLUSIONS DNA hypomethylation is independently associated with hyperglycemia and low high-density lipoprotein cholesterol, both essential components of the metabolic syndrome. The potential implications and direction of possible causality require further study.
Collapse
Affiliation(s)
- Roosmarijn Luttmer
- Faculty of Medicine, VU University Medical Center, Amsterdam, The Netherlands
| | - Annemieke M Spijkerman
- Center for Prevention and Health Services Research, National Institute of Public Health and the Environment, Bilthoven, The Netherlands
| | - Robert M Kok
- Department of Clinical Chemistry and Institute for Cardiovascular Research ICaR-VU, VU University Medical Center, Amsterdam, The Netherlands
| | - Carel Jakobs
- Department of Clinical Chemistry and Institute for Cardiovascular Research ICaR-VU, VU University Medical Center, Amsterdam, The Netherlands
| | - Henk J Blom
- Department of Clinical Chemistry and Institute for Cardiovascular Research ICaR-VU, VU University Medical Center, Amsterdam, The Netherlands
| | - Erik H Serne
- Department of Internal Medicine and Institute for Cardiovascular Research ICaR-VU, VU University Medical Center, The Netherlands
| | - Jacqueline M Dekker
- Institute for Research in Extramural Medicine (EMGO Institute), VU University Medical Centre, Amsterdam, The Netherlands
| | - Yvo M Smulders
- Department of Internal Medicine and Institute for Cardiovascular Research ICaR-VU, VU University Medical Center, The Netherlands.
| |
Collapse
|
73
|
Safi SZ, Qvist R, Yan GOS, Ismail ISB. Differential expression and role of hyperglycemia induced oxidative stress in epigenetic regulation of β1, β2 and β3-adrenergic receptors in retinal endothelial cells. BMC Med Genomics 2014; 7:29. [PMID: 24885710 PMCID: PMC4050418 DOI: 10.1186/1755-8794-7-29] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 05/20/2014] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Aberrant epigenetic profiles are concomitant with a spectrum of developmental defects and diseases. Role of methylation is an increasingly accepted factor in the pathophysiology of diabetes and its associated complications. This study aims to examine the correlation between oxidative stress and methylation of β1, β2 and β3-adrenergic receptors and to analyze the differential variability in the expression of these genes under hyperglycemic conditions. METHODS Human retinal endothelial cells were cultured in CSC complete medium in normal (5 mM) or high (25 mM) glucose to mimic a diabetic condition. Reverse transcription PCR and Western Blotting were performed to examine the expression of β1, β2 and β3-adrenergic receptors. For detections, immunocytochemistry was used. Bisulfite sequencing method was used for promoter methylation analysis. Apoptosis was determined by the terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) assay. Dichlorodihydrofluorescein diacetate (DCFH-DA) assay was used to measure reactive oxygen species (ROS) production in the cells. RESULTS β1 and β3-adrenergic receptors were expressed in retinal endothelial cells while β2-adrenergic receptor was not detectable both at protein and mRNA levels. Hyperglycemia had no significant effect on β1 and β2-adrenergic receptors methylation and expression however β3-adrenergic receptors showed a significantly higher expression (p < 0.05) and methylation (p < 0.01) in high and low glucose concentration respectively. Apoptosis and oxidative stress were inversely correlated with β3-adrenergic receptors methylation with no significant effect on β1 and β2-adrenergic receptors. β2-adrenergic receptor was hypermethylated with halted expression. CONCLUSION Our study demonstrates that β1 and β3-adrenergic receptors expressed in human retinal endothelial cells. Oxidative stress and apoptosis are inversely proportional to the extent of promoter methylation, suggesting that methylation loss might be due to oxidative stress-induced DNA damage.
Collapse
Affiliation(s)
- Sher Zaman Safi
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Rajes Qvist
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Gracie Ong Siok Yan
- Department of Anesthesiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ikram Shah Bin Ismail
- Department of Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
74
|
Insight into the impact of diabetes mellitus on the increased risk of hepatocellular carcinoma: mini-review. J Diabetes Metab Disord 2014; 13:57. [PMID: 24918094 PMCID: PMC4050993 DOI: 10.1186/2251-6581-13-57] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 05/02/2014] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma is a multifactorial disease which is associated with a background of many causal risk factors. Diabetes mellitus however is one of the most common co-morbid illnesses found in hepatocellular carcinoma patients that are significantly associated with worsening of hepatocellular carcinoma development, patient prognosis and survival. Therefore, efforts have been focused on understanding the mechanisms underlying progression of hepatocellular carcinoma onset and development especially in diabetic patients. To our knowledge, there are no reports which address the impact of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) along with epigenetic regulations associated with increased risk of hepatocellular carcinoma confounded by diabetes mellitus. Therefore, this mini-review focuses on the possible intermediary mechanisms involved in worsening the onset and progression of hepatocellular carcinoma development confounded by diabetes mellitus. The first approach is to look at the role of inflammatory mediators (TNF-α and IL-6) in apoptosis and inflammation during hepatocarcinogenesis through monitoring levels of apoptotic regulators, B-cell lymphoma 2 protein which is encoded by BCL2 gene and apoptosis regulator BAX known as bcl-2-like protein 4 which is encoded by the BAX gene. The second approach is to focus on the possible epigenomic reprogramming that drives hepatocellular transformation since epigenetic modification of DNA is a key feature in the pathogenesis of hepatocarcinogenesis. Both approaches may suggest role of using Bcl2 and Bax as apoptotic and inflammatory markers for hepatocellular carcinoma detection as well as the importance impact of DNA methylation, hypomethylation or histone modifications as attractive candidates for early-detection biomarkers of hepatocellular carcinoma.
Collapse
|
75
|
de Mello VDF, Pulkkinen L, Lalli M, Kolehmainen M, Pihlajamäki J, Uusitupa M. DNA methylation in obesity and type 2 diabetes. Ann Med 2014; 46:103-13. [PMID: 24779963 DOI: 10.3109/07853890.2013.857259] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
To elucidate the mechanisms related to the development of type 2 diabetes (T2D) and other degenerative diseases at a molecular level, a better understanding of the changes in the chromatin structure and the corresponding functional changes in molecular pathways is still needed. For example, persons with low birth weight are at a high risk for development of T2D later in life, suggesting that the intrauterine environment contributes to the disease. One of the hypotheses is that epigenetic regulation, including changes in DNA methylation leading to modifications in chromatin structure, are behind metabolic alterations, e.g. leading to the phenomenon termed metabolic memory. Altered DNA methylation has been shown to affect healthy aging and also to promote age-related health problems. There is suggestive evidence that lifestyle changes including weight loss can have an impact on DNA methylation and consequently gene expression. In this review we provide an overview of human studies investigating DNA methylation in obesity and T2D and associated risk factors behind these diseases.
