51
|
Lautala S, Provenzani R, Koivuniemi A, Kulig W, Talman V, Róg T, Tuominen RK, Yli-Kauhaluoma J, Bunker A. Rigorous Computational Study Reveals What Docking Overlooks: Double Trouble from Membrane Association in Protein Kinase C Modulators. J Chem Inf Model 2020; 60:5624-5633. [PMID: 32915560 DOI: 10.1021/acs.jcim.0c00624] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Increasing protein kinase C (PKC) activity is of potential therapeutic value. Its activation involves an interaction between the C1 domain and diacylglycerol (DAG) at intracellular membrane surfaces; DAG mimetics hold promise as new drugs. We previously developed the isophthalate derivative HMI-1a3, an effective but highly lipophilic (clogP = 6.46) DAG mimetic. Although a less lipophilic pyrimidine analog, PYR-1gP (clogP = 3.30), gave positive results in computational docking, it unexpectedly presented greatly diminished binding to PKC in vitro. Through more rigorous computational molecular modeling, we reveal that, unlike HMI-1a3, PYR-1gP forms an intramolecular hydrogen bond, which both obstructs binding and reorients PYR-1gP in the membrane in a fashion that prevents it from correctly accessing the PKC C1 domain. Our results highlight the great value of molecular dynamics simulations as a key component for the drug design process of ligands targeting weakly membrane-associated proteins, where simulation in the relevant membrane environment is crucial for obtaining biologically applicable results.
Collapse
Affiliation(s)
- Saara Lautala
- Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, P.O. Box 56, Viikinkaari 5 E, FI-00014 Helsinki, Finland
| | - Riccardo Provenzani
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, P.O. Box 56, Viikinkaari 5 E, FI-00014 Helsinki, Finland
| | - Artturi Koivuniemi
- Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, P.O. Box 56, Viikinkaari 5 E, FI-00014 Helsinki, Finland
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, P.O. Box 64, Gustaf Hällströmin katu 2, FI-00014 Helsinki, Finland
| | - Virpi Talman
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, P.O. Box 56, Viikinkaari 5 E, FI-00014 Helsinki, Finland.,National Heart and Lung Institute, Imperial College London, Hammersmith Campus, London W12 0NN, United Kingdom
| | - Tomasz Róg
- Department of Physics, University of Helsinki, P.O. Box 64, Gustaf Hällströmin katu 2, FI-00014 Helsinki, Finland
| | - Raimo K Tuominen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, University of Helsinki, P.O. Box 56, Viikinkaari 5 E, FI-00014 Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, P.O. Box 56, Viikinkaari 5 E, FI-00014 Helsinki, Finland
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, University of Helsinki, P.O. Box 56, Viikinkaari 5 E, FI-00014 Helsinki, Finland
| |
Collapse
|
52
|
Kim YK, Hammerling U. The mitochondrial PKCδ/retinol signal complex exerts real-time control on energy homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158614. [PMID: 31927141 PMCID: PMC7347429 DOI: 10.1016/j.bbalip.2020.158614] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 12/17/2022]
Abstract
The review focuses on the role of vitamin A (retinol) in the control of energy homeostasis, and on the manner in which certain retinoids subvert this process, leading potentially to disease. In eukaryotic cells, the pyruvate dehydrogenase complex (PDHC) is negatively regulated by four pyruvate dehydrogenase kinases (PDKs) and two antagonistically acting pyruvate dehydrogenase phosphatases (PDPs). The second isoform, PDK2, is regulated by an autonomous mitochondrial signal cascade that is anchored on protein kinase Cδ (PKCδ), where retinoids play an indispensible co-factor role. Along with its companion proteins p66Shc, cytochrome c, and vitamin A, the PKCδ/retinol complex is located in the intermembrane space of mitochondria. At this site, and in contrast to cytosolic locations, PKCδ is activated by the site-specific oxidation of its cysteine-rich activation domain (CRD) that is configured into a complex RING-finger. Oxidation involves the transfer of electrons from cysteine moieties to oxidized cytochrome c, a step catalyzed by vitamin A. The PKCδ/retinol signalosome monitors the internal cytochrome c redox state that reflects the workload of the respiratory chain. Upon sensing demands for energy PKCδ signals the PDHC to increase glucose-derived fuel flux entering the KREBS cycle. Conversely, if excessive fuel flux surpasses the capacity of the respiratory chain, threatening the release of damaging reactive oxygen species (ROS), the polarity of the cytochrome c redox system is reversed, resulting in the chemical reduction of the PKCδ CRD, restoration of the RING-finger, refolding of PKCδ into the inactive, globular form, and curtailment of PDHC output, thereby constraining the respiratory capacity within safe margins. Several retinoids, notably anhydroretinol and fenretinide, capable of displacing retinol from binding sites on PKCδ, can co-activate PKCδ signaling but, owing to their extended system of conjugated double bonds, are unable to silence PKCδ in a timely manner. Left in the ON position, PKCδ causes chronic overload of the respiratory chain leading to mitochondrial dysfunction. This review explores how defects in the PKCδ signal machinery potentially contribute to metabolic and degenerative diseases.
Collapse
Affiliation(s)
- Youn-Kyung Kim
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Ulrich Hammerling
- Food Science Department, Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
53
|
Chow S, Krainz T, Bettencourt CJ, Broit N, Ferguson B, Zhu M, Hull KG, Pierens GK, Bernhardt PV, Parsons PG, Romo D, Boyle GM, Williams CM. Synthetic Tigliane Intermediates Engage Thiols to Induce Potent Cell Line Selective Anti‐Cancer Activity. Chemistry 2020; 26:13372-13377. [DOI: 10.1002/chem.202003221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/31/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Sharon Chow
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Queensland Australia
| | - Tanja Krainz
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Queensland Australia
| | - Christian J. Bettencourt
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Queensland Australia
| | - Natasa Broit
- QIMR Berghofer Medical Research Institute PO Royal Brisbane Hospital Brisbane 4029 Queensland Australia
| | - Blake Ferguson
- QIMR Berghofer Medical Research Institute PO Royal Brisbane Hospital Brisbane 4029 Queensland Australia
| | - Mingzhao Zhu
- Department of Chemistry and Biochemistry CPRIT Synthesis and Drug-Lead Discovery Laboratory) Baylor University 76798 Waco Texas USA
| | - Kenneth G. Hull
- Department of Chemistry and Biochemistry CPRIT Synthesis and Drug-Lead Discovery Laboratory) Baylor University 76798 Waco Texas USA
| | - Gregory K. Pierens
- Centre for Advanced Imaging The University of Queensland Brisbane 4072 Queensland Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Queensland Australia
| | - Peter G. Parsons
- QIMR Berghofer Medical Research Institute PO Royal Brisbane Hospital Brisbane 4029 Queensland Australia
| | - Daniel Romo
- Department of Chemistry and Biochemistry CPRIT Synthesis and Drug-Lead Discovery Laboratory) Baylor University 76798 Waco Texas USA
| | - Glen M. Boyle
- QIMR Berghofer Medical Research Institute PO Royal Brisbane Hospital Brisbane 4029 Queensland Australia
| | - Craig M. Williams
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane 4072 Queensland Australia
| |
Collapse
|
54
|
Travers T, López CA, Agamasu C, Hettige JJ, Messing S, García AE, Stephen AG, Gnanakaran S. Anionic Lipids Impact RAS-Binding Site Accessibility and Membrane Binding Affinity of CRAF RBD-CRD. Biophys J 2020; 119:525-538. [PMID: 32649863 PMCID: PMC7399501 DOI: 10.1016/j.bpj.2020.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 11/25/2022] Open
Abstract
CRAF activation requires binding to membrane-anchored and active GTP-bound RAS. Whereas its RAS-binding domain (RBD) contains the main binding interface to the RAS G domain, its cysteine-rich domain (CRD) is responsible for association to anionic lipid-rich membranes. Both RAF domains are connected by a short linker, and it remains unclear if the two domains act independently or if one domain can impact the function of the other. Here, we used a combination of coarse-grained and all-atom molecular dynamics simulations of a CRAF RBD-CRD construct to investigate the dynamics of the RBD when it is tethered to CRD that is anchored to a POPC:POPS model membrane. First, we show that the RBD positioning is very dynamic with a preferential localization near the membrane surface. Next, we show that membrane-localized RBD has its RAS-binding interface mostly inaccessible because of its proximity to the membrane. Several positively charged residues in this interface were identified from simulations as important for driving RBD association to the membrane. Surface plasmon resonance (SPR) measurements confirmed that mutations of these RBD residues reduced the liposome partitioning of RBD-CRD. Last, simulations indicated that the presence of RBD near the membrane led to a local enrichment of anionic lipids that could potentially enhance the membrane affinity of the entire RBD-CRD construct. This was supported by SPR measurements that showed stronger liposome partitioning of RBD-CRD relative to CRD alone. These findings thus suggest that the RBD and CRD have synergistic effects on their membrane dynamics, with CRD bringing RBD closer to the membrane that impacts its accessibility to RAS and with RBD causing local anionic lipid enrichment that enhances the overall affinity between the membrane and RBD-CRD. These mechanisms have potential implications on the order of events of the interactions between RAS and CRAF at the membrane.
Collapse
Affiliation(s)
- Timothy Travers
- Theoretical Biology and Biophysics Group, Los Alamos, New Mexico; Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos, New Mexico
| | - Constance Agamasu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Reseach, Inc., Frederick, Maryland
| | | | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Reseach, Inc., Frederick, Maryland
| | - Angel E García
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Reseach, Inc., Frederick, Maryland
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos, New Mexico.
| |
Collapse
|
55
|
You Y, Das J. Effect of ethanol on Munc13-1 C1 in Membrane: A Molecular Dynamics Simulation Study. Alcohol Clin Exp Res 2020; 44:1344-1355. [PMID: 32424866 DOI: 10.1111/acer.14363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 05/06/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND EtOH has a significant effect on synaptic plasticity. Munc13-1 is an essential presynaptic active zone protein involved in priming the synaptic vesicle and releasing neurotransmitter in the brain. It is a peripheral membrane protein and binds to the activator, diacylglycerol (DAG)/phorbol ester at its membrane-targeting C1 domain. Our previous studies identified Glu-582 of C1 domain as the alcohol-binding residue (Das, J. et al, J. Neurochem., 126, 715-726, 2013). METHODS Here, we describe a 250 ns molecular dynamics (MD) simulation study on the interaction of EtOH and the activator-bound Munc13-1 C1 in the presence of varying concentrations of phosphatidylserine (PS). RESULTS In this study, Munc13-1 C1 shows higher conformational stability in EtOH than in water. It forms fewer hydrogen bonds with phorbol 13-acetate in the presence of EtOH than in water. EtOH also affected the interaction between the protein and the membrane and between the activator and the membrane. Similar studies in a E582A mutant suggest that these effects of EtOH are mostly mediated through Glu-582. CONCLUSIONS EtOH forms hydrogen bonds with Glu-582. While occupancy of the EtOH molecules at the vicinity (4Å) of Glu-582 is 34.4%, the occupancy in the E582A mutant is 26.5% of the simulation time. In addition, the amount of PS in the membrane influences the conformational stability of the C1 domain and interactions in the ternary complex. This study is important in providing the structural basis of EtOH's effects on synaptic plasticity.
Collapse
Affiliation(s)
- Youngki You
- From the Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| | - Joydip Das
- From the Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas
| |
Collapse
|
56
|
Mirzaei S, Mobedi H, Gourabi H, Sanati MH, Khezli S, Ighaeie M, Omidian H. Enhancement of The Stability of Human Growth Hormone by Using Tris(hydroxymethyl)aminomethane: Molecular Docking and Experimental Analysis. CELL JOURNAL 2020; 22:406-414. [PMID: 32347033 PMCID: PMC7211290 DOI: 10.22074/cellj.2021.6903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/15/2019] [Indexed: 11/04/2022]
Abstract
Objective It is so difficult to formulate human growth hormone (hGH) in a solution with high stability and new drug delivery system (NDDs) due to physiochemical instability. The purpose of this study was to investigate the possibility of using Tris as a hGH stabilizer. Materials and Methods In this experimental study, the role of tris(hydroxymethyl)aminomethane (Tris) was evaluated as a hGH stabilizing agent in phosphate buffer, as a practical aqueous solution and a media to release NDDs. Highperformance liquid chromatography (HPLC) and enzyme-linked immune sorbent assay (ELISA) were applied to investigate the stability of hGH in solutions and dynamic light scattering (DLS) was used to measure the effect of Tris on the hydrodynamic size of hGH in aqueous solutions. Ultra violet (UV) spectrophotometry was used to check the hGH spectrum. In computational study, formation of ligand-protein complex of the Tris-hGH, and the intermolecular interactions between Tris and hGH were studied by molecular docking modeling. Results The results demonstrated that Tris at the optimum concentration, increases hGH stability in aqueous solutions. Also, molecular docking modeling confirmed that amino acid residues such as tyrosine (Tyr), proline (Pro), glutamic acid (Glu), aspartic acid (Asp), leucine (Leu), and phenylalanine (Phe) in hGH structure, were linked with Tris as a ligand. Conclusion It seems that interactions between hGH and Tris are the most important reason for increment of the physicochemical stability of hGH in aqueous solutions containing Tris.
