51
|
Shi X, Garry DJ. Sin3 interacts with Foxk1 and regulates myogenic progenitors. Mol Cell Biochem 2012; 366:251-8. [PMID: 22476904 DOI: 10.1007/s11010-012-1302-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/17/2012] [Indexed: 12/01/2022]
Abstract
We have previously reported Foxk1 as an important transcription factor in the myogenic progenitors. SWI-independent-3 (Sin3) has been identified as a Foxk1 binding candidate using a yeast two-hybrid screen. In the present study, we have identified the Foxk1 N-terminal (1-40) region as the Sin3 interacting domain (SID), and the PAH2 of Sin3 as the Foxk1 binding domain utilizing yeast two-hybrid and GST pull-down assays. Further studies revealed that knockdown of Sin3a or Sin3b results in cell cycle arrest and upregulation of cell cycle inhibitor genes. In summary, our present studies have shown that Foxk1 interacts with Sin3 through the SID and that Sin3 has an important role in the regulation of cell cycle kinetics of the MPC population. The results of these studies continue to define and assemble the networks that regulate the MPCs and muscle regeneration.
Collapse
Affiliation(s)
- Xiaozhong Shi
- Lillehei Heart Institute, University of Minnesota-Twin Cities, 4-108 NHH, 312 Church St SE, Minneapolis, MN 55455, USA
| | | |
Collapse
|
52
|
Ji P, Murata-Hori M, Lodish HF. Formation of mammalian erythrocytes: chromatin condensation and enucleation. Trends Cell Biol 2011; 21:409-15. [PMID: 21592797 DOI: 10.1016/j.tcb.2011.04.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 04/13/2011] [Accepted: 04/13/2011] [Indexed: 01/14/2023]
Abstract
In all vertebrates, the cell nucleus becomes highly condensed and transcriptionally inactive during the final stages of red cell biogenesis. Enucleation, the process by which the nucleus is extruded by budding off from the erythroblast, is unique to mammals. Enucleation has critical physiological and evolutionary significance in that it allows an elevation of hemoglobin levels in the blood and also gives red cells their flexible biconcave shape. Recent experiments reveal that enucleation involves multiple molecular and cellular pathways that include histone deacetylation, actin polymerization, cytokinesis, cell-matrix interactions, specific microRNAs and vesicle trafficking; many evolutionarily conserved proteins and genes have been recruited to participate in this uniquely mammalian process. In this review, we discuss recent advances in mammalian erythroblast chromatin condensation and enucleation, and conclude with our perspectives on future studies.
Collapse
Affiliation(s)
- Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | | | |
Collapse
|
53
|
Gan B, Lim C, Chu G, Hua S, Ding Z, Collins M, Hu J, Jiang S, Fletcher-Sananikone E, Zhuang L, Chang M, Zheng H, Wang YA, Kwiatkowski DJ, Kaelin WG, Signoretti S, DePinho RA. FoxOs enforce a progression checkpoint to constrain mTORC1-activated renal tumorigenesis. Cancer Cell 2010; 18:472-84. [PMID: 21075312 PMCID: PMC3023886 DOI: 10.1016/j.ccr.2010.10.019] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 07/30/2010] [Accepted: 09/16/2010] [Indexed: 01/07/2023]
Abstract
mTORC1 is a validated therapeutic target for renal cell carcinoma (RCC). Here, analysis of Tsc1-deficient (mTORC1 hyperactivation) mice uncovered a FoxO-dependent negative feedback circuit constraining mTORC1-mediated renal tumorigenesis. We document robust FoxO activation in Tsc1-deficient benign polycystic kidneys and FoxO extinction on progression to murine renal tumors; murine renal tumor progression on genetic deletion of both Tsc1 and FoxOs; and downregulated FoxO expression in most human renal clear cell and papillary carcinomas, yet continued expression in less aggressive RCCs and benign renal tumor subtypes. Mechanistically, integrated analyses revealed that FoxO-mediated block operates via suppression of Myc through upregulation of the Myc antagonists, Mxi1-SRα and mir-145, establishing a FoxO-Mxi1-SRα/mir-145 axis as a major progression block in renal tumor development.
Collapse
Affiliation(s)
- Boyi Gan
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School
- Department of Genetics, Harvard Medical School
| | - Carol Lim
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School
- Department of Genetics, Harvard Medical School
| | - Gerald Chu
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute
- Department of Medicine, Harvard Medical School
- Department of Genetics, Harvard Medical School
- Brigham and Women's Hospital, Department of Pathology, 75 Francis Street, Boston, MA, 02115, USA
| | - Sujun Hua
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School
- Department of Genetics, Harvard Medical School
| | - Zhihu Ding
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School
- Department of Genetics, Harvard Medical School
| | - Michael Collins
- Brigham and Women's Hospital, Department of Pathology, 75 Francis Street, Boston, MA, 02115, USA
| | - Jian Hu
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School
- Department of Genetics, Harvard Medical School
| | - Shan Jiang
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School
- Department of Genetics, Harvard Medical School
| | - Eliot Fletcher-Sananikone
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School
- Department of Genetics, Harvard Medical School
| | - Li Zhuang
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School
- Department of Genetics, Harvard Medical School
| | - Michelle Chang
- Brigham and Women's Hospital, Department of Pathology, 75 Francis Street, Boston, MA, 02115, USA
| | - Hongwu Zheng
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School
- Department of Genetics, Harvard Medical School
| | - Y. Alan Wang
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School
- Department of Genetics, Harvard Medical School
| | - David J. Kwiatkowski
- Division of Translational Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815, USA
| | - Sabina Signoretti
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115, USA
- Brigham and Women's Hospital, Department of Pathology, 75 Francis Street, Boston, MA, 02115, USA
| | - Ronald A DePinho
- Belfer Institute for Applied Cancer Science, Dana-Farber Cancer Institute
- Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA, 02115, USA
- Department of Medicine, Harvard Medical School
- Department of Genetics, Harvard Medical School
| |
Collapse
|
54
|
A novel mammalian complex containing Sin3B mitigates histone acetylation and RNA polymerase II progression within transcribed loci. Mol Cell Biol 2010; 31:54-62. [PMID: 21041482 DOI: 10.1128/mcb.00840-10] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription requires the progression of RNA polymerase II (RNAP II) through a permissive chromatin structure. Recent studies of Saccharomyces cerevisiae have demonstrated that the yeast Sin3 protein contributes to the restoration of the repressed chromatin structure at actively transcribed loci. Yet, the mechanisms underlying the restoration of the repressive chromatin structure at transcribed loci and its significance in gene expression have not been investigated in mammals. We report here the identification of a mammalian complex containing the corepressor Sin3B, the histone deacetylase HDAC1, Mrg15, and the PHD finger-containing Pf1 and show that this complex plays important roles in regulation of transcription. We demonstrate that this complex localizes at discrete loci approximately 1 kb downstream of the transcription start site of transcribed genes, and this localization requires both Pf1's and Mrg15's interaction with chromatin. Inactivation of this mammalian complex promotes increased RNAP II progression within transcribed regions and subsequent increased transcription. Our results define a novel mammalian complex that contributes to the regulation of transcription and point to divergent uses of the Sin3 protein homologues throughout evolution in the modulation of transcription.
Collapse
|
55
|
The Sin3p PAH domains provide separate functions repressing meiotic gene transcription in Saccharomyces cerevisiae. EUKARYOTIC CELL 2010; 9:1835-44. [PMID: 20971827 DOI: 10.1128/ec.00143-10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Meiotic genes in budding yeast are repressed during vegetative growth but are transiently induced during specific stages of meiosis. Sin3p represses the early meiotic gene (EMG) by bridging the DNA binding protein Ume6p to the histone deacetylase Rpd3p. Sin3p contains four paired amphipathic helix (PAH) domains, one of which (PAH3) is required for repressing several genes expressed during mitotic cell division. This report examines the roles of the PAH domains in mediating EMG repression during mitotic cell division and following meiotic induction. PAH2 and PAH3 are required for mitotic EMG repression, while electrophoretic mobility shift assays indicate that only PAH2 is required for stable Ume6p-promoter interaction. Unlike mitotic repression, reestablishing EMG repression following transient meiotic induction requires PAH3 and PAH4. In addition, the role of Sin3p in reestablishing repression is expanded to include additional loci that it does not control during vegetative growth. These findings indicate that mitotic and postinduction EMG repressions are mediated by two separate systems that utilize different Sin3p domains.
Collapse
|
56
|
The mammalian Sin3 proteins are required for muscle development and sarcomere specification. Mol Cell Biol 2010; 30:5686-97. [PMID: 20956564 DOI: 10.1128/mcb.00975-10] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The highly related mammalian Sin3A and Sin3B proteins provide a versatile platform for chromatin-modifying activities. Sin3-containing complexes play a role in gene repression through deacetylation of nucleosomes. Here, we explore a role for Sin3 in myogenesis by examining the phenotypes resulting from acute somatic deletion of both isoforms in vivo and from primary myotubes in vitro. Myotubes ablated for Sin3A alone, but not Sin3B, displayed gross defects in sarcomere structure that were considerably enhanced upon simultaneous ablation of both isoforms. Massively parallel sequencing of Sin3A- and Sin3B-bound genomic loci revealed a subset of target genes directly involved in sarcomere function that are positively regulated by Sin3A and Sin3B proteins. Both proteins were coordinately recruited to a substantial number of genes. Interestingly, depletion of Sin3B led to compensatory increases in Sin3A recruitment at certain target loci, but Sin3B was never found to compensate for Sin3A loss. Thus, our analyses describe a novel transcriptional role for Sin3A and Sin3B proteins associated with maintenance of differentiated muscle cells.
