51
|
Duty AO, Oest ME, Guldberg RE. Cyclic mechanical compression increases mineralization of cell-seeded polymer scaffolds in vivo. J Biomech Eng 2007; 129:531-9. [PMID: 17655474 DOI: 10.1115/1.2746375] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Despite considerable documentation of the ability of normal bone to adapt to its mechanical environment, very little is known about the response of bone grafts or their substitutes to mechanical loading even though many bone defects are located in load-bearing sites. The goal of this research was to quantify the effects of controlled in vivo mechanical stimulation on the mineralization of a tissue-engineered bone replacement and identify the tissue level stresses and strains associated with the applied loading. A novel subcutaneous implant system was designed capable of intermittent cyclic compression of tissue-engineered constructs in vivo. Mesenchymal stem cell-seeded polymeric scaffolds with 8 weeks of in vitro preculture were placed within the loading system and implanted subcutaneously in male Fisher rats. Constructs were subjected to 2 weeks of loading (3 treatments per week for 30 min each, 13.3 N at 1 Hz) and harvested after 6 weeks of in vivo growth for histological examination and quantification of mineral content. Mineralization significantly increased by approximately threefold in the loaded constructs. The finite element method was used to predict tissue level stresses and strains within the construct resulting from the applied in vivo load. The largest principal strains in the polymer were distributed about a modal value of -0.24% with strains in the interstitial space being about five times greater. Von Mises stresses in the polymer were distributed about a modal value of 1.6 MPa, while stresses in the interstitial tissue were about three orders of magnitude smaller. This research demonstrates the ability of controlled in vivo mechanical stimulation to enhance mineralized matrix production on a polymeric scaffold seeded with osteogenic cells and suggests that interactions with the local mechanical environment should be considered in the design of constructs for functional bone repair.
Collapse
Affiliation(s)
- Angel O Duty
- Biomedical Engineering Department, Georgia Institute of Technology, IBB Room 2414, 315 Ferst Drive NW, Atlanta, GA 30332, USA.
| | | | | |
Collapse
|
52
|
Anderson EJ, Knothe Tate ML. Design of Tissue Engineering Scaffolds as Delivery Devices for Mechanical and Mechanically Modulated Signals. ACTA ACUST UNITED AC 2007; 13:2525-38. [PMID: 17822359 DOI: 10.1089/ten.2006.0443] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
New approaches to tissue engineering aim to exploit endogenous strategies such as those occurring in prenatal development and recapitulated during postnatal healing. Defining tissue template specifications to mimic the environment of the condensed mesenchyme during development allows for exploitation of tissue scaffolds as delivery devices for extrinsic cues, including biochemical and mechanical signals, to drive the fate of mesenchymal stem cells seeded within. Although a variety of biochemical signals that modulate stem cell fate have been identified, the mechanical signals conducive to guiding pluripotent cells toward specific lineages are less well characterized. Furthermore, not only is spatial and temporal control of mechanical stimuli to cells challenging, but also tissue template geometries vary with time due to tissue ingrowth and/or scaffold degradation. Hence, a case study was carried out to analyze flow regimes in a testbed scaffold as a first step toward optimizing scaffold architecture. A pressure gradient was applied to produce local (nm-micron) flow fields conducive to migration, adhesion, proliferation, and differentiation of cells seeded within, as well as global flow parameters (micron-mm), including flow velocity and permeability, to enhance directed cell infiltration and augment mass transport. Iterative occlusion of flow channel dimensions was carried out to predict virtually the effect of temporal geometric variation (e.g., due to tissue development and growth) on delivery of local and global mechanical signals. Thereafter, insights from the case study were generalized to present an optimization scheme for future development of scaffolds to be implemented in vitro or in vivo. Although it is likely that manufacture and testing will be required to finalize design specifications, it is expected that the use of the rational design optimization will reduce the number of iterations required to determine final prototype geometries and flow conditions. As the range of mechanical signals conducive to guiding cell fate in situ is further elucidated, these refined design criteria can be integrated into the general optimization rubric, providing a technological platform to exploit nature's endogenous tissue engineering strategies for targeted tissue generation in the lab or the clinic.
Collapse
Affiliation(s)
- Eric J Anderson
- Department of Mechanical and Aerospace Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
53
|
Dickerson DA, Sander EA, Nauman EA. Modeling the mechanical consequences of vibratory loading in the vertebral body: microscale effects. Biomech Model Mechanobiol 2007; 7:191-202. [PMID: 17520305 DOI: 10.1007/s10237-007-0085-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 04/04/2007] [Indexed: 10/23/2022]
Abstract
Osteoporosis affects nearly 10 million individuals in the United States. Conventional treatments include anti-resorptive drug therapies, but recently, it has been demonstrated that delivering a low magnitude, dynamic stimulus via whole body vibration can have an osteogenic effect without the need for large magnitude strain stimulus. Vibration of the vertebral body induces a range of stimuli that may account for the anabolic response including low magnitude strains, interfacial shear stress due to marrow movement, and blood transport. In order to evaluate the relative importance of these stimuli, we integrated a microstructural model of vertebral cancellous bone with a mixture theory model of the vertebral body. The predicted shear stresses on the surfaces of the trabeculae during vibratory loading are in the range of values considered to be stimulatory and increase with increasing solid volume fraction. Peak volumetric blood flow rates also varied with strain amplitude and frequency, but exhibited little dependence on solid volume fraction. These results suggest that fluid shear stress governs the response of the vertebrae to whole body vibration and that the marrow viscosity is a critical parameter which modulates the shear stress.
Collapse
Affiliation(s)
- D A Dickerson
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
54
|
Sato K, Adachi T, Ueda D, Hojo M, Tomita Y. Measurement of local strain on cell membrane at initiation point of calcium signaling response to applied mechanical stimulus in osteoblastic cells. J Biomech 2007; 40:1246-55. [PMID: 16887125 DOI: 10.1016/j.jbiomech.2006.05.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 05/29/2006] [Indexed: 11/30/2022]
Abstract
In adaptive bone remodeling, it is believed that bone cells such as osteoblasts, osteocytes and osteoclasts can sense mechanical stimuli and modulate their remodeling activities. However, the mechanosensing mechanism by which these cells sense mechanical stimuli and transduce mechanical signals into intracellular biochemical signals is still not clearly understood. From the viewpoint of cell biomechanics, it is important to clarify the mechanical conditions under which the cellular mechanosensing mechanism is activated. The aims of this study were to evaluate a mechanical condition, that is, the local strain on the cell membrane, at the initiation point of the intracellular calcium signaling response to the applied mechanical stimulus in osteoblast-like MC3T3-E1 cells, and to investigate the effect of deformation velocity on the characteristics of the cellular response. To apply a local deformation to a single cell, a glass microneedle was directly indented to the cell and moved horizontally on the cell membrane. To observe the cellular response and the deformation of the cell membrane, intracellular calcium ions and the cell membrane were labeled using fluorescent dyes and simultaneously observed by confocal laser scanning microscopy. The strain distribution on the cell membrane attributable to the applied local deformation and the strain magnitude at the initiation point of the calcium signaling responses were analyzed using obtained fluorescence images. From two-dimensionally projected images, it was found that there is a local compressive strain at the initiation point of calcium signaling. Moreover, the cellular response revealed velocity dependence, that is, the cells seemed to respond with a higher sensitivity to a higher deformation velocity. From the viewpoint of cell biomechanics, these results provide us a fundamental understanding of the mechanosensing mechanism of osteoblast-like cells.
Collapse
Affiliation(s)
- Katsuya Sato
- Department of Mechanical Engineering, Faculty of Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube 755-8611, Japan.
| | | | | | | | | |
Collapse
|
55
|
Liu J, Liu T, Zheng Y, Zhao Z, Liu Y, Cheng H, Luo S, Chen Y. Early responses of osteoblast-like cells to different mechanical signals through various signaling pathways. Biochem Biophys Res Commun 2006; 348:1167-73. [PMID: 16904072 DOI: 10.1016/j.bbrc.2006.07.175] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 07/28/2006] [Indexed: 11/29/2022]
Abstract
This study was to examine the effects of mechanical stimuli alone and coupled with some inhibitors of related signaling pathways on early cellular responses. MG-63 cells were subjected to cyclic uniaxial compressive or tensile strain at 4000 microstrain, produced by four-point bending system. The effects of mechanical strains alone and coupled with inhibitors of microfilament and receptor tyrosine kinase (RTK) on activation of extracellular signal-regulated kinase (ERK), c-fos mRNA, and c-Fos protein were examined. ERK could be activated by mechanical stimuli in 5 min and so could be c-fos mRNA and c-Fos protein in 30 min. Tensile stress had a more obvious effect than compressive one. Early cellular responses were connected with cytoskeleton and RTK pathways during the transduction of mechanical signals. The property of strains was an influential factor for the activation effects.
Collapse
Affiliation(s)
- Jun Liu
- Department of Orthodontics, West China College of Stomatology, Sichuan University, 14#, 3rd Section, Renmin South Road, Chengdu 610041, PR China
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Ying B, Fan H, Wen F, Xu D, Liu D, Yang D, Chen G, Dou L, Jiang F. Mechanical strain-induced c-fos expression in pulmonary epithelial cell line A549. Biochem Biophys Res Commun 2006; 347:369-72. [PMID: 16815297 DOI: 10.1016/j.bbrc.2006.06.105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Accepted: 06/19/2006] [Indexed: 02/05/2023]
Abstract
Pulmonary epithelial cells are exposed to mechanical strain during physiological breathing and mechanical ventilation. It was not clear which style was more related with cell mechanotransduction. c-fos is known to be a component of a transcription factor, activator protein-1, which is induced by oxidative stress. The regulatory pathways involved in the rapid response of the AP-1 transcription factor, c-fos, to mechanical load in the human pulmonary epithelial cell line A549 were investigated using a four-point bending model. In an effort to better understand what processes are involved in mechanotransduction, we have examined whether and how soon c-fos induction occurs in human A549 shortly after the application of the different mechanical strains stimuli.
Collapse
Affiliation(s)
- Binwu Ying
- Department of Respiratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Mackley J, Ando J, Herzyk P, Winder S. Phenotypic responses to mechanical stress in fibroblasts from tendon, cornea and skin. Biochem J 2006; 396:307-16. [PMID: 16492137 PMCID: PMC1462727 DOI: 10.1042/bj20060057] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Primary fibroblasts isolated from foetal mouse cornea, skin and tendon were subjected to linear shear stress and analysed for morphological parameters and by microarray, as compared with unstimulated controls. Approx. 350 genes were either up- or down-regulated by a significant amount, with 51 of these being common to all three cell types. Approx. 50% of altered genes in tendon and cornea fibroblasts were changed in common with one of the other cell types, with the remaining approx. 50% being specific to tendon or cornea. In skin fibroblasts, however, less than 25% of genes whose transcription was altered were specific only to skin. The functional spectrum of genes that were up- or down-regulated was diverse, with apparent house-keeping genes forming the major category of up-regulated genes. However, a significant number of genes associated with cell adhesion, extracellular matrix and matrix remodelling, as well as cytokines and other signalling factors, were also affected. Somewhat surprisingly, in these latter categories the trend was towards a reduction in mRNA levels. Verification of the mRNA quantity of a subset of these genes was performed by reverse transcriptase PCR and was found to be in agreement with the microarray analysis. These findings provide the first in-depth analysis of phenotypic differences between fibroblast cells from different tissue sources and reveal the responses of these cells to mechanical stress.
