51
|
Roos A, Ding Z, Loftus JC, Tran NL. Molecular and Microenvironmental Determinants of Glioma Stem-Like Cell Survival and Invasion. Front Oncol 2017; 7:120. [PMID: 28670569 PMCID: PMC5472661 DOI: 10.3389/fonc.2017.00120] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most frequent primary brain tumor in adults with a 5-year survival rate of 5% despite intensive research efforts. The poor prognosis is due, in part, to aggressive invasion into the surrounding brain parenchyma. Invasion is a complex process mediated by cell-intrinsic pathways, extrinsic microenvironmental cues, and biophysical cues from the peritumoral stromal matrix. Recent data have attributed GBM invasion to the glioma stem-like cell (GSC) subpopulation. GSCs are slowly dividing, highly invasive, therapy resistant, and are considered to give rise to tumor recurrence. GSCs are localized in a heterogeneous cellular niche, and cross talk between stromal cells and GSCs cultivates a fertile environment that promotes GSC invasion. Pro-migratory soluble factors from endothelial cells, astrocytes, macrophages, microglia, and non-stem-like tumor cells can stimulate peritumoral invasion of GSCs. Therefore, therapeutic efforts designed to target the invasive GSCs may enhance patient survival. In this review, we summarize the current understanding of extrinsic pathways and major stromal and immune players facilitating GSC maintenance and survival.
Collapse
Affiliation(s)
- Alison Roos
- Departments of Cancer Biology and Neurosurgery, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Zonghui Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Joseph C Loftus
- Department of Biochemistry and Molecular Biology, Mayo Clinic Arizona, Scottsdale, AZ, United States
| | - Nhan L Tran
- Departments of Cancer Biology and Neurosurgery, Mayo Clinic Arizona, Scottsdale, AZ, United States
| |
Collapse
|
52
|
A TNF-JNK-Axl-ERK signaling axis mediates primary resistance to EGFR inhibition in glioblastoma. Nat Neurosci 2017; 20:1074-1084. [PMID: 28604685 PMCID: PMC5529219 DOI: 10.1038/nn.4584] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 05/15/2017] [Indexed: 12/16/2022]
Abstract
Aberrant EGFR signaling is widespread in cancer, making the EGFR an important target for therapy. EGFR gene amplification and mutation are common in glioblastoma (GBM), but EGFR inhibition has not been effective in treating this tumor. Here, we propose that primary resistance to EGFR inhibition in glioma cells results from a rapid compensatory response to EGFR inhibition that mediates cell survival. We show that in glioma cells expressing either EGFR wild type or the mutant EGFRvIII, EGFR inhibition triggers a rapid adaptive response driven by increased TNF secretion that leads to activation of a TNF-JNK-Axl-ERK signaling axis. Inhibition of this adaptive axis at multiple nodes renders glioma cells with primary resistance sensitive to EGFR inhibition. Our findings provide a possible explanation for the multiple failures of anti-EGFR therapy in GBM and suggest a new approach to the treatment of EGFR expressing GBM using a combination of EGFR and TNF inhibition.
Collapse
|
53
|
Williams MJ, Singleton WGB, Lowis SP, Malik K, Kurian KM. Therapeutic Targeting of Histone Modifications in Adult and Pediatric High-Grade Glioma. Front Oncol 2017; 7:45. [PMID: 28401060 PMCID: PMC5368219 DOI: 10.3389/fonc.2017.00045] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 03/06/2017] [Indexed: 12/12/2022] Open
Abstract
Recent exciting work partly through The Cancer Genome Atlas has implicated epigenetic mechanisms including histone modifications in the development of both pediatric and adult high-grade glioma (HGG). Histone lysine methylation has emerged as an important player in regulating gene expression and chromatin function. Lysine (K) 27 (K27) is a critical residue in all seven histone 3 variants and the subject of posttranslational histone modifications, as it can be both methylated and acetylated. In pediatric HGG, two critical single-point mutations occur in the H3F3A gene encoding the regulatory histone variant H3.3. These mutations occur at lysine (K) 27 (K27M) and glycine (G) 34 (G34R/V), both of which are involved with key regulatory posttranscriptional modifications. Therefore, these mutations effect gene expression, cell differentiation, and telomere maintenance. In recent years, alterations in histone acetylation have provided novel opportunities to explore new pharmacological targeting, with histone deacetylase (HDAC) overexpression reported in high-grade, late-stage proliferative tumors. HDAC inhibitors have shown promising therapeutic potential in many malignancies. This review focuses on the epigenetic mechanisms propagating pediatric and adult HGGs, as well as summarizing the current advances in clinical trials using HDAC inhibitors.
Collapse
Affiliation(s)
- Maria J. Williams
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| | - Will G. B. Singleton
- Functional Neurosurgery Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| | - Stephen P. Lowis
- Department of Paediatric and Adolescent Oncology, Bristol Royal Hospital for Children, Bristol, UK
| | - Karim Malik
- Cancer Epigenetics Laboratory, Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Kathreena M. Kurian
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, UK
| |
Collapse
|
54
|
Simultaneous Interference with HER1/EGFR and RAC1 Signaling Drives Cytostasis and Suppression of Survivin in Human Glioma Cells in Vitro. Neurochem Res 2017; 42:1543-1554. [PMID: 28271323 DOI: 10.1007/s11064-017-2213-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 12/08/2016] [Accepted: 02/20/2017] [Indexed: 12/12/2022]
Abstract
We have previously reported that combined inhibition of the epidermal growth factor receptor by erlotinib and of RAC1 by NSC23766 yielded a synergistic antiproliferative effect on established and primary cultured glioblastoma cells. The current study aimed at identifying the molecular mechanism. Staining for annexin V/PI or carboxyfluorescein succinimidyl ester was performed in order to determine the induction of apoptosis, necrosis or cytostasis in established and primary cultured glioblastoma cells. Moreover, expression of Ki-67 was determined by immunofluorescence, and the expression of cell cycle proteins was analysed by Western blot. Our data show that combined treatment with erlotinib and NSC23766 resulted in a reduced number of cell divisions, a significantly decreased Ki-67 expression, increased apoptosis and autophagy when compared to single agent treatments. On the molecular level, concomitant treatment with both agents resulted in a pronounced downregulation of cyclin D1, cyclin-dependent kinases 2, 4 and 6, as well as of survivin when compared to treatments with either agent alone. In conclusion, we demonstrate that combined treatment of human glioma cell lines in vitro with erlotinib and NSC23766 markedly inhibits cell division, induces apoptosis independent of caspase-3 activation and induces autophagy concomitant with suppression of survivin.
Collapse
|
55
|
Mehta M, Wen P, Nishikawa R, Reardon D, Peters K. Critical review of the addition of tumor treating fields (TTFields) to the existing standard of care for newly diagnosed glioblastoma patients. Crit Rev Oncol Hematol 2017; 111:60-65. [PMID: 28259296 DOI: 10.1016/j.critrevonc.2017.01.005] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 12/13/2016] [Accepted: 01/10/2017] [Indexed: 11/17/2022] Open
Abstract
Since 2005, the standard of care for patients with newly diagnosed glioblastoma (GBM) has consisted of maximal resection followed by radiotherapy plus daily temozolomide (TMZ), followed by maintenance TMZ. In patients selected for clinical trials, median overall survival (OS) and progression-free survival (PFS) with this regimen is 15-17 months and 6-7 months, respectively. There have been various, largely unsuccessful attempts to improve on this standard of care. With the FDA approval of the tumor-treating fields (TTFields) device, Optune, for recurrent GBM (2011), and the more recent EF-14 interim trial results and approval for newly diagnosed GBM patients, several questions have arisen. A roundtable of experts was convened at the 2015 ASCO meeting to engage in an open conversation and debate of the EF-14 results presented at that meeting and their implications for neuro-oncology practice and clinical research. In October 2015, subsequent to the roundtable discussion, TTFields received FDA approval for newly diagnosed GBM.
Collapse
Affiliation(s)
- M Mehta
- Deputy Director, Miami Cancer Institute, and Chief of Radiation Oncology, Miami, Florida.
| | - P Wen
- Department of Neurology, Harvard University, Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - R Nishikawa
- Japanese Society of Neuro-Oncology, Department of Neurosurgery, Saitama International Medical Center and University, Saitama, Japan
| | - D Reardon
- Center for Neuro-Oncology, Harvard Medical School, Boston, MA, United States
| | - K Peters
- Medicine, Duke University Medical Center, Durham, NC, United States
| |
Collapse
|
56
|
Abstract
The receptor for epidermal growth factor (EGFR) is a prime target for cancer therapy across a broad variety of tumor types. As it is a tyrosine kinase, small molecule tyrosine kinase inhibitors (TKIs) targeting signal transduction, as well as monoclonal antibodies against the EGFR, have been investigated as anti-tumor agents. However, despite the long-known enigmatic EGFR gene amplification and protein overexpression in glioblastoma, the most aggressive intrinsic human brain tumor, the potential of EGFR as a target for this tumor type has been unfulfilled. This review analyses the attempts to use TKIs and monoclonal antibodies against glioblastoma, with special consideration given to immunological approaches, the use of EGFR as a docking molecule for conjugates with toxins, T-cells, oncolytic viruses, exosomes and nanoparticles. Drug delivery issues associated with therapies for intracerebral diseases, with specific emphasis on convection enhanced delivery, are also discussed.
Collapse
Affiliation(s)
- Manfred Westphal
- Department of Neurosurgery, University Hospital Hamburg Eppendorf, Martinistrasse 52, 20246, Hamburg, Germany.
| | - Cecile L. Maire
- 0000 0001 2180 3484grid.13648.38Department of Neurosurgery, University Hospital Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Katrin Lamszus
- 0000 0001 2180 3484grid.13648.38Department of Neurosurgery, University Hospital Hamburg Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
57
|
Sensitivity of GBM cells to cAMP agonist-mediated apoptosis correlates with CD44 expression and agonist resistance with MAPK signaling. Cell Death Dis 2016; 7:e2494. [PMID: 27906173 PMCID: PMC5261024 DOI: 10.1038/cddis.2016.393] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 02/07/2023]
Abstract
In some cell types, activation of the second messenger cAMP leads to increased expression of proapoptotic Bim and subsequent cell death. We demonstrate that suppression of the cAMP pathway is a common event across many cancers and that pharmacological activation of cAMP in glioblastoma (GBM) cells leads to enhanced BIM expression and apoptosis in specific GBM cell types. We identified the MAPK signaling axis as the determinant of cAMP agonist sensitivity in GBM cells, with high MAPK activity corresponding to cAMP resistance and low activity corresponding to sensitization to cAMP-induced apoptosis. Sensitive cells were efficiently killed by cAMP agonists alone, while targeting both the cAMP and MAPK pathways in resistant GBM cells resulted in efficient apoptosis. We also show that CD44 is differentially expressed in cAMP agonist-sensitive and -resistant cells. We thus propose that CD44 may be a useful biomarker for distinguishing tumors that may be sensitive to cAMP agonists alone or cAMP agonists in combination with other pathway inhibitors. This suggests that using existing chemotherapeutic compounds in combination with existing FDA-approved cAMP agonists may fast track trials toward improved therapies for difficult-to-treat cancers, such as GBM.
Collapse
|
58
|
Artene SA, Turcu-Stiolica A, Hartley R, Ciurea ME, Daianu O, Brindusa C, Alexandru O, Tataranu LG, Purcaru SO, Dricu A. Dendritic cell immunotherapy versus bevacizumab plus irinotecan in recurrent malignant glioma patients: a survival gain analysis. Onco Targets Ther 2016; 9:6669-6677. [PMID: 27877052 PMCID: PMC5108618 DOI: 10.2147/ott.s112842] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The bevacizumab and irinotecan protocol is considered a standard treatment regimen for recurrent malignant glioma. Recent advances in immunotherapy have hinted that vaccination with dendritic cells could become an alternative salvage therapy for the treatment of recurrent malignant glioma. METHODS A search was performed on PubMed, Cochrane Library, Web of Science, ScienceDirect, and Embase in order to identify studies with patients receiving bevacizumab plus irinotecan or dendritic cell therapy for recurrent malignant gliomas. The data obtained from these studies were used to perform a systematic review and survival gain analysis. RESULTS Fourteen clinical studies with patients receiving either bevacizumab plus irinotecan or dendritic cell vaccination were identified. Seven studies followed patients that received bevacizumab plus irinotecan (302 patients) and seven studies included patients that received dendritic cell immunotherapy (80 patients). For the patients who received bevacizumab plus irinotecan, the mean reported median overall survival was 7.5 (95% confidence interval [CI] 4.84-10.16) months. For the patients who received dendritic cell immunotherapy, the mean reported median overall survival was 17.9 (95% CI 11.34-24.46) months. For irinotecan + bevacizumab group, the mean survival gain was -0.02±2.00, while that for the dendritic cell immunotherapy group was -0.01±4.54. CONCLUSION For patients with recurrent malignant gliomas, dendritic cell immunotherapy treatment does not have a significantly different effect when compared with bevacizumab and irinotecan in terms of survival gain (P=0.535) and does not improve weighted survival gain (P=0.620).