Collapse
|
57
|
Interference with Sin3 function induces epigenetic reprogramming and differentiation in breast cancer cells. Proc Natl Acad Sci U S A 2010; 107:11811-6. [PMID: 20547842 DOI: 10.1073/pnas.1006737107] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Sin3A/B is a master transcriptional scaffold and corepressor that plays an essential role in the regulation of gene transcription and maintenance of chromatin structure, and its inappropriate recruitment has been associated with aberrant gene silencing in cancer. Sin3A/B are highly related, large, multidomian proteins that interact with a wide variety of transcription factors and corepressor components, and we examined whether disruption of the function of a specific domain could lead to epigenetic reprogramming and derepression of specific subsets of genes. To this end, we selected the Sin3A/B-paired amphipathic alpha-helices (PAH2) domain based on its established role in mediating the effects of a relatively small number of transcription factors containing a PAH2-binding motif known as the Sin3 interaction domain (SID). Here, we show that in both human and mouse breast cancer cells, the targeted disruption of Sin3 function by introduction of a SID decoy that interferes with PAH2 binding to SID-containing partner proteins reverted the silencing of genes involved in cell growth and differentiation. In particular, the SID decoy led to epigenetic reprogramming and reexpression of the important breast cancer-associated silenced genes encoding E-cadherin, estrogen receptor alpha, and retinoic acid receptor beta and impaired tumor growth in vivo. Interestingly, the SID decoy was effective in the triple-negative M.D. Anderson-Metastatic Breast-231 (MDA-MB-231) breast cancer cell line, restoring sensitivity to 17beta-estradiol, tamoxifen, and retinoids. Therefore, the development of small molecules that can block interactions between PAH2 and SID-containing proteins offers a targeted epigenetic approach for treating this type of breast cancer that may also have wider therapeutic implications.
Collapse
|
58
|
Gore Y, Lantner F, Hart G, Shachar I. Mad3 negatively regulates B cell differentiation in the spleen by inducing Id2 expression. Mol Biol Cell 2010; 21:1864-71. [PMID: 20375148 PMCID: PMC2877644 DOI: 10.1091/mbc.e09-09-0813] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Immature B cells migrate to the spleen where they differentiate into mature cells. This final maturation step is crucial to enable B cells to become responsive to antigens and to participate in the immune response. Previously, we showed that Id2 acts as a negative regulator of the differentiation of immature B cells occurring in the spleen. Id2 expression has been found to depend on Myc-Max-Mad transcriptional complexes in mammary epithelial cells. Nearly all studies to date have shown that Mad proteins inhibit proliferation, presumably by antagonizing the function of Myc proteins. In the current study, we followed the Mad family members during peripheral B cell differentiation. We show that Mad3 actively regulates B cell differentiation. Our results demonstrate that high expression levels of Mad3 in immature B cells induce Id2 expression, which inhibits transcription of genes essential for B cell differentiation. During their differentiation to mature cells, B cells reduce their Mad3 expression, enabling the maturation process to occur.
Collapse
Affiliation(s)
- Yael Gore
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | |
Collapse
|
59
|
Abstract
MYC regulates the transcription of thousands of genes required to coordinate a range of cellular processes, including those essential for proliferation, growth, differentiation, apoptosis and self-renewal. Recently, MYC has also been shown to serve as a direct regulator of ribosome biogenesis. MYC coordinates protein synthesis through the transcriptional control of RNA and protein components of ribosomes, and of gene products required for the processing of ribosomal RNA, the nuclear export of ribosomal subunits and the initiation of mRNA translation. We discuss how the modulation of ribosome biogenesis by MYC may be essential to its physiological functions as well as its pathological role in tumorigenesis.
Collapse
Affiliation(s)
- Jan van Riggelen
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | |
Collapse
|
60
|
Streamlined analysis schema for high-throughput identification of endogenous protein complexes. Proc Natl Acad Sci U S A 2010; 107:2431-6. [PMID: 20133760 DOI: 10.1073/pnas.0912599106] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Immunoprecipitation followed by mass spectrometry (IP/MS) has recently emerged as a preferred method in the analysis of protein complex components and cellular protein networks. Targeting endogenous protein complexes of higher eukaryotes, particularly in large-scale efforts, has been challenging due to cellular heterogeneity, high proteome complexity, and, compared to lower organisms, lack of efficient in-locus epitope-tagging techniques. It is further complicated by variability in nonspecific identifications and cross-reactivity of primary antibodies. Still, the study of endogenous human protein networks is highly desired despite its challenges. Here we describe a streamlined IP/MS protocol for the purification and identification of extended endogenous protein complexes. We investigate the sources of nonspecific protein binding and develop semiquantitative specificity filters that are based on peptide spectral count measurements. We also outline logical constraints for the derivation of accurate complex composition from IP/MS data and demonstrate the effectiveness of this approach by presenting our analyses of different transcriptional coregulator complexes. We show consistent purification of novel components for the Integrator complex, analyze the composition of the Mediator complex solely from our data to demonstrate the wide usability of spectral counts, and deconvolute heterogeneous HDAC1/2 networks into core complex modules and several novel subcomplex interactions.
Collapse
|
61
|
Generating specificity and diversity in the transcriptional response to hypoxia. Nat Rev Genet 2009; 10:821-32. [PMID: 19884889 DOI: 10.1038/nrg2665] [Citation(s) in RCA: 271] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The sensing of oxygen levels and maintenance of oxygen homeostasis is crucial for cells. The hypoxic-sensitive regulation of gene expression allows information about the oxygen status to be converted into appropriate cellular responses. Although there is a core transcriptional pathway, the signalling cascade can be modified to allow diversity and specificity in the transcriptional output. In this Review, we discuss recent advances in our understanding of the mechanisms and factors that contribute to the observed diversity and specificity. A deeper knowledge about how hypoxic signalling is tuned will further our understanding of the cellular hypoxic response in normal physiology and how it becomes derailed in disease.
Collapse
|
62
|
Abstract
Myc is the most frequently deregulated oncogene in human tumors. The protein belongs to the Myc/Max/Mxd network of transcriptional regulators important for cell growth, proliferation, differentiation, and apoptosis. The ratio between Mnt/Max and c-Myc/Max on the 5'-CACGTG-3' E-box sequence at shared target genes is of great importance for cell cycle progression and arrest. Serum stimulation of quiescent cells results in phosphorylation of Mnt and disruption of the critical Mnt-mSin3-HDAC1 interaction. This in turn leads to increased expression of the Myc/Mnt target gene cyclin D2. It is therefore possible that Myc function relies on its ability to overcome transcriptional repression by Mnt and that relief of Mnt-mediated transcriptional repression is of greater importance for regulation of target genes than the sole activation by Myc. In addition, Mnt has many features of a tumor suppressor and may thus be nonfunctional or inactivated in human tumors. In summary, accumulating evidence supports the model of Mnt as the key regulator of the network in vivo.
Collapse
Affiliation(s)
- Therese Wahlström
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | |
Collapse
|
63
|
Farhana L, Dawson MI, Dannenberg JH, Xu L, Fontana JA. SHP and Sin3A expression are essential for adamantyl-substituted retinoid-related molecule-mediated nuclear factor-kappaB activation, c-Fos/c-Jun expression, and cellular apoptosis. Mol Cancer Ther 2009; 8:1625-35. [PMID: 19509248 DOI: 10.1158/1535-7163.mct-08-0964] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We previously found that the adamantyl-substituted retinoid-related molecules bind to the small heterodimer partner (SHP) as well as the Sin3A complex. In this report, we delineated the role of SHP and the Sin3A complex in 4-[3'-(1-adamantyl)-4'-hydroxyphenyl]-3-chlorocinnamic acid (3-Cl-AHPC)-mediated inhibition of cell growth and apoptosis. We examined the effect of loss of SHP and Sin3A expression in a number of cell types on 3-Cl-AHPC-mediated growth inhibition and apoptosis induction, 3-Cl-AHPC-mediated nuclear factor-kappaB (NF-kappaB) activation, and 3-Cl-AHPC-mediated increase in c-Fos and c-Jun expression. We found that loss of SHP or Sin3A expression, while blocking 3-Cl-AHPC-mediated apoptosis, had little effect on 3-Cl-AHPC inhibition of cellular proliferation. We have previously shown that 3-Cl-AHPC-mediated NF-kappaB activation is necessary for apoptosis induction. We have now shown that 3-Cl-AHPC-enhanced c-Fos and c-Jun expression is also essential for maximal 3-Cl-AHPC-mediated apoptosis. 3-Cl-AHPC induction of c-Fos and c-Jun expression as well as NF-kappaB activation was dependent on SHP protein levels. In turn, SHP levels are regulated by Sin3A because ablation of Sin3A resulted in a decrease in SHP expression. Thus, SHP and Sin3A play an important role in adamantyl-substituted retinoid-related induction of cellular apoptosis.
