51
|
Morillas M, Gómez-Puertas P, Bentebibel A, Sellés E, Casals N, Valencia A, Hegardt FG, Asins G, Serra D. Identification of conserved amino acid residues in rat liver carnitine palmitoyltransferase I critical for malonyl-CoA inhibition. Mutation of methionine 593 abolishes malonyl-CoA inhibition. J Biol Chem 2003; 278:9058-63. [PMID: 12499375 DOI: 10.1074/jbc.m209999200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carnitine palmitoyltransferase (CPT) I, which catalyzes the conversion of palmitoyl-CoA to palmitoylcarnitine facilitating its transport through the mitochondrial membranes, is inhibited by malonyl-CoA. By using the SequenceSpace algorithm program to identify amino acids that participate in malonyl-CoA inhibition in all carnitine acyltransferases, we found 5 conserved amino acids (Thr(314), Asn(464), Ala(478), Met(593), and Cys(608), rat liver CPT I coordinates) common to inhibitable malonyl-CoA acyltransferases (carnitine octanoyltransferase and CPT I), and absent in noninhibitable malonyl-CoA acyltransferases (CPT II, carnitine acetyltransferase (CAT) and choline acetyltransferase (ChAT)). To determine the role of these amino acid residues in malonyl-CoA inhibition, we prepared the quintuple mutant CPT I T314S/N464D/A478G/M593S/C608A as well as five single mutants CPT I T314S, N464D, A478G, M593S, and C608A. In each case the CPT I amino acid selected was mutated to that present in the same homologous position in CPT II, CAT, and ChAT. Because mutant M593S nearly abolished the sensitivity to malonyl-CoA, two other Met(593) mutants were prepared: M593A and M593E. The catalytic efficiency (V(max)/K(m)) of CPT I in mutants A478G and C608A and all Met(593) mutants toward carnitine as substrate was clearly increased. In those CPT I proteins in which Met(593) had been mutated, the malonyl-CoA sensitivity was nearly abolished. Mutations in Ala(478), Cys(608), and Thr(314) to their homologous amino acid residues in CPT II, CAT, and ChAT caused various decreases in malonyl-CoA sensitivity. Ala(478) is located in the structural model of CPT I near the catalytic site and participates in the binding of malonyl-CoA in the low affinity site (Morillas, M., Gómez-Puertas, P., Rubi, B., Clotet, J., Ariño, J., Valencia, A., Hegardt, F. G., Serra, D., and Asins, G. (2002) J. Biol. Chem. 277, 11473-11480). Met(593) may participate in the interaction of malonyl-CoA in the second affinity site, whose location has not been reported.
Collapse
Affiliation(s)
- Montserrat Morillas
- Department of Biochemistry and Molecular Biology, University of Barcelona, School of Pharmacy, E-08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Dai J, Zhu H, Woldegiorgis G. Leucine-764 near the extreme C-terminal end of carnitine palmitoyltransferase I is important for activity. Biochem Biophys Res Commun 2003; 301:758-63. [PMID: 12565845 DOI: 10.1016/s0006-291x(03)00042-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Muscle carnitine palmitoyltransferase I (M-CPTI) catalyzes the conversion of long-chain fatty acyl-CoAs to acylcarnitines in the presence of L-carnitine. To determine the role of the C-terminal region of M-CPTI in enzyme activity, we constructed a series of deletion and substitution mutants. The mutants were expressed in the yeast Pichia pastoris, and the effect of the mutations on M-CPTI activity and malonyl-CoA sensitivity was determined in isolated mitochondria prepared from the yeast strains expressing the wild-type and deletion mutants. Deletion of the last 210, 113, 44, 20, 10, and 9 C-terminal amino-acid residues resulted in an inactive M-CPTI, but deletion of the last 8, 7, 6, and 3 C-terminal residues had no effect on activity, demonstrating that leucine-764 (L764) is essential for catalysis. Substitution of L764 with alanine caused a 40% loss in catalytic activity, but replacement of L764 with arginine resulted in an 84% loss of activity; substitution of L764 with valine had no effect on catalytic activity. The catalytic efficiency for the L764R mutant decreased by 80% for both substrates. Secondary structure prediction of the M-CPTI sequence identified a 21-amino-acid residue, 744-764, predicted to fold into a coiled-coil alpha-helix in the extreme C-terminal region of M-CPTI that may be important for native folding and activity. In summary, our data demonstrate that deletion of L764 or substitution with arginine inactivates the enzyme, suggesting that L764 may be important for proper folding of M-CPTI and optimal activity.
Collapse
Affiliation(s)
- Jia Dai
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health and Science University, Beaverton, OR 97006-8921, USA
| | | | | |
Collapse
|
53
|
Zheng G, Dai J, Woldegiorgis G. Identification by mutagenesis of a conserved glutamate (Glu487) residue important for catalytic activity in rat liver carnitine palmitoyltransferase II. J Biol Chem 2002; 277:42219-23. [PMID: 12200419 DOI: 10.1074/jbc.m202914200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian mitochondrial membranes express two active but distinct carnitine palmitoyltransferases: carnitine palmitoyltransferase I (CPTI), which is malonyl coA-sensitive and detergent-labile; and carnitine palmitoyltransferase II (CPTII), which is malonyl coA-insensitive and detergent-stable. To determine the role of the highly conserved C-terminal acidic residues glutamate 487 (Glu(487)) and glutamate 500 (Glu(500)) on catalytic activity in rat liver CPTII, we separately mutated these residues to alanine, aspartate, or lysine, and the effect of the mutations on CPTII activity was determined in the Escherichia coli-expressed mutants. Substitution of Glu(487) with alanine, aspartate, or lysine resulted in almost complete loss in CPTII activity. Because a conservative substitution mutation of this residue, Glu(487) with aspartate (E487D), resulted in a 97% loss in activity, we predicted that Glu(487) would be at the active-site pocket of CPTII. The substantial loss in CPTII activity observed with the E487K mutant, along with the previously reported loss in activity observed in a child with a CPTII deficiency disease, establishes that Glu(487) is crucial for maintaining the configuration of the liver isoform of the CPTII active site. Substitution of the conserved Glu(500) in CPTII with alanine or aspartate reduced the V(max) for both substrates, suggesting that Glu(500) may be important in stabilization of the enzyme-substrate complex. A conservative substitution of Glu(500) to aspartate resulted in a significant decrease in the V(max) for the substrates. Thus, Glu(500) may play a role in substrate binding and catalysis. Our site-directed mutagenesis studies demonstrate that Glu(487) in the liver isoform of CPTII is essential for catalysis.
Collapse
Affiliation(s)
- Guolu Zheng
- Department of Biochemistry and Molecular Biology, OGI School of Science and Engineering, Oregon Health & Science University, Beaverton 97006-8921, USA
| | | | | |
Collapse
|
54
|
Louet JF, Hayhurst G, Gonzalez FJ, Girard J, Decaux JF. The coactivator PGC-1 is involved in the regulation of the liver carnitine palmitoyltransferase I gene expression by cAMP in combination with HNF4 alpha and cAMP-response element-binding protein (CREB). J Biol Chem 2002; 277:37991-8000. [PMID: 12107181 DOI: 10.1074/jbc.m205087200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Liver carnitine palmitoyltransferase I catalyzes the transfer of long-chain fatty acids into mitochondria. L-CPT I is considered the rate-controlling enzyme in fatty acid oxidation. Expression of the L-CPT I gene is induced by starvation in response to glucagon secretion from the pancreas, an effect mediated by cAMP. Here, the molecular mechanisms underlying the induction of L-CPT I gene expression by cAMP were characterized. We demonstrate that the cAMP response unit of the L-CPT I gene is composed of a cAMP-response element motif and a DR1 sequence located 3 kb upstream of the transcription start site. Our data strongly suggest that the coactivator PGC-1 is involved in the regulation of this gene expression by cAMP in combination with HNF4 alpha and cAMP-response element-binding protein (CREB). Indeed, (i) cotransfection of CREB or HNF4 alpha dominant negative mutants completely abolishes the effect of cAMP on the L-CPT I promoter, and (ii) the cAMP-responsive unit binds HNF4 alpha and CREB through the DR1 and the cAMP-response element sequences, respectively. Moreover, cotransfection of PGC-1 strongly activates the L-CPT I promoter through HNF4 alpha bound at the DR1 element. Finally, we show that the transcriptional induction of the PGC-1 gene by glucagon through cAMP in hepatocytes precedes that of L-CPT-1. In addition to the key role that PGC-1 plays in glucose homeostasis, it may also be critical for lipid homeostasis. Taken together these observations suggest that PGC-1 acts to coordinate the process of metabolic adaptation in the liver.
Collapse
Affiliation(s)
- Jean-François Louet
- Institut Cochin, Département d'Endocrinologie, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| | | | | | | | | |
Collapse
|
55
|
Morillas M, Gómez-Puertas P, Roca R, Serra D, Asins G, Valencia A, Hegardt FG. Structural model of the catalytic core of carnitine palmitoyltransferase I and carnitine octanoyltransferase (COT): mutation of CPT I histidine 473 and alanine 381 and COT alanine 238 impairs the catalytic activity. J Biol Chem 2001; 276:45001-8. [PMID: 11553629 DOI: 10.1074/jbc.m106920200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Carnitine palmitoyltransferase I (CPT I) and carnitine octanoyltransferase (COT) catalyze the conversion of long- and medium-chain acyl-CoA to acylcarnitines in the presence of carnitine. We propose a common three-dimensional structural model for the catalytic domain of both, based on fold identification for 200 amino acids surrounding the active site through a threading approach. The model is based on the three-dimensional structure of the rat enoyl-CoA hydratase, established by x-ray diffraction analysis. The study shows that the structural model of 200 amino acids of the catalytic site is practically identical in CPT I and COT with identical distribution of 4 beta-sheets and 6 alpha-helices. Functional analysis of the model was done by site-directed mutagenesis. When the critical histidine residue 473 in CPT I (327 in COT), localized in the acyl-CoA pocket in the model, was mutated to alanine, the catalytic activity was abolished. Mutation of the conserved alanine residue to aspartic acid, A381D (in CPT I) and A238D (in COT), which are 92/89 amino acids far from the catalytic histidine, respectively (but very close to the acyl-CoA pocket in the structural model), decreased the activity by 86 and 80%, respectively. The K(m) for acyl-CoA increased 6-8-fold, whereas the K(m) for carnitine hardly changed. The inhibition of the mutant CPT I by malonyl-CoA was not altered. The structural model explains the loss of activity reported for the CPT I mutations R451A, W452A, D454G, W391A, del R395, P479L, and L484P, all of which occur in or near the modeled catalytic domain.