Collapse
Affiliation(s)
- Jennifer R. Mackley
- *Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, U.K
- †Department of Biological Sciences, University of Stirling, Stirling FK9 4LA, U.K
| | - Joji Ando
- ‡Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Pawel Herzyk
- §The Sir Henry Wellcome Functional Genomics Facility, Institute of Biomedical and Life Sciences, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, U.K
| | - Steven J. Winder
- *Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, U.K
- To whom correspondence should be addressed (email )
| |
Collapse
|
58
|
Knippenberg M, Helder MN, Doulabi BZ, Semeins CM, Wuisman PIJM, Klein-Nulend J. Adipose tissue-derived mesenchymal stem cells acquire bone cell-like responsiveness to fluid shear stress on osteogenic stimulation. ACTA ACUST UNITED AC 2006; 11:1780-8. [PMID: 16411823 DOI: 10.1089/ten.2005.11.1780] [Citation(s) in RCA: 146] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
To engineer bone tissue, mechanosensitive cells are needed that are able to perform bone cell-specific functions, such as (re)modeling of bone tissue. In vivo, local bone mass and architecture are affected by mechanical loading, which is thought to provoke a cellular response via loading-induced flow of interstitial fluid. Adipose tissue is an easily accessible source of mesenchymal stem cells for bone tissue engineering, and is available in abundant amounts compared with bone marrow. We studied whether adipose tissue-derived mesenchymal stem cells (AT-MSCs) are responsive to mechanical loading by pulsating fluid flow (PFF) on osteogenic stimulation in vitro. We found that ATMSCs show a bone cell-like response to fluid shear stress as a result of PFF after the stimulation of osteogenic differentiation by 1,25-dihydroxyvitamin D3. PFF increased nitric oxide production, as well as upregulated cyclooxygenase-2, but not cyclooxygenase-1, gene expression in osteogenically stimulated AT-MSCs. These data suggest that AT-MSCs acquire bone cell-like responsiveness to pulsating fluid shear stress on 1,25-dihydroxyvitamin D3-induced osteogenic differentiation. ATMSCs might be able to perform bone cell-specific functions during bone (re)modeling in vivo and, therefore, provide a promising new tool for bone tissue engineering.
Collapse
Affiliation(s)
- Marlene Knippenberg
- Department of Oral Cell Biology, Academic Center of Dentistry Amsterdam, Universiteit van Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
59
|
Tasevski V, Sorbetti JM, Chiu SS, Shrive NG, Hart DA. Influence of mechanical and biological signals on gene expression in human MG-63 cells: evidence for a complex interplay between hydrostatic compression and vitamin D3 or TGF-beta1 on MMP-1 and MMP-3 mRNA levels. Biochem Cell Biol 2006; 83:96-107. [PMID: 15746971 DOI: 10.1139/o04-124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Biological mediators can influence the activity and differentiation of bone cells. 1,25-dihydroxy-vitamin D3 (1,25-(OH)2D3) is known to induce differentiation of precursors into mature osteoblasts, and transforming growth factor-beta1 (TGF-beta1) can modulate the activity of bone cells leading to alterations in proliferation and gene expression patterns. Bone-derived cells were loaded via intermittent cyclic hydrostatic pressure (icHP) on cells under basal conditions and in the presence of 1,25-(OH)2D3 or TGF-beta1. Evaluating the effects of loading on the cells allowed for a comparison to be made between responsiveness to biomechanical and biochemical stimuli and their potential interplay. The effects of icHP on mRNA levels for the specific genes involved in bone remodelling and differentiation were measured in MG-63 cells using reverse transcription-polymerase chain reaction (RT-PCR). The mRNA levels for matrix metalloproteinase-1 and -3 (MMP-1 and MMP-3) were significantly, and uniquely, increased (p < 0.001) in cells exposed to icHP under serum-free conditions for 4-12 h. However, mRNA levels for MMP-3, but not MMP-1, were significantly enhanced in cells subjected to static hydrostatic pressure (HP). Treatment of cells with 1,25-(OH)2D3 resulted in increased (p < 0.001) mRNA levels for osteocalcin and decreased (p < 0.001) mRNA levels for both MMP-1 and MMP-3. In cells exposed to icHP and 1,25-(OH)2D3, the mRNA levels for both MMP-1 and MMP-3 were elevated (p < 0.001) compared with hormone alone, but not to the same degree (p < 0.01) as cells subjected to icHP alone. Addition of TGF-beta1 to cells led to increases in cell proliferation and expression of collagen I, as well as decreases in expression of osteocalcin and MMP-1 and MMP-3. Exposure of cells to icHP and TGF-beta1 again led to unique and significant increases in expression of MMP-1 and MMP-3. No changes in mRNA levels for glyceraldehyde-3-phosphate dehydrogenase (GAPDH) or any of the other 9 genes assessed, including those for MMP-2 and MMP-13, were detected under any of the conditions described. Therefore, icHP can induce alterations in mRNA levels for a specific subset of genes in both premature and mature osteoblasts. Such stimuli can modulate the impact of potent biological mediators in defining patterns of gene expression by bone cells and potentially modify function in vivo.
Collapse
Affiliation(s)
- V Tasevski
- McCaig Centre for Joint Injury and Arthritis Research, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | | | | | | |
Collapse
|
60
|
Evans CE, Mylchreest S, Andrew JG. Age of donor alters the effect of cyclic hydrostatic pressure on production by human macrophages and osteoblasts of sRANKL, OPG and RANK. BMC Musculoskelet Disord 2006; 7:21. [PMID: 16519799 PMCID: PMC1475864 DOI: 10.1186/1471-2474-7-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Accepted: 03/06/2006] [Indexed: 11/29/2022] Open
Abstract
Background Cyclic hydrostatic pressure within bone has been proposed both as a stimulus of aseptic implant loosening and associated bone resorption and of bone formation. We showed previously that cyclical hydrostatic pressure influenced macrophage synthesis of several factors linked to osteoclastogenesis. The osteoprotegerin/soluble receptor activator of NF-kappa β ligand /receptor activator of NF-kappa β (OPG/ RANKL/ RANK) triumvirate has been implicated in control of bone resorption under various circumstances. We studied whether cyclical pressure might affect bone turnover via effects on OPG/ sRANKL/ RANK. Methods In this study, cultures of human osteoblasts or macrophages (supplemented with osteoclastogenic factors) or co-cultures of macrophages and osteoblasts (from the same donor), were subjected to cyclic hydrostatic pressure. Secretion of OPG and sRANKL was assayed in the culture media and the cells were stained for RANK and osteoclast markers. Data were analysed by nonparametric statistics. Results In co-cultures of macrophages and osteoblasts, pressure modulated secretion of sRANKL or OPG in a variable manner. Examination of the OPG:sRANKL ratio in co cultures without pressurisation showed that the ratio was greater in donors <70 years at the time of operation (p < 0.05 Mann Whitney U) than it was in patients >70 years. However, with pressure the difference in the OPG:sRANKL ratios between young and old donors was not significant. It was striking that in some patients the OPG:sRANKL ratio increased with pressure whereas in some it decreased. The tendency was for the ratio to decrease with pressure in patients younger than 70 years, and increase in patients ≥ 70 years (Fishers exact p < 0.01). Cultures of osteoblasts alone showed a significant increase in both sRANKL and OPG with pressure, and again there was a decrease in the ratio of OPG:RANKL. Secretion of sRANKL by cultures of macrophages alone was not modulated by pressure. Only sRANKL was assayed in this study, but transmembrane RANKL may also be important in this system. Macrophages subjected to pressure (both alone and in co-culture) stained more strongly for RANK on immunohistochemstry than non-pressurized controls and 1,25-dihydroxyvitamin D3 (1,25 D3) further increased this. Immunocytochemical staining also demonstrated that more cells in pressurized co-cultures exhibited osteoclast markers (tartrate-resistant acid phosphatase, vitronectin receptor and multinuclearity) than did unpressurized controls. Conclusion These data show that in co-cultures of osteoblasts and macrophages the ratio of OPG : sRANKL was decreased by pressure in younger patients but increased in older patients. As falls in this ratio promote bone resorption, this finding may be important in explaining the relatively high incidence of osteolysis around orthopaedic implants in young patients. The finding that secretion of OPG and sRANKL by osteoblasts in monoculture was sensitive to hydrostatic pressure, and that hydrostatic pressure stimulated the differentiation of macrophages into cells exhibiting osteoclast markers indicates that both osteoblasts and preosteoclasts are sensitive to cyclic pressure. However, the effects of pressure on cocultures were not simply additive and coculture appears useful to examine the interaction of these cell types. These findings have implications for future therapies for aseptic loosening and for the development of tests to predict the development of this condition.
Collapse
Affiliation(s)
- CE Evans
- Laboratory & Regenerative Medicine, Stopford Building, The Medical School, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - S Mylchreest
- Laboratory & Regenerative Medicine, Stopford Building, The Medical School, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - JG Andrew
- Department of Orthopaedic Surgery, Ysbyty Gwynedd, Bangor, LL57 2PW, UK
| |
Collapse
|
61
|
Liedert A, Kaspar D, Claes L, Ignatius A. Signal transduction pathways involved in mechanical regulation of HB-GAM expression in osteoblastic cells. Biochem Biophys Res Commun 2006; 342:1070-6. [PMID: 16513091 DOI: 10.1016/j.bbrc.2006.02.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Accepted: 02/13/2006] [Indexed: 11/25/2022]
Abstract
Protein kinase C (PKC), protein kinase A (PKA), prostaglandin synthesis, and various mitogen-activated protein kinases (MAPKs) have been reported to be activated in bone cells by mechanical loading. We studied the involvement of these signal transduction pathways in the downregulation of HB-GAM expression in osteoblastic cells after cyclic stretching. Specific antagonists and agonists of these signal transduction pathways were added to cells before loading and to non-loaded control cells. Quantitative RT-PCR was used to evaluate gene expression. The data demonstrated that the extracellular signal-regulated kinase (ERK) 1/2 pathway, PKC, PKA, p38, and c-Jun N-terminal kinase MAPK participated in the mechanical downregulation of HB-GAM expression, whereas prostaglandin synthesis did not seem to be involved.
Collapse
Affiliation(s)
- Astrid Liedert
- Institute of Orthopedic Research and Biomechanics, University of Ulm, Germany.
| | | | | | | |
Collapse
|
62
|
Chunqiu Z, Xizheng Z, Han W, Daqing H, Jing G. Direct compression as an appropriately mechanical environment in bone tissue reconstruction in vitro. Med Hypotheses 2006; 67:1414-8. [PMID: 16846697 DOI: 10.1016/j.mehy.2006.05.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Accepted: 05/16/2006] [Indexed: 11/16/2022]
Abstract
Determining how to apply an appropriately mechanical environment which can improve the quality and function of bone-like construct in vitro is a required problem to be solved for the current development of bone tissue engineering. A specific mechanical force may be a key determinant of tissue development in vitro in bone tissue engineering. From the standpoint of bionics, the mechanical environments applied on bone tissue engineering should work in three aspects: providing adequately mechanical stimuli to the cells seeded in 3-D scaffold; ensuring the efficient mass-transport of the nutrients and waste products of the cells; promoting the development of functionally extracellular matrix in 3-D scaffold. After the analysis of several differently mechanical environments comparing with that in vivo, the directly dynamical compression environment, instead of hydrostatic pressure or microgravity or direct perfusion, can recreate the in vivo mechanisms of mechanosensation, mechanotransduction and mass-transport during engineered bone-like tissue culturing process in vitro. Therefore, it is hypothesized that the directly dynamic compression will be a specific mechanical environment to bone tissue reconstruction in vitro.