Collapse
Affiliation(s)
- Lulu Farhana
- John D. Dingell VA Medical Center, Oncology 11M-HO, 4646 John R. Street, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
64
|
van Oevelen C, Wang J, Asp P, Yan Q, Kaelin WG, Kluger Y, Dynlacht BD. A role for mammalian Sin3 in permanent gene silencing. Mol Cell 2008; 32:359-70. [PMID: 18995834 DOI: 10.1016/j.molcel.2008.10.015] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 08/19/2008] [Accepted: 10/17/2008] [Indexed: 12/29/2022]
Abstract
The multisubunit Sin3 corepressor complex regulates gene transcription through deacetylation of nucleosomes. However, the full range of Sin3 activities and targets is not well understood. Here, we have investigated genome-wide binding of mouse Sin3 and RBP2 as well as histone modifications and nucleosome positioning as a function of myogenic differentiation. Remarkably, we find that Sin3 complexes spread immediately downstream of the transcription start site on repressed and transcribed genes during differentiation. We show that RBP2 is part of a Sin3 complex and that on a subset of E2F4 target genes, the coordinated activity of Sin3 and RBP2 leads to deacetylation, demethylation, and repositioning of nucleosomes. Our work provides evidence for coordinated binding of Sin3, chromatin modifications, and chromatin remodeling within discrete regulatory regions, suggesting a model in which spreading of Sin3 binding is ultimately linked to permanent gene silencing on a subset of E2F4 target genes.
Collapse
Affiliation(s)
- Chris van Oevelen
- New York University School of Medicine, NYU Cancer Institute, 522 1st Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Affiliation(s)
- Waihay J Wong
- School of Medicine, and Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | |
Collapse
|
66
|
Dhanda RS, Lindberg SR, Olsson I. The human SIN3B corepressor forms a nucleolar complex with leukemia-associated ETO homologues. BMC Mol Biol 2008; 9:8. [PMID: 18205948 PMCID: PMC2266940 DOI: 10.1186/1471-2199-9-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2007] [Accepted: 01/19/2008] [Indexed: 12/05/2022] Open
Abstract
Background SIN3 (SWI-Independent) is part of a transcriptional deacetylase complex, which generally mediates the formation of repressive chromatin. The purpose of this work was to study possible interactions between corepressors human SIN3B (hSIN3B) and the ETO homologues – ETO (eight twenty-one), MTG16 (myeloid-transforming gene 16) and MTGR1 (MTG-related protein 1). In addition, the subnuclear localization of the hSIN3B and the ETO homologues was also examined. Results A ubiquitous expression of hSIN3B was observed in adult and fetal tissues. Results with both ectopically expressed proteins in COS-7 cells and endogeneous proteins in the K562 human erytholeukemia cell line demonstrated interactions between hSIN3B and ETO or MTG16 but not MTGR1. Furthermore, nuclear extract of primary placental cells showed complexes between hSIN3B and ETO. The interaction between hSIN3B and ETO required an intact amino-terminus of ETO and the NHR2 domain. A nucleolar localization of hSIN3B and all the ETO homologues was demonstrated upon overexpression in COS-7 cells, and confirmed for the endogeneously expressed proteins in K562 cells. However, hSIN3B did not colocalize or interact with the leukemia-associated AML1 -ETO. Conclusion Our data from protein-protein interactions and immunolocalization experiments support that hSIN3B is a potential member of a corepressor complex involving selective ETO homologues.
Collapse
|
67
|
|
68
|
Dugast-Darzacq C, Grange T, Schreiber-Agus NB. Differential effects of Mxi1-SRalpha and Mxi1-SRbeta in Myc antagonism. FEBS J 2007; 274:4643-53. [PMID: 17697116 DOI: 10.1111/j.1742-4658.2007.05992.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mxi1 belongs to the Myc-Max-Mad transcription factor network. Two Mxi1 protein isoforms, Mxi1-SRalpha and Mxi1-SRbeta, have been described as sharing many biological properties. Here, we assign differential functions to these isoforms with respect to two distinct levels of Myc antagonism. Unlike Mxi1-SRbeta, Mxi1-SRalpha is not a potent suppressor of the cellular transformation activity of Myc. Furthermore, although Mxi1-SRbeta exhibits a repressive effect on the MYC promoter in transient expression assays, Mxi1-SRalpha activates this promoter. A specific domain of Mxi1-SRalpha contributes to these differences. Moreover, glyceraldehyde-3-phosphate dehydrogenase interacts with Mxi1-SRalpha and enhances its ability to activate the Myc promoter. Our findings suggest that Mxi1 gains functional complexity by encoding isoforms with shared and distinct activities.
Collapse
Affiliation(s)
- Claire Dugast-Darzacq
- Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | | | |
Collapse
|
69
|
Abstract
O(2) deprivation (hypoxia) and cellular proliferation engage opposite cellular pathways, yet often coexist during tumor growth. The ability of cells to grow during hypoxia results in part from crosstalk between hypoxia-inducible factors (HIFs) and the proto-oncogene c-Myc. Acting alone, HIF and c-Myc partially regulate complex adaptations undertaken by tumor cells growing in low O(2). However, acting in concert these transcription factors reprogram metabolism, protein synthesis, and cell cycle progression, to "fine tune" adaptive responses to hypoxic environments.
Collapse
Affiliation(s)
- John D. Gordan
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - Craig B. Thompson
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA
| | - M. Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, 421 Curie Blvd., Philadelphia, PA 19104, USA
- Howard Hughes Medical Institute, 421 Curie Blvd., Philadelphia, PA 19104, USA
- Corresponding author: M. Celeste Simon, Ph.D., 451 BRB II/III, 421 Curie Blvd., Philadelphia, PA 19104, Phone: (215) 746-5532, Fax: (215) 746-5511,
| |
Collapse
|
70
|
Dong X, Sweet J, Challis JRG, Brown T, Lye SJ. Transcriptional activity of androgen receptor is modulated by two RNA splicing factors, PSF and p54nrb. Mol Cell Biol 2007; 27:4863-75. [PMID: 17452459 PMCID: PMC1951499 DOI: 10.1128/mcb.02144-06] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 01/16/2007] [Accepted: 04/11/2007] [Indexed: 11/20/2022] Open
Abstract
Nuclear receptors regulate gene activation or repression through dynamic interactions with coregulators. The interactions between nuclear receptors and RNA splicing factors link gene transcription initiation with pre-mRNA splicing, providing a coordinated control of the products of gene transcription. Here we report that two RNA splicing factors, PTB-associated splicing factor (PSF) and p54nrb, synergistically form protein complexes with the androgen receptor (AR) in a ligand-independent manner and inhibit its transcriptional activity. PSF does not affect AR protein stability, as in the case of the progesterone receptor, but impedes the interaction of AR with the androgen response element. Both splicing factors interact directly with mSin3A and attract mSin3A to the AR complex in a synergistic manner. The suppression of AR transcriptional activity by PSF and p54nrb is reversed by the inhibition of histone deacetylase activity. These data demonstrated that PSF and p54nrb complex with AR and play a key role in modulating AR-mediated gene transcription.
Collapse
Affiliation(s)
- Xuesen Dong
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, 600 University Avenue, Toronto, Canada
| | | | | | | | | |
Collapse
|
71
|
Abstract
Myc, a transcription factor commonly deregulated in tumorigenesis, is thought to mediate its diverse cellular effects by altering the expression of specific target genes. However, it has been difficult to gain a precise understanding of how Myc drives cancer because Myc acts rather weakly at many of its target loci, and it has been reported to regulate as many as 10% to 15% of all cellular genes. A new perspective on this issue has been provided by a recent study that revealed Myc can regulate chromatin structure in a global fashion. These findings suggest actions for Myc that extend beyond the traditional concept of a targeted gene regulator.
Collapse
Affiliation(s)
- Paul S Knoepfler
- Department of Cell Biology and Human Anatomy, Institute of Pediatric Regenerative Medicine, Shriners Hospital for Children Northern California, University of California Davis School of Medicine, Davis, California 95616, USA.
| |
Collapse
|
72
|
Faiola F, Wu YT, Pan S, Zhang K, Farina A, Martinez E. Max is acetylated by p300 at several nuclear localization residues. Biochem J 2007; 403:397-407. [PMID: 17217336 PMCID: PMC1876387 DOI: 10.1042/bj20061593] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Max is a ubiquitous transcription factor with a bHLHZip [basic HLH (helix-loop-helix) leucine zipper] DNA-binding/dimerization domain and the central component of the Myc/Max/Mad transcription factor network that controls cell growth, proliferation, differentiation and apoptotic cell death in metazoans. Max is the obligatory DNA-binding and dimerization partner for all the bHLHZip regulators of the Myc/Max/Mad network, including the Myc family of oncoproteins and the Mad family of Myc antagonists, which recognize E-box DNA elements in the regulatory regions of target genes. Max lacks a transcription regulatory domain and is the only member of the network that efficiently homodimerizes. Binding of Max homodimers to E-box elements suppresses the transcription regulatory functions of its network partners and of other non-network E-box-binding regulators. In contrast with its highly regulated partners, Max is a constitutively expressed and phosphorylated protein. Phosphorylation is, however, the only Max post-translational modification identified so far. In the present study, we have analysed Max posttranslational modifications by MS. We have found that Max is acetylated at several lysine residues (Lys-57, Lys-144 and Lys-145) in mammalian cells. Max acetylation is stimulated by inhibitors of histone deacetylases and by overexpression of the p300 co-activator/HAT (histone acetyltransferase). The p300 HAT also directly acetylates Max in vitro at these three residues. Interestingly, the three Max residues acetylated in vivo and in vitro by p300 are important for Max nuclear localization and Max-mediated suppression of Myc transactivation. These results uncover novel post-translational modifications of Max and suggest the potential regulation of specific Max complexes by p300 and reversible acetylation.