Collapse
Affiliation(s)
- M Morillas
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Barcelona, E-08028 Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
56
|
Brown NF, Mullur RS, Subramanian I, Esser V, Bennett MJ, Saudubray JM, Feigenbaum AS, Kobari JA, Macleod PM, McGarry JD, Cohen JC. Molecular characterization of L-CPT I deficiency in six patients: insights into function of the native enzyme. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31604-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
57
|
Ramsay RR, Gandour RD, van der Leij FR. Molecular enzymology of carnitine transfer and transport. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1546:21-43. [PMID: 11257506 DOI: 10.1016/s0167-4838(01)00147-9] [Citation(s) in RCA: 263] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Carnitine (L-3-hydroxy-4-N-trimethylaminobutyric acid) forms esters with a wide range of acyl groups and functions to transport and excrete these groups. It is found in most cells at millimolar levels after uptake via the sodium-dependent carrier, OCTN2. The acylation state of the mobile carnitine pool is linked to that of the limited and compartmentalised coenzyme A pools by the action of the family of carnitine acyltransferases and the mitochondrial membrane transporter, CACT. The genes and sequences of the carriers and the acyltransferases are reviewed along with mutations that affect activity. After summarising the accepted enzymatic background, recent molecular studies on the carnitine acyltransferases are described to provide a picture of the role and function of these freely reversible enzymes. The kinetic and chemical mechanisms are also discussed in relation to the different inhibitors under study for their potential to control diseases of lipid metabolism.
Collapse
Affiliation(s)
- R R Ramsay
- Centre for Biomolecular Sciences, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK.
| | | | | |
Collapse
|
58
|
Shinohara Y, Daikoku T, Kajimoto K, Shima A, Yamazaki N, Terada H. Expression of NAD(+)-dependent isocitrate dehydrogenase in brown adipose tissue. Biochem Biophys Res Commun 2001; 281:634-8. [PMID: 11237704 DOI: 10.1006/bbrc.2001.4351] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
cDNA clones significantly expressed in brown adipose tissue (BAT) but not in white adipose tissue (WAT) of rats were isolated by use of a PCR-select cDNA subtraction kit. Of the isolated clones, structural features of two of them, 2-58 and 2-67, were studied in detail. The results indicated that these clones were cDNAs encoding alpha- and beta-subunits of rat NAD(+)-dependent isocitrate dehydrogenase (NAD(+)-ICDH). Previous biochemical study suggested the importance of NAD(+)-ICDH in metabolism in BAT; however, transcript levels of individual subunits of this enzyme in BAT had never been analyzed. In the present study, using these newly isolated cDNAs, we clearly demonstrate that the expression of three subunits of NAD(+)-ICDH was the most remarkable in BAT among the various tissues analyzed.
Collapse
Affiliation(s)
- Y Shinohara
- Faculty of Pharmaceutical Sciences, University of Tokushima, Shomachi-1, Tokushima, 770-8505, Japan
| | | | | | | | | | | |
Collapse
|
59
|
Cook GA, Edwards TL, Jansen MS, Bahouth SW, Wilcox HG, Park EA. Differential regulation of carnitine palmitoyltransferase-I gene isoforms (CPT-I alpha and CPT-I beta) in the rat heart. J Mol Cell Cardiol 2001; 33:317-29. [PMID: 11162136 DOI: 10.1006/jmcc.2000.1304] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carnitine palmitoyltransferase-I (CPT-I) is a major control point for fatty acid oxidation. Two kinetically different isoforms, CPT-I alpha and CPT-I beta, have been identified. Cardiac ventricular myocytes are the only cells known to express both CPT-I isoforms. In this study, we characterized the differential regulation of CPT-I alpha and CPT-I beta expression in the heart. Expression of the CPT-I alpha gene was very high in the fetal heart and declined following birth. CPT-I beta was also highly expressed in fetal myocytes and remained so throughout development. CPT-I alpha mRNA abundance was increased in both the liver and heart of diabetic or fasted rats, but CPT-I beta mRNA levels were not altered in these states. A high fat diet elevated expression of the CPT-I alpha gene in the liver but not in the heart. The fat content of the diet did not affect the expression of CPT-I beta. Cultures of neonatal rat cardiac myocytes were transfected with luciferase reporter genes driven by CPT-I alpha or CPT-I beta promoters. Two regions of the CPT-I alpha promoter, including an upstream region (-1300/-960) and a region in the proximal promoter (-193/-52) contributed equally to basal expression in cardiac myocytes. Basal transcription of CPT-I alpha was dependent on Sp1 sites and a CCAAT box in the proximal promoter. Our data indicate that the CPT-I beta gene is expressed in a tissue specific manner, but that it is not subject to the same developmental or hormonal controls imposed on CPT-I alpha. In addition some aspects of CPT-I alpha expression are confined to the liver. The data presented here thus suggest that two types of differential regulation of CPT-I genes exist: (a) differential control of CPT-I alpha and CPT-I beta gene expression in the heart and (b) differential regulation of CPT-I alpha expression in the heart and liver.
Collapse
Affiliation(s)
- G A Cook
- Department of Pharmacology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | | | | | | | | | |
Collapse
|
60
|
Minnich A, Tian N, Byan L, Bilder G. A potent PPARalpha agonist stimulates mitochondrial fatty acid beta-oxidation in liver and skeletal muscle. Am J Physiol Endocrinol Metab 2001; 280:E270-9. [PMID: 11158930 DOI: 10.1152/ajpendo.2001.280.2.e270] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The proposed mechanism for the triglyceride (TG) lowering by fibrate drugs is via activation of the peroxisome proliferator-activated receptor-alpha (PPARalpha). Here we show that a PPARalpha agonist, ureido-fibrate-5 (UF-5), approximately 200-fold more potent than fenofibric acid, exerts TG-lowering effects (37%) in fat-fed hamsters after 3 days at 30 mg/kg. In addition to lowering hepatic apolipoprotein C-III (apoC-III) gene expression by approximately 60%, UF-5 induces hepatic mitochondrial carnitine palmitoyltransferase I (CPT I) expression. A 3-wk rising-dose treatment results in a greater TG-lowering effect (70%) at 15 mg/kg and a 2.3-fold elevation of muscle CPT I mRNA levels, as well as effects on hepatic gene expression. UF-5 also stimulated mitochondrial [3H]palmitate beta-oxidation in vitro in human hepatic and skeletal muscle cells 2.7- and 1.6-fold, respectively, in a dose-related manner. These results suggest that, in addition to previously described effects of fibrates on apoC-III expression and on peroxisomal fatty acid (FA) beta-oxidation, PPARalpha agonists stimulate mitochondrial FA beta-oxidation in vivo in both liver and muscle. These observations suggest an important mechanism for the biological effects of PPARalpha agonists.
Collapse
Affiliation(s)
- A Minnich
- Department of Cardiovascular Biology, Aventis Pharmaceuticals Research and Development, Collegeville, Pennsylvania 19426-0994, USA.
| | | | | | | |
Collapse
|
61
|
Jansen MS, Cook GA, Song S, Park EA. Thyroid hormone regulates carnitine palmitoyltransferase Ialpha gene expression through elements in the promoter and first intron. J Biol Chem 2000; 275:34989-97. [PMID: 10956641 DOI: 10.1074/jbc.m001752200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carnitine palmitoyltransferase I (CPT-I) catalyzes the transfer of long chain fatty acyl groups from CoA to carnitine for translocation across the mitochondrial inner membrane. CPT-Ialpha is a key regulatory enzyme in the oxidation of fatty acids in the liver. CPT-Ialpha is expressed in all tissues except skeletal muscle and adipose tissue, which express CPT-Ibeta. Expression of CPT-Ialpha mRNA and enzyme activity are elevated in the liver in hyperthyroidism, fasting, and diabetes. CPT-Ialpha mRNA abundance is increased 40-fold in the liver of hyperthyroid compared with hypothyroid rats. Here, we examine the mechanisms by which thyroid hormone (T3) stimulates CPT-Ialpha gene expression. Four potential T3 response elements (TRE), which contain direct repeats separated by four nucleotides, are located 3000-4000 base pairs 5' to the start site of transcription in the CPT-Ialpha gene. However, only one of these elements functions as a TRE. This TRE binds the T3 receptor as well as other nuclear proteins. Surprisingly, the first intron of the CPT-Ialpha gene is required for the T3 induction of CPT-Ialpha expression, but this region of the gene does not contain a TRE. In addition, we show that CPT-Ialpha is induced by T3 in cell lines of hepatic origin but not in nonhepatic cell lines.
Collapse
Affiliation(s)
- M S Jansen
- Department of Pharmacology, University of Tennessee, School of Medicine, Memphis, Tennessee 38163, USA
| | | | | | | |
Collapse
|
62
|
Yamazaki N, Shinohara Y, Kajimoto K, Shindo M, Terada H. Novel expression of equivocal messages containing both regions of choline/ethanolamine kinase and muscle type carnitine palmitoyltransferase I. J Biol Chem 2000; 275:31739-46. [PMID: 10918069 DOI: 10.1074/jbc.m006322200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
For characterization of the detailed gene structure of human muscle type carnitine palmitoyltransferase I (M-CPTI), we analyzed the 5'-upstream region of the M-CPTI transcripts. As a result, we found a cDNA clone containing a nucleotide sequence unexpected from the reported M-CPTI gene structure in the upstream region of its 5' end. Comparison of this nucleotide sequence with that of genomic DNA showed that this sequence was derived from the 3'-untranslated region of the gene encoding choline/ethanolamine kinase-beta (CK/EK-beta) located upstream of the M-CPTI gene. Southern blot analysis showed that there was no other region homologous to the CK/EK-beta gene in the whole human genome. Thus, the overlapping transcript was concluded to be produced from the functional genes of CK/EK-beta and M-CPTI. Furthermore, cDNAs containing both exons of these genes were detected by the polymerase chain reaction using the cDNA of human heart M-CPTI obtained by specific reverse transcription from its 3'-untranslated region as a template. From these results, the production and organization of these overlapping transcripts are discussed.
