51
|
Kattoula SR, Baker ME. Structural and evolutionary analysis of the co-activator binding domain in vertebrate progesterone receptors. J Steroid Biochem Mol Biol 2014; 141:7-15. [PMID: 24388949 DOI: 10.1016/j.jsbmb.2013.12.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 12/19/2013] [Accepted: 12/21/2013] [Indexed: 11/19/2022]
Abstract
Biochemical studies show that binding of co-activators to the progesterone receptor [PR] is an important mechanism for regulating of PR-mediated gene transcription. Unfortunately, unlike other steroid receptors, the PR has not been crystalized with a co-activator. Fortunately, the PR has strong structural similarity to the mineralocorticoid receptor [MR] and glucocorticoid receptor [GR], which have been crystalized with co-activators. This similarity allowed us to construct 3D models of the PR with steroid co-activator 1-Box 4 [SRC1-4] and transcriptional intermediary factor 2-Box 3 [TIF2-3], which were extracted from the crystal structures of human MR and GR, respectively. Comparisons of 3D models of human PR with SRC1-4 and TIF2-3 and human MR with SRC1-4 and GR with TIF2-3 identified some unique interactions between the PR and SRC1-4 and TIF2-3. An evolutionary analysis of the sequence of the co-activator binding groove in human PR found strong conservation in terrestrial vertebrates. However, there are some differences between human PR and the PRs in lamprey, shark and fishes. These differences among the PRs and between the PR, MR and GR may have contributed to the evolution of specificity for progestins, mineralocorticoids and glucocorticoids in vertebrates.
Collapse
Affiliation(s)
- Stephanie R Kattoula
- Department of Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693, United States
| | - Michael E Baker
- Department of Medicine, 0693, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693, United States.
| |
Collapse
|
52
|
Wang H, Chung-Davidson YW, Li W. Identification and quantification of sea lamprey gonadotropin-releasing hormones by electrospray ionization tandem mass spectrometry. J Chromatogr A 2014; 1345:98-106. [PMID: 24768126 DOI: 10.1016/j.chroma.2014.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 10/25/2022]
Abstract
Gonadotropin-releasing hormones (GnRH) are neuropeptide hormones that regulate reproduction in vertebrates. Twenty-five unique chordate GnRH isoforms have been identified, all with very similar molecular architecture. Identification and quantification of endogenous GnRH in biological samples is extremely challenging due to the high levels of sequence similarity among these GnRH peptides and complexity of the biological matrices laden with large numbers of other peptides and protein degradation fragments, and due to low levels of GnRH abundance. In this study, three lamprey GnRH (lGnRH-I, -II, and -III) were extracted from sea lamprey brain tissue and plasma samples by solid-phase extraction (SPE) and identified by a high resolution Q-TOF mass spectrometry (MS). A rapid quantitation method was developed and validated to determine the concentrations of these three lGnRHs by using a UPLC coupled tandem MS in positive ESI multiple reaction monitoring (MRM) mode. Luteinizing hormone-release hormone (LHRH, one of the mammalian GnRHs) was used as the internal standard. The developed quantitation method was fully validated for its recovery, matrix effect, linearity, repeatability, precision and accuracy, and storage stability. This method exhibited excellent linearity in a broad concentration range for all three lGnRHs (R(2)>0.99) and limits of detection (LOD; as low as 0.007 ng/mL). Brain and plasma samples from a total of 280 sea lampreys were analyzed with the developed method to investigate the biological relevance of the lGnRH levels. The concentrations of these three lGnRHs were detected at levels of pictogram per microgram brain tissue and milliliter of plasma. The obtained analytical performance parameters and collected data from real biological samples have proven that this is a robust, sensitive, and fully validated LC-MS/MS method to simultaneously quantify three neuropeptide hormones in complex biological matrices.
Collapse
Affiliation(s)
- Huiyong Wang
- Department of Fisheries and Wildlife, Michigan State University, Room 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI 48824, USA
| | - Yu-Wen Chung-Davidson
- Department of Fisheries and Wildlife, Michigan State University, Room 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI 48824, USA
| | - Weiming Li
- Department of Fisheries and Wildlife, Michigan State University, Room 13 Natural Resources Building, 480 Wilson Road, East Lansing, MI 48824, USA.
| |
Collapse
|
53
|
Modrell MS, Hockman D, Uy B, Buckley D, Sauka-Spengler T, Bronner ME, Baker CVH. A fate-map for cranial sensory ganglia in the sea lamprey. Dev Biol 2014; 385:405-16. [PMID: 24513489 PMCID: PMC3928997 DOI: 10.1016/j.ydbio.2013.10.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 10/17/2013] [Accepted: 10/21/2013] [Indexed: 11/30/2022]
Abstract
Cranial neurogenic placodes and the neural crest make essential contributions to key adult characteristics of all vertebrates, including the paired peripheral sense organs and craniofacial skeleton. Neurogenic placode development has been extensively characterized in representative jawed vertebrates (gnathostomes) but not in jawless fishes (agnathans). Here, we use in vivo lineage tracing with DiI, together with neuronal differentiation markers, to establish the first detailed fate-map for placode-derived sensory neurons in a jawless fish, the sea lamprey Petromyzon marinus, and to confirm that neural crest cells in the lamprey contribute to the cranial sensory ganglia. We also show that a pan-Pax3/7 antibody labels ophthalmic trigeminal (opV, profundal) placode-derived but not maxillomandibular trigeminal (mmV) placode-derived neurons, mirroring the expression of gnathostome Pax3 and suggesting that Pax3 (and its single Pax3/7 lamprey ortholog) is a pan-vertebrate marker for opV placode-derived neurons. Unexpectedly, however, our data reveal that mmV neuron precursors are located in two separate domains at neurula stages, with opV neuron precursors sandwiched between them. The different branches of the mmV nerve are not comparable between lampreys and gnatho-stomes, and spatial segregation of mmV neuron precursor territories may be a derived feature of lampreys. Nevertheless, maxillary and mandibular neurons are spatially segregated within gnathostome mmV ganglia, suggesting that a more detailed investigation of gnathostome mmV placode development would be worthwhile. Overall, however, our results highlight the conservation of cranial peripheral sensory nervous system development across vertebrates, yielding insight into ancestral vertebrate traits. The first detailed fate-map for placode-derived sensory neurons in a jawless fish. Pax3 is a pan-vertebrate marker for ophthalmic trigeminal placode-derived neurons. Maxillomandibular trigeminal neuron precursors are located in two separate domains. Confirmation that lamprey neural crest cells contribute to cranial sensory ganglia. Results overall highlight conservation of cranial sensory nervous system development.
Collapse
|
54
|
Lampreys have a single gene cluster for the fast skeletal myosin heavy chain gene family. PLoS One 2013; 8:e85500. [PMID: 24376886 PMCID: PMC3869912 DOI: 10.1371/journal.pone.0085500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/05/2013] [Indexed: 01/13/2023] Open
Abstract
Muscle tissues contain the most classic sarcomeric myosin, called myosin II, which consists of 2 heavy chains (MYHs) and 4 light chains. In the case of humans (tetrapod), a total of 6 fast skeletal-type MYH genes (MYHs) are clustered on a single chromosome. In contrast, torafugu (teleost) contains at least 13 fast skeletal MYHs, which are distributed in 5 genomic regions; the MYHs are clustered in 3 of these regions. In the present study, the evolutionary relationship among fast skeletal MYHs is elucidated by comparing the MYHs of teleosts and tetrapods with those of cyclostome lampreys, one of two groups of extant jawless vertebrates (agnathans). We found that lampreys contain at least 3 fast skeletal MYHs, which are clustered in a head-to-tail manner in a single genomic region. Although there was apparent synteny in the corresponding MYH cluster regions between lampreys and tetrapods, phylogenetic analysis indicated that lamprey and tetrapod MYHs have independently duplicated and diversified. Subsequent transgenic approaches showed that the 5′-flanking sequences of Japanese lamprey fast skeletal MYHs function as a regulatory sequence to drive specific reporter gene expression in the fast skeletal muscle of zebrafish embryos. Although zebrafish MYH promoters showed apparent activity to direct reporter gene expression in myogenic cells derived from mice, promoters from Japanese lamprey MYHs had no activity. These results suggest that the muscle-specific regulatory mechanisms are partially conserved between teleosts and tetrapods but not between cyclostomes and tetrapods, despite the conserved synteny.