Collapse
Affiliation(s)
- Francesco Faiola
- *Department of Biochemistry, University of California Riverside, Riverside, CA 92521, U.S.A
| | - Yi-Ting Wu
- *Department of Biochemistry, University of California Riverside, Riverside, CA 92521, U.S.A
| | - Songqin Pan
- †W.M. Keck Proteomics Laboratory, Center for Plant Cell Biology, University of California Riverside, Riverside, CA 92521, U.S.A
| | - Kangling Zhang
- ‡Department of Chemistry, University of California Riverside, Riverside, CA 92521, U.S.A
| | - Anthony Farina
- *Department of Biochemistry, University of California Riverside, Riverside, CA 92521, U.S.A
| | - Ernest Martinez
- *Department of Biochemistry, University of California Riverside, Riverside, CA 92521, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
73
|
Delpuech O, Griffiths B, East P, Essafi A, Lam EWF, Burgering B, Downward J, Schulze A. Induction of Mxi1-SR alpha by FOXO3a contributes to repression of Myc-dependent gene expression. Mol Cell Biol 2007; 27:4917-30. [PMID: 17452451 PMCID: PMC1951505 DOI: 10.1128/mcb.01789-06] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Forkhead transcription factors of the O class (FOXOs) are important targets of the phosphatidylinositol 3-kinase (PI3-kinase)/Akt pathway. FOXOs have been implicated in the regulation of cell cycle progression, oxidative stress resistance, and apoptosis. Using DNA microarrays, we analyzed the transcriptional response to FOXO3a activation by gene expression analysis in DLD-1 colon cancer cells stably expressing a FOXO3a.A3-ER fusion protein. We found that activation of FOXO3a resulted in repression of a number of previously identified Myc target genes. Furthermore, FOXO3a activation induced expression of several members of the Mad/Mxd family of transcriptional repressors, most notably Mxi1. The induction of Mxi1 by FOXO3a was specific to the Mxi1-SR alpha isoform and was mediated by three highly conserved FOXO binding sites within the first intron of the gene. Activation of FOXO3a in response to inhibition of Akt also resulted in activation of Mxi1-SR alpha expression. Silencing of Mxi1 by small interfering RNA (siRNA) reduced FOXO3a-mediated repression of a number of Myc target genes. We also observed that FOXO3a activation induced a switch in promoter occupancy from Myc to Mxi1 on the E-box containing promoter regions of two Myc target genes, APEX and FOXM1. siRNA-mediated transient silencing of Mxi1 or all Mad/Mxd proteins reduced exit from S phase in response to FOXO3a activation, and stable silencing of Mxi1 or Mad1 reduced the growth inhibitory effect of FOXO3a. We conclude that induction of Mad/Mxd proteins contributes to the inhibition of proliferation in response to FOXO3a activation. Our results provide evidence of direct regulation of Mxi1 by FOXO3a and imply an additional mechanism through which the PI3-kinase/Akt/FOXO pathway can modulate Myc function.
Collapse
Affiliation(s)
- Oona Delpuech
- Gene Expression Analysis Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
74
|
Chang DF, Belaguli NS, Chang J, Schwartz RJ. LIM-only protein, CRP2, switched on smooth muscle gene activity in adult cardiac myocytes. Proc Natl Acad Sci U S A 2006; 104:157-62. [PMID: 17185421 PMCID: PMC1765427 DOI: 10.1073/pnas.0605635103] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Smooth muscle alpha-actin gene activity appears in promyocardial cells well before cardiac myocyte differentiation and is down-regulated during the onset of rhythmic contractility and cardiac morphogenesis. The levels of LIM-only CRP2 correlated well with smooth muscle gene activity. Cardiomyocyte-specific expression of CRP2 in transgenic mice showed robust expression of smooth muscle cell-specific transcripts and protein filaments in the adult heart. Protein transduction of a recombinant CRP2 protein, fused to the protein transduction domain of HIV, into neonatal heart cells induced de novo synthesis of smooth muscle cell-specific transcripts and proteins. The LIM zinc fingers in CRP2 were found to collaborate with Brg1 of the SNF/SWI complexes, recruited serum response factor, and remodeled smooth muscle target gene chromatin through histone acetylation. CRP2 may have a cytoskeletal role, but as a nuclear protein, CRP2 acted as a potent transcription coadaptor that remodeled silent cardiac myocyte chromatin and directed serum response factor-dependent smooth muscle gene activity.
Collapse
Affiliation(s)
- David F. Chang
- *Center for Cardiovascular Development and
- Departments of Medicine and
| | | | - Jiang Chang
- Center for Molecular Development and Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030
| | - Robert J. Schwartz
- Center for Molecular Development and Diseases, Institute of Biosciences and Technology, Texas A&M University, Houston, TX 77030
- To whom correspondence should be addressed at:
Institute of Biosciences and Technology, Center for Molecular Development and Diseases, Texas A&M University, 2121 Holcombe Boulevard, Houston, Texas 77030-3303. E-mail:
| |
Collapse
|
75
|
Orian A, Grewal SS, Knoepfler PS, Edgar BA, Parkhurst SM, Eisenman RN. Genomic binding and transcriptional regulation by the Drosophila Myc and Mnt transcription factors. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2006; 70:299-307. [PMID: 16869766 DOI: 10.1101/sqb.2005.70.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Deregulated expression of members of the myc oncogene family has been linked to the genesis of a wide range of cancers, whereas their normal expression is associated with growth, proliferation, differentiation, and apoptosis. Myc proteins are transcription factors that function within a network of transcriptional activators (Myc) and repressors (Mxd/Mad and Mnt), all of which heterodimerize with the bHLHZ protein Mad and bind E-box sequences in DNA. These transcription factors recruit coactivator or corepressor complexes that in turn modify histones. Myc, Mxd/Max, and Mnt proteins have been thought to act on a specific subset of genes. However, expression array studies and, most recently, genomic binding studies suggest that these proteins exhibit widespread binding across the genome. Here we demonstrate by immunostaining of Drosophila polytene chromosome that Drosophila Myc (dMyc) is associated with multiple euchromatic chromosomal regions. Furthermore, many dMyc-binding regions overlap with regions containing active RNA polymerase II, although dMyc can also be found in regions lacking active polymerase. We also demonstrate that the pattern of dMyc expression in nuclei overlaps with histone markers of active chromatin but not pericentric heterochromatin. dMyc binding is not detected on the X chromosome rDNA cluster (bobbed locus). This is consistent with recent evidence that in Drosophila cells dMyc regulates rRNA transcription indirectly, in contrast to mammalian cells where direct binding of c-Myc to rDNA has been observed. We further show that the dMyc antagonist dMnt inhibits rRNA transcription in the wing disc. Our results support the view that the Myc/Max/Mad network influences transcription on a global scale.
Collapse
Affiliation(s)
- A Orian
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | | | | | | | |
Collapse
|
76
|
Le Guezennec X, Vermeulen M, Stunnenberg HG. Molecular characterization of Sin3 PAH-domain interactor specificity and identification of PAH partners. Nucleic Acids Res 2006; 34:3929-37. [PMID: 16914451 PMCID: PMC1557813 DOI: 10.1093/nar/gkl537] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sin3 is the central component of a multisubunit co-repressor complex. A number of DNA-binding proteins are targeted by the Sin3 complex to chromatin through association with its paired amphipathic helix (PAH) domains. Here, we performed a yeast two-hybrid screening using a peptide aptamer library and identified peptides that interact with either PAH1 or PAH2. Analysis of PAH2 interacting peptides uncovered motifs similar to previously characterized PAH2 interacting proteins, Mad, Ume6 and kruppel-like members, while analysis of PAH1 interacting peptides revealed an LXXLL motif. In addition, a tandem affinity purification (TAP)-tagging approach of Sin3b resulted in the isolation of known and novel interactors amongst which neural retina leucine (NRL) zipper. Strikingly, one of the identified PAH2 interacting peptide showed strong resemblance to the NRL region amino acids 125–150. Direct association between PAH2 and NRL was shown and NRL(125–150) mediated transcriptional repression in reporter assays. Finally, we reveal that PAH1 and PAH2 amino acids 7, 14 and 39 shown previously to be important for Mad–PAH2 interaction, also play an important role in the specificity of interaction between PAH1, PAH2 and identified aptamers. Our results provide novel insights into the molecular determinant of the specificity of PAH1 and PAH2 for their interacting partners.