Collapse
Affiliation(s)
- N Yamazaki
- Faculty of Pharmaceutical Sciences, University of Tokushima, Shomachi-1, Tokushima 770-8505, Japan
| | | | | | | | | |
Collapse
|
63
|
van der Leij FR, Huijkman NC, Boomsma C, Kuipers JR, Bartelds B. Genomics of the human carnitine acyltransferase genes. Mol Genet Metab 2000; 71:139-53. [PMID: 11001805 DOI: 10.1006/mgme.2000.3055] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Five genes in the human genome are known to encode different active forms of related carnitine acyltransferases: CPT1A for liver-type carnitine palmitoyltransferase I, CPT1B for muscle-type carnitine palmitoyltransferase I, CPT2 for carnitine palmitoyltransferase II, CROT for carnitine octanoyltransferase, and CRAT for carnitine acetyltransferase. Only from two of these genes (CPT1B and CPT2) have full genomic structures been described. Data from the human genome sequencing efforts now reveal drafts of the genomic structure of CPT1A and CRAT, the latter not being known from any other mammal. Furthermore, cDNA sequences of human CROT were obtained recently, and database analysis revealed a completed bacterial artificial chromosome sequence that contains the entire CROT gene and several exons of the flanking genes P53TG and PGY3. The genomic location of CROT is at chromosome 7q21.1. There is a putative CPT1-like pseudogene in the carnitine/choline acyltransferase family at chromosome 19. Here we give a brief overview of the functional relations between the different carnitine acyltransferases and some of the common features of their genes. We will highlight the phylogenetics of the human carnitine acyltransferase genes in relation to the fungal genes YAT1 and CAT2, which encode cytosolic and mitochondrial/peroxisomal carnitine acetyltransferases, respectively.
Collapse
Affiliation(s)
- F R van der Leij
- Department of Pediatrics, University of Groningen, Groningen, NL-9700 RB, The Netherlands.
| | | | | | | | | |
Collapse
|
64
|
Dai J, Zhu H, Shi J, Woldegiorgis G. Identification by mutagenesis of conserved arginine and tryptophan residues in rat liver carnitine palmitoyltransferase I important for catalytic activity. J Biol Chem 2000; 275:22020-4. [PMID: 10801831 DOI: 10.1074/jbc.m002118200] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carnitine palmitoyltransferase I catalyzes the conversion of long-chain acyl-CoA to acylcarnitines in the presence of l-carnitine. To determine the role of the conserved arginine and tryptophan residues on catalytic activity in the liver isoform of carnitine palmitoyltransferase I (L-CPTI), we separately mutated five conserved arginines and two tryptophans to alanine. Substitution of arginine residues 388, 451, and 606 with alanine resulted in loss of 88, 82, and 93% of L-CPTI activity, respectively. Mutants R601A and R655A showed less than 2% of the wild type L-CPTI activity. A change of tryptophan 391 and 452 to alanine resulted in 50 and 93% loss in carnitine palmitoyltransferase activity, respectively. The mutations caused decreases in catalytic efficiency of 80-98%. The residual activity in the mutant L-CPTIs was sensitive to malonyl-CoA inhibition. Mutants R388A, R451A, R606A, W391A, and W452A had no effect on the K(m) values for carnitine or palmitoyl-CoA. However, these mutations decreased the V(max) values for both substrates by 10-40-fold, suggesting that the main effect of the mutations was to decrease the stability of the enzyme-substrate complex. We suggest that conserved arginine and tryptophan residues in L-CPTI contribute to the stabilization of the enzyme-substrate complex by charge neutralization and hydrophobic interactions. The predicted secondary structure of the 100-amino acid residue region of L-CPTI, containing arginines 388 and 451 and tryptophans 391 and 452, consists of four alpha-helices similar to the known three-dimensional structure of the acyl-CoA-binding protein. We predict that this 100-amino acid residue region constitutes the putative palmitoyl-CoA-binding site in L-CPTI.
Collapse
Affiliation(s)
- J Dai
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton, Oregon 97006-8921, USA
| | | | | | | |
Collapse
|
65
|
McGarry JD, Brown NF. Reconstitution of purified, active and malonyl-CoA-sensitive rat liver carnitine palmitoyltransferase I: relationship between membrane environment and malonyl-CoA sensitivity. Biochem J 2000; 349:179-87. [PMID: 10861226 PMCID: PMC1221135 DOI: 10.1042/0264-6021:3490179] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Carnitine palmitoyltransferase I (CPT I) catalyses the initial step of fatty acid import into the mitochondrial matrix, the site of beta-oxidation, and its inhibition by malonyl-CoA is a primary control point for this process. The enzyme exists in at least two isoforms, denoted L-CPT I (liver type) and M-CPT I (skeletal-muscle type), which differ in their kinetic characteristics and tissue distributions. A property apparently unique to L-CPT I is that its sensitivity to malonyl-CoA decreases in vivo with fasting or experimentally induced diabetes. The mechanism of this important regulatory effect is unknown and has aroused much interest. CPT I is an integral outer-membrane protein and displays little activity after removal from the membrane by detergents, precluding direct purification of active protein by conventional means. Here we describe the expression of a 6 x His-tagged rat L-CPT I in Pichia pastoris and purification of the detergent-solubilized enzyme in milligram quantities. Reconstitution of the purified product into a liposomal environment yielded a 200--400-fold increase in enzymic activity and restored malonyl-CoA sensitivity. This is the first time that a CPT I protein has been available for study in a form that is both pure and active. Comparison of the kinetic properties of the reconstituted material with those of L-CPT I as it exists in mitochondria prepared from yeast over-expressing the enzyme and in livers from fed or fasted rats permitted novel insight into several aspects of the enzyme's behaviour. The malonyl-CoA response of the liposomal enzyme was found to be greater when the reconstitution procedure was carried out at 22 degrees C compared with 4 degrees C (IC(50) approximately 11 microM versus 30 microM, respectively). When the sensitivities of L-CPT I in each of the different environments were compared, they were found to decrease in the following order: fed liver>fasted liver approximately liposomes prepared at 22 degrees C approximately P. pastoris mitochondria>liposomes prepared at 4 degrees C. In addition, pre-treatment of L-CPT I liposomes with the membrane-fluidizing reagent benzyl alcohol caused densensitization to the inhibitor. In contrast with the variable response to malonyl-CoA, the liposomal L-CPT I displayed a pH profile and kinetics with regard to the carnitine and acyl-CoA substrates similar to those of the enzyme in fed or fasted liver mitochondria. However, despite a normal sensitivity to malonyl-CoA, L-CPT I in P. pastoris mitochondria displayed aberrant behaviour with regard to each of these other parameters. The kinetic data establish several novel points. First, even after stringent purification procedures in the presence of detergent, recombinant L-CPT I could be reconstituted in active, malonyl-CoA sensitive form. Second, the kinetics of the reconstituted, 6 x His-tagged L-CPT I with regard to substrate and pH responses were similar to what is observed with rat liver mitochondria (whereas in P. pastoris mitochondria the enzyme behaved anomalously), confirming that the purified preparation is a suitable model for studying the functional properties of the enzyme. Third, wide variation in the response to the inhibitor, malonyl-CoA, was observed depending only on the enzyme's membrane environment and independent of interaction with other proteins. In particular, the fluidity of the membrane had a direct influence on this parameter. These observations may help to explain the mechanism of the physiological changes in the properties of L-CPT I that occur in vivo and are consistent with the current topographical model of the enzyme.
Collapse
Affiliation(s)
- J D McGarry
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, Texas 75235-9135, USA
| | | |
Collapse
|
66
|
Jackson VN, Cameron JM, Fraser F, Zammit VA, Price NT. Use of six chimeric proteins to investigate the role of intramolecular interactions in determining the kinetics of carnitine palmitoyltransferase I isoforms. J Biol Chem 2000; 275:19560-6. [PMID: 10766754 DOI: 10.1074/jbc.m002177200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two isoforms of carnitine palmitoyltransferase I (CPT I; muscle (M)- and liver (L)-type) of the mitochondrial outer membrane have distinct kinetic characteristics with respect to their affinity for one of the substrates (l-carnitine) and the inhibitor malonyl-CoA. Moreover, they differ markedly in their hysteretic behavior with respect to malonyl-CoA and in their response to changes in the in vivo metabolic state. However, the two proteins are 62% identical and have the same overall structure. Using liver mitochondria, we have previously shown that the protein is polytopic within the outer membrane, comprising a 46-residue cytosolic N-terminal sequence, two transmembrane segments (TM1 and TM2) separated by a 27-residue loop, and a large catalytic domain (also cytosolic) (Fraser, F., Corstorphine, C. G., and Zammit, V. A. (1997) Biochem. J. 323, 711-718). We have now conducted a systematic study on six chimeric proteins constructed from combinations of three linear segments of rat L- and M-CPT I and on the two parental proteins to elucidate the effects of altered intramolecular interactions on the kinetics of CPT activity. The three segments were (i) the cytosolic N-terminal domain plus TM1, (ii) the loop plus TM2, and (iii) the cytosolic catalytic C-terminal domain. The kinetic properties of the chimeric proteins expressed in Pichia pastoris were studied. We found that alterations in the combinations of the N-terminal plus TM1 and C-terminal domains as well as in the N terminus plus TM1/TM2 pairings resulted in changes in the K(m) values for carnitine and palmitoyl-CoA and the sensitivity to malonyl-CoA of the L-type catalytic domain. The changes in affinity for malonyl-CoA and palmitoyl-CoA occurred independently of changes in the affinity for carnitine. The kinetic characteristics of the M-type catalytic domain and, in particular, its malonyl-CoA sensitivity were much less susceptible to influence by exchange of the other two segments of the protein. The marked difference in the response of the two catalytic domains to changes in the N-terminal domain and TM combinations explains the previously observed differences in the response of L- and M-CPT I to altered physiological state in intact mitochondria and to modulation of altered lipid molecular order of the mitochondrial outer membrane in vivo and in vitro.
Collapse
Affiliation(s)
- V N Jackson
- Cell Biochemistry, Hannah Research Institute, Ayr KA6 5HL, Scotland
| | | | | | | | | |
Collapse
|
67
|
Daikoku T, Shinohara Y, Shima A, Yamazaki N, Terada H. Specific elevation of transcript levels of particular protein subtypes induced in brown adipose tissue by cold exposure. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1457:263-72. [PMID: 10773170 DOI: 10.1016/s0005-2728(00)00107-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To understand the difference in metabolic flow in rat brown adipose tissue (BAT) from that in white adipose tissue (WAT) at the molecular level, we examined the steady-state transcript levels of 39 proteins in both adipose tissues with and without cold exposure by Northern blot analysis. In addition to the transcript levels of uncoupling protein isoforms, those of proteins involved in the transport and catabolism of fatty acids and glucose in BAT were elevated by cold exposure, suggesting the stimulation of utilization of fatty acids and glucose as fuels in BAT. As to these changes, the muscle-type subtypes were remarkable; and therefore, they were suggested to be responsible for the cold exposure-induced acceleration of energy expenditure in BAT. Furthermore, of the isoforms of beta-adrenergic receptor (beta-AR) and CCAAT enhancer binding protein (C/EBP), transcript levels of beta(1)-AR and C/EBPbeta in BAT were increased by the cold exposure. Possible roles of these proteins in energy metabolism in BAT were discussed.
