51
|
Reyes JIL, Suzuki Y, Carvajal T, Muñoz MNM, Watanabe K. Intracellular Interactions Between Arboviruses and Wolbachia in Aedes aegypti. Front Cell Infect Microbiol 2021; 11:690087. [PMID: 34249780 PMCID: PMC8261290 DOI: 10.3389/fcimb.2021.690087] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/31/2021] [Indexed: 01/19/2023] Open
Abstract
Aedes aegypti is inherently susceptible to arboviruses. The geographical expansion of this vector host species has led to the persistence of Dengue, Zika, and Chikungunya human infections. These viruses take advantage of the mosquito’s cell to create an environment conducive for their growth. Arboviral infection triggers transcriptomic and protein dysregulation in Ae. aegypti and in effect, host antiviral mechanisms are compromised. Currently, there are no existing vaccines able to protect human hosts from these infections and thus, vector control strategies such as Wolbachia mass release program is regarded as a viable option. Considerable evidence demonstrates how the presence of Wolbachia interferes with arboviruses by decreasing host cytoskeletal proteins and lipids essential for arboviral infection. Also, Wolbachia strengthens host immunity, cellular regeneration and causes the expression of microRNAs which could potentially be involved in virus inhibition. However, variation in the magnitude of Wolbachia’s pathogen blocking effect that is not due to the endosymbiont’s density has been recently reported. Furthermore, the cellular mechanisms involved in this phenotype differs depending on Wolbachia strain and host species. This prompts the need to explore the cellular interactions between Ae. aegypti-arboviruses-Wolbachia and how different Wolbachia strains overall affect the mosquito’s cell. Understanding what happens at the cellular and molecular level will provide evidence on the sustainability of Wolbachia vector control.
Collapse
Affiliation(s)
- Jerica Isabel L Reyes
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan.,Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Yasutsugu Suzuki
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| | - Thaddeus Carvajal
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan.,Biological Control Research Unit, Center for Natural Sciences and Environmental Research (CENSER), De La Salle University, Metro Manila, Philippines
| | - Maria Nilda M Muñoz
- Biological Control Research Unit, Center for Natural Sciences and Environmental Research (CENSER), De La Salle University, Metro Manila, Philippines.,Research and Development Extension, Cagayan State University, Tuguegarao City, Philippines
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan.,Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan.,Biological Control Research Unit, Center for Natural Sciences and Environmental Research (CENSER), De La Salle University, Metro Manila, Philippines
| |
Collapse
|
52
|
Reduced competence to arboviruses following the sustainable invasion of Wolbachia into native Aedes aegypti from Southeastern Brazil. Sci Rep 2021; 11:10039. [PMID: 33976301 PMCID: PMC8113270 DOI: 10.1038/s41598-021-89409-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Field release of Wolbachia-infected Aedes aegypti has emerged as a promising solution to manage the transmission of dengue, Zika and chikungunya in endemic areas across the globe. Through an efficient self-dispersing mechanism, and the ability to induce virus-blocking properties, Wolbachia offers an unmatched potential to gradually modify wild Ae. aegypti populations turning them unsuitable disease vectors. Here we describe a proof-of-concept field trial carried out in a small community of Niterói, greater Rio de Janeiro, Brazil. Following the release of Wolbachia-infected eggs, we report here a successful invasion and long-term establishment of the bacterium across the territory, as denoted by stable high-infection indexes (> 80%). We have also demonstrated that refractoriness to dengue and Zika viruses, either thorough oral-feeding or intra-thoracic saliva challenging assays, was maintained over the adaptation to the natural environment of Southeastern Brazil. These findings further support Wolbachia's ability to invade local Ae. aegypti populations and impair disease transmission, and will pave the way for future epidemiological and economic impact assessments.
Collapse
|
53
|
Gabrieli P, Caccia S, Varotto-Boccazzi I, Arnoldi I, Barbieri G, Comandatore F, Epis S. Mosquito Trilogy: Microbiota, Immunity and Pathogens, and Their Implications for the Control of Disease Transmission. Front Microbiol 2021; 12:630438. [PMID: 33889137 PMCID: PMC8056039 DOI: 10.3389/fmicb.2021.630438] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
In mosquitoes, the interaction between the gut microbiota, the immune system, and the pathogens that these insects transmit to humans and animals is regarded as a key component toward the development of control strategies, aimed at reducing the burden of severe diseases, such as malaria and dengue fever. Indeed, different microorganisms from the mosquito microbiota have been investigated for their ability to affect important traits of the biology of the host insect, related with its survival, development and reproduction. Furthermore, some microorganisms have been shown to modulate the immune response of mosquito females, significantly shaping their vector competence. Here, we will review current knowledge in this field, focusing on i) the complex interaction between the intestinal microbiota and mosquito females defenses, both in the gut and at humoral level; ii) how knowledge on these issues contributes to the development of novel and targeted strategies for the control of mosquito-borne diseases such as the use of paratransgenesis or taking advantage of the relationship between Wolbachia and mosquito hosts. We conclude by providing a brief overview of available knowledge on microbiota-immune system interplay in major insect vectors.
Collapse
Affiliation(s)
- Paolo Gabrieli
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Silvia Caccia
- Department of Agricultural Sciences, University of Naples "Federico II", Naples, Italy.,Task Force on Microbiome Studies, University of Naples "Federico II", Naples, Italy
| | - Ilaria Varotto-Boccazzi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Irene Arnoldi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Giulia Barbieri
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Francesco Comandatore
- "L. Sacco" Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Sara Epis
- Department of Biosciences and Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| |
Collapse
|
54
|
Lau MJ, Ross PA, Hoffmann AA. Infertility and fecundity loss of Wolbachia-infected Aedes aegypti hatched from quiescent eggs is expected to alter invasion dynamics. PLoS Negl Trop Dis 2021; 15:e0009179. [PMID: 33591971 PMCID: PMC7909672 DOI: 10.1371/journal.pntd.0009179] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/26/2021] [Accepted: 01/26/2021] [Indexed: 02/02/2023] Open
Abstract
The endosymbiotic bacterium Wolbachia shows viral blocking in its mosquito host, leading to its use in arboviral disease control. Releases with Wolbachia strains wMel and wAlbB infecting Aedes aegypti have taken place in several countries. Mosquito egg survival is a key factor influencing population persistence and this trait is also important when eggs are stored prior to releases. We therefore tested the viability of mosquitoes derived from Wolbachia wMel and wAlbB-infected as well as uninfected eggs after long-term storage under diurnal temperature cycles of 11-19°C and 22-30°C. Eggs stored at 11-19°C had higher hatch proportions than those stored at 22-30°C. Adult Wolbachia density declined when they emerged from eggs stored for longer, which was associated with incomplete cytoplasmic incompatibility (CI) when wMel-infected males were crossed with uninfected females. Females from stored eggs at both temperatures continued to show perfect maternal transmission of Wolbachia, but storage reduced the fecundity of both wMel and wAlbB-infected females relative to uninfected mosquitoes. Furthermore, we found a very strong negative impact of the wAlbB infection on the fertility of females stored at 22-30°C, with almost 80% of females hatching after 11 weeks of storage being infertile. Our findings provide guidance for storing Wolbachia-infected A. aegypti eggs to ensure high fitness adult mosquitoes for release. Importantly, they also highlight the likely impact of egg quiescence on the population dynamics of Wolbachia-infected populations in the field, and the potential for Wolbachia to suppress mosquito populations through cumulative fitness costs across warm and dry periods, with expected effects on dengue transmission.
Collapse
Affiliation(s)
- Meng-Jia Lau
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Perran A. Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
55
|
Bishop C, Asgari S. Altered gene expression profile of Wolbachia pipientis wAlbB strain following transinfection from its native host Aedes albopictus to Aedes aegypti cells. Mol Microbiol 2021; 115:1229-1243. [PMID: 33325576 DOI: 10.1111/mmi.14668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/06/2020] [Accepted: 12/12/2020] [Indexed: 12/17/2022]
Abstract
Wolbachia is an obligate intracellular bacterial symbiont prevalent among arthropods and nematodes. To survive and reproduce, Wolbachia interacts with and modifies host subcellular structures, while sensing and responding to changes within the cellular environment. In mutualistic associations, Wolbachia may provision the host with metabolites, or help to maintain the chemical homeostasis of the host cell. Some strains can rapidly invade insect populations by manipulating host reproductive biology, while also preventing viral replication, allowing their use in vector control of arthropod-borne viruses. The Aedes albopictus-derived strain wAlbB is promising in this regard. When transinfected into the Yellow fever mosquito, Aedes aegypti, wAlbB reaches high frequencies within wild populations, and strongly inhibits viral transmission. Despite its obvious potential, much is still unknown about the molecular interactions between Wolbachia and host that enable its use in vector control. Furthermore, most Wolbachia transinfection research to date has focused on host effects. In the current study, we used a cell line model to explore the effect of transinfection of wAlbB from Ae. albopictus to Ae. aegypti. Using RNA sequencing, we show that several genes associated with host-symbiont interactions were downregulated by transinfection, with the greatest downregulation exhibited by prophage-associated genes.
Collapse
Affiliation(s)
- Cameron Bishop
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
56
|
Wolbachia's Deleterious Impact on Aedes aegypti Egg Development: The Potential Role of Nutritional Parasitism. INSECTS 2020; 11:insects11110735. [PMID: 33120915 PMCID: PMC7692218 DOI: 10.3390/insects11110735] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/18/2020] [Accepted: 10/22/2020] [Indexed: 12/18/2022]
Abstract
Simple Summary Mosquito-borne viral diseases such as dengue, Zika and chikungunya cause a significant global health burden and are currently increasing in outbreak frequency and geographical reach. Wolbachia pipientis, an endosymbiotic bacterium, offers a solution to this. When Wolbachia is introduced into the main mosquito vector of these viruses, Aedes aegypti, it alters the mosquito’s reproductive biology, as well as reducing the ability of the mosquitoes to transmit viruses. These traits can be leveraged to reduce virus transmission within a community by mass releasing Wolbachia-infected mosquitoes. However, Wolbachia has some negative effects on Aedes aegypti fitness, particularly egg longevity, and the reason behind this remains ambiguous. Insect fitness is very important for the success for Wolbachia-biocontrol strategies as they rely on the released insects being competitive with the wild mosquito population. This review summarises the fitness effects of Wolbachia on Aedes aegypti and investigates the possible contribution of Wolbachia as a nutritional parasite in lowering host fitness. It proposes the next stages of research that can be conducted to address nutritional parasitism to aid in the expansion of Wolbachia-based disease management programs worldwide. Abstract The artificial introduction of the endosymbiotic bacterium, Wolbachia pipientis, into Aedes (Ae.) aegypti mosquitoes reduces the ability of mosquitoes to transmit human pathogenic viruses and is now being developed as a biocontrol tool. Successful introgression of Wolbachia-carrying Ae. aegypti into native mosquito populations at field sites in Australia, Indonesia and Malaysia has been associated with reduced disease prevalence in the treated community. In separate field programs, Wolbachia is also being used as a mosquito population suppression tool, where the release of male only Wolbachia-infected Ae. aegypti prevents the native mosquito population from producing viable eggs, subsequently suppressing the wild population. While these technologies show great promise, they require mass rearing of mosquitoes for implementation on a scale that has not previously been done. In addition, Wolbachia induces some negative fitness effects on Ae. aegypti. While these fitness effects differ depending on the Wolbachia strain present, one of the most consistent and significant impacts is the shortened longevity and viability of eggs. This review examines the body of evidence behind Wolbachia’s negative effect on eggs, assesses nutritional parasitism as a key cause and considers how these impacts could be overcome to achieve efficient large-scale rearing of these mosquitoes.