Collapse
|
77
|
Abstract
The small bHLHZip protein MAX functions at the center of a transcription factor network that governs many aspects of cell behavior, including cell proliferation and tumorigenesis. MAX serves as a cofactor for DNA binding by the various members of this network, which include the MYC family of oncoproteins and a group of putative MYC antagonists that include MNT, MXD1-4 (formerly MAD1, MXI1, MAD3 and MAD4) and MGA. The many heterodimerization partners of MAX raises questions concerning the dynamics of MAX interactions and the functional consequences of the switching of Max partners. Here we review the activities of MAX, its interaction partners, and recent results showing that tissues lacking the MAX-interacting protein MNT are predisposed to tumor formation.
Collapse
Affiliation(s)
- Peter J Hurlin
- Shriners Hospitals for Children and Department of Cell and Developmental Biology, Oregon Health & Science University, Portland, OR 97201, USA.
| | | |
Collapse
|
78
|
Abstract
The Myc proto-oncogenes, their binding partner Max and their antagonists from the Mad family of transcriptional repressors have been extensively analysed in vertebrates. However, members of this network are found in all animals examined so far. Several recent studies have addressed the physiological function of these proteins in invertebrate model organisms, in particular Drosophila melanogaster. This review describes the structure of invertebrate Myc/Max/Mad genes and it discusses their regulation and physiological functions, with special emphasis on their essential role in the control of cellular growth and proliferation.
Collapse
Affiliation(s)
- P Gallant
- Universität Zürich, Zoologisches Institut, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| |
Collapse
|
79
|
Nair SK, Burley SK. Structural aspects of interactions within the Myc/Max/Mad network. Curr Top Microbiol Immunol 2006; 302:123-43. [PMID: 16620027 DOI: 10.1007/3-540-32952-8_5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Recently determined structures of a number of Myc family proteins have provided significant insights into the molecular nature of complex assembly and DNA binding. These structures illuminate the details of specific interactions that govern the assembly of nucleoprotein complexes and, in doing so, raise more questions regarding Myc biology. In this review, we focus on the lessons provided by these structures toward understanding (1) interactions that govern transcriptional repression by Mad via the Sin3 pathway, (2) homodimerization of Max, (3) heterodimerization of Myc-Max and Mad-Max, and (4) DNA recognition by each of the Max-Max, Myc-Max, and Mad-Max dimers.
Collapse
Affiliation(s)
- S K Nair
- Department of Biochemistry and Center for Biophysics & Computational Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA.
| | | |
Collapse
|
80
|
Rottmann S, Lüscher B. The Mad side of the Max network: antagonizing the function of Myc and more. Curr Top Microbiol Immunol 2006; 302:63-122. [PMID: 16620026 DOI: 10.1007/3-540-32952-8_4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A significant body of evidence has been accumulated that demonstrates decisive roles of members of the Myc/Max/Mad network in the control of various aspects of cell behavior, including proliferation, differentiation, and apoptosis. The components of this network serve as transcriptional regulators. Mad family members, including Mad1, Mxi1, Mad3, Mad4, Mnt, and Mga, function in part as antagonists of Myc oncoproteins. At the molecular level this antagonism is reflected by the different cofactor/chromatin remodeling complexes that are recruited by Myc and Mad family members. One important function of the latter is their ability to repress gene transcription. In this review we summarize the current view of how this repression is achieved and what the consequences of Mad action are for cell behavior. In addition, we point out some of the many aspects that have not been clarified and thus leave us with a rather incomplete picture of the functions, both molecular and at the cellular level, of Mad family members.
Collapse
Affiliation(s)
- S Rottmann
- Abteilung Biochemie und Molekularbiologie, Institut für Biochemie, Klinikum der RWTH, Pauwelsstrasse 30, 52074 Aachen, Germany
| | | |
Collapse
|
81
|
Abstract
The c-Myc oncogenic transcription factor plays a central role in many human cancers through the regulation of gene expression. Although the molecular mechanisms by which c-Myc and its obligate partner, Max, regulate gene expression are becoming better defined, genes or transcriptomes that c-Myc regulate are just emerging from a variety of different experimental approaches. Studies of individual c-Myc target genes and their functional implications are now complemented by large surveys of c-Myc target genes through the use of subtraction cloning, DNA microarray analysis, serial analysis of gene expression (SAGE), chromatin immunoprecipitation, and genome marking methods. To fully appreciate the differences between physiological c-Myc function in normal cells and deregulated c-Myc function in tumors, the challenge now is to determine how the authenticated transcriptomes effect the various phenotypes induced by c-Myc and to define how c-Myc transcriptomes are altered by the Mad family of proteins.
Collapse
Affiliation(s)
- L A Lee
- Department of Medicine, The Johns Hopkins University School of Medicine, Ross 1032, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| | | |
Collapse
|
82
|
Zhang Y, Zhang Z, Demeler B, Radhakrishnan I. Coupled unfolding and dimerization by the PAH2 domain of the mammalian Sin3A corepressor. J Mol Biol 2006; 360:7-14. [PMID: 16813833 DOI: 10.1016/j.jmb.2006.04.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 04/28/2006] [Accepted: 04/28/2006] [Indexed: 11/30/2022]
Abstract
Coregulator recruitment by sequence-specific DNA binding transcription factors constitutes an important step in many eukaryotic transcription regulatory pathways. The Sin3 corepressor is an evolutionarily conserved protein and a key component of a large histone deacetylase-associated corepressor complex. The Sin3 corepressor contains four imperfect repeats of a domain called PAH (paired amphipathic helix) that serve as docking sites for a variety of sequence-specific DNA binding factors and coregulators. At least two closely related Sin3 proteins designated Sin3A and Sin3B have been described in higher organisms and although functional differences between these paralogs are only beginning to be appreciated, differences at the structural level are poorly understood. Here we analyze the conformational properties of the apo form of the mammalian Sin3A (mSin3A) PAH2 domain. At low micromolar concentrations, the domain is predominantly monomeric and folded in a conformation similar to those found in complexes with the Mad1 and HBP1 repressors. Unexpectedly, at higher concentrations, the domain dimerizes with concomitant population of a partially unfolded conformer. These findings are in contrast to those reported for the mSin3B PAH2 domain and may have implications for the manner in which these paralogous domains interact with their targets.
Collapse
Affiliation(s)
- Yongbo Zhang
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | | | |
Collapse
|
83
|
Abstract
Deregulation of Myc expression is a common feature in cancer and leads to tumor formation in experimental model systems. There are several potential barriers that Myc must overcome in order to promote tumorigenesis, including its propensity to sensitize many cell types to apoptotic cell death. Myc activities appear also to be constrained and fine-tuned by a set of proteins that include the Mxd (formerly named Mad) family and the related protein Mnt. Like Myc-family proteins, Mxd and Mnt proteins use Max as a cofactor for DNA binding. But Mnt-Max and Mxd-Max complexes are transcriptional repressors and can antagonize the transcriptional activation function of Myc-Max. Studies examining the relationship between Myc, Mxd and Mnt proteins suggest that whereas Mnt plays a general role as a Myc antagonist, Mxd proteins have more specialized roles as Myc antagonist that is probably related to their more restricted expression patterns. The interplay between these proteins is postulated to fine-tune Myc activity for cell-cycle entry and exit, proliferation rate and apoptosis.
Collapse
Affiliation(s)
- C William Hooker
- Shriners Hospitals for Children and Department of Cell and Developmental Biology, Oregon Health and Science University, 3101 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | | |
Collapse
|
84
|
Klisch TJ, Souopgui J, Juergens K, Rust B, Pieler T, Henningfeld KA. Mxi1 is essential for neurogenesis in Xenopus and acts by bridging the pan-neural and proneural genes. Dev Biol 2006; 292:470-85. [PMID: 16457797 DOI: 10.1016/j.ydbio.2005.12.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 12/14/2005] [Accepted: 12/16/2005] [Indexed: 12/25/2022]
Abstract
We have isolated and characterized Xenopus Mxi1, a member of the Myc/Max/Mad family of bHLHZip transcription factors. Xmxi1 transcripts are present during gastrulation and early neurula stages, earlier and in broader domains as compared to the neuronal determination factor neurogenin (X-ngnr-1). Consistent with an early role in neurogenesis, Xmxi1 is positively regulated by Sox3, SoxD, and proneural genes, as well as negatively by the Notch pathway. Loss-of-function experiments demonstrate an essential role for Xmxi1 in the establishment of a mature neural state that can be activated by factors that induce neuronal differentiation, such as SoxD and X-ngnr-1. Overexpression of Xmxi1 in Xenopus embryos results in ectopic activation of Sox3, an early pan-neural marker of proliferating neural precursor cells. Within the neural plate, the neuronal differentiation marker N-tubulin and cell cycle control genes such as XPak3 and p27(Xic1) are inhibited, but the expression of early determination and differentiation markers, including X-ngnr-1 and X-MyT1, is not affected. Inhibition of neuronal differentiation by Xmxi1 is only transient, and, at early tailbud stages, both endogenous and ectopic neurogenesis are observed. While Xmxi1 enhances cell proliferation and apoptosis in the early Xenopus embryo, both activities appear not to be required for the function of Xmxi1 in primary neurogenesis.