Collapse
Affiliation(s)
- Zhang Chunqiu
- Institute of Medical Equipment, Academy of Tianjin Medical Science, Tianjin, and Department of Orthopedics, China-Japan Friendship Hospital, Changchun, China.
| | | | | | | | | |
Collapse
|
63
|
Zhang D. Oscillatory Pressurization of an Animal Cell as a Poroelastic Spherical Body. Ann Biomed Eng 2005; 33:1249-69. [PMID: 16133931 DOI: 10.1007/s10439-005-5688-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Accepted: 05/03/2005] [Indexed: 10/25/2022]
Abstract
The analytical solution of a spherical poroelastic body under an oscillatory hydrostatic pressurization is obtained. This solution is then parameterized and interpreted in terms of a spherical animal cell with the cytoskeleton serving as the solid phase. It is found that for a cell with free or nearly free membrane leakage (such as in the case of an osteocytic cell body), the induced pore fluid pressure amplitude near the center of the cell exceeds the amplitude of the applied pressure by 50% if the loading frequency falls near that of normal human gait (1 Hz). A parametric analysis shows that the leakage coefficient is proportional to the intrinsic permeability ratio between the boundary and the bulk matrix. The physiological implication of the solution is further interpreted and discussed through an anatomical analysis of two representative cellular entities under compression: a chondrocyte and an osteocytic cell body. Finally, through a comparison between the characteristic time of gait and the characteristic pore fluid pressure relaxation times of various fluid-saturated entities in the body (such as a tumor, the brain, the cortical bone, the trabecular bone, and the cartilage, etc.), it is found that the gait-induced pore fluid transport seems to be important only in deeply buried cells and the mineralized cartilage.
Collapse
Affiliation(s)
- Dajun Zhang
- Bone Mechanics Lab, Department of Mechanical and Aerospace Engineering, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
64
|
Abstract
Compressive neuropathies are highly prevalent, debilitating conditions with variable functional recovery after surgical decompression. Chronic nerve compression injury induces concurrent Schwann cell proliferation and apoptosis in the early stages of the disorder, independent of axonal injury. These proliferating Schwann cells locally demyelinate and remyelinate in the region of injury. Furthermore, Schwann cells upregulate vascular endothelial growth factor secondary to chronic nerve compression injury and induce neovascularization to facilitate the recruitment of macrophages. In contrast to Wallerian degeneration, macrophage recruitment occurs gradually with chronic nerve compression injury and continues for a longer time. Schwann cells change their gene and protein expression in response to mechanical stimuli as shear stress decreases the expression of myelin associated glycoprotein and myelin basic protein mRNA and protein for in vitro promyelinating Schwann cells. The local down-regulation of myelin associated glycoprotein in the region of compression injury creates an environment allowing axonal sprouting that may be reversed with intraneural injections of purified myelin associated glycoprotein. These studies suggest that while the reciprocal relationship between neurons and glial cells is maintained, chronic nerve compression injury is a Schwann cell-mediated disease.
Collapse
Affiliation(s)
- Ranjan Gupta
- Department of Orthopaedic Surgery, Center for Biomedical Engineering in the Henry Samueli School of Engineering, University of California, Irvine, CA 92697, USA.
| | | | | |
Collapse
|
65
|
Reich A, Jaffe N, Tong A, Lavelin I, Genina O, Pines M, Sklan D, Nussinovitch A, Monsonego-Ornan E. Weight loading young chicks inhibits bone elongation and promotes growth plate ossification and vascularization. J Appl Physiol (1985) 2005; 98:2381-9. [PMID: 15677737 DOI: 10.1152/japplphysiol.01073.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanical stimuli resulting from weight loading play an important role in mature bone remodeling. However, the effect of weight loading on the developmental process in young bones is less well understood. In this work, chicks were loaded with bags weighing 10% of their body weight during their rapid growth phase. The increased load reduced the length and diameter of the long bones. The average width of the bag-loaded group's growth plates was 75 ± 4% that of the controls, and the plates showed increased mineralization. Northern blot analysis, in situ hybridization, and longitudinal cell counting of mechanically loaded growth plates showed narrowed expression zones of collagen types II and X compared with controls, with no differences between the relative proportions of those areas. An increase in osteopontin (OPN) expression with loading was most pronounced at the bone-cartilage interface. This extended expression overlapped with tartarate-resistant acid phosphatase staining and with the front of the mineralized matrix in the chondro-osseous junction. Moreover, weight loading enhanced the penetration of blood vessels into the growth plates and enhanced the gene expression of the matrix metalloproteinases MMP9 and MMP13 in those growth plates. On the basis of these results, we speculate that the mechanical strain on the chondrocytes in the growth plate causes overexpression of OPN, MMP9, and MMP13. The MMPs enable penetration of the blood vessels, which carry osteoclasts and osteoblasts. OPN recruits the osteoclasts to the cartilage-bone border, thus accelerating cartilage resorption in this zone and subsequent ossification which, in turn, contributes to the observed phenotype of narrower growth plate and shorter bones.
Collapse
Affiliation(s)
- A Reich
- Institute of Animal Science, the Volcani Center, Bet Dagan, The Hebrew Univ. of Jerusalem, Rehovot, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Tanaka SM, Sun HB, Roeder RK, Burr DB, Turner CH, Yokota H. Osteoblast responses one hour after load-induced fluid flow in a three-dimensional porous matrix. Calcif Tissue Int 2005; 76:261-71. [PMID: 15812578 DOI: 10.1007/s00223-004-0238-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2004] [Accepted: 10/07/2004] [Indexed: 11/26/2022]
Abstract
When bone is loaded, substrate strain is generated by the external force and this strain induces fluid flow that creates fluid shear stress on bone cells. Our current understanding of load-driven gene regulation of osteoblasts is based primarily on in vitro studies on planer two-dimensional tissue culture substrates. However, differences between a flat layer of cells and cells in 3-dimensional (3D) ECM are being recognized for signal transduction. Proliferation and differentiation of osteoblasts are affected by substrate geometry. Here we developed a novel 3D culture system that would mimic physiologically relevant substrate strain as well as strain-induced fluid flow in a 3D porous collagen matrix. The system allowed us to evaluate the responses of osteoblasts in a 3D stress-strain environment similar to a mechanical field to which bone is exposed. Using MC3T3-E1 osteoblasts grown in the 3D collagen matrix with and without hydroxyapatite deposition, we tested the role of strain and the strain-induced fluid flow in the expression of the load-responsive genes such as c-fos, egr1, cox2, osteopontin, and mmp1B involved in transcriptional regulation, osteogenesis, and rearrangement of ECM. Strain-induced fluid flow was visualized with a microspheres approximately 3 microm in diameter in real time, and three viscoelastic parameters were determined. The results obtained by semi-quantitative PCR, immunoblot assay, enzymatic activity assays for collagenase and gelatinase, and mechanical characterization of collagen matrices supported the dominant role of strain-induced fluid flow in expression of the selected genes one hour after the mechanical treatment.
Collapse
Affiliation(s)
- Shigeo M Tanaka
- Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | |
Collapse
|
67
|
Lin IC, Slemp AE, Hwang C, Karmacharya J, Gordon AD, Kirschner RE. Immunolocalization of androgen receptor in the developing craniofacial skeleton. J Craniofac Surg 2005; 15:922-7; discussion 928-9. [PMID: 15547375 DOI: 10.1097/00001665-200411000-00006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Male predominance in metopic and sagittal craniosynostosis and in nonsynostotic plagiocephaly suggests a role for circulating androgens in early craniofacial development. Androgens have been documented to play an important role in postnatal skeletal growth, and the androgen receptor has been recently demonstrated in human and rat osteoblast-like cell lines and in human long bones. The purpose of this study was to describe the expression of androgen receptor in the fetal craniofacial skeleton. The heads of E18 fetal CD-1 male and female mice were fixed in 10% formalin, decalcified, and embedded in paraffin. Four- to 6-mum coronal and sagittal sections were stained with a monoclonal antibody specific to androgen receptor, which was detected by an avidinbiotin conjugate and peroxidase system. The sections were then examined for androgen receptor expression patterns. Strong androgen receptor immunoreactivity was observed in the dura mater of developing fetuses. Androgen receptor expression was also noted in cells lining the osteogenic fronts and in calvarial osteoblasts. Similar androgen receptor expression patterns were found in male and female mice. Androgen receptor is abundantly expressed in fetal dura mater and calvarial bone. This study confirms the presence of androgen receptor in the murine fetal craniofacial skeleton, suggesting a potential role for the anabolic effects of androgens in the developing craniofacial skeleton.
Collapse
Affiliation(s)
- Ines C Lin
- Division of Plastic Surgery, University of Pennsylvania School of Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104-4399, USA
| | | | | | | | | | | |
Collapse
|
68
|
Boudriot U, Daume B, Brandt J. [In vitro long-term culture of human bone under physiological load conditions]. BIOMED ENG-BIOMED TE 2005; 49:364-7. [PMID: 15655930 DOI: 10.1515/bmt.2004.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There is evidence that mechanical loading is an important, if not the most important factor influencing bone mass and architecture. Investigations under in vivo conditions and cell culture methods, performed during the last years, helped to elucidate these mechanisms. However, the mechanisms by which load bearing acts on bone tissue are until now not completely understood. It is well accepted that weight-bearing exercise increases bone mass and on the other hand lower physical activity engenders bone loss. But neither a physiological threshold for bone loss or bone growth nor the character of the mechanical stimulus concerning amount, frequency and duration of the applied load are known. Even more speculative is the idea how this signal is transformed into the biological response of growing bone. Three-dimensional bone-culture-systems with simultaneous applied mechanical load enables to improve the knowledge of regulation of bone metabolism. We show the results of a long-term in vitro experiment with human cancellous bone under physiological load conditions.