Collapse
|
57
|
Wangkeeree J, Suwanchaisri K, Roddee J, Hanboonsong Y. Effect of Wolbachia infection states on the life history and reproductive traits of the leafhopper Yamatotettix flavovittatus Matsumura. J Invertebr Pathol 2020; 177:107490. [PMID: 33075316 DOI: 10.1016/j.jip.2020.107490] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 01/05/2023]
Abstract
Wolbachia is a maternally inherited bacterium of insects that can affect host reproduction and fitness. We examined the effect of Wolbachia infection on the life history and reproductive traits of the leafhopper Yamatotettix flavovittatus, which is a vector of the phytoplasma that causes white leaf disease in sugarcane. This investigation was performed using Wolbachia-infected and uninfected leafhopper lineages. Results revealed that Wolbachia infection did not significantly affect the survival of nymphal stages, male longevity, and sex ratio. However, Wolbachia-infected lineages had prolonged immature development periods and female longevity. In intrapopulation crosses, Wolbachia infection had no significant effects on occupation success, number of eggs laid, and female offspring, but the effect on egg-hatching varied. In interpopulation crosses, Wolbachia infection had no significant effect on occupation success and female offspring, but it did affect the number of eggs laid and egg-hatching rates. Assortative pairings regarding infection status resulted in normal egg deposition and hatching, whereas disassortative pairings resulted in lower egg deposition and no hatching. Wolbachia was thus shown to be highly vertically transmitted (>98% of the tested individuals). Our findings provide additional data on the interactions between Wolbachia in insect hosts. This evidence of perfect maternal transmission and strong reproductive incompatibility highlights the importance of further studies on the use of Wolbachia as a biological control agent for the leafhopper vector.
Collapse
Affiliation(s)
- Jureemart Wangkeeree
- Department of Agricultural Technology, Faculty of Science and Technology, Thammasat University Rangsit Centre, Khlong Nueng, Klong Luang, Pathum Thani, Thailand.
| | - Kamonrat Suwanchaisri
- Department of Agricultural Technology, Faculty of Science and Technology, Thammasat University Rangsit Centre, Khlong Nueng, Klong Luang, Pathum Thani, Thailand
| | - Jariya Roddee
- School of Crop Production Technology, Institute of Agricultural Technology, Suranaree University of Technology, Suranaree, Muang, Nakhon Ratchasima, Thailand
| | - Yupa Hanboonsong
- Department of Entomology, Faculty of Agriculture, Khon Kaen University, Nai Muang, Muang, Khon Kaen, Thailand
| |
Collapse
|
58
|
Onyango MG, Ciota AT, Kramer LD. The Vector - Host - Pathogen Interface: The Next Frontier in the Battle Against Mosquito-Borne Viral Diseases? Front Cell Infect Microbiol 2020; 10:564518. [PMID: 33178624 PMCID: PMC7596266 DOI: 10.3389/fcimb.2020.564518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
An unprecedented spread of mosquito-borne viruses and increasing populations of mosquito vectors has led to an increase in the frequency of mosquito-borne virus disease outbreaks. Recent outbreaks of Zika virus (ZIKV) and yellow fever virus (YFV), among others have led to a concerted effort to understand the biology of mosquito-borne viruses and their interaction with their vector mosquito and vertebrate hosts. Recent studies have aimed to understand the vector-host-pathogen interface and how it influences infection, tropism and disease severity in the vertebrate host. The initial replication of the pathogen at the skin bite site is crucial in determining the progression of the infection in the vertebrate host. Delineating the role of the commensal microbes in the mosquito saliva as well as how they interact with the vertebrate host keratinocytes will improve our understanding of disease immunopathology and may lead to new therapeutics.
Collapse
Affiliation(s)
- Maria Gorreti Onyango
- New York State Department of Health, Wadsworth Center, Slingerlands, NY, United States
| | - Alexander T Ciota
- New York State Department of Health, Wadsworth Center, Slingerlands, NY, United States.,School of Public Health, State University of New York at Albany, Albany, NY, United States
| | - Laura D Kramer
- New York State Department of Health, Wadsworth Center, Slingerlands, NY, United States.,School of Public Health, State University of New York at Albany, Albany, NY, United States
| |
Collapse
|
59
|
Steinwascher K. Competition and growth among Aedes aegypti larvae: Effects of distributing food inputs over time. PLoS One 2020; 15:e0234676. [PMID: 33006964 PMCID: PMC7531853 DOI: 10.1371/journal.pone.0234676] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/18/2020] [Indexed: 11/30/2022] Open
Abstract
Male and female mosquito larvae compete for different subsets of the yeast food resource in laboratory microcosms. Males compete more intensely with males, and females with females. The amount and timing of food inputs alters both growth and competition, but the effects are different between sexes. Increased density increases competition among males. Among females, density operates primarily by changing the food/larva or total food; this affects competition in some interactions and growth in others. Food added earlier in the life span contributes more to mass than the same quantity added later. After a period of starvation larvae appear to use some of the subsequent food input to rebuild physiological reserves in addition to building mass. The timing of pupation is affected by the independent factors and competition, but not in the same way for the two sexes, and not in the same way as mass at pupation for the two sexes. There is an effect of density on the timing of pupation for females independent of competition or changes in food/larva or total food. Male and female larvae have different larval life history strategies. Males grow quickly to a minimum size, then pupate, depending on the amount of food available. Males that do not grow quickly enough may delay pupation further to grow larger, resulting in a bimodal distribution of sizes and ages. Males appear to have a maximum size determined by the early food level. Females grow faster than males and grow larger than males on the same food inputs. Females affect the growth and competition among males by manipulating the number of particles in the microcosm through changes in feeding behavior. Mosquito larvae appear to have evolved to survive periods of starvation and take advantage of intermittent inputs of food into containers.
Collapse
Affiliation(s)
- Kurt Steinwascher
- Florida Medical Entomology Laboratory, Vero Beach, FL, United States of America
| |
Collapse
|
60
|
Su QC, Wang X, Deng C, Yun YL, Zhao Y, Peng Y. Transcriptome responses to elevated CO 2 level and Wolbachia-infection stress in Hylyphantes graminicola (Araneae: Linyphiidae). INSECT SCIENCE 2020; 27:908-920. [PMID: 31215133 DOI: 10.1111/1744-7917.12701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/09/2019] [Accepted: 06/02/2019] [Indexed: 06/09/2023]
Abstract
Hylyphantes graminicola is a resident spider species found in maize and cotton fields and is an important biological control agent of various pests. Previous studies have demonstrated that stress from elevated CO2 and Wolbachia infection can strongly affect spider species. Thus, based on CO2 levels (400 ppm, current atmospheric CO2 concentration and 800 ppm, high CO2 concentration) and Wolbachia status (Wolbachia-infected, W+ and Wolbachia-uninfected, W- ), we divided H. graminicola individuals into four treatment groups: W- 400 ppm, W- 800 ppm, W+ 400 ppm, and W+ 800 ppm. To investigate the effects of elevated CO2 levels (W- 400 vs W- 800), Wolbachia infection (W- 400 vs W+ 400), and the interactions between these two factors (W- 400 vs W+ 800), high-throughput transcriptome sequencing was employed to characterize the de novo transcriptome of the spiders and identify stress-related differentially expressed genes (DEGs). De novo assembly of complementary DNA sequences generated 86 688 unigenes, 23 938 of which were annotated in public databases. A total of 84, 21, and 157 DEGs were found among W- 400 vs W- 800, W- 400 vs W+ 400, and W- 400 vs W+ 800, respectively. Functional enrichment analysis revealed that metabolic processes, signaling, and catalytic activity were significantly affected by elevated CO2 levels and Wolbachia infection. Our findings suggest that the impact of elevated CO2 levels and Wolbachia infection on the H. graminicola transcriptome was, to a large extent, on genes involved in metabolic processes. This study is the first description of transcriptome changes in response to elevated CO2 levels and Wolbachia infection in spiders.
Collapse
Affiliation(s)
- Qi-Chen Su
- State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, China
| | - Xia Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, China
| | - Chan Deng
- State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, China
| | - Yue-Li Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, China
| | - Yao Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, China
| | - Yu Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering of China, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
61
|
Carneiro Dutra HL, Deehan MA, Frydman H. Wolbachia and Sirtuin-4 interaction is associated with alterations in host glucose metabolism and bacterial titer. PLoS Pathog 2020; 16:e1008996. [PMID: 33048997 PMCID: PMC7584242 DOI: 10.1371/journal.ppat.1008996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/23/2020] [Accepted: 09/18/2020] [Indexed: 12/30/2022] Open
Abstract
Wolbachia is an intracellular bacterial symbiont of arthropods notorious for inducing many reproductive manipulations that foster its dissemination. Wolbachia affects many aspects of host biology, including metabolism, longevity and physiology, being described as a nutrient provisioning or metabolic parasite, depending on the host-microbe association. Sirtuins (SIRTs) are a family of NAD+-dependent post-translational regulatory enzymes known to affect many of the same processes altered by Wolbachia, including aging and metabolism, among others. Despite a clear overlap in control of host-derived pathways and physiology, no work has demonstrated a link between these two regulators. We used genetically tractable Drosophila melanogaster to explore the role of sirtuins in shaping signaling pathways in the context of a host-symbiont model. By using transcriptional profiling and metabolic assays in the context of genetic knockouts/over-expressions, we examined the effect of several Wolbachia strains on host sirtuin expression across distinct tissues and timepoints. We also quantified the downstream effects of the sirtuin x Wolbachia interaction on host glucose metabolism, and in turn, how it impacted Wolbachia titer. Our results indicate that the presence of Wolbachia is associated with (1) reduced sirt-4 expression in a strain-specific manner, and (2) alterations in host glutamate dehydrogenase expression and ATP levels, key components of glucose metabolism. We detected high glucose levels in Wolbachia-infected flies, which further increased when sirt-4 was over-expressed. However, under sirt-4 knockout, flies displayed a hypoglycemic state not rescued to normal levels in the presence of Wolbachia. Finally, whole body sirt-4 over-expression resulted in reduced Wolbachia ovarian titer. Our results expand knowledge of Wolbachia-host associations in the context of a yet unexplored class of host post-translational regulatory enzymes with implications for conserved host signaling pathways and bacterial titer, factors known to impact host biology and the symbiont's ability to spread through populations.
Collapse
Affiliation(s)
| | - Mark Anthony Deehan
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
| | - Horacio Frydman
- Department of Biology, Boston University, Boston, Massachusetts, United States of America
- National Emerging Infectious Disease Laboratory, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
62
|
Koh C, Islam MN, Ye YH, Chotiwan N, Graham B, Belisle JT, Kouremenos KA, Dayalan S, Tull DL, Klatt S, Perera R, McGraw EA. Dengue virus dominates lipid metabolism modulations in Wolbachia-coinfected Aedes aegypti. Commun Biol 2020; 3:518. [PMID: 32948809 PMCID: PMC7501868 DOI: 10.1038/s42003-020-01254-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/24/2020] [Indexed: 12/28/2022] Open
Abstract
Competition between viruses and Wolbachia for host lipids is a proposed mechanism of Wolbachia-mediated virus blocking in insects. Yet, the metabolomic interaction between virus and symbiont within the mosquito has not been clearly defined. We compare the lipid profiles of Aedes aegypti mosquitoes bearing mono- or dual-infections of the Wolbachia wMel strain and dengue virus serotype 3 (DENV3). We found metabolic signatures of infection-induced intracellular events but little evidence to support direct competition between Wolbachia and virus for host lipids. Lipid profiles of dual-infected mosquitoes resemble those of DENV3 mono-infected mosquitoes, suggesting virus-driven modulation dominates over that of Wolbachia. Interestingly, knockdown of key metabolic enzymes suggests cardiolipins are host factors for DENV3 and Wolbachia replication. These findings define the Wolbachia-DENV3 metabolic interaction as indirectly antagonistic, rather than directly competitive, and reveal new research avenues with respect to mosquito × virus interactions at the molecular level. Koh, Islam, Ye et al. describe lipid profiles of Aedes aegypti mosquitoes bearing mono- or dual-infections of Wolbachia (wMel) and dengue virus serotype 3 (DENV3), finding that virus modulation dominates the dual-infection lipid profile and that cardiolipins support DENV3 and Wolbachia replication. This study suggests that direct competition for lipids do not underlie Wolbachia-mediated virus blocking.