Collapse
Affiliation(s)
| | | | | | | | | | | | - Oana Alexandru
- Department of Neurology, University of Medicine and Pharmacy of Craiova, Craiova
| | | | | | | |
Collapse
|
59
|
Boccellino M, Quagliuolo L, Alaia C, Grimaldi A, Addeo R, Nicoletti GF, Kast RE, Caraglia M. The strange connection between epidermal growth factor receptor tyrosine kinase inhibitors and dapsone: from rash mitigation to the increase in anti-tumor activity. Curr Med Res Opin 2016; 32:1839-1848. [PMID: 27398628 DOI: 10.1080/03007995.2016.1211522] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The presence of an aberrantly activated epidermal growth factor receptor (EGFR) in many epithelial tumors, due to its overexpression, activating mutations, gene amplification and/or overexpression of receptor ligands, represent the fundamental basis underlying the use of EGFR tyrosine kinase inhibitors (EGFR-TKIs). Drugs inhibiting the EGFR have different mechanisms of action; while erlotinib and gefitinib inhibit the intracellular tyrosine kinase, monoclonal antibodies like cetuximab and panitumumab bind the extracellular domain of the EGFR both activating immunomediated anti-cancer effect and inhibiting receptor function. On the other hand, interleukin-8 has tumor promoting as well as neo-angiogenesis enhancing effects and several attempts have been made to inhibit its activity. One of these is based on the use of the old sulfone antibiotic dapsone that has demonstrated several interleukin-8 system inhibiting actions. Erlotinib typically gives a rash that has recently been proven to come out via up-regulated keratinocyte interleukin-8 synthesis with histological features reminiscent of typical neutrophilic dermatoses. In this review, we report experimental evidence that shows the use of dapsone to improve quality of life in erlotinib-treated patients by ameliorating rash as well as short-circuiting a growth-enhancing aspect of erlotinib based on increased interleukin-8 secretion.
Collapse
Affiliation(s)
- Mariarosaria Boccellino
- a Department of Biochemistry, Biophysics and General Pathology , Second University of Naples , Naples , Italy
| | - Lucio Quagliuolo
- a Department of Biochemistry, Biophysics and General Pathology , Second University of Naples , Naples , Italy
| | - Concetta Alaia
- a Department of Biochemistry, Biophysics and General Pathology , Second University of Naples , Naples , Italy
| | - Anna Grimaldi
- a Department of Biochemistry, Biophysics and General Pathology , Second University of Naples , Naples , Italy
| | - Raffaele Addeo
- b Oncology DH ASL Napoli 3 Nord, Frattamaggiore Hospital , Frattamaggiore , Naples , Italy
| | | | | | - Michele Caraglia
- a Department of Biochemistry, Biophysics and General Pathology , Second University of Naples , Naples , Italy
| |
Collapse
|
60
|
Raizer JJ, Giglio P, Hu J, Groves M, Merrell R, Conrad C, Phuphanich S, Puduvalli VK, Loghin M, Paleologos N, Yuan Y, Liu D, Rademaker A, Yung WK, Vaillant B, Rudnick J, Chamberlain M, Vick N, Grimm S, Tremont-Lukats IW, De Groot J, Aldape K, Gilbert MR. A phase II study of bevacizumab and erlotinib after radiation and temozolomide in MGMT unmethylated GBM patients. J Neurooncol 2016; 126:185-192. [PMID: 26476729 DOI: 10.1007/s11060-015-1958-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 10/05/2015] [Indexed: 11/25/2022]
Abstract
Survival for glioblastoma (GBM) patients with an unmethyated MGMT promoter in their tumor is generally worse than methylated MGMT tumors, as temozolomide (TMZ) response is limited. How to better treat patients with unmethylated MGMT is unknown. We performed a trial combining erlotinib and bevacizumab in unmethylated GBM patients after completion of radiation (RT) and TMZ. GBM patients with an unmethylated MGMT promoter were trial eligible. Patient received standard RT (60 Gy) and TMZ (75 mg/m2 × 6 weeks) after surgical resection of their tumor. After completion of RT they started erlotinib 150 mg daily and bevacizumab 10 mg/kg every 2 weeks until progression. Imaging evaluations occurred every 8 weeks. The primary endpoint was overall survival. Of the 48 unmethylated patients enrolled, 46 were evaluable (29 men and 17 women); median age was 55.5 years (29-75) and median KPS was 90 (70-100). All patients completed RT with TMZ. The median number of cycles (1 cycle was 4 weeks) was 8 (2-47). Forty-one patients either progressed or died with a median progression free survival of 9.2 months. At a follow up of 33 months the median overall survival was 13.2 months. There were no unexpected toxicities and most observed toxicities were categorized as CTC grade 1 or 2. The combination of erlotinib and bevacizumab is tolerable but did not meet our primary endpoint of increasing survival. Importantly, more trials are needed to find better therapies for GBM patients with an unmethylated MGMT promoter.
Collapse
Affiliation(s)
- J J Raizer
- Department of Neurology, Northwestern University, 710 North Lake Shore Drive, Abbott Hall, Room 1123, Chicago, IL, 60611, USA.
| | - P Giglio
- James Cancer Hospital, Ohio State University, Columbus, OH, USA
| | - J Hu
- Departments of Neurology and Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, USA
| | - M Groves
- Austin Brain Tumor Center, Austin, USA
| | - R Merrell
- Department of Neurology, NorthShore University Health System, Evanston, USA
| | - C Conrad
- Austin Brain Tumor Center, Austin, USA
| | - S Phuphanich
- Departments of Neurology and Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, USA
| | - V K Puduvalli
- James Cancer Hospital, Ohio State University, Columbus, OH, USA
| | - M Loghin
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - N Paleologos
- Department of Neurology, Rush University Medical Center, Chicago, USA
| | - Y Yuan
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, USA
| | - D Liu
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, USA
| | - A Rademaker
- Department of Preventive Medicine, Northwestern University, Chicago, USA
| | - W K Yung
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - B Vaillant
- Dell Medical School, The University of Texas, Austin, USA
| | - J Rudnick
- Departments of Neurology and Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, USA
| | - M Chamberlain
- Department of Neurology, University of Washington, Seattle, USA
| | - N Vick
- Department of Neurology, NorthShore University Health System, Evanston, USA
| | - S Grimm
- Department of Neurology, Northwestern University, 710 North Lake Shore Drive, Abbott Hall, Room 1123, Chicago, IL, 60611, USA
| | - I W Tremont-Lukats
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - J De Groot
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - K Aldape
- Department of Pathology, Princess Margaret Cancer Centre, Toronto, Canada
| | | |
Collapse
|
61
|
Struve N, Riedel M, Schulte A, Rieckmann T, Grob TJ, Gal A, Rothkamm K, Lamszus K, Petersen C, Dikomey E, Kriegs M. EGFRvIII does not affect radiosensitivity with or without gefitinib treatment in glioblastoma cells. Oncotarget 2016; 6:33867-77. [PMID: 26418954 PMCID: PMC4741808 DOI: 10.18632/oncotarget.5293] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 09/04/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Glioblastomas (GBM) are often characterized by an elevated expression of the epidermal growth factor receptor variant III (EGFRvIII). We used GBM cell lines with native EGFRvIII expression to determine whether this EGFR variant affects radiosensitivity with or without EGFR targeting. METHODS Experiments were performed with GBM cell lines lacking (LN229, U87MG, U251, CAS-1) or endogenously expressing EGFRvIII (BS153, DKMG). The two latter cell lines were also used to establish sublines with a low (-) or a high proportion (+) of cells expressing EGFRvIII. EGFR signaling and the cell cycle were analyzed using Western blot and flow cytometry; cell survival was assessed by colony forming assay and double-strand break repair capacity by immunofluorescence. RESULTS DKMG and BS153 parental cells with heterogeneous EGFRvIII expression were clearly more radiosensitive compared to other GBM cell lines without EGFRvIII expression. However, no significant difference was observed in cell proliferation, clonogenicity or radiosensitivity between the EGFRvIII- and + sublines derived from DKMG and BS153 parental cells. Expression of EGFRvIII was associated with decreased DSB repair capacity for BS153 but not for DKMG cells. The effects of EGFR targeting by gefitinib alone or in combination with irradiation were also found not to depend on EGFRvIII expression. Gefitinib was only observed to influence the proliferation of EGFRvIII- BS153 cells. CONCLUSION The data indicate that EGFRvIII does not alter radiosensitivity with or without anti-EGFR treatment.
Collapse
Affiliation(s)
- Nina Struve
- Department of Radiotherapy and Radio-Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Matthias Riedel
- Department of Radiotherapy and Radio-Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Alexander Schulte
- Department of Neurosurgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Thorsten Rieckmann
- Department of Radiotherapy and Radio-Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany.,Department of Otorhinolaryngology and Head and Neck Surgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Tobias J Grob
- Department of Pathology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Andreas Gal
- Department of Human Genetics, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Kai Rothkamm
- Department of Radiotherapy and Radio-Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Katrin Lamszus
- Department of Neurosurgery, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Cordula Petersen
- Department of Radiotherapy and Radio-Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Ekkehard Dikomey
- Department of Radiotherapy and Radio-Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Malte Kriegs
- Department of Radiotherapy and Radio-Oncology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| |
Collapse
|
62
|
Hartel I, Ronellenfitsch M, Wanka C, Wolking S, Steinbach JP, Rieger J. Activation of AMP-activated kinase modulates sensitivity of glioma cells against epidermal growth factor receptor inhibition. Int J Oncol 2016; 49:173-80. [PMID: 27121290 DOI: 10.3892/ijo.2016.3498] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 01/20/2016] [Indexed: 11/06/2022] Open
Abstract
The epidermal growth factor (EGFR) pathway is frequently activated in glioblastoma but the clinical efficacy of EGFR inhibitors in malignant glioma has been disappointing. The reasons for the failure of the mechanisms of resistance of these inhibitors are unclear, but may involve factors of the tumor microenvironment such as limited glucose availability and hypoxia. It was therefore examined whether glucose and oxygen influenced the response of glioma cells to EGFR inhibition. Decreased levels of glucose and oxygen led to resistance against the EGFR inhibitor PD153035, whereas high glucose amounts and normoxia sensitised glioma cells towards the inhibitor. Low levels of glucose and oxygen stimulated AMP-activated kinase (AMPK) in glioma cells. 2DG, an inhibitor of glycolysis, and the AMPK activator A769662 reduced glucose consumption, induced phosphorylation of AMPK and mimicked the effects of low glucose availability on the toxicity of PD153035. Similarly, 2DG reduced toxicity of imatinib in K562 leukemia cells. In contrast, inhibition of AMPK by compound C or by short-hairpin (sh)-mediated gene suppression increased cell death induced by the EGFR inhibitor and reverted the protective effects of 2DG and A769662. In conclusion, cytotoxicity of EGFR inhibition can be diminished by AMPK activation in glioma cells. These results may provide one explanation for the low activity of EGFR inhibitors in clinical trials and suggest antagonism of AMPK or of AMPK-regulated metabolic alterations as a promising approach to enhance their therapeutic efficacy.