Collapse
Affiliation(s)
- U Boudriot
- Klinik für Orthopädie und Rheumatologie, Philipps-Universität Marburg.
| | | | | |
Collapse
|
69
|
Takai E, Mauck RL, Hung CT, Guo XE. Osteocyte viability and regulation of osteoblast function in a 3D trabecular bone explant under dynamic hydrostatic pressure. J Bone Miner Res 2004; 19:1403-10. [PMID: 15312240 DOI: 10.1359/jbmr.040516] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 04/02/2004] [Accepted: 05/05/2004] [Indexed: 11/18/2022]
Abstract
UNLABELLED A new trabecular bone explant model was used to examine osteocyte-osteoblast interactions under DHP loading. DHP loading enhanced osteocyte viability as well as osteoblast function measured by osteoid formation. However, live osteocytes were necessary for osteoblasts to form osteoids in response to DHP, which directly show osteoblast-osteocyte interactions in this in vitro culture. INTRODUCTION A trabecular bone explant model was characterized and used to examine the effect of osteocyte and osteoblast interactions and dynamic hydrostatic pressure (DHP) loading on osteocyte viability and osteoblast function in long-term culture. MATERIALS AND METHODS Trabecular bone cores obtained from metacarpals of calves were cleaned of bone marrow and trabecular surface cells and divided into six groups, (1) live cores + dynamic hydrostatic pressure (DHP), (2) live cores + sham, (3) live cores + osteoblast + DHP, (4) live cores + osteoblast + sham, (5) devitalized cores + osteoblast + DHP, and (6) devitalized cores + osteoblast + sham, with four culture durations (2, 8, 15, and 22 days; n = 4/group). Cores from groups 3-6 were seeded with osteoblasts, and cores from groups 5 and 6 were devitalized before seeding. Groups 1, 3, and 5 were subjected to daily DHP loading. Bone histomorphometry was performed to quantify osteocyte viability based on morphology and to assess osteoblast function based on osteoid surface per bone surface (Os/Bs). TUNEL staining was performed to evaluate the mode of osteocyte death under various conditions. RESULTS A portion of osteocytes remained viable for the duration of culture. DHP loading significantly enhanced osteocyte viability up to day 8, whereas the presence of seeded osteoblasts significantly decreased osteocyte viability. Cores with live osteocytes showed higher Os/Bs compared with devitalized cores, which reached significant levels over a greater range of time-points when combined with DHP loading. DHP loading did not increase Os/Bs in the absence of live osteocytes. The percentage of apoptotic cells remained the same regardless of treatment or culture duration. CONCLUSION Enhanced osteocyte viability with DHP suggests the necessity of mechanical stimulation for osteocyte survival in vitro. Furthermore, osteocytes play a critical role in the transmission of signals from DHP loading to modulate osteoblast function. This explant culture model may be used for mechanotransduction studies in long-term cultures.
Collapse
Affiliation(s)
- Erica Takai
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York 10027, USA
| | | | | | | |
Collapse
|
70
|
Liedert A, Augat P, Ignatius A, Hausser HJ, Claes L. Mechanical regulation of HB-GAM expression in bone cells. Biochem Biophys Res Commun 2004; 319:951-8. [PMID: 15184074 DOI: 10.1016/j.bbrc.2004.05.087] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Indexed: 11/28/2022]
Abstract
Bone adaption upon mechanical stimulation is accompanied by changes in gene expression. In this context we investigated the influence of mechanical loading on heparin binding growth associated molecule (HB-GAM) expression, an extracellular matrix molecule which in cell culture has been shown to stimulate the differentiation of osteoblasts. We obtained information on the participating signal transduction pathways using a mitogenic loading regimen. Specific inhibitors of various signal transduction pathways were added to loaded cells and to unloaded controls. By semi-quantitative PCR studies we demonstrated a rapid decrease of HB-GAM expression in primary osteoblasts and SaOs-2 cells by 20-30% upon mechanical loading within 30min. We showed that the RGD-integrin interaction is involved in the regulation of HB-GAM expression. Furthermore, integrity of the cytoskeleton, stretch-activated, and voltage-sensitive Ca(2+) channels as well as gap junctional communication are necessary for the downregulation of HB-GAM expression by mechanical loading.
Collapse
Affiliation(s)
- Astrid Liedert
- Institute of Orthopedic Research and Biomechanics, University of Ulm, Germany.
| | | | | | | | | |
Collapse
|
71
|
Yang CM, Chien CS, Yao CC, Hsiao LD, Huang YC, Wu CB. Mechanical strain induces collagenase-3 (MMP-13) expression in MC3T3-E1 osteoblastic cells. J Biol Chem 2004; 279:22158-65. [PMID: 15044466 DOI: 10.1074/jbc.m401343200] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanical strain plays a crucial role in bone remodeling during growth and development and healing of bone besides systemic and local factors. One of the major factors involves in remodeling process is matrix metalloproteinases (MMPs) such as MMP-13 that has been shown to degrade the native interstitial collagens in several tissues. To study how mechanical strain affects extracellular matrix degradation by MMP-13, a biaxial strain was applied to MC3T3-E1 osteoblastic cells plated onto a collagen-coated flexible elastic membrane. The MMP-13 protein and mRNA expression were determined by Western blotting and reverse transcriptase-PCR, respectively. The zymographic activities of MMP-13 increased dramatically at 30 min, reached a peak by 2-fold at 1 h, and maintained up to 4 h. Moreover, the MMP-13 and c-fos mRNA expressed at 5 min, increased to 2.8- and 3-fold at 1 h, respectively, and gradually declined thereafter. Cycloheximide and actinomycin D did not inhibit the MMP-13 and c-fos mRNA expression, suggesting that such expression does not require de novo protein synthesis and not change their stabilities. To investigate which of the mitogen-activated protein kinase (MAPK) pathways involves in the expression of MMP-13, inhibitors such as PD98059, SB203580, and SP600125 were used. However, only PD98059 (an inhibitor of MEK1/2 activation) inhibited MMP-13 and c-fos gene expression; the result was further substantiated by transfecting with the dominant negative mutants of MEK1/2 (MEK K97R) and ERK2. Taken together, our results showed that mechanical strain induces the MMP-13 expression through MEK-ERK signaling pathway to regulate mechanical adaptation.
Collapse
Affiliation(s)
- Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan
| | | | | | | | | | | |
Collapse
|
72
|
Baumert U, Golan I, Becker B, Hrala BP, Redlich M, Roos HA, Palmon A, Reichenberg E, Müssig D. Pressure simulation of orthodontic force in osteoblasts: a pilot study. Orthod Craniofac Res 2004; 7:3-9. [PMID: 14989748 DOI: 10.1046/j.1601-6335.2003.00270.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVES To elucidate the RUNX2 gene expression induction in human osteoblasts after mechanical loading. DESIGN Using a stringent pulse-chase protocol human osteoblasts were exposed to centrifugal pressure force for 30 and 90 min. Untreated control cells were processed in parallel. Before, and at defined times after centrifugation, total RNA was isolated. RUNX2 gene expression was measured using real-time quantitative reverse transcriptase polymerase chain reaction. The stress/control ratio was used to illustrate possible stimulatory or diminishing effects of force application. RESULTS Immediately after 30 min of force application the RUNX2 gene expression was induced by a factor of 1.7 +/- 0.14 as compared with the negative control. This induction decreased rapidly and reached its pre-load levels within 30 min. Longer force applications (up to 90 min) did not change the RUNX2 gene expression. CONCLUSION In mature osteoblasts centrifugal pressure force stimulates RUNX2 gene expression within a narrow time frame: loading of mature cells results in a temporary increase of RUNX2 expression and a fast downregulation back to its pre-load expression level. With this pilot study the gene expression behavior after mechanical stimuli could be determined with a simple laboratory setup.
Collapse
Affiliation(s)
- U Baumert
- Department of Orthodontics, Center for Craniofacial Genetics, University of Regensburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Ferraro JT, Daneshmand M, Bizios R, Rizzo V. Depletion of plasma membrane cholesterol dampens hydrostatic pressure and shear stress-induced mechanotransduction pathways in osteoblast cultures. Am J Physiol Cell Physiol 2003; 286:C831-9. [PMID: 14644772 DOI: 10.1152/ajpcell.00224.2003] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The preferential association of cholesterol and sphingolipids within plasma membranes forms organized compartments termed lipid rafts. Addition of caveolin proteins to this lipid milieu induces the formation of specialized invaginated plasma membrane structures called caveolae. Both lipid rafts and caveolae are purported to function in vesicular transport and cell signaling. We and others have shown that disassembly of rafts and caveolae through depletion of plasma membrane cholesterol mitigates mechanotransduction processes in endothelial cells. Because osteoblasts are subjected to fluid-mechanical forces, we hypothesize that cholesterol-rich plasma membrane microdomains also serve the mechanotransduction process in this cell type. Cultured human fetal osteoblasts were subjected to either sustained hydrostatic pressure or laminar shear stress using a pressure column or parallel-plate apparatus, respectively. We found that sustained hydrostatic pressure induced protein tyrosine phosphorylation, activation of extracellular signal-regulated kinase (ERK)1/2, and enhanced expression of c-fos in both time- and magnitude-dependent manners. Similar responses were observed in cells subjected to laminar shear stress. Both sustained hydrostatic pressure- and shear stress-induced signaling were significantly reduced in osteoblasts pre-exposed to either filipin or methyl-beta-cyclodextrin. These mechanotransduction responses were restored on reconstitution of lipid rafts and caveolae, which suggests that cholesterol-rich plasma membrane microdomains participate in the mechanotransduction process in osteoblasts. In addition, mechanical force-induced phosphoproteins were localized within caveolin-containing membranes. These data support the concept that lipid rafts and caveolae serve a general function as cell surface mechanotransduction sites within the plasma membrane.
Collapse
Affiliation(s)
- Jeffrey T Ferraro
- Center for Cardiovascular Science, Albany Medical College, Albany, NY 12208, USA
| | | | | | | |
Collapse
|
74
|
Manome Y, Saeki N, Yoshinaga H, Watanabe M, Mizuno S. A Culture Device Demonstrates that Hydrostatic Pressure Increases mRNA of RGS5 in Neuroblastoma and CHC1-L in Lymphocytic Cells. Cells Tissues Organs 2003; 174:155-61. [PMID: 14504426 DOI: 10.1159/000072718] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2003] [Indexed: 11/19/2022] Open
Abstract
Previous studies demonstrated that mechanical forces affect a wide range of cellular behaviors. These forces regulate important cellular responses in the human body and consist of gravity, hydrostatic pressure, stretch, and shear stress, which is exerted on the vascular system by the passage of blood flow. We reasoned that these forces might be significant and dynamic regulators of cellular functions within the human body. While cellular effects of stretch and shear stress have been studied particularly with endothelial cells, little is known about the effects of gravity and hydrostatic pressure to cells. To examine the direct effect of hydrostatic pressure, we developed a culture device to confer hydrostatic pressures to cells ranging from 0 to 1,000 psi. We subjected human neuroblastoma cells and rIL-2-activated lymphocytes to a constant pressure of 20 or 100 psi for 48 h and attempted to identify genes regulated by hydrostatic pressure. Genes of regulator of G-protein signaling 5 in neuroblastoma cells and CHC1-L in lymphocytes increased after exposure to hydrostatic pressure. The results demonstrated that hydrostatic pressure directly regulates the expression of specific genes in mammalian cells. Moreover, there may be some underlying mechanisms that have common effects in altered physical environments. Our in vitro culture system may provide some insight into the mechanisms through the intracellular processes affected by mechanical forces.