Collapse
Affiliation(s)
- T Daikoku
- Faculty of Pharmaceutical Sciences, University of Tokushima, Shomachi-1, Tokushima, Japan
| | | | | | | | | |
Collapse
|
68
|
Cohen I, Girard J, Prip-Buus C. Biogenesis of the rat liver mitochondrial carnitine palmitoyltransferase I. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2000; 466:1-16. [PMID: 10709623 DOI: 10.1007/0-306-46818-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Affiliation(s)
- I Cohen
- Endocrinologie, Métabolisme et Développement CNRS UPR1524, Meudon, France
| | | | | |
Collapse
|
69
|
Woldegiorgis G, Shi J, Zhu H, Arvidson DN. Functional characterization of mammalian mitochondrial carnitine palmitoyltransferases I and II expressed in the yeast Pichia pastoris. J Nutr 2000; 130:310S-314S. [PMID: 10721894 DOI: 10.1093/jn/130.2.310s] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial carnitine palmitoyltransferases I and II (CPTI and CPTII), together with the carnitine carrier, transport long-chain fatty acyl-CoA from the cytosol to the mitochondrial matrix for beta-oxidation. Recent progress in the expression of CPTI and CPTII cDNA clones in Pichia pastoris, a yeast with no endogenous CPT activity, has greatly facilitated the characterization of these important enzymes in fatty acid oxidation. It is now well established that yeast-expressed CPTI is a catalytically active, malonyl CoA-sensitive, distinct enzyme that is reversibly inactivated by detergents. CPTII is a catalytically active, malonyl CoA-insensitive, distinct enzyme that is detergent stable. Reconstitution studies with yeast-expressed CPTI have established for the first time that detergent inactivation of CPTI is reversible, suggesting that CPTI is active only in a membrane environment. By constructing a series of deletion mutants of the N-terminus of liver CPTI, we have mapped the residues essential for malonyl CoA inhibition and binding to the conserved first six N-terminal amino acid residues. Mutation of glutamic acid 3 to alanine abolished malonyl CoA inhibition and high affinity malonyl CoA binding, but not catalytic activity, whereas mutation of histidine 5 to alanine caused partial loss in malonyl CoA inhibition. Our mutagenesis studies demonstrate that glutamic acid 3 and histidine 5 are necessary for malonyl CoA inhibition and binding to liver CPTI, but not catalytic activity.
Collapse
Affiliation(s)
- G Woldegiorgis
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Beaverton 97006-8921, USA
| | | | | | | |
Collapse
|
70
|
Shi J, Zhu H, Arvidson DN, Woldegiorgis G. The first 28 N-terminal amino acid residues of human heart muscle carnitine palmitoyltransferase I are essential for malonyl CoA sensitivity and high-affinity binding. Biochemistry 2000; 39:712-7. [PMID: 10651636 DOI: 10.1021/bi9918700] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Heart/skeletal muscle carnitine palmitoyltransferase I (M-CPTI) is 30-100-fold more sensitive to malonyl CoA inhibition than the liver isoform (L-CPTI). To determine the role of the N-terminal region of human heart M-CPTI on malonyl CoA sensitivity and binding, a series of deletion mutations were constructed ranging in size from 18 to 83 N-terminal residues. All of the deletions except Delta83 were active. Mitochondria from the yeast strains expressing Delta28 and Delta39 exhibited a 2.5-fold higher activity compared to the wild type, but were insensitive to malonyl CoA inhibition and had complete loss of high-affinity malonyl CoA binding. The high-affinity site (K(D1), B(max1)) for binding of malonyl CoA to M-CPTI was completely abolished in the Delta28, Delta39, Delta51, and Delta72 mutants, suggesting that the decrease in malonyl CoA sensitivity observed in these mutants was due to the loss of the high-affinity binding entity of the enzyme. Delta18 showed only a 4-fold loss in malonyl CoA sensitivity but had activity and high-affinity malonyl CoA binding similar to the wild type. Replacement of the N-terminal domain of L-CPTI with the N-terminal domain of M-CPTI does not change the malonyl CoA sensitivity of the chimeric L-CPTI, suggesting that the amino acid residues responsible for the differing sensitivity to malonyl CoA are not located in this N-terminal region. These results demonstrate that the N-terminal residues critical for activity and malonyl CoA sensitivity in M-CPTI are different from those of L-CPTI.
Collapse
Affiliation(s)
- J Shi
- Department of Biochemistry, Oregon Graduate Institute of Science and Technology, Beaverton, Oregon 97006-8921, USA
| | | | | | | |
Collapse
|
71
|
Morillas M, Clotet J, Rubí B, Serra D, Asins G, Ariño J, Hegardt FG. Identification of the two histidine residues responsible for the inhibition by malonyl-CoA in peroxisomal carnitine octanoyltransferase from rat liver. FEBS Lett 2000; 466:183-6. [PMID: 10648838 DOI: 10.1016/s0014-5793(99)01788-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Carnitine octanoyltransferase (COT), an enzyme that facilitates the transport of medium chain fatty acids through peroxisomal membranes, is inhibited by malonyl-CoA. cDNAs encoding full-length wild-type COT and one double mutant variant from rat peroxisomal COT were expressed in Saccharomyces cerevisiae. Both expressed forms were expressed similarly in quantitative terms and exhibited full enzyme activity. The wild-type-expressed COT was inhibited by malonyl-CoA like the liver enzyme. The activity of the enzyme encoded by the double mutant H131A/H340A was completely insensitive to malonyl-CoA in the range assayed (2-200 microM). These results indicate that the two histidine residues, H131 and H340, are the sites responsible for inhibition by malonyl-CoA. Another mutant variant, H327A, abolishes the enzyme activity, from which it is concluded that it plays an important role in catalysis.
Collapse
Affiliation(s)
- M Morillas
- Department of Biochemistry and Molecular Biology, University of Barcelona, School of Pharmacy, Diagonal 643, 08028, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
72
|
Bonnefont JP, Demaugre F, Prip-Buus C, Saudubray JM, Brivet M, Abadi N, Thuillier L. Carnitine palmitoyltransferase deficiencies. Mol Genet Metab 1999; 68:424-40. [PMID: 10607472 DOI: 10.1006/mgme.1999.2938] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carnitine palmitoyltransferase (CPT) deficiencies are common disorders of mitochondrial fatty acid oxidation. The CPT system is made up of two separate proteins located in the outer- (CPT1) and inner- (CPT2) mitochondrial membranes. While CPT2 is a ubiquitous protein, two tissue-specific CPT1 isoforms-the so-called "liver" (L) and "muscle" (M) CPT1s-have been shown to exist. Amino acid and cDNA nucleotide sequences have been identified for all of these proteins. L-CPT1 deficiency (13 families reported) presents as recurrent attacks of fasting hypoketotic hypoglycemia. Two L-CPT1 mutations have been reported to date. M-CPT1 deficiency has not been hitherto identified. CPT2 deficiency has several clinical presentations. The "benign" adult form (more than 150 families reported) is characterized by episodes of rhabdomyolysis triggered by prolonged exercise. The prevalent S113L mutation is found in about 50% of mutant alleles. The infantile-type CPT2 deficiency (10 families reported) presents as severe attacks of hypoketotic hypoglycemia, occasionally associated with cardiac damage commonly responsible for sudden death before 1 year of age. In addition to these symptoms, features of brain and kidney dysorganogenesis are frequently seen in the neonatal-onset CPT2 deficiency (13 families reported), almost always lethal during the first month of life. More than 25 CPT2 mutations (private missense or truncating mutations) have hitherto been detected. Treatment is based upon avoidance of fasting and/or exercise, a low-fat diet enriched with medium chain triglycerides and carnitine ("severe" CPT2 deficiency). Prenatal diagnosis may be offered for pregnancies at a 1/4 risk of infantile/severe-type CPT2 deficiency.
Collapse
Affiliation(s)
- J P Bonnefont
- Genetic Biochemistry Unit, CHU Necker-Enfants Malades, Paris, France.
| | | | | | | | | | | | | |
Collapse
|
73
|
Cook GA, Park EA. Expression and Regulation of Carnitine Palmitoyltransferase-lα and -1β Genes. Am J Med Sci 1999. [DOI: 10.1016/s0002-9629(15)40571-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
74
|
Abstract
Two genes control expression of mitochondrial carnitine palmitoyltransferase-I (CPT-I), the enzyme that catalyzes the primary rate-controlling step in fatty acid oxidation. Two CPT-I isoforms have been found--a "liver" isoform (CPT-Ialpha) expressed in most tissues, but not in skeletal muscles, and a "muscle" isoform (CPT-Ibeta) expressed in muscles and adipocytes. Liver CPT-Ialpha increases dramatically at birth, but heart CPT-Ialpha is abundant in the fetus and diminishes at birth. Insulin, thyroid hormone, and fatty acids regulate expression of CPT-Ialpha in liver, whereas electrical stimulation increases CPT-Ibeta and decreases CPT-Ialpha in cardiac myocytes. Both genes are TATA-less and contain Sp1 transcription factor binding sites upstream of the start site of transcription. Multiple transcripts of both CPT-Ialpha and CPT-Ibeta exist, some of which may have roles in regulating fatty acid oxidation.
Collapse
Affiliation(s)
- G A Cook
- Department of Pharmacology, College of Medicine, The University of Tennessee, Memphis 38163, USA.
| | | |
Collapse
|
75
|
Zammit VA. Carnitine acyltransferases: functional significance of subcellular distribution and membrane topology. Prog Lipid Res 1999; 38:199-224. [PMID: 10664793 DOI: 10.1016/s0163-7827(99)00002-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- V A Zammit
- Hannah Research Institute, Ayr, Scotland, UK
| |
Collapse
|
76
|
Shi J, Zhu H, Arvidson DN, Woldegiorgis G. A single amino acid change (substitution of glutamate 3 with alanine) in the N-terminal region of rat liver carnitine palmitoyltransferase I abolishes malonyl-CoA inhibition and high affinity binding. J Biol Chem 1999; 274:9421-6. [PMID: 10092622 DOI: 10.1074/jbc.274.14.9421] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently shown by deletion mutation analysis that the conserved first 18 N-terminal amino acid residues of rat liver carnitine palmitoyltransferase I (L-CPTI) are essential for malonyl-CoA inhibition and binding (Shi, J., Zhu, H., Arvidson, D. N. , Cregg, J. M., and Woldegiorgis, G. (1998) Biochemistry 37, 11033-11038). To identify specific residue(s) involved in malonyl-CoA binding and inhibition of L-CPTI, we constructed two more deletion mutants, Delta12 and Delta6, and three substitution mutations within the conserved first six amino acid residues. Mutant L-CPTI, lacking either the first six N-terminal amino acid residues or with a change of glutamic acid 3 to alanine, was expressed at steady-state levels similar to wild type and had near wild type catalytic activity. However, malonyl-CoA inhibition of these mutant enzymes was reduced 100-fold, and high affinity malonyl-CoA binding was lost. A mutant L-CPTI with a change of histidine 5 to alanine caused only partial loss of malonyl-CoA inhibition, whereas a mutant L-CPTI with a change of glutamine 6 to alanine had wild type properties. These results demonstrate that glutamic acid 3 and histidine 5 are necessary for malonyl-CoA binding and inhibition of L-CPTI by malonyl-CoA but are not required for catalysis.
