51
|
Hanwell D, Ishikawa T, Saleki R, Rotin D. Trafficking and cell surface stability of the epithelial Na+ channel expressed in epithelial Madin-Darby canine kidney cells. J Biol Chem 2002; 277:9772-9. [PMID: 11773057 DOI: 10.1074/jbc.m110904200] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The apically located epithelial Na(+) channel (alphabetagamma-ENaC) plays a key role in the regulation of salt and fluid transport in the kidney and other epithelia, yet its mode of trafficking to the plasma membrane and its cell surface stability in mammalian cells are poorly understood. Because the expression of ENaC in native tissues/cells is very low, we generated epithelial Madin-Darby canine kidney (MDCK) cells stably expressing alphabetagamma-ENaC, where each subunit is tagged differentially at the intracellular C terminus and the beta-subunit is also Myc-tagged at the ectodomain (alpha(HA)beta(Myc,T7)gamma(FLAG)). ENaC expression in these cells was verified by immunoblotting with antibodies to the tags, and patch clamp analysis has confirmed that the tagged channel is functional. Moreover, using electron microscopy, we demonstrated apical, but not basal, membrane localization of ENaC in these cells. The glycosylation pattern of the intracellular pool of ENaC revealed peptide N-glycosidase F and endoglycosidase H sensitivity. Surprisingly, the cell surface pool of ENaC, analyzed by surface biotinylation, was also core glycosylated and lacked detectable endoglycosidase H-resistant channels. Extraction of the channel from cells in Triton X-100 demonstrated that both intracellular and cell surface pools of ENaC are largely soluble. Moreover, floatation assays to analyze the presence of ENaC in lipid rafts showed that both intracellular and cell surface pools of this channel are not associated with rafts. We have shown previously that the total cellular pool of ENaC is turned over rapidly (t(1/2) approximately 1-2 h). Using cycloheximide treatment and surface biotinylation we now demonstrate that the cell surface pool of ENaC has a similarly short half-life (t(1/2) approximately 1 h), unlike the long half-life reported recently for the Xenopus A6 cells. Collectively, these results help elucidate key aspects of ENaC trafficking and turnover rates in mammalian kidney epithelial cells.
Collapse
Affiliation(s)
- David Hanwell
- Hospital for Sick Children and the Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
52
|
Kolset SO, Prydz K, Fjeldstad K, Safaiyan F, Vuong TT, Gottfridsson E, Salmivirta M. Effect of brefeldin A on heparan sulphate biosynthesis in Madin-Darby canine kidney cells. Biochem J 2002; 362:359-66. [PMID: 11853543 PMCID: PMC1222395 DOI: 10.1042/0264-6021:3620359] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Brefeldin A (BFA) perturbs the organization of the Golgi apparatus, such that Golgi stack components are fused with the endoplasmic reticulum (ER) and separated from the trans-Golgi network. In many cell types, BFA blocks the secretion of macromolecules but still allows the action of Golgi enzymes in the ER. Treatment of cells with BFA has been reported to inhibit the secretion of heparan sulphate (HS) proteoglycans and alter the structure of their HS components, but the nature of such structural alterations has not been characterized in detail. We analysed the effect of BFA on HS biosynthesis in Madin-Darby canine kidney (MDCK) cells, in which the Golgi complex is more resistant towards BFA than in most other cell types. We found that MDCK cells were able to secrete HS proteoglycans in spite of BFA treatment. However, the secretion of HS was reduced and the secreted HS differed from that produced by untreated cells. In BFA-treated cells, two structurally distinct pools of HS were generated. One pool was similar to HS from control cells, with the exception that the 6-O-sulphation of glucosamine (GlcN) residues was reduced. In contrast, the other pool consisted of largely unmodified N-acetylheparosan polymers with a low (<20%) proportion of N-sulphated GlcN residues but a substantial proportion of N-unsubstituted GlcN units, indicating that it had been acted upon by N-deacetylases and partly by the N-sulphotransferases, but not by O-sulphotransferases. Together, these findings represent a previously unrecognized alteration in HS biosynthesis caused by BFA, and differ dramatically from our previous findings in MDCK cells pertaining to the undersulphation of HS caused by sodium chlorate treatment.
Collapse
Affiliation(s)
- Svein Olav Kolset
- Institute for Nutrition Research, University of Oslo, P.O. Box 1046 Blindern, 0316 Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
53
|
Gnoth M, Rudloff S, Kunz C, Kinne R. Studies on the intestinal transport of human milk oligosaccharides (HMO) using Caco-2 cells. Food Res Int 2002. [DOI: 10.1016/s0963-9969(01)00176-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
54
|
de Figueiredo P, Doody A, Polizotto RS, Drecktrah D, Wood S, Banta M, Strang MS, Brown WJ. Inhibition of transferrin recycling and endosome tubulation by phospholipase A2 antagonists. J Biol Chem 2001; 276:47361-70. [PMID: 11585839 DOI: 10.1074/jbc.m108508200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report here that a broad spectrum of phospholipase A(2) (PLA(2)) antagonists produce a concentration-dependent, differential block in the endocytic recycling pathway of transferrin (Tf) and Tf receptors (TfRs) but have no acute affect on Tf uptake from the cell surface. At low concentrations of antagonists (approximately 1 microm), Tf and TfR accumulated in centrally located recycling endosomes, whereas at higher concentrations (approximately 10 microm), Tf-TfR accumulated in peripheral sorting endosomes. Several independent lines of evidence suggest that this inhibition of recycling may result from the inhibition of tubule formation. First, BFA-stimulated endosome tubule formation was similarly inhibited by PLA(2) antagonists. Second, endocytosed tracers were found in larger spherical endosomes in the presence of PLA(2) antagonists. And third, endosome tubule formation in a cell-free, cytosol-dependent reconstitution system was equally sensitive PLA(2) antagonists. These results are consistent with the conclusion that endosome membrane tubules are formed by the action of a cytoplasmic PLA(2) and that PLA(2)-dependent tubules are involved in intracellular recycling of Tf and TfR. When taken together with previous studies on the Golgi complex, these results also indicate that an intracellular PLA(2) activity provides a novel molecular mechanism for inducing tubule formation from multiple organelles.
Collapse
Affiliation(s)
- P de Figueiredo
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Sorting of internalized neurotrophins into an endocytic transcytosis pathway via the Golgi system: Ultrastructural analysis in retinal ganglion cells. J Neurosci 2001. [PMID: 11698603 DOI: 10.1523/jneurosci.21-22-08915.2001] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Subcellular pathways and accumulation of internalized radiolabeled neurotrophins NGF, BDNF, and NT-3 were examined in retinal ganglion cells (RGCs) of chick embryos by using quantitative electron microscopic autoradiography. All three neurotrophins accumulated in endosomes and multivesicular bodies. BDNF and NGF also concentrated at the plasma membrane, whereas NT-3 accumulated transiently in the Golgi system. The enhanced targeting of NT-3 to the Golgi system correlated with the anterograde axonal transport of this neurotrophin. Anterograde transport of NT-3, but not its internalization, was significantly attenuated by the tyrosine kinase (trk) inhibitor K252a. Abolishment of trk activity with K252a shifted NT-3 (and BDNF) away from the Golgi system and into a lysosomal pathway, indicating that trk activity regulated sorting of the ligand-receptor complex. Cross-linking of neurotrophins and immunoprecipitation with antibodies to the neurotrophin receptors p75, trkA, trkB, and trkC showed that the large majority of exogenous, receptor-bound NT-3 was bound to trkC in RGC somata, but during anterograde transport in the optic nerve most receptor-bound NT-3 was associated with p75, and after arrival and release in the optic tectum transferred to presumably postsynaptic trkC. These results reveal remarkable and unexpected differences in the intracellular pathways and fates of different neurotrophins within the same cell type. They provide first evidence for an endocytic pathway of internalized neurotrophic factors via the Golgi system before anterograde transport and transcytosis. The results challenge the belief that after internalization all neurotrophins are rapidly degraded in lysosomes.
Collapse
|
56
|
Bruneau N, Nganga A, Bendayan M, Lombardo D. Transcytosis of pancreatic bile salt-dependent lipase through human Int407 intestinal cells. Exp Cell Res 2001; 271:94-108. [PMID: 11697886 DOI: 10.1006/excr.2001.5361] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In previous studies, we have shown that the bile-salt-dependent-lipase (BSDL), secreted by pancreatic acinar cells and secreted into the duodenal lumen, can be transcytosed through intestinal cells up to the lamina propria. In this study, we used an in vitro system to provide insights into the apical to basolateral transport of BSDL, across the intestinal barrier. The Int407 human epithelial cell line, grown under conditions that optimize polarity, was used as a tight epithelium model. We attempted to delineate uptake mechanisms and the transcytotic pathway followed by this pancreatic enzyme within the intestinal Int407 cells, which do not produce BSDL. When added to the apical reservoir of Transwell-grown Int407 cells, BSDL was shown to first interact with the apical membrane. Further, BSDL forms clusters that are internalized via clathrin-coated pits. Following endocytosis, BSDL is directed to a nocodazole- and colchicin-sensitive multivesicular compartment. Interestingly, this protein transits through the Golgi apparatus, where it was found to colocalize with the KDEL retrieval-receptor. Finally, enzymatically active intact BSDL was released at the basolateral membrane level. This is the first demonstration for an apical-to-basolateral transcytotic pathway of a secreted pancreatic digestive enzyme through polarized intestinal cells.