Collapse
|
55
|
Su P, Liu X, Han Y, Zheng Z, Liu G, Li J, Li Q. Identification and characterization of a novel IκB-ε-like gene from lamprey (Lampetra japonica) with a role in immune response. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1146-1154. [PMID: 23916539 DOI: 10.1016/j.fsi.2013.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/02/2013] [Accepted: 07/14/2013] [Indexed: 06/02/2023]
Abstract
Nuclear factor of kappa B (NF-κB) is a stimuli-activated transcription factor, regulates the expression of a diverse array of genes. Inhibitor of kappa B-epsilon (IκB-ε) is an inhibitor of NF-κB, which retains NF-κB in an inactive state in the cytoplasm. Lampreys (Lampetra japonica) belong to the lowest class of vertebrates with little information about its IκBs. We have identified a cDNA sequence IκB-ε-like in the lamprey and the deduced amino acid sequence of IκB-ε-like. It contains a conserved DSGxxS motif and six consecutive ankyrin repeats, which are necessary for signal-induced degradation of the molecule. Phylogenetic analysis indicated it had high sequence homology with IκB-εs from other vertebrates. FACS analysis showed that IκB-ε-like located in cytoplasm of leukocytes. The degradation of IκB-ε-like could be observed in leukocytes of L. japonica stimulated with lipopolysaccharide. These results indicate that IκB-ε proteins are conserved across vertebrates and the NF-κB-like signaling pathway may exist in the oldest agnatha.
Collapse
Affiliation(s)
- Peng Su
- College of Life Science, Liaoning Normal University, Dalian 116029, China
| | | | | | | | | | | | | |
Collapse
|
56
|
Baker ME, Funder JW, Kattoula SR. Evolution of hormone selectivity in glucocorticoid and mineralocorticoid receptors. J Steroid Biochem Mol Biol 2013; 137:57-70. [PMID: 23907018 DOI: 10.1016/j.jsbmb.2013.07.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/02/2013] [Accepted: 07/22/2013] [Indexed: 02/02/2023]
Abstract
Mineralocorticoid receptors (MR) and glucocorticoid receptors (GR) are descended from an ancestral corticoid receptor (CR). To date, the earliest CR have been found in lamprey and hagfish, two jawless fish (cyclostomes) that evolved at the base of the vertebrate line. Lamprey CR has both MR and GR activity. Distinct orthologs of the GR and MR first appear in skates and sharks, which are cartilaginous fishes (Chondrichthyes). Aldosterone, the physiological mineralocorticoid in terrestrial vertebrates, first appears in lobe-finned fish, such as lungfish and coelacanth, forerunners of terrestrial vertebrates, but not in sharks, skates or ray-finned fish. Skate MR are transcriptionally activated by glucocorticoids, such as corticosterone and cortisol, as well as by mineralocorticoids such as deoxycorticosterone and (experimentally) aldosterone; skate GR have low affinity for all human corticosteroids and 1α-OH-corticosterone, which has been proposed to be biologically active glucocorticoid. In fish, cortisol is both physiological mineralocorticoid and glucocorticoid; in terrestrial vertebrates, cortisol or corticosterone are the physiological glucocorticoids acting through GR, and aldosterone via MR as the physiologic mineralocorticoid. MR have equally high affinity for cortisol, corticosterone and progesterone. We review this evolutionary process through an analysis of changes in sequence and structure of vertebrate GR and MR, identifying changes in these receptors in skates and lobe-fined fish important in allowing aldosterone to act as an agonist at epithelial MR and glucocorticoid specificity for GR. hMR and hGR have lost a key contact between helix 3 and helix 5 that was present in their common ancestor. A serine that is diagnostic for vertebrate MR, and absent in terrestrial and fish GR, is present in lamprey CR, skate MR and GR, but not in coelacanth GR, marking the transition of the GR from MR ancestor. Based on the response of the CR and skate MR and GR to corticosteroids, we conclude that the mechanism(s) for selectivity of GR for cortisol and corticosterone and the specificity of aldosterone for MR are incompletely understood. This article is part of a Special Issue entitled 'CSR 2013'.
Collapse
Affiliation(s)
- Michael E Baker
- Department of Medicine, 0693, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693, United States.
| | | | | |
Collapse
|
57
|
Zhao C, Feng B, Cao Y, Xie P, Xu J, Pang Y, Liu X, Li Q. Identification and characterisation of ROS modulator 1 in Lampetra japonica. FISH & SHELLFISH IMMUNOLOGY 2013; 35:278-283. [PMID: 23685010 DOI: 10.1016/j.fsi.2013.04.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 04/22/2013] [Accepted: 04/22/2013] [Indexed: 06/02/2023]
Abstract
Reactive oxygen species (ROS) are a heterogeneous group of highly reactive molecules that oxidise targets in biological systems. ROS are also considered important immune regulators. In this study, we identified a homologue of reactive oxygen species modulator 1 (Romo1) in the Japanese lamprey (Lampetra japonica). The L japonica Romo1 (Lj-Romo1) gene shares high sequence homology with the Romo1 genes of jawed vertebrates. Real-time quantitative PCR demonstrated the wide distribution of Lj-Romo1 in lamprey tissues. Furthermore, after the lampreys were stimulated with lipopolysaccharide (LPS), the level of Lj-Romo1 mRNA was markedly up-regulated in the liver, gill, kidney, and intestine tissues. Lj-Romo1 was localised to the mitochondria and has the capacity to increase the ROS level in cells. The results obtained in the present study will help us to understand the roles of Romo1 in ROS production and innate immune responses in jawless vertebrates.
Collapse
Affiliation(s)
- Chunhui Zhao
- Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Faculty of Life Science, Liaoning Normal University, Dalian 116081, China
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Body wall development in lamprey and a new perspective on the origin of vertebrate paired fins. Proc Natl Acad Sci U S A 2013; 110:11899-904. [PMID: 23818600 DOI: 10.1073/pnas.1304210110] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Classical hypotheses regarding the evolutionary origin of paired appendages propose transformation of precursor structures (gill arches and lateral fin folds) into paired fins. During development, gnathostome paired appendages form as outgrowths of body wall somatopleure, a tissue composed of somatic lateral plate mesoderm (LPM) and overlying ectoderm. In amniotes, LPM contributes connective tissue to abaxial musculature and forms ventrolateral dermis of the interlimb body wall. The phylogenetic distribution of this character is uncertain because lineage analyses of LPM have not been generated in anamniotes. We focus on the evolutionary history of the somatopleure to gain insight into the tissue context in which paired fins first appeared. Lampreys diverged from other vertebrates before the acquisition of paired fins and provide a model for investigating the preappendicular condition. We present vital dye fate maps that suggest the somatopleure is eliminated in lamprey as the LPM is separated from the ectoderm and sequestered to the coelomic linings during myotome extension. We also examine the distribution of postcranial mesoderm in catshark and axolotl. In contrast to lamprey, our findings support an LPM contribution to the trunk body wall of these taxa, which is similar to published data for amniotes. Collectively, these data lead us to hypothesize that a persistent somatopleure in the lateral body wall is a gnathostome synapomorphy, and the redistribution of LPM was a key step in generating the novel developmental module that ultimately produced paired fins. These embryological criteria can refocus arguments on paired fin origins and generate hypotheses testable by comparative studies on the source, sequence, and extent of genetic redeployment.
Collapse
|
59
|
Cai SY, Lionarons DA, Hagey L, Soroka CJ, Mennone A, Boyer JL. Adult sea lamprey tolerates biliary atresia by altering bile salt composition and renal excretion. Hepatology 2013; 57:2418-26. [PMID: 23175353 PMCID: PMC3604052 DOI: 10.1002/hep.26161] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 10/31/2012] [Indexed: 12/29/2022]
Abstract
The sea lamprey (Petromyzon marinus) is a genetically programmed animal model for biliary atresia, as it loses its bile ducts and gallbladder during metamorphosis. However, in contrast to patients with biliary atresia or other forms of cholestasis who develop progressive disease, the postmetamorphosis lampreys grow normally to adult size. To understand how the adult lamprey thrives without the ability to secrete bile, we examined bile salt homeostasis in larval and adult lampreys. Adult livers were severely cholestatic, with levels of bile salts >1 mM, but no evidence of necrosis, fibrosis, or inflammation. Interestingly, both larvae and adults had normal plasma levels (∼10 μM) of bile salts. In larvae, petromyzonol sulfate (PZS) was the predominant bile salt, whereas the major bile salts in adult liver were sulfated C27 bile alcohols. Cytotoxicity assays revealed that PZS was highly toxic. Pharmacokinetic studies in free-swimming adults revealed that ∼35% of intravenously injected bromosulfophthalein (BSP) was eliminated over a 72-hour period. Collection of urine and feces demonstrated that both endogenous and exogenous organic anions, including biliverdin, bile salts, and BSP, were predominantly excreted by way of the kidney, with minor amounts also detected in feces. Gene expression analysis detected marked up-regulation of orthologs of known organic anion and bile salt transporters in the kidney, with lesser effects in the intestine and gills in adults compared to larvae. These findings indicate that adult lampreys tolerate cholestasis by altering hepatic bile salt composition, while maintaining normal plasma bile salt levels predominantly through renal excretion of bile products. Therefore, we conclude that strategies to accelerate renal excretion of bile salt and other toxins should be beneficial for patients with cholestasis. (HEPATOLOGY 2013;57:2418-2426).