Collapse
Affiliation(s)
- J Shi
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland, Oregon 97291-1000, USA
| | | | | | | |
Collapse
|
77
|
Yu GS, Lu YC, Gulick T. Co-regulation of tissue-specific alternative human carnitine palmitoyltransferase Ibeta gene promoters by fatty acid enzyme substrate. J Biol Chem 1998; 273:32901-9. [PMID: 9830040 DOI: 10.1074/jbc.273.49.32901] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Carnitine palmitoyltransferase I (CPT-I) catalyzes the rate-determining step in mitochondrial fatty acid beta-oxidation. CPT-I has two structural genes (alpha and beta) that are differentially expressed among tissues. Our CPT-Ibeta isolates from a human cardiac cDNA library contained two different extreme 5'-sequences derived from short alternative first untranslated exons that utilize a common splice acceptor site in exon 2. Primer extension identified single dominant start sites for each transcript, and ribonuclease protection assays showed the presence of one 5'-exon in liver, muscle, and heart mRNAs, indicating that the cognate promoter U (upstream/ubiquitous) is active in each of these tissues. By contrast, mRNAs containing the alternative 5'-exon were present only in muscle and heart, indicating a muscle-specific promoter M (muscle). CPT-Ibeta mRNA levels increased markedly in tissues of fasted rats, when circulating free fatty acid concentrations are elevated. Using CPT-Ibeta promoter/reporter transient transfection of murine C2C12 myotubes and HepG2 hepatocytes, fatty acids were found to increase promoter activity in a peroxisome proliferator-activated receptor alpha (PPARalpha)-dependent fashion. A promoter fatty acid response element (FARE) was mapped, mutation of which ablated fatty acid-mediated production of both transcripts. PPARalpha/retinoid X receptor alpha formed specific complexes with oligonucleotides containing the FARE, and anti-PPARalpha antibody shifted nuclear protein-DNA complexes, confirming the role of this factor in regulating the expression of this critical metabolic enzyme gene. The constitutive repressor chicken ovalbumin upstream promoter transcription factor competitively binds at the FARE and modulates fatty acid induction of the promoters.
Collapse
Affiliation(s)
- G S Yu
- Diabetes Unit and Medical Services, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|
78
|
Adams SH, Esser V, Brown NF, Ing NH, Johnson L, Foster DW, McGarry JD. Expression and possible role of muscle-type carnitine palmitoyltransferase I during sperm development in the rat. Biol Reprod 1998; 59:1399-405. [PMID: 9828184 DOI: 10.1095/biolreprod59.6.1399] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Because we had found whole testis from adult rats to be much richer in the messenger RNA for the muscle (M) than for the liver (L) form of mitochondrial carnitine palmitoyltransferase I (CPT I), we sought to determine which cell type(s) accounts for this expression pattern and how it might relate to reproductive function. Studies with immature (14-day-old) and adult animals included 1) Northern blot analysis of testis mRNA; 2) in situ hybridization with slices of testis; 3) enzyme assays for CPT I, CPT II, and carnitine acetyltransferase (CAT) in testicular germ cells and nongerm cells, together with measurement of the malonyl-coenzyme A (CoA) sensitivity and affinity for carnitine of CPT I; 4) labeling of testicular CPT I with [3H]etomoxir, a covalent inhibitor of the enzyme; and 5) the response of testicular and nontesticular CPT I to dietary etomoxir. The data established the following: 1) L-CPT I was the sole isoform detected in immature testis. 2) Expression of the M-CPT I gene was associated only with meiotic and postmeiotic germ cells. 3) Adult testis contains a mixture of the L- and M-CPT I enzymes, the L and M form dominating in extratubular cells and spermatids, respectively. Mature epididymal spermatozoa appear to be devoid of CPT I activity while possessing abundant levels of CPT II and CAT. 4) Five days of dietary etomoxir treatment at a dose that resulted in essentially complete inhibition of CPT I in liver, heart, skeletal muscle, and kidney was totally without effect on either the L- or M-type enzyme in the testis of mature rats. The data point to an important role for transient expression of M-CPT I, coupled with sustained activity of CAT, in the maturation and/or function of rat sperm. They also suggest that, at least in the case of one CPT I inhibitor (etomoxir), the testis is unusually resistant to the agent when given orally.
Collapse
Affiliation(s)
- S H Adams
- Departments of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, 75235-9135, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Swanson ST, Foster DW, McGarry JD, Brown NF. Roles of the N- and C-terminal domains of carnitine palmitoyltransferase I isoforms in malonyl-CoA sensitivity of the enzymes: insights from expression of chimaeric proteins and mutation of conserved histidine residues. Biochem J 1998; 335 ( Pt 3):513-9. [PMID: 9794789 PMCID: PMC1219810 DOI: 10.1042/bj3350513] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mitochondrial outer membrane enzyme carnitine palmitoyltransferase I (CPT I) plays a major role in the regulation of fatty acid entry into the mitochondrial matrix for beta-oxidation by virtue of its inhibition by malonyl-CoA. Two isoforms of CPT I, the liver type (L) and muscle type (M), have been identified, the latter being 100 times more sensitive to malonyl-CoA and having a much higher Km for the substrate carnitine. Here we have examined the roles of different regions of the CPT I molecules in their response to malonyl-CoA, etomoxir (an irreversible inhibitor) and carnitine. To this end, we analysed the properties of engineered rat CPT I constructs in which (a) the N-terminal domain of L-CPT I was deleted, (b) the N-terminal domains of L- and M-CPT I were switched, or (c) each of three conserved histidine residues located towards the N-terminus in L-CPT I was mutated. Several novel points emerged: (1) whereas the N-terminal domain is critical for a normal malonyl-CoA response, it does not itself account for the widely disparate sensitivities of the liver and muscle enzymes to the inhibitor; (2) His-5 and/or His-140 probably play a direct role in the malonyl-CoA response, but His-133 does not; (3) the truncated, chimaeric and point- mutant variants of the enzyme all bound the covalent, active-site- directed ligand, etomoxir; and (4) only the most radical alteration of L-CPT I, i.e. deletion of the N-terminal 82 residues, affected the response to carnitine. We conclude that the N-terminal domain of CPT I plays an essential, but permissive, role in the inhibition of the enzyme by malonyl-CoA. By contrast, the larger C-terminal region dictates the degree of sensitivity to malonyl-CoA, as well as the response to carnitine; it is also sufficient for etomoxir binding. Additionally, further weight is added to the notion that one or more histidine residues may be involved in the CPT I-malonyl-CoA interaction.
Collapse
Affiliation(s)
- S T Swanson
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-9135, USA
| | | | | | | |
Collapse
|
80
|
Brandt JM, Djouadi F, Kelly DP. Fatty acids activate transcription of the muscle carnitine palmitoyltransferase I gene in cardiac myocytes via the peroxisome proliferator-activated receptor alpha. J Biol Chem 1998; 273:23786-92. [PMID: 9726988 DOI: 10.1074/jbc.273.37.23786] [Citation(s) in RCA: 332] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To explore the gene regulatory mechanisms involved in the metabolic control of cardiac fatty acid oxidative flux, the expression of muscle-type carnitine palmitoyltransferase I (M-CPT I) was characterized in primary cardiac myocytes in culture following exposure to the long-chain mono-unsaturated fatty acid, oleate. Oleate induced steady-state levels of M-CPT I mRNA 4.5-fold. The transcription of a plasmid construct containing the human M-CPT I gene promoter region fused to a luciferase gene reporter transfected into cardiac myocytes, was induced over 20-fold by long-chain fatty acid in a concentration-dependent and fatty acyl-chain length-specific manner. The M-CPT I gene promoter fatty acid response element (FARE-1) was localized to a hexameric repeat sequence located between 775 and 763 base pairs upstream of the initiator codon. Cotransfection experiments with expression vectors for the peroxisome proliferator-activated receptor alpha (PPARalpha) demonstrated that FARE-1 is a PPARalpha response element capable of conferring oleate-mediated transcriptional activation to homologous or heterologous promoters. Electrophoretic mobility shift assays demonstrated that PPARalpha bound FARE-1 with the retinoid X receptor alpha. The expression of M-CPT I in hearts of mice null for PPARalpha was approximately 50% lower than levels in wild-type controls. Moreover, a PPARalpha activator did not induce cardiac expression of the M-CPT I gene in the PPARalpha null mice. These results demonstrate that long-chain fatty acids regulate the transcription of a gene encoding a pivotal enzyme in the mitochondrial fatty acid uptake pathway in cardiac myocytes and define a role for PPARalpha in the control of myocardial lipid metabolism.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Base Sequence
- Carnitine O-Palmitoyltransferase/biosynthesis
- Carnitine O-Palmitoyltransferase/genetics
- Cells, Cultured
- Cloning, Molecular
- Epoxy Compounds/pharmacology
- Fatty Acids, Nonesterified/pharmacology
- Genes, Reporter
- Humans
- Luciferases/biosynthesis
- Luciferases/genetics
- Mice
- Mice, Knockout
- Muscle, Skeletal/enzymology
- Myocardium/enzymology
- Oleic Acid/pharmacology
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Recombinant Fusion Proteins/biosynthesis
- Regulatory Sequences, Nucleic Acid
- Repetitive Sequences, Nucleic Acid
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Transcriptional Activation/drug effects
- Transfection
Collapse
Affiliation(s)
- J M Brandt
- Center for Cardiovascular Research, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
81
|
Hoppel CL, Kerner J, Turkaly P, Turkaly J, Tandler B. The malonyl-CoA-sensitive form of carnitine palmitoyltransferase is not localized exclusively in the outer membrane of rat liver mitochondria. J Biol Chem 1998; 273:23495-503. [PMID: 9722587 DOI: 10.1074/jbc.273.36.23495] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The data used to support the idea that malonyl-coenzyme A (CoA)-sensitive carnitine palmitoyltransferase (CPT-I) is localized on the outer mitochondrial membrane are based on harsh techniques that disrupt mitochondrial physiology. We have turned to the use of the French press, which produces a shearing force that denudes mitochondria of their outer membrane without the physiologically disruptive effects characteristic of phosphate swelling. Our results indicate that the mitoplasts contain just 15-19% of the outer membrane marker enzyme activity while retaining 85% of the total CPT activity and 50% of both CPT-I, as well as long-chain acyl-CoA synthase activity, the latter two supposed outer membrane enzymes. These mitoplasts were shown by electron microscopy to have the configuration of mitochondria that merely have been divested of their outer membranes. Carnitine-dependent fatty acid oxidation was retained in the mitoplasts, showing that they were physiologically intact. Moreover, protein immunoblotting analysis showed that CPT-I, as well as the inner CPT-II, was localized in the mitoplast fraction. The outer membrane fraction, which consisted of membrane "ghosts," contained most (50-60%) of marker enzyme activity, monoamine oxidase-B and porin proteins, but only about 27-29% CPT-I activity. Because CPT-I and long-chain acyl-CoA synthetase appear to be associated with both inner and outer membranes, we postulate that these enzymes reside in contact sites, which represent a melding of both limiting membranes.