Collapse
Affiliation(s)
- Ines Hartel
- Dr. Senckenberg Institute of Neurooncology, Goethe University Frankfurt, D-60528 Frankfurt, Germany
| | - Michael Ronellenfitsch
- Dr. Senckenberg Institute of Neurooncology, Goethe University Frankfurt, D-60528 Frankfurt, Germany
| | - Christina Wanka
- Dr. Senckenberg Institute of Neurooncology, Goethe University Frankfurt, D-60528 Frankfurt, Germany
| | - Stefan Wolking
- Department of Neurology and Epileptology, Hertie Institute for Clinical Brain Research, D-72076 Tübingen, Germany
| | - Joachim P Steinbach
- Dr. Senckenberg Institute of Neurooncology, Goethe University Frankfurt, D-60528 Frankfurt, Germany
| | - Johannes Rieger
- Dr. Senckenberg Institute of Neurooncology, Goethe University Frankfurt, D-60528 Frankfurt, Germany
| |
Collapse
|
63
|
Areeb Z, Stylli SS, Ware TMB, Harris NC, Shukla L, Shayan R, Paradiso L, Li B, Morokoff AP, Kaye AH, Luwor RB. Inhibition of glioblastoma cell proliferation, migration and invasion by the proteasome antagonist carfilzomib. Med Oncol 2016; 33:53. [DOI: 10.1007/s12032-016-0767-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/12/2016] [Indexed: 11/29/2022]
|
64
|
Dermawan JKT, Hitomi M, Silver DJ, Wu Q, Sandlesh P, Sloan AE, Purmal AA, Gurova KV, Rich JN, Lathia JD, Stark GR, Venere M. Pharmacological Targeting of the Histone Chaperone Complex FACT Preferentially Eliminates Glioblastoma Stem Cells and Prolongs Survival in Preclinical Models. Cancer Res 2016; 76:2432-42. [PMID: 26921329 PMCID: PMC4873320 DOI: 10.1158/0008-5472.can-15-2162] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 02/13/2016] [Indexed: 01/08/2023]
Abstract
The nearly universal recurrence of glioblastoma (GBM) is driven in part by a treatment-resistant subpopulation of GBM stem cells (GSC). To identify improved therapeutic possibilities, we combined the EGFR/HER2 inhibitor lapatinib with a novel small molecule, CBL0137, which inhibits FACT (facilitates chromatin transcription), a histone chaperone complex predominantly expressed in undifferentiated cells. Lapatinib and CBL0137 synergistically inhibited the proliferation of patient-derived GBM cells. Compared with non-stem tumor cells (NSTC) enriched from the same specimens, the GSCs were extremely sensitive to CBL0137 monotherapy or FACT knockdown. FACT expression was elevated in GSCs compared with matched NSTCs and decreased in GSCs upon differentiation. Acute exposure of GSCs to CBL0137 increased asymmetric cell division, decreased GSC marker expression, and decreased the capacity of GSCs to form tumor spheres in vitro and to initiate tumors in vivo Oral administration of CBL0137 to mice bearing orthotopic GBM prolonged their survival. Knockdown of FACT reduced the expression of genes encoding several core stem cell transcription factors (SOX2, OCT4, NANOG, and OLIG2), and FACT occupied the promoters of these genes. FACT expression was elevated in GBM tumors compared with non-neoplastic brain tissues, portended a worse prognosis, and positively correlated with GSC markers and stem cell gene expression signatures. Preferential targeting of GSCs by CBL0137 and synergy with EGFR inhibitors support the development of clinical trials combining these two agents in GBM. Cancer Res; 76(8); 2432-42. ©2016 AACR.
Collapse
Affiliation(s)
- Josephine Kam Tai Dermawan
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio. Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Masahiro Hitomi
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio. Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Daniel J Silver
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Qiulian Wu
- Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Poorva Sandlesh
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York
| | - Andrew E Sloan
- Brain Tumor and Neuro-Oncology Center and Department of Neurological Surgery, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | | | - Katerina V Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York
| | - Jeremy N Rich
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio. Department of Stem Cell Biology and Regenerative Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - Justin D Lathia
- Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio. Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio
| | - George R Stark
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio. Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio.
| | - Monica Venere
- Department of Cancer Biology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio. Department of Molecular Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio. Department of Radiation Oncology, James Cancer Hospital and Comprehensive Cancer Center, The Ohio State University Wexner School of Medicine, Columbus, Ohio.
| |
Collapse
|
65
|
The challenges associated with molecular targeted therapies for glioblastoma. J Neurooncol 2016; 127:427-34. [DOI: 10.1007/s11060-016-2080-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/15/2016] [Indexed: 01/06/2023]
|
66
|
Khosla D. Concurrent therapy to enhance radiotherapeutic outcomes in glioblastoma. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:54. [PMID: 26904576 PMCID: PMC4740000 DOI: 10.3978/j.issn.2305-5839.2016.01.25] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 01/21/2016] [Indexed: 02/05/2023]
Abstract
Glioblastoma is one of the most fatal and incurable human cancers characterized by nuclear atypia, mitotic activity, intense microvascular proliferation and necrosis. The current standard of care includes maximal safe surgical resection followed by radiation therapy (RT) with concurrent and adjuvant temozolomide (TMZ). The prognosis remains poor with median survival of 14.6 months with RT plus TMZ. Majority will have a recurrence within 2 years from diagnosis despite adequate treatment. Radiosensitizers, radiotherapy dose escalation and altered fractionation have failed to improve outcome. The molecular biology of glioblastoma is complex and poses treatment challenges. High rate of mutation, genotypic and phenotypic heterogeneity, rapid development of resistance, existence of blood-brain barrier (BBB), multiple intracellular and intercellular signalling pathways, over-expression of growth factor receptors, angiogenesis and antigenic diversity renders the tumor cells differentially susceptible to various treatment modalities. Thus, the treatment strategies require personalised or individualized approach based on the characteristics of tumor. Several targeted agents have been evaluated in clinical trials but the results have been modest despite these advancements. This review summarizes the current standard of care, results of concurrent chemoradiation trials, evolving innovative treatments that use targeted therapy with standard chemoradiation or RT alone, outcome of various recent trials and future outlook.
Collapse
Affiliation(s)
- Divya Khosla
- Department of Radiotherapy and Oncology, Government Medical College & Hospital, Chandigarh 160030, India
| |
Collapse
|
67
|
Wang H, Xu T, Jiang Y, Xu H, Yan Y, Fu D, Chen J. The challenges and the promise of molecular targeted therapy in malignant gliomas. Neoplasia 2015; 17:239-55. [PMID: 25810009 PMCID: PMC4372648 DOI: 10.1016/j.neo.2015.02.002] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/06/2015] [Indexed: 11/18/2022] Open
Abstract
Malignant gliomas are the most common malignant primary brain tumors and one of the most challenging forms of cancers to treat. Despite advances in conventional treatment, the outcome for patients remains almost universally fatal. This poor prognosis is due to therapeutic resistance and tumor recurrence after surgical removal. However, over the past decade, molecular targeted therapy has held the promise of transforming the care of malignant glioma patients. Significant progress in understanding the molecular pathology of gliomagenesis and maintenance of the malignant phenotypes will open opportunities to rationally develop new molecular targeted therapy options. Recently, therapeutic strategies have focused on targeting pro-growth signaling mediated by receptor tyrosine kinase/RAS/phosphatidylinositol 3-kinase pathway, proangiogenic pathways, and several other vital intracellular signaling networks, such as proteasome and histone deacetylase. However, several factors such as cross-talk between the altered pathways, intratumoral molecular heterogeneity, and therapeutic resistance of glioma stem cells (GSCs) have limited the activity of single agents. Efforts are ongoing to study in depth the complex molecular biology of glioma, develop novel regimens targeting GSCs, and identify biomarkers to stratify patients with the individualized molecular targeted therapy. Here, we review the molecular alterations relevant to the pathology of malignant glioma, review current advances in clinical targeted trials, and discuss the challenges, controversies, and future directions of molecular targeted therapy.
Collapse
Affiliation(s)
- Hongxiang Wang
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Tao Xu
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ying Jiang
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Hanchong Xu
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Yong Yan
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Da Fu
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Juxiang Chen
- Department of Neurosurgery, Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
68
|
Kast RE. Erlotinib augmentation with dapsone for rash mitigation and increased anti-cancer effectiveness. SPRINGERPLUS 2015; 4:638. [PMID: 26543772 PMCID: PMC4628020 DOI: 10.1186/s40064-015-1441-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 10/14/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND The epidermal growth factor receptor tyrosine kinase inhibitor erlotinib has failed in many ways to be as potent in the anti-cancer role as pre-clinical studies would have suggested. This paper traces some aspects of this failure to a compensatory erlotinib-mediated increase in interleukin-8. Many other-but not all- cancer chemotherapeutic cytotoxic drugs also provoke a compensatory increase in a malignant clone's interleukin-8 synthesis. Untreated glioblastoma and other cancer cells themselves natively synthesize interleukin-8. Interleukin-8 has tumor growth promoting, mobility and metastasis formation enhancing, effects as well as pro-angiogenesis effects. FINDINGS The old sulfone antibiotic dapsone- one of the very first antibiotics in clinical use- has demonstrated several interleukin-8 system inhibiting actions. Review of these indicates dapsone has potential to augment erlotinib effectiveness. Erlotinib typically gives a rash that has recently been proven to come about via an erlotinib triggered up-regulated keratinocyte interleukin-8 synthesis. The erlotinib rash shares histological features reminiscent of typical neutrophilic dermatoses. Dapsone has an established therapeutic role in current treatment of other neutrophilic dermatoses. CONCLUSION Thus, dapsone has potential to both improve the quality of life in erlotinib treated patients by amelioration of rash as well as to short-circuit a growth-enhancing aspect of erlotinib when used in the anti-cancer role.
Collapse
Affiliation(s)
- R E Kast
- IIAIGC Study Center, 22 Church Street, Burlington, VT 05401 USA
| |
Collapse
|
69
|
Kohsaka S, Hinohara K, Wang L, Nishimura T, Urushido M, Yachi K, Tsuda M, Tanino M, Kimura T, Nishihara H, Gotoh N, Tanaka S. Epiregulin enhances tumorigenicity by activating the ERK/MAPK pathway in glioblastoma. Neuro Oncol 2015; 16:960-70. [PMID: 24470554 DOI: 10.1093/neuonc/not315] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is one of the most aggressive human tumors, and the establishment of an effective therapeutic reagent is a pressing priority. Recently, it has been shown that the tumor tissue consists of heterogeneous components and that a highly aggressive population should be the therapeutic target. METHODS Through a single subcutaneous passage of GBM cell lines LN443 and U373 in mice, we have developed highly aggressive variants of these cells named LN443X, U373X1, and U373X2, which showed increased tumor growth, colony-forming potential, sphere-forming potential, and invasion ability. We further investigated using microarray analysis comparing malignant cells with their parental cells and mRNA expression analysis in grades II to IV glioma samples. RESULTS Adipocyte enhancer binding protein 1, epiregulin (EREG), and microfibrillar associated protein 5 were identified as candidate genes associated with higher tumor grade and poor prognosis. Immunohistochemical analysis also indicated a correlation of a strong expression of EREG with short overall survival. Furthermore, both EREG stimulation and EREG introduction of GBM cell lines were found to increase phosphorylation of epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase and resulted in the promotion of colony formation, sphere formation, and in vivo tumor formation. Gefitinib treatment inhibited phosphorylation of EGFR and extracellular signal-regulated kinase and led to tumor regression in U373-overexpressed EREG. CONCLUSION These results suggested that EREG is one of the molecules involved in glioma malignancy, and EGFR inhibitors may be a candidate therapeutic agent for EREG-overexpressing GBM patients.
Collapse
|
70
|
Reardon DA, Wen PY, Mellinghoff IK. Targeted molecular therapies against epidermal growth factor receptor: past experiences and challenges. Neuro Oncol 2015; 16 Suppl 8:viii7-13. [PMID: 25342602 DOI: 10.1093/neuonc/nou232] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) has emerged as a highly attractive therapeutic target in glioblastoma (GBM) based on its high frequency of gene amplification and mutation and its identification as an upstream trigger of dysregulated cell signaling cascades that drive GBM pathophysiology. Extensive investment has been committed in an attempt to exploit EGFR therapeutically to improve outcome for GBM patients, including the development of a variety of EGFR-targeting therapeutics as well as the participation of hundreds of participants in multiple, carefully constructed clinical trials. In this review, we summarize the design and results of clinical trials evaluating EGFR tyrosine kinase inhibitors in recurrent and newly diagnosed GBM patients. While overall results thus far have been disappointing, it is premature to discount EGFR as a therapeutic target in GBM on the basis of these studies given the limitations in study design and the pharmacology of first-generation EGFR kinase inhibitors. Although important lessons have been learned, critical questions remain unanswered and warrant further study.