Collapse
Affiliation(s)
- Vanessa Derenji Ferreira de Mello
- University of Eastern Finland, Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition , Kuopio , Finland
| | | | | | | | | | | |
Collapse
|
76
|
Ling C, Rönn T. Epigenetic adaptation to regular exercise in humans. Drug Discov Today 2014; 19:1015-8. [PMID: 24632002 DOI: 10.1016/j.drudis.2014.03.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/06/2014] [Indexed: 01/10/2023]
Abstract
Regular exercise has numerous health benefits, for example, it reduces the risk of cardiovascular disease and cancer. It has also been shown that the risk of type 2 diabetes can be halved in high-risk groups through nonpharmacological lifestyle interventions involving exercise and diet. Nevertheless, the number of people living a sedentary life is dramatically increasing worldwide. Researchers have searched for molecular mechanisms explaining the health benefits of regular exercise for decades and it is well established that exercise alters the gene expression pattern in multiple tissues. However, until recently it was unknown that regular exercise can modify the genome-wide DNA methylation pattern in humans. This review will focus on recent progress in the field of regular exercise and epigenetics.
Collapse
Affiliation(s)
- Charlotte Ling
- Department of Clinical Sciences, Epigenetics and Diabetes Unit, Lund University Diabetes Centre, CRC, Scania University Hospital, 205 02 Malmö, Sweden.
| | - Tina Rönn
- Department of Clinical Sciences, Epigenetics and Diabetes Unit, Lund University Diabetes Centre, CRC, Scania University Hospital, 205 02 Malmö, Sweden
| |
Collapse
|
77
|
Zhang Y, Guo J, Gao Y, Niu S, Yang C, Bai C, Yu X, Zhao Z. Genome-wide methylation changes are associated with muscle fiber density and drip loss in male three-yellow chickens. Mol Biol Rep 2014; 41:3509-16. [PMID: 24566679 DOI: 10.1007/s11033-014-3214-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 01/28/2014] [Indexed: 11/28/2022]
|
78
|
Abstract
The growing epidemic of type 2 diabetes mellitus (T2DM) and obesity is largely attributed to the current lifestyle of over-consumption and physical inactivity. As the primary platform controlling metabolic and energy homeostasis, mitochondria show aberrant changes in T2DM and obese subjects. While the underlying mechanism is under extensive investigation, epigenetic regulation is now emerging to play an important role in mitochondrial biogenesis, function, and dynamics. In line with lifestyle modifications preventing mitochondrial alterations and metabolic disorders, exercise has been shown to change DNA methylation of the promoter of PGC1α to favor gene expression responsible for mitochondrial biogenesis and function. In this article we discuss the epigenetic mechanism of mitochondrial alteration in T2DM and obesity, and the effects of lifestyle on epigenetic regulation. Future studies designed to further explore and integrate the epigenetic mechanisms with lifestyle modification may lead to interdisciplinary interventions and novel preventive options for mitochondrial alteration and metabolic disorders.
Collapse
Affiliation(s)
- Zhiyong Cheng
- Department of Human Nutrition, Foods, and Exercise; Fralin Translational Obesity Research Center; Fralin Life Science Institute; College of Agriculture and Life Sciences; Virginia Tech; Blacksburg, VA USA
| | - Fabio A Almeida
- Department of Human Nutrition, Foods, and Exercise; Fralin Translational Obesity Research Center; Fralin Life Science Institute; College of Agriculture and Life Sciences; Virginia Tech; Blacksburg, VA USA
| |
Collapse
|
79
|
Al-Hasan YM, Pinkas GA, Thompson LP. Prenatal Hypoxia Reduces Mitochondrial Protein Levels and Cytochrome c Oxidase Activity in Offspring Guinea Pig Hearts. Reprod Sci 2014; 21:883-891. [PMID: 24406790 DOI: 10.1177/1933719113518981] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prenatal hypoxia (HPX) reduces mitochondrial cytochrome c oxidase (CCO and COX) activity in fetal guinea pig (GP) hearts. The aim of this study was to quantify the lasting effects of chronic prenatal HPX on cardiac mitochondrial enzyme activity and protein expression in offspring hearts. Pregnant GPs were exposed to either normoxia (NMX) or HPX (10.5%O2) during the last 14 days of pregnancy. Both NMX and HPX fetuses, delivered vaginally, were housed under NMX conditions until 90 days of age. Total RNA and mitochondrial fractions were isolated from hearts of anesthetized NMX and HPX offspring and showed decreased levels of CCO but not medium-chain acyl dehydrogenase activity, protein levels of nuclear- and mitochondrial-encoded COX4 and COX1, respectively, and messenger RNA expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha, COX5b, and 4.1 compared to NMX controls. Prenatal HPX may alter mitochondrial function in the offspring by disrupting protein expression associated with the respiratory chain.
Collapse
Affiliation(s)
- Yazan M Al-Hasan
- Department of Physiology (YMA), University of Maryland, Baltimore, MD, USA Department of Obstetrics, Gynecology and Reproductive Sciences (GAP, LPT), University of Maryland, Baltimore, MD, USA
| | - Gerard A Pinkas
- Department of Physiology (YMA), University of Maryland, Baltimore, MD, USA Department of Obstetrics, Gynecology and Reproductive Sciences (GAP, LPT), University of Maryland, Baltimore, MD, USA
| | - Loren P Thompson
- Department of Physiology (YMA), University of Maryland, Baltimore, MD, USA Department of Obstetrics, Gynecology and Reproductive Sciences (GAP, LPT), University of Maryland, Baltimore, MD, USA
| |
Collapse
|
80
|
Konopka AR, Sreekumaran Nair K. Mitochondrial and skeletal muscle health with advancing age. Mol Cell Endocrinol 2013; 379:19-29. [PMID: 23684888 PMCID: PMC3788080 DOI: 10.1016/j.mce.2013.05.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/22/2013] [Accepted: 05/08/2013] [Indexed: 12/21/2022]
Abstract
With increasing age there is a temporal relationship between the decline of mitochondrial and skeletal muscle volume, quality and function (i.e., health). Reduced mitochondrial mRNA expression, protein abundance, and protein synthesis rates appear to promote the decline of mitochondrial protein quality and function. Decreased mitochondrial function is suspected to impede energy demanding processes such as skeletal muscle protein turnover, which is critical for maintaining protein quality and thus skeletal muscle health with advancing age. The focus of this review was to discuss promising human physiological systems underpinning the decline of mitochondrial and skeletal muscle health with advancing age while highlighting therapeutic strategies such as aerobic exercise and caloric restriction for combating age-related functional impairments.