Collapse
Affiliation(s)
- Yoshinobu Manome
- Department of Microbiology, Jikei University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
75
|
Costa AMA, Tuchweber B, Lamireau T, Yousef IM, Balabaud C, Rosenbaum J, Desmoulière A. Role of apoptosis in the remodeling of cholestatic liver injury following release of the mechanical stress. Virchows Arch 2003; 442:372-80. [PMID: 12715172 DOI: 10.1007/s00428-003-0773-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2002] [Accepted: 12/19/2002] [Indexed: 10/25/2022]
Abstract
It has been known for a long time that portal fibrosis consecutive to experimental common bile duct ligation is reversible following obstacle removal, but the mechanisms involved remain unknown. We have studied the effect of bilioduodenal anastomosis and of simple biliary decompression on the remodeling of the lesion in bile duct-ligated rats. Rats were subjected to common bile duct ligation for 7 days or 14 days. Bilioduodenal anastomosis was performed after 14 days of bile duct ligation and animals sacrificed at intervals. In other animals, after 7 days or 14 days of ligation, the common bile duct was merely decompressed by bile aspiration and animals sacrificed 24 h later. Collagen deposition, alpha-smooth muscle actin expression and apoptosis were evaluated. Bile was collected and the bile acid profile assessed. After anastomosis, collagen deposition and alpha-smooth muscle actin expression decreased and were back to control values after 7 days. These parameters remained practically unchanged 24 h after biliary decompression. Bile duct ligation by itself induced apoptosis of some fibroblastic and bile ductular cells after 7 days; this was back to normal after 14 days. After anastomosis or decompression, apoptosis of both fibroblastic and bile ductular cells increased greatly and was accompanied by ultrastructural features of extracellular matrix degradation. Total bile acid content decreased after common bile duct ligation, the proportion of dihydroxylated bile acids decreasing and that of trihydroxylated bile acids increasing. Biliary decompression and anastomosis did not modify total concentration and composition of the biliary bile acid pool. In summary, we show that mere biliary decompression, by relieving the mechanical stress, is as effective as bilioduodenal anastomosis to induce apoptosis of portal cells that likely triggers portal fibrosis regression.
Collapse
MESH Headings
- Actins/metabolism
- Anastomosis, Surgical
- Animals
- Apoptosis/physiology
- Bile/chemistry
- Bile Acids and Salts/analysis
- Cholestasis, Intrahepatic/etiology
- Cholestasis, Intrahepatic/metabolism
- Cholestasis, Intrahepatic/pathology
- Collagen/metabolism
- Common Bile Duct/surgery
- Decompression, Surgical
- Disease Models, Animal
- Duodenum/surgery
- Ligation
- Liver/metabolism
- Liver/pathology
- Liver Cirrhosis, Biliary/complications
- Liver Cirrhosis, Biliary/metabolism
- Liver Cirrhosis, Biliary/pathology
- Liver Cirrhosis, Experimental/complications
- Liver Cirrhosis, Experimental/metabolism
- Liver Cirrhosis, Experimental/pathology
- Male
- Portal System/ultrastructure
- Rats
- Rats, Sprague-Dawley
- Stress, Mechanical
Collapse
Affiliation(s)
- Andréa M A Costa
- Groupe de Recherches pour l'Etude du Foie, INSERM E0362, Université Victor Segalen Bordeaux 2, 146 rue Léo-Saignat, France
| | | | | | | | | | | | | |
Collapse
|
76
|
Bilek AM, Dee KC, Gaver DP. Mechanisms of surface-tension-induced epithelial cell damage in a model of pulmonary airway reopening. J Appl Physiol (1985) 2003; 94:770-83. [PMID: 12433851 DOI: 10.1152/japplphysiol.00764.2002] [Citation(s) in RCA: 205] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Airway collapse and reopening due to mechanical ventilation exerts mechanical stress on airway walls and injures surfactant-compromised lungs. The reopening of a collapsed airway was modeled experimentally and computationally by the progression of a semi-infinite bubble in a narrow fluid-occluded channel. The extent of injury caused by bubble progression to pulmonary epithelial cells lining the channel was evaluated. Counterintuitively, cell damage increased with decreasing opening velocity. The presence of pulmonary surfactant, Infasurf, completely abated the injury. These results support the hypotheses that mechanical stresses associated with airway reopening injure pulmonary epithelial cells and that pulmonary surfactant protects the epithelium from this injury. Computational simulations identified the magnitudes of components of the stress cycle associated with airway reopening (shear stress, pressure, shear stress gradient, or pressure gradient) that may be injurious to the epithelial cells. By comparing these magnitudes to the observed damage, we conclude that the steep pressure gradient near the bubble front was the most likely cause of the observed cellular damage.
Collapse
Affiliation(s)
- Anastacia M Bilek
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana 70118, USA
| | | | | |
Collapse
|
77
|
Weiss S, Baumgart R, Jochum M, Strasburger CJ, Bidlingmaier M. Systemic regulation of distraction osteogenesis: a cascade of biochemical factors. J Bone Miner Res 2002; 17:1280-9. [PMID: 12096842 DOI: 10.1359/jbmr.2002.17.7.1280] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study investigates the systemic biochemical regulation of fracture healing in distraction osteogenesis compared with rigid osteotomy in a prospective in vivo study in humans. To further clarify the influence of mechanical strain on the regulation of bone formation, bone growth factors (insulin-like growth factor [IGF] I, IGF binding protein [IGFBP] 3, transforming growth factor [TGF] beta1, and basic FGF [bFGF]), bone matrix degrading enzymes (matrix-metalloproteinases [MMPs] 1, 2, and 3), human growth hormone (hGH), and bone formation markers (ALP, bone-specific ALP [BAP], and osteocalcin [OC]) have been analyzed in serum samples from 10 patients in each group pre- and postoperatively. In the distraction group, a significant postoperative increase in MMP-1, bFGF, ALP, and BAP could be observed during the lengthening and the consolidation period when compared with the baseline levels. Osteotomy fracture healing without the traction stimulus failed to induce a corresponding increase in these factors. In addition, comparison of both groups revealed a significantly higher increase in TGF-beta1, IGF-I, IGFBP-3, and hGH in the lengthening group during the distraction period, indicating key regulatory functions in mechanotransduction. The time courses of changes in MMP-1, bone growth factors (TGF-beta1 and bFGF), and hGH, respectively, correlated significantly during the lengthening phase, indicating common regulatory pathways for these factors in distraction osteogenesis. Significant correlation between the osteoblastic marker BAP, TGF-beta1, and bFGF suggests strain-activated osteoblastic cells as a major source of systemically increased bone growth factors during callus distraction. The systemic increase in bFGF and MMP-1 might reflect an increased local stimulation of angiogenesis during distraction osteogenesis.
Collapse
Affiliation(s)
- S Weiss
- Stiftung Orthopädische Universitätsklinik, Ruprecht-Karls-Universität Heidelberg, Heidelberg-Schlierbach, Germany
| | | | | | | | | |
Collapse
|
78
|
Nagatomi J, Arulanandam BP, Metzger DW, Meunier A, Bizios R. Effects of cyclic pressure on bone marrow cell cultures. J Biomech Eng 2002; 124:308-14. [PMID: 12071266 DOI: 10.1115/1.1468867] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present in-vitro study used bone marrow cell cultures and investigated the effects of cyclic pressure on osteoclastic bone resorption. Compared to control (cells maintained under static conditions), the number of tartrate resistant acid phosphatase (TRAP)-positive, osteoclastic cells was significantly (p<0.05) lower when, immediately upon harvesting, bone marrow cells were exposed to cyclic pressure (10-40 kPa at 1.0 Hz). In contrast, once precursors in bone marrow cells differentiated into osteoclastic cells under static culture conditions for 7 days, subsequent exposure to the cyclic pressure of interest to the present study did not affect the number of osteoclastic cells. Most important, exposure of bone marrow cells to cyclic pressure for 1 h daily for 7 consecutive days resulted in significantly (p<0.05) lower osteoclastic bone resorption and in lowered mRNA expression for interleukin-1 (IL-1) and tumor necrosisfactor-a (TNF-a), cytokines that are known activators of osteoclast function. In addition to unique contributions to osteoclast physiology, the present study provided new evidence of a correlation between mechanical loading and bone homeostasis as well as insight into the molecular mechanisms of bone adaptation to mechanical loading, namely cytokine-mediated control of osteoclast functions.
Collapse
Affiliation(s)
- Jiro Nagatomi
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | | | | | | | | |
Collapse
|
79
|
Abstract
Normal loading strains of 200-2000 (mu)epsilon to bone result in bending forces, generating mechanical stretch and pressure gradients in canaliculi that drive extracellular fluid flow, resulting in stress on the membranes of osteocytes, lining cells, and osteoblasts. Under excess loading, as well as during unloading (e.g., microgravity, bed rest), the fluid shift and resultant change in interstitial fluid flow may play a larger role in bone remodeling than mechanical stretch. The in vitro model systems used to investigate mechanical loading of bone generate either fluid shear, hydrostatic compression, biaxial stretch, uniaxial stretch, or a combination of two or more of these forces. The results of in vitro experiments suggest that fluid shear is a major factor affecting bone cell metabolism. Both the flow-loop apparatus (which produces pulsatile flow and uses fluid shear as its principal stimulus) and the uniaxial silicone plate stretching apparatus (which generates cyclic stretch) create a reproducible and consistent stimulus. Endpoints measured in flow experiments, however, are short term and usually short lived, and it is unknown whether these changes impact the function of differentiated osteoblasts. Endpoints measured in uniaxial stretch experiments are generally long-term-sustained effects of mechanical perturbation and more easily relatable to changes in osteoblastic activity. Biaxial stretch devices create both bending and compressive forces, resulting in different types of force on the cells, with the relative amount of each depending on the position of the cell in the device. Therefore, systems that incorporate pulsatile fluid flow or uniaxial stretch as the principal stimulus should be further developed and implemented in the study of the relationship between mechanical loading and bone response.
Collapse
Affiliation(s)
- N Basso
- Faculty of Dentistry, University of Toronto, ON, Toronto, Canada.
| | | |
Collapse
|
80
|
Abstract
Periosteum, which can be grown in cell and whole tissue cultures, may meet one or more of the three prerequisites for tissue engineered cartilage repair. Periosteum contains pluripotential mesenchymal stem cells with the potential to form either cartilage or bone. Because it can be transplanted as a whole tissue, it can serve as its own scaffold or a matrix onto which other cells and/or growth factors can be adhered. Finally, it produces bioactive factors that are known to be chondrogenic. The chondrocyte precursor cells reside in the cambium layer. These vary in total density and volume with age and in different donor sites. The advantages of whole tissue periosteal transplants for cartilage repair include the fact that this tissue meets the three primary requirements for tissue engineering: a source of cells, a scaffold for delivering and retaining them, and a source of local growth factors. Many growth factors that regulate chondrocytes and cartilage development are synthesized by periosteum in conditions conducive to chondrogenesis. These include transforming growth factor-beta 1, insulinlike growth factor-1, growth and differentiation factor-5, bone morphogenetic protein-2, integrins, and the receptors for these molecules. By additional study of the molecular events in periosteal chondrogenesis, it may be possible to optimize its capacity for articular cartilage repair.