Collapse
Affiliation(s)
- Shi-Ying Cai
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, CT 06520
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672
| | - Daniël A. Lionarons
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, CT 06520
| | - Lee Hagey
- Department of Medicine, University of California - San Diego, La Jolla, CA 92093
| | - Carol J. Soroka
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, CT 06520
| | - Albert Mennone
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, CT 06520
| | - James L. Boyer
- Department of Internal Medicine and Liver Center, Yale University School of Medicine, New Haven, CT 06520
- Mount Desert Island Biological Laboratory, Salisbury Cove, ME 04672
| |
Collapse
|
60
|
The vertebrate diencephalic MCH system: a versatile neuronal population in an evolving brain. Front Neuroendocrinol 2013; 34:65-87. [PMID: 23088995 DOI: 10.1016/j.yfrne.2012.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 10/05/2012] [Accepted: 10/10/2012] [Indexed: 11/22/2022]
Abstract
Neurons synthesizing melanin-concentrating hormone (MCH) are described in the posterior hypothalamus of all vertebrates investigated so far. However, their anatomy is very different according to species: they are small and periventricular in lampreys, cartilaginous fishes or anurans, large and neuroendocrine in bony fishes, or distributed over large regions of the lateral hypothalamus in many mammals. An analysis of their comparative anatomy alongside recent data about the development of the forebrain, suggests that although very different, MCH neurons of the caudal hypothalamus are homologous. We further hypothesize that their divergent anatomy is linked to divergence in the forebrain - in particular telencephalic evolution.
Collapse
|
61
|
Sugahara F, Murakami Y, Adachi N, Kuratani S. Evolution of the regionalization and patterning of the vertebrate telencephalon: what can we learn from cyclostomes? Curr Opin Genet Dev 2013; 23:475-83. [PMID: 23499411 DOI: 10.1016/j.gde.2013.02.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/08/2013] [Accepted: 02/13/2013] [Indexed: 11/26/2022]
Abstract
The telencephalon, the most anterior part of the vertebrate central nervous system (CNS), is a highly diversified region of the vertebrate body. Its evolutionary origin remains elusive, especially with regard to the ancestral state of its architecture as well as the origin of telencephalon-specific neuron subtypes. Cyclostomes (lampreys and hagfish), the sister group of the gnathostomes (jawed vertebrates), serve as valuable models for studying the evolution of the vertebrate CNS. Here, we summarize recent studies on the development of the telencephalon in the lamprey. By comparing detailed developmental studies in mammals, we illustrate a possible ancestral developmental plan underlying the diversification of the vertebrate telencephalon and propose possible approaches for understanding the early evolution of the telencephalon.
Collapse
Affiliation(s)
- Fumiaki Sugahara
- Laboratory for Evolutionary Morphology, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima-minami, Kobe 650-0047, Japan
| | | | | | | |
Collapse
|
62
|
Pérez-Fernández J, Megías M, Pombal MA. Distribution of a Y1 receptor mRNA in the brain of two Lamprey species, the sea lamprey (Petromyzon marinus) and the river Lamprey (Lampetra fluviatilis). J Comp Neurol 2013; 521:426-47. [PMID: 22740099 DOI: 10.1002/cne.23180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 05/23/2012] [Accepted: 06/22/2012] [Indexed: 11/09/2022]
Abstract
The neuropeptide Y system consists of several neuropeptides acting through a broad number of receptor subtypes, the NPY family of receptors. NPY receptors are divided into three subfamilies (Y1, Y2, and Y5) that display a complex evolutionary history due to local and large-scale gene duplication events and gene losses. Lampreys emerged from a basal branch of the tree of vertebrates and they are in a key position to shed light on the evolutionary history of the NPY system. One member of the Y1 subfamily has been reported in agnathans, but the phylogenetic tree of the Y1 subfamily is not yet clear. We cloned the sequences of the Y1-subtype receptor of Petromyzon marinus and Lampetra fluviatilis to study the expression pattern of this receptor in lampreys by in situ hybridization and to analyze the phylogeny of the Y1-subfamily receptors in vertebrates. The phylogenetic study showed that the Y1 receptor of lampreys is basal to the Y1/6 branch of the Y1-subfamily receptors. In situ hybridization showed that the Y1 receptor is widely expressed throughout the brain of lampreys, with some regions showing numerous positive neurons, as well as the presence of numerous cerebrospinal fluid-contacting cells in the spinal cord. This broad distribution of the lamprey Y1 receptor is more similar to that found in other vertebrates for the Y1 receptor than that of the other members of the Y1 subfamily: Y4, Y8, and Y6 receptors. Both phylogenetic relationship and expression pattern suggest that this receptor is a Y1 receptor.
Collapse
Affiliation(s)
- Juan Pérez-Fernández
- Neurolam Group, Department of Functional Biology and Health Sciences, University of Vigo, Vigo, Spain
| | | | | |
Collapse
|
63
|
Suárez R, García-González D, de Castro F. Mutual influences between the main olfactory and vomeronasal systems in development and evolution. Front Neuroanat 2012; 6:50. [PMID: 23269914 PMCID: PMC3529325 DOI: 10.3389/fnana.2012.00050] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 11/26/2012] [Indexed: 12/14/2022] Open
Abstract
The sense of smell plays a crucial role in the sensory world of animals. Two chemosensory systems have been traditionally thought to play-independent roles in mammalian olfaction. According to this, the main olfactory system (MOS) specializes in the detection of environmental odorants, while the vomeronasal system (VNS) senses pheromones and semiochemicals produced by individuals of the same or different species. Although both systems differ in their anatomy and function, recent evidence suggests they act synergistically in the perception of scents. These interactions include similar responses to some ligands, overlap of telencephalic connections and mutual influences in the regulation of olfactory-guided behavior. In the present work, we propose the idea that the relationships between systems observed at the organismic level result from a constant interaction during development and reflects a common history of ecological adaptations in evolution. We review the literature to illustrate examples of developmental and evolutionary processes that evidence these interactions and propose that future research integrating both systems may shed new light on the mechanisms of olfaction.
Collapse
Affiliation(s)
- Rodrigo Suárez
- Queensland Brain Institute, The University of Queensland, St Lucia Brisbane, QLD, Australia ; Departamento de Biología, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | | | | |
Collapse
|
64
|
Serotonin 1A receptor (5-HT1A) of the sea lamprey: cDNA cloning and expression in the central nervous system. Brain Struct Funct 2012; 218:1317-35. [PMID: 23052550 DOI: 10.1007/s00429-012-0461-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/20/2012] [Indexed: 01/13/2023]
Abstract
Serotonergic cells are among the earliest neurons to be born in the developing central nervous system and serotonin is known to regulate the development of the nervous system. One of the major targets of the activity of serotonergic cells is the serotonin 1A receptor (5-HT1A), an ancestral archetypical serotonin receptor. In this study, we cloned and characterized the 3D structure of the sea lamprey 5-HT1A, and studied the expression of its transcript in the central nervous system by means of in situ hybridization. In phylogenetic analyses, the sea lamprey 5-HT1A sequence clustered together with 5-HT1A sequences of vertebrates and emerged as an outgroup to all gnathostome sequences. In situ hybridization analysis during prolarval, larval and adult stages showed a widespread expression of the lamprey 5-ht1a transcript. In P1 prolarvae 5-ht1a mRNA expression was observed in diencephalic nuclei, the rhombencephalon and rostral spinal cord. At P2 prolarval stage the 5-ht1a expression extended to other brain areas including telencephalic regions. 5-ht1a expression in larvae was observed throughout almost all the main brain regions with the strongest expression in the olfactory bulbs, lateral pallium, striatum, preoptic region, habenula, prethalamus, thalamus, pretectum, hypothalamus, rhombencephalic reticular area, dorsal column nucleus and rostral spinal cord. In adults, the 5-ht1a transcript was also observed in cells of the subcommissural organ. Comparison of the expression of 5-ht1a between the sea lamprey and other vertebrates reveals a conserved pattern in most of the brain regions, likely reflecting the ancestral vertebrate condition.