Collapse
Affiliation(s)
- Cassandra Koh
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - M Nurul Islam
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Yixin H Ye
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Nunya Chotiwan
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Barbara Graham
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - John T Belisle
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Konstantinos A Kouremenos
- Metabolomics Australia, Bio21 Institute of Molecular Sciences and Biotechnology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Saravanan Dayalan
- Metabolomics Australia, Bio21 Institute of Molecular Sciences and Biotechnology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dedreia L Tull
- Metabolomics Australia, Bio21 Institute of Molecular Sciences and Biotechnology, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Stephan Klatt
- Department of Biochemistry and Molecular Biology, Bio21 Institute of Molecular Sciences and Biotechnology, University of Melbourne, Parkville, VIC, 3010, Australia.,The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Rushika Perera
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Elizabeth A McGraw
- School of Biological Sciences, Monash University, Clayton, VIC, 3800, Australia.,Department of Entomology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, 16801, USA
| |
Collapse
|
63
|
Fraser JE, O’Donnell TB, Duyvestyn JM, O’Neill SL, Simmons CP, Flores HA. Novel phenotype of Wolbachia strain wPip in Aedes aegypti challenges assumptions on mechanisms of Wolbachia-mediated dengue virus inhibition. PLoS Pathog 2020; 16:e1008410. [PMID: 32726353 PMCID: PMC7416964 DOI: 10.1371/journal.ppat.1008410] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 08/10/2020] [Accepted: 05/29/2020] [Indexed: 12/31/2022] Open
Abstract
The bacterial endosymbiont Wolbachia is a biocontrol tool that inhibits the ability of the Aedes aegypti mosquito to transmit positive-sense RNA viruses such as dengue and Zika. Growing evidence indicates that when Wolbachia strains wMel or wAlbB are introduced into local mosquito populations, human dengue incidence is reduced. Despite the success of this novel intervention, we still do not fully understand how Wolbachia protects mosquitoes from viral infection. Here, we demonstrate that the Wolbachia strain wPip does not inhibit virus infection in Ae. aegypti. We have leveraged this novel finding, and a panel of Ae. aegypti lines carrying virus-inhibitory (wMel and wAlbB) and non-inhibitory (wPip) strains in a common genetic background, to rigorously test a number of hypotheses about the mechanism of Wolbachia-mediated virus inhibition. We demonstrate that, contrary to previous suggestions, there is no association between a strain's ability to inhibit dengue infection in the mosquito and either its typical density in the midgut or salivary glands, or the degree to which it elevates innate immune response pathways in the mosquito. These findings, and the experimental platform provided by this panel of genetically comparable mosquito lines, clear the way for future investigations to define how Wolbachia prevents Ae. aegypti from transmitting viruses.
Collapse
Affiliation(s)
- Johanna E. Fraser
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, Australia
| | - Tanya B. O’Donnell
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, Australia
| | - Johanna M. Duyvestyn
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, Australia
| | - Scott L. O’Neill
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, Australia
| | - Cameron P. Simmons
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, Australia
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Heather A. Flores
- World Mosquito Program, Institute of Vector-Borne Disease, Monash University, Clayton, Australia
| |
Collapse
|
64
|
Madhav M, Brown G, Morgan JAT, Asgari S, McGraw EA, James P. Transinfection of buffalo flies (Haematobia irritans exigua) with Wolbachia and effect on host biology. Parasit Vectors 2020; 13:296. [PMID: 32522243 PMCID: PMC7285521 DOI: 10.1186/s13071-020-04161-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/01/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Buffalo flies (Haematobia irritans exigua) (BF) and closely related horn flies (Haematobia irritans irritans) (HF) are invasive haematophagous parasites with significant economic and welfare impacts on cattle production. Wolbachia are intracellular bacteria found widely in insects and currently of much interest for use in novel strategies for the area wide control of insect pests and insect-vectored diseases. In this paper, we report the transinfection of BF towards the development of area-wide controls. METHODS Three stages of BF; embryos, pupae and adult female flies, were injected with different Wolbachia strains (wAlbB, wMel and wMelPop). The success of transinfection and infection dynamics was compared by real-time PCR and FISH and fitness effects were assessed in transinfected flies. RESULTS BF eggs were not easily injected because of their tough outer chorion and embryos were frequently damaged with less than 1% hatch rate of microinjected eggs. No Wolbachia infection was recorded in flies successfully reared from injected eggs. Adult and pupal injection resulted in higher survival rates and somatic and germinal tissue infections, with transmission to the succeeding generations on some occasions. Investigations of infection dynamics in flies from injected pupae confirmed that Wolbachia were actively multiplying in somatic tissues. Ovarian infections were confirmed with wMel and wMelPop in a number of instances, though not with wAlbB. Measurement of fitness traits indicated reduced longevity, decreased and delayed adult emergence, and reduced fecundity in Wolbachia-infected flies compared to mock-injected flies. Effects varied with the Wolbachia strain injected with most marked changes seen in the wMelPop-injected flies and least severe effects seen with wAlbB. CONCLUSIONS Adult and pupal injection were the most suitable methods for transinfecting BF and all three strains of Wolbachia successfully replicated in somatic tissues. The Wolbachia-induced fitness effects seen in transinfected BF suggest potential for use of the wMel or wMelPop strains in Wolbachia-based biocontrol programmes for BF.
Collapse
Affiliation(s)
- Mukund Madhav
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Geoff Brown
- Department of Agriculture and Fisheries, Brisbane, 4001, Australia
| | - Jess A T Morgan
- Department of Agriculture and Fisheries, Brisbane, 4001, Australia
| | - Sassan Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Elizabeth A McGraw
- Department of Entomology, Center for Infectious Disease Dynamics, Pennsylvania State University, University Park, PA, 16802, USA
| | - Peter James
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
65
|
Kaur R, Martinez J, Rota-Stabelli O, Jiggins FM, Miller WJ. Age, tissue, genotype and virus infection regulate Wolbachia levels in Drosophila. Mol Ecol 2020; 29:2063-2079. [PMID: 32391935 DOI: 10.1111/mec.15462] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/28/2020] [Indexed: 12/13/2022]
Abstract
The bacterial symbiont Wolbachia can protect insects against viral pathogens, and the varying levels of antiviral protection are correlated with the endosymbiont load within the insects. To understand why Wolbachia strains differ in their antiviral effects, we investigated the factors controlling Wolbachia density in five closely related strains in their natural Drosophila hosts. We found that Wolbachia density varied greatly across different tissues and between flies of different ages, and these effects depended on the host-symbiont association. Some endosymbionts maintained largely stable densities as flies aged while others increased, and these effects in turn depended on the tissue being examined. Measuring Wolbachia rRNA levels in response to viral infection, we found that viral infection itself also altered Wolbachia levels, with Flock House virus causing substantial reductions in symbiont loads late in the infection. This effect, however, was virus-specific as Drosophila C virus had little impact on Wolbachia in all of the five host systems. Because viruses have strong tissue tropisms and antiviral protection is thought to be cell-autonomous, these effects are likely to affect the virus-blocking phenomenon. However, we were unable to find any evidence of a correlation between Wolbachia and viral titres within the same tissues. We conclude that Wolbachia levels within flies are regulated in a complex host-symbiont-virus-dependent manner and this trinity is likely to influence the antiviral effects of Wolbachia.
Collapse
Affiliation(s)
- Rupinder Kaur
- Division of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria.,Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Department of Neurobiology, University of Vienna, Vienna, Austria.,Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Julien Martinez
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Omar Rota-Stabelli
- Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | | | - Wolfgang J Miller
- Division of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
66
|
López-Madrigal S, Duarte EH. Titer regulation in arthropod-Wolbachia symbioses. FEMS Microbiol Lett 2020; 366:5637388. [PMID: 31750894 DOI: 10.1093/femsle/fnz232] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022] Open
Abstract
Symbiosis between intracellular bacteria (endosymbionts) and animals are widespread. The alphaproteobacterium Wolbachia pipientis is known to maintain a variety of symbiotic associations, ranging from mutualism to parasitism, with a wide range of invertebrates. Wolbachia infection might deeply affect host fitness (e.g. reproductive manipulation and antiviral protection), which is thought to explain its high prevalence in nature. Bacterial loads significantly influence both the infection dynamics and the extent of bacteria-induced host phenotypes. Hence, fine regulation of bacterial titers is considered as a milestone in host-endosymbiont interplay. Here, we review both environmental and biological factors modulating Wolbachia titers in arthropods.
Collapse
Affiliation(s)
| | - Elves H Duarte
- Instituto Gulbenkian de Ciência. Rua da Quinta Grande, 6. 2780-156 Oeiras, Portugal.,Departamento de Ciências e Tecnologia, Universidade de Cabo Verde. Palmarejo, CP 279 - Praia, Cabo Verde
| |
Collapse
|
67
|
Ross PA, Lau MJ, Hoffmann AA. Does membrane feeding compromise the quality of Aedes aegypti mosquitoes? PLoS One 2019; 14:e0224268. [PMID: 31693672 PMCID: PMC6834243 DOI: 10.1371/journal.pone.0224268] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/09/2019] [Indexed: 12/26/2022] Open
Abstract
Modified Aedes aegypti mosquitoes are being mass-reared for release in disease control programs around the world. Releases involving female mosquitoes rely on them being able to seek and feed on human hosts. To facilitate the mass-production of mosquitoes for releases, females are often provided blood through artificial membrane feeders. When reared across generations there is a risk that mosquitoes will adapt to feeding on membranes and lose their ability to feed on human hosts. To test adaptation to membrane feeding, we selected replicate populations of Ae. aegypti for feeding on either human arms or membrane feeders for at least 8 generations. Membrane-selected populations suffered fitness costs, likely due to inbreeding depression arising from bottlenecks. Membrane-selected females had higher feeding rates on membranes than human-selected ones, suggesting adaptation to membrane feeding, but they maintained their attraction to host cues and feeding ability on humans despite a lack of selection for these traits. Host-seeking ability in small laboratory cages did not differ between populations selected on the two blood sources, but membrane-selected females were compromised in a semi-field enclosure where host-seeking was tested over a longer distance. Our findings suggest that Ae. aegypti may adapt to feeding on blood provided artificially, but this will not substantially compromise field performance or affect experimental assessments of mosquito fitness. However, large population sizes (thousands of individuals) during mass rearing with membrane feeders should be maintained to avoid bottlenecks which lead to inbreeding depression.
Collapse
Affiliation(s)
- Perran A. Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Meng-Jia Lau
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Ary A. Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
68
|
Ghosh A, Jasperson D, Cohnstaedt LW, Brelsfoard CL. Transfection of Culicoides sonorensis biting midge cell lines with Wolbachia pipientis. Parasit Vectors 2019; 12:483. [PMID: 31615544 PMCID: PMC6792224 DOI: 10.1186/s13071-019-3716-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/14/2019] [Indexed: 01/08/2023] Open
Abstract
Background Biting midges of the genus Culicoides vector multiple veterinary pathogens and are difficult to control. Endosymbionts particularly Wolbachia pipientis may offer an alternative to control populations of Culicoides and/or impact disease transmission in the form of population suppression or replacement strategies. Methods Culicoides sonorensis cell lines were transfected with a Wolbachia infection using a modified shell vial technique. Infections were confirmed using PCR and cell localization using fluorescent in situ hybridization (FISH). The stability of Wolbachia infections and density was determined by qPCR. qPCR was also used to examine immune genes in the IMD, Toll and JACK/STAT pathways to determine if Wolbachia were associated with an immune response in infected cells. Results Here we have transfected two Culicoides sonorensis cell lines (W3 and W8) with a Wolbachia infection (walbB) from donor Aedes albopictus Aa23 cells. PCR and FISH showed the presence of Wolbachia infections in both C. sonorensis cell lines. Infection densities were higher in the W8 cell lines when compared to W3. In stably infected cells, genes in the immune Toll, IMD and JAK/STAT pathways were upregulated, along with Attacin and an Attacin-like anti-microbial peptides. Conclusions The successful introduction of Wolbachia infections in C. sonorensis cell lines and the upregulation of immune genes, suggest the utility of using Wolbachia for a population replacement and/or population suppression approach to limit the transmission of C. sonorensis vectored diseases. Results support the further investigation of Wolbachia induced pathogen inhibitory effects in Wolbachia-infected C. sonorensis cell lines and the introduction of Wolbachia into C. sonorensis adults via embryonic microinjection to examine for reproductive phenotypes and host fitness effects of a novel Wolbachia infection.