Collapse
Affiliation(s)
- C L Hoppel
- Department of Veterans Affairs Medical Center, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.
| | | | | | | | | |
Collapse
|
82
|
Abstract
Carnitine functions as a substrate for a family of enzymes, carnitine acyltransferases, involved in acyl-coenzyme A metabolism and as a carrier for long-chain fatty acids into mitochondria. Carnitine biosynthesis and/or dietary carnitine fulfill the body's requirement for carnitine. To date, a genetic disorder of carnitine biosynthesis has not been described. A genetic defect in the high-affinity plasma membrane carnitine-carrier(in) leads to renal carnitine wasting and primary carnitine deficiency. Myopathic carnitine deficiency could be due to an increase in efflux moderated by the carnitine-carrier(out). Defects in the carnitine transport system for fatty acids in mitochondria have been described and are being examined at the molecular and pathophysiological levels. the nutritional management of these disorders includes a high-carbohydrate, low-fat diet and avoidance of those events that promote fatty acid oxidation, such as fasting, prolonged exercise, and cold. Large-dose carnitine treatment is effective in systemic carnitine deficiency.
Collapse
Affiliation(s)
- J Kerner
- Department of Veteran Affairs Medical Center, Department of Nutrition, Cleveland, USA
| | | |
Collapse
|
83
|
Yu GS, Lu YC, Gulick T. Expression of novel isoforms of carnitine palmitoyltransferase I (CPT-1) generated by alternative splicing of the CPT-ibeta gene. Biochem J 1998; 334 ( Pt 1):225-31. [PMID: 9693124 PMCID: PMC1219683 DOI: 10.1042/bj3340225] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Carnitine palmitoyltransferase I (CPT-I) catalyses the rate-determining step in mitochondrial fatty acid beta-oxidation. The enzyme has two cognate structural genes that are preferentially expressed in liver (alpha) or fat and muscle (beta). We hypothesized the existence of additional isoforms in heart to account for unique kinetic characteristics of enzyme activity in this tissue. Hybridization and PCR screening of a human cardiac cDNA library revealed the expression of two novel CPT-I isoforms generated by alternative splicing of the CPT-Ibeta transcript, in addition to the beta and alpha cDNA species previously described. Ribonuclease protection and reverse transcriptase-mediated PCR assays confirmed the presence of mRNA species of each splicing variant in heart, skeletal muscle and liver, with differing relative concentrations in the tissues. The novel splicing variants omit exons or utilize a cryptic splice donor site within an exon. Deduced polypeptide sequences of the novel enzymes include omissions in the region of putative membrane-spanning and malonyl-CoA regulatory domains compared with the previously described CPT-Is, implying that the encoded enzymes will exhibit unique features with respect to outer mitochondrial membrane topology and response to physiological and pharmacological inhibitors.
Collapse
Affiliation(s)
- G S Yu
- Diabetes Unit and Medical Services, Massachusetts General Hospital, MGH East, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
84
|
Shi J, Zhu H, Arvidson DN, Cregg JM, Woldegiorgis G. Deletion of the conserved first 18 N-terminal amino acid residues in rat liver carnitine palmitoyltransferase I abolishes malonyl-CoA sensitivity and binding. Biochemistry 1998; 37:11033-8. [PMID: 9692998 DOI: 10.1021/bi9803426] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To assess the role of the 130 N-terminal amino acid residues of rat liver carnitine palmitoyltransferase I (L-CPTI) on malonyl-CoA sensitivity and binding, we constructed a series of mutants with deletions of the 18, 35, 52, 73, 83, or 129 most N-terminal amino acid residues. The deletion mutants were expressed in the yeast Pichia pastoris. We determined the effects of these mutations on L-CPTI activity, malonyl-CoA sensitivity, and binding in isolated mitochondria prepared from the yeast strains expressing the wild-type and deletion mutants. The mutant protein that lacked the first 18 N-terminal amino acid residues, Delta18, had activity and kinetic properties similar to wild-type L-CPTI, but it was almost completely insensitive to malonyl-CoA inhibition (I50 = 380 microM versus 2.0 microM). In addition, loss of malonyl-CoA sensitivity in Delta18 was accompanied by a 70-fold decrease in affinity for malonyl CoA (KD = 70 nM versus 1.1 nM) compared to wild-type L-CPTI. Deletion of the first 35, 52, 73, and 83 N-terminal amino acid residues had a similar effect on malonyl-CoA sensitivity as did the 18-residue deletion mutant, and there was a progressive reduction in the affinity for malonyl-CoA binding. By contrast, deletion of the first 129 N-terminal amino acid residues resulted in the synthesis of an inactive protein. To our knowledge, this is the first report to demonstrate a critical role for these perfectly conserved first 18 N-terminal amino acid residues of L-CPTI in malonyl-CoA sensitivity and binding.
Collapse
Affiliation(s)
- J Shi
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland 97291-1000, USA
| | | | | | | | | |
Collapse
|
85
|
Yu GS, Lu YC, Gulick T. Rat carnitine palmitoyltransferase Ibeta mRNA splicing isoforms. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1393:166-72. [PMID: 9714790 DOI: 10.1016/s0005-2760(98)00075-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Carnitine palmitoyltransferase I (CPT-I) catalyzes the rate-determining step in mitochondrial fatty acid beta-oxidation. The enzyme has two cognate structural genes (alpha and beta) that are differentially expressed in tissues. We show multiple mature mRNAs in rat heart derived from alternative splicing of CPT-Ibeta transcripts. Two novel messages are deleted for regions of the previously described mRNA that encode membrane-spanning and regulatory domains, suggesting that the cognate isozymes will exhibit unique kinetic characteristics.
Collapse
Affiliation(s)
- G S Yu
- Diabetes Unit and Medical Services, Massachusetts General Hospital, 149 Thirteenth Street, MGH East, CNY 149 8218, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
86
|
Mascaró C, Acosta E, Ortiz JA, Marrero PF, Hegardt FG, Haro D. Control of human muscle-type carnitine palmitoyltransferase I gene transcription by peroxisome proliferator-activated receptor. J Biol Chem 1998; 273:8560-3. [PMID: 9535828 DOI: 10.1074/jbc.273.15.8560] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of several genes involved in intra- and extracellular lipid metabolism, notably those involved in peroxisomal and mitochondrial beta-oxidation, is mediated by ligand-activated receptors, collectively referred to as peroxisome proliferator-activated receptors (PPARs). To gain more insight into the control of expression of carnitine palmitoyltransferase (CPT) genes, which are regulated by fatty acids, we have examined the transcriptional regulation of the human MCPT I gene. We have cloned by polymerase chain reaction the 5'-flanking region of this gene and demonstrated its transcriptional activity by transfection experiments with the CAT gene as a reporter. We have also shown that this is a target gene for the action of PPARs, and we have localized a PPAR responsive element upstream of the first exon. These results show that PPAR regulates the entry of fatty acids into the mitochondria, which is a crucial step in their metabolism, especially in tissues like heart, skeletal muscle and brown adipose tissue in which fatty acids are a major source of energy.
Collapse
Affiliation(s)
- C Mascaró
- Unit of Biochemistry, School of Pharmacy, University of Barcelona, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
87
|
Wang D, Harrison W, Buja LM, Elder FF, McMillin JB. Genomic DNA sequence, promoter expression, and chromosomal mapping of rat muscle carnitine palmitoyltransferase I. Genomics 1998; 48:314-23. [PMID: 9545636 DOI: 10.1006/geno.1997.5184] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Carnitine palmitoyltransferase I (CPT-I) is a key enzyme involved in the regulation of fatty acid oxidation. CPT-IA and CPT-IB are isoforms of carnitine palmitoyltransferase I, of which CPT-IA is expressed in liver, kidney, fibroblasts, and heart and CPT-IB is expressed in skeletal muscle, heart, brown and white adipocytes, and testes. Although the genomic DNA sequence of human CPT-IB is available, the transcription start site and upstream regulatory sequences are not known. For rat CPT-IB, only the cDNA sequence has been published. We have cloned the entire rat CPT-IB gene from a Lambda fix II rat kidney genomic library. The genomic structure contains 19 exons, with the transcription start site for CPT-IB located in a short first exon, which is a 13-bp extension to the previously published cDNA 5' sequence. The coding sequence is identical with the rat muscle cDNA. The rat CPT-IB gene contains 18 introns and 19 exons, the latter 18 exons showing 85% homology to the human CPT-IB cDNA. CPT-IB maps to rat chromosome 7 at band q34. A putative promoter region was identified to within 391 bp of the transcription start site. The muscle specificity of the 5' flanking region was verified by comparison of luciferase expression to that of beta-galactosidase in cardiac myocytes and in HepG2 cells.