Collapse
Affiliation(s)
- Siyavash Mirzaei
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Hamid Mobedi
- Department of Novel Drug Delivery Systems, Iran Polymer and Petrochemical Institute, Tehran, Iran. Electronic Address:
| | - Hamid Gourabi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Mohammad Hosein Sanati
- Medical Genetics Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sakine Khezli
- Department of Novel Drug Delivery Systems, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Masoume Ighaeie
- Computational Nano Physical Chemistry Laboratory, Department of Chemistry, Azerbaijan Shahid Madani University, Tabriz, Iran
| | - Hamid Omidian
- Department of Pharmaceutical Sciences, Nova Southeastern University, Pharmaceutical Sciences, Davie, Florida, USA
| |
Collapse
|
57
|
Lian F, Wang Z, Zhou Z, Xu G. Identification, characterization, and comparison of n-alkanols and anesthetics binding to the C1b subdomain of protein kinase cα: similar function with different binding sites. J Recept Signal Transduct Res 2020; 40:109-116. [PMID: 32054382 DOI: 10.1080/10799893.2020.1726950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Protein kinase C (PKC) is a family of lipid-activated enzymes involved in anesthetic preconditioning signaling pathways. Previously, n-alkanols and general anesthetics have been found to activate PKC by binding to the kinase C1B subdomain. In the present study, we attempt to ascertain the molecular mechanism and interaction mode of human PKCα C1B subdomain with a variety of exogenous n-alkanols and volatile general anesthetics as well as endogenous activator phorbol ester (PE) and co-activator diacylglycerol (DG). Systematic bioinformatics analysis identifies three spatially vicinal sites on the subdomain surface to potentially accommodate small-molecule ligands, where the site 1 is a narrow, amphipathic pocket, the site 2 is a wide, flat and hydrophobic pocket, and the site 3 is a rugged, polar pocket. Further interaction modeling reveals that site 1 is the cognate binding region of natural PE activator, which can moderately simulate the kinase activity in an independent manner. The short-chain n-alkanols are speculated to also bind at the site to competitively inhibit PE-induced kinase activation. The long-chain n-alkanols and co-activator DG are found to target site 2 in a nonspecific manner, while the volatile anesthetics prefer to interact with site 3 in a specific manner. Since the site 1 is composed of two protein loops that are also shared by sites 2 and 3, binding of n-alkanols, DG and anesthetics to sites 2 and 3 can trigger a conformational displacement on the two loops, which enlarges the pocket size and changes the pocket configuration of site 1 through an allosteric mechanism, consequently enhancing kinase activation by improving PE affinity to the site.
Collapse
Affiliation(s)
- Fang Lian
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhong Wang
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhidong Zhou
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Guohai Xu
- Department of Anesthesiology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
58
|
Reinhardt R, Truebestein L, Schmidt HA, Leonard TA. It Takes Two to Tango: Activation of Protein Kinase D by Dimerization. Bioessays 2020; 42:e1900222. [PMID: 31997382 DOI: 10.1002/bies.201900222] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/10/2020] [Indexed: 12/23/2022]
Abstract
The recent discovery and structure determination of a novel ubiquitin-like dimerization domain in protein kinase D (PKD) has significant implications for its activation. PKD is a serine/threonine kinase activated by the lipid second messenger diacylglycerol (DAG). It is an essential and highly conserved protein that is implicated in plasma membrane directed trafficking processes from the trans-Golgi network. However, many open questions surround its mechanism of activation, its localization, and its role in the biogenesis of cargo transport carriers. In reviewing this field, the focus is primarily on the mechanisms that control the activation of PKD at precise locations in the cell. In light of the new structural findings, the understanding of the mechanisms underlying PKD activation is critically evaluated, with particular emphasis on the role of dimerization in PKD autophosphorylation, and the provenance and recognition of the DAG that activates PKD.
Collapse
Affiliation(s)
- Ronja Reinhardt
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter, 1030, Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, 1030, Vienna, Austria
| | - Linda Truebestein
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter, 1030, Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, 1030, Vienna, Austria
| | - Heiko A Schmidt
- Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna and Medical University of Vienna, Vienna Biocenter, 1030, Vienna, Austria
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max Perutz Labs, Vienna Biocenter, 1030, Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, 1030, Vienna, Austria
| |
Collapse
|
59
|
Sarker M, Goliaei A, Golesi F, Poggi M, Cook A, Khan MAI, Temple BR, Stefanini L, Canault M, Bergmeier W, Campbell SL. Subcellular localization of Rap1 GTPase activator CalDAG-GEFI is orchestrated by interaction of its atypical C1 domain with membrane phosphoinositides. J Thromb Haemost 2020; 18:693-705. [PMID: 31758832 PMCID: PMC7050387 DOI: 10.1111/jth.14687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/17/2019] [Accepted: 11/14/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND The small GTPase Rap1 and its guanine nucleotide exchange factor, CalDAG-GEFI (CDGI), are critical for platelet function and hemostatic plug formation. CDGI function is regulated by a calcium binding EF hand regulatory domain and an atypical C1 domain with unknown function. OBJECTIVE Here, we investigated whether the C1 domain controls CDGI subcellular localization, both in vitro and in vivo. METHODS CDGI interaction with phosphoinositides was studied by lipid co-sedimentation assays and molecular dynamics simulations. Cellular localization of CDGI was studied in heterologous cells by immunofluorescence and subcellular fractionation assays. RESULTS Lipid co-sedimentation studies demonstrated that the CDGI C1 domain associates with membranes through exclusive recognition of phosphoinositides, phosphatidylinositol (4,5)-biphosphate (PIP2) and phosphatidylinositol (3,4,5)-triphosphate (PIP3). Molecular dynamics simulations identified a phospholipid recognition motif consisting of residues exclusive to the CDGI C1 domain. Mutation of those residues abolished co-sedimentation of the C1 domain with lipid vesicles and impaired membrane localization of CDGI in heterologous cells. CONCLUSION Our studies identify a novel interaction between an atypical C1 domain and phosphatidylinositol (4,5)-biphosphate and phosphatidylinositol (3,4,5)-triphosphate in cellular membranes, which is critical for Rap1 signaling in health and disease.
Collapse
Affiliation(s)
- Muzaddid Sarker
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ardeshir Goliaei
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Marjorie Poggi
- Aix Marseille University, INSERM, INRA, Marseille, France
| | - Aaron Cook
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mohammad A. I. Khan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brenda R. Temple
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- RL Juliano Structural Bioinformatics Core, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lucia Stefanini
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | | | - Wolfgang Bergmeier
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
60
|
Laperle AH, Sances S, Yucer N, Dardov VJ, Garcia VJ, Ho R, Fulton AN, Jones MR, Roxas KM, Avalos P, West D, Banuelos MG, Shu Z, Murali R, Maidment NT, Van Eyk JE, Tagliati M, Svendsen CN. iPSC modeling of young-onset Parkinson's disease reveals a molecular signature of disease and novel therapeutic candidates. Nat Med 2020; 26:289-299. [PMID: 31988461 DOI: 10.1038/s41591-019-0739-1] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/16/2019] [Indexed: 12/21/2022]
Abstract
Young-onset Parkinson's disease (YOPD), defined by onset at <50 years, accounts for approximately 10% of all Parkinson's disease cases and, while some cases are associated with known genetic mutations, most are not. Here induced pluripotent stem cells were generated from control individuals and from patients with YOPD with no known mutations. Following differentiation into cultures containing dopamine neurons, induced pluripotent stem cells from patients with YOPD showed increased accumulation of soluble α-synuclein protein and phosphorylated protein kinase Cα, as well as reduced abundance of lysosomal membrane proteins such as LAMP1. Testing activators of lysosomal function showed that specific phorbol esters, such as PEP005, reduced α-synuclein and phosphorylated protein kinase Cα levels while increasing LAMP1 abundance. Interestingly, the reduction in α-synuclein occurred through proteasomal degradation. PEP005 delivery to mouse striatum also decreased α-synuclein production in vivo. Induced pluripotent stem cell-derived dopaminergic cultures reveal a signature in patients with YOPD who have no known Parkinson's disease-related mutations, suggesting that there might be other genetic contributions to this disorder. This signature was normalized by specific phorbol esters, making them promising therapeutic candidates.
Collapse
Affiliation(s)
- A H Laperle
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
| | - S Sances
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
| | - N Yucer
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
| | - V J Dardov
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
| | - V J Garcia
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
| | - R Ho
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
| | - A N Fulton
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
| | - M R Jones
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - K M Roxas
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
| | - P Avalos
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
| | - D West
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
| | - M G Banuelos
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
| | - Z Shu
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - R Murali
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA, USA
- Research Division of Immunology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - N T Maidment
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - J E Van Eyk
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - M Tagliati
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - C N Svendsen
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA.
| |
Collapse
|
61
|
Irie K. New diagnostic method for Alzheimer’s disease based on the toxic conformation theory of amyloid β. Biosci Biotechnol Biochem 2020; 84:1-16. [DOI: 10.1080/09168451.2019.1667222] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Abstract
Recent investigations suggest that soluble oligomeric amyloid β (Aβ) species may be involved in early onset of Alzheimer’s disease (AD). Using systematic proline replacement, solid-state NMR, and ESR, we identified a toxic turn at position 22 and 23 of Aβ42, the most potent neurotoxic Aβ species. Through radicalization, the toxic turn can induce formation of the C-terminal hydrophobic core to obtain putative Aβ42 dimers and trimers. Synthesized dimer and trimer models showed that the C-terminal hydrophobic core plays a critical role in the formation of high molecular weight oligomers with neurotoxicity. Accordingly, an anti-toxic turn antibody (24B3) that selectively recognizes a toxic dimer model of E22P-Aβ42 was developed. Sandwich enzyme-linked immunosorbent assay with 24B3 and 82E1 detected a significantly higher ratio of Aβ42 with a toxic turn to total Aβ42 in cerebrospinal fluid of AD patients compared with controls, suggesting that 24B3 could be useful for early onset of AD diagnosis.
Collapse
Affiliation(s)
- Kazuhiro Irie
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
62
|
|
63
|
Casado-Medrano V, Barrio-Real L, Gutiérrez-Miranda L, González-Sarmiento R, Velasco EA, Kazanietz MG, Caloca MJ. Identification of a truncated β1-chimaerin variant that inactivates nuclear Rac1. J Biol Chem 2019; 295:1300-1314. [PMID: 31871052 DOI: 10.1074/jbc.ra119.008688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/14/2019] [Indexed: 12/11/2022] Open
Abstract
β1-chimaerin belongs to the chimaerin family of GTPase-activating proteins (GAPs) and is encoded by the CHN2 gene, which also encodes the β2- and β3-chimaerin isoforms. All chimaerin isoforms have a C1 domain that binds diacylglycerol as well as tumor-promoting phorbol esters and a catalytic GAP domain that inactivates the small GTPase Rac. Nuclear Rac has emerged as a key regulator of various cell functions, including cell division, and has a pathological role by promoting tumorigenesis and metastasis. However, how nuclear Rac is regulated has not been fully addressed. Here, using several approaches, including siRNA-mediated gene silencing, confocal microscopy, and subcellular fractionation, we identified a nuclear variant of β1-chimaerin, β1-Δ7p-chimaerin, that participates in the regulation of nuclear Rac1. We show that β1-Δ7p-chimaerin is a truncated variant generated by alternative splicing at a cryptic splice site in exon 7. We found that, unlike other chimaerin isoforms, β1-Δ7p-chimaerin lacks a functional C1 domain and is not regulated by diacylglycerol. We found that β1-Δ7p-chimaerin localizes to the nucleus via a nuclear localization signal in its N terminus. We also identified a key nuclear export signal in β1-chimaerin that is absent in β1-Δ7p-chimaerin, causing nuclear retention of this truncated variant. Functionally analyses revealed that β1-Δ7p-chimaerin inactivates nuclear Rac and negatively regulates the cell cycle. Our results provide important insights into the diversity of chimaerin Rac-GAP regulation and function and highlight a potential mechanism of nuclear Rac inactivation that may play significant roles in pathologies such as cancer.
