51
|
Zhu Y, Doray B, Poussu A, Lehto VP, Kornfeld S. Binding of GGA2 to the lysosomal enzyme sorting motif of the mannose 6-phosphate receptor. Science 2001; 292:1716-8. [PMID: 11387476 DOI: 10.1126/science.1060896] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The GGAs are a multidomain protein family implicated in protein trafficking between the Golgi and endosomes. Here, the VHS domain of GGA2 was shown to bind to the acidic cluster-dileucine motif in the cytoplasmic tail of the cation-independent mannose 6-phosphate receptor (CI-MPR). Receptors with mutations in this motif were defective in lysosomal enzyme sorting. The hinge domain of GGA2 bound clathrin, suggesting that GGA2 could be a link between cargo molecules and clathrin-coated vesicle assembly. Thus, GGA2 binding to the CI-MPR is important for lysosomal enzyme targeting.
Collapse
Affiliation(s)
- Y Zhu
- Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
52
|
Osipo C, Dorman S, Frankfater A. Loss of insulin-like growth factor II receptor expression promotes growth in cancer by increasing intracellular signaling from both IGF-I and insulin receptors. Exp Cell Res 2001; 264:388-96. [PMID: 11262195 DOI: 10.1006/excr.2000.5121] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The insulin-like growth factor-II receptor (IGF-IIR) is frequently mutated or deleted in some malignant human tumors, suggesting that the IGF-IIR is a tumor suppressor. However, the exact mechanism by which IGF-IIR suppresses growth in tumors has not been definitively established. We demonstrate that IGF-IIR-deficient murine L cells (D9) have higher growth rates than IGF-IIR-positive L cells (Cc2) in response to IGF-II. IGF-II levels are higher in growth-conditioned medium from D9 versus Cc2 cells. Receptor neutralization studies and measurements of insulin receptor substrate 1 phosphorylation confirm that the enhanced growth of D9 cells is due to increased stimulation of the IGF-I and insulin receptors by IGF-II. In contrast, the levels of secreted latent and active transforming growth factor beta (TGF-beta) are similar for both D9 and Cc2 cells, indicating that the slower growth of Cc2 cells is not due to activation of latent TGF-beta by IGF-IIR and growth inhibition. The results directly demonstrate that down regulation of the IGF-IIR promotes the growth of transformed D9 cells by sustaining IGF-II, which binds to and activates IGF-IR and insulin receptor to increase intracellular growth signals.
Collapse
Affiliation(s)
- C Osipo
- Division of Molecular and Cellular Biochemistry, Loyola University Medical Center, Maywood, Illinois 60153, USA
| | | | | |
Collapse
|
53
|
Heda GD, Tanwani M, Marino CR. The Delta F508 mutation shortens the biochemical half-life of plasma membrane CFTR in polarized epithelial cells. Am J Physiol Cell Physiol 2001; 280:C166-74. [PMID: 11121388 DOI: 10.1152/ajpcell.2001.280.1.c166] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the biosynthetic arrest of the DeltaF508 mutant of cystic fibrosis transmembrane conductance regulator (CFTR) can be partially reversed by physical and chemical means, recent evidence suggests that the functional stability of the mutant protein after reaching the cell surface is compromised. To understand the molecular basis for this observation, the current study directly measured the half-life of Delta F508 and wild-type CFTR at the cell surface of transfected LLC-PK(1) cells. Plasma membrane CFTR expression over time was characterized biochemically and functionally in these polarized epithelial cells. Surface biotinylation, streptavidin extraction, and quantitative immunoblot analysis determined the biochemical half-life of plasma membrane DeltaF508 CFTR to be approximately 4 h, whereas the plasma membrane half-life of wild-type CFTR exceeded 48 h. This difference in biochemical stability correlated with CFTR-mediated transport function. These findings indicate that the Delta F508 mutation decreases the biochemical stability of CFTR at the cell surface. We conclude that the Delta F508 mutation triggers more rapid internalization of CFTR and/or its preferential sorting to a pathway of rapid degradation.
Collapse
Affiliation(s)
- G D Heda
- Research, Veterans Affairs Medical Center, Memphis, Tennessee 38163, USA
| | | | | |
Collapse
|
54
|
Reaves BJ, Row PE, Bright NA, Luzio JP, Davidson HW. Loss of cation-independent mannose 6-phosphate receptor expression promotes the accumulation of lysobisphosphatidic acid in multilamellar bodies. J Cell Sci 2000; 113 ( Pt 22):4099-108. [PMID: 11058096 DOI: 10.1242/jcs.113.22.4099] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A number of recent studies have highlighted the importance of lipid domains within endocytic organelles in the sorting and movement of integral membrane proteins. In particular, considerable attention has become focussed upon the role of the unusual phospholipid lysobisphosphatidic acid (LBPA). This lipid appears to be directly involved in the trafficking of cholesterol and glycosphingolipids, and accumulates in a number of lysosomal storage disorders. Antibody-mediated disruption of LBPA function also leads to mis-sorting of cation-independent mannose 6-phosphate receptors. We now report that the converse is also true, and that spontaneous loss of cation-independent mannose 6-phosphate receptors from a rat fibroblast cell line led to the formation of aberrant late endocytic structures enriched in LBPA. Accumulation of LBPA was directly dependent upon the loss of the receptors, and could be reversed by expression of bovine cation-independent mannose 6-phosphate receptors in the mutant cell line. Ultrastructural analysis indicated that the abnormal organelles were electron-dense, had a multi-lamellar structure, accumulated endocytosed probes, and were distinct from dense-core lysosomes present within the same cells. The late endocytic structures present at steady state within any particular cell likely reflect the balance of membrane traffic through the endocytic pathway of that cell, and the rate of maturation of individual endocytic organelles. Moreover, there is considerable evidence which suggests that cargo receptors also play a direct mechanistic role in membrane trafficking events. Therefore, loss of such a protein may disturb the overall equilibrium of the pathway, and hence cause the accumulation of aberrant organelles. We propose that this mechanism underlies the phenotype of the mutant cell line, and that the formation of inclusion bodies in many lysosomal storage diseases is also due to an imbalance in membrane trafficking within the endocytic pathway.
Collapse
Affiliation(s)
- B J Reaves
- Wellcome Trust Centre for Molecular Mechanisms in Disease, University of Cambridge, Addenbrookes Hospital, Hills Road, Cambridge, CB2 2XY, UK
| | | | | | | | | |
Collapse
|
55
|
Motyka B, Korbutt G, Pinkoski MJ, Heibein JA, Caputo A, Hobman M, Barry M, Shostak I, Sawchuk T, Holmes CF, Gauldie J, Bleackley RC. Mannose 6-phosphate/insulin-like growth factor II receptor is a death receptor for granzyme B during cytotoxic T cell-induced apoptosis. Cell 2000; 103:491-500. [PMID: 11081635 DOI: 10.1016/s0092-8674(00)00140-9] [Citation(s) in RCA: 297] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The serine proteinase granzyme B is crucial for the rapid induction of target cell apoptosis by cytotoxic T cells. Granzyme B was recently demonstrated to enter cells in a perforin-independent manner, thus predicting the existence of a cell surface receptor(s). We now present evidence that this receptor is the cation-independent mannose 6-phosphate/insulin-like growth factor receptor (CI-MPR). Inhibition of the granzyme B-CI-MPR interaction prevented granzyme B cell surface binding, uptake, and the induction of apoptosis. Significantly, expression of the CI-MPR was essential for cytotoxic T cell-mediated apoptosis of target cells in vitro and for the rejection of allogeneic cells in vivo. These results suggest a novel target for immunotherapy and a potential mechanism used by tumors for immune evasion.
Collapse
Affiliation(s)
- B Motyka
- Department of Biochemistry, University of Alberta, Edmonton, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Orsel JG, Sincock PM, Krise JP, Pfeffer SR. Recognition of the 300-kDa mannose 6-phosphate receptor cytoplasmic domain by 47-kDa tail-interacting protein. Proc Natl Acad Sci U S A 2000; 97:9047-51. [PMID: 10908666 PMCID: PMC16819 DOI: 10.1073/pnas.160251397] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tail-interacting 47-kDa protein (TIP47) binds the cytoplasmic domains of the cation-dependent (CD) and cation-independent (CI) mannose 6-phosphate receptors (MPRs) and is required for their transport from endosomes to the Golgi complex. TIP47 recognizes a phenylalanine-tryptophan signal in the CD-MPR. We show here that TIP47 interaction with the 163-residue CI-MPR cytoplasmic domain is highly conformation dependent and requires CI-MPR residues that are proximal to the membrane. CI-MPR cytoplasmic domain residues 1-47 are dispensable, whereas residues 48-74 are essential for high-affinity binding. However, residues 48-74 are not sufficient for high-affinity binding; residues 75-163 alone display weak affinity for TIP47, yet they contribute to the presentation of residues 48-74 in the intact protein. Independent competition binding experiments confirm that TIP47 interacts with the membrane-proximal portion of the CI-MPR cytoplasmic domain. TIP47 binding is competed by the binding of the AP-2 clathrin adaptor at (and near) residues 24-29 but not by AP-1 binding at (and near) residues 160-161. Finally, TIP47 appears to recognize a putative loop generated by the sequence PPAPRPG and other hydrophobic residues in the membrane-proximal domain. Although crystallography will be needed to define the precise interaction interface, these data provide an initial structural basis for TIP47-CI-MPR association.