Collapse
Affiliation(s)
- David A Reardon
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ingo K Mellinghoff
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
71
|
Clarke JL. Bevacizumab and other targeted agents in the upfront treatment of glioblastoma. Semin Radiat Oncol 2015; 24:273-8. [PMID: 25219812 DOI: 10.1016/j.semradonc.2014.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The standard treatment for glioblastoma, the most common primary malignant brain tumor, has been maximal safe surgical resection followed by the combination of radiation and temozolomide. Bevacizumab has shown promise in the treatment of glioblastoma; it and a number of other new, targeted agents have been tested in combination with radiation and temozolomide. Results of recent studies of such agents are discussed. Although many of these agents show promise, none as yet has established a new standard of care for these difficult-to-treat tumors.
Collapse
Affiliation(s)
- Jennifer L Clarke
- Department of Neurology, University of California, San Francisco, CA; Department of Neurological Surgery, University of California, San Francisco, CA.
| |
Collapse
|
72
|
Cabrini G, Fabbri E, Lo Nigro C, Dechecchi MC, Gambari R. Regulation of expression of O6-methylguanine-DNA methyltransferase and the treatment of glioblastoma (Review). Int J Oncol 2015; 47:417-28. [PMID: 26035292 PMCID: PMC4501657 DOI: 10.3892/ijo.2015.3026] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/09/2015] [Indexed: 12/22/2022] Open
Abstract
O-6-methylguanine-DNA methyltransferase (MGMT) is an abundantly expressed nuclear protein dealkylating O6-methylguanine (O6-MG) DNA residue, thus correcting the mismatches of O6-MG with a thymine residue during DNA replication. The dealkylating effect of MGMT is relevant not only in repairing DNA mismatches produced by environmental alkylating agents promoting tumor pathogenesis, but also when alkylating molecules are applied in the chemotherapy of different cancers, including glioma, the most common primary tumor of the central nervous system. Elevated MGMT gene expression is known to confer resistance to the treatment with the alkylating drug temozolomide in patients affected by gliomas and, on the contrary, methylation of MGMT gene promoter, which causes reduction of MGMT protein expression, is known to predict a favourable response to temozolomide. Thus, detecting expression levels of MGMT gene is crucial to indicate the option of alkylating agents or to select patients directly for a second line targeted therapy. Further study is required to gain insights into MGMT expression regulation, that has attracted growing interest recently in MGMT promoter methylation, histone acetylation and microRNAs expression. The review will focus on the epigenetic regulation of MGMT gene, with translational applications to the identification of biomarkers predicting response to therapy and prognosis.
Collapse
Affiliation(s)
- Giulio Cabrini
- Department of Pathology and Diagnostics, University Hospital, Verona, Italy
| | - Enrica Fabbri
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Cristiana Lo Nigro
- Department of Oncology, S. Croce and Carle Teaching Hospital, Cuneo, Italy
| | | | - Roberto Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
73
|
Systematic review and meta-analysis of phase I/II targeted therapy combined with radiotherapy in patients with glioblastoma multiforme: quality of report, toxicity, and survival. J Neurooncol 2015; 123:307-14. [PMID: 25975195 DOI: 10.1007/s11060-015-1802-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 04/05/2015] [Indexed: 10/23/2022]
Abstract
To perform a systematic review and meta-analysis of severe adverse events (SAE) reported in early trials combining molecularly targeted therapies (MTT) with radiotherapy (RT), and to compare them to standard therapy. A summary data meta-analysis was performed and compared to the historical standard. Inclusion criteria were phase I and/or II trials published between 2000 and 2011, with glioblastoma multiforme patients treated with RT and MTT. Pooled incidence rates (IR) of SAE were estimated as well as the pooled median progression-free survival (PFS) and overall survival (OS). Nineteen prospective trials (9 phase I, 1 phase I/II and 9 phase II) out of 29 initially selected were included (n = 755 patients). The exact number of patients who had experienced SAE was mentioned in 37 % of the trials, concerning only 17 % of the patients. Information such as the period during which adverse events were monitored, the planned treatment duration, and late toxicity were not reported in the trials. The pooled IR of overall SAE was 131.2 (95 % CI 88.8-193.7) per 1000 person-months compared to 74.7 (63.6-87.8) for standard therapy (p < 0.01). Significant differences were observed for gastrointestinal events (p = 0.05) and treatment-related deaths (p = 0.02), in favour of standard therapy. No significant difference was observed in PFS and OS. Reporting a summary of toxicity data in early clinical trials should be stringently standardized. The use of MTT with RT compared to standard therapy increased SAE while yielded comparable survival in glioblastoma multiforme patients.
Collapse
|
74
|
Zahonero C, Aguilera P, Ramírez-Castillejo C, Pajares M, Bolós MV, Cantero D, Perez-Nuñez A, Hernández-Laín A, Sánchez-Gómez P, Sepúlveda JM. Preclinical Test of Dacomitinib, an Irreversible EGFR Inhibitor, Confirms Its Effectiveness for Glioblastoma. Mol Cancer Ther 2015; 14:1548-58. [PMID: 25939761 DOI: 10.1158/1535-7163.mct-14-0736] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 04/27/2015] [Indexed: 11/16/2022]
Abstract
Glioblastomas (GBM) are devastating tumors in which there has been little clinical improvement in the last decades. New molecularly directed therapies are under development. EGFR is one of the most promising targets, as this receptor is mutated and/or overexpressed in nearly half of the GBMs. However, the results obtained with first-generation tyrosine-kinase inhibitors have been disappointing with no clear predictive markers of tumor response. Here, we have tested the antitumoral efficacy of a second-generation inhibitor, dacomitinib (PF299804, Pfizer), that binds in an irreversible way to the receptor. Our results confirm that dacomitinib has an effect on cell viability, self-renewal, and proliferation in EGFR-amplified ± EGFRvIII GBM cells. Moreover, systemic administration of dacomitinib strongly impaired the in vivo tumor growth rate of these EGFR-amplified cell lines, with a decrease in the expression of stem cell-related markers. However, continuous administration of the compound was required to maintain the antitumor effect. The data presented here confirm that dacomitinib clearly affects receptor signaling in vivo and that its strong antitumoral effect is independent of the presence of mutant receptor isoforms although it could be affected by the PTEN status (as it is less effective in a PTEN-deleted GBM line). Dacomitinib is being tested in second line for EGFR-amplified GBMs. We hope that our results could help to select retrospectively molecular determinants of this response and to implement future trials with dacomitinib (alone or in combination with other inhibitors) in newly diagnosed GBMs.
Collapse
Affiliation(s)
- Cristina Zahonero
- Neuro-Oncology Unit, Instituto de Salud Carlos III-UFIEC, Madrid, Spain
| | - Pilar Aguilera
- Neuro-Oncology Unit, Instituto de Salud Carlos III-UFIEC, Madrid, Spain
| | | | - Marta Pajares
- Neuro-Oncology Unit, Instituto de Salud Carlos III-UFIEC, Madrid, Spain
| | | | - Diana Cantero
- Unidad Multidisciplinar de Neurooncología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Angel Perez-Nuñez
- Unidad Multidisciplinar de Neurooncología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Aurelio Hernández-Laín
- Unidad Multidisciplinar de Neurooncología, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Juan Manuel Sepúlveda
- Unidad Multidisciplinar de Neurooncología, Hospital Universitario 12 de Octubre, Madrid, Spain.
| |
Collapse
|
75
|
Krauze AV, Myrehaug SD, Chang MG, Holdford DJ, Smith S, Shih J, Tofilon PJ, Fine HA, Camphausen K. A Phase 2 Study of Concurrent Radiation Therapy, Temozolomide, and the Histone Deacetylase Inhibitor Valproic Acid for Patients With Glioblastoma. Int J Radiat Oncol Biol Phys 2015; 92:986-992. [PMID: 26194676 DOI: 10.1016/j.ijrobp.2015.04.038] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/07/2015] [Accepted: 04/13/2015] [Indexed: 02/05/2023]
Abstract
PURPOSE Valproic acid (VPA) is an antiepileptic agent with histone deacetylase inhibitor (HDACi) activity shown to sensitize glioblastoma (GBM) cells to radiation in preclinical models. We evaluated the addition of VPA to standard radiation therapy (RT) plus temozolomide (TMZ) in patients with newly diagnosed GBM. METHODS AND MATERIALS Thirty-seven patients with newly diagnosed GBM were enrolled between July 2006 and April 2013. Patients received VPA, 25 mg/kg orally, divided into 2 daily doses concurrent with RT and TMZ. The first dose of VPA was given 1 week before the first day of RT at 10 to 15 mg/kg/day and subsequently increased up to 25 mg/kg/day over the week prior to radiation. VPA- and TMZ-related acute toxicities were evaluated using Common Toxicity Criteria version 3.0 (National Cancer Institute Cancer Therapy Evaluation Program) and Cancer Radiation Morbidity Scoring Scheme for toxicity and adverse event reporting (Radiation Therapy Oncology Group/European Organization for Research and Treatment). RESULTS A total of 81% of patients took VPA according to protocol. Median overall survival (OS) was 29.6 months (range: 21-63.8 months), and median progression-free survival (PFS) was 10.5 months (range: 6.8-51.2 months). OS at 6, 12, and 24 months was 97%, 86%, and 56%, respectively. PFS at 6, 12, and 24 months was 70%, 43%, and 38% respectively. The most common grade 3/4 toxicities of VPA in conjunction with RT/TMZ therapy were blood and bone marrow toxicity (32%), neurological toxicity (11%), and metabolic and laboratory toxicity (8%). Younger age and class V recursive partitioning analysis (RPA) results were significant for both OS and PFS. VPA levels were not correlated with grade 3 or 4 toxicity levels. CONCLUSIONS Addition of VPA to concurrent RT/TMZ in patients with newly diagnosed GBM was well tolerated. Additionally, VPA may result in improved outcomes compared to historical data and merits further study.
Collapse
Affiliation(s)
- Andra V Krauze
- Radiation Oncology Branch, National Cancer Institute/National Institutes of Health, Bethesda, Maryland
| | - Sten D Myrehaug
- Department of Radiation Oncology, Lakeridge Health Durham Regional Cancer Centre, Oshawa, Ontario, Canada
| | - Michael G Chang
- Massey Cancer Center Virginia Commonwealth University, Richmond, Virginia
| | - Diane J Holdford
- Massey Cancer Center Virginia Commonwealth University, Richmond, Virginia
| | - Sharon Smith
- Radiation Oncology Branch, National Cancer Institute/National Institutes of Health, Bethesda, Maryland
| | - Joanna Shih
- Radiation Oncology Branch, National Cancer Institute/National Institutes of Health, Bethesda, Maryland
| | - Philip J Tofilon
- Radiation Oncology Branch, National Cancer Institute/National Institutes of Health, Bethesda, Maryland
| | - Howard A Fine
- New York University Langone Medical Center, New York, New York
| | - Kevin Camphausen
- Radiation Oncology Branch, National Cancer Institute/National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
76
|
Lee EQ, Kaley TJ, Duda DG, Schiff D, Lassman AB, Wong ET, Mikkelsen T, Purow BW, Muzikansky A, Ancukiewicz M, Huse JT, Ramkissoon S, Drappatz J, Norden AD, Beroukhim R, Weiss SE, Alexander BM, McCluskey CS, Gerard M, Smith KH, Jain RK, Batchelor TT, Ligon KL, Wen PY. A Multicenter, Phase II, Randomized, Noncomparative Clinical Trial of Radiation and Temozolomide with or without Vandetanib in Newly Diagnosed Glioblastoma Patients. Clin Cancer Res 2015; 21:3610-8. [PMID: 25910950 DOI: 10.1158/1078-0432.ccr-14-3220] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/09/2015] [Indexed: 12/31/2022]
Abstract
PURPOSE Vandetanib, a tyrosine kinase inhibitor of KDR (VEGFR2), EGFR, and RET, may enhance sensitivity to chemotherapy and radiation. We conducted a randomized, noncomparative, phase II study of radiation (RT) and temozolomide with or without vandetanib in patients with newly diagnosed glioblastoma (GBM). EXPERIMENTAL DESIGN We planned to randomize a total of 114 newly diagnosed GBM patients in a ratio of 2:1 to standard RT and temozolomide with (76 patients) or without (38 patients) vandetanib 100 mg daily. Patients with age ≥ 18 years, Karnofsky performance status (KPS) ≥ 60, and not on enzyme-inducing antiepileptics were eligible. Primary endpoint was median overall survival (OS) from the date of randomization. Secondary endpoints included median progression-free survival (PFS), 12-month PFS, and safety. Correlative studies included pharmacokinetics as well as tissue and serum biomarker analysis. RESULTS The study was terminated early for futility based on the results of an interim analysis. We enrolled 106 patients (36 in the RT/temozolomide arm and 70 in the vandetanib/RT/temozolomide arm). Median OS was 15.9 months [95% confidence interval (CI), 11.0-22.5 months] in the RT/temozolomide arm and 16.6 months (95% CI, 14.9-20.1 months) in the vandetanib/RT/temozolomide (log-rank P = 0.75). CONCLUSIONS The addition of vandetanib at a dose of 100 mg daily to standard chemoradiation in patients with newly diagnosed GBM or gliosarcoma was associated with potential pharmacodynamic biomarker changes and was reasonably well tolerated. However, the regimen did not significantly prolong OS compared with the parallel control arm, leading to early termination of the study.