Collapse
Affiliation(s)
- Victoria Casado-Medrano
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain
| | - Laura Barrio-Real
- Molecular Medicine Unit and Institute of Molecular and Cellular Biology of Cancer, Biomedical Research Institute of Salamanca, University of Salamanca, 37007 Salamanca, Spain
| | - Laura Gutiérrez-Miranda
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain
| | - Rogelio González-Sarmiento
- Molecular Medicine Unit and Institute of Molecular and Cellular Biology of Cancer, Biomedical Research Institute of Salamanca, University of Salamanca, 37007 Salamanca, Spain
| | - Eladio A Velasco
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - María J Caloca
- Instituto de Biología y Genética Molecular, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Valladolid, 47003 Valladolid, Spain
| |
Collapse
|
64
|
Wang Y, Tang C, Yao S, Lai H, Li R, Xu J, Wang Q, Fan XX, Wu QB, Leung ELH, Ye Y, Yao X. Discovery of a novel protein kinase C activator from Croton tiglium for inhibition of non-small cell lung cancer. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 65:153100. [PMID: 31648127 DOI: 10.1016/j.phymed.2019.153100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/24/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The incidence of non-small cell lung cancer (NSCLC) accounts for approximately 85-90% of lung cancer, which has been shown to be challenging for treatment owing to poorly understanding of pathological mechanisms. Natural products serve as a source of almost all pharmaceutical preparations or offer guidance for those chemicals that have entered clinical trials, especially in NSCLC. PURPOSE We investigated the effect of B10G5, a natural products isolated from the Croton tiglium, in human non-small cell lung canceras as a protein kinase C (PKC) activator. METHODS The cell viability assay was evaluated by the MTT assay. The apoptosis and cell cycle distribution were assessed by flow cytometry. Reactive oxygen species (ROS) production was determined by using the fluorescent probe DCFDA. Cell migration ability of H1975 cells was analyzed by using the wound healing assay. The inhibiting effect of B10G5 against the phosphorylation level of the substrate by PKCs was assessed by using homogeneous time-resolved fluorescence (HTRF) technology. The correlation between PKCs and overall survival (OS) of Lung Adenocarcinoma (LUAD) patients was analysis by TCGA portal. The binding mode between B10G5 and the PKC isoforms was explored by molecular docking. Protein expression was detected by western blotting analysis. RESULTS B10G5 suppressed cell proliferation and colony formation, as well as migration ability of NSCLC cells, without significant toxic effect on normal lung cells. B10G5 induced the cell apoptosis through the development of PARP cleavage, which is evidenced by means of the production of mitochondrial ROS. In addition, the B10G5 inhibitory effect was also related to the cell cycle arrest at G2/M phase. Mechanistically, molecular modelling technology suggested that the potential target of B10G5 was associated with PKC family. In vitro PKC kinase assay indicated that B10G5 effectively activated the PKC activity. Western blotting data revealed that B10G5 upregulated PKC to activate PKC-mediated RAF/MEK/ERK pathway. CONCLUSION Our results showed that B10G5, a naturally occurring phorbol ester, considered to be a potential and a valuable therapeutic chemical in the treatment of NSCLC.
Collapse
Affiliation(s)
- Yuwei Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Chunping Tang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academic of Sciences, Shanghai, China
| | - Sheng Yao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academic of Sciences, Shanghai, China
| | - Huanling Lai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Runze Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Jiahui Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Qianqian Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Xing Xing Fan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Qi Biao Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China
| | - Elaine Lai-Han Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China; Department of Thoracic Surgery, Guangzhou Institute of Respiratory Health and State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Respiratory Medicine Department, Taihe Hospital, Hubei University of Medicine, Hubei, China.
| | - Yang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academic of Sciences, Shanghai, China.
| | - Xiaojun Yao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau (SAR), China.
| |
Collapse
|
65
|
Karouzaki S, Peta C, Tsirimonaki E, Mangoura D. PKCε-dependent H-Ras activation encompasses the recruitment of the RasGEF SOS1 and of the RasGAP neurofibromin in the lipid rafts of embryonic neurons. Neurochem Int 2019; 131:104582. [PMID: 31629778 DOI: 10.1016/j.neuint.2019.104582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/27/2019] [Accepted: 10/15/2019] [Indexed: 01/07/2023]
Abstract
The spatial organization of plasma membrane proteins is a key factor in the generation of distinct signal outputs, especially for PKC/Ras/ERK signalling. Regulation of activation of the membrane-bound Ras, critical for neuronal differentiation and highly specialized functions, is controlled by exchanges in nucleotides catalyzed by nucleotide exchange factors (GEFs) for GTP loading and Ras activation, and by Ras GTPase Activated Proteins (RasGAPs) that lead to activation of the intrinsic GTPase activity of Ras and thus its inactivation. PKCs are potent Ras activators yet the mechanistic details of these interactions, or the involvement of specific PKC isoforms are now beginning to be addressed. Even less known is the topology where RasGAPs terminate Ras activation. Towards this aim, we isolated lipid rafts from chick embryo neural tissue and primary neuronal cultures when PKCε is the prominent isoform and in combination with in vitro kinase assays, we now show that, in response the PKCε-specific activating peptide ψεRACK, an activated PKCε is recruited to lipid rafts; similar mobility was established when PKCε was physiologically activated with the Cannabinoid receptor 1 (CB1) agonist methanandamide. Activation of H-Ras for both agents was then established for the first time using in vivo RasGAP activity assays, which showed similar temporal profiles of activation and lateral mobility. Moreover, we found that the GEF SOS1, and the major neuronal RasGAP neurofibromin, a specific PKCε substrate, were both transiently significantly enriched in the rafts. Finally, our in silico analysis revealed a highly probable, conserved palmitoylation site adjacent to a CARC motif on neurofibromin, both of which are included only in the RasGAP related domain type I (GRDI) with the known high H-RasGAP activity. Taken together, these results suggest that PKCε activation regulates the spatial plasma membrane enrichments of both SOS1 and neurofibromin, thus controlling the output of activated H-Ras available for downstream signalling in neurons.
Collapse
Affiliation(s)
- Sophia Karouzaki
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou, Athens, 11527, Greece
| | - Charoula Peta
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou, Athens, 11527, Greece
| | - Emmanouella Tsirimonaki
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou, Athens, 11527, Greece
| | - Dimitra Mangoura
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou, Athens, 11527, Greece.
| |
Collapse
|
66
|
Elsner DJ, Siess KM, Gossenreiter T, Hartl M, Leonard TA. A ubiquitin-like domain controls protein kinase D dimerization and activation by trans-autophosphorylation. J Biol Chem 2019; 294:14422-14441. [PMID: 31406020 PMCID: PMC6768651 DOI: 10.1074/jbc.ra119.008713] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/30/2019] [Indexed: 11/25/2022] Open
Abstract
Protein kinase D (PKD) is an essential Ser/Thr kinase in animals and controls a variety of diverse cellular functions, including vesicle trafficking and mitogenesis. PKD is activated by recruitment to membranes containing the lipid second messenger diacylglycerol (DAG) and subsequent phosphorylation of its activation loop. Here, we report the crystal structure of the PKD N terminus at 2.2 Å resolution containing a previously unannotated ubiquitin-like domain (ULD), which serves as a dimerization domain. A single point mutation in the dimerization interface of the ULD not only abrogated dimerization in cells but also prevented PKD activation loop phosphorylation upon DAG production. We further show that the kinase domain of PKD dimerizes in a concentration-dependent manner and autophosphorylates on a single residue in its activation loop. We also provide evidence that PKD is expressed at concentrations 2 orders of magnitude below the ULD dissociation constant in mammalian cells. We therefore propose a new model for PKD activation in which the production of DAG leads to the local accumulation of PKD at the membrane, which drives ULD-mediated dimerization and subsequent trans-autophosphorylation of the kinase domain.
Collapse
Affiliation(s)
- Daniel J Elsner
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter 5, 1030 Vienna, Austria.,Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Katharina M Siess
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter 5, 1030 Vienna, Austria.,Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Gossenreiter
- Mass Spectrometry Facility, Max Perutz Labs, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Markus Hartl
- Mass Spectrometry Facility, Max Perutz Labs, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.,Department of Biochemistry and Cell Biology, Max Perutz Labs, University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9, 1030 Vienna, Austria
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max Perutz Labs, Campus Vienna Biocenter 5, 1030 Vienna, Austria .,Department of Medical Biochemistry, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
67
|
Liu Q, Cheng YY, Li W, Huang L, Asada Y, Hsieh MT, Morris-Natschke SL, Chen CH, Koike K, Lee KH. Synthesis and Structure-Activity Relationship Correlations of Gnidimacrin Derivatives as Potent HIV-1 Inhibitors and HIV Latency Reversing Agents. J Med Chem 2019; 62:6958-6971. [PMID: 31343875 PMCID: PMC7442216 DOI: 10.1021/acs.jmedchem.9b00339] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Currently, due to the HIV latency mechanism, the search continues for effective drugs to combat this issue and provide a cure for AIDS. Gnidimacrin activates latent HIV-1 replication and inhibits HIV-1 infection at picomolar concentrations. This natural diterpene was able to markedly reduce the latent HIV-1 DNA level and the frequency of latently infected cells. Therefore, gnidimacrin is an excellent lead compound, and its anti-HIV potential merits further investigation. Twenty-nine modified gnidimacrin derivatives were synthesized and evaluated in assays for HIV replication and latency activation to establish which molecular structures must be maintained and which can tolerate changes that may be needed for better pharmacological properties. The results indicated that hydroxyl substituents at C-5 and C-20 are essential, while derivatives modified at 3-OH with aromatic esters retain anti-HIV replication and latent activation activities. The half-lives of the potent GM derivatives are over 20 h, which implies that they are stable in the plasm even though they contain ester linkages. The established structure-activity relationship should be useful in the development of gnidimacrin or structurally related compounds as clinical trial candidates.
Collapse
Affiliation(s)
- Qingbo Liu
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan
- Key Laboratory of Structure-Based Drug Design and Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yung-Yi Cheng
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40402, Taiwan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan
| | - Li Huang
- Surgical Science, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Yoshihisa Asada
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan
| | - Min-Tsang Hsieh
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40402, Taiwan
| | - Susan L. Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Chin-Ho Chen
- Surgical Science, Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Kazuo Koike
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi 274-8510, Chiba, Japan
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40402, Taiwan
| |
Collapse
|
68
|
Remy S, Litaudon M. Macrocyclic Diterpenoids from Euphorbiaceae as A Source of Potent and Selective Inhibitors of Chikungunya Virus Replication. Molecules 2019; 24:molecules24122336. [PMID: 31242603 PMCID: PMC6631467 DOI: 10.3390/molecules24122336] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 11/16/2022] Open
Abstract
Macrocyclic diterpenoids produced by plants of the Euphorbiaceae family are of considerable interest due to their high structural diversity; and their therapeutically relevant biological properties. Over the last decade many studies have reported the ability of macrocyclic diterpenoids to inhibit in cellulo the cytopathic effect induced by the chikungunya virus. This review; which covers the years 2011 to 2019; lists all macrocyclic diterpenoids that have been evaluated for their ability to inhibit viral replication. The structure-activity relationships and the probable involvement of protein kinase C in their mechanism of action are also detailed.
Collapse
Affiliation(s)
- Simon Remy
- Institut de Chimie des Substances Naturelles, CNRS ICSN, UPR 2301, Université Paris Saclay, 91198 Gif-sur-Yvette, France.
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS ICSN, UPR 2301, Université Paris Saclay, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
69
|
Cooke M, Casado-Medrano V, Ann J, Lee J, Blumberg PM, Abba MC, Kazanietz MG. Differential Regulation of Gene Expression in Lung Cancer Cells by Diacyglycerol-Lactones and a Phorbol Ester Via Selective Activation of Protein Kinase C Isozymes. Sci Rep 2019; 9:6041. [PMID: 30988374 PMCID: PMC6465381 DOI: 10.1038/s41598-019-42581-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/29/2019] [Indexed: 02/06/2023] Open
Abstract
Despite our extensive knowledge on the biology of protein kinase C (PKC) and its involvement in disease, limited success has been attained in the generation of PKC isozyme-specific modulators acting via the C1 domain, the binding site for the lipid second messenger diacylglycerol (DAG) and the phorbol ester tumor promoters. Synthetic efforts had recently led to the identification of AJH-836, a DAG-lactone with preferential affinity for novel isozymes (nPKCs) relative to classical PKCs (cPKCs). Here, we compared the ability of AJH-836 and a prototypical phorbol ester (phorbol 12-myristate 13-acetate, PMA) to induce changes in gene expression in a lung cancer model. Gene profiling analysis using RNA-Seq revealed that PMA caused major changes in gene expression, whereas AJH-836 only induced a small subset of genes, thus providing a strong indication for a major involvement of cPKCs in their control of gene expression. MMP1, MMP9, and MMP10 were among the genes most prominently induced by PMA, an effect impaired by RNAi silencing of PKCα, but not PKCδ or PKCε. Comprehensive gene signature analysis and bioinformatics efforts, including functional enrichment and transcription factor binding site analyses of dysregulated genes, identified major differences in pathway activation and transcriptional networks between PMA and DAG-lactones. In addition to providing solid evidence for the differential involvement of individual PKC isozymes in the control of gene expression, our studies emphasize the importance of generating targeted C1 domain ligands capable of differentially regulating PKC isozyme-specific function in cellular models.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Victoria Casado-Medrano
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jihyae Ann
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul, 08826, Republic of Korea
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, Bethesda, MD, 20892, USA
| | - Martin C Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas, Universidad Nacional de La Plata, CP1900, La Plata, Argentina.