Collapse
Affiliation(s)
- D Wang
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston 77030, USA
| | | | | | | | | |
Collapse
|
88
|
Park EA, Steffen ML, Song S, Park VM, Cook GA. Cloning and characterization of the promoter for the liver isoform of the rat carnitine palmitoyltransferase I (L-CPT I) gene. Biochem J 1998; 330 ( Pt 1):217-24. [PMID: 9461513 PMCID: PMC1219130 DOI: 10.1042/bj3300217] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Carnitine palmitoyltransferase I (CPTI) catalyses the transfer of long chain fatty acids to carnitine for translocation across the mitochondrial inner membrane. The cDNAs of two isoforms of CPT I, termed the hepatic and muscle isoforms, have been cloned. Expression of the hepatic CPT I gene (L-CPT I) is subject to developmental, hormonal and tissue specific regulation. We have cloned the promoter of the L-CPTI gene from a rat genomic library. In the L-CPTI gene, there are two exons 5' to the exon containing the ATG that initiates translation. Exon 1 and the 5' end of exon 2 contain sequences that were not previously described in the rat L-CPTI cDNA. There is an alternatively spliced form of the L-CPTI mRNA in which exon 2 is skipped. The proximal promoter of the L-CPTI gene is extremely GC rich and does not contain a TATA box. There are several putative Sp1 binding sites near the transcriptional start site. A 190 base pair fragment of the promoter can efficiently drive transcription of luciferase and CAT (chloramphenicol acetyltransferase) reporter genes transiently transfected into HepG2 cells. Sequences in both the first intron and the promoter contribute to basal expression. Our results provide the foundation for further studies into the regulation of L-CPTI gene expression.
Collapse
Affiliation(s)
- E A Park
- Department of Pharmacology, University of Tennessee, College of Medicine, 874 Union Avenue, Memphis, TN 38163, USA
| | | | | | | | | |
Collapse
|
89
|
Zhu H, Shi J, de Vries Y, Arvidson DN, Cregg JM, Woldegiorgis G. Functional studies of yeast-expressed human heart muscle carnitine palmitoyltransferase I. Arch Biochem Biophys 1997; 347:53-61. [PMID: 9344464 DOI: 10.1006/abbi.1997.0314] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Long-chain fatty acids are the primary source of energy production in the heart. Carnitine palmitoyltransferase I (CPT-I) catalyzes the first reaction in the transport of long-chain fatty acids from the cytoplasm to the mitochondrion, a rate-limiting step in beta-oxidation. In this study, we report the functional expression of the human heart/skeletal muscle isoform of CPT-I (M-CPT-I) in the yeast Pichia pastoris. Screening of a human heart cDNA library with cDNA fragments encoding the rat heart M-CPT-I resulted in the isolation of a single full-length human heart M-CPT-I cDNA clone. The clone has an open reading frame of 2316 bp with a 5' untranslated region of 38 bp and a 256-bp 3' untranslated region with the poly(A)+ addition sequence AATAAA. The predicted protein has 772 amino acids and a molecular mass of 88 kDa. Northern blot analysis of mRNAs from different human tissues using the human M-CPT-I cDNA as a probe revealed an abundant transcript of approximately 3.1 kb that was only present in human heart and skeletal muscle tissue. Expression of the human M-CPT-I cDNA in P. pastoris, a yeast with no endogenous CPT activity, produced an 80-kDa protein that was located in the mitochondria. Isolated mitochondria from the M-CPT-I expression strain exhibited a malonyl-coenzyme A (CoA)-sensitive CPT activity that was detergent labile. The I50 for malonyl-CoA inhibition of the yeast-expressed M-CPT-I was 69 nM, and the Kms for carnitine and palmitoyl-CoA were 666 and 42 microM, respectively. The I50 for malonyl-CoA inhibition of the heart enzyme is 30 times lower than that of the yeast-expressed liver CPT-I, and the Km for carnitine is more than 20 times higher than that of the liver CPT-I. This is the first report of the expression of a heart CPT-I in a system devoid of endogenous CPT activity and the functional characterization of a human heart M-CPT-I in the absence of the liver isoform and CPT-II.
Collapse
Affiliation(s)
- H Zhu
- Department of Biochemistry and Molecular Biology, Oregon Graduate Institute of Science and Technology, Portland, Oregon 97291-1000, USA
| | | | | | | | | | | |
Collapse
|
90
|
Brown NF, Hill JK, Esser V, Kirkland JL, Corkey BE, Foster DW, McGarry JD. Mouse white adipocytes and 3T3-L1 cells display an anomalous pattern of carnitine palmitoyltransferase (CPT) I isoform expression during differentiation. Inter-tissue and inter-species expression of CPT I and CPT II enzymes. Biochem J 1997; 327 ( Pt 1):225-31. [PMID: 9355756 PMCID: PMC1218784 DOI: 10.1042/bj3270225] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The outer mitochondrial membrane enzyme carnitine palmitoyltransferase I (CPT I) represents the initial and regulated step in the beta-oxidation of fatty acids. It exists in at least two isoforms, denoted L (liver) and M (muscle) types, with very different kinetic properties and sensitivities to malonyl-CoA. Here we have examined the relative expression of the CPT I isoforms in two different models of adipocyte differentiation and in a number of rat tissues. Adipocytes from mice, hamsters and humans were also evaluated. Primary monolayer cultures of undifferentiated rat preadipocytes expressed solely L-CPT I, but significant levels of M-CPT I emerged after only 3 days of differentiation in vitro; in the mature cell M-CPT I predominated. In sharp contrast, the murine 3T3-L1 preadipocyte expressed essentially exclusively L-CPT I, both in the undifferentiated state and throughout the differentiation process in vitro. This was also true of the mature mouse white fat cell. Fully developed adipocytes from the hamster and human behaved similarly to those of the rat. Thus the mouse white fat cell differs fundamentally from those of the other species examined in terms of tis choice of a key regulatory enzyme in fatty acid metabolism. In contrast, brown adipose tissue from all three rodents displayed the same isoform profiles, each expressing overwhelmingly M-CPT I. Northern blot analysis of other rat tissues established L-CPT I as the dominant isoform not only in liver but also in kidney, lung, ovary, spleen, brain, intestine and pancreatic islets. In addition to its primacy in skeletal muscle, heart and fat, M-CPT I was also found to dominate the testis. The same inter-tissue isoform pattern (with the exception of white fat) was found in the mouse. Taken together, the data bring to light an intriguing divergence between white adipocytes of the mouse and other mammalian species. They also raise a cautionary note that should be considered in the choice of animal model used in further studies of fat cell physiology.
Collapse
Affiliation(s)
- N F Brown
- Department of Internal Medicine, Gifford Laboratories, Center for Diabetes Research, University of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Blvd., Dallas, TX 75235-9135, USA
| | | | | | | | | | | | | |
Collapse
|
91
|
Cronin CN. The conserved serine-threonine-serine motif of the carnitine acyltransferases is involved in carnitine binding and transition-state stabilization: a site-directed mutagenesis study. Biochem Biophys Res Commun 1997; 238:784-9. [PMID: 9325168 DOI: 10.1006/bbrc.1997.7390] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
There has been speculation that the carnitine acyltransferase reaction mechanism may involve the formation of an acyl-serine intermediate. A serine-threonine-serine (STS) motif that is conserved throughout the carnitine acyltransferase family, and is present also in the choline acetyltransferases, contains the only two conserved serines. The functional role of this motif in carnitine octanoyltransferase was probed by using a site-directed mutagenesis strategy to generate all seven possible alanine substitutions: single, double and triple mutants. Kinetic analyses of these mutant enzymes demonstrated that the STS motif is not essential for catalysis, thereby excluding an acyl-serine intermediate from the reaction mechanism. The kinetic analyses support, however, substantial roles for the STS motif in carnitine binding and transition-state stabilization.
Collapse
Affiliation(s)
- C N Cronin
- Department of Veterans Affairs Medical Center, San Francisco, California 94121, USA
| |
Collapse
|
92
|
Cronin CN. cDNA cloning, recombinant expression, and site-directed mutagenesis of bovine liver carnitine octanoyltransferase--Arg505 binds the carboxylate group of carnitine. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 247:1029-37. [PMID: 9288928 DOI: 10.1111/j.1432-1033.1997.01029.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cDNA for bovine liver carnitine octanoyltransferase (COT) has been cloned by a combination of lambda gt11 library screening and 3' rapid amplification of cDNA ends (3'-RACE). The cDNA comprises 338 bases of 5' non-coding sequence, a reading frame of 1839 bases including the stop codon, and 820 bases of 3' non-coding DNA. The deduced amino acid sequence of 612 residues predicts a protein with a calculated mass of 70263 Da and pI 6.28. The enzyme was expressed in recombinant soluble form in Escherichia coli and was purified by a two-step procedure to near-homogeneity with a yield of purified protein of 2-3 mg/l culture. Recombinant COT had similar kinetic properties to those of the enzyme isolated directly from beef liver. Arg505 in COT, conserved in all reported carnitine acyltransferase sequences but replaced by asparagine or isoleucine in the choline acetyltransferases, was converted to asparagine by site-directed mutagenesis. This single mutation resulted in a greater than 1650-fold increase in the Km value for COT towards carnitine, but had little effect on the value of k(cat) or the Km value for the acyl-CoA substrate. In addition, although choline was an extremely poor substrate for COT, the k(cat)/Km ratio towards this substrate was increased fourfold as a result of the mutation. These data support the notion that Arg505 in COT, and other carnitine acyltransferases, contributes to substrate binding by forming a salt bridge with the carboxylate moiety of carnitine.
Collapse
Affiliation(s)
- C N Cronin
- Department of Veterans Affairs Medical Center, and Department of Biochemistry and Biophysics, University of California, San Francisco 94121, USA.
| |
Collapse
|
93
|
Daikoku T, Shinohara Y, Shima A, Yamazaki N, Terada H. Dramatic enhancement of the specific expression of the heart-type fatty acid binding protein in rat brown adipose tissue by cold exposure. FEBS Lett 1997; 410:383-6. [PMID: 9237667 DOI: 10.1016/s0014-5793(97)00619-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To understand the difference in energy metabolisms in brown (BAT) and white (WAT) adipose tissues, we examined the steady-state transcript levels of the heart-type and adipose-type fatty acid binding proteins (H-FABP and A-FABP, respectively) by Northern blot analysis. The transcript of H-FABP in rat BAT was increased about 100-fold by cold exposure, whereas that in WAT was negligible, and was increased only slightly by cold exposure. The transcript of A-FABP was observed in both BAT and WAT, the level being slightly greater in WAT. However, its transcript level was not affected by cold exposure in either adipose tissue. In addition, on treatment with norepinephrine (NE), transcript level of H-FABP was elevated markedly but that of A-FABP was not changed in rat brown adipocytes. Therefore, the stimulatory effect of cold exposure on the transcript of H-FABP in BAT was concluded to be mediated by NE, like that of the uncoupling protein (UCP). Thus, the expressions of H-FABP and UCP may be controlled by the same mechanism.