Collapse
|
65
|
Baker ME, Uh KY. Evolutionary analysis of the segment from helix 3 through helix 5 in vertebrate progesterone receptors. J Steroid Biochem Mol Biol 2012; 132:32-40. [PMID: 22575083 DOI: 10.1016/j.jsbmb.2012.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/17/2012] [Accepted: 04/21/2012] [Indexed: 11/27/2022]
Abstract
The interaction between helix 3 and helix 5 in the human mineralocorticoid receptor [MR], progesterone receptor [PR] and glucocorticoid receptor [GR] influences their response to steroids. For the human PR, mutations at Gly-722 on helix 3 and Met-759 on helix 5 alter responses to progesterone. We analyzed the evolution of these two sites and the rest of a 59 residue segment containing helices 3, 4 and 5 in vertebrate PRs and found that a glycine corresponding to Gly-722 on helix 3 in human PR first appears in platypus, a monotreme. In lamprey, skates, fish, amphibians and birds, cysteine is found at this position in helix 3. This suggests that the cysteine to glycine replacement in helix 3 in the PR was important in the evolution of mammals. Interestingly, our analysis of the rest of the 59 residue segment finds 100% sequence conservation in almost all mammal PRs, substantial conservation in reptile and amphibian PRs and divergence of land vertebrate PR sequences from the fish PR sequences. The differences between fish and land vertebrate PRs may be important in the evolution of different biological progestins in fish and mammalian PR, as well as differences in susceptibility to environmental chemicals that disrupt PR-mediated physiology.
Collapse
Affiliation(s)
- Michael E Baker
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0693, United States.
| | | |
Collapse
|
66
|
Wu F, Su P, Chen L, Li M, Liu X, Li Q. Cloning of arctic lamprey Lethenteron camtschaticum cd9 with roles in the immune response. JOURNAL OF FISH BIOLOGY 2012; 81:1147-1157. [PMID: 22957860 DOI: 10.1111/j.1095-8649.2012.03299.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this study, the cd9 gene, a member of the tetraspanin superfamily and involved in various cellular processes, was cloned from Lethenteron camtschaticum. Both real-time PCR and immunohistochemical assays showed broad distribution of cd9 in various L. camtschaticum tissues. In addition, expression levels of Cd9 mRNA were up-regulated in the liver and heart after stimulation by lipopolysaccharide. Flow cytometric analyses demonstrated that cd9 was detected on the leukocytes and that the expression level was higher on granulocytes than on lymphocytes, which implied that cd9 was mainly involved in innate immunity.
Collapse
Affiliation(s)
- F Wu
- College of Life Science, Liaoning Normal University, Dalian 116029, China
| | | | | | | | | | | |
Collapse
|
67
|
Quantification of monoamine neurotransmitters and melatonin in sea lamprey brain tissues by high performance liquid chromatography–electrospray ionization tandem mass spectrometry. Talanta 2012; 89:383-90. [DOI: 10.1016/j.talanta.2011.12.048] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 12/15/2011] [Accepted: 12/16/2011] [Indexed: 11/23/2022]
|
68
|
Baker ME, Uh KY, Asnaashari P. 3D models of lamprey corticoid receptor complexed with 11-deoxycortisol and deoxycorticosterone. Steroids 2011; 76:1451-7. [PMID: 21840328 DOI: 10.1016/j.steroids.2011.07.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/26/2011] [Accepted: 07/27/2011] [Indexed: 11/17/2022]
Abstract
The serum of Atlantic sea lamprey, a basal vertebrate, contains two corticosteroids, 11-deoxycortisol and deoxycorticosterone. Only 11-deoxycortisol has high affinity [K(d) ~ 3 nM] for the corticoid receptor [CR] in lamprey gill cytosol. To investigate the binding of 11-deoxycortisol to the CR, we constructed 3D models of lamprey CR complexed with 11-deoxycortisol and deoxycorticosterone. These 3D models reveal that Leu-220 and Met-299 in lamprey CR have contacts with the 17α-hydroxyl on 11-deoxycortisol. Lamprey CR is the ancestor of the mineralocorticoid receptor [MR] and glucocorticoid receptor [GR]. Unlike human MR and human GR, the 3D model of lamprey CR finds a van der Waals contact between Cys-227 in helix 3 and Met-264 in helix 5. Mutant human MR and GR containing a van der Waals contact between helix 3 and helix 5 display enhanced responses to progesterone and glucocorticoids, respectively. We propose that this interaction was present in the CR and lost during the evolution of the MR and GR, leading to changes in their response to progesterone and corticosteroids, respectively.
Collapse
Affiliation(s)
- Michael E Baker
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693, USA.
| | | | | |
Collapse
|
69
|
Häming D, Simoes-Costa M, Uy B, Valencia J, Sauka-Spengler T, Bronner-Fraser M. Expression of sympathetic nervous system genes in Lamprey suggests their recruitment for specification of a new vertebrate feature. PLoS One 2011; 6:e26543. [PMID: 22046306 PMCID: PMC3203141 DOI: 10.1371/journal.pone.0026543] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 09/28/2011] [Indexed: 11/18/2022] Open
Abstract
The sea lamprey is a basal, jawless vertebrate that possesses many neural crest derivatives, but lacks jaws and sympathetic ganglia. This raises the possibility that the factors involved in sympathetic neuron differentiation were either a gnathostome innovation or already present in lamprey, but serving different purposes. To distinguish between these possibilities, we isolated lamprey homologues of transcription factors associated with peripheral ganglion formation and examined their deployment in lamprey embryos. We further performed DiI labeling of the neural tube combined with neuronal markers to test if neural crest-derived cells migrate to and differentiate in sites colonized by sympathetic ganglia in jawed vertebrates. Consistent with previous anatomical data in adults, our results in lamprey embryos reveal that neural crest cells fail to migrate ventrally to form sympathetic ganglia, though they do form dorsal root ganglia adjacent to the neural tube. Interestingly, however, paralogs of the battery of transcription factors that mediate sympathetic neuron differentiation (dHand, Ascl1 and Phox2b) are present in the lamprey genome and expressed in various sites in the embryo, but fail to overlap in any ganglionic structures. This raises the intriguing possibility that they may have been recruited during gnathostome evolution to a new function in a neural crest derivative.
Collapse
Affiliation(s)
- Daniela Häming
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Marcos Simoes-Costa
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Benjamin Uy
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Jonathan Valencia
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Tatjana Sauka-Spengler
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Marianne Bronner-Fraser
- Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| |
Collapse
|
70
|
Caputo V, Giovannotti M, Cerioni PN, Splendiani A, Tagliavini J, Olmo E. Chromosomal study of a lamprey (Lampetra zanandreai Vladykov, 1955) (Petromyzonida: Petromyzontiformes): conventional and FISH analysis. Chromosome Res 2011; 19:481-91. [DOI: 10.1007/s10577-011-9197-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 02/21/2011] [Accepted: 02/24/2011] [Indexed: 12/22/2022]
|
71
|
Pombal MA, Alvarez-Otero R, Pérez-Fernández J, Solveira C, Megías M. Development and organization of the lamprey telencephalon with special reference to the GABAergic system. Front Neuroanat 2011; 5:20. [PMID: 21442003 PMCID: PMC3062466 DOI: 10.3389/fnana.2011.00020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 03/07/2011] [Indexed: 12/12/2022] Open
Abstract
Lampreys, together with hagfishes, represent the sister group of gnathostome vertebrates. There is an increasing interest for comparing the forebrain organization observed in lampreys and gnathostomes to shed light on vertebrate brain evolution. Within the prosencephalon, there is now a general agreement on the major subdivisions of the lamprey diencephalon; however, the organization of the telencephalon, and particularly its pallial subdivisions, is still a matter of controversy. In this study, recent progress on the development and organization of the lamprey telencephalon is reviewed, with particular emphasis on the GABA immunoreactive cell populations trying to understand their putative origin. First, we describe some early general cytoarchitectonic events by searching the classical literature as well as our collection of embryonic and prolarval series of hematoxylin-stained sections. Then, we comment on the cell proliferation activity throughout the larval period, followed by a detailed description of the early events on the development of the telencephalic GABAergic system. In this context, lampreys apparently do not possess the same molecularly distinct subdivisions of the gnathostome basal telencephalon because of the absence of a Nkx2.1-expressing domain in the developing subpallium; a fact that has been related to the absence of a medial ganglionic eminence as well as of its derived nucleus in gnathostomes, the pallidum. Therefore, these data raise interesting questions such as whether or not a different mechanism to specify telencephalic GABAergic neurons exists in lampreys or what are their migration pathways. Finally, we summarize the organization of the adult lamprey telencephalon by analyzing the main proposed conceptions, including the available data on the expression pattern of some developmental regulatory genes which are of importance for building its adult shape.