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
70
|
Three distinct regions of cRaf kinase domain interact with membrane. Sci Rep 2019; 9:2057. [PMID: 30765804 PMCID: PMC6375958 DOI: 10.1038/s41598-019-38770-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022] Open
Abstract
Raf kinases are downstream effectors of small GTPase Ras. Mutations in Ras and Raf are associated with a variety of cancers and genetic disorders. Of the three Raf isoforms, cRaf is most frequently involved in tumor initiation by Ras. Cytosolic Raf is auto-inhibited and becomes active upon recruitment to the plasma membrane. Since the catalytic domain of Raf is its kinase domain, we ask the following: does the kinase domain of Raf has potential to interact with membrane and if yes, what role does the membrane interaction play? We present a model of cRaf kinase domain in complex with a heterogeneous membrane bilayer using atomistic molecular dynamics simulation. We show that the kinase domain of cRaf has three distinct membrane-interacting regions: a polybasic motif (R.RKTR) from the regulatory αC-helix, an aromatic/hydrophobic cluster from the N-terminal acidic region (NtA) and positively charged/aromatic cluster from the activation segment (AS). We show that residues from these regions form an extended membrane-interacting surface that resembles the membrane-interacting residues from known membrane-binding domains. Activating phosphorylatable regions (NtA and AS), make direct contact with the membrane whereas R.RKTR forms specific multivalent salt bridges with PA. PA lipids dwell for longer times around the R.RKTR motif. Our results suggest that membrane interaction of monomeric cRaf kinase domain likely orchestrates the Raf activation process and modulates its function. We show that R.RKTR is a hotspot that interacts with membrane when cRaf is monomeric and becomes part of the interface upon Raf dimerization. We propose that in terms of utilizing a specific hotspot to form membrane interaction and dimer formation, both Raf and its upstream binding partner KRas, are similar.
Collapse
|
71
|
Structural Identification and Systematic Comparison of Phorbol Ester, Dioleoylglycerol, Alcohol and Sevoflurane Binding Sites in PKCδ C1A Domain. Protein J 2018; 37:539-547. [PMID: 30251087 DOI: 10.1007/s10930-018-9793-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Protein kinase C (PKC) is a family of signal transducing enzymes that have been implicated in anesthetic preconditioning signaling cascade. Evidences are emerging that certain exogenous neuromodulators such as n-alkanols and general anesthetics can stimulate PKC activity by binding to regulatory C1A domain of the enzyme. However, the accurate binding sites in C1A domain as well as the molecular mechanism underlying binding-stimulated PKC activation still remain unelucidated. Here, we report a systematic investigation of the intermolecular interaction of human PKCδ C1A domain with its natural activator phorbol ester (PE) and co-activator dioleoylglycerol (DOG) as well as exogenous stimulators butanol, octanol and sevoflurane. The domain is computationally identified to potentially have three spatially vicinal ligand-binding pockets 1, 2 and 3, in which the pockets 1 and 2 have previously been determined as the binding sites of PE and DOG, respectively. Systematic cross-binding analysis reveals that long-chain octanol and DOG are well compatible with the flat, nonpolar pocket 2, where the nonspecific hydrophobic contacts and van der Waals packing are primarily responsible for the binding, while the general anesthetic sevoflurane prefer to interact with the rugged, polar pocket 3 through specific hydrogen bonds and electrostatic forces. Short-chain butanol appears to bind effectively none of the three pockets. In addition, the pocket 1 consists of two angled arms 1 and 2 that are also involved in pockets 2 and 3, respectively. Dynamics characterization imparts that binding of long-chain octanol and DOG to pocket 2 or binding of sevoflurane to pocket 3 can induce a conformational displacement in arm 1 or 2, thus further opening the included angle and enlarging pocket 1, which can improve the pocket 1-PE affinity via an allosteric mechanism, consequently stimulating the PE-induced PKCδ activation.
Collapse
|
72
|
A model for hydrophobic protrusions on peripheral membrane proteins. PLoS Comput Biol 2018; 14:e1006325. [PMID: 30048443 PMCID: PMC6080788 DOI: 10.1371/journal.pcbi.1006325] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 08/07/2018] [Accepted: 06/24/2018] [Indexed: 11/19/2022] Open
Abstract
With remarkable spatial and temporal specificities, peripheral membrane proteins bind to biological membranes. They do this without compromising solubility of the protein, and their binding sites are not easily distinguished. Prototypical peripheral membrane binding sites display a combination of patches of basic and hydrophobic amino acids that are also frequently present on other protein surfaces. The purpose of this contribution is to identify simple but essential components for membrane binding, through structural criteria that distinguish exposed hydrophobes at membrane binding sites from those that are frequently found on any protein surface. We formulate the concepts of protruding hydrophobes and co-insertability and have analysed more than 300 families of proteins that are classified as peripheral membrane binders. We find that this structural motif strongly discriminates the surfaces of membrane-binding and non-binding proteins. Our model constitutes a novel formulation of a structural pattern for membrane recognition and emphasizes the importance of subtle structural properties of hydrophobic membrane binding sites. Peripheral membrane proteins bind cellular membranes transiently, and are otherwise soluble proteins. As the interaction between proteins and membranes happens at cellular interfaces they are naturally involved in important interfacial processes such as recognition, signaling and trafficking. Commonly their binding sites are also soluble, and their binding mechanisms poorly understood. This complicates the elaboration of conceptual and quantitative models for peripheral membrane binding and makes binding site prediction difficult. It is therefore of great interest to discover traits that are common between these binding sites and that distinguishes them from other protein surfaces. In this work we identify simple and general structural features that facilitate membrane recognition by soluble proteins. We show that these motifs are highly over-represented on peripheral membrane proteins.
Collapse
|
73
|
Abstract
Heart failure (HF) is a physiological state in which cardiac output is insufficient to meet the needs of the body. It is a clinical syndrome characterized by impaired ability of the left ventricle to either fill or eject blood efficiently. HF is a disease of multiple aetiologies leading to progressive cardiac dysfunction and it is the leading cause of deaths in both developed and developing countries. HF is responsible for about 73,000 deaths in the UK each year. In the USA, HF affects 5.8 million people and 550,000 new cases are diagnosed annually. Cardiac remodelling (CD), which plays an important role in pathogenesis of HF, is viewed as stress response to an index event such as myocardial ischaemia or imposition of mechanical load leading to a series of structural and functional changes in the viable myocardium. Protein kinase C (PKC) isozymes are a family of serine/threonine kinases. PKC is a central enzyme in the regulation of growth, hypertrophy, and mediators of signal transduction pathways. In response to circulating hormones, activation of PKC triggers a multitude of intracellular events influencing multiple physiological processes in the heart, including heart rate, contraction, and relaxation. Recent research implicates PKC activation in the pathophysiology of a number of cardiovascular disease states. Few reports are available that examine PKC in normal and diseased human hearts. This review describes the structure, functions, and distribution of PKCs in the healthy and diseased heart with emphasis on the human heart and, also importantly, their regulation in heart failure.
Collapse
Affiliation(s)
- Raphael M Singh
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston, England, PR1 2HE, UK.
- Faculty of Medicine and Health Sciences, University of Guyana, Turkeyen, Georgetown, Guyana.
| | - Emanuel Cummings
- Faculty of Medicine and Health Sciences, University of Guyana, Turkeyen, Georgetown, Guyana
| | - Constantinos Pantos
- Department of Pharmacology, School of Medicine, University of Athens, Athens, Greece
| | - Jaipaul Singh
- School of Forensic and Applied Sciences, University of Central Lancashire, Preston, England, PR1 2HE, UK
| |
Collapse
|
74
|
Moulos P, Alexandratos A, Nellas I, Dedos SG. Refining a steroidogenic model: an analysis of RNA-seq datasets from insect prothoracic glands. BMC Genomics 2018; 19:537. [PMID: 30005604 PMCID: PMC6045881 DOI: 10.1186/s12864-018-4896-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The prothoracic gland (PG), the principal steroidogenic organ of insects, has been proposed as a model for steroid hormone biosynthesis and regulation. RESULTS To validate the robustness of the model, we present an analysis of accumulated transcriptomic data from PGs of two model species, Drosophila melanogaster and Bombyx mori. We identify that the common core components of the model in both species are encoded by nine genes. Five of these are Halloween genes whose expression differs substantially between the PGs of these species. CONCLUSIONS We conclude that the PGs can be a model for steroid hormone synthesis and regulation within the context of mitochondrial cholesterol transport and steroid biosynthesis but beyond these core mechanisms, gene expression in insect PGs is too diverse to fit in a context-specific model and should be analysed within a species-specific framework.
Collapse
Affiliation(s)
- Panagiotis Moulos
- HybridStat Predictive Analytics, Aiolou 19, 10551 Athens, Greece
- Biomedical Sciences Research Center ‘Alexander Fleming’, Fleming 34, 16672 Vari, Greece
| | | | - Ioannis Nellas
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Skarlatos G. Dedos
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
75
|
Liu Z, Khalil RA. Evolving mechanisms of vascular smooth muscle contraction highlight key targets in vascular disease. Biochem Pharmacol 2018; 153:91-122. [PMID: 29452094 PMCID: PMC5959760 DOI: 10.1016/j.bcp.2018.02.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/12/2018] [Indexed: 12/11/2022]
Abstract
Vascular smooth muscle (VSM) plays an important role in the regulation of vascular function. Identifying the mechanisms of VSM contraction has been a major research goal in order to determine the causes of vascular dysfunction and exaggerated vasoconstriction in vascular disease. Major discoveries over several decades have helped to better understand the mechanisms of VSM contraction. Ca2+ has been established as a major regulator of VSM contraction, and its sources, cytosolic levels, homeostatic mechanisms and subcellular distribution have been defined. Biochemical studies have also suggested that stimulation of Gq protein-coupled membrane receptors activates phospholipase C and promotes the hydrolysis of membrane phospholipids into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 stimulates initial Ca2+ release from the sarcoplasmic reticulum, and is buttressed by Ca2+ influx through voltage-dependent, receptor-operated, transient receptor potential and store-operated channels. In order to prevent large increases in cytosolic Ca2+ concentration ([Ca2+]c), Ca2+ removal mechanisms promote Ca2+ extrusion via the plasmalemmal Ca2+ pump and Na+/Ca2+ exchanger, and Ca2+ uptake by the sarcoplasmic reticulum and mitochondria, and the coordinated activities of these Ca2+ handling mechanisms help to create subplasmalemmal Ca2+ domains. Threshold increases in [Ca2+]c form a Ca2+-calmodulin complex, which activates myosin light chain (MLC) kinase, and causes MLC phosphorylation, actin-myosin interaction, and VSM contraction. Dissociations in the relationships between [Ca2+]c, MLC phosphorylation, and force have suggested additional Ca2+ sensitization mechanisms. DAG activates protein kinase C (PKC) isoforms, which directly or indirectly via mitogen-activated protein kinase phosphorylate the actin-binding proteins calponin and caldesmon and thereby enhance the myofilaments force sensitivity to Ca2+. PKC-mediated phosphorylation of PKC-potentiated phosphatase inhibitor protein-17 (CPI-17), and RhoA-mediated activation of Rho-kinase (ROCK) inhibit MLC phosphatase and in turn increase MLC phosphorylation and VSM contraction. Abnormalities in the Ca2+ handling mechanisms and PKC and ROCK activity have been associated with vascular dysfunction in multiple vascular disorders. Modulators of [Ca2+]c, PKC and ROCK activity could be useful in mitigating the increased vasoconstriction associated with vascular disease.
Collapse
Affiliation(s)
- Zhongwei Liu
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
76
|
Travers T, López CA, Van QN, Neale C, Tonelli M, Stephen AG, Gnanakaran S. Molecular recognition of RAS/RAF complex at the membrane: Role of RAF cysteine-rich domain. Sci Rep 2018; 8:8461. [PMID: 29855542 PMCID: PMC5981303 DOI: 10.1038/s41598-018-26832-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/18/2018] [Indexed: 01/14/2023] Open
Abstract
Activation of RAF kinase involves the association of its RAS-binding domain (RBD) and cysteine-rich domain (CRD) with membrane-anchored RAS. However, the overall architecture of the RAS/RBD/CRD ternary complex and the orientations of its constituent domains at the membrane remain unclear. Here, we have combined all-atom and coarse-grained molecular dynamics (MD) simulations with experimental data to construct and validate a model of membrane-anchored CRD, and used this as a basis to explore models of membrane-anchored RAS/RBD/CRD complex. First, simulations of the CRD revealed that it anchors to the membrane via insertion of its two hydrophobic loops, which is consistent with our NMR measurements of CRD bound to nanodiscs. Simulations of the CRD in the context of membrane-anchored RAS/RBD then show how CRD association with either RAS or RBD could play an unexpected role in guiding the membrane orientations of RAS/RBD. This finding has implications for the formation of RAS-RAS dimers, as different membrane orientations of RAS expose distinct putative dimerization interfaces.