Collapse
Affiliation(s)
- N Bruneau
- Unité de Recherche de Physiopathologie des cellules épithéliales, INSERM U-559, Marseilles, France
| | | | | | | |
Collapse
|
57
|
Sprong H, Degroote S, Claessens T, van Drunen J, Oorschot V, Westerink BH, Hirabayashi Y, Klumperman J, van der Sluijs P, van Meer G. Glycosphingolipids are required for sorting melanosomal proteins in the Golgi complex. J Cell Biol 2001; 155:369-80. [PMID: 11673476 PMCID: PMC2150844 DOI: 10.1083/jcb.200106104] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although glycosphingolipids are ubiquitously expressed and essential for multicellular organisms, surprisingly little is known about their intracellular functions. To explore the role of glycosphingolipids in membrane transport, we used the glycosphingolipid-deficient GM95 mouse melanoma cell line. We found that GM95 cells do not make melanin pigment because tyrosinase, the first and rate-limiting enzyme in melanin synthesis, was not targeted to melanosomes but accumulated in the Golgi complex. However, tyrosinase-related protein 1 still reached melanosomal structures via the plasma membrane instead of the direct pathway from the Golgi. Delivery of lysosomal enzymes from the Golgi complex to endosomes was normal, suggesting that this pathway is not affected by the absence of glycosphingolipids. Loss of pigmentation was due to tyrosinase mislocalization, since transfection of tyrosinase with an extended transmembrane domain, which bypassed the transport block, restored pigmentation. Transfection of ceramide glucosyltransferase or addition of glucosylsphingosine restored tyrosinase transport and pigmentation. We conclude that protein transport from Golgi to melanosomes via the direct pathway requires glycosphingolipids.
Collapse
Affiliation(s)
- H Sprong
- Department of Cell Biology and Histology, Academic Medical Center, University of Amsterdam, 1100 DE, Amsterdam, Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Wang E, Pennington JG, Goldenring JR, Hunziker W, Dunn KW. Brefeldin A rapidly disrupts plasma membrane polarity by blocking polar sorting in common endosomes of MDCK cells. J Cell Sci 2001; 114:3309-21. [PMID: 11591819 DOI: 10.1242/jcs.114.18.3309] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies showing thorough intermixing of apical and basolateral endosomes have demonstrated that endocytic sorting is critical to maintaining the plasma membrane polarity of epithelial cells. Our studies of living, polarized cells show that disrupting endocytosis with brefeldin-A rapidly destroys the polarity of transferrin receptors in MDCK cells while having no effect on tight junctions. Brefeldin-A treatment induces tubulation of endosomes, but the sequential compartments and transport steps of the transcytotic pathway remain intact. Transferrin is sorted from LDL, but is then missorted from common endosomes to the apical recycling endosome, as identified by its nearly neutral pH, and association with GFP chimeras of Rabs 11a and 25. From the apical recycling endosome, transferrin is then directed to the apical plasma membrane. These data are consistent with a model in which polarized sorting of basolateral membrane proteins occurs via a brefeldin-A-sensitive process of segregation into basolateral recycling vesicles. Although disruption of polar sorting correlates with dissociation of γ-adaptin from endosomes, γ-adaptin does not appear to be specifically involved in sorting into recycling vesicles, as we find it associated with the transcytotic pathway, and particularly to the post-sorting transcytotic apical recycling endosome.
Movies available on-line
Collapse
Affiliation(s)
- E Wang
- Department of Medicine, Division of Nephrology, Indiana University Medical Center, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
59
|
Ding K, Jonsson M, Mani K, Sandgren S, Belting M, Fransson LA. N-unsubstituted glucosamine in heparan sulfate of recycling glypican-1 from suramin-treated and nitrite-deprived endothelial cells. mapping of nitric oxide/nitrite-susceptible glucosamine residues to clustered sites near the core protein. J Biol Chem 2001; 276:3885-94. [PMID: 11110783 DOI: 10.1074/jbc.m005238200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have analyzed the content of N-unsubstituted glucosamine in heparan sulfate from glypican-1 synthesized by endothelial cells during inhibition of (a) intracellular progression by brefeldin A, (b) heparan sulfate degradation by suramin, and/or (c) endogenous nitrite formation. Glypican-1 from brefeldin A-treated cells carried heparan sulfate chains that were extensively degraded by nitrous acid at pH 3.9, indicating the presence of glucosamines with free amino groups. Chains with such residues were rare in glypican-1 isolated from unperturbed cells and from cells treated with suramin and, surprisingly, when nitrite-deprived. However, when nitrite-deprived cells were simultaneously treated with suramin, such glucosamine residues were more prevalent. To locate these residues, chains were first cleaved at linkages to sulfated l-iduronic acid by heparin lyase and released fragments were separated from core protein carrying heparan sulfate stubs. These stubs were then cleaved off at sites linking N-substituted glucosamines to d-glucuronic acid. These fragments were extensively degraded by nitrous acid at pH 3.9. When purified proteoglycan isolated from brefeldin A-treated cells was incubated with intact cells, endoheparanase-catalyzed degradation generated a core protein with heparan sulfate stubs that were similarly sensitive to nitrous acid. We conclude that there is a concentration of N-unsubstituted glucosamines to the reducing side of the endoheparanase cleavage site in the transition region between unmodified and modified chain segments near the linkage region to the protein. Both sites as well as the heparin lyase-sensitive sites seem to be in close proximity to one another.
Collapse
Affiliation(s)
- K Ding
- Department of Cell and Molecular Biology, Section for Cell and Matrix Biology, Lund University, Lund S-221 00, Sweden
| | | | | | | | | | | |
Collapse
|
60
|
Sarnataro D, Nitsch L, Hunziker W, Zurzolo C. Detergent insoluble microdomains are not involved in transcytosis of polymeric Ig receptor in FRT and MDCK cells. Traffic 2000; 1:794-802. [PMID: 11208069 DOI: 10.1034/j.1600-0854.2000.011006.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In polarized epithelial cells, sorting of proteins and lipids to the apical or basolateral domain of the plasma membrane can occur via direct or indirect (transcytotic) pathways from the trans Golgi network (TGN). The 'rafts' hypothesis postulates that the key event for direct apical sorting of some transmembrane proteins and the majority of GPI-anchored proteins depends on their association with glycosphingolipid and cholesterol enriched microdomains (rafts). However, the mechanism of indirect sorting to the apical membrane is not clear. The polyimmunoglobulin receptor (pIgR) is one of the best studied proteins that follow the transcytotic pathway. It is normally delivered from the TGN to the basolateral surface of polarized Madin-Darby Canine Kidney (MDCK) cells from where it transports dIgA or dIgM to the apical surface. We have studied the intracellular trafficking of pIgR in Fischer rat thyroid cells (FRT), and have investigated the sorting machinery involved in transcytosis of this receptor in both FRT and MDCK cells. We found that, in contrast with MDCK cells, a significant amount (approximately 30%) of pIgR reaches the apical surface by a direct pathway. Furthermore, in both cell lines it does not associate with Triton X-100 insoluble microdomains, suggesting that at least in these cells 'rafts' are not involved in basolateral to apical transcytosis.
Collapse
Affiliation(s)
- D Sarnataro
- Dipartimento di Biologia e Patologia Cellulare e Molecolare, Università degli Studi di Napoli Federico II, Centro di Endocrinologia ed Oncologia Sperimentale del Consiglio Nazionale delle Ricerche, 80131 Napoli, Italy
| | | | | | | |
Collapse
|
61
|
De Wolf MJ. A dipeptide metalloendoprotease substrate completely blocks the response of cells in culture to cholera toxin. J Biol Chem 2000; 275:30240-7. [PMID: 10831601 DOI: 10.1074/jbc.m004434200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Prior exposure (15 min at 37 degrees C) of several cell types (Vero, SH-SY5Y neuroblastoma, human intestinal epithelial T84) to 3 mm N-benzoyloxycarbonyl-Gly-Phe-amide (Cbz-Gly-Phe-NH(2)), a competitive substrate for metalloendoproteases, completely suppressed cholera toxin (CT)-induced intracellular cAMP accumulation. The specificity of the inhibitory effect was demonstrated by the complete lack of effect of the dipeptide Cbz-Gly-Gly-NH(2), an inactive analogue of Cbz-Gly-Phe-NH(2). The effect was reversible and dose- (IC(50) as low as 0.2 mm depending on the cell type) and time-dependent. Adding Cbz-Gly-Phe-NH(2) during the lag phase caused a diminution of its inhibitory effect similar to that observed with brefeldin A (BFA). Whereas the dipeptide completely suppressed the CT-induced adenylate cyclase (AC) activity, a direct effect on AC is unlikely since the elevation of intracellular cAMP by forskolin was only slightly reduced. The A(1) peptide of CT and NAD(+) activated the AC to the same extent in membranes from control and Cbz-Gly-Phe-NH(2)-treated cells or when Cbz-Gly-Phe-NH(2) was added directly to the assay. The inhibitory effects of suboptimal amounts of Cbz-Gly-Phe-NH(2) and BFA were not additive pointing to a similar mode of action of the two substances. However, Madin-Darby canine kidney cells of which the Golgi structure is BFA-resistant were not resistant to the inhibitory action of Cbz-Gly-Phe-NH(2) on CT cytotoxicity. Several lines of evidence indicate that a perturbation of intracellular Ca(2+) homeostasis by Cbz-Gly-Phe-NH(2) is not responsible for the inhibitory effect of the dipeptide. The dipeptide had also no effect on the binding of (125)I-CT to cells and even increased its intracellular internalization. In contrast with BFA, Cbz-Gly-Phe-NH(2) did not completely suppress the formation of the catalytically active A(1) fragment from bound CT. The data are compatible with a role of metalloendoprotease activity in the intracellular trafficking and processing of CT, although other mechanisms of action of Cbz-Gly-Phe-NH(2) cannot be excluded.
Collapse
Affiliation(s)
- M J De Wolf
- RUCA Laboratory of Human Biochemistry, University of Antwerp, Groenenborgerlaan 171, B2020 Antwerp, Belgium.
| |
Collapse
|
62
|
Towler MC, Prescott AR, James J, Lucocq JM, Ponnambalam S. The manganese cation disrupts membrane dynamics along the secretory pathway. Exp Cell Res 2000; 259:167-79. [PMID: 10942589 DOI: 10.1006/excr.2000.4958] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The endoplasmic reticulum and Golgi apparatus play key roles in regulating the folding, assembly, and transport of newly synthesized proteins along the secretory pathway. We find that the divalent cation manganese disrupts the Golgi apparatus and endoplasmic reticulum (ER). The Golgi apparatus is fragmented into smaller dispersed structures upon manganese treatment. Golgi residents, such as TGN46, beta1,4-galactosyltransferase, giantin, and GM130, are still segregated and partitioned correctly into smaller stacked fragments in manganese-treated cells. The mesh-like ER network is substantially affected and peripheral ER elements are collapsed. These effects are consistent with manganese-mediated inhibition of motor proteins that link membrane organelles along the secretory pathway to the cytoskeleton. This divalent cation thus represents a new tool for studying protein secretion and membrane dynamics along the secretory pathway.