Collapse
Affiliation(s)
- Manuel A Pombal
- Neurolam Group, Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo Vigo, Spain
| | | | | | | | | |
Collapse
|
72
|
Moreno N, González A. The non-evaginated secondary prosencephalon of vertebrates. Front Neuroanat 2011; 5:12. [PMID: 21427782 PMCID: PMC3049325 DOI: 10.3389/fnana.2011.00012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Accepted: 02/16/2011] [Indexed: 01/22/2023] Open
Abstract
The secondary prosencephalon (telencephalon plus hypothalamus) is probably the most complex area of the brain, with complicated patterning specifications. As yet, no prosomeric subdivisions have been reported and only distinct histogenetic territories have been recognized. In the present comparative study we analyzed cross-correlated expression maps in the non-evaginated territories of the secondary prosencephalon in different vertebrates throughout development, to assess the existence of comparable divisions and subdivisions in the different groups. Each division is characterized by expression of a unique combination of developmental regulatory genes, and each appears to represent a self-regulated and topologically constant histogenetic brain compartment that gives rise to a specific cell group. The non-evaginated area of the telencephalon corresponds to the preoptic region, whereas the hypothalamus, topologically rostral to the diencephalic prethalamus, includes basal (mammillary and tuberal) and alar (paraventricular and suprachiasmatic) parts. This complex area is specified by a cascade of transcription factors, among which the Dlx family members and Nkx2.1 are essential for the correct development. The only exception is found in the subdivision named termed the supraoptoparaventricular area, in which the transcription factor Orthopedia is essential in restricting the fate of multiple categories of neuroendocrine neurons, in the absence of the Dlx/Nkx2.1 combination. Our analysis, based on own data and published results by other researchers, suggests that common features are shared at least by all tetrapods and, therefore, they most likely were present in the stem tetrapods. The available data for agnathans (lampreys) and other fish groups indicate that not all subdivisions of the secondary prosencephalon were present at the origin of vertebrates, raising important questions about their evolution.
Collapse
Affiliation(s)
- Nerea Moreno
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense of Madrid Madrid, Spain
| | | |
Collapse
|
73
|
Deiters A, Garner RA, Lusic H, Govan JM, Dush M, Nascone-Yoder NM, Yoder JA. Photocaged morpholino oligomers for the light-regulation of gene function in zebrafish and Xenopus embryos. J Am Chem Soc 2011; 132:15644-50. [PMID: 20961123 DOI: 10.1021/ja1053863] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Morpholino oligonucleotides, or morpholinos, have emerged as powerful antisense reagents for evaluating gene function in both in vitro and in vivo contexts. However, the constitutive activity of these reagents limits their utility for applications that require spatiotemporal control, such as tissue-specific gene disruptions in embryos. Here we report a novel and efficient synthetic route for incorporating photocaged monomeric building blocks directly into morpholino oligomers and demonstrate the utility of these caged morpholinos in the light-activated control of gene function in both cell culture and living embryos. We demonstrate that a caged morpholino that targets enhanced green fluorescent protein (EGFP) disrupts EGFP production only after exposure to UV light in both transfected cells and living zebrafish (Danio rerio) and Xenopus frog embryos. Finally, we show that a caged morpholino targeting chordin, a zebrafish gene that yields a distinct phenotype when functionally disrupted by conventional morpholinos, elicits a chordin phenotype in a UV-dependent manner. Our results suggest that photocaged morpholinos are readily synthesized and highly efficacious tools for light-activated spatiotemporal control of gene expression in multiple contexts.
Collapse
Affiliation(s)
- Alexander Deiters
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.
| | | | | | | | | | | | | |
Collapse
|
74
|
Baker ME, Asnaashari P, Chang DJ, McDonnell S. 3D models of lamprey progesterone receptor complexed with progesterone, 7α-hydroxy-progesterone and 15α-hydroxy-progesterone. Steroids 2011; 76:169-76. [PMID: 21055412 DOI: 10.1016/j.steroids.2010.10.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 10/17/2010] [Accepted: 10/21/2010] [Indexed: 01/24/2023]
Abstract
Sea lamprey, a basal vertebrate, contains a progesterone receptor [PR]. An unusual property of lamprey is that gonadotropin-releasing hormone induces synthesis of 15α-hydroxy-progesterone [15α-OH-P] instead of progesterone. There also is indirect evidence for 7α-OH-P in lamprey serum. To determine if there is a structural basis for the binding of 7α-OH-P and 15α-OH-P to lamprey PR, we constructed 3D models of the lamprey PR complexed with progesterone, 7α-OH-P and 15α-OH-P. These 3D models reveal that Met-277 in lamprey PR has a specific interaction with the 15α-hydroxyl on 15α-OH-P and with Met-192, which also contacts the 15α-hydroxyl group. We also find that 7α-OH-P has favorable contacts with side-chains in lamprey PR. BLAST searches reveal that Met-277 on lamprey PR is unique among vertebrate PRs. This unique site on lamprey PR could be a target for compounds to control reproduction in sea lamprey, an environmental pest in Lake Michigan.
Collapse
Affiliation(s)
- Michael E Baker
- Department of Medicine, 0693, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0693, USA.
| | | | | | | |
Collapse
|
75
|
Distal-less-like protein distribution in the larval lamprey forebrain. Neuroscience 2010; 178:270-84. [PMID: 21185911 DOI: 10.1016/j.neuroscience.2010.12.030] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 12/16/2010] [Accepted: 12/17/2010] [Indexed: 11/21/2022]
Abstract
A polyclonal antibody against the Drosophila distal-less (DLL) protein, cross-reactive with cognate vertebrate proteins, was employed to map DLL-like expression in the midlarval lamprey forebrain. This work aimed to characterize in detail the separate diencephalic and telencephalic DLL expression domains, in order to test our previous modified definition of the lamprey prethalamus [Pombal and Puelles (1999) J Comp Neurol 414:391-422], adapt our earlier schema of prosomeric subdivisions in the lamprey forebrain to more recent versions of this model [Pombal et al. (2009) Brain Behav Evol 74:7-19] and reexamine the pallio-subpallial regionalization of the lamprey telencephalon. We observed a large-scale conservation of the topologic distribution of the DLL protein, in consonance with patterns of Dlx expression present in other vertebrates studied. Moreover, evidence was obtained of substantial numbers of DLL-positive neurons in the olfactory bulb and the cerebral hemispheres, in a pattern consistent with possible tangential migration out of the subpallium into the overlying pallium, as occurs in mammals, birds, frogs and teleost fishes.
Collapse
|
76
|
Kano S, Xiao JH, Osório J, Ekker M, Hadzhiev Y, Müller F, Casane D, Magdelenat G, Rétaux S. Two lamprey Hedgehog genes share non-coding regulatory sequences and expression patterns with gnathostome Hedgehogs. PLoS One 2010; 5:e13332. [PMID: 20967201 PMCID: PMC2954159 DOI: 10.1371/journal.pone.0013332] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 09/17/2010] [Indexed: 11/23/2022] Open
Abstract
Hedgehog (Hh) genes play major roles in animal development and studies of their evolution, expression and function point to major differences among chordates. Here we focused on Hh genes in lampreys in order to characterize the evolution of Hh signalling at the emergence of vertebrates. Screening of a cosmid library of the river lamprey Lampetra fluviatilis and searching the preliminary genome assembly of the sea lamprey Petromyzon marinus indicate that lampreys have two Hh genes, named Hha and Hhb. Phylogenetic analyses suggest that Hha and Hhb are lamprey-specific paralogs closely related to Sonic/Indian Hh genes. Expression analysis indicates that Hha and Hhb are expressed in a Sonic Hh-like pattern. The two transcripts are expressed in largely overlapping but not identical domains in the lamprey embryonic brain, including a newly-described expression domain in the nasohypophyseal placode. Global alignments of genomic sequences and local alignment with known gnathostome regulatory motifs show that lamprey Hhs share conserved non-coding elements (CNE) with gnathostome Hhs albeit with sequences that have significantly diverged and dispersed. Functional assays using zebrafish embryos demonstrate gnathostome-like midline enhancer activity for CNEs contained in intron2. We conclude that lamprey Hh genes are gnathostome Shh-like in terms of expression and regulation. In addition, they show some lamprey-specific features, including duplication and structural (but not functional) changes in the intronic/regulatory sequences.