Collapse
Affiliation(s)
- Arnab Ghosh
- Department of Biological Sciences, Texas Tech University, 2901 Main St., Lubbock, TX, 79409, USA
| | - Dane Jasperson
- USDA-ARS Arthropod Borne Animal Disease Research Unit, 1515 College Ave., Manhattan, KS, 66502, USA
| | - Lee W Cohnstaedt
- USDA-ARS Arthropod Borne Animal Disease Research Unit, 1515 College Ave., Manhattan, KS, 66502, USA
| | - Corey L Brelsfoard
- Department of Biological Sciences, Texas Tech University, 2901 Main St., Lubbock, TX, 79409, USA.
| |
Collapse
|
69
|
Jiménez NE, Gerdtzen ZP, Olivera-Nappa Á, Salgado JC, Conca C. A systems biology approach for studying Wolbachia metabolism reveals points of interaction with its host in the context of arboviral infection. PLoS Negl Trop Dis 2019; 13:e0007678. [PMID: 31469838 PMCID: PMC6742412 DOI: 10.1371/journal.pntd.0007678] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 09/12/2019] [Accepted: 07/31/2019] [Indexed: 01/08/2023] Open
Abstract
Wolbachia are alpha-proteobacteria known to infect arthropods, which are of interest for disease control since they have been associated with improved resistance to viral infection. Although several genomes for different strains have been sequenced, there is little knowledge regarding the relationship between this bacterium and their hosts, particularly on their dependency for survival. Motivated by the potential applications on disease control, we developed genome-scale models of four Wolbachia strains known to infect arthropods: wAlbB (Aedes albopictus), wVitA (Nasonia vitripennis), wMel and wMelPop (Drosophila melanogaster). The obtained metabolic reconstructions exhibit a metabolism relying mainly on amino acids for energy production and biomass synthesis. A gap analysis was performed to detect metabolic candidates which could explain the endosymbiotic nature of this bacterium, finding that amino acids, requirements for ubiquinone precursors and provisioning of metabolites such as riboflavin could play a crucial role in this relationship. This work provides a systems biology perspective for studying the relationship of Wolbachia with its host and the development of new approaches for control of the spread of arboviral diseases. This approach, where metabolic gaps are key objects of study instead of just additions to complete a model, could be applied to other endosymbiotic bacteria of interest. The expansion of the geographic distribution of arthropods has led to an increase in the number of infections of Zika and Dengue. This motivates the search for new alternative approaches for disease control. Wolbachia pipientis, an obligate intracellular bacteria known to provide pathogen-blocking capabilities to its host, has been used to this end. Wolbachia-infected mosquitoes have been released into the environment as a strategy for controlling the mosquito population and hence the spread of arboviral-derived diseases. However, there is little knowledge regarding the specific interactions that occur between Wolbachia and its host, particularly those associated with its obligate intracellular nature. In this work we studied Wolbachia endosymbiosis from a systems biology perspective. By analyzing the gaps in the metabolic networks of four Wolbachia strains we were able to identify key interaction points between this intracellular bacteria and its host, which play a crucial role in their metabolic relationship. This approach focuses on what is missing to allow unveiling new information regarding the interplay between interacting metabolic networks, and it is especially useful in the case of intracellular bacteria where experimental information is scarce. This additional insight on the metabolic interactions between host and parasite hold great potential for the development of arboviral disease control strategies.
Collapse
Affiliation(s)
- Natalia E. Jiménez
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile
- Center for Mathematical Modeling (CMM) (UMI CNRS 2807), Department of Mathematical Engineering, University of Chile, Santiago, Chile
- * E-mail:
| | - Ziomara P. Gerdtzen
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile
| | - Álvaro Olivera-Nappa
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile
| | - J. Cristian Salgado
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile
| | - Carlos Conca
- Centre for Biotechnology and Bioengineering (CeBiB), Department of Chemical Engineering, Biotechnology and Materials, University of Chile, Santiago, Chile
- Center for Mathematical Modeling (CMM) (UMI CNRS 2807), Department of Mathematical Engineering, University of Chile, Santiago, Chile
| |
Collapse
|
70
|
Bennett KL, Gómez-Martínez C, Chin Y, Saltonstall K, McMillan WO, Rovira JR, Loaiza JR. Dynamics and diversity of bacteria associated with the disease vectors Aedes aegypti and Aedes albopictus. Sci Rep 2019; 9:12160. [PMID: 31434963 PMCID: PMC6704126 DOI: 10.1038/s41598-019-48414-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/17/2019] [Indexed: 01/02/2023] Open
Abstract
Aedes aegypti and Aedes albopictus develop in the same aquatic sites where they encounter microorganisms that influence their life history and capacity to transmit human arboviruses. Some bacteria such as Wolbachia are currently being considered for the control of Dengue, Chikungunya and Zika. Yet little is known about the dynamics and diversity of Aedes-associated bacteria, including larval habitat features that shape their tempo-spatial distribution. We applied large-scale 16S rRNA amplicon sequencing to 960 adults and larvae of both Ae. aegypti and Ae. albopictus mosquitoes from 59 sampling sites widely distributed across nine provinces of Panama. We find both species share a limited, yet highly variable core microbiota, reflecting high stochasticity within their oviposition habitats. Despite sharing a large proportion of microbiota, Ae. aegypti harbours higher bacterial diversity than Ae. albopictus, primarily due to rarer bacterial groups at the larval stage. We find significant differences between the bacterial communities of larvae and adult mosquitoes, and among samples from metal and ceramic containers. However, we find little support for geography, water temperature and pH as predictors of bacterial associates. We report a low incidence of natural Wolbachia infection for both Aedes and its geographical distribution. This baseline information provides a foundation for studies on the functions and interactions of Aedes-associated bacteria with consequences for bio-control within Panama.
Collapse
Affiliation(s)
- Kelly L Bennett
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama.
| | - Carmelo Gómez-Martínez
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Ciudad del Saber, Apartado, 0843-01103, Ciudad de Panamá, Panama
| | - Yamileth Chin
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
| | - Kristin Saltonstall
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
| | - Jose R Rovira
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Ciudad del Saber, Apartado, 0843-01103, Ciudad de Panamá, Panama
| | - Jose R Loaiza
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Panama.
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, Ciudad del Saber, Apartado, 0843-01103, Ciudad de Panamá, Panama.
- Programa Centroamericano de Maestría en Entomología, Universidad de Panamá, Ciudad de Panamá, Panama.
| |
Collapse
|
71
|
Caragata EP, Tikhe CV, Dimopoulos G. Curious entanglements: interactions between mosquitoes, their microbiota, and arboviruses. Curr Opin Virol 2019; 37:26-36. [PMID: 31176069 PMCID: PMC6768729 DOI: 10.1016/j.coviro.2019.05.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 11/22/2022]
Abstract
Mosquitoes naturally harbor a diverse community of microorganisms that play a crucial role in their biology. Mosquito-microbiota interactions are abundant and complex. They can dramatically alter the mosquito immune response, and impede or enhance a mosquito's ability to transmit medically important arboviral pathogens. Yet critically, given the massive public health impact of arboviral disease, few such interactions have been well characterized. In this review, we describe the current state of knowledge of the role of microorganisms in mosquito biology, how microbial-induced changes to mosquito immunity moderate infection with arboviruses, cases of mosquito-microbial-virus interactions with a defined mechanism, and the molecular interactions that underlie the endosymbiotic bacterium Wolbachia's ability to block virus infection in mosquitoes.
Collapse
Affiliation(s)
- Eric P Caragata
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Chinmay V Tikhe
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States.
| |
Collapse
|
72
|
Farnesi LC, Belinato TA, Gesto JSM, Martins AJ, Bruno RV, Moreira LA. Embryonic development and egg viability of wMel-infected Aedes aegypti. Parasit Vectors 2019; 12:211. [PMID: 31060581 PMCID: PMC6503365 DOI: 10.1186/s13071-019-3474-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/30/2019] [Indexed: 01/12/2023] Open
Abstract
Background Aedes aegypti is a major disease vector in urban habitats, involved in the transmission of dengue, chikungunya and Zika. Despite innumerous attempts to contain disease outbreaks, there are neither efficient vaccines nor definite vector control methods nowadays. In recent years, an innovative strategy to control arboviruses, which exploits the endosymbiotic bacterium Wolbachia pipientis, emerged with great expectations. The success of the method depends on many aspects, including Wolbachia’s cytoplasmic incompatibility and pathogen interference phenotypes, as well as its effect on host fitness. In this work, we investigated the influence the Wolbachia strain wMel exerts on embryo development and egg viability and speculate on its field release use. Methods Wild-type (Br or Rockefeller) and Wolbachia-harboring specimens (wMelBr) were blood-fed and submitted to synchronous egg laying for embryo development assays. Samples were analyzed for morphological markers, developmental endpoint and egg resistance to desiccation (ERD). Quiescent egg viability over time was also assessed. Results wMelBr samples completed embryogenesis 2–3 hours later than wild-type. This delay was also observed through the onset of both morphological and physiological markers, respectively by the moments of germband extension and ERD acquisition. Following the end of embryonic development, wMelBr eggs were slightly less resistant to desiccation and showed reduced viability levels, which rapidly decayed after 40 days into quiescence, from approximately 75% to virtually 0% in less than a month. Conclusions Our data revealed that the wMel strain of Wolbachia slightly delays embryogenesis and also affects egg quality, both through reduced viability and desiccation resistance. These findings suggest that, although embryonic fitness is somehow compromised by wMel infection, an efficient host reproductive manipulation through cytoplasmic incompatibility seems sufficient to overcome these effects in nature and promote bacterial invasion, as shown by successful ongoing field implementation.
Collapse
Affiliation(s)
- Luana Cristina Farnesi
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Thiago Affonso Belinato
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.,Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou, Fiocruz, Belo Horizonte, MG, Brazil
| | - João Silveira Moledo Gesto
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.,Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou, Fiocruz, Belo Horizonte, MG, Brazil
| | - Ademir Jesus Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Rafaela Vieira Bruno
- Laboratório de Biologia Molecular de Insetos, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM)/CNPq, Rio de Janeiro, Brazil
| | - Luciano Andrade Moreira
- Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Instituto René Rachou, Fiocruz, Belo Horizonte, MG, Brazil. .,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM)/CNPq, Rio de Janeiro, Brazil.
| |
Collapse
|
73
|
Heu K, Gendrin M. [Mosquito microbiota and its influence on disease vectorial transmission]. Biol Aujourdhui 2019; 212:119-136. [PMID: 30973141 DOI: 10.1051/jbio/2019003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Indexed: 01/23/2023]
Abstract
Mosquitoes (Diptera: Culicidae) are found worldwide. Around 100 among 3500 mosquito species are known to be vectors of parasites and viruses, responsible for infectious diseases including malaria and dengue. Mosquitoes host diverse microbial communities that influence disease transmission, either by direct interference or via affecting host immunity and physiology. These microbial communities are present within diverse tissues, including the digestive tract, and vary depending on the sex of the mosquito, its developmental stage, and ecological factors. This review summarizes the current knowledge about the mosquito microbiota, defined as a community of commensal, symbiotic or pathogenic microbes harboured by a host. We first describe the current knowledge on the diversity of the microbiota, that includes bacteria, fungi, parasites and viruses and on its modes of acquisition throughout the mosquito life cycle. We then focus on microbial interactions within the mosquito gut, which notably affect vector competence, and on host-microbe interactions affecting mosquito fitness. Finally, we discuss current or potential methods based on the use of microbes or microbial products to interfere with pathogen transmission or to reduce mosquito lifespan and reproduction.