Collapse
Affiliation(s)
- Eudocia Q Lee
- Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Thomas J Kaley
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dan G Duda
- Harvard Medical School, Boston, Massachusetts. Massachusetts General Hospital, Boston, Massachusetts
| | - David Schiff
- University of Virginia, Charlottesville, Virginia
| | - Andrew B Lassman
- New York-Presbyterian Hospital/Columbia University Medical Center, New York, New York
| | - Eric T Wong
- Harvard Medical School, Boston, Massachusetts. Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | | | | | - Alona Muzikansky
- Harvard Medical School, Boston, Massachusetts. Massachusetts General Hospital, Boston, Massachusetts
| | | | - Jason T Huse
- Memorial Sloan Kettering Cancer Center, New York, New York
| | - Shakti Ramkissoon
- Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Jan Drappatz
- University of Pittsburgh Medical Center, Cancer Centers, Pittsburgh, Pennsylvania
| | - Andrew D Norden
- Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Rameen Beroukhim
- Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | | | - Brian M Alexander
- Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | | | - Mary Gerard
- Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts
| | - Katrina H Smith
- Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts
| | - Rakesh K Jain
- Harvard Medical School, Boston, Massachusetts. Massachusetts General Hospital, Boston, Massachusetts
| | - Tracy T Batchelor
- Harvard Medical School, Boston, Massachusetts. Massachusetts General Hospital, Boston, Massachusetts
| | - Keith L Ligon
- Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts
| | - Patrick Y Wen
- Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts. Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
77
|
Bowman RL, Joyce JA. Therapeutic targeting of tumor-associated macrophages and microglia in glioblastoma. Immunotherapy 2015; 6:663-6. [PMID: 25041027 DOI: 10.2217/imt.14.48] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Robert L Bowman
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
78
|
Lin F, de Gooijer MC, Hanekamp D, Brandsma D, Beijnen JH, van Tellingen O. Targeting core (mutated) pathways of high-grade gliomas: challenges of intrinsic resistance and drug efflux. CNS Oncol 2015; 2:271-88. [PMID: 25054467 DOI: 10.2217/cns.13.15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
High-grade gliomas are the most common type of primary brain tumor and are among the most lethal types of human cancer. Most patients with a high-grade glioma have glioblastoma multiforme (GBM), the most malignant glioma subtype that is associated with a very aggressive disease course and short overall survival. Standard treatment of newly diagnosed GBM involves surgery followed by chemoradiation with temozolomide. However, despite this extensive treatment the mean overall survival is still only 14.6 months and more effective treatments are urgently needed. Although different types of GBMs are indistinguishable by histopathology, novel molecular pathological techniques allow discrimination between the four main GBM subtypes. Targeting the aberrations in the molecular pathways underlying these subtypes is a promising strategy to improve therapy. In this article, we will discuss the potential avenues and pitfalls of molecularly targeted therapies for the treatment of GBM.
Collapse
Affiliation(s)
- Fan Lin
- Department of Clinical Chemistry/Preclinical Pharmacology, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
79
|
Nanomedicine to overcome radioresistance in glioblastoma stem-like cells and surviving clones. Trends Pharmacol Sci 2015; 36:236-52. [PMID: 25799457 DOI: 10.1016/j.tips.2015.02.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 12/14/2022]
Abstract
Radiotherapy is one of the standard treatments for glioblastoma, but its effectiveness often encounters the phenomenon of radioresistance. This resistance was recently attributed to distinct cell contingents known as glioblastoma stem-like cells (GSCs) and dominant clones. It is characterized in particular by the activation of signaling pathways and DNA repair mechanisms. Recent advances in the field of nanomedicine offer new possibilities for radiosensitizing these cell populations. Several strategies have been developed in this direction, the first consisting of encapsulating a contrast agent or synthesizing metal-based nanocarriers to concentrate the dose gradient at the level of the target tissue. In the second strategy the physicochemical properties of the vectors are used to encapsulate a wide range of pharmacological agents which act in synergy with the ionizing radiation to destroy the cancerous cells. This review reports on the various molecular anomalies present in GSCs and the predominant role of nanomedicines in the development of radiosensitization strategies.
Collapse
|
80
|
Parrish KE, Sarkaria JN, Elmquist WF. Improving drug delivery to primary and metastatic brain tumors: strategies to overcome the blood-brain barrier. Clin Pharmacol Ther 2015; 97:336-46. [PMID: 25669487 DOI: 10.1002/cpt.71] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/02/2015] [Indexed: 12/21/2022]
Abstract
Brain tumor diagnosis has an extremely poor prognosis, due in part to the blood-brain barrier (BBB) that prevents both early diagnosis and effective drug delivery. The infiltrative nature of primary brain tumors and the presence of micro-metastases lead to tumor cells that reside behind an intact BBB. Recent genomic technologies have identified many genetic mutations present in glioma and other central nervous system (CNS) tumors, and this information has been instrumental in guiding the development of molecularly targeted therapies. However, the majority of these agents are unable to penetrate an intact BBB, leading to one mechanism by which the invasive brain tumor cells effectively escape treatment. The diagnosis and treatment of a brain tumor remains a serious challenge and new therapeutic agents that either penetrate the BBB or disrupt mechanisms that limit brain penetration, such as endothelial efflux transporters or tight junctions, are required in order to improve patient outcomes in this devastating disease.
Collapse
Affiliation(s)
- K E Parrish
- Brain Barriers Research Center, Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | |
Collapse
|
81
|
Suryadevara CM, Verla T, Sanchez-Perez L, Reap EA, Choi BD, Fecci PE, Sampson JH. Immunotherapy for malignant glioma. Surg Neurol Int 2015; 6:S68-77. [PMID: 25722935 PMCID: PMC4338494 DOI: 10.4103/2152-7806.151341] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/15/2014] [Indexed: 12/25/2022] Open
Abstract
Malignant gliomas (MG) are the most common type of primary malignant brain tumor. Most patients diagnosed with glioblastoma (GBM), the most common and malignant glial tumor, die within 12-15 months. Moreover, conventional treatment, which includes surgery followed by radiation and chemotherapy, can be highly toxic by causing nonspecific damage to healthy brain and other tissues. The shortcomings of standard-of-care have thus created a stimulus for the development of novel therapies that can target central nervous system (CNS)-based tumors specifically and efficiently, while minimizing off-target collateral damage to normal brain. Immunotherapy represents an investigational avenue with the promise of meeting this need, already having demonstrated its potential against B-cell malignancy and solid tumors in clinical trials. T-cell engineering with tumor-specific chimeric antigen receptors (CARs) is one proven approach that aims to redirect autologous patient T-cells to sites of tumor. This platform has evolved dramatically over the past two decades to include an improved construct design, and these modern CARs have only recently been translated into the clinic for brain tumors. We review here emerging immunotherapeutic platforms for the treatment of MG, focusing on the development and application of a CAR-based strategy against GBM.
Collapse
Affiliation(s)
- Carter M Suryadevara
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA ; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA ; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Terence Verla
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA ; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Luis Sanchez-Perez
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA ; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Elizabeth A Reap
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA ; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - Bryan D Choi
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Peter E Fecci
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA ; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| | - John H Sampson
- Duke Brain Tumor Immunotherapy Program, Division of Neurosurgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA ; Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA ; The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
82
|
Cenciarelli C, Marei HES, Zonfrillo M, Pierimarchi P, Paldino E, Casalbore P, Felsani A, Vescovi AL, Maira G, Mangiola A. PDGF receptor alpha inhibition induces apoptosis in glioblastoma cancer stem cells refractory to anti-Notch and anti-EGFR treatment. Mol Cancer 2014; 13:247. [PMID: 25380967 PMCID: PMC4235989 DOI: 10.1186/1476-4598-13-247] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/27/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cancer stem cells (CSC) represent a rare fraction of cancer cells characterized by resistance to chemotherapy and radiation, therefore nowadays there is great need to develop new targeted therapies for brain tumors and our study aim to target pivotal transmembrane receptors such as Notch, EGFR and PDGFR, which are already under investigation in clinical trials setting for the treatment of Glioblastoma Multiforme (GBM). METHODS MTS assay was performed to evaluate cells response to pharmacological treatments. Quantitative RT-PCR and Western blots were performed to state the expression of Notch1, EGFR and PDGFRα/β and the biological effects exerted by either single or combined targeted therapy in GBM CSC. GBM CSC invasive ability was tested in vitro in absence or presence of Notch and/or EGFR signaling inhibitors. RESULTS In this study, we investigated gene expression and function of Notch1, EGFR and PDGFR to determine their role among GBM tumor core- (c-CSC) vs. peritumor tissue-derived cancer stem cells (p-CSC) of six cases of GBM. Notch inhibition significantly impaired cell growth of c-CSC compared to p-CSC pools, with no effects observed in cell cycle distribution, apoptosis and cell invasion assays. Instead, anti-EGFR therapy induced cell cycle arrest, sometimes associated with apoptosis and reduction of cell invasiveness in GBM CSC. In two cases, c-CSC pools were more sensitive to simultaneous anti-Notch and anti-EGFR treatment than either therapy alone compared to p-CSC, which were mostly resistant to treatment. We reported the overexpression of PDGFRα and its up-regulation following anti-EGFR therapy in GBM p-CSC compared to c-CSC. RNA interference of PDGFRα significantly reduced cell proliferation rate of p-CSC, while its pharmacological inhibition with Crenolanib impaired survival of both CSC pools, whose effects in combination with EGFR inhibition were maximized. CONCLUSIONS We have used different drugs combination to identify the more effective therapeutic targets for GBM CSC, particularly against GBM peritumor tissue-derived CSC, which are mostly resistant to treatments. Overall, our results provide the rationale for simultaneous targeting of EGFR and PDGFR, which would be beneficial in the treatment of GBM.
Collapse
Affiliation(s)
| | - Hany ES Marei
- />Department of Cytology and Histology, Mansoura University, Mansoura, Egypt
| | | | | | | | | | | | - Angelo Luigi Vescovi
- />Department of Biotechnologies and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Giulio Maira
- />Institute of Neurosurgery, Catholic University-School of Medicine, Roma, Italy
| | - Annunziato Mangiola
- />Institute of Neurosurgery, Catholic University-School of Medicine, Roma, Italy
| |
Collapse
|
83
|
Westhoff MA, Karpel-Massler G, Brühl O, Enzenmüller S, La Ferla-Brühl K, Siegelin MD, Nonnenmacher L, Debatin KM. A critical evaluation of PI3K inhibition in Glioblastoma and Neuroblastoma therapy. MOLECULAR AND CELLULAR THERAPIES 2014; 2:32. [PMID: 26056598 PMCID: PMC4452069 DOI: 10.1186/2052-8426-2-32] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/16/2014] [Indexed: 12/11/2022]
Abstract
Members of the PI3K/Akt/mTor signaling cascade are among the most frequently altered proteins in cancer, yet the therapeutic application of pharmacological inhibitors of this signaling network, either as monotherapy or in combination therapy (CT) has so far not been particularly successful. In this review we will focus on the role of PI3K/Akt/mTOR in two distinct tumors, Glioblastoma multiforme (GBM), an adult brain tumor which frequently exhibits PTEN inactivation, and Neuroblastoma (NB), a childhood malignancy that affects the central nervous system and does not harbor any classic alterations in PI3K/Akt signaling. We will argue that inhibitors of PI3K/Akt signaling can be components for potentially promising new CTs in both tumor entities, but further understanding of the signal cascade's complexity is essential for successful implementation of these CTs. Importantly, failure to do this might lead to severe adverse effects, such as treatment failure and enhanced therapy resistance.