Collapse
Affiliation(s)
- S W O'Driscoll
- Department of Orthopedic Surgery, Mayo Clinic, Mayo Foundation, Rochester, MN 55905, USA
| | | |
Collapse
|
81
|
Pavlin D, Zadro R, Gluhak-Heinrich J. Temporal pattern of stimulation of osteoblast-associated genes during mechanically-induced osteogenesis in vivo: early responses of osteocalcin and type I collagen. Connect Tissue Res 2001; 42:135-48. [PMID: 11718468 DOI: 10.3109/03008200109014255] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mechanical loading is an essential environmental factor in skeletal homeostasis, but the response of osteoblast-associated genes to mechanical osteogenic signal is largely unknown. This study uses our recently characterized in vivo osteoinductive model to analyze the sequence of stimulation and the time course of expression of osteoblast-associated genes in mechanically loaded mouse periodontium. Temporal pattern of regulation of osteocalcin (OC), alkaline phosphatase (ALP), and type I collagen (collagen I) was determined during mechanically-induced osteoblast differentiation in vivo, using a mouse tooth movement model earlier shown to induce bone formation and cell-specific regulation of genes in osteoblasts. The expression of target genes was determined after 1, 2, 3, 4, and 6 days of orthodontic movement of the mouse first molar. mRNA levels were measured in the layer of osteoblasts adjacent to the alveolar bone surface, using in situ hybridization and a relative quantitative video image analysis of cell-specific hybridization intensity, with non-osseous mesenchymal periodontal cells as an internal standard. After 24 hours of loading, the level of OC in osteoblasts slightly decreased, followed by a remarkable 4.6-fold cell-specific stimulation between 1 and 2 days of treatment. The high level expression of OC was maintained throughout the treatment with a peak 7-fold stimulation at day 4. The expression of collagen I gene was not significantly affected after 1 day, but it was stimulated 3-fold at day 2, and maintained at a similar level through day 6. The ALP gene, which we previously found to be mechanically stimulated during the first 24 hours, remained enhanced from 1.8- to 2.2-fold throughout the 6 days of treatment. Thus, in an intact alveolar bone compartment, mechanical loading resulted in a defined temporal sequence of induction of osteoblast-associated genes. Stimulation of OC 48 h after the onset of loading (and 24 h prior to deposition of osteoid) temporally coincided with that of collagen I, and was preceded for 24 h by an enhancement of ALP. Identification of OC as a mechanically responsive gene induced in functionally active osteoblasts in this study is consistent with its potential role in limiting the rate of mechanically-induced bone modeling. Furthermore, these results show that temporal progression of mechanically-induced osteoblast phenotype in this in vivo model occurs very rapidly. This suggests that physiologically relevant mechanical osteoinductive signal in vivo is targeting a population of committed osteoblast precursor cells that are capable of rapidly responding by entering a differentiation pathway and initiating an anabolic skeletal adaptation process.
Collapse
Affiliation(s)
- D Pavlin
- Department of Orthodontics, The University of Texas Health Science Center at San Antonio, 78284-7910, USA.
| | | | | |
Collapse
|
82
|
Abstract
Periosteum has been used clinically for biologic resurfacing arthroplasty in small series of patients for almost two decades. The author's own experience with this technique in multiple joints, including the knee, has been similar to that already reported in the literature. Observations and considerations are discussed that might help avoid failure in future applications of this technique. Indications and surgical technique, including graft procurement and fixation, and postoperative treatment and possible complications are also described. The rationale for using periosteum as a chondrogenic tissue and the factors affecting its cartilage production are also outlined.
Collapse
Affiliation(s)
- S W O'Driscoll
- Cartilage and Connective Tissue Research Laboratory, Mayo Clinic, Mayo Foundation, Rochester, Minnesota, USA.
| |
Collapse
|
83
|
Kurata K, Uemura T, Nemoto A, Tateishi T, Murakami T, Higaki H, Miura H, Iwamoto Y. Mechanical strain effect on bone-resorbing activity and messenger RNA expressions of marker enzymes in isolated osteoclast culture. J Bone Miner Res 2001; 16:722-30. [PMID: 11316000 DOI: 10.1359/jbmr.2001.16.4.722] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Adaptive modeling and remodeling are controlled by the activities of osteoblasts and osteoclasts, which are capable of sensing their mechanical environments and regulating deposition or resorption of bone matrix. The effects of mechanical stimuli on isolated osteoclasts have been scarcely examined because it has proven to be difficult to prepare a number of pure osteoclasts and to cultivate them on mineralized substratum during mechanical stimulation. Recently, we developed an apparatus for applying mechanical stretching to the ivory slice/plastic plate component on which cells could be cultured. The loading frequency, strain rate, and generated strain over an ivory surface could be controlled by a personal computer. Using this apparatus, we examined the role of mechanical stretching on the bone-resorbing activity of the osteoclasts. Mature and highly enriched osteoclasts were cultured for 2, 12, and 24 h on the ivory/plate component while being subjected to intermittent tensile strain. The stretched osteoclasts showed enhanced messenger RNA (mRNA) expression levels of osteoclast marker enzymes, tartrate-resistant acid phosphatase (TRAP), and cathepsin K and increases of resorbed-pit formation, suggesting that the mechanical stretching up-regulated the bone-resorbing activity of the osteoclasts. A stretch-activated cation (SA-cat) channel blocker significantly inhibited the increases of the mRNA level and pit formation after 24 h of stretching. This study suggested the possibility that the mature osteoclasts responded to mechanical stretching through a mechanism involving a SA-cat channel in the absence of mesenchymal cells and, as a result, up-regulated their bone-resorbing activity.
Collapse
Affiliation(s)
- K Kurata
- Department of Intelligent Machinery and Systems, Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Soejima K, Klein-Nulend J, Semeins CM, Burger EH. Different responsiveness of cells from adult and neonatal mouse bone to mechanical and biochemical challenge. J Cell Physiol 2001; 186:366-70. [PMID: 11169975 DOI: 10.1002/1097-4652(2000)9999:999<000::aid-jcp1041>3.0.co;2-b] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neonatal rodent calvarial bone cell cultures are often used to study bone cell responsiveness to biochemical and mechanical signals. However, mechanical strains in the skull are low compared to the axial and appendicular skeleton, while neonatal, rapidly growing bone has a more immature cell composition than adult bone. In the present study, we tested the hypothesis that bone cell cultures from neonatal and adult mouse calvariae, as well as adult mouse long bones, respond similarly to treatment with mechanical stress or 1,25-dihydroxyvitamin D3 (1,25(OH)2 D3). Treatment with pulsating fluid shear stress (0.6 +/- 0.3 Pa, 5 Hz) caused a rapid (within 5 min) 2-4-fold increase in NO production in all cases, without significant differences between the three cell preparations. However, basal NO release was significantly higher in neonatal calvarial cells than adult calvarial and long bone cells. The response to 1,25(OH)2 D3), measured as increased alkaline phosphatase activity, was about three times higher in the neonatal cells than the adult cell cultures. We conclude that all three types of primary bone cell cultures responded similarly to fluid shear stress, by rapid production of NO. However, the neonatal cell cultures were different in basal metabolism and vitamin D3 responsiveness, suggesting that cell cultures from adult bone are best used for in vitro studies on bone cell biology.
Collapse
Affiliation(s)
- K Soejima
- Department of Oral Cell Biology, ACTA-Vrije Universiteit, Van der Boechorststraat 7, 1081 BT Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
85
|
Peake MA, Cooling LM, Magnay JL, Thomas PB, El Haj AJ. Selected contribution: regulatory pathways involved in mechanical induction of c-fos gene expression in bone cells. J Appl Physiol (1985) 2000; 89:2498-507. [PMID: 11090608 DOI: 10.1152/jappl.2000.89.6.2498] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The regulatory pathways involved in the rapid response of the AP-1 transcription factor, c-fos, to mechanical load in human primary osteoblast-like (HOB) cells and the human MG-63 bone cell line were investigated using a four-point bending model. HOB and MG-63 cells showed upregulation of c-fos expression on fibronectin and collagen type I substrates; however, MG-63 cells did not respond on laminin YIGSR substrates. Addition of cytochalasin D and Arg-Gly-Asp peptides during loading did not inhibit the response, whereas addition of beta(1)-integrin antibodies inhibited the load response. The role of Ca(2+) signaling has been demonstrated by blocking upregulation with addition of 2 mM EGTA, which chelates extracellular Ca(2+), and gadolinium (10 microM), which inhibits stretch-activated channels. Addition of the Ca(2+) ionophore A-23187 induced upregulation without loading; however, addition of nifedipine (10 microM), the L-type channel blocker, failed to prevent the load response. Inhibitors of downstream pathways indicated the involvement of protein kinase C. Our results demonstrate a key involvement of Ca(2+) signaling pathways and integrin binding in the c-fos response to mechanical strain.
Collapse
Affiliation(s)
- M A Peake
- Centre for Science and Technology in Medicine, School of Postgraduate Medicine, Keele University, North Staffordshire Hospital, Stoke on Trent ST4 7QB, United Kingdom
| | | | | | | | | |
Collapse
|
86
|
Hernandez MR, Pena JD, Selvidge JA, Salvador-Silva M, Yang P. Hydrostatic pressure stimulates synthesis of elastin in cultured optic nerve head astrocytes. Glia 2000; 32:122-36. [PMID: 11008212 DOI: 10.1002/1098-1136(200011)32:2<122::aid-glia20>3.0.co;2-j] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Elastin is a major component of the extracellular matrix (ECM) of the lamina cribrosa in the optic nerve head in humans and nonhuman primates. The lamina cribrosa appears to be the site of damage to the retinal ganglion cell axons in glaucomatous optic neuropathy, characterized in many patients by elevated intraocular pressure (IOP). Type 1B astrocytes are the major cell type in the lamina, synthesize elastic fibers during development, express increased elastin mRNA, and synthesize abnormal elastin in glaucoma. In this study, we determined the effect of elevated hydrostatic pressure on the synthesis of elastin by type 1B astrocytes in culture. Type 1B astrocytes were exposed to gradients of hydrostatic pressure and tested for proliferation, morphology, synthesis, and deposition of elastin. Trichloroacetic acid (TCA) and immunoprecipitation of radiolabeled protein determined total new protein and elastin synthesis. Proteins from the conditioned media were analyzed by Western blot. Levels of elastin mRNA were determined by in situ hybridization. Cell proliferation increased approximately 2-fold after exposure to pressure for one day, approximately 5-fold after 3 and 5 days of exposure to pressure. Confocal and electron microscopic cytochemistry showed a marked increase in intracellular elastin in astrocytes exposed to pressure, as compared with controls. Intracellular elastin was associated with the RER-Golgi region and with the cytoskeleton. Total protein and elastin synthesis increased significantly (P < 0.05) at 3- and 5-day exposure to pressure, as well as the level of elastin mRNA. Elastin protein in the media increased with the level of pressure. These results indicate that hydrostatic pressure stimulates type 1B astrocytes to synthesize and secrete soluble elastin into the media. In glaucoma, type 1B astrocytes may respond to IOP-related stress with increased expression of elastin and formation of elastotic fibers leading to loss of elasticity and tissue remodeling.