Collapse
Affiliation(s)
- T Daikoku
- Faculty of Pharmaceutical Sciences, University of Tokushima, Japan
| | | | | | | | | |
Collapse
|
94
|
Yamazaki N, Yamanaka Y, Hashimoto Y, Shinohara Y, Shima A, Terada H. Structural features of the gene encoding human muscle type carnitine palmitoyltransferase I. FEBS Lett 1997; 409:401-6. [PMID: 9224698 DOI: 10.1016/s0014-5793(97)00561-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We isolated a human muscle type of carnitine palmitoyltransferase I (CPTI-M) genomic clone and determined its entire nucleotide sequence. By comparison of the nucleotide sequence of the genomic clone with that of cDNA, we determined the intron/exon junctions. For detection of the exon(s) in the 5'-region of the CPTI-M gene, we isolated cDNA clones corresponding to the 5'-region of its transcript by 5'-rapid amplification of cDNA ends (5'-RACE method). Results showed two alternative exons, 1A and 1B, that do not encode amino acids in the 5'-region of the human CPTI-M gene. The gene encoding human CPTI-M was found to consist of two 5'-non-coding exons, 18 coding exons and one 3'-non-coding exon spanning approximately 10 kbp. Furthermore, on analysis of the 5'-flanking region, a putative gene encoding a 'choline kinase homologue' was found to be located only about 300 bp upstream from exon 1A of the human CPTI-M gene. Comparison of the gene structure of human CPTI-M with the reported partial gene structure of human liver type CPTI (CPTI-L) showed that the intron insertion sites were completely conserved in these two genes.
Collapse
Affiliation(s)
- N Yamazaki
- Faculty of Pharmaceutical Sciences, University of Tokushima, Japan
| | | | | | | | | | | |
Collapse
|
95
|
van der Leij FR, Takens J, van der Veen AY, Terpstra P, Kuipers JR. Localization and intron usage analysis of the human CPT1B gene for muscle type carnitine palmitoyltransferase I. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1352:123-8. [PMID: 9199240 DOI: 10.1016/s0167-4781(97)00037-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We isolated and sequenced cDNA and genomic DNA fragments of the human CPT1B gene, encoding muscle type camitine palmitoyltransferase I. A recombinant P1 phage containing CPT1B was mapped to chromosome 22qter by fluorescent in situ hybridization. This finding supports the concept that 'liver type' and 'muscle type' isoforms of CPT I are encoded by different loci at separate chromosomal positions. Analysis of CPT1B cDNA sequences revealed the presence of an untranslated 5' exon and differential processing of introns 13 and 19. The alternative splicing of intron 13 causes an in-frame deletion leading to a 10 amino acid residues smaller protein. Using different splice acceptor sites, intron 19 is spliced in the majority of cases, but 4 out of 14 sequenced CPT1B 3' cDNA clones contain part of intron 19 in stead of exon 20. We found that differential polyadenylation is the mechanism behind the existence of these alternative 3' CPT1B mRNA forms.
Collapse
Affiliation(s)
- F R van der Leij
- Department of Pediatrics, Groningen Utrecht Institute for Drug Exploration (GUIDE), Groningen University, The Netherlands.
| | | | | | | | | |
Collapse
|
96
|
Fraser F, Corstorphine CG, Zammit VA. Topology of carnitine palmitoyltransferase I in the mitochondrial outer membrane. Biochem J 1997; 323 ( Pt 3):711-8. [PMID: 9169604 PMCID: PMC1218374 DOI: 10.1042/bj3230711] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The topology of carnitine palmitoyltransferase I (CPT I) in the outer membrane of rat liver mitochondria was studied using several approaches. 1. The accessibility of the active site and malonyl-CoA-binding site of the enzyme from the cytosolic aspect of the membrane was investigated using preparations of octanoyl-CoA and malonyl-CoA immobilized on to agarose beads to render them impermeant through the outer membrane. Both immobilized ligands were fully able to interact effectively with CPT I. 2. The effects of proteinase K and trypsin on the activity and malonyl-CoA sensitivity of CPT I were studied using preparations of mitochondria that were either intact or had their outer membranes ruptured by hypo-osmotic swelling (OMRM). Proteinase K had a marked but similar effect on CPT I activity irrespective of whether only the cytosolic or both sides of the membrane were exposed to it. However, it affected sensitivity more rapidly in OMRM. By contrast, trypsin only reduced CPT I activity when incubated with OMRM. The sensitivity of the residual CPT I activity was unaffected by trypsin. 3. The proteolytic fragments generated by these treatments were studied by Western blotting using three anti-peptide antibodies raised against linear epitopes of CPT I. These showed that a proteinase K-sensitive site close to the N-terminus was accessible from the cytosolic side of the membrane. No trypsin-sensitive sites were accessible in intact mitochondria. In OMRM, both proteinase K and trypsin acted from the inter-membrane space side of the membrane. 4. The ability of intact mitochondria and OMRM to bind to each of the three anti-peptide antibodies was used to study the accessibility of the respective epitopes on the cytosolic and inter-membrane space sides of the membrane. 5. The results of all these approaches indicate that CPT I adopts a bitopic topology within the mitochondrial outer membrane; it has two transmembrane domains, and both the N- and C-termini are exposed on the cytosolic side of the membrane, whereas the linker region between the transmembrane domains protrudes into the intermembrane space.
Collapse
Affiliation(s)
- F Fraser
- Hannah Research Institute, Ayr KA6 5HL, Scotland, U.K
| | | | | |
Collapse
|
97
|
Kikuchi-Utsumi K, Kikuchi-Utsumi M, Cannon B, Nedergaard J. Differential regulation of the expression of alpha1-adrenergic receptor subtype genes in brown adipose tissue. Biochem J 1997; 322 ( Pt 2):417-24. [PMID: 9065758 PMCID: PMC1218207 DOI: 10.1042/bj3220417] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The physiological control of the expression of the genes for the alpha1-adrenoceptor subtypes was examined in rat brown adipose tissue by analysing Northern blots of poly(A)-enriched RNA with oligonucleotide probes. In control rats, alpha1B-receptor gene expression was much lower in brown adipose tissue than in liver, but the expression of both alpha1A and alpha1D was higher than in the heart, making brown adipose tissue one of the mammalian tissues with the highest expression of these subtypes. During acute exposure to cold, alpha1B-receptor gene expression was essentially unchanged, alpha1A-receptor gene expression was increased and alpha1D-receptor gene expression was transiently decreased. Noradrenaline injection could mimic these effects of acute cold exposure, indicating that the physiologically induced up- and down-regulations were due to the interaction of noradrenaline with cells within the tissue. In chronically cold-acclimated animals, alpha1B-receptor gene expression was decreased but that of the alpha1A-receptor gene remained at a level twice that of controls. alpha1D-Receptor gene expression was also somewhat decreased. It is suggested that the enhanced expression of the alpha1A-receptor gene explains the increased alpha1-receptor density in recruited brown adipose tissue reported previously. The intricate and differential regulation of alpha1-receptor gene expression and the markedly enhanced expression of the alpha1A-receptor may imply that alpha1-receptors are important for the recruitment process or for maintenance of the recruited state in this tissue.
Collapse
MESH Headings
- Acclimatization/physiology
- Adipose Tissue, Brown/drug effects
- Adipose Tissue, Brown/physiology
- Animals
- Base Sequence
- Cold Temperature
- Down-Regulation
- Male
- Molecular Sequence Data
- Norepinephrine/pharmacology
- RNA, Messenger/classification
- RNA, Messenger/isolation & purification
- Rats
- Rats, Sprague-Dawley
- Receptors, Adrenergic, alpha-1/biosynthesis
- Receptors, Adrenergic, alpha-1/classification
- Receptors, Adrenergic, alpha-1/genetics
- Sympathetic Nervous System
- Up-Regulation
Collapse
|
98
|
Britton CH, Mackey DW, Esser V, Foster DW, Burns DK, Yarnall DP, Froguel P, McGarry JD. Fine chromosome mapping of the genes for human liver and muscle carnitine palmitoyltransferase I (CPT1A and CPT1B). Genomics 1997; 40:209-11. [PMID: 9070950 DOI: 10.1006/geno.1996.4539] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- C H Britton
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas 75235, USA
| | | | | | | | | | | | | | | |
Collapse
|
99
|
McGarry JD, Brown NF. The mitochondrial carnitine palmitoyltransferase system. From concept to molecular analysis. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 244:1-14. [PMID: 9063439 DOI: 10.1111/j.1432-1033.1997.00001.x] [Citation(s) in RCA: 1187] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
First conceptualized as a mechanism for the mitochondrial transport of long-chain fatty acids in the early 1960s, the carnitine palmitoyltransferase (CPT) system has since come to be recognized as a pivotal component of fuel homeostasis. This is by virtue of the unique sensitivity of the outer membrane CPT I to the simple molecule, malonyl-CoA. In addition, both CPT I and the inner membrane enzyme, CPT II, have proved to be loci of inherited defects, some with disastrous consequences. Early efforts using classical approaches to characterize the CPT proteins in terms of structure/function/regulatory relationships gave rise to confusion and protracted debate. By contrast, recent application of molecular biological tools has brought major enlightenment at an exponential pace. Here we review some key developments of the last 20 years that have led to our current understanding of the physiology of the CPT system, the structure of the CPT isoforms, the chromosomal localization of their respective genes, and the identification of mutations in the human population.
Collapse
Affiliation(s)
- J D McGarry
- Department of Internal Medicine and Biochemistry, University of Texas Southwestern Medical Center, Dallas 75235-9135, USA
| | | |
Collapse
|
100
|
Bieber LL, Wagner M. Effect of pH and acyl-CoA chain length on the conversion of heart mitochondrial CPT-I/CPTo to a high affinity, malonyl-CoA-inhibited state. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1290:261-6. [PMID: 8765129 DOI: 10.1016/0304-4165(96)00028-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effect of pH and acyl-CoA chain length on the conversion of the malonyl-CoA-sensitive carnitine palmitoyltransferase (CPT-I/CPTo) to a high-affinity, malonyl-CoA-inhibited state using a particle derived from rat heart mitochondria was determined. Preincubation with malonyl-CoA for one minute in the absence of acyl-CoA substrate lowers the IC50 for malonyl-CoA from 2 microM, 14 microM, and 15 microM at pH 7.4 to 15 nM, 14 nM, and 14 nM for decanyl-, lauryl-, and palmitoyl-CoA, respectively. Reducing the pH to 7.1 and 6.8 had little effect on the transition to the high affinity, malonyl-CoA-inhibited state. Preincubation of malonyl-CoA with the acyl-CoA, but not with L-carnitine, prevented the transition to the high affinity, malonyl-CoA-inhibited state.
Collapse
Affiliation(s)
- L L Bieber
- Department of Biochemistry, Michigan State University, East Lansing 48824, USA
| | | |
Collapse
|