Collapse
Affiliation(s)
- Katy Heu
- Groupe « Microbiote des Insectes Vecteurs », Institut Pasteur de la Guyane, Cayenne, Guyane, France
| | - Mathilde Gendrin
- Groupe « Microbiote des Insectes Vecteurs », Institut Pasteur de la Guyane, Cayenne, Guyane, France - Département « Parasites et Insectes Vecteurs », Institut Pasteur, Paris, France
| |
Collapse
|
74
|
Foo IJH, Hoffmann AA, Ross PA. Cross-Generational Effects of Heat Stress on Fitness and Wolbachia Density in Aedes aegypti Mosquitoes. Trop Med Infect Dis 2019; 4:E13. [PMID: 30642130 PMCID: PMC6473245 DOI: 10.3390/tropicalmed4010013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/05/2019] [Accepted: 01/09/2019] [Indexed: 11/29/2022] Open
Abstract
Aedes aegypti mosquitoes infected with Wolbachia symbionts are now being released into the field to control the spread of pathogenic human arboviruses. Wolbachia can spread throughout vector populations by inducing cytoplasmic incompatibility and can reduce disease transmission by interfering with virus replication. The success of this strategy depends on the effects of Wolbachia on mosquito fitness and the stability of Wolbachia infections across generations. Wolbachia infections are vulnerable to heat stress, and sustained periods of hot weather in the field may influence their utility as disease control agents, particularly if temperature effects persist across generations. To investigate the cross-generational effects of heat stress on Wolbachia density and mosquito fitness, we subjected Ae. aegypti with two different Wolbachia infection types (wMel, wAlbB) and uninfected controls to cyclical heat stress during larval development over two generations. We then tested adult starvation tolerance and wing length as measures of fitness and measured the density of wMel in adults. Both heat stress and Wolbachia infection reduced adult starvation tolerance. wMel Wolbachia density in female offspring was lower when mothers experienced heat stress, but male Wolbachia density did not depend on the rearing temperature of the previous generation. We also found cross-generational effects of heat stress on female starvation tolerance, but there was no cross-generational effect on wing length. Fitness costs of Wolbachia infections and cross-generational effects of heat stress on Wolbachia density may reduce the ability of Wolbachia to invade populations and control arbovirus transmission under specific environmental conditions.
Collapse
Affiliation(s)
- Isabelle Jia-Hui Foo
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Victoria 3000, Australia.
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria 3052, Australia.
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria 3052, Australia.
| | - Perran A Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, The University of Melbourne, Victoria 3052, Australia.
| |
Collapse
|
75
|
Zhu YX, Song YL, Hoffmann AA, Jin PY, Huo SM, Hong XY. A change in the bacterial community of spider mites decreases fecundity on multiple host plants. Microbiologyopen 2018; 8:e00743. [PMID: 30311439 PMCID: PMC6562136 DOI: 10.1002/mbo3.743] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/30/2018] [Accepted: 09/10/2018] [Indexed: 11/30/2022] Open
Abstract
Bacterial symbionts may influence the fitness of their herbivore hosts, but such effects have been poorly studied across most invertebrate groups. The spider mite, Tetranychus truncatus, is a polyphagous agricultural pest harboring various bacterial symbionts whose function is largely unknown. Here, by using a high‐throughput 16S rRNA amplicon sequencing approach, we characterized the bacterial diversity and community composition of spider mites fed on five host plants after communities were modified following tetracycline exposure. We demonstrated that spider mite bacterial diversity and community composition were significantly affected by host plants and antibiotics. In particular, the abundance of the maternally inherited endosymbionts Wolbachia and Spiroplasma significantly differed among spider mites that were reared on different plant species and were completely removed by antibiotics. There was an overall tendency for daily fecundity to be lower in the mites with reduced bacterial diversity following the antibiotic treatment. Our data suggest that host plants and antibiotics can shape spider mite bacterial communities and that bacterial symbionts improve mite performance.
Collapse
Affiliation(s)
- Yu-Xi Zhu
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Yue-Ling Song
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Peng-Yu Jin
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Shi-Mei Huo
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Xiao-Yue Hong
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
76
|
Paris V, Cottingham E, Ross PA, Axford JK, Hoffmann AA. Effects of Alternative Blood Sources on Wolbachia Infected Aedes aegypti Females within and across Generations. INSECTS 2018; 9:E140. [PMID: 30314399 PMCID: PMC6315918 DOI: 10.3390/insects9040140] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 12/05/2022]
Abstract
Wolbachia bacteria have been identified as a tool for reducing the transmission of arboviruses transmitted by Aedes aegypti. Research groups around the world are now mass rearing Wolbachia-infected Ae. aegypti for deliberate release. We investigated the fitness impact of a crucial element of mass rearing: the blood meal required by female Ae. aegypti to lay eggs. Although Ae. aegypti almost exclusively feed on human blood, it is often difficult to use human blood in disease-endemic settings. When females were fed on sheep or pig blood rather than human blood, egg hatch rates decreased in all three lines tested (uninfected, or infected by wMel, or wAlbB Wolbachia). This finding was particularly pronounced when fed on sheep blood, although fecundity was not affected. Some of these effects persisted after an additional generation on human blood. Attempts to keep populations on sheep and pig blood sources only partly succeeded, suggesting that strong adaptation is required to develop a stably infected line on an alternative blood source. There was a decrease in Wolbachia density when Ae. aegypti were fed on non-human blood sources. Density increased in lines kept for multiple generations on the alternate sources but was still reduced relative to lines kept on human blood. These findings suggest that sheep and pig blood will entail a cost when used for maintaining Wolbachia-infected Ae. aegypti. These costs should be taken into account when planning mass release programs.
Collapse
Affiliation(s)
- Véronique Paris
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Ellen Cottingham
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Perran A Ross
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Jason K Axford
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, School of BioSciences, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
77
|
Zélé F, Santos JL, Godinho DP, Magalhães S. Wolbachia both aids and hampers the performance of spider mites on different host plants. FEMS Microbiol Ecol 2018; 94:5097780. [DOI: 10.1093/femsec/fiy187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 09/12/2018] [Indexed: 11/14/2022] Open
Affiliation(s)
- Flore Zélé
- cE3c: Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciěncias da Universidade de Lisboa, Edificio C2, Piso-3, Campo Grande, 1749-016 Lisbon, Portugal
| | - Joaquim L Santos
- cE3c: Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciěncias da Universidade de Lisboa, Edificio C2, Piso-3, Campo Grande, 1749-016 Lisbon, Portugal
| | - Diogo P Godinho
- cE3c: Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciěncias da Universidade de Lisboa, Edificio C2, Piso-3, Campo Grande, 1749-016 Lisbon, Portugal
| | - Sara Magalhães
- cE3c: Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciěncias da Universidade de Lisboa, Edificio C2, Piso-3, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
78
|
Lopez V, Cortesero AM, Poinsot D. Influence of the symbiont Wolbachia on life history traits of the cabbage root fly (Delia radicum). J Invertebr Pathol 2018; 158:24-31. [PMID: 30193778 DOI: 10.1016/j.jip.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 08/27/2018] [Accepted: 09/01/2018] [Indexed: 10/28/2022]
Abstract
Wolbachia is an endocellular bacteria infecting arthropods and nematodes and is only transmitted vertically by females via the cytoplasm of the egg. It is often a manipulator of host reproduction, causing cytoplasmic incompatibility, thelytokous parthenogenesis, feminization or male killing, which all increase the proportion of infected females in the population. However, Wolbachia can modify life history traits of the host without causing the above phenotypes and each species illustrates the variability of relationships between this remarkably versatile symbiont and its many hosts. We have measured maternal transmission and the impact of a natural Wolbachia infection in the cabbage root fly Delia radicum, a major agricultural pest. We used a population that is polymorphic for the infection to ensure similar genetic and microbiome backgrounds between groups. Maternal transmission of the infection was 100% in our sample. We found no evidence of cytoplasmic incompatibility, thelytokous parthenogenesis, feminization nor male killing. Wolbachia infection significantly reduced hatch rate in infected eggs (by 10%) but improved larvo-nymphal viability sufficiently so that infected eggs nevertheless yielded as many adults as uninfected ones, albeit with a 1.5% longer total development time. Starved and infected ovipositing females suffered significantly reduced viability (20% higher mortality during a 3-day oviposition period) than uninfected females, but mortality was not higher in starved virgin females nor in starved males, suggesting that the energetic cost of the infection is only revealed in extreme conditions. Wolbachia had no effect on egg hatch time or offspring size. The apparently 100% vertical transmission and the significant but mutually compensating effects found suggest that infection might be nearly benign in this host and might only drift slowly, which would explain why the infection rate has been stable in our laboratory (approximately 50% individuals infected) for at least 30 generations.
Collapse
Affiliation(s)
- Valérie Lopez
- INRA - UMR 1349 IGEPP (Institut de Génétique, Environnement et Protection des Plantes), Université de Rennes 1, 35042 Rennes Cedex, France.
| | - Anne Marie Cortesero
- INRA - UMR 1349 IGEPP (Institut de Génétique, Environnement et Protection des Plantes), Université de Rennes 1, 35042 Rennes Cedex, France
| | - Denis Poinsot
- INRA - UMR 1349 IGEPP (Institut de Génétique, Environnement et Protection des Plantes), Université de Rennes 1, 35042 Rennes Cedex, France
| |
Collapse
|
79
|
Fisher ML, Watson DW, Osborne JA, Mochizuki H, Breen M, Schal C. Growth kinetics of endosymbiont Wolbachia in the common bed bug, Cimex lectularius. Sci Rep 2018; 8:11444. [PMID: 30061694 PMCID: PMC6065412 DOI: 10.1038/s41598-018-29682-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/14/2018] [Indexed: 12/19/2022] Open
Abstract
The common bed bug, Cimex lectularius harbors the endosymbiotic microorganism, Wolbachia (wCle), in a gonad-associated bacteriome as an obligate nutritional mutualist. The obligatory nature of this association suggests that all individuals in C. lectularius populations would be infected with wCle. However, studies spanning the past several decades have reported variation in both infection frequency and relative abundance of wCle in field-collected samples of bed bugs. Since the growth kinetics of wCle is poorly understood, the objective of this study was to quantify wCle over the life cycle of two strains of C. lectularius. Our results highlight that wCle is dynamic during bed bug development, changing relative to life stage, intermolt stage, and blood-fed status. These results suggest new hypotheses about the coordination of Wolbachia growth and regression with its host's physiology and endocrine events. The observed quantitative modulation of wCle during the bed bug life cycle and during periods of starvation may explain the disparities in wCle infections reported in field-collected C. lectularius.
Collapse
Affiliation(s)
- Michael L Fisher
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA.
- United States Navy Medical Service Corps, Raleigh, USA.
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, USA.
| | - David W Watson
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA
| | - Jason A Osborne
- Department of Statistics, North Carolina State University, Raleigh, North Carolina, USA
| | - Hiroyuki Mochizuki
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Matthew Breen
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, USA.
- W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina, USA.
- Center for Human Health and the Environment, North Carolina State University, Raleigh, North Carolina, USA.
| |
Collapse
|
80
|
Funkhouser-Jones LJ, van Opstal EJ, Sharma A, Bordenstein SR. The Maternal Effect Gene Wds Controls Wolbachia Titer in Nasonia. Curr Biol 2018; 28:1692-1702.e6. [PMID: 29779872 PMCID: PMC5988964 DOI: 10.1016/j.cub.2018.04.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 12/14/2022]
Abstract
Maternal transmission of intracellular microbes is pivotal in establishing long-term, intimate symbioses. For germline microbes that exert negative reproductive effects on their hosts, selection can theoretically favor the spread of host genes that counteract the microbe's harmful effects. Here, we leverage a major difference in bacterial (Wolbachia pipientis) titers between closely related wasp species with forward genetic, transcriptomic, and cytological approaches to map two quantitative trait loci that suppress bacterial titers via a maternal effect. Fine mapping and knockdown experiments identify the gene Wolbachia density suppressor (Wds), which dominantly suppresses bacterial transmission from mother to embryo. Wds evolved by lineage-specific non-synonymous changes driven by positive selection. Collectively, our findings demonstrate that a genetically simple change arose by positive Darwinian selection in less than a million years to regulate maternally transmitted bacteria via a dominant, maternal effect gene.