Collapse
Affiliation(s)
- J G Orsel
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | | | | | | |
Collapse
|
57
|
Juuti-Uusitalo K, Airenne KJ, Laukkanen A, Punnonen EL, Olkkonen VM, Gruenberg J, Kulomaa M, Marjomäki V. Selective targeting of avidin/mannose 6-phosphate receptor chimeras to early or late endosomes. Eur J Cell Biol 2000; 79:458-68. [PMID: 10961445 DOI: 10.1078/0171-9335-00074] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In this study we have used the Semliki forest virus expression system to transiently express chimeric proteins that contain transmembrane and cytoplasmic domains of the cation-independent mannose 6-phosphate receptor (CI-MPR) fused to chicken avidin. Immunofluorescence and electron microscopy studies showed that the chimeric protein with the entire cytoplasmic domain of CI-MPR was transported to late endosomes, where it accumulated. We made use of the biotin-binding capacity of lumenal avidin, and found that, in agreement with this distribution, the chimeric protein could be labelled with biotinylated HRP endocytosed for a long, but not a brief, period of time. However, truncation of the C-terminal tail distal to the rapid endocytosis motif (YKYSKV), caused the truncated chimera to be transported to, and accumulated within, early endosomes. This truncated chimera did not reach recycling early endosomes labelled with internalised transferrin, to any significant extent, but was accessible to biotinylated HRP internalised for 5 min (or for longer periods at 19 degrees C). Coinfection of these chimeras showed that they follow the same route from the TGN to the early endosomes. We conclude that the sequence distal to the endocytosis motif contains the signals which are required for efficient transport to late endosomes. Our results also suggest that the YKYSKV sequence close to the CI-MPR transmembrane segment is sufficient for targeting to sorting early endosomes.
Collapse
Affiliation(s)
- K Juuti-Uusitalo
- University of Jyväskylä, Department of Biological and Environmental Science, Finland
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Sandholzer U, von Figura K, Pohlmann R. Function and properties of chimeric MPR 46-MPR 300 mannose 6-phosphate receptors. J Biol Chem 2000; 275:14132-8. [PMID: 10799489 DOI: 10.1074/jbc.275.19.14132] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two known mannose 6-phosphate receptors (MPR 46 and MPR 300) mediate the transport of mannose 6-phosphate-containing lysosomal proteins to lysosomes. Endocytosis of extracellular mannose 6-phosphate ligands can only be mediated by MPR 300. Neither type of MPR appears to be sufficient for targetting the full complement of lysosomal enzymes to lysosomes. The complements of lysosomal enzymes transported by either of the two receptors are distinct but largely overlapping. Chimeric receptors were constructed in which the transmembrane and cytoplasmic domains of the two receptors were systematically exchanged. After expression of the chimeric receptors in cells lacking endogenous MPRs the binding of ligands, the subcellular distribution and the sorting efficiency for lysosomal enzymes were analyzed. All chimeras were functional, and their subcellular distribution was similar to that of wild type MPRs. The ability to endocytose lysosomal enzymes was restricted to receptors with the lumenal domain of MPR 300. The efficiency to sort lysosomal enzymes correlated with the lumenal and cytoplasmic domains of MPR 300. In contrast to the wild type receptors, a significant fraction of most of the chimeric receptors was misrouted to lysosomes, indicating that the signals determining the routing of MPRs have been fitted for the parent receptor polypeptides.
Collapse
Affiliation(s)
- U Sandholzer
- Georg-August-Universität, Abt. Biochemie II, Gosslerstrasse 12d, 37075 Göttingen, Germany
| | | | | |
Collapse
|
59
|
Perlman EJ, Hu J, Ho D, Cushing B, Lauer S, Castleberry RP. Genetic analysis of childhood endodermal sinus tumors by comparative genomic hybridization. J Pediatr Hematol Oncol 2000; 22:100-5. [PMID: 10779021 DOI: 10.1097/00043426-200003000-00003] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Childhood endodermal sinus tumors (CEST) are a distinct category of germ cell tumors that involve the testis and extragonadal sites of young children. Recurrent deletions of 1p and 6q have been reported by classic cytogenetic analysis of a small number of cases. Comparative genomic hybridization, a technique that screens the entire genome for genetic abnormalities, is applied to additionally define the genetic changes present in CESTs. Sixteen frozen CESTs (10 testicular, 6 extragonadal) obtained from Pediatric Oncology Group-affiliated institutions or from the Cooperative Human Tissue Network were analyzed. The most common changes were gain of 20q (10 tumors), 1q (6 tumors), 11q and 22 (4 tumors each), and loss of 6q (8 tumors with common deleted region of 6q24-qter), 16q (4 tumors), and 1p (4 tumors). Localized regions of gain were identified at 8q24 (2 tumors both showing c-myc amplification by fluorescence in situ hybridization). Gain of 12p, characteristic of adolescent germ cell tumor, was present in one testicular tumor. Comparative genomic hybridization was useful in defining genetic differences between adult and childhood tumors, in determining the common regions deleted on chromosome 6, and in identifying other involved loci to be correlated with clinical parameters in future studies.
Collapse
Affiliation(s)
- E J Perlman
- Division of Pediatric Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | | | | | | | | | | |
Collapse
|
60
|
DaCosta SA, Schumaker LM, Ellis MJ. Mannose 6-phosphate/insulin-like growth factor 2 receptor, a bona fide tumor suppressor gene or just a promising candidate? J Mammary Gland Biol Neoplasia 2000; 5:85-94. [PMID: 10791771 DOI: 10.1023/a:1009571417429] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R) is considered a "candidate" tumor suppressor gene. This hypothesis has been provoked by the identification of loss of heterozygosity (LOH) at the M6P/IGF2R locus on chromosome 6q26 in breast and liver cancer, accompanied by point mutations in the remaining allele. Somatic mutations in coding region microsatellites have also been described in replication error positive (RER+) tumors of the gastrointestinal tract, endometrium and brain. These genetic data are compelling, but a tumor suppressor gene candidate has to meet functional as well as genetic criteria. This review weighs the evidence and discusses the observations that are necessary to promote M6P/IGF2R from candidate to bona fide tumor suppressor gene.
Collapse
Affiliation(s)
- S A DaCosta
- Lombardi Cancer Center, Georgetown University, Washington, DC 20007, USA
| | | | | |
Collapse
|
61
|
Sung CH, Tai AW. Rhodopsin trafficking and its role in retinal dystrophies. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 195:215-67. [PMID: 10603577 DOI: 10.1016/s0074-7696(08)62706-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We review the sorting/targeting steps involved in the delivery of rhodopsin to the outer segment compartment of highly polarized photoreceptor cells. The transport of rhodopsin includes (1) the sorting/budding of rhodopsin-containing vesicles at the trans-Golgi network, (2) the directional translocation of rhodopsin-bearing vesicles through the inner segment, and (3) the delivery of rhodopsin across the connecting cilium to the outer segment. Several independent lines of evidence suggest that the carboxyl-terminal, cytoplasmic tail of rhodopsin is involved in the post-Golgi trafficking of rhodopsin. Inappropriate subcellular targeting of naturally occurring rhodopsin mutants in vivo leads to photoreceptor cell death. Thus, the genes encoding mutations in the cellular components involved in photoreceptor protein transport are likely candidate genes for retinal dystrophies.
Collapse
Affiliation(s)
- C H Sung
- Department of Cell Biology and Anatomy, Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | |
Collapse
|
62
|
Fujita H, Saeki M, Yasunaga K, Ueda T, Imoto T, Himeno M. In vitro binding study of adaptor protein complex (AP-1) to lysosomal targeting motif (LI-motif). Biochem Biophys Res Commun 1999; 255:54-8. [PMID: 10082654 DOI: 10.1006/bbrc.1998.0140] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lysosomal membrane glycoproteins carry targeting information in cytoplasmic regions. Two distinct targeting motifs in these regions, GY (glycine-tyrosine) and LI (leucine-isoleucine), have been identified and characterized. Accumulating evidence suggests that the adaptor complexes (AP-1, AP-2, and AP-3) recognize this information in cytoplasmic tails of transmembrane proteins. Here we report two different in vitro analyses (affinity beads and surface plasmon resonance) which revealed specific interaction between the cytoplasmic tail of LGP85 and AP-1 but not so with AP-2. We also noted requirement of the LI motif of the LGP85 tail in binding to the AP-1 complex. Our data and others which indicated the binding of AP-3 to the LIMP II (synonym of LGP85) tail suggest that the cytoplasmic tail of LGP85 interacts with AP-1 at the trans-Golgi network (TGN) and AP-3 at late endosomes, respectively. We propose that this sequential interaction between the lysosomal targeting signal and distinct APs along its transport pathway is responsible for the critical sorting of lysosomal membrane proteins and/or the potential proofreading system of mistargeted molecules.