Collapse
Affiliation(s)
- Mike-Andrew Westhoff
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Georg Karpel-Massler
- Department of Neurosurgery, University Medical Center Ulm, Ulm, Germany ; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY USA
| | - Oliver Brühl
- Laboratorio Analisi Sicilia Catania, Lentini, SR Italy
| | - Stefanie Enzenmüller
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | | | - Markus D Siegelin
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY USA
| | - Lisa Nonnenmacher
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
84
|
Westhoff MA, Karpel-Massler G, Brühl O, Enzenmüller S, La Ferla-Brühl K, Siegelin MD, Nonnenmacher L, Debatin KM. A critical evaluation of PI3K inhibition in Glioblastoma and Neuroblastoma therapy. MOLECULAR AND CELLULAR THERAPIES 2014; 2:32. [PMID: 26056598 PMCID: PMC4452069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/16/2014] [Indexed: 11/21/2023]
Abstract
Members of the PI3K/Akt/mTor signaling cascade are among the most frequently altered proteins in cancer, yet the therapeutic application of pharmacological inhibitors of this signaling network, either as monotherapy or in combination therapy (CT) has so far not been particularly successful. In this review we will focus on the role of PI3K/Akt/mTOR in two distinct tumors, Glioblastoma multiforme (GBM), an adult brain tumor which frequently exhibits PTEN inactivation, and Neuroblastoma (NB), a childhood malignancy that affects the central nervous system and does not harbor any classic alterations in PI3K/Akt signaling. We will argue that inhibitors of PI3K/Akt signaling can be components for potentially promising new CTs in both tumor entities, but further understanding of the signal cascade's complexity is essential for successful implementation of these CTs. Importantly, failure to do this might lead to severe adverse effects, such as treatment failure and enhanced therapy resistance.
Collapse
Affiliation(s)
- Mike-Andrew Westhoff
- />Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Georg Karpel-Massler
- />Department of Neurosurgery, University Medical Center Ulm, Ulm, Germany
- />Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY USA
| | - Oliver Brühl
- />Laboratorio Analisi Sicilia Catania, Lentini, SR Italy
| | - Stefanie Enzenmüller
- />Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | | | - Markus D Siegelin
- />Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY USA
| | - Lisa Nonnenmacher
- />Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Klaus-Michael Debatin
- />Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
85
|
Abstract
The survival outcome of patients with malignant gliomas is still poor, despite advances in surgical techniques, radiation therapy and the development of novel chemotherapeutic agents. The heterogeneity of molecular alterations in signaling pathways involved in the pathogenesis of these tumors contributes significantly to their resistance to treatment. Several molecular targets for therapy have been discovered over the last several years. Therapeutic agents targeting these signaling pathways may provide more effective treatments and may improve survival. This review summarizes the important molecular therapeutic targets and the outcome of published clinical trials involving targeted therapeutic agents in glioma patients.
Collapse
|
86
|
McNeill RS, Vitucci M, Wu J, Miller CR. Contemporary murine models in preclinical astrocytoma drug development. Neuro Oncol 2014; 17:12-28. [PMID: 25246428 DOI: 10.1093/neuonc/nou288] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Despite 6 decades of research, only 3 drugs have been approved for astrocytomas, the most common malignant primary brain tumors. However, clinical drug development is accelerating with the transition from empirical, cytotoxic therapy to precision, targeted medicine. Preclinical animal model studies are critical for prioritizing drug candidates for clinical development and, ultimately, for their regulatory approval. For decades, only murine models with established tumor cell lines were available for such studies. However, these poorly represent the genomic and biological properties of human astrocytomas, and their preclinical use fails to accurately predict efficacy in clinical trials. Newer models developed over the last 2 decades, including patient-derived xenografts, genetically engineered mice, and genetically engineered cells purified from human brains, more faithfully phenocopy the genomics and biology of human astrocytomas. Harnessing the unique benefits of these models will be required to identify drug targets, define combination therapies that circumvent inherent and acquired resistance mechanisms, and develop molecular biomarkers predictive of drug response and resistance. With increasing recognition of the molecular heterogeneity of astrocytomas, employing multiple, contemporary models in preclinical drug studies promises to increase the efficiency of drug development for specific, molecularly defined subsets of tumors.
Collapse
Affiliation(s)
- Robert S McNeill
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina (R.S.M., M.V., C.R.M.); Departments of Neurosurgery and Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.W.); Department of Neurology, Lineberger Comprehensive Cancer Center, and Neurosciences Center University of North Carolina School of Medicine, Chapel Hill, North Carolina (C.R.M.)
| | - Mark Vitucci
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina (R.S.M., M.V., C.R.M.); Departments of Neurosurgery and Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.W.); Department of Neurology, Lineberger Comprehensive Cancer Center, and Neurosciences Center University of North Carolina School of Medicine, Chapel Hill, North Carolina (C.R.M.)
| | - Jing Wu
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina (R.S.M., M.V., C.R.M.); Departments of Neurosurgery and Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.W.); Department of Neurology, Lineberger Comprehensive Cancer Center, and Neurosciences Center University of North Carolina School of Medicine, Chapel Hill, North Carolina (C.R.M.)
| | - C Ryan Miller
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina (R.S.M., M.V., C.R.M.); Departments of Neurosurgery and Neurology, University of North Carolina School of Medicine, Chapel Hill, North Carolina (J.W.); Department of Neurology, Lineberger Comprehensive Cancer Center, and Neurosciences Center University of North Carolina School of Medicine, Chapel Hill, North Carolina (C.R.M.)
| |
Collapse
|
87
|
Reardon DA, Nabors LB, Mason WP, Perry JR, Shapiro W, Kavan P, Mathieu D, Phuphanich S, Cseh A, Fu Y, Cong J, Wind S, Eisenstat DD. Phase I/randomized phase II study of afatinib, an irreversible ErbB family blocker, with or without protracted temozolomide in adults with recurrent glioblastoma. Neuro Oncol 2014; 17:430-9. [PMID: 25140039 DOI: 10.1093/neuonc/nou160] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 07/07/2014] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND This phase I/II trial evaluated the maximum tolerated dose (MTD) and pharmacokinetics of afatinib plus temozolomide as well as the efficacy and safety of afatinib as monotherapy (A) or with temozolomide (AT) vs temozolomide monotherapy (T) in patients with recurrent glioblastoma (GBM). METHODS Phase I followed a traditional 3 + 3 dose-escalation design to determine MTD. Treatment cohorts were: afatinib 20, 40, and 50 mg/day (plus temozolomide 75 mg/m(2)/day for 21 days per 28-day cycle). In phase II, participants were randomized (stratified by age and KPS) to receive A, T or AT; A was dosed at 40 mg/day and T at 75 mg/m(2) for 21 of 28 days. Primary endpoint was progression-free survival rate at 6 months (PFS-6). Participants were treated until intolerable adverse events (AEs) or disease progression. RESULTS Recommended phase II dose was 40 mg/day (A) + T based on safety data from phase I (n = 32). Most frequent AEs in phase II (n = 119) were diarrhea (71% [A], 82% [AT]) and rash (71% [A] and 69% [AT]). Afatinib and temozolomide pharmacokinetics were unaffected by coadministration. Independently assessed PFS-6 rate was 3% (A), 10% (AT), and 23% (T). Median PFS was longer in afatinib-treated participants with epidermal growth factor receptor (EFGR) vIII-positive tumors versus EGFRvIII-negative tumors. Best overall response included partial response in 1 (A), 2 (AT), and 4 (T) participants and stable disease in 14 (A), 14 (AT), and 21 (T) participants. CONCLUSIONS Afatinib has a manageable safety profile but limited single-agent activity in unselected recurrent GBM patients.
Collapse
Affiliation(s)
- David A Reardon
- Dana-Farber Cancer Institute, Boston, Massachusetts (D.A.R.); University of Alabama, Birmingham, Alabama (L.B.N.); Princess Margaret Hospital, Toronto, Ontario, Canada (W.P.M.); Odette Cancer Centre, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (J.R.P.); Barrow Neurological Institute, Phoenix, Arizona (W.S.); Department of Medical Oncology, McGill University, Montréal, Quebec, Canada (P.K.); Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada (D.M.); Johnnie Cochran Brain Tumor Center, Cedars-Sinai Medical Center, Los Angeles, California (S.P., A.C.); Boehringer Ingelheim R.C.V GmbH & Co KG, 1120 Vienna, Austria (A.C.); Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (Y.F., J.C.); Boehringer Ingelheim Pharma GmbH & Co. K.G., 88400 Biberach, Germany (S.S.W.); CancerCare Manitoba, Winnipeg, Manitoba, Canada (D.D.E.)
| | - Louis B Nabors
- Dana-Farber Cancer Institute, Boston, Massachusetts (D.A.R.); University of Alabama, Birmingham, Alabama (L.B.N.); Princess Margaret Hospital, Toronto, Ontario, Canada (W.P.M.); Odette Cancer Centre, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (J.R.P.); Barrow Neurological Institute, Phoenix, Arizona (W.S.); Department of Medical Oncology, McGill University, Montréal, Quebec, Canada (P.K.); Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada (D.M.); Johnnie Cochran Brain Tumor Center, Cedars-Sinai Medical Center, Los Angeles, California (S.P., A.C.); Boehringer Ingelheim R.C.V GmbH & Co KG, 1120 Vienna, Austria (A.C.); Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (Y.F., J.C.); Boehringer Ingelheim Pharma GmbH & Co. K.G., 88400 Biberach, Germany (S.S.W.); CancerCare Manitoba, Winnipeg, Manitoba, Canada (D.D.E.)
| | - Warren P Mason
- Dana-Farber Cancer Institute, Boston, Massachusetts (D.A.R.); University of Alabama, Birmingham, Alabama (L.B.N.); Princess Margaret Hospital, Toronto, Ontario, Canada (W.P.M.); Odette Cancer Centre, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (J.R.P.); Barrow Neurological Institute, Phoenix, Arizona (W.S.); Department of Medical Oncology, McGill University, Montréal, Quebec, Canada (P.K.); Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada (D.M.); Johnnie Cochran Brain Tumor Center, Cedars-Sinai Medical Center, Los Angeles, California (S.P., A.C.); Boehringer Ingelheim R.C.V GmbH & Co KG, 1120 Vienna, Austria (A.C.); Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (Y.F., J.C.); Boehringer Ingelheim Pharma GmbH & Co. K.G., 88400 Biberach, Germany (S.S.W.); CancerCare Manitoba, Winnipeg, Manitoba, Canada (D.D.E.)
| | - James R Perry
- Dana-Farber Cancer Institute, Boston, Massachusetts (D.A.R.); University of Alabama, Birmingham, Alabama (L.B.N.); Princess Margaret Hospital, Toronto, Ontario, Canada (W.P.M.); Odette Cancer Centre, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (J.R.P.); Barrow Neurological Institute, Phoenix, Arizona (W.S.); Department of Medical Oncology, McGill University, Montréal, Quebec, Canada (P.K.); Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada (D.M.); Johnnie Cochran Brain Tumor Center, Cedars-Sinai Medical Center, Los Angeles, California (S.P., A.C.); Boehringer Ingelheim R.C.V GmbH & Co KG, 1120 Vienna, Austria (A.C.); Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (Y.F., J.C.); Boehringer Ingelheim Pharma GmbH & Co. K.G., 88400 Biberach, Germany (S.S.W.); CancerCare Manitoba, Winnipeg, Manitoba, Canada (D.D.E.)