Collapse
Affiliation(s)
- Adam R Konopka
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, United States
| | | |
Collapse
|
81
|
Hall E, Dayeh T, Kirkpatrick CL, Wollheim CB, Dekker Nitert M, Ling C. DNA methylation of the glucagon-like peptide 1 receptor (GLP1R) in human pancreatic islets. BMC MEDICAL GENETICS 2013; 14:76. [PMID: 23879380 PMCID: PMC3727960 DOI: 10.1186/1471-2350-14-76] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 07/18/2013] [Indexed: 01/28/2023]
Abstract
BACKGROUND Insulin secretion is enhanced upon the binding of Glucagon-like peptide-1 (GLP-1) to its receptor (GLP1R) in pancreatic β cells. Although a reduced expression of GLP1R in pancreatic islets from type 2 diabetic patients and hyperglycaemic rats has been established, it is still unknown if this is caused by differential DNA methylation of GLP1R in pancreatic islets of type 2 diabetic patients. METHODS In this study, DNA methylation levels of 12 CpG sites close to the transcription start site of GLP1R were analysed in pancreatic islets from 55 non-diabetic and 10 type 2 diabetic human donors as well as in β and α cells isolated from human pancreatic islets. DNA methylation of GLP1R was related to GLP1R expression, HbA1c levels and BMI. Moreover, mRNA expression of MECP2, DNMT1, DNMT3A and DNMT3B was analysed in pancreatic islets of the non-diabetic and type 2 diabetic donors. RESULTS One CpG unit, at position +199 and +205 bp from the transcription start site, showed a small increase in DNA methylation in islets from donors with type 2 diabetes compared to non-diabetic donors (0.53%, p=0.02). Furthermore, DNA methylation levels of one CpG site located 376 bp upstream of the transcription start site of GLP1R correlated negatively with GLP1R expression (rho=-0.34, p=0.008) but positively with BMI and HbA1c (rho=0.30, p=0.02 and rho=0.30, p=0.03, respectively). This specific CpG site is located in an area with known SP1 and SP3 transcription factor binding sites. Moreover, when we compared the DNA methylation of the GLP1R promoter in isolated human β and α cells, we found that it was higher in α- compared with β-cells (p=0.009). Finally, there was a trend towards decreased DNMT3A expression (p=0.056) in type 2 diabetic compared with non-diabetic islets. CONCLUSIONS Together, our study shows that while BMI and HbA1c are positively associated with DNA methylation levels of GLP1R, its expression is negatively associated with DNA methylation of GLP1R in human pancreatic islets.
Collapse
Affiliation(s)
- Elin Hall
- Department of Clinical Sciences, Lund University Diabetes Centre, CRC, Lund University, Scania University Hospital, Malmö, Sweden
| | - Tasnim Dayeh
- Department of Clinical Sciences, Lund University Diabetes Centre, CRC, Lund University, Scania University Hospital, Malmö, Sweden
| | - Clare L Kirkpatrick
- Department of Cell Physiology and Metabolism, University Medical Centre, 1 rue Michel-Servet, 1211, Geneva 4, Switzerland
| | - Claes B Wollheim
- Department of Clinical Sciences, Lund University Diabetes Centre, CRC, Lund University, Scania University Hospital, Malmö, Sweden
- Department of Cell Physiology and Metabolism, University Medical Centre, 1 rue Michel-Servet, 1211, Geneva 4, Switzerland
| | | | - Charlotte Ling
- Department of Clinical Sciences, Lund University Diabetes Centre, CRC, Lund University, Scania University Hospital, Malmö, Sweden
| |
Collapse
|
82
|
A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet 2013; 9:e1003572. [PMID: 23825961 PMCID: PMC3694844 DOI: 10.1371/journal.pgen.1003572] [Citation(s) in RCA: 430] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 05/02/2013] [Indexed: 12/15/2022] Open
Abstract
Epigenetic mechanisms are implicated in gene regulation and the development of different diseases. The epigenome differs between cell types and has until now only been characterized for a few human tissues. Environmental factors potentially alter the epigenome. Here we describe the genome-wide pattern of DNA methylation in human adipose tissue from 23 healthy men, with a previous low level of physical activity, before and after a six months exercise intervention. We also investigate the differences in adipose tissue DNA methylation between 31 individuals with or without a family history of type 2 diabetes. DNA methylation was analyzed using Infinium HumanMethylation450 BeadChip, an array containing 485,577 probes covering 99% RefSeq genes. Global DNA methylation changed and 17,975 individual CpG sites in 7,663 unique genes showed altered levels of DNA methylation after the exercise intervention (q<0.05). Differential mRNA expression was present in 1/3 of gene regions with altered DNA methylation, including RALBP1, HDAC4 and NCOR2 (q<0.05). Using a luciferase assay, we could show that increased DNA methylation in vitro of the RALBP1 promoter suppressed the transcriptional activity (p = 0.03). Moreover, 18 obesity and 21 type 2 diabetes candidate genes had CpG sites with differences in adipose tissue DNA methylation in response to exercise (q<0.05), including TCF7L2 (6 CpG sites) and KCNQ1 (10 CpG sites). A simultaneous change in mRNA expression was seen for 6 of those genes. To understand if genes that exhibit differential DNA methylation and mRNA expression in human adipose tissue in vivo affect adipocyte metabolism, we silenced Hdac4 and Ncor2 respectively in 3T3-L1 adipocytes, which resulted in increased lipogenesis both in the basal and insulin stimulated state. In conclusion, exercise induces genome-wide changes in DNA methylation in human adipose tissue, potentially affecting adipocyte metabolism.
Collapse
|
83
|
Dayeh TA, Olsson AH, Volkov P, Almgren P, Rönn T, Ling C. Identification of CpG-SNPs associated with type 2 diabetes and differential DNA methylation in human pancreatic islets. Diabetologia 2013; 56:1036-46. [PMID: 23462794 PMCID: PMC3622750 DOI: 10.1007/s00125-012-2815-7] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 12/06/2012] [Indexed: 12/22/2022]
Abstract
AIMS/HYPOTHESIS To date, the molecular function of most of the reported type 2 diabetes-associated loci remains unknown. The introduction or removal of cytosine-phosphate-guanine (CpG) dinucleotides, which are possible sites of DNA methylation, has been suggested as a potential mechanism through which single-nucleotide polymorphisms (SNPs) can affect gene function via epigenetics. The aim of this study was to examine if any of 40 SNPs previously associated with type 2 diabetes introduce or remove a CpG site and if these CpG-SNPs are associated with differential DNA methylation in pancreatic islets of 84 human donors. METHODS DNA methylation was analysed using pyrosequencing. RESULTS We found that 19 of 40 (48%) type 2 diabetes-associated SNPs introduce or remove a CpG site. Successful DNA methylation data were generated for 16 of these 19 CpG-SNP loci, representing the candidate genes TCF7L2, KCNQ1, PPARG, HHEX, CDKN2A, SLC30A8, DUSP9, CDKAL1, ADCY5, SRR, WFS1, IRS1, DUSP8, HMGA2, TSPAN8 and CHCHD9. All analysed CpG-SNPs were associated with differential DNA methylation of the CpG-SNP site in human islets. Moreover, six CpG-SNPs, representing TCF7L2, KCNQ1, CDKN2A, ADCY5, WFS1 and HMGA2, were also associated with DNA methylation of surrounding CpG sites. Some of the type 2 diabetes CpG-SNP sites that exhibit differential DNA methylation were further associated with gene expression, alternative splicing events determined by splice index, and hormone secretion in the human islets. The 19 type 2 diabetes-associated CpG-SNPs are in strong linkage disequilibrium (r² > 0.8) with a total of 295 SNPs, including 91 CpG-SNPs. CONCLUSIONS/INTERPRETATION Our results suggest that the introduction or removal of a CpG site may be a molecular mechanism through which some of the type 2 diabetes SNPs affect gene function via differential DNA methylation and consequently contributes to the phenotype of the disease.