Collapse
Affiliation(s)
- H Fujita
- Division of Physiological Chemistry, Kyushu University, Fukuoka, 812-0054, Japan
| | | | | | | | | | | |
Collapse
|
63
|
York SJ, Arneson LS, Gregory WT, Dahms NM, Kornfeld S. The rate of internalization of the mannose 6-phosphate/insulin-like growth factor II receptor is enhanced by multivalent ligand binding. J Biol Chem 1999; 274:1164-71. [PMID: 9873065 DOI: 10.1074/jbc.274.2.1164] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cation-independent mannose 6-phosphate/insulin-like growth factor II receptor (M6P/IGF-II receptor) undergoes constitutive endocytosis, mediating the internalization of two unrelated classes of ligands, mannose 6-phosphate (Man-6-P)-containing acid hydrolases and insulin-like growth factor II (IGF-II). To determine the role of ligand valency in M6P/IGF-II receptor-mediated endocytosis, we measured the internalization rates of two ligands, beta-glucuronidase (a homotetramer bearing multiple Man-6-P moieties) and IGF-II. We found that beta-glucuronidase entered the cell approximately 3-4-fold faster than IGF-II. Unlabeled beta-glucuronidase stimulated the rate of internalization of 125I-IGF-II to equal that of 125I-beta-glucuronidase, but a bivalent synthetic tripeptide capable of occupying both Man-6-P-binding sites on the M6P/IGF-II receptor simultaneously did not. A mutant receptor with one of the two Man-6-P-binding sites inactivated retained the ability to internalize beta-glucuronidase faster than IGF-II. Thus, the increased rate of internalization required a multivalent ligand and a single Man-6-P-binding site on the receptor. M6P/IGF-II receptor solubilized and purified in Triton X-100 was present as a monomer, but association with beta-glucuronidase generated a complex composed of two receptors and one beta-glucuronidase. Neither IGF-II nor the synthetic peptide induced receptor dimerization. These results indicate that intermolecular cross-linking of the M6P/IGF-II receptor occurs upon binding of a multivalent ligand, resulting in an increased rate of internalization.
Collapse
Affiliation(s)
- S J York
- Division of Hematology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
64
|
|
65
|
Hsu VW, Peters PJ. Current views in intracellular transport: insights from studies in immunology. Adv Immunol 1998; 70:369-415. [PMID: 9755342 DOI: 10.1016/s0065-2776(08)60391-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- V W Hsu
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
66
|
Marsh BJ, Martin S, Melvin DR, Martin LB, Alm RA, Gould GW, James DE. Mutational analysis of the carboxy-terminal phosphorylation site of GLUT-4 in 3T3-L1 adipocytes. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:E412-22. [PMID: 9725807 DOI: 10.1152/ajpendo.1998.275.3.e412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The carboxy terminus of GLUT-4 contains a functional internalization motif (Leu-489Leu-490) that helps maintain its intracellular distribution in basal adipocytes. This motif is flanked by the major phosphorylation site in this protein (Ser-488), which may play a role in regulating GLUT-4 trafficking in adipocytes. In the present study, the targeting of GLUT-4 in which Ser-488 has been mutated to alanine (SAG) has been examined in stably transfected 3T3-L1 adipocytes. The trafficking of SAG was not significantly different from that of GLUT-4 in several respects. First, in the absence of insulin, the distribution of SAG was similar to GLUT-4 in that it was largely excluded from the cell surface and was enriched in small intracellular vesicles. Second, SAG exhibited insulin-dependent movement to the plasma membrane (4- to 5-fold) comparable to GLUT-4 (4- to 5-fold). Finally, okadaic acid, which has previously been shown to stimulate both GLUT-4 translocation and its phosphorylation at Ser-488, also stimulated the movement of SAG to the cell surface similarly to GLUT-4. Using immunoelectron microscopy, we have shown that GLUT-4 is localized to intracellular vesicles containing the Golgi-derived gamma-adaptin subunit of AP-1 and that this localization is enhanced when Ser-488 is mutated to alanine. We conclude that the carboxy-terminal phosphorylation site in GLUT-4 (Ser-488) may play a role in intracellular sorting at the trans-Golgi network but does not play a major role in the regulated movement of GLUT-4 to the plasma membrane in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- B J Marsh
- Boulder Laboratory for Three-Dimensional Fine Structure, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309-0347, USA
| | | | | | | | | | | | | |
Collapse
|
67
|
Marron-Terada PG, Brzycki-Wessell MA, Dahms NM. The two mannose 6-phosphate binding sites of the insulin-like growth factor-II/mannose 6-phosphate receptor display different ligand binding properties. J Biol Chem 1998; 273:22358-66. [PMID: 9712856 DOI: 10.1074/jbc.273.35.22358] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The two mannose 6-phosphate (Man-6-P) binding sites of the insulin-like growth factor-II/mannose 6-phosphate receptor (IGF-II/MPR) have been localized to domains 1-3 and 7-9, and studies have shown that Arg435 in domain 3 and Arg 1334 in domain 9 are essential for Man-6-P binding. To determine whether the IGF-II/MPR containing a single Man-6-P binding site is functional, clonal mouse L cell lines stably transfected with either mutant bovine IGF-II/MPR cDNA, containing substitutions at position 435 and/or 1334, or the wild type receptor cDNA were assayed for their ability to sort lysosomal enzymes to the lysosome. Mutant receptors containing a single Man-6-P binding site were approximately 50% less efficient than the wild type receptor in the overall targeting of lysosomal enzymes to the lysosome. Mutant receptors containing a substitution at Arg1334 (Dom9(Ala)), in contrast to those containing a substitution at Arg435 (Dom3(Ala)), were unable to target cathepsin D and beta-hexosaminidase to the lysosome. Equilibrium binding assays using 125I-labeled beta-glucuronidase demonstrated that Dom3(Ala) and Dom9(Ala) had a Kd of 2.0 and 4.3 nM, respectively. In addition, Dom3(Ala), unlike Dom9(Ala), was unable to completely dissociate from ligand under acidic pH conditions. These data indicate that the two Man-6-P binding sites of the IGF-II/MPR are not functionally equivalent.
Collapse
Affiliation(s)
- P G Marron-Terada
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | |
Collapse
|
68
|
Le Borgne R, Hoflack B. Protein transport from the secretory to the endocytic pathway in mammalian cells. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1404:195-209. [PMID: 9714803 DOI: 10.1016/s0167-4889(98)00057-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The trans-Golgi network (TGN) is the last station of the secretory pathway where soluble and membrane proteins are sorted for subsequent transport to endocytic compartments. This pathway is primarily followed by two distinct but related mannose 6-phosphate receptors which exhibit complementary functions in soluble lysosomal enzyme targeting. These transmembrane proteins and their bound ligands are packaged in transport intermediates coated with clathrin and the AP-1 assembly complex. Their segregation is determined by the interaction of tyrosine- and di-leucine-based sorting determinants present in their cytoplasmic domains with AP-1. Other membrane proteins such as the lysosomal membrane glycoproteins or envelope glycoproteins of herpes viruses, which contain similar sorting signals, may also follow the same pathway. In this review, we will summarize our current understanding of the molecular mechanisms leading to membrane protein sorting in the TGN and the formation of AP-1-coated transport intermediates.
Collapse
Affiliation(s)
- R Le Borgne
- Institut de Biologie de Lille, EP CNRS 525, Institut Pasteur de Lille, BP 447, 1, rue Professeur Calmette, 59021 Lille Cédex, France
| | | |
Collapse
|
69
|
Brown SD, Twells RC, Hey PJ, Cox RD, Levy ER, Soderman AR, Metzker ML, Caskey CT, Todd JA, Hess JF. Isolation and characterization of LRP6, a novel member of the low density lipoprotein receptor gene family. Biochem Biophys Res Commun 1998; 248:879-88. [PMID: 9704021 DOI: 10.1006/bbrc.1998.9061] [Citation(s) in RCA: 152] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A novel member of the low density lipoprotein receptor (LDLR) gene family has been identified and characterized. This gene, termed LDL receptor-related protein 6 (LRP6), encodes a transmembrane protein which has 71% identity and is structurally similar to the protein encoded by LRP5, a proposed candidate gene for type 1 diabetes located on human chromosome 11q13. LRP6 maps to human chromosome 12p11-p13. Mouse Lrp6 encodes a protein that has 98% identity to human LRP6 and maps to chromosome 6. Unlike other members of the LDLR family, LRP6 and LRP5 display a unique pattern of four epidermal growth factor (EGF) and three LDLR repeats in the extracellular domain. The cytoplasmic domain of LRP6 is not similar to other members of the LDLR family, while comparison with LRP5 reveals proline-rich motifs that may mediate protein-protein interactions. Thus, it is likely that LRP6 and LRP5 comprise a new class of the LDLR family.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Chromosome Mapping
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 12
- Cloning, Molecular
- Diabetes Mellitus, Type 1/genetics
- Epidermal Growth Factor/chemistry
- Gene Library
- Humans
- Low Density Lipoprotein Receptor-Related Protein-1
- Mice
- Molecular Sequence Data
- Multigene Family
- Polymerase Chain Reaction
- Receptors, Immunologic/biosynthesis
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/chemistry
- Sequence Alignment
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- S D Brown
- Department of Human Genetics, Merck Research Laboratories, West Point, Pennsylvania 19486, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Nykjaer A, Christensen EI, Vorum H, Hager H, Petersen CM, Røigaard H, Min HY, Vilhardt F, Møller LB, Kornfeld S, Gliemann J. Mannose 6-phosphate/insulin-like growth factor-II receptor targets the urokinase receptor to lysosomes via a novel binding interaction. J Cell Biol 1998; 141:815-28. [PMID: 9566979 PMCID: PMC2132758 DOI: 10.1083/jcb.141.3.815] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The urokinase-type plasminogen activator receptor (uPAR) plays an important role on the cell surface in mediating extracellular degradative processes and formation of active TGF-beta, and in nonproteolytic events such as cell adhesion, migration, and transmembrane signaling. We have searched for mechanisms that determine the cellular location of uPAR and may participate in its disposal. When using purified receptor preparations, we find that uPAR binds to the cation-independent, mannose 6-phosphate/insulin-like growth factor-II (IGF-II) receptor (CIMPR) with an affinity in the low micromolar range, but not to the 46-kD, cation-dependent, mannose 6-phosphate receptor (CDMPR). The binding is not perturbed by uPA and appears to involve domains DII + DIII of the uPAR protein moiety, but not the glycosylphosphatidylinositol anchor. The binding occurs at site(s) on the CIMPR different from those engaged in binding of mannose 6-phosphate epitopes or IGF-II. To evaluate the significance of the binding, immunofluorescence and immunoelectron microscopy studies were performed in transfected cells, and the results show that wild-type CIMPR, but not CIMPR lacking an intact sorting signal, modulates the subcellular distribution of uPAR and is capable of directing it to lysosomes. We conclude that a site within CIMPR, distinct from its previously known ligand binding sites, binds uPAR and modulates its subcellular distribution.