Collapse
Affiliation(s)
- Tiemo J Klisch
- DFG-Center of Molecular Physiology of the Brain, Department of Developmental Biochemistry, University of Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | | | | | | | | | | |
Collapse
|
85
|
Shiio Y, Rose DW, Aur R, Donohoe S, Aebersold R, Eisenman RN. Identification and characterization of SAP25, a novel component of the mSin3 corepressor complex. Mol Cell Biol 2006; 26:1386-97. [PMID: 16449650 PMCID: PMC1367179 DOI: 10.1128/mcb.26.4.1386-1397.2006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 07/25/2005] [Accepted: 11/25/2005] [Indexed: 12/29/2022] Open
Abstract
The transcriptional corepressor mSin3 is associated with histone deacetylases (HDACs) and is utilized by many DNA-binding transcriptional repressors. We have cloned and characterized a novel mSin3A-binding protein, SAP25. SAP25 binds to the PAH1 domain of mSin3A, associates with the mSin3A-HDAC complex in vivo, and represses transcription when tethered to DNA. SAP25 is required for mSin3A-mediated, but not N-CoR-mediated, repression. SAP25 is a nucleocytoplasmic shuttling protein, actively exported from the nucleus by a CRM1-dependent mechanism. A fraction of SAP25 is located in promyelocytic leukemia protein (PML) nuclear bodies, and PML induces a striking nuclear accumulation of SAP25. An isotope-coded affinity tag quantitative proteomic analysis of the SAP25 complex revealed that SAP25 is associated with several components of the mSin3 complex, nuclear export machinery, and regulators of transcription and cell cycle. These results suggest that SAP25 is a novel core component of the mSin3 corepressor complex whose subcellular location is regulated by PML.
Collapse
Affiliation(s)
- Yuzuru Shiio
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109-1024, USA
| | | | | | | | | | | |
Collapse
|
86
|
Abstract
The c-Myc oncoprotein plays a central role in human cancer via its ability to either activate or repress the transcription of essential downstream targets. For many of the repressed target genes, down-regulation by c-Myc relies on its ability to bind and inactivate the transcription factor Miz-1. Although Miz-1 inactivation is suspected to be essential for at least some of the biological activities of c-Myc, it has been difficult to demonstrate this requirement experimentally. Using a combination of short hairpin RNA-mediated knockdown and a previously characterized mutant of c-Myc that is defective for Miz-1 inactivation, we examined whether this inactivation is critical for three of the most central biological functions of c-Myc, cell cycle progression, transformation, and apoptosis. The results of this analysis demonstrated that in the in vitro assays utilized here, Miz-1 inactivation is dispensable for c-Myc-induced cell cycle progression and transformation. In marked contrast, the ability of c-Myc to induce apoptosis in primary diploid human fibroblasts in response to growth factor withdrawal is entirely dependent on its ability to inactivate Miz-1. These data have a significant impact on our understanding of the biochemical mechanisms dictating how c-Myc mediates opposing biological functions, such as transformation and apoptosis, and demonstrate the first requirement for Miz-1 inactivation in any of the biological functions of c-Myc.
Collapse
|
87
|
Pelengaris S, Khan M. The c-MYC oncoprotein as a treatment target in cancer and other disorders of cell growth. Expert Opin Ther Targets 2005; 7:623-42. [PMID: 14498825 DOI: 10.1517/14728222.7.5.623] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The c-MYC proto-oncogene is essential for cellular proliferation but, paradoxically, may also promote cell death. Deregulated expression of c-MYC is present in most, if not all, human cancers, and is associated with a poor prognosis. However, given that human tumours at diagnosis generally carry multiple genetic lesions that have accumulated during (although they are not necessarily essential for) tumour progression, it has proved difficult to attribute a specific role to any given single factor or indeed to explore the therapeutic potential of selectively mitigating their biological functions. Regulatable transgenic mouse models of oncogenesis have shed light on these issues, influenced our thinking about cancer and provided encouragement for the future development of cancer therapies based on targeting individual oncogenes such as c-MYC. Although still in its infancy, encouraging results have been reported using antisense oligodeoxynucleotide-based methods, as well as other approaches to interfere with MYC expression both in vitro and in vivo.
Collapse
Affiliation(s)
- Stella Pelengaris
- Molecular Medicine, Biomedical Research Institute, University of Warwick, Coventry, CV4 7AL, UK.
| | | |
Collapse
|
88
|
Loo LWM, Secombe J, Little JT, Carlos LS, Yost C, Cheng PF, Flynn EM, Edgar BA, Eisenman RN. The transcriptional repressor dMnt is a regulator of growth in Drosophila melanogaster. Mol Cell Biol 2005; 25:7078-91. [PMID: 16055719 PMCID: PMC1190258 DOI: 10.1128/mcb.25.16.7078-7091.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The Myc-Max-Mad/Mnt network of transcription factors has been implicated in oncogenesis and the regulation of proliferation in vertebrate cells. The identification of Myc and Max homologs in Drosophila melanogaster has demonstrated a critical role for dMyc in cell growth control. In this report, we identify and characterize the third member of this network, dMnt, the sole fly homolog of the mammalian Mnt and Mad family of transcriptional repressors. dMnt possesses two regions characteristic of Mad and Mnt proteins: a basic helix-loop-helix-zipper domain, through which it dimerizes with dMax to form a sequence-specific DNA binding complex, and a Sin-interacting domain, which mediates interaction with the dSin3 corepressor. Using the upstream activation sequence/GAL4 system, we show that expression of dMnt results in an inhibition of cellular growth and proliferation. Furthermore, we have generated a dMnt null allele, which results in flies with larger cells, increased weight, and decreased life span compared to wild-type flies. Our results demonstrate that dMnt is a transcriptional repressor that regulates D. melanogaster body size.
Collapse
Affiliation(s)
- Lenora W M Loo
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Cowley SM, Iritani BM, Mendrysa SM, Xu T, Cheng PF, Yada J, Liggitt HD, Eisenman RN. The mSin3A chromatin-modifying complex is essential for embryogenesis and T-cell development. Mol Cell Biol 2005; 25:6990-7004. [PMID: 16055712 PMCID: PMC1190252 DOI: 10.1128/mcb.25.16.6990-7004.2005] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The corepressor mSin3A is the core component of a chromatin-modifying complex that is recruited by multiple gene-specific transcriptional repressors. In order to understand the role of mSin3A during development, we generated constitutive germ line as well as conditional msin3A deletions. msin3A deletion in the developing mouse embryo results in lethality at the postimplantation stage, demonstrating that it is an essential gene. Blastocysts derived from preimplantation msin3A null embryos and mouse embryo fibroblasts (MEFs) lacking msin3A display a significant reduction in cell division. msin3A null MEFs also show mislocalization of the heterochromatin protein, HP1alpha, without alterations in global histone acetylation. Heterozygous msin3A(+/-) mice with a systemic twofold decrease in mSin3A protein develop splenomegaly as well as kidney disease indicative of a disruption of lymphocyte homeostasis. Conditional deletion of msin3A from developing T cells results in reduced thymic cellularity and a fivefold decrease in the number of cytotoxic (CD8) T cells, while helper (CD4) T cells are unaffected. We show that CD8 development is dependent on mSin3A at a step downstream of T-cell receptor signaling and that loss of mSin3A specifically decreases survival of double-positive and CD8 T cells. Thus, msin3A is a pleiotropic gene which, in addition to its role in cell cycle progression, is required for the development and homeostasis of cells in the lymphoid lineage.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blastocyst
- Blotting, Western
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/metabolism
- Cell Cycle
- Cell Differentiation
- Cell Lineage
- Cell Proliferation
- Cells, Cultured
- Chromatin/chemistry
- Chromatin/metabolism
- Chromobox Protein Homolog 5
- Chromosomal Proteins, Non-Histone/metabolism
- Exons
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Flow Cytometry
- Gene Deletion
- Gene Expression Regulation, Developmental
- Genotype
- Glomerulonephritis, Membranous
- Heterochromatin/metabolism
- Heterozygote
- Mice
- Mice, Transgenic
- Models, Biological
- Models, Genetic
- Recombination, Genetic
- Repressor Proteins/physiology
- Sin3 Histone Deacetylase and Corepressor Complex
- Splenomegaly
- T-Lymphocytes/cytology
- T-Lymphocytes/metabolism
- T-Lymphocytes, Cytotoxic/cytology
- Thymus Gland/cytology
- Time Factors
Collapse
Affiliation(s)
- Shaun M Cowley
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle WA 98109-1024, USA
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Popov N, Wahlström T, Hurlin PJ, Henriksson M. Mnt transcriptional repressor is functionally regulated during cell cycle progression. Oncogene 2005; 24:8326-37. [PMID: 16103876 DOI: 10.1038/sj.onc.1208961] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The Myc/Max/Mad network of transcription factors regulates cell proliferation, differentiation, and transformation. Similar to other proteins of the network, Mnt forms heterodimers with Max and binds CACGTG E-Box elements. Transcriptional repression by Mnt is mediated through association with mSin3, and deletion of the mSin3-interacting domain (SID) converts Mnt to a transcriptional activator. Mnt is coexpressed with Myc in proliferating cells and has been suggested to be a modulator of Myc function. We report that Mnt is expressed both in growth-arrested and proliferating mouse fibroblasts and is phosphorylated when resting cells are induced to re-enter the cell cycle. Importantly, the interaction between Mnt and mSin3 is disrupted upon serum stimulation resulting in decreased Mnt-associated HDAC activity. Furthermore, we demonstrate that Mnt binds and recruits mSin3 to the Myc target gene cyclin D2 in quiescent mouse fibroblasts. Interference with Mnt expression by RNAi resulted in upregulation of cyclin D2 expression in growth-arrested fibroblasts, supporting the view that Mnt represses cyclin D2 transcription in quiescent cells. Our data suggest a model in which phosphorylation of Mnt at cell cycle entry results in disruption of Mnt-mSin3-HDAC1 interaction, which allows induction of Myc target genes by release of Mnt-mediated transcriptional repression.