Collapse
Affiliation(s)
- T. A. Dayeh
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Scania University Hospital, Jan Waldenströmsgata 35, 205 02 Malmö, Sweden
| | - A. H. Olsson
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Scania University Hospital, Jan Waldenströmsgata 35, 205 02 Malmö, Sweden
| | - P. Volkov
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Scania University Hospital, Jan Waldenströmsgata 35, 205 02 Malmö, Sweden
| | - P. Almgren
- Department of Clinical Sciences, Diabetes and Endocrinology, Lund University Diabetes Centre, Clinical Research Centre, Scania University Hospital, Jan Waldenströmsgata 35, 205 02 Malmö, Sweden
| | - T. Rönn
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Scania University Hospital, Jan Waldenströmsgata 35, 205 02 Malmö, Sweden
| | - C. Ling
- Department of Clinical Sciences, Epigenetics and Diabetes, Lund University Diabetes Centre, Clinical Research Centre, Scania University Hospital, Jan Waldenströmsgata 35, 205 02 Malmö, Sweden
| |
Collapse
|
84
|
Kirchner H, Osler ME, Krook A, Zierath JR. Epigenetic flexibility in metabolic regulation: disease cause and prevention? Trends Cell Biol 2013; 23:203-9. [DOI: 10.1016/j.tcb.2012.11.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 12/21/2022]
|
85
|
Gomes MVM, Toffoli LV, Arruda DW, Soldera LM, Pelosi GG, Neves-Souza RD, Freitas ER, Castro DT, Marquez AS. Age-related changes in the global DNA methylation profile of leukocytes are linked to nutrition but are not associated with the MTHFR C677T genotype or to functional capacities. PLoS One 2012; 7:e52570. [PMID: 23285094 PMCID: PMC3527598 DOI: 10.1371/journal.pone.0052570] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/19/2012] [Indexed: 01/01/2023] Open
Abstract
Global DNA methylation of peripheral blood leukocytes has been recently proposed as a potential biomarker for disease risk. However, the amplitude of the changes in DNA methylation associated with normal aging and the impacts of environmental changes on this variation are still unclear. In this context, we evaluated the association of global DNA methylation with nutritional habits, tobacco smoking, body mass index (BMI), clinical laboratory parameters, polymorphism C677T MTHFR, functional cognition and the daily practice of physical activity in a cancer-free older population. Leukocyte global DNA methylation from 126 older individuals was quantified using a high-throughput ELISA-based method. Global DNA hypomethylation was observed in older individuals when compared to a younger population (p = 0.0469), confirming changes in DNA methylation in the aging process. Furthermore, the methylation profile of elders was correlated with the daily ingestion of carbohydrates (p = 0.0494), lipids (p = 0.0494), vitamin B6 (p = 0.0421), magnesium (p = 0.0302), and also to the serum levels of total protein (p = 0.0004), alpha 2 globulin (p = 0.0013) and albumin (p = 0.0015). No statistically significant difference was observed when global DNA methylation were stratified according to C677T MTHFR genotypes (p = 0.7200), BMI (p = 0.1170), smoking habit (p = 0.4382), physical activity in daily life (p = 0.8492), scored cognitive function (p = 0.7229) or depression state (p = 0.8301). Our data indicate that age-related variations in the global DNA methylation profile of leukocytes might be modulated by the daily intake of carbohydrates, lipids, vitamin B6, and magnesium and be associated with serum protein levels, however it is independent of C677T MTHFR genotype and not correlated with BMI, smoking habit, cognitive function or the routine physical activities.
Collapse
Affiliation(s)
- Marcus V M Gomes
- Research Centre on Health Sciences, University of Northern Parana (UNOPAR), Londrina, Paraná, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Sukanya S, Bay BH, Tay SSW, Dheen ST. Frontiers in research on maternal diabetes-induced neural tube defects: Past, present and future. World J Diabetes 2012; 3:196-200. [PMID: 23301121 PMCID: PMC3538985 DOI: 10.4239/wjd.v3.i12.196] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 11/02/2012] [Accepted: 12/01/2012] [Indexed: 02/05/2023] Open
Abstract
Diabetes mellitus rightly regarded as a silent-epidemic is continually on the rise and estimated to have a global prevalence of 6.4 % as of 2010. Diabetes during pregnancy is a well known risk factor for congenital anomalies in various organ systems that contribute to neonatal mortality, including cardiovascular, gastrointestinal, genitourinary and neurological systems, among which the neural tube defects are frequently reported. Over the last two to three decades, several groups around the world have focussed on identifying the molecular cues and cellular changes resulting in altered gene expression and the morphological defects and in diabetic pregnancy. In recent years, the focus has gradually shifted to looking at pre-programmed changes and activation of epigenetic mechanisms that cause altered gene expression. While several theories such as oxidative stress, hypoxia, and apoptosis triggered due to hyperglycemic conditions have been proposed and proven for being the cause for these defects, the exact mechanism or the link between how high glucose can alter gene expression/transcriptome and activate epigenetic mechanisms is largely unknown. Although preconceptual control of diabetes, (i.e., managing glucose levels during pregnancy), and in utero therapies has been proposed as an effective solution for managing diabetes during pregnancy, the impact that a fluctuating glycemic index can have on foetal development has not been evaluated in detail. A tight glycemic control started before pregnancy has shown to reduce the incidence of congenital abnormalities in diabetic mothers. On the other hand, a tight glycemic control after organogenesis and embryogenesis have begun may prove insufficient to prevent or reverse the onset of congenital defects. The importance of determining the extent to which glycemic levels in diabetic mothers should be regulated is critical as foetal hypoglycemia has also been shown to be teratogenic. Finally, the major question remaining is if this whole issue is negligible and not worthy of investigation as the efficient management of diabetes during pregnancy is well in place in many countries.