Collapse
Affiliation(s)
- Shungo Kano
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
| | - Jin-Hua Xiao
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
| | - Joana Osório
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
| | - Marc Ekker
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
- Department of Biology, Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Canada
| | - Yavor Hadzhiev
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
- Department of Medical and Molecular Genetics, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ferenc Müller
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
- Department of Medical and Molecular Genetics, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Didier Casane
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
- Laboratoire Evolution, Génomes et Spéciation UPR9034 Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, and Université Paris 7, Paris, France
| | - Ghislaine Magdelenat
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
- Génoscope, Institut de Génomique, Commissariat à l'Energie Atomique (CEA), Evry, France
| | - Sylvie Rétaux
- Laboratoire Neurobiologie et Développement UPR3294 Centre National de la Recherche Scientifique (CNRS), Institut Alfred Fessard, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
77
|
Oliphint PA, Alieva N, Foldes AE, Tytell ED, Lau BYB, Pariseau JS, Cohen AH, Morgan JR. Regenerated synapses in lamprey spinal cord are sparse and small even after functional recovery from injury. J Comp Neurol 2010; 518:2854-72. [PMID: 20506479 DOI: 10.1002/cne.22368] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Despite the potential importance that synapse regeneration plays in restoring neuronal function after spinal cord injury (SCI), even the most basic questions about the morphology of regenerated synapses remain unanswered. Therefore, we set out to gain a better understanding of central synapse regeneration by examining the number, distribution, molecular composition, and ultrastructure of regenerated synapses under conditions in which behavioral recovery from SCI was robust. To do so, we used the giant reticulospinal (RS) neurons of lamprey spinal cord because they readily regenerate, are easily identifiable, and contain large synapses that serve as a classic model for vertebrate excitatory neurotransmission. Using a combination of light and electron microscopy, we found that regenerated giant RS synapses regained the basic structures and presynaptic organization observed at control giant RS synapses at a time when behavioral recovery was nearly complete. However, several obvious differences remained. Most strikingly, regenerated giant RS axons produced very few synapses. In addition, presynaptic sites within regenerated axons were less complex, had fewer vesicles, and had smaller active zones than normal. In contrast, the densities of presynapses and docked vesicles were nearly restored to control values. Thus, robust functional recovery from SCI can occur even when the structures of regenerated synapses are sparse and small, suggesting that functional recovery is due to a more complex set of compensatory changes throughout the spinal network.
Collapse
Affiliation(s)
- Paul A Oliphint
- Section of Molecular Cell and Developmental Biology; Institute for Cell and Molecular Biology, Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78712, USA
| | | | | | | | | | | | | | | |
Collapse
|
78
|
Nikitina N, Bronner-Fraser M, Sauka-Spengler T. The sea lamprey Petromyzon marinus: a model for evolutionary and developmental biology. Cold Spring Harb Protoc 2010; 2009:pdb.emo113. [PMID: 20147008 DOI: 10.1101/pdb.emo113] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Sea lampreys (Petromyzon marinus) are cyclostomes, the most basal extant group of vertebrates, and are thought to have existed largely unchanged for more than 500 million years. They are aquatic, eel-shaped animals that spend a major part of their life as filter-feeding larvae called ammocoetes, inhabiting many freshwater bodies in the northern hemisphere. After metamorphosis, sea lampreys migrate to the ocean (or to the Great Lakes), where they feed on the blood and bodily fluids of salmonid fish and ultimately return to freshwater streams and rivers to spawn and die. The unique evolutionary position of lampreys and the relative ease of obtaining mature adults and embryos make this animal an ideal model for investigations into early vertebrate evolution. Studies of features shared between lampreys and jawed vertebrates, but distinct from those in nonvertebrate chordates, have provided information on the origin and evolution of hallmark vertebrate characteristics such as the neural crest, ectodermal placodes, and jaw. In addition, studies of features that are unique to lampreys (e.g., the variable lymphocyte receptor-mediated immune system) provide insights into mechanisms of parallel evolution (e.g., the adaptive immune system). With the establishment of techniques for the extended maintenance and spawning of lampreys in the laboratory, the sequencing of the lamprey genome, and the adaptation and optimization of many established molecular biology and histochemistry techniques for use in this species, P. marinus is poised to become an evolutionary developmental model of choice.
Collapse
Affiliation(s)
- Natalya Nikitina
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
79
|
Domínguez L, González A, Moreno N. Sonic hedgehog expression during Xenopus laevis forebrain development. Brain Res 2010; 1347:19-32. [PMID: 20540934 DOI: 10.1016/j.brainres.2010.06.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/31/2010] [Accepted: 06/02/2010] [Indexed: 01/25/2023]
Abstract
We have analyzed the developing expression pattern of x-Shh in the Xenopus forebrain, interpreting the results within the framework of the neuromeric model to assess evolutionary trends and clues. To achieve this goal, we have characterized phenotypically the developing x-Shh expressing forebrain subdivisions and neurons by means of the combination of in situ hybridization for x-Shh and immunohistochemistry for the detection of forebrain essential regulators and markers, such as the homeodomain transcription factors Islet 1, Orthopedia, NKX2.1 and NKX2.2 and tyrosine hydroxylase. Substantial evidence was found for x-Shh expression in the telencephalic commissural preoptic area and this is strongly correlated with the presence of a pallidum and/or a basal telencephalic cholinergic system. In the diencephalon, x-Shh was demonstrated in the zona limitans intrathalamica and the x-Shh expressing cells were extended into the prethalamus. Throughout development and in the adult hypothalamic x-Shh expression was strong in basal regions but, in addition, in the alar suprachiasmatic region. The findings obtained in the forebrain of Xenopus revealed a largely conserved pattern of Shh expression among tetrapods. However, interesting differences were also noted that could be related to evolutive changes in forebrain organization.
Collapse
Affiliation(s)
- L Domínguez
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, 28040 Madrid, Spain
| | | | | |
Collapse
|
80
|
Rétaux S, Kano S. Midline signaling and evolution of the forebrain in chordates: a focus on the lamprey Hedgehog case. Integr Comp Biol 2010; 50:98-109. [PMID: 21558191 DOI: 10.1093/icb/icq032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Lampreys are agnathans (vertebrates without jaws). They occupy a key phylogenetic position in the emergence of novelties and in the diversification of morphology at the dawn of vertebrates. We have used lampreys to investigate the possibility that embryonic midline signaling systems have been a driving force for the evolution of the forebrain in vertebrates. We have focused on Sonic Hedgehog/Hedgehog (Shh/Hh) signaling. In this article, we first review and summarize our recent work on the comparative analysis of embryonic expression patterns for Shh/Hh, together with Fgf8 (fibroblast growth factor 8) and Wnt (wingless-Int) pathway components, in the embryonic lamprey forebrain. Comparison with nonvertebrate chordates on one hand, and jawed vertebrates on the other hand, shows that these morphogens/growth factors acquired new expression domains in the most rostral part of the neural tube in lampreys compared to nonvertebrate chordates, and in jawed vertebrates compared to lampreys. These data are consistent with the idea that changes in Shh, Fgf8 or Wnt signaling in the course of evolution have been instrumental for the emergence and diversification of the telencephalon, a part of the forebrain that is unique to vertebrates. We have then used comparative genomics on Shh/Hh loci to identify commonalities and differences in noncoding regulatory sequences across species and phyla. Conserved noncoding elements (CNEs) can be detected in lamprey Hh introns, even though they display unique structural features and need adjustments of parameters used for in silico alignments to be detected, because of lamprey-specific properties of the genome. The data also show conservation of a ventral midline enhancer located in Shh/Hh intron 2 of all chordates, the very species which possess a notochord and a floor plate, but not in earlier emerged deuterostomes or protostomes. These findings exemplify how the Shh/Hh locus is one of the best loci to study genome evolution with regards to developmental events.