Collapse
Affiliation(s)
- A Nykjaer
- Department of Medical Biochemistry, University of Aarhus, DK-8000 Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
Mannose 6-phosphate receptors (MPRs) transport newly synthesized lysosomal hydrolases from the Golgi to prelysosomes and then return to the Golgi for another round of transport. We have identified a 47 kDa protein (TIP47) that binds selectively to the cytoplasmic domains of cation-independent and cation-dependent MPRs. TIP47 is present in cytosol and on endosomes and is required for MPR transport from endosomes to the trans-Golgi network in vitro and in vivo. TIP47 recognizes a phenylalanine/tryptophan signal in the tail of the cation-dependent MPR that is essential for its proper sorting within the endosomal pathway. These data suggest that TIP47 binds MPR cytoplasmic domains and facilitates their collection into transport vesicles destined for the Golgi.
Collapse
Affiliation(s)
- E Díaz
- Department of Biochemistry, Stanford University School of Medicine, California 94305-5307, USA
| | | |
Collapse
|
72
|
Kundra R, Kornfeld S. Wortmannin retards the movement of the mannose 6-phosphate/insulin-like growth factor II receptor and its ligand out of endosomes. J Biol Chem 1998; 273:3848-53. [PMID: 9461565 DOI: 10.1074/jbc.273.7.3848] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The effect of wortmannin on the trafficking of the mannose 6-phosphate/insulin-like growth factor II receptor (Man-6-P/IGF-II receptor) and its ligand beta-glucuronidase has been determined in murine L cells and normal rat kidney cells. The drug induced a 90% decrease in the steady-state level of the Man-6-P/IGF-II receptor at the plasma membrane without affecting the rate of internalization, indicating that the return of receptor from endosomes to the plasma membrane is retarded. Wortmannin also slowed the movement of receptor from endosomes to the trans-Golgi network by about 60%. Such a kinetic block would dramatically reduce the number of Man-6-P/IGF-II receptors in the trans-Golgi network, which could account for the previously described hypersecretion of procathepsin D induced by wortmannin. In addition, the drug slowed delivery of endocytosed beta-glucuronidase from endosomes to dense lysosomes. These data, taken together with the published reports of others, indicate that wortmannin inhibits membrane trafficking out of multiple compartments of the endosomal system and suggest a role for phosphatidylinositol 3-kinase in regulating these processes.
Collapse
Affiliation(s)
- R Kundra
- Division of Hematology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
73
|
Oates AJ, Schumaker LM, Jenkins SB, Pearce AA, DaCosta SA, Arun B, Ellis MJ. The mannose 6-phosphate/insulin-like growth factor 2 receptor (M6P/IGF2R), a putative breast tumor suppressor gene. Breast Cancer Res Treat 1998; 47:269-81. [PMID: 9516081 DOI: 10.1023/a:1005959218524] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Loss of heterozygosity (LOH) at the mannose 6-phosphate/insulin-like growth factor 2 receptor gene locus (M6P/IGF2R) on 6q26-27 has recently been demonstrated in approximately 30% of both invasive and in situ breast cancers. LOH was coupled with somatic point mutations in the remaining allele in several instances, leading to the proposition that M6P/IGF2R is a tumor suppressor gene. Somatic mutations in M6P/IGF2R have also been described in hepatoma and gastrointestinal cancers with the replication error positive (RER+) phenotype. These data indicate that M6P/IGF2R loss of function mutations may be involved in the pathogenesis of a wide spectrum of malignancies. Extensive data on the normal function of the M6P/IGF2R suggest that loss of M6P/IGF2R activity may contribute to multiple aspects of tumor pathophysiology, including deregulated growth, apoptosis, angiogenesis and invasion.
Collapse
Affiliation(s)
- A J Oates
- Lombardi Cancer Center, Georgetown University, Washington, DC 20007, USA
| | | | | | | | | | | | | |
Collapse
|
74
|
Kain R, Angata K, Kerjaschki D, Fukuda M. Molecular cloning and expression of a novel human trans-Golgi network glycoprotein, TGN51, that contains multiple tyrosine-containing motifs. J Biol Chem 1998; 273:981-8. [PMID: 9422759 DOI: 10.1074/jbc.273.2.981] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Previously, it has been shown that glycoproteins with approximately 130-kDa molecular mass react with antisera from patients with renal vasculitis (Kain, R., Matsui, K., Exner, M., Binder, S., Schaffner, G., Sommer, E. M., and Kerjaschki, D. (1995) J. Exp. Med. 181, 585-597). To search for a molecule that reacts with the antibodies, we screened a lambdagt11 human placental cDNA library. Two of the isolated clones were found to encode a putative counterpart of the rodent trans-Golgi network (TGN) glycoprotein 38, hTGN46, which has the tyrosine containing motif YQRL shared by mouse and rat TGN38. Moreover, reverse transcription-polymerase chain reaction analysis of hTGN46 transcripts and genomic analysis of a cDNA deposited as an expressed sequence tag in dbEST Data Base revealed that additional cDNAs exist that are produced by alternate usage of 3'-splice sites of intron III. Alternative splicing results in frame shifts and leads to novel larger translation products with one (for hTGN48) or two (for hTGN51) additional tyrosine-containing motifs. hTGN51 expressed in Chinese hamster ovary cells were localized to the trans-Golgi network, overlapping with beta-1,4-galactosyltransferase even after mutating the tyrosine-containing motif common to hTGN46. In contrast, mutated hTGN48 and hTGN46 are no longer retrieved to the TGN. These results strongly suggest that hTGN51 may have a unique function compared with hTGN46 or hTGN48 in shuttling between the cell surface and the TGN.
Collapse
Affiliation(s)
- R Kain
- Glycobiology Program, La Jolla Cancer Research Center, The Burnham Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
75
|
Schweizer A, Kornfeld S, Rohrer J. Proper sorting of the cation-dependent mannose 6-phosphate receptor in endosomes depends on a pair of aromatic amino acids in its cytoplasmic tail. Proc Natl Acad Sci U S A 1997; 94:14471-6. [PMID: 9405637 PMCID: PMC25025 DOI: 10.1073/pnas.94.26.14471] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The 67-amino acid cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor (CD-MPR) contains a signal(s) that prevents the receptor from entering lysosomes where it would be degraded. To identify the key residues required for proper endosomal sorting, we analyzed the intracellular distribution of mutant forms of the receptor by Percoll density gradients. A receptor with a Trp19 --> Ala substitution in the cytoplasmic tail was highly missorted to lysosomes whereas receptors with either Phe18 --> Ala or Phe13 --> Ala mutations were partially defective in avoiding transport to lysosomes. Analysis of double and triple mutants confirmed the key role of Trp19 for sorting of the CD-MPR in endosomes, with Phe18, Phe13, and several neighboring residues contributing to this function. The addition of the Phe18-Trp19 motif of the CD-MPR to the cytoplasmic tail of the lysosomal membrane protein Lamp1 was sufficient to partially impair its delivery to lysosomes. Replacing Phe18 and Trp19 with other aromatic amino acids did not impair endosomal sorting of the CD-MPR, indicating that two aromatic residues located at these positions are sufficient to prevent the receptor from trafficking to lysosomes. However, alterations in the spacing of the diaromatic amino acid sequence relative to the transmembrane domain resulted in receptor accumulation in lysosomes. These findings indicate that the endosomal sorting of the CD-MPR depends on the correct presentation of a diaromatic amino acid-containing motif in its cytoplasmic tail. Because a diaromatic amino acid sequence is also present in the cytoplasmic tail of other receptors known to be internalized from the plasma membrane, this feature may prove to be a general determinant for endosomal sorting.