Collapse
Affiliation(s)
- M C Towler
- Department of Biochemistry, University of Dundee, Dundee, DD1 5EH, United Kingdom
| | | | | | | | | |
Collapse
|
63
|
Malo M, Vurpillot C, Tomasi M, Bruner J, Stinnakre J, Israël M. Effect of brefeldin A on acetylcholine release from glioma C6BU-1 cells. Neuropharmacology 2000; 39:2214-21. [PMID: 10963765 DOI: 10.1016/s0028-3908(00)00042-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The glial C6BU-1 cell line, loaded with acetylcholine can release this neurotransmitter. This study was aimed at determining whether disruption of the Golgi-vesicular traffic by brefeldin A would change the acetylcholine release from these cells and affect proteins involved in transmitter release like the 15 kDa proteolipid, common to V-ATPase and mediatophore. Cells were treated for 24 or 36 h with brefeldin A (35.7 microM). The observed changes in cell morphology were typical for brefeldin A treated cells in which protein membrane supply has been stopped. Inhibition of membrane protein supply was confirmed in the present work. Moreover, the 15 kDa proteolipid also decayed to a very low level in the cell membrane fraction. The release of acetylcholine evoked by a calcium challenge and a calcium ionophore, or by electrical pulses decreased markedly. The life time of the release mechanism was of the order of 36 h and half decayed in 24 h. In addition, the electrically evoked release became much shorter. Considering that C6BU-1 cells are able to release large amounts of ACh and their membranes contain a sizeable amount of the 15 kDa proteolipid, these results suggest that this proteolipid may be one of the proteins forming the membrane complex responsible for transmitter release, at least in these cells.
Collapse
Affiliation(s)
- M Malo
- Laboratoire de Neurobiologie Cellulaire et Moléculaire C.N.R.S., 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
64
|
Jackson CL. Brefeldin A revealing the fundamental principles governing membrane dynamics and protein transport. Subcell Biochem 2000; 34:233-72. [PMID: 10808335 DOI: 10.1007/0-306-46824-7_6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- C L Jackson
- Department of Cellular and Molecular Biology, SBGM, Gif-sur-Yvette, France
| |
Collapse
|
65
|
de Figueiredo P, Drecktrah D, Polizotto RS, Cole NB, Lippincott-Schwartz J, Brown WJ. Phospholipase A2 antagonists inhibit constitutive retrograde membrane traffic to the endoplasmic reticulum. Traffic 2000; 1:504-11. [PMID: 11208136 DOI: 10.1034/j.1600-0854.2000.010608.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Eukaryotic cells contain a variety of cytoplasmic Ca(2+)-dependent and Ca(2+)-independent phospholipase A2s (PLA2s; EC 2.3.1.2.3). However, the physiological roles for many of these ubiquitously-expressed enzymes is unclear or not known. Recently, pharmacological studies have suggested a role for Ca(2+)-independent PLA2 (iPLA2) enzymes in governing intracellular membrane trafficking events in general and regulating brefeldin A (BFA)-stimulated membrane tubulation and Golgi-to-endoplasmic reticulum (ER) retrograde membrane trafficking, in particular. Here, we extend these studies to show that membrane-permeant iPLA2 antagonists potently inhibit the normal, constitutive retrograde membrane trafficking from the trans-Golgi network (TGN), Golgi complex, and the ERGIC-53-positive ER-Golgi-intermediate compartment (ERGIC), which occurs in the absence of BFA. Taken together, these results suggest that iPLA2 enzymes play a general role in regulating, or directly mediating, multiple mammalian membrane trafficking events.
Collapse
Affiliation(s)
- P de Figueiredo
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
66
|
Mani K, Jönsson M, Edgren G, Belting M, Fransson LA. A novel role for nitric oxide in the endogenous degradation of heparan sulfate during recycling of glypican-1 in vascular endothelial cells. Glycobiology 2000; 10:577-86. [PMID: 10814699 DOI: 10.1093/glycob/10.6.577] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We show here that the endothelial cell-line ECV 304 expresses the heparan sulfate proteoglycan glypican-1. The predominant cellular glycoform carries truncated side-chains and is accompanied by heparan sulfate oligosaccharides. Treatment with brefeldin A results in accumulation of a glypican proteoglycan with full-size side-chains while the oligosaccharides disappear. During chase the glypican proteoglycan is converted to partially degraded heparan sulfate chains and chain-truncated proteoglycan, both of which can be captured by treatment with suramin. The heparan sulfate chains in the intact proteoglycan can be depolymerized by nitrite-dependent cleavage at internally located N-unsubstituted glucosamine moieties. Inhibition of NO-synthase or nitrite-deprivation prevents regeneration of intact proteoglycan from truncated precursors as well as formation of oligosaccharides. In nitrite-deprived cells, formation of glypican proteoglycan is restored when NO-donor is supplied. We propose that, in recycling glypican-1, heparan sulfate chains are cleaved at or near glucosamines with unsubstituted amino groups. NO-derived nitrite is then required for the removal of short, nonreducing terminal saccharides containing these N-unsubstituted glucosamine residues from the core protein stubs, facilitating re-synthesis of heparan sulfate chains.
Collapse
Affiliation(s)
- K Mani
- Department of Cell and Molecular Biology, Lund University, Sweden
| | | | | | | | | |
Collapse
|
67
|
Abstract
Phagosomes mature by sequentially fusing with endosomes and lysosomes. Vesicle budding is presumed to occur concomitantly, mediating the retrieval of plasmalemmal components and the regulation of phagosomal size. We analyzed whether fission of vesicles from phagosomes requires COPI, a multimeric complex known to be involved in budding from the Golgi and endosomes. The role of COPI was studied using ldlF cells, that harbor a temperature-sensitive mutation in epsilon-COP, a subunit of the coatomer complex. These cells were made phagocytic toward IgG-opsonized particles by heterologous expression of human FcgammaRIIA receptors. Following incubation at the restrictive temperature, epsilon-COP was degraded in these cells and their Golgi complex dispersed. Nevertheless, phagocytosis persisted for hours in cells devoid of epsilon-COP. Retrieval of transferrin receptors from phagosomes became inefficient in the absence of epsilon-COP, while clearance of the FcgammaRIIA receptors was unaffected. This indicates that fission of vesicles from the phagosomal membrane involves at least two mechanisms, one of which requires intact COPI. Traffic of fluid-phase markers and aggregated IgG-receptor complexes along the endocytic pathway was abnormal in epsilon-COP-deficient cells. In contrast, phagosome fusion with endosomes and lysosomes was unimpaired. Moreover, the resulting phagolysosomes were highly acidic. Similar results were obtained in RAW264.7 macrophages treated with brefeldin A, which precludes COPI assembly by interfering with the activation of adenosine ribosylation factor. These data indicate that neither phagosome formation nor maturation are absolutely dependent on COPI. Our findings imply that phagosomal maturation differs from endosomal progression, which appears to be more dependent on COPI-mediated formation of carrier vesicles.
Collapse
Affiliation(s)
- R J Botelho
- Programme in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
68
|
Nicoziani P, Vilhardt F, Llorente A, Hilout L, Courtoy PJ, Sandvig K, van Deurs B. Role for dynamin in late endosome dynamics and trafficking of the cation-independent mannose 6-phosphate receptor. Mol Biol Cell 2000; 11:481-95. [PMID: 10679008 PMCID: PMC14787 DOI: 10.1091/mbc.11.2.481] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/1999] [Revised: 11/02/1999] [Accepted: 11/30/1999] [Indexed: 01/28/2023] Open
Abstract
It is well established that dynamin is involved in clathrin-dependent endocytosis, but relatively little is known about possible intracellular functions of this GTPase. Using confocal imaging, we found that endogenous dynamin was associated with the plasma membrane, the trans-Golgi network, and a perinuclear cluster of cation-independent mannose 6-phosphate receptor (CI-MPR)-containing structures. By electron microscopy (EM), it was shown that these structures were late endosomes and that the endogenous dynamin was preferentially localized to tubulo-vesicular appendices on these late endosomes. Upon induction of the dominant-negative dynK44A mutant, confocal microscopy demonstrated a redistribution of the CI-MPR in mutant-expressing cells. Quantitative EM analysis of the ratio of CI-MPR to lysosome-associated membrane protein-1 in endosome profiles revealed a higher colocalization of the two markers in dynK44A-expressing cells than in control cells. Western blot analysis showed that dynK44A-expressing cells had an increased cellular procathepsin D content. Finally, EM revealed that in dynK44A-expressing cells, endosomal tubules containing CI-MPR were formed. These results are in contrast to recent reports that dynamin-2 is exclusively associated with endocytic structures at the plasma membrane. They suggest instead that endogenous dynamin also plays an important role in the molecular machinery behind the recycling of the CI-MPR from endosomes to the trans-Golgi network, and we propose that dynamin is required for the final scission of vesicles budding from endosome tubules.