Collapse
MESH Headings
- Adolescent
- Adult
- Astrocytes/metabolism
- Astrocytes/pathology
- Astrocytes/ultrastructure
- Cell Division/physiology
- Cell Size/physiology
- Cells, Cultured/metabolism
- Cells, Cultured/pathology
- Cells, Cultured/ultrastructure
- Child
- Culture Media, Conditioned/chemistry
- Culture Media, Conditioned/metabolism
- Elastin/biosynthesis
- Elastin/genetics
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Glaucoma, Open-Angle/metabolism
- Glaucoma, Open-Angle/pathology
- Glaucoma, Open-Angle/physiopathology
- Glial Fibrillary Acidic Protein/metabolism
- Humans
- Hydrostatic Pressure/adverse effects
- Middle Aged
- Optic Disk/metabolism
- Optic Disk/pathology
- Optic Disk/physiopathology
- Optic Nerve Diseases/metabolism
- Optic Nerve Diseases/pathology
- Optic Nerve Diseases/physiopathology
- RNA, Messenger/metabolism
- Stress, Mechanical
Collapse
Affiliation(s)
- M R Hernandez
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| | | | | | | | | |
Collapse
|
87
|
Ricard CS, Kobayashi S, Pena JD, Salvador-Silva M, Agapova O, Hernandez MR. Selective expression of neural cell adhesion molecule (NCAM)-180 in optic nerve head astrocytes exposed to elevated hydrostatic pressure in vitro. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 81:62-79. [PMID: 11000479 DOI: 10.1016/s0169-328x(00)00150-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glaucomatous optic neuropathy is usually associated with elevated intraocular pressure. Optic nerve head astrocytes may respond to intraocular pressure by stimulation of pressure-sensitive mechanoreceptors on the cell surface. Neural cell adhesion molecule (NCAM) a transmembrane protein, mediates cell adhesion and migration. The NCAM 180 isoform increases in astrocytes of glaucomatous optic nerve head. We characterized the relative expression of NCAM isoforms in human optic nerve head astrocytes grown under elevated hydrostatic pressure. Astrocytes cultured from normal human optic nerve heads were exposed to either atmospheric or continuous hydrostatic pressure of 60 mm Hg, and analyzed at 6-48 h. Changes in cell shape, immunoreactivity, and distribution of GFAP, actin and NCAM were observed in pressure-treated cultures. Newly synthesized (35)S-labeled NCAM protein immunoprecipitated from cell lysates was increased 2-fold within 24 h after exposure to elevated pressure compared to control. The increase in NCAM synthesis was primarily due to the NCAM 180 isoform. A significant increase in NCAM 180 mRNA levels was detected by RT-PCR and Northern blots in cultured optic nerve head astrocytes within 6 h after exposure to elevated pressure. NCAM 180 mRNA and protein synthesis decreased after 24 h and returned to control levels by 48 h. Our data indicate that NCAM 180 transcription and synthesis in astrocytes is stimulated by elevated hydrostatic pressure. Because NCAM 180 interacts with the cytoskeleton through an extended cytoplasmic tail, a selective and transient increase in NCAM 180 in optic nerve head astrocytes exposed to elevated pressure may be relevant to the migration and interactions of reactive astrocytes in glaucoma.
Collapse
Affiliation(s)
- C S Ricard
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, 63110, St. Louis, MO, USA
| | | | | | | | | | | |
Collapse
|
88
|
Walker LM, Publicover SJ, Preston MR, Said Ahmed MA, El Haj AJ. Calcium-channel activation and matrix protein upregulation in bone cells in response to mechanical strain. J Cell Biochem 2000; 79:648-61. [PMID: 10996855 DOI: 10.1002/1097-4644(20001215)79:4<648::aid-jcb130>3.0.co;2-q] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Femur-derived osteoblasts cultured from rat femora were loaded with Fluo-3 using the AM ester. A quantifiable stretch was applied and [Ca(2+)]i levels monitored by analysis of fluorescent images obtained using an inverted microscope and laser scanning confocal imaging system. Application of a single pulse of tensile strain via an expandable membrane resulted in immediate increase in [Ca(2+)]i in a proportion of the cells, followed by a slow and steady decrease to prestimulation levels. Application of parathyroid hormone (10(-6) M) prior to mechanical stimulation potentiated the load-induced elevation of [Ca(2+)]i. Mechanically stimulating osteoblasts in Ca(2+)-free media or in the presence of either nifedipine (10 microM; L-type Ca(2+)-channel blocker) or thapsigargin (1 microM; depletes intracellular Ca(2+) stores) reduced strain-induced increases in [Ca(2+) ]i. Furthermore, strain-induced increases in [Ca(2+)]i were enhanced in the presence of Bayer K 8644 (500 nm), an agonist of L-type calcium channels. The effects of mechanical strain with and without inhibitors and agonists are described on the total cell population and on single cell responses. Application of strain and strain in the presence of the calcium-channel agonist Bay K 8644 to periosteal-derived osteoblasts increased levels of the extracellular matrix proteins osteopontin and osteocalcin within 24 h postload. This mechanically induced increase in osteopontin and osteocalcin was inhibited by the addition of the calcium-channel antagonist, nifedipine. Our results suggest an important role for L-type calcium channels and a thapsigargin-sensitive component in early mechanical strain transduction pathways in osteoblasts.
Collapse
Affiliation(s)
- L M Walker
- Centre for Science and Technology in Medicine, Keele University, Stoke on Trent, Birmingham, United Kingdom
| | | | | | | | | |
Collapse
|
89
|
Abstract
The development of tissue engineering in the field of orthopaedic surgery is now booming. Two fields of research in particular are emerging: the association of osteo-inductive factors with implantable materials; and the association of osteogenic stem cells with these materials (hybrid materials). In both cases, an understanding of the phenomena of cell adhesion and, in particular, understanding of the proteins involved in osteoblast adhesion on contact with the materials is of crucial importance. The proteins involved in osteoblast adhesion are described in this review (extracellular matrix proteins, cytoskeletal proteins, integrins, cadherins, etc.). During osteoblast/material interactions, their expression is modified according to the surface characteristics of materials. Their involvement in osteoblastic response to mechanical stimulation highlights the significance of taking them into consideration during development of future biomaterials. Finally, an understanding of the proteins involved in osteoblast adhesion opens up new possibilities for the grafting of these proteins (or synthesized peptide) onto vector materials, to increase their in vivo bioactivity or to promote cell integration within the vector material during the development of hybrid materials.
Collapse
Affiliation(s)
- K Anselme
- Institut de Recherche sur les Maladies du Squelette, Institut Calot, Berck sur mer, France.
| |
Collapse
|
90
|
Abstract
Periosteum has chondrogenic potential that makes it possible to repair or regenerate cartilage in damaged joints. Whole periosteal explants also can be cultured in vitro for the purpose of studying chondrogenesis. This chondrogenic potential arises because the cambium layer of periosteum contains chondrocyte precursor cells that form cartilage during limb development and growth in utero, and does so once again during fracture healing. The advantages of whole tissue periosteal transplants for cartilage repair include the fact that this tissue meets the three primary requirements for tissue engineering: a source of cells, a scaffold for delivering and retaining them, and a source of local growth factors. Data from in vivo studies show that periosteum transplanted into osteochondral articular defects produce cartilage that can restore the articular cartilage and be replaced by bone in the subchondral region. This capacity is determined by surgical factors such as the orientation of the cambium layer, postoperative factors such as the use of continuous passive motion, and the age and maturity of the experimental animal. In vitro studies have shown that the chondrogenic potential of periosteal explants is determined by culture, donor conditions, and technical factors. Chondrogenesis is optimized by suspension of the explants in agarose under aerobic conditions, with supplementation of the media using fetal calf serum and growth factors, particularly transforming growth factor-beta 1. The role of physical factors currently is being investigated, but studies show that the mechanical environment is important. Donor factors that are important include the harvest site, the size of the periosteal explant, and most importantly the age of the donor. Periosteal chondrogenesis follows a specific time course of events, with proliferation preceding differentiation. The current challenge is to clarify the process of periosteal chondrogenesis and its regulation at the cellular and molecular levels, so that it can be controlled intelligently and optimized for the purpose of cartilage repair and regeneration.
Collapse
Affiliation(s)
- S W O'Driscoll
- Department of Orthopedic Surgery, Mayo Clinic, Mayo Foundation, Rochester, MN 55905, USA
| |
Collapse
|
91
|
Walker LM, Holm A, Cooling L, Maxwell L, Oberg A, Sundqvist T, El Haj AJ. Mechanical manipulation of bone and cartilage cells with 'optical tweezers'. FEBS Lett 1999; 459:39-42. [PMID: 10508913 DOI: 10.1016/s0014-5793(99)01169-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The single beam optical gradient trap (optical tweezers) uses a single beam of laser light to non-invasively manipulate microscopic particles. Optical tweezers exerting a force of approximately 7 pN were applied to single bone and cartilage derived cells in culture and changes in intracellular calcium levels were observed using Fluo-3 labelling. Human derived osteoblasts responded to optical tweezers with an immediate increase in [Ca2+]i that was inhibited by the addition of a calcium channel blocker nifedipine. Force applied to different regions of cells resulted in a variable response. [Ca2+]i elevation in response to load was lower in rat femur derived osteoblasts, and not apparent in primary chondrocytes and the osteocytic cell line (MLO Y4).
Collapse
Affiliation(s)
- L M Walker
- Centre for Science and Technology in Medicine, School of Postgraduate Medicine, Keele University, North Staffs Hospital, Thornburrow Drive, Stoke on Trent, UK
| | | | | | | | | | | | | |
Collapse
|
92
|
Saris DB, Sanyal A, An KN, Fitzsimmons JS, O'Driscoll SW. Periosteum responds to dynamic fluid pressure by proliferating in vitro. J Orthop Res 1999; 17:668-77. [PMID: 10569475 DOI: 10.1002/jor.1100170508] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Periosteum provides a source of undifferentiated chondrocyte precursor cells for fracture healing that can also be used for cartilage repair. The quantity of cartilage that can be produced, which is a determining factor in fracture healing and cartilage repair, is related to the number of available stem cells in the cambium layer. Cartilage formation during both of these processes is enhanced by motion of the fracture or joint in which periosteum has been transplanted. The effect of dynamic fluid pressure on cell proliferation in periosteal tissue cultures was determined in 452 explants from 60 immature (2-month-old) New Zealand White rabbits. The explants were cultured in agarose suspension for 1-14 days. One group was subjected to cyclic hydrostatic pressure, which is referred to as dynamic fluid pressure, at 13 kPa and a frequency of 0.3 Hz. Control explants were cultured in similar chambers without application of pressure. DNA synthesis ([3H]thymidine uptake) and total DNA were measured. The temporal pattern and distribution of cell proliferation in periosteum were evaluated with autoradiography and immunostaining with proliferating cell nuclear antigen. Dynamic fluid pressure increased proliferation of periosteal cells significantly, as indicated by a significant increase in [3H]thymidine uptake at all time points and a higher amount of total DNA compared with control values. On day 3, when DNA synthesis reached a peak in periosteal explants, [3H]thymidine uptake was 97,000+/-5,700 dpm/microg DNA in the group exposed to dynamic fluid pressure and 46,000+/-6,000 dpm/microg in the controls (p < 0.001). Aphidicolin, which blocks DNA polymerase alpha, inhibited [3H]thymidine uptake in a dose-dependent manner in the group subjected to dynamic fluid pressure as well as in the positive control (treated with 10 ng/ml of transforming growth factor-beta1) and negative control (no added growth factors) groups, confirming that [3H]thymidine measurements represent proliferation and dynamic fluid pressure stimulates DNA synthesis. Total DNA was also significantly higher in the group exposed to dynamic fluid pressure (5,700+/-720 ng/mg wet weight) than in the controls (3,700+/-630) on day 3 (p < 0.01). Autoradiographs with [3H]thymidine revealed that one or two cell cycles of proliferation took place in the fibrous layer prior to proliferation in the cambium layer (where chondrocyte precursors reside). Proliferating cell nuclear antigen immunophotomicrographs confirmed the increased proliferative activity due to dynamic fluid pressure. These findings suggest either a paracrine signaling mechanism between the cells in these two layers of the periosteum or recruitment/migration of proliferating cells from the fibrous to the cambium layer. On the basis of the data presented in this study, we postulate that cells in the fibrous layer respond initially to mechanical stimulation by releasing growth factors that induce undifferentiated cells in the cambium layer to divide and differentiate into chondrocytes. These data indicate that cell proliferation in the early stages of chondrogenesis is stimulated by mechanical factors. These findings are important because they provide a possible explanation for the increase in cartilage repair tissue seen in joints subjected to continuous passive motion. The model of in vitro periosteal chondrogenesis under dynamic fluid pressure is valuable for studying the mechanisms by which mechanical factors might be involved in the formation of cartilage in the early fracture callus and during cartilage repair.