Collapse
Affiliation(s)
- Lisa J Funkhouser-Jones
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
| | - Edward J van Opstal
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| | - Ananya Sharma
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Seth R Bordenstein
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Genetics Institute, Nashville, TN 37235, USA.
| |
Collapse
|
81
|
Osei-Amo S, Hussein M, Asad S, Hugo L, Asgari S. Wolbachia-induced transcription factor GATA4 suppresses ovary-specific genes blastoderm-specific protein 25D and imaginal disc growth factor. INSECT MOLECULAR BIOLOGY 2018; 27:295-304. [PMID: 29336504 DOI: 10.1111/imb.12371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The endosymbiotic bacterium Wolbachia infects a wide array of insect hosts and has been implicated in a range of biological modifications as a consequence of its infection. Previously, it was shown that the transcription factor GATA4 was significantly induced in Wolbachia wMelPop-CLA strain infected Aedes aegypti whole mosquitoes and cells. Here, we provide evidence that this induction also occurs in mosquito ovaries where the ovary-specific genes blastoderm-specific protein 25D (Bsg25D) and imaginal disc growth factor (Disc) are suppressed by Wolbachia. We further demonstrate that transcriptional depletion of GATA4 results in upregulation of both genes and conversely its overexpression leads to downregulation of the genes, suggesting that Wolbachia-induced GATA4 plays a suppressive regulatory role with regards to Bsg25D and Disc expression in mosquito ovaries. When the Disc gene was silenced in mosquitoes, we did not observe any difference in the number of mature ovarian follicles developed between treatment groups. However, we did find a significant delay in the hatching of eggs that had been laid by Disc knockdown mosquitoes.
Collapse
Affiliation(s)
- S Osei-Amo
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - M Hussein
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - S Asad
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - L Hugo
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Brisbane, Queensland, Australia
| | - S Asgari
- Australian Infectious Disease Research Centre, School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
82
|
Monsanto-Hearne V, Johnson KN. Wolbachia-mediated protection of Drosophila melanogaster against systemic infection with its natural viral pathogen Drosophila C virus does not involve changes in levels of highly abundant miRNAs. J Gen Virol 2018; 99:827-831. [DOI: 10.1099/jgv.0.001064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Verna Monsanto-Hearne
- School of Biological Sciences, The University of Queensland, Brisbane 4067, Australia
| | - Karyn N. Johnson
- School of Biological Sciences, The University of Queensland, Brisbane 4067, Australia
| |
Collapse
|
83
|
Abstract
Mosquito-transmitted viruses are spread globally and present a great risk to human health. Among the many approaches investigated to limit the diseases caused by these viruses are attempts to make mosquitos resistant to virus infection. Coinfection of mosquitos with the bacterium Wolbachia pipientis from supergroup A is a recent strategy employed to reduce the capacity for major vectors in the Aedes mosquito genus to transmit viruses, including dengue virus (DENV), Chikungunya virus (CHIKV), and Zika virus (ZIKV). Recently, a supergroup B Wolbachia wStri, isolated from Laodelphax striatellus, was shown to inhibit multiple lineages of ZIKV in Aedes albopictus cells. Here, we show that wStri blocks the growth of positive-sense RNA viruses DENV, CHIKV, ZIKV, and yellow fever virus by greater than 99.9%. wStri presence did not affect the growth of the negative-sense RNA viruses LaCrosse virus or vesicular stomatitis virus. Investigation of the stages of the ZIKV life cycle inhibited by wStri identified two distinct blocks in viral replication. We found a reduction of ZIKV entry into wStri-infected cells. This was partially rescued by the addition of a cholesterol-lipid supplement. Independent of entry, transfected viral genome was unable to replicate in Wolbachia-infected cells. RNA transfection and metabolic labeling studies suggested that this replication defect is at the level of RNA translation, where we saw a 66% reduction in mosquito protein synthesis in wStri-infected cells. This study’s findings increase the potential for application of wStri to block additional arboviruses and also identify specific blocks in viral infection caused by Wolbachia coinfection. Dengue, Zika, and yellow fever viruses are mosquito-transmitted diseases that have spread throughout the world, causing millions of infections and thousands of deaths each year. Existing programs that seek to contain these diseases through elimination of the mosquito population have so far failed, making it crucial to explore new ways of limiting the spread of these viruses. Here, we show that introduction of an insect symbiont Wolbachia wStri, into mosquito cells is highly effective at reducing yellow fever virus, dengue virus, Zika virus, and Chikungunya virus production. Reduction of virus replication was attributable to decreases in entry and a strong block of virus gene expression at the translational level. These findings expand the potential use of Wolbachia wStri to block viruses and identify two separate steps for limiting virus replication in mosquitos that could be targeted via microbes or other means as an antiviral strategy.
Collapse
|
84
|
Henry LP, Newton ILG. Mitochondria and Wolbachia titers are positively correlated during maternal transmission. Mol Ecol 2018; 27:2634-2646. [PMID: 29691935 DOI: 10.1111/mec.14700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 12/22/2022]
Abstract
Mothers provide their offspring with symbionts. Maternally transmitted, intracellular symbionts must disperse from mother to offspring with other cytoplasmic elements, like mitochondria. Here, we investigated how the intracellular symbiont Wolbachia interacts with mitochondria during maternal transmission. Mitochondria and Wolbachia may interact antagonistically and compete as each population tries to ensure its own evolutionary success. Alternatively, mitochondria and Wolbachia may cooperate as both benefit from ensuring the fitness of the mother. We characterized the relationship between mitochondria and Wolbachia titers in ovaries of Drosophila melanogaster. We found that mitochondria and Wolbachia titers are positively correlated in common laboratory genotypes of D. melanogaster. We attempted to perturb this covariation through the introduction of Wolbachia variants that colonize at different titers. We also attempted to perturb the covariation through manipulating the female reproductive tract to disrupt maternal transmission. Finally, we also attempted to disrupt the covariation by knocking down gene expression for two loci involved in mitochondrial metabolism: NADH dehydrogenase and a mitochondrial transporter. Overall, we find that mitochondria and Wolbachia titers are commonly positively correlated, but this positive covariation is disrupted at high titers of Wolbachia. Our results suggest that mitochondria and Wolbachia have likely evolved mechanisms to stably coexist, but the competitive dynamics change at high Wolbachia titers. We provide future directions to better understand how their interaction influences the maintenance of the symbiosis.
Collapse
Affiliation(s)
- Lucas P Henry
- Department of Biology, Indiana University, Bloomington, Indianapolis
| | - Irene L G Newton
- Department of Biology, Indiana University, Bloomington, Indianapolis
| |
Collapse
|
85
|
Conflict in the Intracellular Lives of Endosymbionts and Viruses: A Mechanistic Look at Wolbachia-Mediated Pathogen-blocking. Viruses 2018; 10:v10040141. [PMID: 29561780 PMCID: PMC5923435 DOI: 10.3390/v10040141] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/14/2018] [Accepted: 03/20/2018] [Indexed: 12/16/2022] Open
Abstract
At the forefront of vector control efforts are strategies that leverage host-microbe associations to reduce vectorial capacity. The most promising of these efforts employs Wolbachia, a maternally transmitted endosymbiotic bacterium naturally found in 40% of insects. Wolbachia can spread through a population of insects while simultaneously inhibiting the replication of viruses within its host. Despite successes in using Wolbachia-transfected mosquitoes to limit dengue, Zika, and chikungunya transmission, the mechanisms behind pathogen-blocking have not been fully characterized. Firstly, we discuss how Wolbachia and viruses both require specific host-derived structures, compounds, and processes to initiate and maintain infection. There is significant overlap in these requirements, and infection with either microbe often manifests as cellular stress, which may be a key component of Wolbachia’s anti-viral effect. Secondly, we discuss the current understanding of pathogen-blocking through this lens of cellular stress and develop a comprehensive view of how the lives of Wolbachia and viruses are fundamentally in conflict with each other. A thorough understanding of the genetic and cellular determinants of pathogen-blocking will significantly enhance the ability of vector control programs to deploy and maintain effective Wolbachia-mediated control measures.
Collapse
|
86
|
Wolbachia-mediated virus blocking in mosquito cells is dependent on XRN1-mediated viral RNA degradation and influenced by viral replication rate. PLoS Pathog 2018; 14:e1006879. [PMID: 29494679 PMCID: PMC5833283 DOI: 10.1371/journal.ppat.1006879] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/15/2018] [Indexed: 12/14/2022] Open
Abstract
Wolbachia is currently being developed as a novel tool to block the transmission of dengue viruses (DENV) by Aedes aegypti. A number of mechanisms have been proposed to explain the DENV-blocking phenotype in mosquitoes, including competition for fatty acids like cholesterol, manipulation of host miRNAs and upregulation of innate immune pathways in the mosquito. We examined the various stages in the DENV infection process to better understand the mechanism of Wolbachia-mediated virus blocking (WMVB). Our results suggest that infection with Wolbachia does not inhibit DENV binding or cell entry, but reduces virus replication. In contrast to a previous report, we also observed a similar reduction in replication of West Nile virus (WNV). This reduced replication is associated with rapid viral RNA degradation in the cytoplasm. We didn't find a role for host miRNAs in WMVB. Further analysis showed that the 3' end of the virus subgenomic RNA was protected and accumulated over time suggesting that the degradation is XRN1-mediated. We also found that sub genomic flavivirus RNA accumulation inactivated XRN1 in mosquito cells in the absence of Wolbachia and led to enhancement of RNA degradation in its presence. Depletion of XRN1 decreased WMVB which was associated with a significant increase in DENV RNA. We also observed that WMVB is influenced by virus MOI and rate of virus replication. A comparatively elevated blocking was observed for slowly replicating DENV, compared to WNV. Similar results were obtained while analysing different DENV serotypes.
Collapse
|
87
|
Chotiwan N, Andre BG, Sanchez-Vargas I, Islam MN, Grabowski JM, Hopf-Jannasch A, Gough E, Nakayasu E, Blair CD, Belisle JT, Hill CA, Kuhn RJ, Perera R. Dynamic remodeling of lipids coincides with dengue virus replication in the midgut of Aedes aegypti mosquitoes. PLoS Pathog 2018; 14:e1006853. [PMID: 29447265 PMCID: PMC5814098 DOI: 10.1371/journal.ppat.1006853] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 01/04/2018] [Indexed: 01/01/2023] Open
Abstract
We describe the first comprehensive analysis of the midgut metabolome of Aedes aegypti, the primary mosquito vector for arboviruses such as dengue, Zika, chikungunya and yellow fever viruses. Transmission of these viruses depends on their ability to infect, replicate and disseminate from several tissues in the mosquito vector. The metabolic environments within these tissues play crucial roles in these processes. Since these viruses are enveloped, viral replication, assembly and release occur on cellular membranes primed through the manipulation of host metabolism. Interference with this virus infection-induced metabolic environment is detrimental to viral replication in human and mosquito cell culture models. Here we present the first insight into the metabolic environment induced during arbovirus replication in Aedes aegypti. Using high-resolution mass spectrometry, we have analyzed the temporal metabolic perturbations that occur following dengue virus infection of the midgut tissue. This is the primary site of infection and replication, preceding systemic viral dissemination and transmission. We identified metabolites that exhibited a dynamic-profile across early-, mid- and late-infection time points. We observed a marked increase in the lipid content. An increase in glycerophospholipids, sphingolipids and fatty acyls was coincident with the kinetics of viral replication. Elevation of glycerolipid levels suggested a diversion of resources during infection from energy storage to synthetic pathways. Elevated levels of acyl-carnitines were observed, signaling disruptions in mitochondrial function and possible diversion of energy production. A central hub in the sphingolipid pathway that influenced dihydroceramide to ceramide ratios was identified as critical for the virus life cycle. This study also resulted in the first reconstruction of the sphingolipid pathway in Aedes aegypti. Given conservation in the replication mechanisms of several flaviviruses transmitted by this vector, our results highlight biochemical choke points that could be targeted to disrupt transmission of multiple pathogens by these mosquitoes.