Collapse
Affiliation(s)
- Shyamasundar Sukanya
- Shyamasundar Sukanya, Boon Huat Bay, Samuel Sam Wah Tay, S Thameem Dheen, Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | | | | | | |
Collapse
|
87
|
Sales V, Patti ME. The Ups and Downs of Insulin Resistance and Type 2 Diabetes: Lessons from Genomic Analyses in Humans. CURRENT CARDIOVASCULAR RISK REPORTS 2012; 7:46-59. [PMID: 23459395 DOI: 10.1007/s12170-012-0283-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We are in the midst of a worldwide epidemic of type 2 diabetes (T2D) and obesity. Understanding the mechanisms underlying these diseases is critical if we are to halt their progression and ultimately prevent their development. The advent and widespread implementation of microarray technology has allowed analysis of small samples of human skeletal muscle, adipose, liver, pancreas and blood. While patterns differ in each tissue, several dominant themes have emerged from these studies, including altered expression of genes indicating increased inflammation and altered lipid and mitochondrial oxidative metabolism and insulin signaling in patients with T2D, and in some cases, in those at risk for disease. Unraveling which changes in gene expression are primary, and which are secondary to an insulin resistant or diabetes metabolic milieu remains a scientific challenge but we are one step closer.
Collapse
Affiliation(s)
- Vicencia Sales
- Research Division, Joslin Diabetes Center, and Department of Medicine, Harvard Medical School ; Department of Biophysics, Federal University of São Paulo, UNIFESP/EPM, São Paulo, SP, Brazil
| | | |
Collapse
|
88
|
Nitert MD, Dayeh T, Volkov P, Elgzyri T, Hall E, Nilsson E, Yang BT, Lang S, Parikh H, Wessman Y, Weishaupt H, Attema J, Abels M, Wierup N, Almgren P, Jansson PA, Rönn T, Hansson O, Eriksson KF, Groop L, Ling C. Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes 2012; 61:3322-32. [PMID: 23028138 PMCID: PMC3501844 DOI: 10.2337/db11-1653] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To identify epigenetic patterns, which may predispose to type 2 diabetes (T2D) due to a family history (FH) of the disease, we analyzed DNA methylation genome-wide in skeletal muscle from individuals with (FH(+)) or without (FH(-)) an FH of T2D. We found differential DNA methylation of genes in biological pathways including mitogen-activated protein kinase (MAPK), insulin, and calcium signaling (P ≤ 0.007) and of individual genes with known function in muscle, including MAPK1, MYO18B, HOXC6, and the AMP-activated protein kinase subunit PRKAB1 in skeletal muscle of FH(+) compared with FH(-) men. We further validated our findings from FH(+) men in monozygotic twin pairs discordant for T2D, and 40% of 65 analyzed genes exhibited differential DNA methylation in muscle of both FH(+) men and diabetic twins. We further examined if a 6-month exercise intervention modifies the genome-wide DNA methylation pattern in skeletal muscle of the FH(+) and FH(-) individuals. DNA methylation of genes in retinol metabolism and calcium signaling pathways (P < 3 × 10(-6)) and with known functions in muscle and T2D including MEF2A, RUNX1, NDUFC2, and THADA decreased after exercise. Methylation of these human promoter regions suppressed reporter gene expression in vitro. In addition, both expression and methylation of several genes, i.e., ADIPOR1, BDKRB2, and TRIB1, changed after exercise. These findings provide new insights into how genetic background and environment can alter the human epigenome.
Collapse
Affiliation(s)
- Marloes Dekker Nitert
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, CRC, Scania University Hospital, Malmö, Sweden
| | - Tasnim Dayeh
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, CRC, Scania University Hospital, Malmö, Sweden
| | - Peter Volkov
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, CRC, Scania University Hospital, Malmö, Sweden
| | - Targ Elgzyri
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, CRC, Scania University Hospital, Malmö, Sweden
| | - Elin Hall
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, CRC, Scania University Hospital, Malmö, Sweden
| | - Emma Nilsson
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, CRC, Scania University Hospital, Malmö, Sweden
| | - Beatrice T. Yang
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, CRC, Scania University Hospital, Malmö, Sweden
| | - Stefan Lang
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, CRC, Scania University Hospital, Malmö, Sweden
| | - Hemang Parikh
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ylva Wessman
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, CRC, Scania University Hospital, Malmö, Sweden
| | - Holger Weishaupt
- Immunology Unit, Institute for Experimental Medical Science, Lund University, Lund, Sweden
| | - Joanne Attema
- Immunology Unit, Institute for Experimental Medical Science, Lund University, Lund, Sweden
| | - Mia Abels
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, CRC, Scania University Hospital, Malmö, Sweden
| | - Nils Wierup
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, CRC, Scania University Hospital, Malmö, Sweden
| | - Peter Almgren
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, CRC, Scania University Hospital, Malmö, Sweden
| | - Per-Anders Jansson
- Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Tina Rönn
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, CRC, Scania University Hospital, Malmö, Sweden
| | - Ola Hansson
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, CRC, Scania University Hospital, Malmö, Sweden
| | - Karl-Fredrik Eriksson
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, CRC, Scania University Hospital, Malmö, Sweden
| | - Leif Groop
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, CRC, Scania University Hospital, Malmö, Sweden
| | - Charlotte Ling
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, CRC, Scania University Hospital, Malmö, Sweden
- Corresponding author: Charlotte Ling,
| |
Collapse
|
89
|
Talens RP, Christensen K, Putter H, Willemsen G, Christiansen L, Kremer D, Suchiman HED, Slagboom PE, Boomsma DI, Heijmans BT. Epigenetic variation during the adult lifespan: cross-sectional and longitudinal data on monozygotic twin pairs. Aging Cell 2012; 11:694-703. [PMID: 22621408 PMCID: PMC3399918 DOI: 10.1111/j.1474-9726.2012.00835.x] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The accumulation of epigenetic changes was proposed to contribute to the age-related increase in the risk of most common diseases. In this study on 230 monozygotic twin pairs (MZ pairs), aged 18–89 years, we investigated the occurrence of epigenetic changes over the adult lifespan. Using mass spectrometry, we investigated variation in global (LINE1) DNA methylation and in DNA methylation at INS, KCNQ1OT1, IGF2, GNASAS, ABCA1, LEP, and CRH, candidate loci for common diseases. Except for KCNQ1OT1, interindividual variation in locus-specific DNA methylation was larger in old individuals than in young individuals, ranging from 1.2-fold larger at ABCA1 (P = 0.010) to 1.6-fold larger at INS (P = 3.7 × 10−07). Similarly, there was more within-MZ-pair discordance in old as compared with young MZ pairs, except for GNASAS, ranging from an 8% increase in discordance each decade at CRH (P = 8.9 × 10−06) to a 16% increase each decade at LEP (P = 2.0 × 10−08). Still, old MZ pairs with strikingly similar DNA methylation were also observed at these loci. After 10-year follow-up in elderly twins, the variation in DNA methylation showed a similar pattern of change as observed cross-sectionally. The age-related increase in methylation variation was generally attributable to unique environmental factors, except for CRH, for which familial factors may play a more important role. In conclusion, sustained epigenetic differences arise from early adulthood to old age and contribute to an increasing discordance of MZ twins during aging.