Collapse
Affiliation(s)
- Timothy Travers
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States
| | - Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States
| | - Que N Van
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, 21702, United States
| | - Chris Neale
- Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States
| | - Marco Tonelli
- National Magnetic Resource Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin, 53706, United States
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland, 21702, United States
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico, 87545, United States.
| |
Collapse
|
77
|
Provenzani R, Tarvainen I, Brandoli G, Lempinen A, Artes S, Turku A, Jäntti MH, Talman V, Yli-Kauhaluoma J, Tuominen RK, Boije af Gennäs G. Scaffold hopping from (5-hydroxymethyl) isophthalates to multisubstituted pyrimidines diminishes binding affinity to the C1 domain of protein kinase C. PLoS One 2018; 13:e0195668. [PMID: 29641588 PMCID: PMC5895059 DOI: 10.1371/journal.pone.0195668] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 03/27/2018] [Indexed: 11/18/2022] Open
Abstract
Protein kinase C (PKC) isoforms play a pivotal role in the regulation of numerous cellular functions, making them extensively studied and highly attractive drug targets. Utilizing the crystal structure of the PKCδ C1B domain, we have developed hydrophobic isophthalic acid derivatives that modify PKC functions by binding to the C1 domain of the enzyme. In the present study, we aimed to improve the drug-like properties of the isophthalic acid derivatives by increasing their solubility and enhancing the binding affinity. Here we describe the design and synthesis of a series of multisubstituted pyrimidines as analogs of C1 domain–targeted isophthalates and characterize their binding affinities to the PKCα isoform. In contrast to our computational predictions, the scaffold hopping from phenyl to pyrimidine core diminished the binding affinity. Although the novel pyrimidines did not establish improved binding affinity for PKCα compared to our previous isophthalic acid derivatives, the present results provide useful structure-activity relationship data for further development of ligands targeted to the C1 domain of PKC.
Collapse
Affiliation(s)
- Riccardo Provenzani
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ilari Tarvainen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Giulia Brandoli
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Antti Lempinen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Sanna Artes
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Ainoleena Turku
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Maria Helena Jäntti
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Virpi Talman
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Raimo K. Tuominen
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Gustav Boije af Gennäs
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
78
|
Cooke M, Zhou X, Casado-Medrano V, Lopez-Haber C, Baker MJ, Garg R, Ann J, Lee J, Blumberg PM, Kazanietz MG. Characterization of AJH-836, a diacylglycerol-lactone with selectivity for novel PKC isozymes. J Biol Chem 2018; 293:8330-8341. [PMID: 29636415 DOI: 10.1074/jbc.ra117.000235] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 03/08/2018] [Indexed: 11/06/2022] Open
Abstract
Diacylglycerol (DAG) is a key lipid second messenger downstream of cellular receptors that binds to the C1 domain in many regulatory proteins. Protein kinase C (PKC) isoforms constitute the most prominent family of signaling proteins with DAG-responsive C1 domains, but six other families of proteins, including the chimaerins, Ras-guanyl nucleotide-releasing proteins (RasGRPs), and Munc13 isoforms, also play important roles. Their significant involvement in cancer, immunology, and neurobiology has driven intense interest in the C1 domain as a therapeutic target. As with other classes of targets, however, a key issue is the establishment of selectivity. Here, using [3H]phorbol 12,13-dibutyrate ([3H]PDBu) competition binding assays, we found that a synthetic DAG-lactone, AJH-836, preferentially binds to the novel PKC isoforms PKCδ and PKCϵ relative to classical PKCα and PKCβII. Assessment of intracellular translocation, a hallmark for PKC activation, revealed that AJH-836 treatment stimulated a striking preferential redistribution of PKCϵ to the plasma membrane relative to PKCα. Moreover, unlike with the prototypical phorbol ester phorbol 12-myristate 13-acetate (PMA), prolonged exposure of cells to AJH-836 selectively down-regulated PKCδ and PKCϵ without affecting PKCα expression levels. Biologically, AJH-836 induced major changes in cytoskeletal reorganization in lung cancer cells, as determined by the formation of membrane ruffles, via activation of novel PKCs. We conclude that AJH-836 represents a C1 domain ligand with PKC-activating properties distinct from those of natural DAGs and phorbol esters. Our study supports the feasibility of generating selective C1 domain ligands that promote novel biological response patterns.
Collapse
Affiliation(s)
- Mariana Cooke
- From the Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160
| | - Xiaoling Zhou
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Victoria Casado-Medrano
- From the Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160
| | - Cynthia Lopez-Haber
- From the Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160
| | - Martin J Baker
- From the Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160
| | - Rachana Garg
- From the Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160
| | - Jihyae Ann
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeewoo Lee
- Laboratory of Medicinal Chemistry, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Marcelo G Kazanietz
- From the Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6160,
| |
Collapse
|
79
|
Cummins TJ, Kedei N, Czikora A, Lewin NE, Kirk S, Petersen ME, McGowan KM, Chen JQ, Luo X, Johnson RC, Ravichandran S, Blumberg PM, Keck GE. Synthesis and Biological Evaluation of Fluorescent Bryostatin Analogues. Chembiochem 2018; 19:877-889. [PMID: 29424951 DOI: 10.1002/cbic.201700655] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 11/10/2022]
Abstract
To investigate the cellular distribution of tumor-promoting vs. non-tumor-promoting bryostatin analogues, we synthesized fluorescently labeled variants of two bryostatin derivatives that have previously shown either phorbol ester-like or bryostatin-like biological activity in U937 leukemia cells. These new fluorescent analogues both displayed high affinity for protein kinase C (PKC) binding and retained the basic properties of the parent unlabeled compounds in U937 assays. The fluorescent compounds showed similar patterns of intracellular distribution in cells, however; this argues against an existing hypothesis that various patterns of intracellular distribution are responsible for differences in biological activity. Upon further characterization, the fluorescent compounds revealed a slow rate of cellular uptake; correspondingly, they showed reduced activity for cellular responses that were only transient upon treatment with phorbol ester or bryostatin 1.
Collapse
Affiliation(s)
- Thomas J Cummins
- University of Utah, Department of Chemistry, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, USA
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Room 4048, Bethesda, MD, 20892, USA
| | - Agnes Czikora
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Room 4048, Bethesda, MD, 20892, USA
| | - Nancy E Lewin
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Room 4048, Bethesda, MD, 20892, USA
| | - Sharon Kirk
- University of Utah, Department of Chemistry, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, USA
| | - Mark E Petersen
- University of Utah, Department of Chemistry, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, USA
| | - Kevin M McGowan
- University of Utah, Department of Chemistry, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, USA
| | - Jin-Qiu Chen
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Room 1044, Bethesda, MD, 20892, USA
| | - Xiaoling Luo
- Collaborative Protein Technology Resource, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Room 1044, Bethesda, MD, 20892, USA
| | - Randall C Johnson
- Advanced Biomedical and Computational Sciences Biomedical Informatics, and Data Science (BIDS), Directorate Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Building 430, Miller Drive, Fort Detrick, Frederick, MD, 21702, USA
| | - Sarangan Ravichandran
- Advanced Biomedical and Computational Sciences Biomedical Informatics, and Data Science (BIDS), Directorate Frederick National Laboratory for Cancer Research (FNLCR), Leidos Biomedical Research, Inc., Building 430, Miller Drive, Fort Detrick, Frederick, MD, 21702, USA
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Room 4048, Bethesda, MD, 20892, USA
| | - Gary E Keck
- University of Utah, Department of Chemistry, 315 South 1400 East, Room 2020, Salt Lake City, UT, 84112, USA
| |
Collapse
|
80
|
Li S, Jang H, Zhang J, Nussinov R. Raf-1 Cysteine-Rich Domain Increases the Affinity of K-Ras/Raf at the Membrane, Promoting MAPK Signaling. Structure 2018; 26:513-525.e2. [PMID: 29429878 PMCID: PMC8183739 DOI: 10.1016/j.str.2018.01.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/08/2017] [Accepted: 01/12/2018] [Indexed: 12/30/2022]
Abstract
K-Ras4B preferentially activates Raf-1. The high-affinity interaction of Ras-binding domain (RBD) of Raf with Ras was solved, but the relative position of Raf's cysteine-rich domain (CRD) in the Ras/Raf complex at the membrane and key question of exactly how it affects Raf signaling are daunting. We show that CRD stably binds anionic membranes inserting a positively charged loop into the amphipathic interface. Importantly, when in complex with Ras/RBD, covalently connected CRD presents the same membrane interaction mechanism, with CRD locating at the space between the RBD and membrane. To date, CRD's role was viewed in terms of stabilizing Raf-membrane interaction. Our observations argue for a key role in reducing Ras/RBD fluctuations at the membrane, thereby increasing Ras/RBD affinity. Even without K-Ras, via CRD, Raf-1 can recruit to the membrane; however, by reducing the Ras/RBD fluctuations and enhancing Ras/RBD affinity at the membrane, CRD promotes Raf's activation and MAPK signaling over other pathways.
Collapse
Affiliation(s)
- Shuai Li
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Hyunbum Jang
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Jian Zhang
- Department of Pathophysiology, Shanghai Universities E-Institute for Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025, China
| | - Ruth Nussinov
- Cancer and Inflammation Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
81
|
Yang H, Staveness D, Ryckbosch SM, Axtman AD, Loy BA, Barnes AB, Pande VS, Schaefer J, Wender PA, Cegelski L. REDOR NMR Reveals Multiple Conformers for a Protein Kinase C Ligand in a Membrane Environment. ACS CENTRAL SCIENCE 2018; 4:89-96. [PMID: 29392180 PMCID: PMC5785774 DOI: 10.1021/acscentsci.7b00475] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Indexed: 05/05/2023]
Abstract
Bryostatin 1 (henceforth bryostatin) is in clinical trials for the treatment of Alzheimer's disease and for HIV/AIDS eradication. It is also a preclinical lead for cancer immunotherapy and other therapeutic indications. Yet nothing is known about the conformation of bryostatin bound to its protein kinase C (PKC) target in a membrane microenvironment. As a result, efforts to design more efficacious, better tolerated, or more synthetically accessible ligands have been limited to structures that do not include PKC or membrane effects known to influence PKC-ligand binding. This problem extends more generally to many membrane-associated proteins in the human proteome. Here, we use rotational-echo double-resonance (REDOR) solid-state NMR to determine the conformations of PKC modulators bound to the PKCδ-C1b domain in the presence of phospholipid vesicles. The conformationally limited PKC modulator phorbol diacetate (PDAc) is used as an initial test substrate. While unanticipated partitioning of PDAc between an immobilized protein-bound state and a mobile state in the phospholipid assembly was observed, a single conformation in the bound state was identified. In striking contrast, a bryostatin analogue (bryolog) was found to exist exclusively in a protein-bound state, but adopts a distribution of conformations as defined by three independent distance measurements. The detection of multiple PKCδ-C1b-bound bryolog conformers in a functionally relevant phospholipid complex reveals the inherent dynamic nature of cellular systems that is not captured with single-conformation static structures. These results indicate that binding, selectivity, and function of PKC modulators, as well as the design of new modulators, are best addressed using a dynamic multistate model, an analysis potentially applicable to other membrane-associated proteins.
Collapse
Affiliation(s)
- Hao Yang
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United
States
| | - Daryl Staveness
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Steven M. Ryckbosch
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Alison D. Axtman
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Brian A. Loy
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Alexander B. Barnes
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United
States
| | - Vijay S. Pande
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jacob Schaefer
- Department
of Chemistry, Washington University in St.