Collapse
Affiliation(s)
- P Nicoziani
- Structural Cell Biology Unit, Department of Medical Anatomy, The Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
69
|
Füllekrug J, Scheiffele P, Simons K. VIP36 localisation to the early secretory pathway. J Cell Sci 1999; 112 ( Pt 17):2813-21. [PMID: 10444376 DOI: 10.1242/jcs.112.17.2813] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
VIP36, an integral membrane protein previously isolated from epithelial MDCK cells, is an intracellular lectin of the secretory pathway. Overexpressed VIP36 had been localised to the Golgi complex, plasma membrane and endocytic structures suggesting post-Golgi trafficking of this molecule (Fiedler et al., 1994). Here we provide evidence that endogenous VIP36 is localised to the Golgi apparatus and the early secretory pathway of MDCK and Vero cells and propose that retention is easily saturated. High resolution confocal microscopy shows partial overlap of VIP36 with Golgi marker proteins. Punctate cytoplasmic structures colocalise with coatomer and ERGIC-53, labeling ER-Golgi intermediate membrane structures. Cycling of VIP36 is suggested by colocalisation with anterograde cargo trapped in pre-Golgi structures and modification of its N-linked carbohydrate by glycosylation enzymes of medial Golgi cisternae. Furthermore, after brefeldin A treatment VIP36 is segregated from resident Golgi proteins and codistributes with ER-Golgi recycling proteins.
Collapse
Affiliation(s)
- J Füllekrug
- Cell Biology, European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, D-69117 Heidelberg, Germany
| | | | | |
Collapse
|
70
|
Liu XH, Castelli JC, Youle RJ. Receptor-mediated uptake of an extracellular Bcl-x(L) fusion protein inhibits apoptosis. Proc Natl Acad Sci U S A 1999; 96:9563-7. [PMID: 10449732 PMCID: PMC22248 DOI: 10.1073/pnas.96.17.9563] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Bcl-x(L), a member of the Bcl-2 family, inhibits many pathways of apoptosis when overexpressed in the cell cytosol. We examined the capacity of Bcl-x(L) fusion proteins to bind cells from the outside and block apoptosis. Full-length Bcl-x(L) protein at micromolar concentrations did not affect apoptosis when added to cell media. To increase uptake by cells, Bcl-x(L) was fused to the receptor-binding domain of diphtheria toxin (DTR). The Bcl-x(L)-DTR fusion protein blocked apoptosis induced by staurosporine, gamma-irradiation, and poliovirus in a variety of cell types when added to media. The potency of inhibition of poliovirus-induced apoptosis by Bcl-x(L)-DTR was greater than that of strong caspase inhibitors. Brefeldin A, an inhibitor of vesicular traffic between the endoplasmic reticulum and Golgi apparatus, prevented the Bcl-x(L)-DTR blockade of apoptosis induced by staurosporine, suggesting that Bcl-x(L)-DTR must be endocytosed and reach intracellular compartments for activity. Many diseases are caused by overexpression or underexpression of Bcl-x(L) homologues. Extracellular delivery of Bcl-2 family member proteins may have a wide range of uses in promoting or preventing cell death.
Collapse
Affiliation(s)
- X H Liu
- Biochemistry Section, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
71
|
Nordeng TW, Bakke O. Overexpression of proteins containing tyrosine- or leucine-based sorting signals affects transferrin receptor trafficking. J Biol Chem 1999; 274:21139-48. [PMID: 10409667 DOI: 10.1074/jbc.274.30.21139] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Targeting of many transmembrane proteins to post-Golgi compartments is dependent on cytoplasmically exposed sorting signals. The most widely used signals conform to the tyrosine- or the leucine-based motifs. Both types of signals have been implicated in protein localization to the same intracellular compartments, but previous results from both cell-free experiments and studies of transfected cell lines have indicated that the two types of signals interact with separate components of the sorting machinery. We have overexpressed several transmembrane proteins in stably transfected Madin-Darby canine kidney cells using an inducible promoter system. Overexpression of proteins containing tyrosine- or leucine-based sorting signals resulted in reduced internalization of the transferrin receptor, whereas recycling and polarized distribution was not influenced. Our results indicate that proteins with tyrosine- and leucine-based sorting signals can be transported along common saturable pathways.
Collapse
Affiliation(s)
- T W Nordeng
- Division of Molecular Cell Biology, Department of Biology, University of Oslo, Oslo 0316, Norway.
| | | |
Collapse
|
72
|
Praetor A, Ellinger I, Hunziker W. Intracellular traffic of the MHC class I-like IgG Fc receptor, FcRn, expressed in epithelial MDCK cells. J Cell Sci 1999; 112 ( Pt 14):2291-9. [PMID: 10381385 DOI: 10.1242/jcs.112.14.2291] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transfer of passive immunity from mother to the fetus or newborn involves the transport of IgG across several epithelia. Depending on the species, IgG is transported prenatally across the placenta and yolk sac or is absorbed from colostrum and milk by the small intestine of the suckling newborn. In both cases apical to basolateral transepithelial transport of IgG is thought to be mediated by FcRn, an IgG Fc receptor with homology to MHC class I antigens. We have now expressed the human FcRn in polarized MDCK cells and analyzed the intracellular routing of the receptor. FcRn showed a predominant intracellular localization at steady state. Newly synthesized FcRn was delivered in a non-vectorial fashion to both the apical and basolateral surfaces of MDCK cell monolayers. Following internalization from the apical or basolateral domain, the receptor transcytosed to the opposite surface. These findings provide direct evidence for the transepithelial transport function of FcRn and indicate that the receptor undergoes multiple rounds of transcytosis.
Collapse
Affiliation(s)
- A Praetor
- Institute of Biochemistry, University of Lausanne, BIL Biomedical Research Center, 1066 Epalinges, Switzerland
| | | | | |
Collapse
|
73
|
Lencer WI, Hirst TR, Holmes RK. Membrane traffic and the cellular uptake of cholera toxin. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1450:177-90. [PMID: 10395933 DOI: 10.1016/s0167-4889(99)00070-1] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
In nature, cholera toxin (CT) and the structurally related E. coli heat labile toxin type I (LTI) must breech the epithelial barrier of the intestine to cause the massive diarrhea seen in cholera. This requires endocytosis of toxin-receptor complexes into the apical endosome, retrograde transport into Golgi cisternae or endoplasmic reticulum (ER), and finally transport of toxin across the cell to its site of action on the basolateral membrane. Targeting into this pathway depends on toxin binding ganglioside GM1 and association with caveolae-like membrane domains. Thus to cause disease, both CT and LTI co-opt the molecular machinery used by the host cell to sort, move, and organize their cellular membranes and substituent components.
Collapse
Affiliation(s)
- W I Lencer
- Combined Program in Pediatric Gastroenterology, Children's Hospital, Harvard Medical School, Harvard Digestive Diseases Center, Boston, MA, USA.
| | | | | |
Collapse
|
74
|
Meacci E, Vasta V, Moorman JP, Bobak DA, Bruni P, Moss J, Vaughan M. Effect of Rho and ADP-ribosylation factor GTPases on phospholipase D activity in intact human adenocarcinoma A549 cells. J Biol Chem 1999; 274:18605-12. [PMID: 10373471 DOI: 10.1074/jbc.274.26.18605] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipase D (PLD) has been implicated as a crucial signaling enzyme in secretory pathways. Two 20-kDa guanine nucleotide-binding proteins, Rho and ADP-ribosylation factor (ARF), are involved in the regulation of secretion and can activate PLD in vitro. We investigated in intact (human adenocarcinoma A549 cells) the role of RhoA and ARF in activation of PLD by phorbol 12-myristate 13-acetate, bradykinin, and/or sphingosine 1-phosphate. To express recombinant Clostridium botulinum C3 exoenzyme (using double subgenomic recombinant Sindbis virus C3), an ADP-ribosyltransferase that inactivates Rho, or dominant-negative Rho containing asparagine at position 19 (using double subgenomic recombinant Sindbis virus Rho19N), cells were infected with Sindbis virus, a novel vector that allows rapid, high level expression of heterologous proteins. Expression of C3 toxin or Rho19N increased basal and decreased phorbol 12-myristate 13-acetate-stimulated PLD activity. Bradykinin or sphingosine 1-phosphate increased PLD activity with additive effects that were abolished in cells expressing C3 exoenzyme or Rho19N. In cells expressing C3, modification of Rho appeared to be incomplete, suggesting the existence of pools that differed in their accessibility to the enzyme. Similar results were obtained with cells scrape-loaded in the presence of C3; however, results with virus infection were more reproducible. To assess the role of ARF, cells were incubated with brefeldin A (BFA), a fungal metabolite that disrupts Golgi structure and inhibits enzymes that catalyze ARF activation by accelerating guanine nucleotide exchange. BFA disrupted Golgi structure, but did not affect basal or agonist-stimulated PLD activity, i.e. it did not alter a rate-limiting step in PLD activation. It also had no effect on Rho-stimulated PLD activity, indicating that RhoA action did not involve a BFA-sensitive pathway. A novel PLD activation mechanism, not sensitive to BFA and involving RhoA, was identified in human airway epithelial cells by use of a viral infection technique that preserves cell responsiveness.
Collapse
Affiliation(s)
- E Meacci
- Pulmonary-Critical Care Medicine Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
75
|
Sheff DR, Daro EA, Hull M, Mellman I. The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. J Cell Biol 1999; 145:123-39. [PMID: 10189373 PMCID: PMC2148223 DOI: 10.1083/jcb.145.1.123] [Citation(s) in RCA: 369] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Receptor recycling involves two endosome populations, peripheral early endosomes and perinuclear recycling endosomes. In polarized epithelial cells, either or both populations must be able to sort apical from basolateral proteins, returning each to its appropriate plasma membrane domain. However, neither the roles of early versus recycling endosomes in polarity nor their relationship to each other has been quantitatively evaluated. Using a combined morphological, biochemical, and kinetic approach, we found these two endosome populations to represent physically and functionally distinct compartments. Early and recycling endosomes were resolved on Optiprep gradients and shown to be differentially associated with rab4, rab11, and transferrin receptor; rab4 was enriched on early endosomes and at least partially depleted from recycling endosomes, with the opposite being true for rab11 and transferrin receptor. The two populations were also pharmacologically distinct, with AlF4 selectively blocking export of transferrin receptor from recycling endosomes to the basolateral plasma membrane. We applied these observations to a detailed kinetic analysis of transferrin and dimeric IgA recycling and transcytosis. The data from these experiments permitted the construction of a testable, mathematical model which enabled a dissection of the roles of early and recycling endosomes in polarized receptor transport. Contrary to expectations, the majority (>65%) of recycling to the basolateral surface is likely to occur from early endosomes, but with relatively little sorting of apical from basolateral proteins. Instead, more complete segregation of basolateral receptors from receptors intended for transcytosis occurred upon delivery to recycling endosomes.