Collapse
Affiliation(s)
- Sylvie Rétaux
- NeD-UPR3294, CNRS, Institut Alfred Fessard, avenue de la Terrasse, 91198 Gif-sur-Yvette, France.
| | | |
Collapse
|
81
|
Villar-Cerviño V, Rocancourt C, Menuet A, Da Silva C, Wincker P, Anadón R, Mazan S, Rodicio MC. A vesicular glutamate transporter in lampreys: cDNA cloning and early expression in the nervous system. J Chem Neuroanat 2010; 40:71-81. [PMID: 20363315 DOI: 10.1016/j.jchemneu.2010.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/27/2010] [Accepted: 03/27/2010] [Indexed: 11/17/2022]
Abstract
Vesicular glutamate transporters (VGLUTs) accumulate glutamate into synaptic vesicles of glutamatergic neurons, and thus are considered to define the phenotype of these neurons. Glutamate also appears to play a role in the development of the nervous system of vertebrates. Here we report the characterization of a vesicular glutamate transporter of lamprey (lVGluT), a novel member of the VGluT gene family. Phylogenetic analysis indicates that lVGLUT cannot be assigned to any of the three VGLUT isoforms characterized in teleosts and mammals, suggesting that these classes may have been fixed after the splitting between cyclostomes and gnathostomes. Expression pattern analysis during lamprey embryogenesis and prolarval stages shows that lVGluT expression is restricted to the nervous system. The first structure to express lVGluT was the olfactory epithelium of late embryos. In the brain of early prolarvae, lVGluT was expressed in most of the neuronal populations that generate the early axonal scaffold. lVGluT expression was also observed in neuronal populations of the rhombencephalon and spinal cord and in ganglia of the branchiomeric, octaval and posterior lateral line nerves. In the rhombencephalon, lVGluT expression appears to be spatially restricted in dorsal and ventral longitudinal domains. Comparison of the early expression of VGluT genes between the lamprey and some anamniotan gnathostomes (frog, zebrafish) reveals a conserved expression pattern, likely to reflect ancestral vertebrate characteristics.
Collapse
Affiliation(s)
- Verona Villar-Cerviño
- Departamento de Biología Celular y Ecología, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Niimura Y. Evolutionary dynamics of olfactory receptor genes in chordates: interaction between environments and genomic contents. Hum Genomics 2010; 4:107-18. [PMID: 20038498 PMCID: PMC3525206 DOI: 10.1186/1479-7364-4-2-107] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Olfaction is essential for the survival of animals. Versatile odour molecules in the environment are received by olfactory receptors (ORs), which form the largest multigene family in vertebrates. Identification of the entire repertories of OR genes using bioinformatics methods from the whole-genome sequences of diverse organisms revealed that the numbers of OR genes vary enormously, ranging from ~1,200 in rats and ~400 in humans to ~150 in zebrafish and ~15 in pufferfish. Most species have a considerable fraction of pseudogenes. Extensive phylogenetic analyses have suggested that the numbers of gene gains and losses are extremely large in the OR gene family, which is a striking example of the birth-and-death evolution. It appears that OR gene repertoires change dynamically, depending on each organism's living environment. For example, higher primates equipped with a well-developed vision system have lost a large number of OR genes. Moreover, two groups of OR genes for detecting airborne odorants greatly expanded after the time of terrestrial adaption in the tetrapod lineage, whereas fishes retain diverse repertoires of genes that were present in aquatic ancestral species. The origin of vertebrate OR genes can be traced back to the common ancestor of all chordate species, but insects, nematodes and echinoderms utilise distinctive families of chemoreceptors, suggesting that chemoreceptor genes have evolved many times independently in animal evolution.
Collapse
Affiliation(s)
- Yoshihito Niimura
- Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
83
|
Wang C, Sun G, Chen K, Lv Z, Peng S, Jiang X, Xiang Y, Zhang C. Molecular cloning of lamprey uncoupling protein and assessment of its uncoupling activity using a yeast heterologous expression system. Mitochondrion 2010; 10:54-61. [DOI: 10.1016/j.mito.2009.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 09/14/2009] [Accepted: 09/23/2009] [Indexed: 11/26/2022]
|
84
|
Martin WM, Bumm LA, McCauley DW. Development of the viscerocranial skeleton during embryogenesis of the sea lamprey,Petromyzon Marinus. Dev Dyn 2009; 238:3126-38. [DOI: 10.1002/dvdy.22164] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
85
|
Genome 10K: a proposal to obtain whole-genome sequence for 10,000 vertebrate species. J Hered 2009; 100:659-74. [PMID: 19892720 PMCID: PMC2877544 DOI: 10.1093/jhered/esp086] [Citation(s) in RCA: 374] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 09/21/2009] [Accepted: 09/22/2009] [Indexed: 01/13/2023] Open
Abstract
The human genome project has been recently complemented by whole-genome assessment sequence of 32 mammals and 24 nonmammalian vertebrate species suitable for comparative genomic analyses. Here we anticipate a precipitous drop in costs and increase in sequencing efficiency, with concomitant development of improved annotation technology and, therefore, propose to create a collection of tissue and DNA specimens for 10,000 vertebrate species specifically designated for whole-genome sequencing in the very near future. For this purpose, we, the Genome 10K Community of Scientists (G10KCOS), will assemble and allocate a biospecimen collection of some 16,203 representative vertebrate species spanning evolutionary diversity across living mammals, birds, nonavian reptiles, amphibians, and fishes (ca. 60,000 living species). In this proposal, we present precise counts for these 16,203 individual species with specimens presently tagged and stipulated for DNA sequencing by the G10KCOS. DNA sequencing has ushered in a new era of investigation in the biological sciences, allowing us to embark for the first time on a truly comprehensive study of vertebrate evolution, the results of which will touch nearly every aspect of vertebrate biological enquiry.
Collapse
|
86
|
Tank EM, Dekker RG, Beauchamp K, Wilson KA, Boehmke AE, Langeland JA. Patterns and consequences of vertebrate Emx gene duplications. Evol Dev 2009; 11:343-53. [PMID: 19601968 DOI: 10.1111/j.1525-142x.2009.00341.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We have cloned and analyzed two Emx genes from the lamprey Petromyzon marinus and our findings provide insight into the patterns and developmental consequences of gene duplications during early vertebrate evolution. The Emx gene family presents an excellent case for addressing these issues as gnathostome vertebrates possess two or three Emx paralogs that are highly pleiotropic, functioning in or being expressed during the development of several vertebrate synapomorphies. Lampreys are the most primitive extant vertebrates and characterization of their development and genomic organization is critical for understanding vertebrate origins. We identified two Emx genes from P. marinus and analyzed their phylogeny and their embryological expression relative to other chordate Emx genes. Our phylogenetic analysis shows that the two lamprey Emx genes group independently from the gnathostome Emx1, Emx2, and Emx3 paralogy groups. Our expression analysis shows that the two lamprey Emx genes are expressed in distinct spatial and temporal patterns that together broadly encompass the combined sites of expression of all gnathostome Emx genes. Our data support a model wherein large-scale regulatory evolution of a single Emx gene occurred after the protochordate/vertebrate divergence, but before the vertebrate radiation. Both the lamprey and gnathostome lineages then underwent independent gene duplications followed by extensive paralog subfunctionalization. Emx subfunctionalization in the telencephalon is remarkably convergent and refines our understanding of lamprey forebrain patterning. We also identify lamprey-specific sites of expression that indicate either neofunctionalization in lampreys or sites-specific nonfunctionalization of all gnathostome Emx genes. Overall, we see only very limited correlation between Emx gene duplications and the acquisition of novel expression domains.
Collapse
Affiliation(s)
- Elizabeth M Tank
- Department of Biology, Kalamazoo College, Kalamazoo, MI 49006, USA
| | | | | | | | | | | |
Collapse
|
87
|
Development and evolution of the subpallium. Semin Cell Dev Biol 2009; 20:735-43. [DOI: 10.1016/j.semcdb.2009.04.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 04/02/2009] [Accepted: 04/07/2009] [Indexed: 11/17/2022]
|
88
|
Niimura Y. On the origin and evolution of vertebrate olfactory receptor genes: comparative genome analysis among 23 chordate species. Genome Biol Evol 2009; 1:34-44. [PMID: 20333175 PMCID: PMC2817399 DOI: 10.1093/gbe/evp003] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2009] [Indexed: 12/27/2022] Open
Abstract
Olfaction is a primitive sense in organisms. Both vertebrates and insects have
receptors for detecting odor molecules in the environment, but the evolutionary
origins of these genes are different. Among studied vertebrates, mammals have
∼1,000 olfactory receptor (OR) genes, whereas teleost fishes have much
smaller (∼100) numbers of OR genes. To investigate the origin and
evolution of vertebrate OR genes, I attempted to determine near-complete OR gene
repertoires by searching whole-genome sequences of 14 nonmammalian chordates,
including cephalochordates (amphioxus), urochordates (ascidian and larvacean),
and vertebrates (sea lamprey, elephant shark, five teleost fishes, frog, lizard,
and chicken), followed by a large-scale phylogenetic analysis in conjunction
with mammalian OR genes identified from nine species. This analysis showed that
the amphioxus has >30 vertebrate-type OR genes though it lacks
distinctive olfactory organs, whereas all OR genes appear to have been lost in
the urochordate lineage. Some groups of genes (θ, κ, and
λ) that are phylogenetically nested within vertebrate OR genes showed
few gene gains and losses, which is in sharp contrast to the evolutionary
pattern of OR genes, suggesting that they are actually non-OR genes. Moreover,
the analysis demonstrated a great difference in OR gene repertoires between
aquatic and terrestrial vertebrates, reflecting the necessity for the detection
of water-soluble and airborne odorants, respectively. However, a minor group
(β) of genes that are atypically present in both aquatic and
terrestrial vertebrates was also found. These findings should provide a critical
foundation for further physiological, behavioral, and evolutionary studies of
olfaction in various organisms.