Collapse
Affiliation(s)
- Nunya Chotiwan
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Barbara G. Andre
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Irma Sanchez-Vargas
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - M. Nurul Islam
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jeffrey M. Grabowski
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Entomology Department Purdue University, West Lafayette, Indiana, United States of America
| | - Amber Hopf-Jannasch
- Metabolite Profiling Facility (MPF), Bindley Bioscience Center, Purdue University, W. Lafayette, Indiana, United States of America
| | - Erik Gough
- Computational Life Sciences Core, Bindley Bioscience Center, Purdue University, W. Lafayette, Indiana, United States of America
| | - Ernesto Nakayasu
- Metabolite Profiling Facility (MPF), Bindley Bioscience Center, Purdue University, W. Lafayette, Indiana, United States of America
| | - Carol D. Blair
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - John T. Belisle
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Catherine A. Hill
- Entomology Department Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, United States of America
| | - Richard J. Kuhn
- Markey Center for Structural Biology, Department of Biological Sciences, Purdue University, West Lafayette, Indiana, United States of America
- Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, United States of America
| | - Rushika Perera
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
88
|
Schultz MJ, Connor JH, Frydman HM. Group B Wolbachia Strain-Dependent Inhibition of Arboviruses. DNA Cell Biol 2018; 37:2-6. [PMID: 29297702 DOI: 10.1089/dna.2017.4025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mosquito-borne viruses, including Zika virus (ZIKV) and dengue virus (DENV), are global threats that continue to infect millions annually. Historically, efforts to combat the spread of these diseases have sought to eradicate the mosquito population. This has had limited success. Recent efforts to combat the spread of these diseases have targeted the mosquito population and the mosquito's ability to transmit viruses by altering the mosquito's microbiome. The introduction of particular strains of Wolbachia bacteria into mosquitos suppresses viral growth and blocks disease transmission. This novel strategy is being tested worldwide to reduce DENV and has early indications of success. The Wolbachia genus comprised divergent strains that are divided in major phylogenetic clades termed supergroups. All Wolbachia field trials currently utilize supergroup A Wolbachia in Aedes aegypti mosquitos to limit virus transmission. Here we discuss our studies of Wolbachia strains not yet used in virus control strategies but that show strong potential to reduce ZIKV replication. These strains are important opportunities in the search for novel tools to reduce the levels of mosquito-borne viruses and provide additional models for mechanistic studies.
Collapse
Affiliation(s)
- Michaela J Schultz
- 1 Department of Biology, Boston University , Boston Massachusetts.,2 National Emerging Infectious Diseases Laboratories, Boston University , Boston, Massachusetts
| | - John H Connor
- 2 National Emerging Infectious Diseases Laboratories, Boston University , Boston, Massachusetts.,3 Department of Microbiology, Boston University School of Medicine , Boston, Massachusetts
| | - Horacio M Frydman
- 1 Department of Biology, Boston University , Boston Massachusetts.,2 National Emerging Infectious Diseases Laboratories, Boston University , Boston, Massachusetts
| |
Collapse
|
89
|
Terradas G, Allen SL, Chenoweth SF, McGraw EA. Family level variation in Wolbachia-mediated dengue virus blocking in Aedes aegypti. Parasit Vectors 2017; 10:622. [PMID: 29282144 PMCID: PMC5746003 DOI: 10.1186/s13071-017-2589-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The mosquito vector Aedes aegypti is responsible for transmitting a range of arboviruses including dengue (DENV) and Zika (ZIKV). The global reach of these viruses is increasing due to an expansion of the mosquito's geographic range and increasing urbanization and human travel. Vector control remains the primary means for limiting these diseases. Wolbachia pipientis is an endosymbiotic bacterium of insects that has the ability to block the replication of pathogens, including flaviviruses such as DENV or ZIKV, inside the body of the vector. A strain of Wolbachia called wMel is currently being released into wild mosquito populations to test its potential to limit virus transmission to humans. The mechanism that underpins the virus blocking effect, however, remains elusive. METHODS We used a modified full-sib breeding design in conjunction with vector competence assays in wildtype and wMel-infected Aedes aegypti collected from the field. All individuals were injected with DENV-2 intrathoracically at 5-6 days of age. Tissues were dissected 7 days post-infection to allow quantification of DENV and Wolbachia loads. RESULTS We show the first evidence of family level variation in Wolbachia-mediated blocking in mosquitoes. This variation may stem from either genetic contributions from the mosquito and Wolbachia genomes or environmental influences on Wolbachia. In these families, we also tested for correlations between strength of blocking and expression level for several insect immunity genes with possible roles in blocking, identifying two genes of interest (AGO2 and SCP-2). CONCLUSIONS In this study we show variation in Wolbachia-mediated DENV blocking in Aedes aegypti that may arise from genetic contributions and environmental influences on the mosquito-Wolbachia association. This suggests that Wolbachia-mediated blocking may have the ability to evolve through time or be expressed differentially across environments. The long-term efficacy of Wolbachia in the field will be dependent on the stability of blocking. Understanding the mechanism of blocking will be necessary for successful development of strategies that counter the emergence of evolved resistance or variation in its expression under diverse field conditions.
Collapse
Affiliation(s)
- Gerard Terradas
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, Australia
| | - Scott L Allen
- School of Biological Sciences, The University of Queensland, QLD, St. Lucia, Australia
| | - Stephen F Chenoweth
- School of Biological Sciences, The University of Queensland, QLD, St. Lucia, Australia
| | - Elizabeth A McGraw
- School of Biological Sciences, Monash University, Clayton, Melbourne, VIC, Australia.
| |
Collapse
|
90
|
Dutra HLC, Rodrigues SL, Mansur SB, de Oliveira SP, Caragata EP, Moreira LA. Development and physiological effects of an artificial diet for Wolbachia-infected Aedes aegypti. Sci Rep 2017; 7:15687. [PMID: 29146940 PMCID: PMC5691197 DOI: 10.1038/s41598-017-16045-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/07/2017] [Indexed: 12/12/2022] Open
Abstract
The endosymbiotic bacterium Wolbachia spreads rapidly through populations of Aedes aegypti mosquitoes, and strongly inhibits infection with key human pathogens including the dengue and Zika viruses. Mosquito control programs aimed at limiting transmission of these viruses are ongoing in multiple countries, yet there is a dearth of mass rearing infrastructure specific to Wolbachia-infected mosquitoes. One example is the lack of a blood meal substitute, which accounts for the Wolbachia-specific physiological changes in infected mosquitoes, that allows the bacterium to spread, and block viral infections. To that end, we have developed a blood meal substitute specifically for mosquitoes infected with the wMel Wolbachia strain. This diet, ADM, contains milk protein, and infant formula, dissolved in a mixture of bovine red blood cells and Aedes physiological saline, with ATP as a phagostimulant. Feeding with ADM leads to high levels of viable egg production, but also does not affect key Wolbachia parameters including, bacterial density, cytoplasmic incompatibility, or resistance to infection with Zika virus. ADM represents an effective substitute for human blood, which could potentially be used for the mass rearing of wMel-infected A. aegypti, and could easily be optimized in the future to improve performance.
Collapse
Affiliation(s)
- Heverton Leandro Carneiro Dutra
- Endossimbiontes e Interação Patógeno-Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, MG, 30190-002, Brazil.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Silvia Lomeu Rodrigues
- Endossimbiontes e Interação Patógeno-Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, MG, 30190-002, Brazil
| | - Simone Brutman Mansur
- Endossimbiontes e Interação Patógeno-Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, MG, 30190-002, Brazil
| | - Sofia Pimenta de Oliveira
- Endossimbiontes e Interação Patógeno-Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, MG, 30190-002, Brazil
| | - Eric Pearce Caragata
- Endossimbiontes e Interação Patógeno-Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, MG, 30190-002, Brazil.,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Luciano Andrade Moreira
- Endossimbiontes e Interação Patógeno-Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, MG, 30190-002, Brazil.
| |
Collapse
|
91
|
Rivera-Pérez C, Clifton ME, Noriega FG. How micronutrients influence the physiology of mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2017; 23:112-117. [PMID: 29129275 PMCID: PMC5695569 DOI: 10.1016/j.cois.2017.07.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 05/11/2023]
Abstract
Micronutrients or non-energetic nutrients (NEN) are needed in reduced amounts, but are essential for many mosquito physiological processes that influence biological traits from vector competence to reproductive capacity. The NEN include amino acids (AA), vitamins, salts, metals and sterols. Free AA plays critical roles controlling most physiological processes, from digestion to reproduction. Particularly proline connects metabolic pathways in energy production, flight physiology and ammonia detoxification. Metal, in particular iron and calcium, salts, sterol and vitamin homeostasis are critical for cell signaling, respiration, metabolism and reproduction. Micronutrient homeostasis influence the symbiotic relationships with microorganisms, having important implications in mosquitoes' nutrition, physiology and behavior, as well as in mosquito immunity and vector competence.
Collapse
Affiliation(s)
| | | | - Fernando G Noriega
- Department of Biological Sciences, Florida International University, Miami, FL, USA; Biomolecular Science Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
92
|
Ross PA, Axford JK, Richardson KM, Endersby-Harshman NM, Hoffmann AA. Maintaining Aedes aegypti Mosquitoes Infected with Wolbachia. J Vis Exp 2017. [PMID: 28829414 DOI: 10.3791/56124] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Aedes aegypti mosquitoes experimentally infected with Wolbachia are being utilized in programs to control the spread of arboviruses such as dengue, chikungunya and Zika. Wolbachia-infected mosquitoes can be released into the field to either reduce population sizes through incompatible matings or to transform populations with mosquitoes that are refractory to virus transmission. For these strategies to succeed, the mosquitoes released into the field from the laboratory must be competitive with native mosquitoes. However, maintaining mosquitoes in the laboratory can result in inbreeding, genetic drift and laboratory adaptation which can reduce their fitness in the field and may confound the results of experiments. To test the suitability of different Wolbachia infections for deployment in the field, it is necessary to maintain mosquitoes in a controlled laboratory environment across multiple generations. We describe a simple protocol for maintaining Ae. aegypti mosquitoes in the laboratory, which is suitable for both Wolbachia-infected and wild-type mosquitoes. The methods minimize laboratory adaptation and implement outcrossing to increase the relevance of experiments to field mosquitoes. Additionally, colonies are maintained under optimal conditions to maximize their fitness for open field releases.
Collapse
Affiliation(s)
- Perran A Ross
- School of BioSciences, Bio21 Institute and University of Melbourne;
| | - Jason K Axford
- School of BioSciences, Bio21 Institute and University of Melbourne
| | | | | | - Ary A Hoffmann
- School of BioSciences, Bio21 Institute and University of Melbourne
| |
Collapse
|
93
|
Terradas G, McGraw EA. Wolbachia-mediated virus blocking in the mosquito vector Aedes aegypti. CURRENT OPINION IN INSECT SCIENCE 2017; 22:37-44. [PMID: 28805637 DOI: 10.1016/j.cois.2017.05.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Viruses transmitted by mosquitoes such as dengue, Zika and West Nile cause a threat to global health due to increased geographical range and frequency of outbreaks. The bacterium Wolbachia pipientis may be the solution reducing disease transmission. Though commonly missing in vector species, the bacterium was artificially and stably introduced into Aedes aegypti to assess its potential for biocontrol. When infected with Wolbachia, mosquitoes become refractory to infection by a range of pathogens, including the aforementioned viruses. How the bacterium is conferring this phenotype remains unknown. Here we discuss current hypotheses in the field for the mechanistic basis of pathogen blocking and evaluate the evidence from mosquitoes and related insects.