Collapse
Affiliation(s)
- D R Sheff
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8002, USA
| | | | | | | |
Collapse
|
76
|
Londoño I, Marshansky V, Bourgoin S, Vinay P, Bendayan M. Expression and distribution of adenosine diphosphate-ribosylation factors in the rat kidney. Kidney Int 1999; 55:1407-16. [PMID: 10201005 DOI: 10.1046/j.1523-1755.1999.00365.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Adenosine diphosphate (ADP)-ribosylation factors (ARFs) are small guanosine triphosphatases involved in membrane traffic regulation. Aiming to explore the possible involvement of ARF1 and ARF6 in the reabsorptive properties of the nephron, we evaluated their distribution along the different renal epithelial segments. METHODS ARFs were detected by immunofluorescence and immunogold cytochemistry on renal sections, using specific anti-ARF antibodies. RESULTS ARF1 was detected in proximal and distal tubules, thick ascending limbs of Henle's loops, and cortical and medullary collecting ducts. By immunofluorescence, labeling was mostly localized to the cell cytoplasm, particularly in Golgi areas. By electron microscopy, the Golgi apparatus and the endosomal compartment of proximal and distal tubular cells were labeled. ARF6 immunofluorescence was observed in brush border membranes and the cytoplasm of proximal convoluted tubular cells, whereas it was restricted to the apical border of proximal straight tubules. ARF6 immunogold labeling was detected over microvilli and endocytic compartments of proximal tubular cells. CONCLUSIONS This study demonstrates the following: (a) the heterogeneous distributions of ARF1 and ARF6 along the nephron, (b) the existence of cytosolic and membrane-bound forms for both ARFs, and (c) their association with microvilli and endocytic compartments, suggesting an active participation in renal reabsorption.
Collapse
Affiliation(s)
- I Londoño
- Department of Pathology and Cell Biology, Université de Montréal, Quebec, Canada
| | | | | | | | | |
Collapse
|
77
|
Stefaner I, Praetor A, Hunziker W. Nonvectorial surface transport, endocytosis via a Di-leucine-based motif, and bidirectional transcytosis of chimera encoding the cytosolic tail of rat FcRn expressed in Madin-Darby canine kidney cells. J Biol Chem 1999; 274:8998-9005. [PMID: 10085147 DOI: 10.1074/jbc.274.13.8998] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transfer of passive immunity from the mother to the fetus or newborn involves the transport of IgG across several epithelia. Depending on the species, IgG is transported prenatally across the placenta and yolk sac or is absorbed from colostrum and milk by the small intestine of the suckling newborn. In both cases apical to basolateral transepithelial transport of IgG is thought to be mediated by FcRn, an IgG Fc receptor with homology to major histocompatibility class I antigens. Here, we analyzed the intracellular routing of chimera encoding the rat FcRn tail fused to the ecto- and transmembrane domain of the macrophage FcgammaRIIb. Newly synthesized chimera were delivered in a nonvectorial manner to the apical and basolateral cell surface, from where the chimera were able to internalize and transcytose. Apical to basolateral and basolateral to apical transcytosis were differently regulated. This intracellular routing of the chimera is similar to that of the native FcRn, indicating that the cytosolic tail of the receptor is necessary and sufficient to endow an unrelated FcR with the intracellular transport behavior of FcRn. Furthermore, the di-leucine motif in the cytosolic domain of FcRn was required for rapid and efficient endocytosis but not for basolateral sorting of the chimera.
Collapse
Affiliation(s)
- I Stefaner
- Institute of Biochemistry, University of Lausanne, BIL Biomedical Research Center, 155 Ch. des Boveresses, 1066 Epalinges, Switzerland
| | | | | |
Collapse
|
78
|
Sata M, Moss J, Vaughan M. Structural basis for the inhibitory effect of brefeldin A on guanine nucleotide-exchange proteins for ADP-ribosylation factors. Proc Natl Acad Sci U S A 1999; 96:2752-7. [PMID: 10077583 PMCID: PMC15841 DOI: 10.1073/pnas.96.6.2752] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein secretion through the endoplasmic reticulum and Golgi vesicular trafficking system is initiated by the binding of ADP-ribosylation factors (ARFs) to donor membranes, leading to recruitment of coatomer, bud formation, and eventual vesicle release. ARFs are approximately 20-kDa GTPases that are active with bound GTP and inactive with GDP bound. Conversion of ARF-GDP to ARF-GTP is regulated by guanine nucleotide-exchange proteins. All known ARF guanine nucleotide-exchange proteins contain a Sec7 domain of approximately 200 amino acids that includes the active site and fall into two classes that differ in molecular size and susceptibility to inhibition by the fungal metabolite brefeldin A (BFA). To determine the structural basis of BFA sensitivity, chimeric molecules were constructed by using sequences from the Sec7 domains of BFA-sensitive yeast Sec7 protein (ySec7d) and the insensitive human cytohesin-1 (C-1Sec7). Based on BFA inhibition of the activities of these molecules with recombinant yeast ARF2 as substrate, the Asp965-Met975 sequence in ySec7d was shown to be responsible for BFA sensitivity. A C-1Sec7 mutant in which Ser199, Asn204, and Pro209 were replaced with the corresponding ySec7d amino acids, Asp965, Gln970, and Met975, exhibited BFA sensitivity similar to that of recombinant ySec7d (rySec7d). Single replacement in C-1Sec7 of Ser199 or Pro209 resulted in partial inhibition by BFA, whereas replacement of Gln970 in ySec7d with Asn (as found in C-1Sec7) had no effect. As predicted, the double C-1Sec7 mutant with S199D and P209M was BFA-sensitive, demonstrating that Asp965 and Met975 in ySec7d are major molecular determinants of BFA sensitivity.
Collapse
Affiliation(s)
- M Sata
- Pulmonary-Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
79
|
Alvarez C, Sztul ES. Brefeldin A (BFA) disrupts the organization of the microtubule and the actin cytoskeletons. Eur J Cell Biol 1999; 78:1-14. [PMID: 10082419 DOI: 10.1016/s0171-9335(99)80002-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previous inquiries into the effects of Brefeldin A (BFA) have largely concentrated on dynamics of ER-Golgi membrane traffic, predominantly after relatively short treatments with the drug. We have now analyzed the effects of long BFA treatment on overall cell morphology, behavior of resident and cycling Golgi proteins, and microtubular and actin cytoskeletons organization. Prolonged (15 h or 40 h) treatment of normal rat kidney (NRK) cells with BFA caused dramatic swelling of the Endoplasmic Reticulum (ER) and shifted its localization to the periphery of the cells. The Golgi complex was disassembled and Golgi proteins redistributed and persisted in partially distinct compartments. Prolonged BFA treatment resulted in marked disruption of the MT and actin cytoskeleton. Peripheral MT were absent and tubulin staining was concentrated in short astral MT emanating from the microtubule organizing center (MTOC). Actin stress fibers were largely absent and actin staining was concentrated within a perinuclear area. Within this region, actin localization overlapped that of the membrane transport factor p115. BFA effects on Golgi structure and on MT and actin organization showed the same threshold -- all could be partially reversed after 30 min and 15 h BFA treatment but were irreversible after 40h incubation with the drug. The observed effects were not induced by signaling pathways involved in apoptotic phenomena or in ER stress response pathways. These results suggest that BFA inhibits the activity of key molecules that regulate MT and actin cytoskeleton dynamics. The findings can be used as the basis for elucidating the molecular mechanism of BFA action on the cytoskeleton.
Collapse
Affiliation(s)
- C Alvarez
- Department of Cell Biology, University of Alabama at Birmingham, 35294, USA
| | | |
Collapse
|
80
|
Brown MT, Andrade J, Radhakrishna H, Donaldson JG, Cooper JA, Randazzo PA. ASAP1, a phospholipid-dependent arf GTPase-activating protein that associates with and is phosphorylated by Src. Mol Cell Biol 1998; 18:7038-51. [PMID: 9819391 PMCID: PMC109286 DOI: 10.1128/mcb.18.12.7038] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/1998] [Accepted: 08/21/1998] [Indexed: 11/20/2022] Open
Abstract
Membrane trafficking is regulated in part by small GTP-binding proteins of the ADP-ribosylation factor (Arf) family. Arf function depends on the controlled exchange and hydrolysis of GTP. We have purified and cloned two variants of a 130-kDa phosphatidylinositol 4, 5-biphosphate (PIP2)-dependent Arf1 GTPase-activating protein (GAP), which we call ASAP1a and ASAP1b. Both contain a pleckstrin homology (PH) domain, a zinc finger similar to that found in another Arf GAP, three ankyrin (ANK) repeats, a proline-rich region with alternative splicing and SH3 binding motifs, eight repeats of the sequence E/DLPPKP, and an SH3 domain. Together, the PH, zinc finger, and ANK repeat regions possess PIP2-dependent GAP activity on Arf1 and Arf5, less activity on Arf6, and no detectable activity on Arl2 in vitro. The cDNA for ASAP1 was independently identified in a screen for proteins that interact with the SH3 domain of the tyrosine kinase Src. ASAP1 associates in vitro with the SH3 domains of Src family members and with the Crk adapter protein. ASAP1 coprecipitates with Src from cell lysates and is phosphorylated on tyrosine residues in cells expressing activated Src. Both coimmunoprecipitation and tyrosine phosphorylation depend on the same proline-rich class II Src SH3 binding site required for in vitro association. By directly interacting with both Arfs and tyrosine kinases involved in regulating cell growth and cytoskeletal organization, ASAP1 could coordinate membrane remodeling events with these processes.