Collapse
Affiliation(s)
- Yoshihito Niimura
- Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
89
|
Neurodevelopment genes in lampreys reveal trends for forebrain evolution in craniates. PLoS One 2009; 4:e5374. [PMID: 19399187 PMCID: PMC2671401 DOI: 10.1371/journal.pone.0005374] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/01/2009] [Indexed: 12/27/2022] Open
Abstract
The forebrain is the brain region which has undergone the most dramatic changes through vertebrate evolution. Analyses conducted in lampreys are essential to gain insight into the broad ancestral characteristics of the forebrain at the dawn of vertebrates, and to understand the molecular basis for the diversifications that have taken place in cyclostomes and gnathostomes following their splitting. Here, we report the embryonic expression patterns of 43 lamprey genes, coding for transcription factors or signaling molecules known to be involved in cell proliferation, stemcellness, neurogenesis, patterning and regionalization in the developing forebrain. Systematic expression patterns comparisons with model organisms highlight conservations likely to reflect shared features present in the vertebrate ancestors. They also point to changes in signaling systems –pathways which control the growth and patterning of the neuroepithelium-, which may have been crucial in the evolution of forebrain anatomy at the origin of vertebrates.
Collapse
|
90
|
Abstract
Interest in understanding the transition from prevertebrates to vertebrates at the molecular level has resulted in accumulating genomic and transcriptomic sequence data for the earliest groups of extant vertebrates, namely, hagfishes (Myxiniformes) and lampreys (Petromyzontiformes). Molecular phylogenetic studies on species phylogeny have revealed the monophyly of cyclostomes and the deep divergence between hagfishes and lampreys (more than 400 million years). In parallel, recent molecular phylogenetic studies have shed light on the complex evolution of the cyclostome genome. This consists of whole genome duplications, shared at least partly with gnathostomes (jawed vertebrates), and cyclostome lineage-specific secondary modifications of the genome, such as gene gains and losses. Therefore, the analysis of cyclostome genomes requires caution in distinguishing between orthology and paralogy in gene molecular phylogeny at the gene family scale, as well as between apomorphic and plesiomorphic genomic traits in larger-scale analyses. In this review, we propose possible ways of improving the resolvability of these evolutionary events, and discuss probable scenarios for cyclostome genome evolution, with special emphasis on the hypothesis that two-round (2R) genome duplication events occurred before the divergence between cyclostomes and gnathostomes, and therefore that a post-2R state is a genomic synapomorphy for all extant vertebrates.
Collapse
Affiliation(s)
- Shigehiro Kuraku
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany.
| |
Collapse
|
91
|
Liu X, Li-Ling J, Hou L, Li Q, Ma F. Identification and characterization of a chitinase-coding gene from Lamprey (Lampetra japonica) with a role in gonadal development and innate immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:257-263. [PMID: 18845181 DOI: 10.1016/j.dci.2008.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Revised: 09/10/2008] [Accepted: 09/13/2008] [Indexed: 05/26/2023]
Abstract
Chitinases (E.3.2.1.14) are ubiquitous hydrolases capable of cleaving the beta-1,4-glycosidic bonds in chitin polymers. The physiological significance of these enzymes in the development and immunity of various animals has recently been reported [Badariotti F, Thuau R, Lelong C, Dubos MP, Favrel P. Characterization of an atypical family 18 chitinase from the oyster Crassostrea gigas: evidence for a role in early development and immunity. Dev Comp Immunol 2007;31(6):559-70]. Lampreys are regarded as the most phylogenetically primitive species that may have an adaptive immune system. However, no chitinase gene has yet been identified in lamprey. We report here the identification and characterization of a chitinase-coding gene from the lamprey Lampetra japonica. The predicted amino acid sequence of the chitinase gene consisted of a typical catalytic domain and a peritrophin-A type chitin-binding domain. Real time RT-PCR analysis showed that the chitinase gene was expressed in various tissues of adult L. japonica, particularly in the liver, where a significant difference between male and female was observed during the pre-spawning period. A significant increase in expression was also observed in vivo following stimulation by bacteria or fungi. These findings seemed to suggest that in L. japonica, chitinase probably plays an important role in gonadal development as well as in innate immunity in response to invasion by microorganisms.
Collapse
Affiliation(s)
- Xuejiao Liu
- Institute of Marine Genomics and Proteomics, Liaoning Normal University, Dalian, China
| | | | | | | | | |
Collapse
|
92
|
Rahimi RA, Allmond JJ, Wagner H, McCauley DW, Langeland JA. Lamprey snail highlights conserved and novel patterning roles in vertebrate embryos. Dev Genes Evol 2009; 219:31-6. [PMID: 18949485 DOI: 10.1007/s00427-008-0258-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2008] [Accepted: 09/18/2008] [Indexed: 11/26/2022]
Abstract
snail genes mark presumptive mesoderm across bilaterian animals. In gnathostome vertebrates, snail genes are a multimember family that are also markers of premigratory neural crest (pnc) and some postmigratory neural crest derivatives in the pharyngeal arches. Previous studies of nonvertebrate chordates indicate that they have single snail genes that retain ancestral functions in mesoderm development and perhaps in specification of a pnc-like cell population. Lampreys are the most basal extant vertebrates, with well-defined developmental morphology. Here, we identify a single snail gene from the lamprey Petromyzon marinus that is the phylogenetic outgroup of all gnathostome snail genes. This single lamprey snail gene retains ancestral snail patterning domains present in nonvertebrate chordates. Lamprey snail is also expressed in tissues that are broadly equivalent to the combined sites of expression of all three gnathostome snail paralogy groups, excepting in embryonic tissues that are unique to gnathostomes. Importantly, while snail does not appear to demarcate an early neural crest population in lampreys as it does in gnathostomes, it may be involved in later neural crest development. Together, our results indicate that significant cis-regulatory innovation occurred in a single snail gene before the vertebrate radiation, and significant subfunctionalization occurred after snail gene duplications in the gnathostome lineages.
Collapse
Affiliation(s)
- Rod A Rahimi
- Department of Biology, Kalamazoo College, Kalamazoo, MI 49006, USA
| | | | | | | | | |
Collapse
|
93
|
Gene duplication in early vertebrates results in tissue-specific subfunctionalized adaptor proteins: CASP and GRASP. J Mol Evol 2008; 67:168-78. [PMID: 18600293 DOI: 10.1007/s00239-008-9136-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Revised: 05/22/2008] [Accepted: 06/09/2008] [Indexed: 01/12/2023]
Abstract
CASP and GRASP are small cytoplasmic adaptor proteins that share highly similar protein structures as well as an association with the cytohesin/ARNO family of guanine nucleotide exchange factors within the immune and nervous systems respectively. Each contains an N-terminal PDZ domain, a central coiled-coil motif, and a carboxy-terminal PDZ-binding motif (PDZbm). We set out to further characterize the relationship between CASP and GRASP by comparing both their gene structures and their functional motifs across several vertebrate organisms. CASP and GRASP not only share significant protein structure but also share remarkably similar gene structure, with six of eight exons of equal length and relative position. We report on the addition of a unique amino acid within the coiled-coil motif of CASP proteins in several species. We also examine the Class I PDZbm, which is highly conserved across all classes of vertebrates but shows a functionally relevant mutation in the CASP proteins of several species of fish. Further, we determine the evolutionary relationship of these proteins both by use of phylogenetics and by comparative analysis of the conservation of genes near each locus in various chordates including amphioxus. We conclude that CASP and GRASP are the products of a relatively recent gene duplication event in early vertebrate organisms and that the evolution of the adaptive immune system and complex brain most likely contributed to the apparent subfunctionalization of these proteins into tissue-specific roles.
Collapse
|