| | - William Shapiro
- Dana-Farber Cancer Institute, Boston, Massachusetts (D.A.R.); University of Alabama, Birmingham, Alabama (L.B.N.); Princess Margaret Hospital, Toronto, Ontario, Canada (W.P.M.); Odette Cancer Centre, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (J.R.P.); Barrow Neurological Institute, Phoenix, Arizona (W.S.); Department of Medical Oncology, McGill University, Montréal, Quebec, Canada (P.K.); Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada (D.M.); Johnnie Cochran Brain Tumor Center, Cedars-Sinai Medical Center, Los Angeles, California (S.P., A.C.); Boehringer Ingelheim R.C.V GmbH & Co KG, 1120 Vienna, Austria (A.C.); Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (Y.F., J.C.); Boehringer Ingelheim Pharma GmbH & Co. K.G., 88400 Biberach, Germany (S.S.W.); CancerCare Manitoba, Winnipeg, Manitoba, Canada (D.D.E.)
| | - Petr Kavan
- Dana-Farber Cancer Institute, Boston, Massachusetts (D.A.R.); University of Alabama, Birmingham, Alabama (L.B.N.); Princess Margaret Hospital, Toronto, Ontario, Canada (W.P.M.); Odette Cancer Centre, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (J.R.P.); Barrow Neurological Institute, Phoenix, Arizona (W.S.); Department of Medical Oncology, McGill University, Montréal, Quebec, Canada (P.K.); Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada (D.M.); Johnnie Cochran Brain Tumor Center, Cedars-Sinai Medical Center, Los Angeles, California (S.P., A.C.); Boehringer Ingelheim R.C.V GmbH & Co KG, 1120 Vienna, Austria (A.C.); Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (Y.F., J.C.); Boehringer Ingelheim Pharma GmbH & Co. K.G., 88400 Biberach, Germany (S.S.W.); CancerCare Manitoba, Winnipeg, Manitoba, Canada (D.D.E.)
| | - David Mathieu
- Dana-Farber Cancer Institute, Boston, Massachusetts (D.A.R.); University of Alabama, Birmingham, Alabama (L.B.N.); Princess Margaret Hospital, Toronto, Ontario, Canada (W.P.M.); Odette Cancer Centre, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (J.R.P.); Barrow Neurological Institute, Phoenix, Arizona (W.S.); Department of Medical Oncology, McGill University, Montréal, Quebec, Canada (P.K.); Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada (D.M.); Johnnie Cochran Brain Tumor Center, Cedars-Sinai Medical Center, Los Angeles, California (S.P., A.C.); Boehringer Ingelheim R.C.V GmbH & Co KG, 1120 Vienna, Austria (A.C.); Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (Y.F., J.C.); Boehringer Ingelheim Pharma GmbH & Co. K.G., 88400 Biberach, Germany (S.S.W.); CancerCare Manitoba, Winnipeg, Manitoba, Canada (D.D.E.)
| | - Surasak Phuphanich
- Dana-Farber Cancer Institute, Boston, Massachusetts (D.A.R.); University of Alabama, Birmingham, Alabama (L.B.N.); Princess Margaret Hospital, Toronto, Ontario, Canada (W.P.M.); Odette Cancer Centre, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (J.R.P.); Barrow Neurological Institute, Phoenix, Arizona (W.S.); Department of Medical Oncology, McGill University, Montréal, Quebec, Canada (P.K.); Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada (D.M.); Johnnie Cochran Brain Tumor Center, Cedars-Sinai Medical Center, Los Angeles, California (S.P., A.C.); Boehringer Ingelheim R.C.V GmbH & Co KG, 1120 Vienna, Austria (A.C.); Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (Y.F., J.C.); Boehringer Ingelheim Pharma GmbH & Co. K.G., 88400 Biberach, Germany (S.S.W.); CancerCare Manitoba, Winnipeg, Manitoba, Canada (D.D.E.)
| | - Agnieszka Cseh
- Dana-Farber Cancer Institute, Boston, Massachusetts (D.A.R.); University of Alabama, Birmingham, Alabama (L.B.N.); Princess Margaret Hospital, Toronto, Ontario, Canada (W.P.M.); Odette Cancer Centre, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (J.R.P.); Barrow Neurological Institute, Phoenix, Arizona (W.S.); Department of Medical Oncology, McGill University, Montréal, Quebec, Canada (P.K.); Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada (D.M.); Johnnie Cochran Brain Tumor Center, Cedars-Sinai Medical Center, Los Angeles, California (S.P., A.C.); Boehringer Ingelheim R.C.V GmbH & Co KG, 1120 Vienna, Austria (A.C.); Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (Y.F., J.C.); Boehringer Ingelheim Pharma GmbH & Co. K.G., 88400 Biberach, Germany (S.S.W.); CancerCare Manitoba, Winnipeg, Manitoba, Canada (D.D.E.)
| | - Yali Fu
- Dana-Farber Cancer Institute, Boston, Massachusetts (D.A.R.); University of Alabama, Birmingham, Alabama (L.B.N.); Princess Margaret Hospital, Toronto, Ontario, Canada (W.P.M.); Odette Cancer Centre, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (J.R.P.); Barrow Neurological Institute, Phoenix, Arizona (W.S.); Department of Medical Oncology, McGill University, Montréal, Quebec, Canada (P.K.); Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada (D.M.); Johnnie Cochran Brain Tumor Center, Cedars-Sinai Medical Center, Los Angeles, California (S.P., A.C.); Boehringer Ingelheim R.C.V GmbH & Co KG, 1120 Vienna, Austria (A.C.); Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (Y.F., J.C.); Boehringer Ingelheim Pharma GmbH & Co. K.G., 88400 Biberach, Germany (S.S.W.); CancerCare Manitoba, Winnipeg, Manitoba, Canada (D.D.E.)
| | - Julie Cong
- Dana-Farber Cancer Institute, Boston, Massachusetts (D.A.R.); University of Alabama, Birmingham, Alabama (L.B.N.); Princess Margaret Hospital, Toronto, Ontario, Canada (W.P.M.); Odette Cancer Centre, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (J.R.P.); Barrow Neurological Institute, Phoenix, Arizona (W.S.); Department of Medical Oncology, McGill University, Montréal, Quebec, Canada (P.K.); Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada (D.M.); Johnnie Cochran Brain Tumor Center, Cedars-Sinai Medical Center, Los Angeles, California (S.P., A.C.); Boehringer Ingelheim R.C.V GmbH & Co KG, 1120 Vienna, Austria (A.C.); Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (Y.F., J.C.); Boehringer Ingelheim Pharma GmbH & Co. K.G., 88400 Biberach, Germany (S.S.W.); CancerCare Manitoba, Winnipeg, Manitoba, Canada (D.D.E.)
| | - Sven Wind
- Dana-Farber Cancer Institute, Boston, Massachusetts (D.A.R.); University of Alabama, Birmingham, Alabama (L.B.N.); Princess Margaret Hospital, Toronto, Ontario, Canada (W.P.M.); Odette Cancer Centre, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (J.R.P.); Barrow Neurological Institute, Phoenix, Arizona (W.S.); Department of Medical Oncology, McGill University, Montréal, Quebec, Canada (P.K.); Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada (D.M.); Johnnie Cochran Brain Tumor Center, Cedars-Sinai Medical Center, Los Angeles, California (S.P., A.C.); Boehringer Ingelheim R.C.V GmbH & Co KG, 1120 Vienna, Austria (A.C.); Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (Y.F., J.C.); Boehringer Ingelheim Pharma GmbH & Co. K.G., 88400 Biberach, Germany (S.S.W.); CancerCare Manitoba, Winnipeg, Manitoba, Canada (D.D.E.)
| | - David D Eisenstat
- Dana-Farber Cancer Institute, Boston, Massachusetts (D.A.R.); University of Alabama, Birmingham, Alabama (L.B.N.); Princess Margaret Hospital, Toronto, Ontario, Canada (W.P.M.); Odette Cancer Centre, University of Toronto, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada (J.R.P.); Barrow Neurological Institute, Phoenix, Arizona (W.S.); Department of Medical Oncology, McGill University, Montréal, Quebec, Canada (P.K.); Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada (D.M.); Johnnie Cochran Brain Tumor Center, Cedars-Sinai Medical Center, Los Angeles, California (S.P., A.C.); Boehringer Ingelheim R.C.V GmbH & Co KG, 1120 Vienna, Austria (A.C.); Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut (Y.F., J.C.); Boehringer Ingelheim Pharma GmbH & Co. K.G., 88400 Biberach, Germany (S.S.W.); CancerCare Manitoba, Winnipeg, Manitoba, Canada (D.D.E.)
| | | |
Collapse
|
88
|
Paul I, Bhattacharya S, Chatterjee A, Ghosh MK. Current Understanding on EGFR and Wnt/β-Catenin Signaling in Glioma and Their Possible Crosstalk. Genes Cancer 2014; 4:427-46. [PMID: 24386505 DOI: 10.1177/1947601913503341] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/31/2013] [Indexed: 02/06/2023] Open
Abstract
Glioblastoma multiformes (GBMs) are extensively heterogeneous at both cellular and molecular levels. Current therapeutic strategies include targeting of key signaling molecules using pharmacological inhibitors in combination with genotoxic agents such as temozolomide. In spite of all efforts, the prognosis of glioma patients remains dismal. Therefore, a proper understanding of individual molecular pathways responsible for the progression of GBM is necessary. The epidermal growth factor receptor (EGFR) pathway is probably the most significant signaling pathway clinically implicated in glioma. Not surprisingly, anti-EGFR therapies mostly prevail for therapeutic purposes. The Wnt/β-catenin pathway is well implicated in multiple tumors; however, its role in glioma has only recently started to emerge. We give a concise account of the current understanding of the role of both these pathways in glioma. Last, taking evidences from a limited literature, we outline a number of points where these pathways intersect each other and put forward the possibility of combinatorially targeting them for treatment of glioma.
Collapse
Affiliation(s)
- Indranil Paul
- Signal Transduction in Cancer and Stem Cells Laboratory, Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Seemana Bhattacharya
- Signal Transduction in Cancer and Stem Cells Laboratory, Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Anirban Chatterjee
- Signal Transduction in Cancer and Stem Cells Laboratory, Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Mrinal K Ghosh
- Signal Transduction in Cancer and Stem Cells Laboratory, Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
89
|
Wilson TA, Karajannis MA, Harter DH. Glioblastoma multiforme: State of the art and future therapeutics. Surg Neurol Int 2014; 5:64. [PMID: 24991467 PMCID: PMC4078454 DOI: 10.4103/2152-7806.132138] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 03/13/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is the most common and lethal primary malignancy of the central nervous system (CNS). Despite the proven benefit of surgical resection and aggressive treatment with chemo- and radiotherapy, the prognosis remains very poor. Recent advances of our understanding of the biology and pathophysiology of GBM have allowed the development of a wide array of novel therapeutic approaches, which have been developed. These novel approaches include molecularly targeted therapies, immunotherapies, and gene therapy. METHODS We offer a brief review of the current standard of care, and a survey of novel therapeutic approaches for treatment of GBM. RESULTS Despite promising results in preclinical trials, many of these therapies have demonstrated limited therapeutic efficacy in human clinical trials. Thus, although survival of patients with GBM continues to slowly improve, treatment of GBM remains extremely challenging. CONCLUSION Continued research and development of targeted therapies, based on a detailed understanding of molecular pathogenesis can reasonably be expected to yield improved outcomes for patients with GBM.
Collapse
Affiliation(s)
- Taylor A Wilson
- Department of Neurosurgery, Division of Oncology, New York University School of Medicine, NY, USA
| | - Matthias A Karajannis
- Department of Pediatrics, Division of Oncology, New York University School of Medicine, NY, USA
| | - David H Harter
- Department of Neurosurgery, Division of Oncology, New York University School of Medicine, NY, USA
| |
Collapse
|
90
|
Searle EJ, Illidge TM, Stratford IJ. Emerging opportunities for the combination of molecularly targeted drugs with radiotherapy. Clin Oncol (R Coll Radiol) 2014; 26:266-76. [PMID: 24602563 DOI: 10.1016/j.clon.2014.02.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/29/2014] [Accepted: 02/11/2014] [Indexed: 02/08/2023]
Abstract
Recent drug discovery developments in the field of small molecule targeted agents have led to much interest in combining these with radiotherapy. There are good preclinical data to suggest this approach worthy of investigation and in this review we discuss how this has translated into recent clinical trials. The outcome of clinical trials investigating radiotherapy/targeted drug combinations published in the last 5 years is discussed, as are trials in progress. The perceived future opportunities and challenges in the development of this exciting area are considered.