Collapse
Affiliation(s)
- M T Brown
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | | | | | | | |
Collapse
|
81
|
Mallard F, Antony C, Tenza D, Salamero J, Goud B, Johannes L. Direct pathway from early/recycling endosomes to the Golgi apparatus revealed through the study of shiga toxin B-fragment transport. J Cell Biol 1998; 143:973-90. [PMID: 9817755 PMCID: PMC2132951 DOI: 10.1083/jcb.143.4.973] [Citation(s) in RCA: 329] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Shiga toxin and other toxins of this family can escape the endocytic pathway and reach the Golgi apparatus. To synchronize endosome to Golgi transport, Shiga toxin B-fragment was internalized into HeLa cells at low temperatures. Under these conditions, the protein partitioned away from markers destined for the late endocytic pathway and colocalized extensively with cointernalized transferrin. Upon subsequent incubation at 37 degreesC, ultrastructural studies on cryosections failed to detect B-fragment-specific label in multivesicular or multilamellar late endosomes, suggesting that the protein bypassed the late endocytic pathway on its way to the Golgi apparatus. This hypothesis was further supported by the rapid kinetics of B-fragment transport, as determined by quantitative confocal microscopy on living cells and by B-fragment sulfation analysis, and by the observation that actin- depolymerizing and pH-neutralizing drugs that modulate vesicular transport in the late endocytic pathway had no effect on B-fragment accumulation in the Golgi apparatus. B-fragment sorting at the level of early/recycling endosomes seemed to involve vesicular coats, since brefeldin A treatment led to B-fragment accumulation in transferrin receptor-containing membrane tubules, and since B-fragment colocalized with adaptor protein type 1 clathrin coat components on early/recycling endosomes. Thus, we hypothesize that Shiga toxin B-fragment is transported directly from early/recycling endosomes to the Golgi apparatus. This pathway may also be used by cellular proteins, as deduced from our finding that TGN38 colocalized with the B-fragment on its transport from the plasma membrane to the TGN.
Collapse
Affiliation(s)
- F Mallard
- Institut Curie, Centre National de la Recherche Scientifique UMR 144, Laboratoire Mécanismes Moléculaires du Transport Intracellulaire, F-75248 Paris Cedex 05, France
| | | | | | | | | | | |
Collapse
|
82
|
Shitara Y, Kato Y, Sugiyama Y. Effect of brefeldin A and lysosomotropic reagents on intracellular trafficking of epidermal growth factor and transferrin in Madin-Darby canine kidney epithelial cells. J Control Release 1998; 55:35-43. [PMID: 9795009 DOI: 10.1016/s0168-3659(98)00025-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To regulate intracellular sorting of epidermal growth factor (EGF) or transferrin (Tf), the effect of brefeldin A (BFA) or lysosomotropic reagents was investigated. To examine the effect of them on the net transcellular transport of 125I-EGF or 125I-Tf, their transcytosis was investigated in the presence or absence of reagents. For the investigation of their fate after internalization, radiolabeled ligands were internalized at 37 degreesC, followed by extensive washing and subsequent incubation at 37 degreesC in the ligand-free medium (pulse-chase study). BFA enhanced transcytosis of 125I-Tf, but had no effect on 125I-EGF. Kinetic analysis in the pulse-chase study showed that BFA does not affect cell-surface binding or intracellular sorting of EGF, while it only increases the transcytosis rate constant of Tf. From the lysosomotropic reagents study, both ammonium chloride and monensin suppressed transcytosis and recycling as well as the degradation of EGF, while both chloroquine and bafilomycin A selectively suppressed the degradation process with only a minimal effect on transcytosis, resulting in an increase in the amount transcytosed. It is concluded the that enhancement effect of BFA on transcytosis depends upon the type of receptor targeted. Lysosomotropic reagents can be divided into two types as far as the specificity of the effect on the net amount of EGF transcytosed in Madin-Darby canine kidney (MDCK) cells is concerned.
Collapse
Affiliation(s)
- Y Shitara
- Faculty of Pharmaceutical Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | | | |
Collapse
|
83
|
Fukunaga T, Furuno A, Hatsuzawa K, Tani K, Yamamoto A, Tagaya M. NSF is required for the brefeldin A-promoted disassembly of the Golgi apparatus. FEBS Lett 1998; 435:237-40. [PMID: 9762917 DOI: 10.1016/s0014-5793(98)01081-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
N-Ethylmaleimide-sensitive factor (NSF) is required for multiple pathways of vesicle-mediated protein transport. Microinjection of a monoclonal anti-NSF antibody almost completely blocked brefeldin A-promoted Golgi disassembly without affecting the rapid release of beta-COP, a subunit of the Golgi coat proteins (COPI), from the Golgi apparatus. Similar results were obtained using a dominant-negative NSF which is known to compete with endogenous NSF. The present results suggest that an NSF-mediated step is present in the brefeldin A-promoted disassembly of the Golgi apparatus.
Collapse
Affiliation(s)
- T Fukunaga
- School of Life Science, Tokyo University of Pharmacy and Life Science, Hachioji, Japan
| | | | | | | | | | | |
Collapse
|
84
|
Cuconati A, Molla A, Wimmer E. Brefeldin A inhibits cell-free, de novo synthesis of poliovirus. J Virol 1998; 72:6456-64. [PMID: 9658088 PMCID: PMC109807 DOI: 10.1128/jvi.72.8.6456-6464.1998] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/1997] [Accepted: 05/05/1998] [Indexed: 02/08/2023] Open
Abstract
Brefeldin A (BFA), an inhibitor of intracellular vesicle-dependent secretory transport, is a potent inhibitor of poliovirus RNA replication in infected cells. We have determined that the unknown mechanism of BFA inhibition of replication is reproduced in the cell-free poliovirus translation, replication, and encapsidation system. Furthermore, we provide evidence suggesting that the cellular mechanism targeted by BFA, the GTP-dependent synthesis of secretory transport vesicles, may be involved in viral RNA replication in the system via a soluble cellular GTP-binding and -hydrolyzing activity. This activity is related to the ARF (ADP-ribosylation factor) family of GTP-binding proteins. ARFs are required for the formation of several classes of secretory vesicles, and some family members are indirectly inactivated by BFA. Peptides that function as competitive inhibitors of ARF activity in cell-free transport systems also inhibit poliovirus RNA replication, and this inhibitory effect can be countered by the addition of exogenous ARF. We suggest that BFA inhibition of replication is diagnostic of a requirement for ARF activity in the cell-free system.
Collapse
Affiliation(s)
- A Cuconati
- Department of Molecular Genetics and Microbiology, School of Medicine, State University of New York at Stony Brook, Stony Brook, New York 11794, USA
| | | | | |
Collapse
|
85
|
Sai Y, Kajita M, Tamai I, Wakama J, Wakamiya T, Tsuji A. Adsorptive-mediated transcytosis of a synthetic basic peptide, 001-C8 in Caco-2 cells. Pharm Res 1998; 15:1305-9. [PMID: 9706066 DOI: 10.1023/a:1011916613875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Y Sai
- Department of Pharmacobiodynamics, Faculty of Pharmaceutical Sciences, Kanazawa University, Japan
| | | | | | | | | | | |
Collapse
|
86
|
Ooi CE, Dell'Angelica EC, Bonifacino JS. ADP-Ribosylation factor 1 (ARF1) regulates recruitment of the AP-3 adaptor complex to membranes. J Biophys Biochem Cytol 1998; 142:391-402. [PMID: 9679139 PMCID: PMC2133064 DOI: 10.1083/jcb.142.2.391] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Small GTP-binding proteins such as ADP- ribosylation factor 1 (ARF1) and Sar1p regulate the membrane association of coat proteins involved in intracellular membrane trafficking. ARF1 controls the clathrin coat adaptor AP-1 and the nonclathrin coat COPI, whereas Sar1p controls the nonclathrin coat COPII. In this study, we demonstrate that membrane association of the recently described AP-3 adaptor is regulated by ARF1. Association of AP-3 with membranes in vitro was enhanced by GTPgammaS and inhibited by brefeldin A (BFA), an inhibitor of ARF1 guanine nucleotide exchange. In addition, recombinant myristoylated ARF1 promoted association of AP-3 with membranes. The role of ARF1 in vivo was examined by assessing AP-3 subcellular localization when the intracellular level of ARF1-GTP was altered through overexpression of dominant ARF1 mutants or ARF1- GTPase-activating protein (GAP). Lowering ARF1-GTP levels resulted in redistribution of AP-3 from punctate membrane-bound structures to the cytosol as seen by immunofluorescence microscopy. In contrast, increasing ARF1-GTP levels prevented redistribution of AP-3 to the cytosol induced by BFA or energy depletion. Similar experiments with mutants of ARF5 and ARF6 showed that these other ARF family members had little or no effect on AP-3. Taken together, our results indicate that membrane recruitment of AP-3 is promoted by ARF1-GTP. This finding suggests that ARF1 is not a regulator of specific coat proteins, but rather is a ubiquitous molecular switch that acts as a transducer of diverse signals influencing coat assembly.
Collapse
Affiliation(s)
- C E Ooi
- Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
87
|
Llorente A, van Deurs B, Sandvig K. Transport of apically but not basolaterally internalized ricin to the Golgi apparatus is stimulated by 8-Br-cAMP in MDCK cells. FEBS Lett 1998; 431:200-4. [PMID: 9708902 DOI: 10.1016/s0014-5793(98)00754-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The plant toxin ricin has to be transported to the Golgi apparatus after endocytosis to exert its toxic effect. In this study we show that transport of apically endocytosed ricin to the Golgi apparatus is stimulated by 8-Br-cAMP in polarized MDCK cells. This stimulation is counteracted by the PKA inhibitor H-89. In contrast, there is no increase in the transport to the Golgi apparatus of ricin internalized from the basolateral membrane. These results suggest that protein kinase A selectively regulates endosome to Golgi transport in these cells.