Collapse
Affiliation(s)
- Rudolf P. Talens
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Kaare Christensen
- The Danish Aging Research Center and The Danish Twin Registry, University of Southern Denmark, Odense C, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
| | - Hein Putter
- Department of Medical Statistics and Bioinformatics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gonneke Willemsen
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Lene Christiansen
- The Danish Aging Research Center and The Danish Twin Registry, University of Southern Denmark, Odense C, Denmark
- Department of Clinical Genetics, Odense University Hospital, Odense C, Denmark
- Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, Odense C, Denmark
| | - Dennis Kremer
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - H. Eka D. Suchiman
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - P. Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| | - Dorret I. Boomsma
- Department of Biological Psychology, VU University Amsterdam, Amsterdam, The Netherlands
| | - Bastiaan T. Heijmans
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
- Netherlands Consortium for Healthy Ageing, Leiden, The Netherlands
| |
Collapse
|
90
|
Wang J, Wu Z, Li D, Li N, Dindot SV, Satterfield MC, Bazer FW, Wu G. Nutrition, epigenetics, and metabolic syndrome. Antioxid Redox Signal 2012; 17:282-301. [PMID: 22044276 PMCID: PMC3353821 DOI: 10.1089/ars.2011.4381] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 11/01/2011] [Indexed: 01/21/2023]
Abstract
SIGNIFICANCE Epidemiological and animal studies have demonstrated a close link between maternal nutrition and chronic metabolic disease in children and adults. Compelling experimental results also indicate that adverse effects of intrauterine growth restriction on offspring can be carried forward to subsequent generations through covalent modifications of DNA and core histones. RECENT ADVANCES DNA methylation is catalyzed by S-adenosylmethionine-dependent DNA methyltransferases. Methylation, demethylation, acetylation, and deacetylation of histone proteins are performed by histone methyltransferase, histone demethylase, histone acetyltransferase, and histone deacetyltransferase, respectively. Histone activities are also influenced by phosphorylation, ubiquitination, ADP-ribosylation, sumoylation, and glycosylation. Metabolism of amino acids (glycine, histidine, methionine, and serine) and vitamins (B6, B12, and folate) plays a key role in provision of methyl donors for DNA and protein methylation. CRITICAL ISSUES Disruption of epigenetic mechanisms can result in oxidative stress, obesity, insulin resistance, diabetes, and vascular dysfunction in animals and humans. Despite a recognized role for epigenetics in fetal programming of metabolic syndrome, research on therapies is still in its infancy. Possible interventions include: 1) inhibition of DNA methylation, histone deacetylation, and microRNA expression; 2) targeting epigenetically disturbed metabolic pathways; and 3) dietary supplementation with functional amino acids, vitamins, and phytochemicals. FUTURE DIRECTIONS Much work is needed with animal models to understand the basic mechanisms responsible for the roles of specific nutrients in fetal and neonatal programming. Such new knowledge is crucial to design effective therapeutic strategies for preventing and treating metabolic abnormalities in offspring born to mothers with a previous experience of malnutrition.
Collapse
Affiliation(s)
- Junjun Wang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Defa Li
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Ning Li
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China
| | - Scott V. Dindot
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas
- Department of Molecular and Cellular Medicine, Texas A&M University, College Station, Texas
| | - M. Carey Satterfield
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Fuller W. Bazer
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas
- Department of Animal Science, Texas A&M University, College Station, Texas
| | - Guoyao Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
- Center for Animal Biotechnology and Genomics, Texas A&M University, College Station, Texas
- Department of Animal Science, Texas A&M University, College Station, Texas
| |
Collapse
|
91
|
Pearce MS, McConnell JC, Potter C, Barrett LM, Parker L, Mathers JC, Relton CL. Global LINE-1 DNA methylation is associated with blood glycaemic and lipid profiles. Int J Epidemiol 2012; 41:210-7. [PMID: 22422454 PMCID: PMC3304536 DOI: 10.1093/ije/dys020] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background Patterns of DNA methylation change with age and these changes are believed to be associated with the development of common complex diseases. The hypothesis that Long Interspersed Nucleotide Element 1 (LINE-1) DNA methylation (an index of global DNA methylation) is associated with biomarkers of metabolic health was investigated in this study. Methods Global LINE-1 DNA methylation was quantified by pyrosequencing in blood-derived DNA samples from 228 individuals, aged 49–51 years, from the Newcastle Thousand Families Study (NTFS). Associations between log-transformed LINE-1 DNA methylation levels and anthropometric and blood biochemical measurements, including triglycerides, total cholesterol, low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol, fasting glucose and insulin secretion and resistance were examined. Results Linear regression, after adjustment for sex, demonstrated positive associations between log-transformed LINE-1 DNA methylation and fasting glucose {coefficient 2.80 [95% confidence interval (CI) 0.39–5.22]}, total cholesterol [4.76 (95% CI 1.43–8.10)], triglycerides [3.83 (95% CI 1.30–6.37)] and LDL-cholesterol [5.38 (95% CI 2.12–8.64)] concentrations. A negative association was observed between log-transformed LINE-1 methylation and both HDL cholesterol concentration [−1.43 (95% CI −2.38 to −0.48)] and HDL:LDL ratio [−1.06 (95% CI −1.76 to −0.36)]. These coefficients reflect the millimoles per litre change in biochemical measurements per unit increase in log-transformed LINE-1 methylation. Conclusions These novel associations between global LINE-1 DNA methylation and blood glycaemic and lipid profiles highlight a potential role for epigenetic biomarkers as predictors of metabolic disease and may be relevant to future diagnosis, prevention and treatment of this group of disorders. Further work is required to establish the role of confounding and reverse causation in the observed associations.
Collapse
Affiliation(s)
- Mark S Pearce
- Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK.
| | | | | | | | | | | | | |
Collapse
|
92
|
Irving BA, Robinson MM, Nair KS. Age effect on myocellular remodeling: response to exercise and nutrition in humans. Ageing Res Rev 2012; 11:374-89. [PMID: 22085885 DOI: 10.1016/j.arr.2011.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 10/27/2011] [Accepted: 11/01/2011] [Indexed: 12/25/2022]
Abstract
Aging is associated with decline in muscle mass and muscle functions. Muscle strength declines disproportionate to the decline in muscle mass indicating that muscle quality or protein quality also declines with age. Human studies have shown a progressive decline in muscle protein synthesis including proteins in the contractile apparatus and mitochondria with age. However, the decline in muscle protein synthesis is disproportionate to the decline in muscle mass that occurs with age prompting to hypothesize that muscle protein degradation also declines with age. A decline in mitochondrial capacity to synthesize ATP is likely a limiting factor of both synthesis and degradation, which are ATP dependent processes. In support of the above hypothesis, several studies have shown a decline in whole body protein turnover (synthesis and degradation). The timely and efficient degradation of irreversibly damaged or modified proteins is critical to maintain the quality of protein. It is proposed that a failure to degrade the damaged proteins and replacing them with newly synthesized proteins contribute to age related decline in muscle mass and quality of muscle proteins. The underlying molecular mechanism of these age related changes in human muscle needs further investigation.