Louis, St. Louis, Missouri 63130, United
States
| | - Paul A. Wender
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Department
of Chemical and Systems Biology, Stanford
University, Stanford, California 94305, United States
| | - Lynette Cegelski
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
82
|
Bessa C, Soares J, Raimundo L, Loureiro JB, Gomes C, Reis F, Soares ML, Santos D, Dureja C, Chaudhuri SR, Lopez-Haber C, Kazanietz MG, Gonçalves J, Simões MF, Rijo P, Saraiva L. Discovery of a small-molecule protein kinase Cδ-selective activator with promising application in colon cancer therapy. Cell Death Dis 2018; 9:23. [PMID: 29348560 PMCID: PMC5833815 DOI: 10.1038/s41419-017-0154-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/06/2017] [Accepted: 11/09/2017] [Indexed: 12/12/2022]
Abstract
Protein kinase C (PKC) isozymes play major roles in human diseases, including cancer. Yet, the poor understanding of isozymes-specific functions and the limited availability of selective pharmacological modulators of PKC isozymes have limited the clinical translation of PKC-targeting agents. Here, we report the first small-molecule PKCδ-selective activator, the 7α-acetoxy-6β-benzoyloxy-12-O-benzoylroyleanone (Roy-Bz), which binds to the PKCδ-C1-domain. Roy-Bz potently inhibited the proliferation of colon cancer cells by inducing a PKCδ-dependent mitochondrial apoptotic pathway involving caspase-3 activation. In HCT116 colon cancer cells, Roy-Bz specifically triggered the translocation of PKCδ but not other phorbol ester responsive PKCs. Roy-Bz caused a marked inhibition in migration of HCT116 cells in a PKCδ-dependent manner. Additionally, the impairment of colonosphere growth and formation, associated with depletion of stemness markers, indicate that Roy-Bz also targets drug-resistant cancer stem cells, preventing tumor dissemination and recurrence. Notably, in xenograft mouse models, Roy-Bz showed a PKCδ-dependent antitumor effect, through anti-proliferative, pro-apoptotic, and anti-angiogenic activities. Besides, Roy-Bz was non-genotoxic, and in vivo it had no apparent toxic side effects. Collectively, our findings reveal a novel promising anticancer drug candidate. Most importantly, Roy-Bz opens the way to a new era on PKC biology and pharmacology, contributing to the potential redefinition of the structural requirements of isozyme-selective agents, and to the re-establishment of PKC isozymes as feasible therapeutic targets in human diseases.
Collapse
Affiliation(s)
- Cláudia Bessa
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Joana Soares
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Liliana Raimundo
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Joana B Loureiro
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Célia Gomes
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, & CNC.IBILI Research Consortium, University of Coimbra, Coimbra, Portugal
| | - Flávio Reis
- Laboratory of Pharmacology and Experimental Therapeutics, Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, & CNC.IBILI Research Consortium, University of Coimbra, Coimbra, Portugal
| | - Miguel L Soares
- Laboratório de Apoio à Investigação em Medicina Molecular, Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, Porto, Portugal
| | - Daniel Santos
- REQUIMTE, Faculdade de Ciências da Universidade do Porto, Porto, Portugal
| | - Chetna Dureja
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh, India
| | | | - Cynthia Lopez-Haber
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Jorge Gonçalves
- Laboratório de Farmacologia, Departamento de Ciências do Medicamento, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Maria F Simões
- CBIOS-Centro de Investigação em Biociências e Tecnologias da Saúde, Universidade Lusófona, Lisboa, Portugal.,iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal
| | - Patrícia Rijo
- CBIOS-Centro de Investigação em Biociências e Tecnologias da Saúde, Universidade Lusófona, Lisboa, Portugal. .,iMed.ULisboa, Instituto de Investigação do Medicamento, Faculdade de Farmácia da Universidade de Lisboa, Lisboa, Portugal.
| | - Lucília Saraiva
- UCIBIO/REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| |
Collapse
|
83
|
Czikora A, Pany S, You Y, Saini AS, Lewin NE, Mitchell GA, Abramovitz A, Kedei N, Blumberg PM, Das J. Structural determinants of phorbol ester binding activity of the C1a and C1b domains of protein kinase C theta. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1046-1056. [PMID: 29317197 DOI: 10.1016/j.bbamem.2018.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/06/2017] [Accepted: 01/04/2018] [Indexed: 12/31/2022]
Abstract
The PKC isozymes represent the most prominent family of signaling proteins mediating response to the ubiquitous second messenger diacylglycerol. Among them, PKCθ is critically involved in T-cell activation. Whereas all the other conventional and novel PKC isoforms have twin C1 domains with potent binding activity for phorbol esters, in PKCθ only the C1b domain possesses potent binding activity, with little or no activity reported for the C1a domain. In order to better understand the structural basis accounting for the very weak ligand binding of the PKCθ C1a domain, we assessed the effect on ligand binding of twelve amino acid residues which differed between the C1a and C1b domains of PKCθ. Mutation of Pro9 of the C1a domain of PKCθ to the corresponding Lys9 found in C1b restored in vitro binding activity for [3H]phorbol 12,13-dibutyrate to 3.6 nM, whereas none of the other residues had substantial effect. Interestingly, the converse mutation in the C1b domain of Lys9 to Pro9 only diminished binding affinity to 11.7 nM, compared to 254 nM in the unmutated C1a. In confocal experiments, deletion of the C1b domain from full length PKCθ diminished, whereas deletion of the C1a domain enhanced 5-fold (at 100 nM PMA) the translocation to the plasma membrane. We conclude that the Pro168 residue in the C1a domain of full length PKCθ plays a critical role in the ligand and membrane binding, while exchanging the residue (Lys240) at the same position in C1b domain of full length PKCθ only modestly reduced the membrane interaction.
Collapse
Affiliation(s)
- Agnes Czikora
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Satyabrata Pany
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Youngki You
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Amandeep S Saini
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Nancy E Lewin
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Gary A Mitchell
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Adelle Abramovitz
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States.
| | - Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States.
| |
Collapse
|
84
|
Das J, Kedei N, Kelsey JS, You Y, Pany S, Mitchell GA, Lewin NE, Blumberg PM. Critical Role of Trp-588 of Presynaptic Munc13-1 for Ligand Binding and Membrane Translocation. Biochemistry 2018; 57:732-741. [PMID: 29244485 DOI: 10.1021/acs.biochem.7b00764] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Munc13-1 is a presynaptic active-zone protein essential for neurotransmitter release and presynaptic plasticity in the brain. This multidomain scaffold protein contains a C1 domain that binds to the activator diacylglycerol/phorbol ester. Although the C1 domain bears close structural homology with the C1 domains of protein kinase C (PKC), the tryptophan residue at position 22 (588 in the full-length Munc13-1) occludes the activator binding pocket, which is not the case for PKC. To elucidate the role of this tryptophan, we generated W22A, W22K, W22D, W22Y, and W22F substitutions in the full-length Munc13-1, expressed the GFP-tagged constructs in Neuro-2a cells, and measured their membrane translocation in response to phorbol ester treatment by imaging of the live cells using confocal microscopy. The extent of membrane translocation followed the order, wild-type > W22K > W22F > W22Y > W22A > W22D. The phorbol ester binding affinity of the wild-type Munc13-1C1 domain and its mutants was phosphatidylserine (PS)-dependent following the order, wild-type > W22K > W22A ≫ W22D in both 20% and 100% PS. Phorbol ester affinity was higher for Munc13-1 than the C1 domain. While Munc13-1 translocated to the plasma membrane, the C1 domain translocated to internal membranes in response to phorbol ester. Molecular dynamics (80 ns) studies reveal that Trp-22 is relatively less flexible than the homologous Trp-22 of PKCδ and PKCθ. Results are discussed in terms of the overall negative charge state of the Munc13-1C1 domain and its possible interaction with the PS-rich plasma membrane. This study shows that Trp-588 is an important structural element for ligand binding and membrane translocation in Munc13-1.
Collapse
Affiliation(s)
- Joydip Das
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston , Houston, Texas 77204, United States
| | - Noemi Kedei
- Center for Cancer Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Jessica S Kelsey
- Center for Cancer Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Youngki You
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston , Houston, Texas 77204, United States
| | - Satyabrata Pany
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston , Houston, Texas 77204, United States
| | - Gary A Mitchell
- Center for Cancer Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Nancy E Lewin
- Center for Cancer Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| | - Peter M Blumberg
- Center for Cancer Research, National Cancer Institute , Bethesda, Maryland 20892, United States
| |
Collapse
|
85
|
Czikora A, Kedei N, Kalish H, Blumberg PM. Importance of the REM (Ras exchange) domain for membrane interactions by RasGRP3. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2017; 1859:2350-2360. [PMID: 28912101 PMCID: PMC5659902 DOI: 10.1016/j.bbamem.2017.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/07/2017] [Accepted: 09/08/2017] [Indexed: 11/18/2022]
Abstract
RasGRP comprises a family of guanine nucleotide exchange factors, regulating the dissociation of GDP from Ras GTPases to enhance the formation of the active GTP-bound form. RasGRP1 possesses REM (Ras exchange), GEF (catalytic), EF-hand, C1, SuPT (suppressor of PT), and PT (plasma membrane-targeting) domains, among which the C1 domain drives membrane localization in response to diacylglycerol or phorbol ester and the PT domain recognizes phosphoinositides. The homologous family member RasGRP3 shows less plasma membrane localization. The objective of this study was to explore the role of the different domains of RasGRP3 in membrane translocation in response to phorbol esters. The full-length RasGRP3 shows limited translocation to the plasma membrane in response to PMA, even when the basic hydrophobic cluster in the PT domain, reported to be critical for RasGRP1 translocation to endogenous activators, is mutated to resemble that of RasGRP1. Moreover, exchange of the C-termini (SuPT-PT domain) of the two proteins had little effect on their plasma membrane translocation. On the other hand, while the C1 domain of RasGRP3 alone showed partial plasma membrane translocation, truncated RasGRP3 constructs, which contain the PT domain and are missing the REM, showed stronger translocation, indicating that the REM of RasGRP3 was a suppressor of its membrane interaction. The REM of RasGRP1 failed to show comparable suppression of RasGRP3 translocation. The marked differences between RasGRP3 and RasGRP1 in membrane interaction necessarily will contribute to their different behavior in cells and are relevant to the design of selective ligands as potential therapeutic agents.
Collapse
Affiliation(s)
- Agnes Czikora
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Noemi Kedei
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States
| | - Heather Kalish
- Trans-NIH Shared Resource on Biomedical Engineering and Physical Science (BEPS), National Institute of Biomedical Imaging and Bioengineering (NIBIB) National Institutes of Health, United States
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States.
| |
Collapse
|
86
|
Heinisch JJ, Rodicio R. Protein kinase C in fungi—more than just cell wall integrity. FEMS Microbiol Rev 2017; 42:4562651. [DOI: 10.1093/femsre/fux051] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 10/19/2017] [Indexed: 11/13/2022] Open
|
87
|
Ohashi N, Kobayashi R, Nomura W, Kobayakawa T, Czikora A, Herold BK, Lewin NE, Blumberg PM, Tamamura H. Synthesis and Evaluation of Dimeric Derivatives of Diacylglycerol-Lactones as Protein Kinase C Ligands. Bioconjug Chem 2017; 28:2135-2144. [PMID: 28671468 DOI: 10.1021/acs.bioconjchem.7b00299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein kinase C (PKC) mediates a central cellular signal transduction pathway involved in disorders such as cancer and Alzheimer's disease. PKC is regulated by binding of the second messenger sn-1,2-diacylglycerol (DAG) to its tandem C1 domains, designated C1a and C1b, leading both to PKC activation and to its translocation to the plasma membrane and to internal organelles. Depending on the isoform, there may be differences in the ligand selectivity of the C1a and C1b domains, and there is different spacing between the C1 domains of the conventional and novel PKCs. Bivalent ligands have the potential to exploit these differences between isoforms, yielding isoform selectivity. In the present study, we describe the synthesis of a series of dimeric derivatives of conformationally constrained diacylglycerol (DAG) analogs (DAG-lactones). We characterize the derivatives in vitro for their binding affinities, both to a single C1 domain (the C1b domain of PKCδ) as well as to the conventional PKCα isoform and the novel PKCδ isoform, and we measure their abilities to cause translocation of PKCδ and PKCε in intact cells. The dimeric compound with the 10-carbon linker was modestly more effective for the isolated PKCδ C1b domain than was the monomeric compound. For the intact PKCα and PKCδ, the shortest DAG-lactone dimer had similar affinity to the monomer and affinity decreased progressively up to the 16-carbon linker. The dimeric derivatives did not cause the Golgi accumulation of PKCδ. The present results provide important insights into the development of new chemical tools for biological studies on PKC.