Collapse
Affiliation(s)
- Nikita Popov
- Microbiology and Tumor Biology Center, Karolinska Institutet, Box 280, SE-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
91
|
Song L, Zlobin A, Ghoshal P, Zhang Q, Houde C, Weijzen S, Jiang Q, Nacheva E, Yagan D, Davis E, Galiegue-Zouitina S, Catovsky D, Grogan T, Fisher RI, Miele L, Coignet LJ. Alteration of SMRT tumor suppressor function in transformed non-Hodgkin lymphomas. Cancer Res 2005; 65:4554-61. [PMID: 15930272 DOI: 10.1158/0008-5472.can-04-4108] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Indolent non-Hodgkin lymphomas are characterized by a prolonged phase that is typically followed by a clinical progression associated with an accelerated clinical course and short survival time. Previous studies have not identified a consistent cytogenetic or molecular abnormality associated with transformation. The development of a transformed phenotype, evolving from the original low-grade component, most likely depends on multiple genetic events, including the activation of synergistic dominant oncogenes and a loss of tumor suppressor gene functions. Complex karyotypes and relatively bad chromosome morphology are typical of transformed non-Hodgkin lymphomas, rendering complete cytogenetic analysis difficult. Here, we report the use of transformed non-Hodgkin lymphoma cell lines and primary samples to identify the involvement of the silencing mediator of retinoic acid and thyroid hormone receptor (SMRT) gene that maps at chromosome 12q24 in transformed non-Hodgkin lymphomas. We also show that down-regulation of SMRT in the immortalized "Weinberg's model" cell lines induces transformation of the cells. Assessment of cDNA array profiles should further help us to design a working model for SMRT involvement in non-Hodgkin lymphoma transformation as a novel, nonclassical tumor suppressor.
Collapse
MESH Headings
- Apoptosis/genetics
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Chromosomes, Human, Pair 12/genetics
- DNA-Binding Proteins/biosynthesis
- DNA-Binding Proteins/genetics
- Down-Regulation
- Gene Deletion
- Gene Rearrangement
- Genes, Tumor Suppressor
- Humans
- Immunoglobulin J Recombination Signal Sequence-Binding Protein
- Lymphoma, Non-Hodgkin/genetics
- Lymphoma, Non-Hodgkin/metabolism
- Lymphoma, Non-Hodgkin/pathology
- Nuclear Proteins/genetics
- Nuclear Receptor Co-Repressor 2
- Oligonucleotide Array Sequence Analysis
- Repressor Proteins/biosynthesis
- Repressor Proteins/genetics
- Transcriptional Activation
Collapse
Affiliation(s)
- Lynda Song
- Department of Medicine, Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, Illinois, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Dannenberg JH, David G, Zhong S, van der Torre J, Wong WH, Depinho RA. mSin3A corepressor regulates diverse transcriptional networks governing normal and neoplastic growth and survival. Genes Dev 2005; 19:1581-95. [PMID: 15998811 PMCID: PMC1172064 DOI: 10.1101/gad.1286905] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
mSin3A is a core component of a large multiprotein corepressor complex with associated histone deacetylase (HDAC) enzymatic activity. Physical interactions of mSin3A with many sequence-specific transcription factors has linked the mSin3A corepressor complex to the regulation of diverse signaling pathways and associated biological processes. To dissect the complex nature of mSin3A's actions, we monitored the impact of conditional mSin3A deletion on the developmental, cell biological, and transcriptional levels. mSin3A was shown to play an essential role in early embryonic development and in the proliferation and survival of primary, immortalized, and transformed cells. Genetic and biochemical analyses established a role for mSin3A/HDAC in p53 deacetylation and activation, although genetic deletion of p53 was not sufficient to attenuate the mSin3A null cell lethal phenotype. Consistent with mSin3A's broad biological activities beyond regulation of the p53 pathway, time-course gene expression profiling following mSin3A deletion revealed deregulation of genes involved in cell cycle regulation, DNA replication, DNA repair, apoptosis, chromatin modifications, and mitochondrial metabolism. Computational analysis of the mSin3A transcriptome using a knowledge-based database revealed several nodal points through which mSin3A influences gene expression, including the Myc-Mad, E2F, and p53 transcriptional networks. Further validation of these nodes derived from in silico promoter analysis showing enrichment for Myc-Mad, E2F, and p53 cis-regulatory elements in regulatory regions of up-regulated genes following mSin3A depletion. Significantly, in silico promoter analyses also revealed specific cis-regulatory elements binding the transcriptional activator Stat and the ISWI ATP-dependent nucleosome remodeling factor Falz, thereby expanding further the mSin3A network of regulatory factors. Together, these integrated genetic, biochemical, and computational studies demonstrate the involvement of mSin3A in the regulation of diverse pathways governing many aspects of normal and neoplastic growth and survival and provide an experimental framework for the analysis of essential genes with diverse biological functions.
Collapse
Affiliation(s)
- Jan-Hermen Dannenberg
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
93
|
Dugast-Darzacq C, Pirity M, Blanck JK, Scherl A, Schreiber-Agus N. Mxi1-SRalpha: a novel Mxi1 isoform with enhanced transcriptional repression potential. Oncogene 2004; 23:8887-99. [PMID: 15467743 DOI: 10.1038/sj.onc.1208107] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mxi1 belongs to the Myc/Max/Mad network of proteins that have been implicated in the control of multiple aspects of cellular behavior. Previously, we had reported that the mouse mxi1 gene gives rise to two distinct transcript forms that can encode proteins with dramatically different functional abilities. The Mxi1-SR protein (here termed Mxi1-SRbeta) can interact with Sin3/histone deacetylase and function as a potent transcriptional repressor and growth suppressor, while the Mxi1-WR protein lacks these activities. Here, we describe a new mxi1-derived transcript form (termed mxi1-SRalpha) whose expression is governed by its own promoter, resulting in a spatiotemporally distinct expression profile from that of the highly related mxi1-SRbeta form. Moreover, the Mxi1-SRalpha protein product, with its unique Sin3 interacting domain, has a greater affinity than its Mxi1-SRbeta counterpart for the Sin3 adapter proteins as well as an enhanced potential for transcriptional repression in transient reporter assays. Our identification of this novel Mxi1 isoform that results from alternative 5' exon usage adds an additional layer of complexity to the Mad/Mxi1 family. In addition, our findings warrant re-evaluation of mxi1 expression patterns on the cellular level and its status in human cancer samples, with a renewed focus on the distinct isoforms.
Collapse
Affiliation(s)
- Claire Dugast-Darzacq
- Department of Molecular Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Ullmann 809, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
94
|
Poy MN, Eliasson L, Krutzfeldt J, Kuwajima S, Ma X, Macdonald PE, Pfeffer S, Tuschl T, Rajewsky N, Rorsman P, Stoffel M. A pancreatic islet-specific microRNA regulates insulin secretion. Nature 2004; 432:226-30. [PMID: 15538371 DOI: 10.1038/nature03076] [Citation(s) in RCA: 1593] [Impact Index Per Article: 75.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2004] [Accepted: 09/30/2004] [Indexed: 11/09/2022]
Abstract
MicroRNAs (miRNAs) constitute a growing class of non-coding RNAs that are thought to regulate gene expression by translational repression. Several miRNAs in animals exhibit tissue-specific or developmental-stage-specific expression, indicating that they could play important roles in many biological processes. To study the role of miRNAs in pancreatic endocrine cells we cloned and identified a novel, evolutionarily conserved and islet-specific miRNA (miR-375). Here we show that overexpression of miR-375 suppressed glucose-induced insulin secretion, and conversely, inhibition of endogenous miR-375 function enhanced insulin secretion. The mechanism by which secretion is modified by miR-375 is independent of changes in glucose metabolism or intracellular Ca2+-signalling but correlated with a direct effect on insulin exocytosis. Myotrophin (Mtpn) was predicted to be and validated as a target of miR-375. Inhibition of Mtpn by small interfering (si)RNA mimicked the effects of miR-375 on glucose-stimulated insulin secretion and exocytosis. Thus, miR-375 is a regulator of insulin secretion and may thereby constitute a novel pharmacological target for the treatment of diabetes.