Collapse
|
93
|
Yang BT, Dayeh TA, Volkov PA, Kirkpatrick CL, Malmgren S, Jing X, Renström E, Wollheim CB, Nitert MD, Ling C. Increased DNA methylation and decreased expression of PDX-1 in pancreatic islets from patients with type 2 diabetes. Mol Endocrinol 2012; 26:1203-12. [PMID: 22570331 DOI: 10.1210/me.2012-1004] [Citation(s) in RCA: 221] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mutations in pancreatic duodenal homeobox 1 (PDX-1) can cause a monogenic form of diabetes (maturity onset diabetes of the young 4) in humans, and silencing Pdx-1 in pancreatic β-cells of mice causes diabetes. However, it is not established whether epigenetic alterations of PDX-1 influence type 2 diabetes (T2D) in humans. Here we analyzed mRNA expression and DNA methylation of PDX-1 in human pancreatic islets from 55 nondiabetic donors and nine patients with T2D. We further studied epigenetic regulation of PDX-1 in clonal β-cells. PDX-1 expression was decreased in pancreatic islets from patients with T2D compared with nondiabetic donors (P = 0.0002) and correlated positively with insulin expression (rho = 0.59, P = 0.000001) and glucose-stimulated insulin secretion (rho = 0.41, P = 0.005) in the human islets. Ten CpG sites in the distal PDX-1 promoter and enhancer regions exhibited significantly increased DNA methylation in islets from patients with T2D compared with nondiabetic donors. DNA methylation of PDX-1 correlated negatively with its gene expression in the human islets (rho = -0.64, P = 0.0000029). Moreover, methylation of the human PDX-1 promoter and enhancer regions suppressed reporter gene expression in clonal β-cells (P = 0.04). Our data further indicate that hyperglycemia decreases gene expression and increases DNA methylation of PDX-1 because glycosylated hemoglobin (HbA1c) correlates negatively with mRNA expression (rho = -0.50, P = 0.0004) and positively with DNA methylation (rho = 0.54, P = 0.00024) of PDX-1 in the human islets. Furthermore, while Pdx-1 expression decreased, Pdx-1 methylation and Dnmt1 expression increased in clonal β-cells exposed to high glucose. Overall, epigenetic modifications of PDX-1 may play a role in the development of T2D, given that pancreatic islets from patients with T2D and β-cells exposed to hyperglycemia exhibited increased DNA methylation and decreased expression of PDX-1. The expression levels of PDX-1 were further associated with insulin secretion in the human islets.
Collapse
Affiliation(s)
- Beatrice T Yang
- Department of Clinical Sciences, Unit of Epigenetics and Diabetes, Lund University Diabetes Centre, Scania University Hospital, 205 02 Malmoe, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
LIU FEI, SUN QIANQIAN, WANG LINGXIAO, NIE SHUANGSHUANG, LI JUN. Bioinformatics analysis of abnormal DNA methylation in muscle samples from monozygotic twins discordant for type 2 diabetes. Mol Med Rep 2012; 12:351-6. [DOI: 10.3892/mmr.2015.3452] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 02/06/2015] [Indexed: 11/05/2022] Open
|
95
|
Snogdal LS, Wod M, Grarup N, Vestmar M, Sparsø T, Jørgensen T, Lauritzen T, Beck-Nielsen H, Henriksen JE, Pedersen O, Hansen T, Højlund K. Common variation in oxidative phosphorylation genes is not a major cause of insulin resistance or type 2 diabetes. Diabetologia 2012; 55:340-8. [PMID: 22095239 DOI: 10.1007/s00125-011-2377-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/25/2011] [Indexed: 10/15/2022]
Abstract
AIMS/HYPOTHESIS There is substantial evidence that mitochondrial dysfunction is linked to insulin resistance and is present in several tissues relevant to the pathogenesis of type 2 diabetes. Here, we examined whether common variation in genes involved in oxidative phosphorylation (OxPhos) contributes to type 2 diabetes susceptibility or influences diabetes-related metabolic traits. METHODS OxPhos gene variants (n = 10) that had been nominally associated (p < 0.01) with type 2 diabetes in a recent genome-wide meta-analysis (n = 10,108) were selected for follow-up in 3,599 type 2 diabetic and 4,956 glucose-tolerant Danish individuals. A meta-analysis of these variants was performed in 11,729 type 2 diabetic patients and 43,943 non-diabetic individuals. The impact on OGTT-derived metabolic traits was evaluated in 5,869 treatment-naive individuals from the Danish Inter99 study. RESULTS The minor alleles of COX10 rs9915302 (p = 0.02) and COX5B rs1466100 (p = 0.005) showed nominal association with type 2 diabetes in our Danish cohort. However, in the meta-analysis, none of the investigated variants showed a robust association with type 2 diabetes after correction for multiple testing. Among the alleles potentially associated with type 2 diabetes, none negatively influenced surrogate markers of insulin sensitivity in non-diabetic participants, while the minor alleles of UQCRC1 rs2228561 and COX10 rs10521253 showed a weak (p < 0.01 to p < 0.05) negative influence on indices of glucose-stimulated insulin secretion. CONCLUSIONS/INTERPRETATION We cannot rule out the possibility that common variants in or near OxPhos genes may influence beta cell function in non-diabetic individuals. However, our quantitative trait studies and a sufficiently large meta-analysis indicate that common variation in proximity to the examined OxPhos genes is not a major cause of insulin resistance or type 2 diabetes.
Collapse
Affiliation(s)
- L S Snogdal
- Diabetes Research Centre, Department of Endocrinology, Odense University Hospital, Kløvervænget 6, 4th Floor, 5000 Odense, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Abstract
Type 2 Diabetes Mellitus (T2DM) is a metabolic disorder influenced by interactions between genetic and environmental factors. Epigenetics conveys specific environmental influences into phenotypic traits through a variety of mechanisms that are often installed in early life, then persist in differentiated tissues with the power to modulate the expression of many genes, although undergoing time-dependent alterations. There is still no evidence that epigenetics contributes significantly to the causes or transmission of T2DM from one generation to another, thus, to the current environment-driven epidemics, but it has become so likely, as pointed out in this paper, that one can expect an efflorescence of epigenetic knowledge about T2DM in times to come.