Collapse
Affiliation(s)
- Nami Ohashi
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Ryosuke Kobayashi
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Wataru Nomura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Takuya Kobayakawa
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Agnes Czikora
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Brienna K Herold
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Nancy E Lewin
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Hirokazu Tamamura
- Department of Medicinal Chemistry, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University , 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| |
Collapse
|
88
|
Pany S, Ghosh A, You Y, Nguyen N, Das J. Resveratrol inhibits phorbol ester-induced membrane translocation of presynaptic Munc13-1. Biochim Biophys Acta Gen Subj 2017; 1861:2640-2651. [PMID: 28713022 DOI: 10.1016/j.bbagen.2017.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/23/2017] [Accepted: 07/12/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Resveratrol (1) is a naturally occurring polyphenol that has been implicated in neuroprotection. One of resveratrol's several biological targets is Ca2+-sensitive protein kinase C alpha (PKCα). Resveratrol inhibits PKCα by binding to its activator-binding C1 domain. Munc13-1 is a C1 domain-containing Ca2+-sensitive SNARE complex protein essential for vesicle priming and neurotransmitter release. METHODS To test if resveratrol could also bind and inhibit Munc13-1, we studied the interaction of resveratrol and its derivatives, (E)-1,3-dimethoxy-5-(4-methoxystyryl)benzene, (E)-5,5'-(ethene-1,2-diyl)bis(benzene-1,2,3-triol), (E)-1,2-bis(3,4,5-trimethoxyphenyl)ethane, and (E)-5-(4-(hexadecyloxy)-3,5-dihydroxystyryl)benzene-1,2,3-triol with Munc13-1 by studying its membrane translocation from cytosol to plasma membrane in HT22 cells and primary hippocampal neurons. RESULTS Resveratrol, but not the derivatives inhibited phorbol ester-induced Munc13-1 translocation from cytosol to membrane in HT22 cells and primary hippocampal neurons, as evidenced by immunoblot analysis and confocal microscopy. Resveratrol did not show any effect on Munc13-1H567K, a mutant which is not sensitive to phorbol ester. Binding studies with Munc13-1 C1 indicated that resveratrol competes with phorbol ester for the binding site. Molecular docking and dynamics studies suggested that hydroxyl groups of resveratrol interact with phorbol-ester binding residues in the binding pocket. CONCLUSIONS AND SIGNIFICANCE This study characterizes Munc13-1 as a target of resveratrol and highlights the importance of dietary polyphenol in the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Satyabrata Pany
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Anamitra Ghosh
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Youngki You
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Nga Nguyen
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States
| | - Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204, United States.
| |
Collapse
|
89
|
Murillo‐Carretero M, Geribaldi‐Doldán N, Flores‐Giubi E, García‐Bernal F, Navarro‐Quiroz EA, Carrasco M, Macías‐Sánchez AJ, Herrero‐Foncubierta P, Delgado‐Ariza A, Verástegui C, Domínguez‐Riscart J, Daoubi M, Hernández‐Galán R, Castro C. ELAC (3,12-di-O-acetyl-8-O-tigloilingol), a plant-derived lathyrane diterpene, induces subventricular zone neural progenitor cell proliferation through PKCβ activation. Br J Pharmacol 2017; 174:2373-2392. [PMID: 28476069 PMCID: PMC5481651 DOI: 10.1111/bph.13846] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND AND PURPOSE Pharmacological strategies aimed to facilitate neuronal renewal in the adult brain, by promoting endogenous neurogenesis, constitute promising therapeutic options for pathological or traumatic brain lesions. We have previously shown that non-tumour-promoting PKC-activating compounds (12-deoxyphorbols) promote adult neural progenitor cell (NPC) proliferation in vitro and in vivo, enhancing the endogenous neurogenic response of the brain to a traumatic injury. Here, we show for the first time that a diterpene with a lathyrane skeleton can also activate PKC and promote NPC proliferation. EXPERIMENTAL APPROACH We isolated four lathyranes from the latex of Euphorbia plants and tested their effect on postnatal NPC proliferation, using neurosphere cultures. The bioactive lathyrane ELAC (3,12-di-O-acetyl-8-O-tigloilingol) was also injected into the ventricles of adult mice to analyse its effect on adult NPC proliferation in vivo. KEY RESULTS The lathyrane ELAC activated PKC and significantly increased postnatal NPC proliferation in vitro, particularly in synergy with FGF2. In addition ELAC stimulated proliferation of NPC, specifically affecting undifferentiated transit amplifying cells. The proliferative effect of ELAC was reversed by either the classical/novel PKC inhibitor Gö6850 or the classical PKC inhibitor Gö6976, suggesting that NPC proliferation is promoted in response to activation of classical PKCs, particularly PKCß. ELAC slightly increased the proportion of NPC expressing Sox2. The effects of ELAC disappeared upon acetylation of its C7-hydroxyl group. CONCLUSIONS AND IMPLICATIONS We propose lathyranes like ELAC as new drug candidates to modulate adult neurogenesis through PKC activation. Functional and structural comparisons between ELAC and phorboids are included.
Collapse
Affiliation(s)
- Maribel Murillo‐Carretero
- Área de Fisiología, Facultad de MedicinaUniversidad de CádizCádizSpain and Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA)
| | - Noelia Geribaldi‐Doldán
- Área de Fisiología, Facultad de MedicinaUniversidad de CádizCádizSpain and Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA)
| | - Eugenia Flores‐Giubi
- Departamento de Química Orgánica, Facultad de CienciasUniversidad de Cádiz, Puerto RealCádizSpain and Instituto de Investigación en Biomoléculas (INBIO)
| | - Francisco García‐Bernal
- Área de Fisiología, Facultad de MedicinaUniversidad de CádizCádizSpain and Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA)
| | - Elkin A Navarro‐Quiroz
- Área de Fisiología, Facultad de MedicinaUniversidad de CádizCádizSpain and Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA)
- Universidad Simón BolívarBarranquillaColombia
| | - Manuel Carrasco
- Área de Fisiología, Facultad de MedicinaUniversidad de CádizCádizSpain and Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA)
| | - Antonio J Macías‐Sánchez
- Departamento de Química Orgánica, Facultad de CienciasUniversidad de Cádiz, Puerto RealCádizSpain and Instituto de Investigación en Biomoléculas (INBIO)
| | - Pilar Herrero‐Foncubierta
- Área de Fisiología, Facultad de MedicinaUniversidad de CádizCádizSpain and Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA)
| | - Antonio Delgado‐Ariza
- Área de Fisiología, Facultad de MedicinaUniversidad de CádizCádizSpain and Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA)
| | - Cristina Verástegui
- Departamento de Anatomía y Embriología HumanaUniversidad de CádizCádizSpain and Instituto de Investigación en Innovación Biomédica de Cádiz (INiBICA)
| | - Jesús Domínguez‐Riscart
- Área de Fisiología, Facultad de MedicinaUniversidad de CádizCádizSpain and Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA)
| | - Mourad Daoubi
- Departamento de Química Orgánica, Facultad de CienciasUniversidad de Cádiz, Puerto RealCádizSpain and Instituto de Investigación en Biomoléculas (INBIO)
| | - Rosario Hernández‐Galán
- Departamento de Química Orgánica, Facultad de CienciasUniversidad de Cádiz, Puerto RealCádizSpain and Instituto de Investigación en Biomoléculas (INBIO)
| | - Carmen Castro
- Área de Fisiología, Facultad de MedicinaUniversidad de CádizCádizSpain and Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA)
| |
Collapse
|
90
|
Zha JS, Zhu BL, Liu L, Lai YJ, Long Y, Hu XT, Deng XJ, Wang XF, Yan Z, Chen GJ. Phorbol esters dPPA/dPA promote furin expression involving transcription factor CEBPβ in neuronal cells. Oncotarget 2017; 8:60159-60172. [PMID: 28947961 PMCID: PMC5601129 DOI: 10.18632/oncotarget.18569] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 06/10/2017] [Indexed: 02/03/2023] Open
Abstract
Using high-throughput small molecule screening targeting furin gene, we identified that phorbol esters dPPA (12-Deoxyphorbol 13-phenylacetate 20-acetate) and dPA (12-Deoxyphorbol 13-acetate) significantly increased furin protein and mRNA expression in SH-SY5Y cells. This effect was prevented by PKC (protein kinase C) inhibitor calphostin C but not Ro318220, suggesting that the C1 domain, rather than the catalytic domain of PKC plays an important role. Luciferase assay revealed that nucleotides -7925 to -7426 were sufficient to mediate dPPA/dPA enhancement of furin P1 promoter activity. RNA interference of transcriptional factors CEBPβ (CCAAT/enhancer-binding protein β) and GATA1 revealed that knockdown of CEBPβ significantly attenuated the effect of dPPA on furin expression. Pharmacological inhibition of ERK and PI3K but not TGFβ receptor diminished the up-regulation of furin by dPPA. These results suggested that in neuronal cells, transcriptional activation of furin by dPPA/dPA may be initiated by C1 domain containing proteins including PKC; the intracellular signaling involves ERK and PI3K and transcription factor CEBPβ.
Collapse
Affiliation(s)
- Jing-Si Zha
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Bing-Lin Zhu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Lu Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Yu-Jie Lai
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Yan Long
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Xiao-Tong Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Xiao-Juan Deng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Xue-Feng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| | - Zhen Yan
- Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, NY, 14214, USA
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, China
| |
Collapse
|
91
|
Elhalem E, Donadío LG, Zhou X, Lewin NE, Garcia LC, Lai CC, Kelley JA, Peach ML, Blumberg PM, Comin MJ. Exploring the influence of indololactone structure on selectivity for binding to the C1 domains of PKCα, PKCε, and RasGRP. Bioorg Med Chem 2017; 25:2971-2980. [PMID: 28392275 PMCID: PMC5493039 DOI: 10.1016/j.bmc.2017.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/06/2017] [Accepted: 03/09/2017] [Indexed: 11/23/2022]
Abstract
C1 domain-containing proteins, such as protein kinase C (PKC), have a central role in cellular signal transduction. Their involvement in many diseases, including cancer, cardiovascular disease, and immunological and neurological disorders has been extensively demonstrated and has prompted a search for small molecules to modulate their activity. By employing a diacylglycerol (DAG)-lactone template, we have been able to develop ultra potent analogs of diacylglycerol with nanomolar binding affinities approaching those of complex natural products such as phorbol esters and bryostatins. One current challenge is the development of selective ligands capable of discriminating between different protein family members. Recently, structure-activity relationship studies have shown that the introduction of an indole ring as a DAG-lactone substituent yielded selective Ras guanine nucleotide-releasing protein (RasGRP1) activators when compared to PKCα and PKCε. In the present work, we examine the effects of ligand selectivity relative to the orientation of the indole ring and the nature of the DAG-lactone template itself. Our results show that the indole ring must be attached to the lactone moiety through the sn-2 position in order to achieve RasGRP1 selectivity.
Collapse
Affiliation(s)
- Eleonora Elhalem
- Laboratory of Organic Synthesis, Center of Research and Development in Chemistry, National Institute of Industrial Technology, Buenos Aires, Argentina
| | - Lucía Gandolfi Donadío
- Laboratory of Organic Synthesis, Center of Research and Development in Chemistry, National Institute of Industrial Technology, Buenos Aires, Argentina
| | - Xiaoling Zhou
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Nancy E Lewin
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Lia C Garcia
- Laboratory of Organic Synthesis, Center of Research and Development in Chemistry, National Institute of Industrial Technology, Buenos Aires, Argentina
| | - Christopher C Lai
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | - James A Kelley
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21702, USA
| | - Megan L Peach
- Basic Science Program, Leidos Biomedical Research Inc., Chemical Biology Laboratory, Frederick National Laboratory for Cancer Research, National Institutes of Health, Frederick, MD 21702, USA
| | - Peter M Blumberg
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - María J Comin
- Laboratory of Organic Synthesis, Center of Research and Development in Chemistry, National Institute of Industrial Technology, Buenos Aires, Argentina.
| |
Collapse
|
92
|
Stewart MD, Igumenova TI. Toggling of Diacylglycerol Affinity Correlates with Conformational Plasticity in C1 Domains. Biochemistry 2017; 56:2637-2640. [PMID: 28505428 DOI: 10.1021/acs.biochem.7b00228] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Conserved homology-1 (C1) domains are peripheral membrane domains that target their host proteins to diacylglycerol (DAG)-containing membranes. It has been previously shown that a conservative aromatic mutation of a single residue in the C1 domain has a profound effect on DAG affinity. We report that the "DAG-toggling" mutation changes the conformational dynamics of the loop region that forms the binding site for the C1 activators. Moreover, there is a correlation among the residue identity at the mutation site, DAG affinity, and loop dynamics in four C1 variants. We propose that "toggling" of DAG affinity may occur through modulation of both protein-membrane interactions and the geometry of the activator-binding cleft, with the loop dynamics being responsible for the latter.
Collapse
Affiliation(s)
- Mikaela D Stewart
- Department of Biochemistry and Biophysics, Texas A&M University , College Station, Texas 77843, United States
| | - Tatyana I Igumenova
- Department of Biochemistry and Biophysics, Texas A&M University , College Station, Texas 77843, United States
| |
Collapse
|
93
|
Mason JW, Schmid CL, Bohn LM, Roush WR. Stolonidiol: Synthesis, Target Identification, and Mechanism for Choline Acetyltransferase Activation. J Am Chem Soc 2017; 139:5865-5869. [PMID: 28414442 DOI: 10.1021/jacs.7b01083] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stolonidiol, a marine natural product, has been reported to potentiate the activity of choline acetyltransferase (ChAT), the enzyme that produces the neurotransmitter acetylcholine. Here we report the total synthesis of stolonidiol starting from (R)-(+)-limonene. To identify the mechanism by which ChAT activity is increased, we sought to identify the biological target of stolonidiol. We show that stolonidiol binds to the phorbol ester binding site of protein kinase C (PKC), induces translocation of PKC to the cell membrane, and activates kinase activity. Furthermore, we confirmed the increase in ChAT activity observed upon treatment of cells with stolonidiol and show that this effect is mediated by PKC. Collectively, our data strongly suggest that PKC activation by stolonidiol is responsible for the resulting potentiation of ChAT activity.