Collapse
Affiliation(s)
- E J Searle
- Manchester Pharmacy School, University of Manchester, Manchester, UK; Targeted Therapy Group, Institute of Cancer Sciences, University of Manchester, Manchester, UK.
| | - T M Illidge
- Targeted Therapy Group, Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - I J Stratford
- Manchester Pharmacy School, University of Manchester, Manchester, UK
| |
Collapse
|
91
|
Pretreatment Dynamic Susceptibility Contrast MRI Perfusion in Glioblastoma: Prediction of EGFR Gene Amplification. Clin Neuroradiol 2014; 25:143-50. [PMID: 24474262 DOI: 10.1007/s00062-014-0289-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 01/13/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE Molecular and genetic testing is becoming increasingly relevant in GBM. We sought to determine whether dynamic susceptibility contrast (DSC) magnetic resonance imaging (MRI) perfusion imaging could predict EGFR-defined subtypes of GBM. MATERIALS AND METHODS We retrospectively identified 106 consecutive glioblastoma (GBM) patients with known EGFR gene amplification, and a subset of 65 patients who also had known EGFRvIII gene mutation status. All patients underwent T2* DSC MRI perfusion. DSC perfusion maps and T2* signal intensity time curves were evaluated, and the following measures of tumor perfusion were recorded: (1) maximum relative cerebral blood volume (rCBV), (2) relative peak height (rPH), and (3) percent signal recovery (PSR). The imaging metrics were correlated to EGFR gene amplification and EGFRvIII mutation status using univariate analyses. RESULTS EGFR amplification was present in 44 (41.5 %) subjects and absent in 62 (58.5 %). Among the 65 subjects who had undergone EGFRvIII mutation transcript analysis, 18 subjects (27.7 %) tested positive for the EGFRvIII mutation, whereas 47 (72.3 %) did not. Higher median rCBV (3.31 versus 2.62, p = 0.01) and lower PSR (0.70 versus 0.78, p = 0.03) were associated with high levels of EGFR amplification. Higher median rPH (3.68 versus 2.76, p = 0.03) was associated with EGFRvIII mutation. CONCLUSION DSC MRI perfusion may have a role in identifying patients with EGFR gene amplification and EGFRvIII gene mutation status, potential targets for individualized treatment protocols. Our results raise the need for further investigation for imaging biomarkers of genetically unique GBM subtypes.
Collapse
|
92
|
Ahluwalia MS, Patel M, Peereboom DM. Role of tyrosine kinase inhibitors in the management of high-grade gliomas. Expert Rev Anticancer Ther 2014; 11:1739-48. [DOI: 10.1586/era.11.166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
93
|
Nakada M, Kita D, Watanabe T, Hayashi Y, Hamada JI. The mechanism of chemoresistance against tyrosine kinase inhibitors in malignant glioma. Brain Tumor Pathol 2014; 31:198-207. [DOI: 10.1007/s10014-013-0174-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/27/2013] [Indexed: 11/24/2022]
|
94
|
Molecular imaging in the development of a novel treatment paradigm for glioblastoma (GBM): an integrated multidisciplinary commentary. Drug Discov Today 2013; 18:1052-66. [DOI: 10.1016/j.drudis.2013.06.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 06/03/2013] [Accepted: 06/11/2013] [Indexed: 12/29/2022]
|
95
|
Alexander BM, Ligon KL, Wen PY. Enhancing radiation therapy for patients with glioblastoma. Expert Rev Anticancer Ther 2013; 13:569-81. [PMID: 23617348 DOI: 10.1586/era.13.44] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Radiation therapy has been the foundation of therapy following maximal surgical resection in patients with newly diagnosed glioblastoma for decades and the primary therapy for unresected tumors. Using the standard approach with radiation and temozolomide, however, outcomes are poor, and glioblastoma remains an incurable disease with the majority of recurrences and progression within the radiation treatment field. As such, there is much interest in elucidating the mechanisms of resistance to radiation therapy and in developing novel approaches to overcoming this treatment resistance.
Collapse
Affiliation(s)
- Brian M Alexander
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, 75 Francis Street, ASB1-L2, Boston, MA 02115, USA.
| | | | | |
Collapse
|
96
|
Seekell K, Lewis S, Wilson C, Li S, Grant G, Wax A. Feasibility study of brain tumor delineation using immunolabeled gold nanorods. BIOMEDICAL OPTICS EXPRESS 2013; 4:2284-95. [PMID: 24298394 PMCID: PMC3829528 DOI: 10.1364/boe.4.002284] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/20/2013] [Accepted: 09/24/2013] [Indexed: 05/25/2023]
Abstract
Effective treatment of patients with malignant brain tumors requires surgical resection of a high percentage of the bulk tumor. Surgeons require a method that enables delineation of tumor margins, which are not visually distinct by eye. In this study, the feasibility of using gold nanorods (GNRs) for this purpose is evaluated. Anti-Epidermal Growth Factor Receptor (anti-EGFR) conjugated GNRs are used to label human xenograft glioblastoma multiforme (GBM) tumors embedded within slices of brain tissues from healthy nude mice. The anti-EGFR GNRs exhibit enhanced absorption at red to near-infrared wavelengths, often referred to as the tissue optical window, where absorption from blood is minimal. To enable definition of molecular specificity and spatial accuracy of the label, the GNR absorption is compared with GFP fluorescence which is expressed by the GBM cells used here. This work demonstrates a simple but highly translational technique to classify normal and malignant brain tissue regions in open surgery applications using immunolabeled GNR contrast agents.
Collapse
Affiliation(s)
- Kevin Seekell
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Spencer Lewis
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Christy Wilson
- Department of Neurosurgery, Pediatric Division, Duke University Medical Center, Durham, NC. 27708, USA
| | - Shuqin Li
- Department of Neurosurgery, Pediatric Division, Duke University Medical Center, Durham, NC. 27708, USA
| | - Gerald Grant
- Department of Neurosurgery, Pediatric Division, Duke University Medical Center, Durham, NC. 27708, USA
| | - Adam Wax
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| |
Collapse
|
97
|
Thon N, Kreth S, Kreth FW. Personalized treatment strategies in glioblastoma: MGMT promoter methylation status. Onco Targets Ther 2013; 6:1363-72. [PMID: 24109190 PMCID: PMC3792931 DOI: 10.2147/ott.s50208] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The identification of molecular genetic biomarkers considerably increased our current understanding of glioma genesis, prognostic evaluation, and treatment planning. In glioblastoma, the most malignant intrinsic brain tumor entity in adults, the promoter methylation status of the gene encoding for the repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) indicates increased efficacy of current standard of care, which is concomitant and adjuvant chemoradiotherapy with the alkylating agent temozolomide. In the elderly, MGMT promoter methylation status has recently been introduced to be a predictive biomarker that can be used for stratification of treatment regimes. This review gives a short summery of epidemiological, clinical, diagnostic, and treatment aspects of patients who are currently diagnosed with glioblastoma. The most important molecular genetic markers and epigenetic alterations in glioblastoma are summarized. Special focus is given to the physiological function of DNA methylation-in particular, of the MGMT gene promoter, its clinical relevance, technical aspects of status assessment, its correlation with MGMT mRNA and protein expressions, and its place within the management cascade of glioblastoma patients.
Collapse
Affiliation(s)
- Niklas Thon
- Department of Neurosurgery, Hospital of the University of Munich, Campus Grosshadern, Munich, Germany
| | | | | |
Collapse
|
98
|
Mitogenic signalling in the absence of epidermal growth factor receptor activation in a human glioblastoma cell line. J Neurooncol 2013; 115:323-31. [DOI: 10.1007/s11060-013-1232-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 08/21/2013] [Indexed: 01/09/2023]
|
99
|
Scaringi C, Enrici RM, Minniti G. Combining molecular targeted agents with radiation therapy for malignant gliomas. Onco Targets Ther 2013; 6:1079-95. [PMID: 23966794 PMCID: PMC3745290 DOI: 10.2147/ott.s48224] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The expansion in understanding the molecular biology that characterizes cancer cells has led to the rapid development of new agents to target important molecular pathways associated with aberrant activation or suppression of cellular signal transduction pathways involved in gliomagenesis, including epidermal growth factor receptor, vascular endothelial growth factor receptor, mammalian target of rapamycin, and integrins signaling pathways. The use of antiangiogenic agent bevacizumab, epidermal growth factor receptor tyrosine kinase inhibitors gefitinib and erlotinib, mammalian target of rapamycin inhibitors temsirolimus and everolimus, and integrin inhibitor cilengitide, in combination with radiation therapy, has been supported by encouraging preclinical data, resulting in a rapid translation into clinical trials. Currently, the majority of published clinical studies on the use of these agents in combination with radiation and cytotoxic therapies have shown only modest survival benefits at best. Tumor heterogeneity and genetic instability may, at least in part, explain the poor results observed with a single-target approach. Much remains to be learned regarding the optimal combination of targeted agents with conventional chemoradiation, including the use of multipathways-targeted therapies, the selection of patients who may benefit from combined treatments based on molecular biomarkers, and the verification of effective blockade of signaling pathways.
Collapse
Affiliation(s)
- Claudia Scaringi
- Department of Radiation Oncology, Sant'Andrea Hospital, University Sapienza, Rome, Italy
| | | | | |
Collapse
|
100
|
Pinel S, Mriouah J, Vandamme M, Chateau A, Plénat F, Guérin E, Taillandier L, Bernier-Chastagner V, Merlin JL, Chastagner P. Synergistic antitumor effect between gefitinib and fractionated irradiation in anaplastic oligodendrogliomas cannot be predicted by the Egfr signaling activity. PLoS One 2013; 8:e68333. [PMID: 23874590 PMCID: PMC3715478 DOI: 10.1371/journal.pone.0068333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 05/28/2013] [Indexed: 11/18/2022] Open
Abstract
In high-grade gliomas, the identification of patients that could benefit from EGFR inhibitors remains a challenge, hindering the use of these agents. Using xenografts models, we evaluated the antitumor effect of the combined treatment "gefitinib + radiotherapy" and aimed to identify the profile of responsive tumors. Expression of phosphorylated proteins involved in the EGFR-dependent signaling pathways was analyzed in 10 glioma models. We focused on three models of anaplastic oligodendrogliomas (TCG2, TCG3 and TCG4) harboring high levels of phospho-EGFR, phospho-AKT and phospho-MEK1. They were treated with gefitinib (GEF 75 mg/kg/day x 5 days/week, for 2 weeks) and/or fractionated radiotherapy (RT: 5x2Gy/week for 2 weeks). Our results showed that GEF and/or RT induced significant tumor growth delays. However, only the TCG3 xenografts were highly responsive to the combination GEF+RT, with ∼50% of tumor cure. Phosphoproteins analysis five days after treatment onset demonstrated in TCG3 xenografts, but not in TCG2 model, that the EGFR-dependent pathways were inhibited after GEF treatment. Moreover, TCG3-bearing mice receiving GEF monotherapy exhibited a transient beneficial therapeutic response, rapidly followed by tumor regrowth, along with a major vascular remodeling. Taken together, our data evoked an "EGFR-addictive" behavior for TCG3 tumors. This study confirms that combination of gefitinib with fractionated irradiation could be a potent therapeutic strategy for anaplastic oligodendrogliomas harboring EGFR abnormalities but this treatment seems mainly beneficial for "EGFR-addictive" tumors. Unfortunately, neither the usual molecular markers (EGFR amplification, PTEN loss) nor the basal overexpression of phosphoproteins were useful to distinguish this responsive tumor. Evaluating the impact of TKIs on the EGFR-dependent pathways during the treatment might be more relevant, and requires further validation.
Collapse
Affiliation(s)
- Sophie Pinel
- Université de Lorraine, CRAN, UMR 7039, Campus Science, Vandoeuvre-les-Nancy, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|