Collapse
|
97
|
Singh GB, Sharma R, Khullar M. Epigenetics and diabetic cardiomyopathy. Diabetes Res Clin Pract 2011; 94:14-21. [PMID: 21696841 DOI: 10.1016/j.diabres.2011.05.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 05/19/2011] [Accepted: 05/23/2011] [Indexed: 01/21/2023]
Abstract
Cardiovascular complications are a chief cause of mortality and morbidity in diabetic patients. Recent studies suggest that epigenetic changes which may arise as a consequence of environmental factors play an important role in predisposition to disease. Epigenetic mechanisms such as DNA methylation, chromatin remodeling and histone modifications regulate the gene expression in response to environmental signals. Role of epigenetics has been recognized in the pathology of diabetes, however its role in diabetic associated cardiomyopathy remains largely unexplored. In this article, we review current literature on the epigenetic mechanisms involved in diabetes and discuss recent evidence of epigenetic changes that may play an important role in pathophysiology of DCM.
Collapse
Affiliation(s)
- Gurinder Bir Singh
- Department of Experimental Medicine and Biotechnology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | |
Collapse
|
98
|
Olsson AH, Yang BT, Hall E, Taneera J, Salehi A, Dekker Nitert M, Ling C. Decreased expression of genes involved in oxidative phosphorylation in human pancreatic islets from patients with type 2 diabetes. Eur J Endocrinol 2011; 165:589-95. [PMID: 21775499 PMCID: PMC3178933 DOI: 10.1530/eje-11-0282] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Gene expression alterations, especially in target tissues of insulin, have been associated with type 2 diabetes (T2D). In this study, we examined if genes involved in oxidative phosphorylation (OXPHOS) show differential gene expression and DNA methylation in pancreatic islets from patients with T2D compared with non-diabetic donors. DESIGN AND METHODS Gene expression was analyzed in human pancreatic islets from 55 non-diabetic donors and nine T2D donors using microarray. RESULTS While the expected number of OXPHOS genes with reduced gene expression is 7.21, we identified 21 downregulated OXPHOS genes in pancreatic islets from patients with T2D using microarray analysis. This gives a ratio of observed over expected OXPHOS genes of 26.37 by a χ(2)-test with P=2.81 × 10(-7). The microarray data was validated by qRT-PCR for four selected OXPHOS genes: NDUFA5, NDUFA10, COX11, and ATP6V1H. All four OXPHOS genes were significantly downregulated in islets from patients with T2D compared with non-diabetic donors using qRT-PCR (P ≤ 0.01). Furthermore, HbAlc levels correlated negatively with gene expression of NDUFA5, COX11, and ATP6V1H (P<0.05). Gene expression of NDUFA5, NDUFA10, COX11, and ATP6V1H correlated positively with glucose-stimulated insulin secretion (P<0.03). Finally, DNA methylation was analyzed upstream of the transcription start for NDUFA5, COX11, and ATP6V1H. However, none of the analyzed CpG sites in the three genes showed differences in DNA methylation in islets from donors with T2D compared with non-diabetic donors. CONCLUSION Pancreatic islets from patients with T2D show decreased expression of a set of OXPHOS genes, which may lead to impaired insulin secretion.
Collapse
|
99
|
Niu Y, Ge R, Hu L, Diaz C, Wang Z, Wu CL, Olumi AF. Reduced levels of 5-α reductase 2 in adult prostate tissue and implications for BPH therapy. Prostate 2011; 71:1317-24. [PMID: 21308715 DOI: 10.1002/pros.21348] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Accepted: 01/04/2011] [Indexed: 11/07/2022]
Abstract
BACKGROUND 5-α reductase 2 (5-AR 2) is a key enzyme that is responsible of proper development of prostate tissue. Inhibition of 5-AR 2 has proven to be efficacious for management of urinary symptoms secondary benign prostatic hyperplasia (BPH). However, some patients are resistant to the therapeutic effects of 5-AR 2 inhibitor. We wished to determine why some benign non-cancerous adult human prostates do not express 5-AR 2, and hypothesized that methylation of 5-AR 2 promoter region correlated with low expression of 5-AR 2 protein. METHODS The transition zone of 42 human prostate tissues after radical prostatectomy was used for evaluation. Initially, 21 paraffin embedded samples were used to assess immunoreactivity to 5-AR 2 antibody in non-cancerous BPH samples. In the next 21 samples, fresh frozen prostate transition zone samples without cancer were assessed for immunoreactivity and methylation of the 5-AR 2 promoter using methyl-specific PCR. RESULTS We show that 6/21 (29%) of benign human prostate samples did not express the 5-AR 2 protein. Moreover, the promoter region of 5-AR 2 contains a CpG island that is methylated in benign prostate epithelial cells in culture and also in 39% (7/18) human prostate tissues. We show a strong correlation between methylation of the 5-AR 2 promoter region and absence of 5-AR 2 protein expression (P = 0.0025, Fisher's exact test). CONCLUSIONS Methylation of 5-AR 2 promoter may account for low or absent expression of 5-AR 2 in some human adult prostate tissues.
Collapse
Affiliation(s)
- Yinong Niu
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | |
Collapse
|
100
|
Xi LF, Jiang M, Shen Z, Hulbert A, Zhou XH, Lin YY, Kiviat NB, Koutsky LA. Inverse association between methylation of human papillomavirus type 16 DNA and risk of cervical intraepithelial neoplasia grades 2 or 3. PLoS One 2011; 6:e23897. [PMID: 21887341 PMCID: PMC3161083 DOI: 10.1371/journal.pone.0023897] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 07/27/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The clinical relevance of human papillomavirus type 16 (HPV16) DNA methylation has not been well documented, although its role in modulation of viral transcription is recognized. METHODS Study subjects were 211 women attending Planned Parenthood clinics in Western Washington for routine Papanicolaou screening who were HPV16 positive at the screening and/or subsequent colposcopy visit. Methylation of 11 CpG dinucleotides in the 3' end of the long control region of the HPV16 genome was examined by sequencing the cloned polymerase chain reaction products. The association between risk of CIN2/3 and degree of CpG methylation was estimated using a logistic regression model. RESULTS CIN2/3 was histologically confirmed in 94 (44.5%) of 211 HPV16 positive women. The likelihood of being diagnosed as CIN2/3 increased significantly with decreasing numbers of methylated CpGs (meCpGs) in the 3' end of the long control region (P(for trend) = 0.003). After adjusting for HPV16 variants, number of HPV16-positive visits, current smoking status and lifetime number of male sex partners, the odds ratio for the association of CIN2/3 with ≥4 meCpGs was 0.31 (95% confidence interval, 0.12-0.79). The proportion of ≥4 meCpGs decreased appreciably as the severity of the cervical lesion increased (P(for trend) = 0.001). The inverse association remained similar when CIN3 was used as the clinical endpoint. Although not statistically significant, the ≥4 meCpGs-related risk reduction was more substantial among current, as compared to noncurrent, smokers. CONCLUSION Results suggest that degree of the viral genome methylation is related to the outcome of an HPV16 cervical infection.
Collapse
Affiliation(s)
- Long Fu Xi
- Department of Pathology, School of Medicine, School of Public Health, University of Washington, Seattle, Washington, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|