Collapse
Affiliation(s)
- A Schweizer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | |
Collapse
|
76
|
Seaman MN, Marcusson EG, Cereghino JL, Emr SD. Endosome to Golgi retrieval of the vacuolar protein sorting receptor, Vps10p, requires the function of the VPS29, VPS30, and VPS35 gene products. J Cell Biol 1997; 137:79-92. [PMID: 9105038 PMCID: PMC2139870 DOI: 10.1083/jcb.137.1.79] [Citation(s) in RCA: 343] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Mutations in the S. cerevisiae VPS29 and VPS30 genes lead to a selective protein sorting defect in which the vacuolar protein carboxypeptidase Y (CPY) is missorted and secreted from the cell, while other soluble vacuolar hydrolases like proteinase A (PrA) are delivered to the vacuole. This phenotype is similar to that seen in cells with mutations in the previously characterized VPS10 and VPS35 genes. Vps10p is a late Golgi transmembrane protein that acts as the sorting receptor for soluble vacuolar hydrolases like CPY and PrA, while Vps35p is a peripheral membrane protein which cofractionates with membranes enriched in Vps10p. The sequences of the VPS29, VPS30, and VPS35 genes do not yet give any clues to the functions of their products. Each is predicted to encode a hydrophilic protein with homologues in the human and C. elegans genomes. Interestingly, mutations in the VPS29, VPS30, or VPS35 genes change the subcellular distribution of the Vps10 protein, resulting in a shift of Vps10p from the Golgi to the vacuolar membrane. The route that Vps10p takes to reach the vacuole in a vps35 mutant does not depend upon Sec1p mediated arrival at the plasma membrane but does require the activity of the pre-vacuolar endosomal t-SNARE, Pep12p. A temperature conditional allele of the VPS35 gene was generated and has been found to cause missorting/secretion of CPY and also Vps10p to mislocalize to a vacuolar membrane fraction at the nonpermissive temperature. Vps35p continues to cofractionate with Vps10p in vps29 mutants, suggesting that Vps10p and Vps35p may directly interact. Together, the data indicate that the VPS29, VPS30, and VPS35 gene products are required for the normal recycling of Vps10p from the prevacuolar endosome back to the Golgi where it can initiate additional rounds of vacuolar hydrolase sorting.
Collapse
Affiliation(s)
- M N Seaman
- Division of Cellular and Molecular Medicine, University of California, San Diego, School of Medicine, La Jolla 92093-0668, USA
| | | | | | | |
Collapse
|
77
|
Chen HJ, Yuan J, Lobel P. Systematic mutational analysis of the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor cytoplasmic domain. An acidic cluster containing a key aspartate is important for function in lysosomal enzyme sorting. J Biol Chem 1997; 272:7003-12. [PMID: 9054390 DOI: 10.1074/jbc.272.11.7003] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have used systematic mutational analysis to identify signals in the 166-residue murine cation-independent mannose 6-phosphate/insulin-like growth factor II receptor cytoplasmic domain required for efficient sorting of lysosomal enzymes. Alanine cluster mutagenesis on all conserved residues apart from the endocytosis signal demonstrates that the major sorting determinant is a conserved casein kinase II site followed by a dileucine motif (157DDSDEDLL164). Small deletions or additions outside this region have severe to mild effects, indicating that context is important. Single residue mutagenesis indicates that cycles of serine phosphorylation/dephosphorylation are not obligatory for sorting. In addition, the two leucine residues and four of the five negatively charged residues can readily tolerate conservative substitutions. In contrast, aspartate 160 could not tolerate isoelectric or isosteric substitutions, implicating it as a critical component of the sorting signal.
Collapse
Affiliation(s)
- H J Chen
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
78
|
Petersen CM, Nielsen MS, Nykjaer A, Jacobsen L, Tommerup N, Rasmussen HH, Roigaard H, Gliemann J, Madsen P, Moestrup SK. Molecular identification of a novel candidate sorting receptor purified from human brain by receptor-associated protein affinity chromatography. J Biol Chem 1997; 272:3599-605. [PMID: 9013611 DOI: 10.1074/jbc.272.6.3599] [Citation(s) in RCA: 323] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Receptor-associated protein (RAP) is an endoplasmic reticulum/Golgi protein involved in the processing of receptors of the low density lipoprotein receptor family. A approximately 95-kDa membrane glycoprotein, designated gp95/sortilin, was purified from human brain extracts by RAP affinity chromatography and cloned in a human cDNA library. The gene maps to chromosome 1p and encodes an 833-amino acid type I receptor containing an N-terminal furin cleavage site immediately preceding the N terminus determined in the purified protein. Gp95/sortilin is expressed in several tissues including brain, spinal cord, and testis. Gp95/sortilin is not related to the low density lipoprotein receptor family but shows intriguing homologies to established sorting receptors: a 140-amino acid lumenal segment of sortilin representing a hitherto unrecognized type of extracellular module shows extensive homology to corresponding segments in each of the two lumenal domains of yeast Vps10p, and the extreme C terminus of the cytoplasmic tail of sortilin contains the casein kinase phosphorylation consensus site and an adjacent dileucine sorting motif that mediate assembly protein-1 binding and lysosomal sorting of the mannose-6-phosphate receptors. Expression of a chimeric receptor containing the cytoplasmic tail of gp95/sortilin demonstrates evidence that the tail conveys colocalization with the cation-independent mannose6-phosphate receptor in endosomes and the Golgi compartment.
Collapse
Affiliation(s)
- C M Petersen
- Department of Medical Biochemistry, University of Aarhus, 8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
Two mannose 6-phosphate (Man-6-P) receptors (MPRs) direct the vesicular transport of newly synthesized lysosomal enzymes that contain Man-6-P from the Golgi to a prelysosomal compartment. In order to understand the respective roles of the Mr = 46,000 cation-dependent (CD-) MPR and the Mr = 300,000 cation-independent (CI-) MPR in lysosomal targeting, an assay has been developed that simultaneously measures the relative affinity of each MPR for multiple ligands. Glycoproteins containing Man-6-P were affinity-purified from the metabolically labeled secretions of mutant mouse fibroblasts lacking both MPRs. They were incubated with purified MPRs, and the resulting receptor-ligand complexes were immunoprecipitated by anti-MPR monoclonal antibodies coupled to agarose beads. Ligands were eluted with Man-6-P and then quantified following SDS-polyacrylamide gel electrophoresis. Saturating concentrations of CI-MPR resulted in the complete recovery of each Man-6-P glycoprotein in receptor-ligand complexes. Apparent affinity constants ranged between 1 and 5 nM for the individual species. Ligands precipitated by the CD-MPR appeared identical to those bound by the CI-MPR, with apparent affinity constants ranging between 7 and 28 nM. The binding affinities of the two receptors for different ligands were not correlated, indicating that the two MPRs preferentially recognize different subsets of lysosomal enzymes. In addition, saturating levels of CD-MPR resulted in the precipitation of only 50% of the total input ligands, suggesting that the CD-MPR binds a subpopulation of the Man-6-P glycoproteins bound by the CI-MPR. These results provide a biochemical mechanism, which, in part, may explain the interaction of the two MPRs with overlapping yet distinct subsets of ligands in vivo.
Collapse
Affiliation(s)
- D E Sleat
- Center for Advanced Biotechnology and Medicine, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
80
|
Kasper D, Dittmer F, von Figura K, Pohlmann R. Neither type of mannose 6-phosphate receptor is sufficient for targeting of lysosomal enzymes along intracellular routes. J Cell Biol 1996; 134:615-23. [PMID: 8707842 PMCID: PMC2120931 DOI: 10.1083/jcb.134.3.615] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mouse embryonic fibroblasts that are deficient in the two mannose 6-phosphate receptors (MPRs) MPR 46 and MPR 300 missort the majority (> or = 85%) of soluble lysosomal proteins into the medium. Human MPR 46 and MPR 300 were expressed in these cells to test whether overexpression of a single type of MPR can restore transport of lysosomal proteins to lysosomes. Only a partial correction of the missorting was observed after overexpression of MPR 46. Even at MPR 46 levels that are five times higher than the wild-type level, more than one third of the newly synthesized lysosomal proteins accumulates in the secretions. Two-fold overexpression of MPR 300 completely corrects the missorting of lysosomal enzymes. However, at least one fourth of the lysosomal enzymes are transported along a secretion-recapture pathway that is sensitive to mannose 6-phosphate in medium. In control fibroblasts that express both types of MPR, the secretion-recapture pathway is of minor importance. These results imply that neither overexpression of MPR 46 nor MPR 300 is sufficient for targeting of lysosomal proteins along intracellular routes.