Collapse
Affiliation(s)
- Jeremy W Mason
- Department of Chemistry and ‡Department of Molecular Therapeutics, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Cullen L Schmid
- Department of Chemistry and ‡Department of Molecular Therapeutics, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Laura M Bohn
- Department of Chemistry and ‡Department of Molecular Therapeutics, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| | - William R Roush
- Department of Chemistry and ‡Department of Molecular Therapeutics, The Scripps Research Institute , 130 Scripps Way, Jupiter, Florida 33458, United States
| |
Collapse
|
94
|
D'Ippólito S, Arias LA, Casalongué CA, Pagnussat GC, Fiol DF. The DC1-domain protein VACUOLELESS GAMETOPHYTES is essential for development of female and male gametophytes in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:261-275. [PMID: 28107777 DOI: 10.1111/tpj.13486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/06/2017] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
In this work we identified VACUOLELESS GAMETOPHYTES (VLG) as a DC1 domain-containing protein present in the endomembrane system and essential for development of both female and male gametophytes. VLG was originally annotated as a gene coding for a protein of unknown function containing DC1 domains. DC1 domains are cysteine- and histidine-rich zinc finger domains found exclusively in the plant kingdom that have been named on the basis of similarity with the C1 domain present in protein kinase C (PKC). In Arabidopsis, both male and female gametophytes are characterized by the formation of a large vacuole early in development; this is absent in vlg mutant plants. As a consequence, development is arrested in embryo sacs and pollen grains at the first mitotic division. VLG is specifically located in multivesicular bodies or pre-vacuolar compartments, and our results suggest that vesicular fusion is affected in the mutants, disrupting vacuole formation. Supporting this idea, AtPVA12 - a member of the SNARE vesicle-associated protein family and previously related to a sterol-binding protein, was identified as a VLG interactor. A role for VLG is proposed mediating vesicular fusion in plants as part of the sterol trafficking machinery required for vacuole biogenesis in plants.
Collapse
Affiliation(s)
- Sebastián D'Ippólito
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Funes 3250 Cuarto Nivel, 7600, Mar del Plata, Argentina
| | - Leonardo Agustín Arias
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Funes 3250 Cuarto Nivel, 7600, Mar del Plata, Argentina
| | - Claudia Anahí Casalongué
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Funes 3250 Cuarto Nivel, 7600, Mar del Plata, Argentina
| | - Gabriela Carolina Pagnussat
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Funes 3250 Cuarto Nivel, 7600, Mar del Plata, Argentina
| | - Diego Fernando Fiol
- Instituto de Investigaciones Biológicas, IIB-CONICET-Universidad Nacional de Mar del Plata, Funes 3250 Cuarto Nivel, 7600, Mar del Plata, Argentina
| |
Collapse
|
95
|
Cooke M, Magimaidas A, Casado-Medrano V, Kazanietz MG. Protein kinase C in cancer: The top five unanswered questions. Mol Carcinog 2017; 56:1531-1542. [PMID: 28112438 DOI: 10.1002/mc.22617] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 01/04/2017] [Accepted: 01/20/2017] [Indexed: 12/29/2022]
Abstract
Few kinases have been studied as extensively as protein kinase C (PKC), particularly in the context of cancer. As major cellular targets for the phorbol ester tumor promoters and diacylglycerol (DAG), a second messenger generated by stimulation of membrane receptors, PKC isozymes play major roles in the control of signaling pathways associated with proliferation, migration, invasion, tumorigenesis, and metastasis. However, despite decades of research, fundamental questions remain to be answered or are the subject of intense controversy. Primary among these unresolved issues are the role of PKC isozymes as either tumor promoter or tumor suppressor kinases and the incomplete understanding on isozyme-specific substrates and effectors. The involvement of PKC isozymes in cancer progression needs to be reassessed in the context of specific oncogenic and tumor suppressing alterations. In addition, there are still major hurdles in addressing isozyme-specific function due to the limited specificity of most pharmacological PKC modulators and the lack of validated predictive biomarkers for response, which impacts the translation of these agents to the clinic. In this review we focus on key controversial issues and upcoming challenges, with the expectation that understanding the intricacies of PKC function will help fulfill the yet unsuccessful promise of targeting PKCs for cancer therapeutics.
Collapse
Affiliation(s)
- Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew Magimaidas
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Victoria Casado-Medrano
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
96
|
Molecular dynamics simulations reveal ligand-controlled positioning of a peripheral protein complex in membranes. Nat Commun 2017; 8:6. [PMID: 28232750 PMCID: PMC5431895 DOI: 10.1038/s41467-016-0015-8] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 11/17/2016] [Indexed: 01/13/2023] Open
Abstract
Bryostatin is in clinical trials for Alzheimer’s disease, cancer, and HIV/AIDS eradication. It binds to protein kinase C competitively with diacylglycerol, the endogenous protein kinase C regulator, and plant-derived phorbol esters, but each ligand induces different activities. Determination of the structural origin for these differing activities by X-ray analysis has not succeeded due to difficulties in co-crystallizing protein kinase C with relevant ligands. More importantly, static, crystal-lattice bound complexes do not address the influence of the membrane on the structure and dynamics of membrane-associated proteins. To address this general problem, we performed long-timescale (400–500 µs aggregate) all-atom molecular dynamics simulations of protein kinase C–ligand–membrane complexes and observed that different protein kinase C activators differentially position the complex in the membrane due in part to their differing interactions with waters at the membrane inner leaf. These new findings enable new strategies for the design of simpler, more effective protein kinase C analogs and could also prove relevant to other peripheral protein complexes. Natural supplies of bryostatin, a compound in clinical trials for Alzheimer’s disease, cancer, and HIV, are scarce. Here, the authors perform molecular dynamics simulations to understand how bryostatin interacts with membrane-bound protein kinase C, offering insights for the design of bryostatin analogs.
Collapse
|
97
|
Xu J, Camacho M, Xu Y, Esser V, Liu X, Trimbuch T, Pan YZ, Ma C, Tomchick DR, Rosenmund C, Rizo J. Mechanistic insights into neurotransmitter release and presynaptic plasticity from the crystal structure of Munc13-1 C 1C 2BMUN. eLife 2017; 6. [PMID: 28177287 PMCID: PMC5344669 DOI: 10.7554/elife.22567] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/07/2017] [Indexed: 12/25/2022] Open
Abstract
Munc13–1 acts as a master regulator of neurotransmitter release, mediating docking-priming of synaptic vesicles and diverse presynaptic plasticity processes. It is unclear how the functions of the multiple domains of Munc13–1 are coordinated. The crystal structure of a Munc13–1 fragment including its C1, C2B and MUN domains (C1C2BMUN) reveals a 19.5 nm-long multi-helical structure with the C1 and C2B domains packed at one end. The similar orientations of the respective diacyglycerol- and Ca2+-binding sites of the C1 and C2B domains suggest that the two domains cooperate in plasma-membrane binding and that activation of Munc13–1 by Ca2+ and diacylglycerol during short-term presynaptic plasticity are closely interrelated. Electrophysiological experiments in mouse neurons support the functional importance of the domain interfaces observed in C1C2BMUN. The structure imposes key constraints for models of neurotransmitter release and suggests that Munc13–1 bridges the vesicle and plasma membranes from the periphery of the membrane-membrane interface. DOI:http://dx.doi.org/10.7554/eLife.22567.001 The human brain contains billions of cells called neurons that communicate with each other using molecules called neurotransmitters. An electrical signal in one neuron triggers the release of neurotransmitters from the cell, which then activate or inhibit electrical signals in neighboring neurons. Inside the cell, neurotransmitters are stored in small bubble-like structures called synaptic vesicles. The vesicles fuse with the membrane that surrounds the cell to release the neurotransmitters. This process must be tightly controlled to ensure that neurotransmitters are released rapidly and at the right time. A protein called Munc13 is a key component of the machinery that regulates the fusion of synaptic vesicles. It helps the synaptic vesicle to dock onto the cell membrane and get ready for fusion. Munc13 is a large protein and contains several different regions, including three domains called C1, C2B and MUN. These three domains control the release of neurotransmitters, but how they do so is poorly understood. Xu, Camacho et al. used a technique called X-ray crystallography to analyse the three-dimensional shape of the part of Munc13 that contains the three domains. The experiments reveal that the MUN domain forms a long rod-like shape with the C1 and C2B domains packed at one end. Several mutations that reduce the ability of the domains to interact with each other altered the release of neurotransmitters from mouse neurons to different extents. These findings suggest that the overall architecture of the region containing the C1, C2B and MUN domains is important for the normal activity of Munc13. The structure revealed by Xu, Camacho et al. sets a framework for understanding how Munc13 controls neurotransmitter release, and thus mediates diverse forms of information processing in the brain. DOI:http://dx.doi.org/10.7554/eLife.22567.002
Collapse
Affiliation(s)
- Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Marcial Camacho
- Department of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yibin Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Victoria Esser
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Xiaoxia Liu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Thorsten Trimbuch
- Department of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Yun-Zu Pan
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| | - Cong Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, China.,College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Diana R Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States
| | - Christian Rosenmund
- Department of Neurophysiology, NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
98
|
Nomura W, Ito Y, Inoue Y. Role of phosphatidylserine in the activation of Rho1-related Pkc1 signaling in Saccharomyces cerevisiae. Cell Signal 2017; 31:146-153. [DOI: 10.1016/j.cellsig.2017.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/03/2017] [Indexed: 10/20/2022]
|
99
|
Várnai P, Gulyás G, Tóth DJ, Sohn M, Sengupta N, Balla T. Quantifying lipid changes in various membrane compartments using lipid binding protein domains. Cell Calcium 2016; 64:72-82. [PMID: 28088320 DOI: 10.1016/j.ceca.2016.12.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 11/30/2022]
Abstract
One of the largest challenges in cell biology is to map the lipid composition of the membranes of various organelles and define the exact location of processes that control the synthesis and distribution of lipids between cellular compartments. The critical role of phosphoinositides, low-abundant lipids with rapid metabolism and exceptional regulatory importance in the control of almost all aspects of cellular functions created the need for tools to visualize their localizations and dynamics at the single cell level. However, there is also an increasing need for methods to determine the cellular distribution of other lipids regulatory or structural, such as diacylglycerol, phosphatidic acid, or other phospholipids and cholesterol. This review will summarize recent advances in this research field focusing on the means by which changes can be described in more quantitative terms.
Collapse
Affiliation(s)
- Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Gergő Gulyás
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Dániel J Tóth
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States; Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Mira Sohn
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Nivedita Sengupta
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States
| | - Tamas Balla
- Section on Molecular Signal Transduction, Program for Developmental Neuroscience, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, United States.
| |
Collapse
|
100
|
Pany S, You Y, Das J. Curcumin Inhibits Protein Kinase Cα Activity by Binding to Its C1 Domain. Biochemistry 2016; 55:6327-6336. [PMID: 27776404 DOI: 10.1021/acs.biochem.6b00932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Curcumin is a polyphenolic nutraceutical that acts on multiple biological targets, including protein kinase C (PKC). PKC is a family of serine/threonine kinases central to intracellular signal transduction. We have recently shown that curcumin selectively inhibits PKCα, but not PKCε, in CHO-K1 cells [Pany, S. (2016) Biochemistry 55, 2135-2143]. To understand which domain(s) of PKCα is responsible for curcumin binding and inhibitory activity, we made several domain-swapped mutants in which the C1 (combination of C1A and C1B) and C2 domains are swapped between PKCα and PKCε. Phorbol ester-induced membrane translocation studies using confocal microscopy and immunoblotting revealed that curcumin inhibited phorbol ester-induced membrane translocation of PKCε mutants, in which the εC1 domain was replaced with αC1, but not the PKCα mutant in which αC1 was replaced with the εC1 domain, suggesting that αC1 is a determinant for curcumin's inhibitory effect. In addition, curcumin inhibited membrane translocation of PKCε mutants, in which the εC1A and εC1B domains were replaced with the αC1A and αC1B domains, respectively, indicating the role of both αC1A and αC1B domains in curcumin's inhibitory effects. Phorbol 13-acetate inhibited the binding of curcumin to αC1A and αC1B with IC50 values of 6.27 and 4.47 μM, respectively. Molecular docking and molecular dynamics studies also supported the higher affinity of curcumin for αC1B than for αC1A. The C2 domain-swapped mutants were inactive in phorbol ester-induced membrane translocation. These results indicate that curcumin binds to the C1 domain of PKCα and highlight the importance of this domain in achieving PKC isoform selectivity.
Collapse
Affiliation(s)
- Satyabrata Pany
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston , Houston, Texas 77204, United States
| | - Youngki You
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston , Houston, Texas 77204, United States
| | - Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston , Houston, Texas 77204, United States
| |
Collapse
|