Collapse
Affiliation(s)
- A Llorente
- Institute for Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
| | | | | |
Collapse
|
88
|
Affiliation(s)
- J Lane
- School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester, M13 9PT, UK.
| | | |
Collapse
|
89
|
Hunziker W, Peters PJ. Rab17 localizes to recycling endosomes and regulates receptor-mediated transcytosis in epithelial cells. J Biol Chem 1998; 273:15734-41. [PMID: 9624171 DOI: 10.1074/jbc.273.25.15734] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small GTPase Rab17 is restricted to epithelial cells and its expression is induced during cell polarization. This observation has led to the suggestion that the protein may function in transcytosis, a pathway connecting the apical and basolateral endocytic systems. To analyze whether Rab17 plays a role in transcellular transport, we generated Madin-Darby canine kidney (MDCK) cell lines stably coexpressing wild-type or mutant Rab17 and the transcytotic polymeric immunoglobulin receptor (pIgR). Rab17 expressed in MDCK cells was found on small vesicles and tubules in the apical region of the cells. A significant fraction of the Rab17-positive structures was accessible to dimeric IgA internalized from the apical or basolateral cell surface via the pIgR. Furthermore, basolateral to apical transcytosis of dimeric IgA was impaired in MDCK cells overexpressing Rab17. Our data provides morphological and biochemical evidence for a role of Rab17 in the regulation of transcellular traffic through apical recycling endosomes in epithelial cells.
Collapse
Affiliation(s)
- W Hunziker
- Institute of Biochemistry, University of Lausanne, CH-1066 Epalinges, Switzerland.
| | | |
Collapse
|
90
|
Futter CE, Gibson A, Allchin EH, Maxwell S, Ruddock LJ, Odorizzi G, Domingo D, Trowbridge IS, Hopkins CR. In polarized MDCK cells basolateral vesicles arise from clathrin-gamma-adaptin-coated domains on endosomal tubules. J Cell Biol 1998; 141:611-23. [PMID: 9566963 PMCID: PMC2132747 DOI: 10.1083/jcb.141.3.611] [Citation(s) in RCA: 193] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human transferrin receptors (TR) and receptors for polymeric immunoglobulins (pIgR) expressed in polarized MDCK cells maintain steady-state, asymmetric distributions on the separate basolateral and apical surfaces even though they are trafficking continuously into and across these cells. The intracellular mechanisms required to maintain these asymmetric distributions have not been located. Here we show that TR and pIgR internalize from both surfaces to a common interconnected endosome compartment that includes tubules with buds coated with clathrin lattices. These buds generate vesicles that carry TR to the basolateral border. The lattices contain gamma-adaptin and are dispersed by treatment with brefeldin A (BFA). Since BFA treatment abrogates the vectorial trafficking of TR in polarized MDCK cells, we propose that the clathrin-coated domains of the endosome tubules contain the polarized sorting mechanism responsible for their preferential basolateral distribution.
Collapse
Affiliation(s)
- C E Futter
- Medical Research Council Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, England
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Abstract
Cell surface receptors play a central role in the regulation of both cellular and systemic physiology by mediating intercellular communication, facilitating protein trafficking, and regulating virtually all intracellular processes. Receptor expression is often cell specific and is determined by cellular lineage, genetics, and a variety of factors in the extracellular milieu. As receptors are generally localized on the plasma membrane and differentially expressed in certain cell types and tissues, they provide a potential target for drug delivery. However, since most receptors are integrally connected with intracellular signal transduction networks, targeting via these receptors may elicit a biological response. This review describes some established and emerging concepts regarding the structure and functions of receptors. In addition, some aspects related to the regulation and crosstalk between receptors are discussed.
Collapse
|
92
|
Abstract
Vesicular coat proteins mediate the formation of nascent vesicles and select the cargo to be incorporated therein. As additional coat proteins are discovered that regulate vesicular traffic along very specific intracellular pathways, the possibility looms of regulating the intracellular trafficking and targeting of therapeutic agents by modulation of the action of vesicular coat proteins. Examples are provided of coat proteins thought to regulate the trafficking of pharmaceutically relevant molecules via clathrin-mediated endocytosis, caveolae-mediated endocytosis, and transcytosis.
Collapse
Affiliation(s)
- CT Okamoto
- Department of Pharmaceutical Sciences, University of Southern California, Los Angeles CA 90033, USA
| |
Collapse
|
93
|
Daro E, Sheff D, Gomez M, Kreis T, Mellman I. Inhibition of endosome function in CHO cells bearing a temperature-sensitive defect in the coatomer (COPI) component epsilon-COP. J Cell Biol 1997; 139:1747-59. [PMID: 9412469 PMCID: PMC2132642 DOI: 10.1083/jcb.139.7.1747] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/1997] [Revised: 10/17/1997] [Indexed: 02/05/2023] Open
Abstract
Recent evidence has suggested that subunits of the coatomer protein (COPI) complexes are functionally associated with endosomes in mammalian cells. We now provide genetic evidence that COPI plays a role in endocytosis in intact cells. The ldlF mutant CHO cell line bears a temperature-sensitive defect in the COPI subunit epsilon-COP. In addition to exhibiting conditional defects in the secretory pathway, we find that the cells are also defective at mediating endosome-associated functions. As found for cells microinjected with anti-COPI antibodies, ldlF cells at the restrictive temperature could not be infected by vesicular stomatitis (VSV) or Semliki Forest virus (SFV) that require delivery to acidic endosomes to penetrate into the cytosol. Although there was no temperature-sensitive defect in the internalization of receptor-bound transferrin (Tfn), Tfn recycling and accumulation of HRP were markedly inhibited at the restrictive temperature. Sorting of receptor-bound markers such as EGF to lysosomes was also reduced, although delivery of fluid-phase markers was only partially inhibited. In addition, lysosomes redistributed from their typical perinuclear location to the tips of the ldlF cells. Mutant phenotypes began to emerge within 2 h of temperature shift, the time required for the loss of detectable epsilon-COP, suggesting that the endocytic defects were not secondary to a block in the secretory pathway. Importantly, the mutant phenotypes were also corrected by transfection of wild-type epsilon-COP cDNA demonstrating that they directly or indirectly reflected the epsilon-COP defect. Taken together, the results suggest that epsilon-COP acts early in the endocytic pathway, most likely inhibiting the normal sorting and recycling functions of early endosomes.
Collapse
Affiliation(s)
- E Daro
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8002, USA
| | | | | | | | | |
Collapse
|
94
|
Cheeseman CI. Upregulation of SGLT-1 transport activity in rat jejunum induced by GLP-2 infusion in vivo. THE AMERICAN JOURNAL OF PHYSIOLOGY 1997; 273:R1965-71. [PMID: 9435650 DOI: 10.1152/ajpregu.1997.273.6.r1965] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of in vivo infusion of the peptide hormone glucagon-like peptide 2 (GLP-2) on glucose transport across the rat jejunal brush-border membrane (BBM) was assessed using isolated membrane vesicles. A 2-h infusion of GLP-2 produced a marked acceleration of sodium-dependent glucose uptake into BBM vesicles with a significant overshoot. There was no change in vesicle space or permeability resulting from the hormone infusion. Kinetic analysis showed this stimulation to be the result of a three-fold increase in the maximal rate of transport, with no consistent change in the affinity constant (Km). The time course of this response showed that the effect was observable, but smaller, after only 30 min of hormone infusion and was maximal after 1 h. Sodium-dependent phloridzin binding to the membrane vesicles showed a parallel increase in maximal binding after 1 and 2 h of hormone infusion. Western blotting showed a similar increase in sodium-dependent glucose transporter 1 (SGLT-1) abundance. The effect of GLP-2 could be blocked by luminal brefeldin A or wortmannin. These results indicate that GLP-2 is able to induce trafficking of SGLT-1 from an intracellular pool into the BBM within 60 min and that phosphoinositol 3-kinase may well be involved in the intracellular signaling pathway in this response.
Collapse
Affiliation(s)
- C I Cheeseman
- Department of Physiology, University of Alberta, Edmonton, Canada
| |
Collapse
|
95
|
Radhakrishna H, Donaldson JG. ADP-ribosylation factor 6 regulates a novel plasma membrane recycling pathway. J Cell Biol 1997; 139:49-61. [PMID: 9314528 PMCID: PMC2139810 DOI: 10.1083/jcb.139.1.49] [Citation(s) in RCA: 421] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/1997] [Revised: 06/20/1997] [Indexed: 02/05/2023] Open
Abstract
ADP-ribosylation factor (ARF) 6 localizes to the plasma membrane (PM) in its GTP state and to a tubulovesicular compartment in its GDP state in HeLa cells that express wild-type or mutant forms of this GTPase. Aluminum fluoride (AlF) treatment of ARF6-transfected cells redistributes ARF6 to the PM and stimulates the formation of actin-rich surface protrusions. Here we show that cytochalasin D (CD) treatment inhibited formation of the AlF-induced protrusions and shifted the distribution of ARF6 to a tubular membrane compartment emanating from the juxtanuclear region of cells, which resembled the compartment where the GTP-binding defective mutant of ARF6 localized. This membrane compartment was distinct from transferrin-positive endosomes, could be detected in the absence of ARF6 overexpression or CD treatment, and was accessible to loading by PM proteins lacking clathrin/AP-2 cytoplasmic targeting sequences, such as the IL-2 receptor alpha subunit Tac. ARF6 and surface Tac moved into this compartment and back out to the PM in the absence of pharmacologic treatment. Whereas AlF treatment blocked internalization, CD treatment blocked the recycling of wild-type ARF6 and Tac back to the PM; these blocks were mimicked by expression of ARF6 mutants Q67L and T27N, which were predicted to be in either the GTP- or GDP-bound state, respectively. Thus, the ARF6 GTP cycle regulates this membrane traffic pathway. The delivery of ARF6 and membrane to defined sites along the PM may provide components necessary for remodeling the cell surface and the underlying actin cytoskeleton.