Collapse
Affiliation(s)
- D Kasper
- Georg-August-University, Abt. Biochemie II, Göttingen, Germany
| | | | | | | |
Collapse
|
81
|
Cooper AA, Stevens TH. Vps10p cycles between the late-Golgi and prevacuolar compartments in its function as the sorting receptor for multiple yeast vacuolar hydrolases. J Cell Biol 1996; 133:529-41. [PMID: 8636229 PMCID: PMC2120820 DOI: 10.1083/jcb.133.3.529] [Citation(s) in RCA: 234] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
VPS10 (Vacuolar Protein Sorting) encodes a large type I transmembrane protein (Vps10p), involved in the sorting of the soluble vacuolar hydrolase carboxypeptidase Y (CPY) to the Saccharomyces cerevisiae lysosome-like vacuole. Cells lacking Vps10p missorted greater than 90% CPY and 50% of another vacuolar hydrolase, PrA, to the cell surface. In vitro equilibrium binding studies established that the 1,380-amino acid lumenal domain of Vps10p binds CPY precursor in a 1:1 stoichiometry, further supporting the assignment of Vps10p as the CPY sorting receptor. Vps10p has been immunolocalized to the late-Golgi compartment where CPY is sorted away from the secretory pathway. Vps10p is synthesized at a rate 20-fold lower that that of its ligand CPY, which in light of the 1:1 binding stoichiometry, requires that Vps10p must recycle and perform multiple rounds of CPY sorting. The 164-amino acid Vps10p cytosolic domain is involved in receptor trafficking, as deletion of this domain resulted in delivery of the mutant Vps10p to the vacuole, the default destination for membrane proteins in yeast. A tyrosine-based signal (YSSL80) within the cytosolic domain enables Vps10p to cycle between the late-Golgi and prevacuolar/endosomal compartments. This tyrosine-based signal is homologous to the recycling signal of the mammalian mannose-6-phosphate receptor. A second yeast gene, VTH2, encodes a protein highly homologous to Vps10p which, when over-produced, is capable of suppressing the CPY and PrA missorting defects of a vps10 delta strain. These results indicate that a family of related receptors act to target soluble hydrolases to the vacuole.
Collapse
Affiliation(s)
- A A Cooper
- Institute of Molecular Biology, University of Oregon, Eugene 97403-1229, USA
| | | |
Collapse
|
82
|
Francí C, Egea G, Arribas R, Reuser AJ, Real FX. Lysosomal alpha-glucosidase: cell-specific processing and altered maturation in HT-29 colon cancer cells. Biochem J 1996; 314 ( Pt 1):33-40. [PMID: 8660303 PMCID: PMC1217045 DOI: 10.1042/bj3140033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We have previously described the abnormal localization of resident Golgi proteins and O-glycans in the rough endoplasmic reticulum of mucin-secreting HT-29 M6 colon cancer cells, suggesting altered protein trafficking in these cells [Egea, Francí, Gambús, Lesuffleur, Zweibaum and Real (1993) J. Cell Sci. 105, 819-830]. In the present work, we have chosen lysosomal alpha-glucosidase as a reporter to examine the intracellular traffic of glycoproteins in M6 cells. We have compared the synthesis and processing of alpha-glucosidase in mucin-secreting M6 cells and in Caco-2 colon cancer cells, the latter resembling normal absorptive intestinal epithelium. Our results show that alpha-glucosidase processing and secretion is markedly delayed in M6 cells as compared to Caco-2 cells or normal fibroblasts, and this delay is caused by an accumulation of alpha-glucosidase precursor form in the trans-Golgi network. Furthermore, treatment in Caco-2 cells with brefeldin A led to changes in alpha-glucosidase maturation similar to those observed in untreated M6 cells. To determine whether altered processing occurs in other cultured cells, a panel of cancer cell lines and cultures from normal exocrine pancreas were examined. In pancreas-derived cultures, alpha-glucosidase showed a processing pattern different from that described until now. Only HT-29 cells and HT-29-derived subpopulations displayed a defect in alpha-glucosidase maturation. In conclusion, alpha-glucosidase processing is more diverse than has previously been described; this finding may have tissue-specific functional implications.
Collapse
Affiliation(s)
- C Francí
- Departament d'Immunologia, Institut Municipal d'Investigació Mèdica, Universitat Autònoma de Barcelona, Spain
| | | | | | | | | |
Collapse
|
83
|
Rohrer J, Schweizer A, Russell D, Kornfeld S. The targeting of Lamp1 to lysosomes is dependent on the spacing of its cytoplasmic tail tyrosine sorting motif relative to the membrane. J Cell Biol 1996; 132:565-76. [PMID: 8647888 PMCID: PMC2199866 DOI: 10.1083/jcb.132.4.565] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Lamp1 is a type I transmembrane glycoprotein that is localized primarily in lysosomes and late endosomes. Newly synthesized molecules are mostly transported from the trans-Golgi network directly to endosomes and then to lysosomes. A minor pathway involves transport via the plasma membrane. The 11-amino acid cytoplasmic tail of lamp1 contains a tyrosine-based motif that has been previously shown to mediate sorting in the trans-Golgi network and rapid internalization at the plasma membrane. We studied whether this motif also mediates sorting in endosomes. We found that mutant forms of lamp1 in which all the amino acids of the cytoplasmic tail were modified except for the RKR membrane anchor and the YXXI sorting motif still localized to dense lysosomes, indicating that the YXXI motif is sufficient to confer proper intracellular targeting. However, when the spacing of the YXXI motif relative to the membrane was changed by deleting one amino acid or adding five amino acids, lysosomal targeting was almost completely abolished. Kinetic studies showed that these mutants were trapped in a recycling pathway, involving trafficking between the plasma membrane and early endocytic compartments. These findings indicate that the YXXI signal of lamp1 is recognized at several sorting sites, including the trans-Golgi network, the plasma membrane, and the early/sorting endosomes. Small changes in the spacing of this motif relative to the membrane dramatically impair sorting in the early/sorting endosomes but have only a modest effect on internalization at the plasma membrane. The spacing of sorting signals relative to the membrane may prove to be an important determinant in the functioning of these signals.
Collapse
Affiliation(s)
- J Rohrer
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
84
|
Mauxion F, Le Borgne R, Munier-Lehmann H, Hoflack B. A casein kinase II phosphorylation site in the cytoplasmic domain of the cation-dependent mannose 6-phosphate receptor determines the high affinity interaction of the AP-1 Golgi assembly proteins with membranes. J Biol Chem 1996; 271:2171-8. [PMID: 8567675 DOI: 10.1074/jbc.271.4.2171] [Citation(s) in RCA: 133] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The transport of proteins from the secretory to the endocytic pathway is mediated by carrier vesicles coated with the AP-1 Golgi assembly proteins and clathrin. The mannose 6-phosphate receptors (MPHs) are two major transmembrane proteins segregated into these transport vesicles. Together with the GTPase ARF-1, these cargo proteins are essential components for the efficient translocation of the cytosolic AP-1 onto membranes of the trans-Golgi network, the first step of clathrin coat assembly, MPR-negative fibroblasts have a low capacity of recruiting AP-1 which can be restored by re-expressing the MPRs in these cells. This property was used to identify the protein motif of the cation-dependent mannose 6-phosphate receptor (CD-MPR) cytoplasmic domain that is essential for these interactions. Thus, the affinity of AP-1 for membranes and in vivo transport of cathepsin D were measured for MPR-negative cells re-expressing various CD-MPR mutants. The results indicate that the targeting of lysosomal enzymes requires the CD-PDR cytoplasmic domain that are different from tyrosine-based endocytosis motifs. The first is a casein kinase II phosphorylation site (ESEER) that is essential for high affinity binding of AP-1 and therefore probably acts as a dominant determinant controlling CD-MPR sorting in the trans-Golgi network. The second is the adjacent di-leucine motif (HLLPM), which, by itself, is not critical for AP-1 binding, but is absolutely required for a downstream sorting event.
Collapse
Affiliation(s)
- F Mauxion
- European Molecular Biology Laboratory, Heidelberg, Federal Republic of Germany
| | | | | | | |
Collapse
|
85
|
Leser GP, Ector KJ, Lamb RA. The paramyxovirus simian virus 5 hemagglutinin-neuraminidase glycoprotein, but not the fusion glycoprotein, is internalized via coated pits and enters the endocytic pathway. Mol Biol Cell 1996; 7:155-72. [PMID: 8741847 PMCID: PMC278620 DOI: 10.1091/mbc.7.1.155] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The hemagglutinin-neuraminidase (HN) and fusion (F) glycoproteins of the paramyxovirus simian virus 5 (SV5) are expressed on the surface of virus-infected cells. Although the F protein was found to be expressed stably, the HN protein was internalized from the plasma membrane. HN protein lacks known internalization signals in its cytoplasmic domain that are common to many integral membrane proteins that are internalized via clathrin-coated pits. Thus, the cellular pathway of HN protein internalization was examined. Biochemical analysis indicated that HN was lost from the cell surface with a t1/2 of approximately 45-50 min and turned over with a t1/2 of approximately 2 h. Immunofluorescent analysis showed internalized SV5 HN in vesicle-like structures in a juxtanuclear pattern coincident with the localization of ovalbumin. In contrast the SV5 F glycoprotein and the HN glycoprotein of the highly related parainfluenza virus 3 (hPIV-3) were found only on the cell surface. Immunogold staining of HN on the surface of SV5-infected CV-1 cells and examination using electron microscopy, showed heavy surface labeling that gradually decreased with time. Concomitantly, gold particles were detected in the endosomal system and with increasing time, gold-labeled structures having the morphology of lysosomes were observed. On the plasma membrane approximately 5% of the gold-labeled HN was found in coated pits. The inhibition of the pinching-off of coated pits from the plasma membrane by cytosol acidification significantly reduced HN internalization. Internalized HN was co-localized with gold-conjugated transferrin, a marker for the early endosomal compartments, and with gold-conjugated bovine serum albumin, a marker for late endosomal compartments. Taken together, these data strongly suggest that the HN glycoprotein is internalized via clathrin-coated pits and delivered to the endocytic pathway.