Collapse
Affiliation(s)
- D B Saris
- Cartilage and Connective Tissue Research Laboratory, Mayo Clinic, Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | |
Collapse
|
93
|
el Haj AJ, Walker LM, Preston MR, Publicover SJ. Mechanotransduction pathways in bone: calcium fluxes and the role of voltage-operated calcium channels. Med Biol Eng Comput 1999; 37:403-9. [PMID: 10505395 DOI: 10.1007/bf02513320] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Changes in strain distribution across the vertebrate skeleton induce modelling and remodelling of bone structure. This relationship, like many in biomedical science, has been recognised since the 1800s, but it is only the recent development of in vivo and in vitro models that is allowing detailed investigation of the cellular mechanisms involved. A number of secondary messenger pathways have been implicated in load transduction by bone cells, and many of these pathways are similar to those proposed for other load-responsive cell types. It appears that load transduction involves interaction between several messenger pathways, rather than one specific switch. Interaction between these pathways may result in a cascade of responses that promote and maintain bone cell activity in remodelling of bone. The paper outlines research on the early rapid signals for load transduction and, in particular, activation of membrane channels in osteoblasts. The involvement of calcium channels in the immediate load response and the modulation of intracellular calcium as an early signal are discussed. These membrane channels present a possible target for manipulation in the engineering of bone tissue repair.
Collapse
Affiliation(s)
- A J el Haj
- Centre for Science & Technology in Medicine, Biomedical and Cellular Engineering, School of Postgraduate Medicine, Keele University, Stoke, UK.
| | | | | | | |
Collapse
|
94
|
Macdonald AG, Fraser PJ. The transduction of very small hydrostatic pressures. Comp Biochem Physiol A Mol Integr Physiol 1999; 122:13-36. [PMID: 10216930 DOI: 10.1016/s1095-6433(98)10173-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This paper reviews experiments in which cells, subjected to hydrostatic pressures of 20 kPa or less, (micro-pressures), demonstrate a perturbation in growth and or metabolism. Similarly, the behavioural responses of aquatic animals (lacking an obvious compressible gas phase) to comparable pressures are reviewed. It may be shown that in both cases the effect of such very low hydrostatic pressures cannot be mediated through the thermodynamic mechanisms which are invoked for the effects of high hydrostatic pressure. The general conclusion is that cells probably respond to micro-pressures through a mechanical process. Differential compression of cellular structures is likely to cause shear and strain, leading to changes in enzyme and/or ion channel activity. If this conclusion is true then it raises a novel question about the involvement of 'micro-mechanical' effects in cells subjected to high hydrostatic pressure. The responses of aquatic animals to micro-pressures may be accounted for, using the model case of the crab, by the mechanical, bulk, compression of hair cells in the statocysts, the organ of balance. If this is true, it raises the interesting question of why the putative cellular mechanisms of micro-pressure transduction appear to have been superseded by the statocyst.
Collapse
Affiliation(s)
- A G Macdonald
- Department of Biomedical Sciences, University of Aberdeen, Scotland, UK.
| | | |
Collapse
|
95
|
Jacobs CR, Yellowley CE, Davis BR, Zhou Z, Cimbala JM, Donahue HJ. Differential effect of steady versus oscillating flow on bone cells. J Biomech 1998; 31:969-76. [PMID: 9880053 PMCID: PMC3057628 DOI: 10.1016/s0021-9290(98)00114-6] [Citation(s) in RCA: 355] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Loading induced fluid flow has recently been proposed as an important biophysical signal in bone mechanotransduction. Fluid flow resulting from activities which load the skeleton such as standing, locomotion, or postural muscle activity are predicted to be dynamic in nature and include a relatively small static component. However, in vitro fluid flow experiments with bone cells to date have been conducted using steady or pulsing flow profiles only. In this study we exposed osteoblast-like hFOB 1.19 cells (immortalized human fetal osteoblasts) to precisely controlled dynamic fluid flow profiles of saline supplemented with 2% fetal bovine serum while monitoring intracellular calcium concentration with the fluorescent dye fura-2. Applied flows included steady flow resulting in a wall shear stress of 2 N m(-2), oscillating flow (+/-2 Nm(-2)), and pulsing flow (0 to 2 N m(-2)). The dynamic flows were applied with sinusoidal profiles of 0.5, 1.0, and 2.0 Hz. We found that oscillating flow was a much less potent stimulator of bone cells than either steady or pulsing flow. Furthermore, a decrease in responsiveness with increasing frequency was observed for the dynamic flows. In both cases a reduction in responsiveness coincides with a reduction in the net fluid transport of the flow profile. Thus. these findings support the hypothesis that the response of bone cells to fluid flow is dependent on chemotransport effects.
Collapse
Affiliation(s)
- C R Jacobs
- Department of Orthopaedics and Rehabilitation, Penn State University, Hershey 17033, USA.
| | | | | | | | | | | |
Collapse
|
96
|
Brady TA, Piesco NP, Buckley MJ, Langkamp HH, Bowen LL, Agarwal S. Autoregulation of periodontal ligament cell phenotype and functions by transforming growth factor-beta1. J Dent Res 1998; 77:1779-90. [PMID: 9786634 PMCID: PMC4950996 DOI: 10.1177/00220345980770100501] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
During orthodontic tooth movement, mechanical forces acting on periodontal ligament (PDL) cells induce the synthesis of mediators which alter the growth, differentiation, and secretory functions of cells of the PDL. Since the cells of the PDL represent a heterogeneous population, we examined mechanically stress-induced cytokine profiles in three separate clones of human osteoblast-like PDL cells. Of the four pro-inflammatory cytokines investigated, only IL-6 and TGF-beta1 were up-regulated in response to mechanical stress. However, the expression of other pro-inflammatory cytokines such as IL-1 beta, TNF-alpha, or IL-8 was not observed. To understand the consequences of the increase in TGF-beta1 expression following mechanical stress, we examined the effect of TGF-beta1 on PDL cell phenotype and functions. TGF-beta1 was mitogenic to PDL cells at concentrations between 0.4 and 10 ng/mL. Furthermore, TGF-beta1 down-regulated the osteoblast-like phenotype of PDL cells, i.e., alkaline phosphatase activity, calcium phosphate nodule formation, expression of osteocalcin, and TGF-beta1, in a dose-dependent manner. Although initially TGF-beta1 induced expression of type I collagen mRNA, prolonged exposure to TGF-beta1 down-regulated the ability of PDL cells to express type I collagen mRNA. Our results further show that, within 4 hrs, exogenously applied TGF-beta1 down-regulated IL-6 expression in a dose-dependent manner, and this inhibition was sustained over a six-day period. In summary, the data suggest that mechanically stress-induced TGF-beta1 expression may be a physiological mechanism to induce mitogenesis in PDL cells while down-regulating its osteoblast-like features and simultaneously reducing the IL-6-induced bone resorption.
Collapse
Affiliation(s)
- T A Brady
- Department of Orthodontics, University of Pittsburgh School of Dental Medicine, Pennsylvania 15261-1964, USA
| | | | | | | | | | | |
Collapse
|
97
|
|
98
|
Abstract
There is no tissue in which mechanical stresses have been studied in more detail than the skeletal system, this focus arising primarily because bone plays a clear structural role in the body. However, the hypothesis that the skeleton represents an optimally designed structure has contributed remarkably little to our understanding of the development and adaptive capabilities of bone tissue. Recent investigations on the consequences of mechanical, hydrostatic, and electrical stresses on the cells of bone tissue have served to redirect the discussion of bone modeling and remodeling processes. These studies have refocused attention on the importance of chronic low-level dynamic stresses in mediating the physiologic response of bone tissue. Important recent observations suggest that an approach premised on the self-organizational properties of bone tissue may lead to significant improvements in our understanding and control of bone morphologic development, adaptation, and healing.
Collapse
Affiliation(s)
- K J McLeod
- Musculoskeletal Research Laboratory, Health Sciences Center, State University of New York, Stony Brook 11794-8181, USA.
| | | | | | | |
Collapse
|
99
|
Abstract
The effect of medium pH on the activity of cultured human osteoblasts was investigated in this study. Osteoblasts derived from explants of human trabecular bone were grown to confluence and subcultured. The first-pass cells were incubated in Hepes-buffered media at initial pHs adjusted from 7.0 to 7.8. Osteoblast function was evaluated by measuring lactate production, alkaline phosphatase activity, proline hydroxylation, DNA content, and thymidine incorporation. Changes in medium pH were determined from media pHs recorded at the beginning and end of the final 48 h incubation period. As medium pH increased through pH 7.6, collagen synthesis, alkaline phosphatase activity, and thymidine incorporation increased. DNA content increased from pH 7.0 to 7.2, plateaued from pH 7.2 to 7.6, and increased again from pH 7.6 to 7.8. The changes in the medium pH were greatest at pHs 7.0 and 7.8, modest at pHs 7.4 and 7.6, and did not change at 7.2, suggesting that the pHs are migrating towards pH 7.2. Lactate production increased at pH 7.0 but remained constant from 7.2 to 7.8. These results suggest that in the pH range from 7.0-7.6 the activity of human osteoblasts increases with increasing pH, that this increase in activity does not require an increase in glycolytic activity, and that pH 7.2 may be the optimal pH for these cells.
Collapse
Affiliation(s)
- K K Kaysinger
- Baxter Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Carolinas Medical Center, Charlotte, North Carolina 28232, USA.
| | | |
Collapse
|
100
|
Moss ML. The functional matrix hypothesis revisited. 4. The epigenetic antithesis and the resolving synthesis. Am J Orthod Dentofacial Orthop 1997; 112:410-7. [PMID: 9345153 DOI: 10.1016/s0889-5406(97)70049-0] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In two interrelated articles, the current revision of the functional matrix hypothesis extends to a reconsideration of the relative roles of genomic and of epigenetic processes and mechanisms in the regulation (control, causation) of craniofacial growth and development. The dialectical method was chosen to analyze this matter, because it explicitly provides for the fuller presentation of a genomic thesis, an epigenetic antithesis, and a resolving synthesis. The later two are presented here, where the synthesis suggests that both genomic and epigenetic factors are necessary causes, that neither alone is also a sufficient cause, and that only the two, interacting together, furnish both the necessary and sufficient cause(s) of ontogenesis. This article also provides a comprehensive bibliography that introduces the several new, and still evolving, disciplines that may provide alternative viewpoints capable of resolving this continuing controversy; repetition of the present theoretical bases for the arguments on both sides of these questions seems nonproductive. In their place, it is suggested that the group of disciplines, broadly termed Complexity, would most likely amply repay deeper consideration and application in the study of ontogenesis.
Collapse
Affiliation(s)
- M L Moss
- Department of Anatomy and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|