Collapse
Affiliation(s)
- H Radhakrishna
- Laboratory of Cell Biology, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
96
|
Faúndez V, Horng JT, Kelly RB. ADP ribosylation factor 1 is required for synaptic vesicle budding in PC12 cells. J Cell Biol 1997; 138:505-15. [PMID: 9245782 PMCID: PMC2141633 DOI: 10.1083/jcb.138.3.505] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/1997] [Revised: 06/11/1997] [Indexed: 02/04/2023] Open
Abstract
Carrier vesicle generation from donor membranes typically progresses through a GTP-dependent recruitment of coats to membranes. Here we explore the role of ADP ribosylation factor (ARF) 1, one of the GTP-binding proteins that recruit coats, in the production of neuroendocrine synaptic vesicles (SVs) from PC12 cell membranes. Brefeldin A (BFA) strongly and reversibly inhibited SV formation in vivo in three different PC12 cell lines expressing vesicle-associated membrane protein-T Antigen derivatives. Other membrane traffic events remained unaffected by the drug, and the BFA effects were not mimicked by drugs known to interfere with formation of other classes of vesicles. The involvement of ARF proteins in the budding of SVs was addressed in a cell-free reconstitution system (Desnos, C., L. Clift-O'Grady, and R.B. Kelly. 1995. J. Cell Biol. 130:1041-1049). A peptide spanning the effector domain of human ARF1 (2-17) and recombinant ARF1 mutated in its GTPase activity, both inhibited the formation of SVs of the correct size. During in vitro incubation in the presence of the mutant ARFs, the labeled precursor membranes acquired different densities, suggesting that the two ARF mutations block at different biosynthetic steps. Cell-free SV formation in the presence of a high molecular weight, ARF-depleted fraction from brain cytosol was significantly enhanced by the addition of recombinant myristoylated native ARF1. Thus, the generation of SVs from PC12 cell membranes requires ARF and uses its GTPase activity, probably to regulate coating phenomena.
Collapse
Affiliation(s)
- V Faúndez
- Department of Biochemistry and Biophysics, The Hormone Research Institute, University of California, San Francisco, California 94143-0534, USA
| | | | | |
Collapse
|
97
|
Saunders C, Limbird LE. Disruption of microtubules reveals two independent apical targeting mechanisms for G-protein-coupled receptors in polarized renal epithelial cells. J Biol Chem 1997; 272:19035-45. [PMID: 9228087 DOI: 10.1074/jbc.272.30.19035] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
G-protein-coupled receptors demonstrate differing trafficking itineraries in polarized Madin-Darby canine kidney (MDCK II) cells. The alpha2A adrenergic receptor (alpha2AAR) is directly delivered to the basolateral subdomain; the A1 adenosine receptor (A1AdoR) is apically enriched in its targeting; and the alpha2BAR subtype is randomly delivered to both domains but selectively retained basolaterally (Keefer, J. R., and Limbird, L. E. (1993) J. Biol. Chem. 268, 11340-11347; Saunders, C., Keefer, J. R., Kennedy, A. P., Wells, J. N., and Limbird, L. E. (1996) J. Biol. Chem. 271, 995-1002; Wozniak, M., and Limbird, L. E. (1996) J. Biol. Chem. 271, 5017-5024). The present studies explore the role of the polarized cytoskeleton in localization of G-protein-coupled receptors in MDCK II cells. Nocodazole or colchicine, which disrupt microtubules, did not perturb lateral localization of alpha2AR subtypes but led to a relocalization the A1AdoR to the basolateral surface, revealed by immunocytochemical and metabolic labeling strategies. Conversely, the apical component of the random delivery of alpha2BAR was not affected by these agents, suggesting microtubule-dependent and -independent apical targeting mechanisms for G-protein-coupled receptors in polarized cells. Apparent rerouting of the apically targeted A1AdoR was selective for microtubule-disrupting agents, since cytochalasin D, which disrupts actin polymerization, did not alter A1AdoR or alpha2BAR localization or targeting. These data suggest that multiple apical targeting mechanisms exist for G-protein-coupled receptors and that microtubule-disrupting agents serve as tools to probe their different trafficking mechanisms.
Collapse
Affiliation(s)
- C Saunders
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | |
Collapse
|
98
|
Mastick CC, Falick AL. Association of N-ethylmaleimide sensitive fusion (NSF) protein and soluble NSF attachment proteins-alpha and -gamma with glucose transporter-4-containing vesicles in primary rat adipocytes. Endocrinology 1997; 138:2391-7. [PMID: 9165027 DOI: 10.1210/endo.138.6.5166] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
To investigate the role of N-ethylmaleimide sensitive fusion protein (NSF) and soluble NSF attachment proteins (SNAP)-containing fusion complexes in glucose transporter-4 (GLUT4) membrane trafficking, the subcellular distributions of NSF, alpha-SNAP, and gamma-SNAP in primary rat adipocytes were determined. A large fraction of the NSF and SNAPs were associated with intracellular membranes, distributed between the low-density microsomes (LDM) and high-density microsomes. Very little of the NSF and SNAPs were associated with the plasma membrane fraction. This distribution did not change after insulin stimulation. Approximately 75% of the NSF and SNAPs in the LDM fraction were coimmunoprecipitated with 85% of the GLUT4 and 60% of the vesicle associated membrane proteins (VAMPs; synaptobrevins) VAMP-2 and cellubrevin in anti-GLUT4 immunoadsorptions. In contrast to NSF and the SNAPs, the beta-coatomer protein (beta-COP) found in the LDM fraction was excluded from GLUT4 vesicles. When LDM fractions were solubilized with Thesit (octaethylene glycol dodecyl ether) or Triton X-100, approximately 40% of the alpha-SNAP was colocalized with NSF on glycerol gradients in large (approximately 20S), ATP-sensitive complexes. VAMP-2 and cellubrevin are concentrated in the LDM fractions and in GLUT4 vesicles; both were excluded from these complexes. These data suggest that the steady state association of NSF and the SNAPs with GLUT4 vesicles and cell membranes is independent of the formation of fusion complexes.
Collapse
Affiliation(s)
- C C Mastick
- Department of Cell Biology, Parke-Davis Pharmaceutical Research Division, Warner-Lambert Company, Ann Arbor, Michigan 48105, USA.
| | | |
Collapse
|
99
|
Scheel J, Pepperkok R, Lowe M, Griffiths G, Kreis TE. Dissociation of coatomer from membranes is required for brefeldin A-induced transfer of Golgi enzymes to the endoplasmic reticulum. J Biophys Biochem Cytol 1997; 137:319-33. [PMID: 9128245 PMCID: PMC2139784 DOI: 10.1083/jcb.137.2.319] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Addition of brefeldin A (BFA) to mammalian cells rapidly results in the removal of coatomer from membranes and subsequent delivery of Golgi enzymes to the endoplasmic reticulum (ER). Microinjected anti-EAGE (intact IgG or Fab-fragments), antibodies against the "EAGE"-peptide of beta-COP, inhibit BFA-induced redistribution of beta-COP in vivo and block transfer of resident proteins of the Golgi complex to the ER; tubulo-vesicular clusters accumulate and Golgi membrane proteins concentrate in cytoplasmic patches containing beta-COP. These patches are devoid of marker proteins of the ER, the intermediate compartment (IC), and do not contain KDEL receptor. Interestingly, relocation of KDEL receptor to the IC, where it colocalizes with ERGIC53 and ts-O45-G, is not inhibited under these conditions. While no stacked Golgi cisternae remain in these injected cells, reassembly of stacks of Golgi cisternae following BFA wash-out is inhibited to only approximately 50%. Mono- or divalent anti-EAGE stabilize binding of coatomer to membranes in vitro, at least as efficiently as GTP(gamma)S. Taken together these results suggest that enhanced binding of coatomer to membranes completely inhibits the BFA-induced retrograde transport of Golgi resident proteins to the ER, probably by inhibiting fusion of Golgi with ER membranes, but does not interfere with the disassembly of the stacked Golgi cisternae and recycling of KDEL receptor to the IC. These results confirm our previous results suggesting that COPI is involved in anterograde membrane transport from the ER/IC to the Golgi complex (Pepperkok et al., 1993), and corroborate that COPI regulates retrograde membrane transport between the Golgi complex and ER in mammalian cells.
Collapse
Affiliation(s)
- J Scheel
- Department of Cell Biology, Sciences III, University of Geneva, Switzerland
| | | | | | | | | |
Collapse
|
100
|
Beau I, Misrahi M, Gross B, Vannier B, Loosfelt H, Hai MT, Pichon C, Milgrom E. Basolateral localization and transcytosis of gonadotropin and thyrotropin receptors expressed in Madin-Darby canine kidney cells. J Biol Chem 1997; 272:5241-8. [PMID: 9030595 DOI: 10.1074/jbc.272.8.5241] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The thyrotropin (TSH) and follicle-stimulating hormone (FSH) receptors are present mainly on the basolateral cell surface in the thyroid gland and in Sertoli cells, whereas in ovarian and in testicular cells, the luteinizing hormone (LH) receptors are distributed throughout the cell surface. When expressed in Madin-Darby canine kidney (MDCK) cells, all three receptors accumulated at the basolateral cell surface showing that they carry the corresponding targeting signals. The receptors were directly delivered to the basolateral surface of the MDCK cells. A minor fraction of the gonadotropin receptors but not of TSH receptors was secondarily targeted to the apical surface through transcytosis. The mechanisms of basolateral targeting and transcytosis were analyzed using the FSH receptor as a model. Both were insensitive to brefeldin A and pertussis toxin. Gs activation by AlF4- and cholera toxin provoked a marked enhancement of FSH receptor transcytosis. The population of Gs proteins involved in this mechanism was different from that involved in signal transduction since neither FSH nor forskolin mimicked the effects of AlF4- and cholera toxin. Gs activation provoked a similar effect on LH receptor distribution in MDCK cells, whereas it did not modify the compartmentalization of the TSH receptor. Hormone-specific transcytosis was observed in MDCK cells expressing the gonadotropin (FSH and LH) receptors and was increased after cholera toxin administration.
Collapse
Affiliation(s)
- I Beau
- Unité de Recherches Hormones et Reproduction, INSERM, Unité 135, Hôpital de Bicêtre, 94275 Le Kremlin Bicêtre, France
| | | | | | | | | | | | | | | |
Collapse
|