Collapse
Affiliation(s)
- G P Leser
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | |
Collapse
|
86
|
Chapter 1a Normal and pathological catabolism of glycoproteins. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0167-7306(08)60278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
87
|
Ikezu T, Okamoto T, Giambarella U, Yokota T, Nishimoto I. In vivo coupling of insulin-like growth factor II/mannose 6-phosphate receptor to heteromeric G proteins. Distinct roles of cytoplasmic domains and signal sequestration by the receptor. J Biol Chem 1995; 270:29224-8. [PMID: 7493951 DOI: 10.1074/jbc.270.49.29224] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We examined the signaling function of the IGF-II/mannose 6-phosphate receptor (IGF-IIR) by transfecting IGF-IIR cDNAs into COS cells, where adenylyl cyclase (AC) was inhibited by transfection of constitutively activated G alpha i cDNA (G alpha i2Q205L). In cells transfected with IGF-IIR cDNA, IGF-II decreased cAMP accumulation promoted by cholera toxin or forskolin. This effect of IGF-II was not observed in untransfected cells or in cells transfected with IGF-IIRs lacking Arg2410-Lys2423. Thus, IGF-IIR, through its cytoplasmic domain, mediates the Gi-linked action of IGF-II in living cells. We also found that IGF-IIR truncated with C-terminal 28 residues after Ser2424 caused G beta gamma-dominant response of AC in response to IGF-II by activating Gi. Comparison with the G alpha i-dominant response of AC by intact IGF-IIR suggests that the C-terminal 28-residue region inactivates G beta gamma. This study not only provides further evidence that IGF-IIR has IGF-II-dependent signaling function to interact with heteromeric G proteins with distinct roles by different cytoplasmic domains, it also suggests that IGF-IIR can separate and sequestrate the G alpha and G beta gamma signals following Gi activation.
Collapse
Affiliation(s)
- T Ikezu
- Shriners Hospitals for Crippled Children, Boston, Massachusetts 02114, USA
| | | | | | | | | |
Collapse
|
88
|
Rohrer J, Schweizer A, Johnson KF, Kornfeld S. A determinant in the cytoplasmic tail of the cation-dependent mannose 6-phosphate receptor prevents trafficking to lysosomes. J Cell Biol 1995; 130:1297-306. [PMID: 7559753 PMCID: PMC2120581 DOI: 10.1083/jcb.130.6.1297] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The bovine cation-dependent mannose 6-phosphate receptor (CD-MPR) is a type 1 transmembrane protein that cycles between the trans-Golgi network, endosomes, and the plasma membrane. When the terminal 40 residues were deleted from the 67-amino acid cytoplasmic tail of the CD-MPR, the half-life of the receptor was drastically decreased and the mutant receptor was recovered in lysosomes. Analysis of additional cytoplasmic tail truncation mutants and alanine-scanning mutants implicated amino acids 34-39 as being critical for avoidance of lysosomal degradation. The cytoplasmic tail of the CD-MPR was partially effective in preventing the lysosomal membrane protein Lamp1 from entering lysosomes. Complete exclusion required both the CD-MPR cytoplasmic tail and transmembrane domain. The transmembrane domain alone had just a minor effect on the distribution of Lamp1. These findings indicate that the cytoplasmic tail of the CD-MPR contains a signal that prevents the receptor from trafficking to lysosomes. The transmembrane domain of the CD-MPR also contributes to this function.
Collapse
Affiliation(s)
- J Rohrer
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | |
Collapse
|
89
|
Marsh BJ, Alm RA, McIntosh SR, James DE. Molecular regulation of GLUT-4 targeting in 3T3-L1 adipocytes. J Cell Biol 1995; 130:1081-91. [PMID: 7544796 PMCID: PMC2120558 DOI: 10.1083/jcb.130.5.1081] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Insulin stimulates glucose transport in muscle and adipose tissue by triggering the movement of the glucose transporter GLUT-4 from an intracellular compartment to the cell surface. Fundamental to this process is the intracellular sequestration of GLUT-4 in nonstimulated cells. Two distinct targeting motifs in the amino and carboxy termini of GLUT-4 have been previously identified by expressing chimeras comprised of portions of GLUT-4 and GLUT-1, a transporter isoform that is constitutively targeted to the cell surface, in heterologous cells. These motifs-FQQI in the NH2 terminus and LL in the COOH terminus-resemble endocytic signals that have been described in other proteins. In the present study we have investigated the roles of these motifs in GLUT-4 targeting in insulin-sensitive cells. Epitope-tagged GLUT-4 constructs engineered to differentiate between endogenous and transfected GLUT-4 were stably expressed in 3T3-L1 adipocytes. Targeting was assessed in cells incubated in the presence or absence of insulin by subcellular fractionation. The targeting of epitope-tagged GLUT-4 was indistinguishable from endogenous GLUT-4. Mutation of the FQQI motif (F5 to A5) caused GLUT-4 to constitutively accumulate at the cell surface regardless of expression level. Mutation of the dileucine motif (L489L490 to A489A490) caused an increase in cell surface distribution only at higher levels of expression, but the overall cells surface distribution of this mutant was less than that of the amino-terminal mutants. Both NH2- and COOH-terminal mutants retained insulin-dependent movement from an intracellular to a cell surface locale, suggesting that neither of these motifs is involved in the insulin-dependent redistribution of GLUT-4. We conclude that the phenylalanine-based NH2-terminal and the dileucine-based COOH-terminal motifs play important and distinct roles in GLUT-4 targeting in 3T3-L1 adipocytes.
Collapse
Affiliation(s)
- B J Marsh
- Centre for Molecular and Cellular Biology, University of Queensland, St. Lucia, Australia
| | | | | | | |
Collapse
|
90
|
Pond L, Kuhn LA, Teyton L, Schutze MP, Tainer JA, Jackson MR, Peterson PA. A role for acidic residues in di-leucine motif-based targeting to the endocytic pathway. J Biol Chem 1995; 270:19989-97. [PMID: 7650016 DOI: 10.1074/jbc.270.34.19989] [Citation(s) in RCA: 184] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recent reports have suggested that major histocompatibility complex class II molecules load peptide through a specialized compartment of the endocytic pathway and are targeted to this pathway by association with invariant chain (Iip31). Therefore we used a site-directed mutagenesis approach to determine whether Iip31 possesses novel protein targeting signals. Our results indicate that two di-leucine-like pairs mediate Iip31 targeting and that an acidic amino acid residue four or five residues N-terminal to each Iip31 di-leucine-like pair is required for endocytic targeting. Results from additional testing with hybrid Iip31 molecules indicate that the acidic residues N-terminal to di-leucine pairs are critical for accumulation of these molecules in large endocytic vesicles and in some cases provide a structure favorable for internalization. The acidic residues N-terminal to di-leucine pairs are important in some sequence contexts in providing a structure favorable for internalization, whereas in other contexts an acidic residue is critical for targeting to, and formation of, large endocytic vesicles. Although our results do not support the idea that Iip31 possesses unique protein targeting motifs, they do suggest that di-leucine motifs may be recognized as part of a larger secondary structure. In addition, our data imply that the targeting motif requirements for internalization may differ from the requirements for further transport in the endocytic pathway.
Collapse
Affiliation(s)
- L Pond
- R.W. Johnson Pharmaceutical Research Institute, San Diego, California 92121, USA
| | | | | | | | | | | | | |
Collapse
|
91
|
Hille-Rehfeld A. Mannose 6-phosphate receptors in sorting and transport of lysosomal enzymes. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1241:177-94. [PMID: 7640295 DOI: 10.1016/0304-4157(95)00004-b] [Citation(s) in RCA: 172] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Mannose 6-phosphate receptors have been intensively studied with regard to their genomic organization, protein structure, ligand binding properties, intracellular trafficking and sorting functions. That their main function is sorting of newly synthesized lysosomal enzymes is commonly accepted, but much more remains to be learned about their precise recycling pathways and the mechanisms which regulate their vesicular transport. Additional functions have been reported, e.g., export of newly synthesized lysosomal enzymes from the cell by MPR 46 or a--probably indirect--participation in growth factor-mediated signal transduction by MPR 300. To understand the physiological relevance of these observations will be a challenge for future research.