Collapse
Affiliation(s)
- Gerard Terradas
- School of Biological Sciences, Monash University, Clayton VIC 3800, Melbourne, Australia
| | - Elizabeth A McGraw
- School of Biological Sciences, Monash University, Clayton VIC 3800, Melbourne, Australia.
| |
Collapse
|
94
|
Pimenta de Oliveira S, Dantas de Oliveira C, Viana Sant'Anna MR, Carneiro Dutra HL, Caragata EP, Moreira LA. Wolbachia infection in Aedes aegypti mosquitoes alters blood meal excretion and delays oviposition without affecting trypsin activity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 87:65-74. [PMID: 28655666 DOI: 10.1016/j.ibmb.2017.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/19/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
Blood feeding in Aedes aegypti is essential for reproduction, but also permits the mosquito to act as a vector for key human pathogens such as the Zika and dengue viruses. Wolbachia pipientis is an endosymbiotic bacterium that can manipulate the biology of Aedes aegypti mosquitoes, making them less competent hosts for many pathogens. Yet while Wolbachia affects other aspects of host physiology, it is unclear whether it influences physiological processes associated with blood meal digestion. To that end, we examined the effects of wMel Wolbachia infection in Ae. aegypti, on survival post-blood feeding, blood meal excretion, rate of oviposition, expression levels of key genes involved in oogenesis, and activity levels of trypsin blood digestion enzymes. We observed that wMel infection altered the rate and duration of blood meal excretion, delayed the onset of oviposition and was associated with a greater number of eggs being laid later. wMel-infected Ae. aegypti also had lower levels of key yolk protein precursor genes necessary for oogenesis. However, all of these effects occurred without a change in trypsin activity. These results suggest that Wolbachia infection may disrupt normal metabolic processes associated with blood feeding and reproduction in Ae. aegypti.
Collapse
Affiliation(s)
- Sofia Pimenta de Oliveira
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Caroline Dantas de Oliveira
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Mauricio Roberto Viana Sant'Anna
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Heverton Leandro Carneiro Dutra
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - Eric Pearce Caragata
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil.
| | - Luciano Andrade Moreira
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno-Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
95
|
Variable Inhibition of Zika Virus Replication by Different Wolbachia Strains in Mosquito Cell Cultures. J Virol 2017; 91:JVI.00339-17. [PMID: 28446677 DOI: 10.1128/jvi.00339-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
Mosquito-borne arboviruses are a major source of human disease. One strategy to reduce arbovirus disease is to reduce the mosquito's ability to transmit virus. Mosquito infection with the bacterial endosymbiont Wolbachia pipientis wMel is a novel strategy to reduce Aedes mosquito competency for flavivirus infection. However, experiments investigating cyclic environmental temperatures have shown a reduction in maternal transmission of wMel, potentially weakening the integration of this strain into a mosquito population relative to that of other Wolbachia strains. Consequently, it is important to investigate additional Wolbachia strains. All Zika virus (ZIKV) suppression studies are limited to the wMel Wolbachia strain. Here we show ZIKV inhibition by two different Wolbachia strains: wAlbB (isolated from Aedes albopictus mosquitoes) and wStri (isolated from the planthopper Laodelphax striatellus) in mosquito cells. Wolbachia strain wStri inhibited ZIKV most effectively. Single-cycle infection experiments showed that ZIKV RNA replication and nonstructural protein 5 translation were reduced below the limits of detection in wStri-containing cells, demonstrating early inhibition of virus replication. ZIKV replication was rescued when Wolbachia was inhibited with a bacteriostatic antibiotic. We observed a partial rescue of ZIKV growth when Wolbachia-infected cells were supplemented with cholesterol-lipid concentrate, suggesting competition for nutrients as one of the possible mechanisms of Wolbachia inhibition of ZIKV. Our data show that wAlbB and wStri infection causes inhibition of ZIKV, making them attractive candidates for further in vitro mechanistic and in vivo studies and future vector-centered approaches to limit ZIKV infection and spread.IMPORTANCE Zika virus (ZIKV) has swiftly spread throughout most of the Western Hemisphere. This is due in large part to its replication in and spread by a mosquito vector host. There is an urgent need for approaches that limit ZIKV replication in mosquitoes. One exciting approach for this is to use a bacterial endosymbiont called Wolbachia that can populate mosquito cells and inhibit ZIKV replication. Here we show that two different strains of Wolbachia, wAlbB and wStri, are effective at repressing ZIKV in mosquito cell lines. Repression of virus growth is through the inhibition of an early stage of infection and requires actively replicating Wolbachia Our findings further the understanding of Wolbachia viral inhibition and provide novel tools that can be used in an effort to limit ZIKV replication in the mosquito vector, thereby interrupting the transmission and spread of the virus.
Collapse
|
96
|
Farahani HK, Ashouri A, Zibaee A, Abroon P, Alford L, Pierre JS, van Baaren J. Early life nutritional quality effects on adult memory retention in a parasitic wasp. Behav Ecol 2017. [DOI: 10.1093/beheco/arx042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
97
|
Wang XX, Qi LD, Jiang R, Du YZ, Li YX. Incomplete removal of Wolbachia with tetracycline has two-edged reproductive effects in the thelytokous wasp Encarsia formosa (Hymenoptera: Aphelinidae). Sci Rep 2017; 7:44014. [PMID: 28266601 PMCID: PMC5339822 DOI: 10.1038/srep44014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 02/02/2017] [Indexed: 11/25/2022] Open
Abstract
Wolbachia pipientis are intracellular endosymbionts that induce parthenogenesis in the parasitoid Encarsia formosa. Previous studies that focused on effects of Wolbachia on the wasp usually used tetracycline to remove Wolbachia without concern for the joint influences of tetracycline and Wolbachia. Here we treated the wasps (F0 lines) with tetracycline to produce offspring (F1 lines) which were not fed tetracycline to avoid antibiotic influence. The quantitative data and fluorescence in situ hybridization showed that Wolbachia titers were reduced but not totally removed. The Wolbachia that infected the male offspring were unpredictably detected. Low dose tetracycline enhanced the fertility of 2-day-old F0 wasps after 24 h of treatment; however, compared with controls, the oocyte load of 3- to 6-day-old tetracycline-treated wasps decreased day by day, and tetracycline reduced the longevity of the wasps. The fecundity of controls was significantly higher than that of the treated F1-10 and F1-20 generations. Gene expression of vitellogenin reflected the same trend as that of wasp fecundities in both F0 and F1 lines. Moreover, female offspring proportions of F0 and F1 lines were related to the titer of infected Wolbachia, demonstrating that Wolbachia titer affected the sex determination of E. formosa.
Collapse
Affiliation(s)
- Xiao-Xiang Wang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lan-Da Qi
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Rui Jiang
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yu-Zhou Du
- Institute of Applied Entomology, School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yuan-Xi Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
98
|
Reliance of Wolbachia on High Rates of Host Proteolysis Revealed by a Genome-Wide RNAi Screen of Drosophila Cells. Genetics 2017; 205:1473-1488. [PMID: 28159754 DOI: 10.1534/genetics.116.198903] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/27/2017] [Indexed: 11/18/2022] Open
Abstract
Wolbachia are gram-negative, obligate, intracellular bacteria carried by a majority of insect species worldwide. Here we use a Wolbachia-infected Drosophila cell line and genome-wide RNA interference (RNAi) screening to identify host factors that influence Wolbachia titer. By screening an RNAi library targeting 15,699 transcribed host genes, we identified 36 candidate genes that dramatically reduced Wolbachia titer and 41 that increased Wolbachia titer. Host gene knockdowns that reduced Wolbachia titer spanned a broad array of biological pathways including genes that influenced mitochondrial function and lipid metabolism. In addition, knockdown of seven genes in the host ubiquitin and proteolysis pathways significantly reduced Wolbachia titer. To test the in vivo relevance of these results, we found that drug and mutant inhibition of proteolysis reduced levels of Wolbachia in the Drosophila oocyte. The presence of Wolbachia in either cell lines or oocytes dramatically alters the distribution and abundance of ubiquitinated proteins. Functional studies revealed that maintenance of Wolbachia titer relies on an intact host Endoplasmic Reticulum (ER)-associated protein degradation pathway (ERAD). Accordingly, electron microscopy studies demonstrated that Wolbachia is intimately associated with the host ER and dramatically alters the morphology of this organelle. Given Wolbachia lack essential amino acid biosynthetic pathways, the reliance of Wolbachia on high rates of host proteolysis via ubiquitination and the ERAD pathways may be a key mechanism for provisioning Wolbachia with amino acids. In addition, the reliance of Wolbachia on the ERAD pathway and disruption of ER morphology suggests a previously unsuspected mechanism for Wolbachia's potent ability to prevent RNA virus replication.
Collapse
|
99
|
Caragata EP, Pais FS, Baton LA, Silva JBL, Sorgine MHF, Moreira LA. The transcriptome of the mosquito Aedes fluviatilis (Diptera: Culicidae), and transcriptional changes associated with its native Wolbachia infection. BMC Genomics 2017; 18:6. [PMID: 28049478 PMCID: PMC5210266 DOI: 10.1186/s12864-016-3441-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/19/2016] [Indexed: 12/21/2022] Open
Abstract
Background Wolbachia is a bacterial endosymbiont that naturally infects a wide range of insect species, and causes drastic changes to host biology. Stable infections of Wolbachia in mosquitoes can inhibit infection with medically important pathogens such as dengue virus and malaria-causing Plasmodium parasites. However, some native Wolbachia strains can enhance infection with certain pathogens, as is the case for the mosquito Aedes fluviatilis, where infection with Plasmodium gallinaceum is enhanced by the native wFlu Wolbachia strain. To better understand the biological interactions between mosquitoes and native Wolbachia infections, and to investigate the process of pathogen enhancement, we used RNA-Seq to generate the transcriptome of Ae. fluviatilis with and without Wolbachia infection. Results In total, we generated 22,280,160 Illumina paired-end reads from Wolbachia-infected and uninfected mosquitoes, and used these to make a de novo transcriptome assembly, resulting in 58,013 contigs with a median sequence length of 443 bp and an N50 of 2454 bp. Contigs were annotated through local alignments using BlastX, and associated with both gene ontology and KEGG orthology terms. Through baySeq, we identified 159 contigs that were significantly upregulated due to Wolbachia infection, and 98 that were downregulated. Critically, we saw no changes to Toll or IMD immune gene transcription, but did see evidence that wFlu infection altered the expression of several bacterial recognition genes, and immune-related genes that could influence Plasmodium infection. wFlu infection also had a widespread effect on a number of host physiological processes including protein, carbohydrate and lipid metabolism, and oxidative stress. We then compared our data set with transcriptomic data for other Wolbachia infections in Aedes aegypti, and identified a core set of 15 gene groups associated with Wolbachia infection in mosquitoes. Conclusions While the scale of transcriptional changes associated with wFlu infection might be small, the scope is rather large, which confirms that native Wolbachia infections maintain intricate molecular relationships with their mosquito hosts even after lengthy periods of co-evolution. We have also identified several potential means through which wFlu infection might influence Plasmodium infection in Ae. fluviatilis, and these genes should form the basis of future investigation into the enhancement of Plasmodium by Wolbachia. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3441-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- E P Caragata
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - F S Pais
- Grupo de Informática de Biossistemas e Genômica, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - L A Baton
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - J B L Silva
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | - M H F Sorgine
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - L A Moreira
- Grupo Mosquitos Vetores: Endossimbiontes e Interação Patógeno Vetor, Centro de Pesquisas René Rachou - Fiocruz, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
100
|
Gonzales KK, Hansen IA. Artificial Diets for Mosquitoes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13121267. [PMID: 28009851 PMCID: PMC5201408 DOI: 10.3390/ijerph13121267] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 12/14/2016] [Accepted: 12/19/2016] [Indexed: 12/22/2022]
Abstract
Mosquito-borne diseases are responsible for more than a million human deaths every year. Modern mosquito control strategies such as sterile insect technique (SIT), release of insects carrying a dominant lethal (RIDL), population replacement strategies (PR), and Wolbachia-based strategies require the rearing of large numbers of mosquitoes in culture for continuous release over an extended period of time. Anautogenous mosquitoes require essential nutrients for egg production, which they obtain through the acquisition and digestion of a protein-rich blood meal. Therefore, mosquito mass production in laboratories and other facilities relies on vertebrate blood from live animal hosts. However, vertebrate blood is expensive to acquire and hard to store for longer times especially under field conditions. This review discusses older and recent studies that were aimed at the development of artificial diets for mosquitoes in order to replace vertebrate blood.
Collapse
Affiliation(s)
- Kristina K Gonzales
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
| | - Immo A Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA.
- Institute of Applied Biosciences, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|