Collapse
Affiliation(s)
- A Hille-Rehfeld
- Department of Biochemistry and Molecular Cell Biology, Universität Göttingen, Germany
| |
Collapse
|
92
|
Ludwig T, Le Borgne R, Hoflack B. Roles for mannose-6-phosphate receptors in lysosomal enzyme sorting, IGF-II binding and clathrin-coat assembly. Trends Cell Biol 1995. [DOI: 10.1016/0962-8924(95)80012-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
93
|
Baricault L, Fransen JA, Garcia M, Sapin C, Codogno P, Ginsel LA, Trugnan G. Rapid sequestration of DPP IV/CD26 and other cell surface proteins in an autophagic-like compartment in Caco-2 cells treated with forskolin. J Cell Sci 1995; 108 ( Pt 5):2109-21. [PMID: 7657729 DOI: 10.1242/jcs.108.5.2109] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The enterocytic differentiation of Caco-2 cells, a human colon adenocarcinoma cell line, is accompanied by the transcriptionally regulated expression of a subset of proteins and their correct sorting towards the cell surface. In the present work we have explored the possibility that post-translational events may interfere with this process by investigating the short term effects of a potent adenylyl cyclase activator, forskolin, on cell surface expression of dipeptidyl peptidase IV. Previous works have shown that this protein is targeted towards the apical domain through either a direct or an indirect route. Domain specific biochemical experiments demonstrate that cell surface expression of neosynthesized dipeptidyl peptidase IV rapidly decreases after a 1 hour forskolin treatment. Both initial basolateral and apical dipeptidyl peptidase IV membrane delivery were altered by forskolin treatment. Decrease of dipeptidyl peptidase IV cell surface expression was not restricted to this protein, since membrane expression of '525' antigen, a basolateral protein and of sucrase-isomaltase, an apically targeted hydrolase, which unlike dipeptidyl peptidase IV mainly follows a direct route to the brush border membrane, also decreases. In addition endocytosis of proteins from the apical and from the basolateral domain was essentially unchanged, suggesting that forskolin's target may be located on the exocytic pathway. Confocal laser scanning microscopy and immuno-electron microscopy studies demonstrate that, within 5 minutes of forskolin treatment, the cell surface proteins studied accumulate in intracellular vesicles which were co-labeled with a polyclonal antibody raised against Lamp-1, a lysosomal membrane marker. Electron microscopy studies show that these vesicles display an autophagic-like morphology. Finally, biochemical experiments indicate that dibutyryl cAMP does not mimick the forskolin effect, thus suggesting that it is a cAMP-independent phenomenon.
Collapse
Affiliation(s)
- L Baricault
- Unité de Recherches sur la Neuroendocrinologie et la Biologie Cellulaire Digestives, INSERM U410, Paris, France
| | | | | | | | | | | | | |
Collapse
|
94
|
Körner C, Nürnberg B, Uhde M, Braulke T. Mannose 6-phosphate/insulin-like growth factor II receptor fails to interact with G-proteins. Analysis of mutant cytoplasmic receptor domains. J Biol Chem 1995; 270:287-95. [PMID: 7814388 DOI: 10.1074/jbc.270.1.287] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The binding of insulin-like growth factor II (IGF II) to the mannose 6-phosphate (M6P)/IGF II receptor has previously been reported to induce the activation of trimeric G(i)2 proteins by functional coupling to a 14-amino acid region within the cytoplasmic receptor domain (Nishimoto, I., Murayama, Y., Katada, T., Ui, M., and Ogata, E. (1989) J. Biol. Chem. 264, 14029-14038). In the present study, we examined further the potential functional coupling of G-proteins with the human M6P/IGF II receptor and mutant receptors lacking the proposed G-protein activator sequence. IGF II treatment of mouse L-cells expressing either wild type or mutant M6P/IGF II receptors failed to attenuate the pertussis toxin-catalyzed modification of a 40-kDa protein or enhance GTPase activity. In broken L-cell membranes expressing wild type or mutant M6P/IGF II receptors, 30 nM IGF II also failed to affect the pertussis toxin substrate activity. By using phospholipid vesicles reconstituted with human wild type or mutant M6P/IGF II receptors and pertussis toxin-sensitive G-proteins, no stimulation of GTP gamma S binding to or GTPase activity of G(i)2, G(o)1, or G(i)/G(o) mixtures were observed in response to 1 microM IGF II. Furthermore, in vesicles containing purified wild type M6P/IGF II receptors and monomeric G alpha o1 or G alpha i2 and beta gamma dimers no effects of IGF II on GTP gamma S binding could be detected. However, when vesicles reconstituted with M6P/IGF II receptors and G(i)2 proteins were incubated with 100 microM mastoparan GTP gamma S binding was stimulated and GTPase activity was increased significantly. These results indicate that the human M6P/IGF II receptor neither interacts with G-proteins in mouse L-cell membranes nor is coupled to G(i)2 proteins in phospholipid vesicles. This study suggests strongly that the M6P/IGF II receptor does not function in transmembrane signaling in response to IGF II.
Collapse
Affiliation(s)
- C Körner
- Institut für Biochemie II, Georg-August-Universität Göttingen, Federal Republic of Germany
| | | | | | | |
Collapse
|
95
|
Haynes PA, Oka JA, Weigel PH. The rat hepatic lectin 1 subunit of the rat asialoglycoprotein receptor is a phosphoprotein and contains phosphotyrosine. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(20)30109-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
96
|
Franano FN, Edwards WB, Welch MJ, Duncan JR. Metabolism of receptor targeted 111In-DTPA-glycoproteins: identification of 111In-DTPA-epsilon-lysine as the primary metabolic and excretory product. Nucl Med Biol 1994; 21:1023-34. [PMID: 9234360 DOI: 10.1016/0969-8051(94)90174-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The hepatic and renal retention of indium-111 (111In) from 111In-labeled polypeptides has been the subject of many investigations. Because the lysosome is a common intracellular destination for the degradation of polypeptides, we studied the lysosomal metabolism of 111In-DTPA-labeled glycoproteins targeted to cell surface receptors in vitro and in vivo. We found that 111In-DTPA-glycoproteins were degraded to 111In-DTPA-epsilon-lysine, which was slowly released from cells and recovered intact in urine and feces. These results suggest a mechanism for 111In retention at target and non-target sites.
Collapse
Affiliation(s)
- F N Franano
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | | | |
Collapse
|
97
|
Almond BD, Eidels L. The cytoplasmic domain of the diphtheria toxin receptor (HB-EGF precursor) is not required for receptor-mediated endocytosis. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47066-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
98
|
Involvement of dileucine motifs in the internalization and degradation of the insulin receptor. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47192-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
99
|
Tyrosine 569 in the c-Fms juxtamembrane domain is essential for kinase activity and macrophage colony-stimulating factor-dependent internalization. Mol Cell Biol 1994. [PMID: 8007983 DOI: 10.1128/mcb.14.7.4843] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The receptor (Fms) for macrophage colony-stimulating factor (M-CSF) is a member of the tyrosine kinase class of growth factor receptors. It maintains survival, stimulates growth, and drives differentiation of the macrophage lineage of hematopoietic cells. Fms accumulates on the cell surface and becomes activated for signal transduction after M-CSF binding and is then internalized via endocytosis for eventual degradation in lysosomes. We have investigated the mechanism of endocytosis as part of the overall signaling process of this receptor and have identified an amino acid segment near the cytoplasmic juxtamembrane region surrounding tyrosine 569 that is important for internalization. Mutation of tyrosine 569 to alanine (Y569A) eliminates ligand-induced rapid endocytosis of receptor molecules. The mutant Fms Y569A also lacks tyrosine kinase activity; however, tyrosine kinase activity is not essential for endocytosis because the kinase inactive receptor Fms K614A does undergo ligand-induced endocytosis, albeit at a reduced rate. Mutation of tyrosine 569 to phenylalanine had no effect on the M-CSF-induced endocytosis of Fms, and a four-amino-acid sequence containing Y-569 could support endocytosis when transferred into the cytoplasmic juxtamembrane region of a glycophorin A construct. These results indicate that tyrosine 569 within the juxtamembrane region of Fms is part of a signal recognition sequence for endocytosis that does not require tyrosine phosphorylation at this site and that this domain also influences the kinase activity of the receptor. These results are consistent with a ligand-dependent step in recognition of the potential cryptic internalization signal.
Collapse
|
100
|
Ruscetti T, Cardelli JA, Niswonger ML, O'Halloran TJ. Clathrin heavy chain functions in sorting and secretion of lysosomal enzymes in Dictyostelium discoideum. J Cell Biol 1994; 126:343-52. [PMID: 8034739 PMCID: PMC2200034 DOI: 10.1083/jcb.126.2.343] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The clathrin heavy chain is a major component of clathrin-coated vesicles that function in selective membrane traffic in eukaryotic cells. We disrupted the clathrin heavy chain gene (chcA) in Dictyostelium discoideum to generate a stable clathrin heavy chain-deficient cell line. Measurement of pinocytosis in the clathrin-minus mutant revealed a four-to five-fold deficiency in the internalization of fluid-phase markers. Once internalized, these markers recycled to the cell surface of mutant cells at wild-type rates. We also explored the involvement of clathrin heavy chain in the trafficking of lysosomal enzymes. Pulse chase analysis revealed that clathrin-minus cells processed most alpha-mannosidase to mature forms, however, approximately 20-25% of the precursor molecules remained uncleaved, were missorted, and were rapidly secreted by the constitutive secretory pathway. The remaining intracellular alpha-mannosidase was successfully targeted to mature lysosomes. Standard secretion assays showed that the rate of secretion of alpha-mannosidase was significantly less in clathrin-minus cells compared to control cells in growth medium. Interestingly, the secretion rates of another lysosomal enzyme, acid phosphatase, were similar in clathrin-minus and wild-type cells. Like wild-type cells, clathrin-minus mutants responded to starvation conditions with increased lysosomal enzyme secretion. Our study of the mutant cells provide in vivo evidence for roles for the clathrin heavy chain in (a) the internalization of fluid from the plasma membrane; (b) sorting of hydrolase precursors from the constitutive secretory pathway to the lysosomal pathway; and (c) secretion of mature hydrolases from lysosomes to the extracellular space.
Collapse
Affiliation(s)
- T Ruscetti
- Department of Microbiology and Immunology, Louisiana State University Medical Center, Shreveport 71130
| | | | | | | |
Collapse
|