Collapse
Affiliation(s)
- Matthew N Poy
- Laboratory of Metabolic Diseases and Laboratory of RNA Molecular Biology, The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Calomme C, Dekoninck A, Nizet S, Adam E, Nguyên TLA, Van Den Broeke A, Willems L, Kettmann R, Burny A, Van Lint C. Overlapping CRE and E box motifs in the enhancer sequences of the bovine leukemia virus 5' long terminal repeat are critical for basal and acetylation-dependent transcriptional activity of the viral promoter: implications for viral latency. J Virol 2004; 78:13848-64. [PMID: 15564493 PMCID: PMC533944 DOI: 10.1128/jvi.78.24.13848-13864.2004] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Accepted: 08/04/2004] [Indexed: 11/20/2022] Open
Abstract
Bovine leukemia virus (BLV) infection is characterized by viral latency in a large proportion of cells containing an integrated provirus. In this study, we postulated that mechanisms directing the recruitment of deacetylases to the BLV 5' long terminal repeat (LTR) could explain the transcriptional repression of viral expression in vivo. Accordingly, we showed that BLV promoter activity was induced by several deacetylase inhibitors (such as trichostatin A [TSA]) in the context of episomal LTR constructs and in the context of an integrated BLV provirus. Moreover, treatment of BLV-infected cells with TSA increased H4 acetylation at the viral promoter, showing a close correlation between the level of histone acetylation and transcriptional activation of the BLV LTR. Among the known cis-regulatory DNA elements located in the 5' LTR, three E box motifs overlapping cyclic AMP responsive elements (CREs) in U3 were shown to be involved in transcriptional repression of BLV basal gene expression. Importantly, the combined mutations of these three E box motifs markedly reduced the inducibility of the BLV promoter by TSA. E boxes are susceptible to recognition by transcriptional repressors such as Max-Mad-mSin3 complexes that repress transcription by recruiting deacetylases. However, our in vitro binding studies failed to reveal the presence of Mad-Max proteins in the BLV LTR E box-specific complexes. Remarkably, TSA increased the occupancy of the CREs by CREB/ATF. Therefore, we postulated that the E box-specific complexes exerted their negative cooperative effect on BLV transcription by steric hindrance with the activators CREB/ATF and/or their transcriptional coactivators possessing acetyltransferase activities. Our results thus suggest that the overlapping CRE and E box elements in the BLV LTR were selected during evolution as a novel strategy for BLV to allow better silencing of viral transcription and to escape from the host immune response.
Collapse
Affiliation(s)
- Claire Calomme
- Université Libre de Bruxelles (ULB), Institut de Biologie et de Médecine Moléculaires (IBMM), Service de Chimie Biologique, Laboratoire de Virologie Moléculaire, Rue des Profs Jeener et Brachet, 12, 6041 Gosselies, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Silverstein RA, Ekwall K. Sin3: a flexible regulator of global gene expression and genome stability. Curr Genet 2004; 47:1-17. [PMID: 15565322 DOI: 10.1007/s00294-004-0541-5] [Citation(s) in RCA: 246] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Revised: 10/05/2004] [Accepted: 10/10/2004] [Indexed: 10/26/2022]
Abstract
SIN3 was first identified genetically as a global regulator of transcription. Sin3 is a large protein composed mainly of protein-interaction domains, whose function is to provide structural support for a heterogeneous Sin3/histone deacetylase (HDAC) complex. The core Sin3/HDAC complex is conserved from yeast to man and consists of eight proteins. In addition to HDACs, Sin3 can sequester other enzymatic functions, including nucleosome remodeling, DNA methylation, N-acetylglucoseamine transferase activity, and histone methylation. Since the Sin3/HDAC complex lacks any DNA-binding activity, it must be targeted to gene promoters by interacting with DNA-binding proteins. Although most research on Sin3 has focused on its role as a corepressor, mounting evidence suggests that Sin3 can also positively regulate transcription. Furthermore, Sin3 is key to the propagation of epigenetically silenced domains and is required for centromere function. Thus, Sin3 provides a platform to deliver multiple combinations modifications to the chromatin, using both sequence-specific and sequence-independent mechanisms.
Collapse
Affiliation(s)
- Rebecca A Silverstein
- Karolinska Institutet, Department of Biosciences, University College Sodertorn, Alfred Nobels Allé 7, 141 89, Huddinge, Sweden
| | | |
Collapse
|
97
|
Kim MKH, Carroll WL. Autoregulation of the N-myc gene is operative in neuroblastoma and involves histone deacetylase 2. Cancer 2004; 101:2106-15. [PMID: 15382088 DOI: 10.1002/cncr.20626] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Autoregulation of the myc gene family is a negative feedback mechanism known to occur at high levels of Myc expression. Loss of this mechanism and associated Myc overexpression has been observed in human tumors, thereby contributing to tumorigenesis. The childhood tumor neuroblastoma is characterized by N-myc amplification in aggressive and highly proliferative tumors that occur in a subset of patients. The precise molecular mechanism of autoregulation is unknown, and previous observations indicated that N-myc autoregulation was intact only in single-copy neuroblastoma cell lines. METHODS Transient reporter assays and trichostatin A (TSA) experiments were performed to evaluate several candidate genes, including Mxi1, c-myc promoter binding protein 1 (MBP-1), Miz, and histone deacetylase 2 (HDAC2), for their involvement in N-myc autoregulation. Mxi1 and HDAC2 were examined further for their expression levels and effects on endogenous N-myc levels. Finally, their recruitments to the N-myc promoter were investigated by chromatin immunoprecipitation (ChIP). RESULTS The autoregulatory circuit was operative, even in amplified cell lines. Mxi1 consistently showed a modest effect in down-regulating N-myc in transient reporter assays. Overexpression of the c-myc, Mxi1, and mHDAC2 genes resulted in a threefold to fourfold decrease in endogenous N-myc levels. Mxi1 and HDAC2 were up-regulated by N-Myc in an myc-inducible cell line and in N-myc-expressing cell lines. In addition, down-regulation of the N-myc promoter was relieved in the presence of TSA. Increased association of HDAC2 with the autoregulatory region within the N-myc promoter by ChIP was observed upon down-regulation of endogenous N-myc. CONCLUSIONS The autoregulatory circuit was intact in both amplified and single-copy neuroblastoma cell lines. Furthermore, myc gene autoregulation occurred through histone deacetylation.
Collapse
Affiliation(s)
- Marianne K H Kim
- The Molecular, Cellular, Biochemical, and Developmental Sciences, Mount Sinai School of Medicine, New York, New York, USA
| | | |
Collapse
|
98
|
Swarbrick A, Akerfeldt MC, Lee CSL, Sergio CM, Caldon CE, Hunter LJK, Sutherland RL, Musgrove EA. Regulation of cyclin expression and cell cycle progression in breast epithelial cells by the helix–loop–helix protein Id1. Oncogene 2004; 24:381-9. [PMID: 15489884 DOI: 10.1038/sj.onc.1208188] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The helix-loop-helix protein Id1 has been implicated in regulating mammary epithelial cell proliferation and differentiation but the underlying molecular mechanisms are not well characterized. Under low serum conditions, ectopic expression of Id1, but not Id2, allowed continued proliferation of immortalized mammary epithelial cells and breast cancer cells. Conversely, downregulation of Id1 impaired proliferation. The effects of short interfering RNA (siRNA)-mediated downregulation of Id1 were the same as those following downregulation of c-Myc: decreased expression of cyclins D1 and E, reduced phosphorylation of pRb at Ser780 (a site targeted by cyclin D1-Cdk4) and reduced cyclin E-Cdk2 activity. Decreased cyclin D1 expression was an early response to Id1 antisense oligonucleotide treatment. Inhibition of c-Myc function by siRNA, antisense oligonucleotides or a dominant repressor resulted in downregulation of Id1, while ectopic expression of c-Myc resulted in rapid induction of Id1, suggesting that Id1 may be downstream of c-Myc. These data indicate that in mammary epithelial cells, Id1 has cell cycle regulatory functions that are similar to those of c-Myc, and suggest that cyclin D1 may be involved in Id1 regulation of cell cycle progression.
Collapse
Affiliation(s)
- Alexander Swarbrick
- Cancer Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Engstrom LD, Youkilis AS, Gorelick JL, Zheng D, Ackley V, Petroff CA, Benson LQ, Coon MR, Zhu X, Hanash SM, Wechsler DS. Mxi1-0, an alternatively transcribed Mxi1 isoform, is overexpressed in glioblastomas. Neoplasia 2004; 6:660-73. [PMID: 15548375 PMCID: PMC1531670 DOI: 10.1593/neo.04244] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2004] [Revised: 06/14/2004] [Indexed: 01/26/2023]
Abstract
The c-Myc transcription factor regulates expression of genes related to cell growth, division, and apoptosis. Mxi1, a member of the Mad family, represses transcription of c-Myc-regulated genes by mediating chromatin condensation via histone deacetylase and the Sin3 corepressor. Mxi1 is a c-Myc antagonist and suppresses cell proliferation in vitro. Here, we describe the identification of Mxi1-0, a novel Mxi1 isoform that is alternatively transcribed from an upstream exon. Mxi1-0 and Mxi1 have different amino-terminal sequences, but share identical Max- and DNA-binding domains. Both isoforms are able to bind Max, to recognize E-box binding sites, and to interact with Sin3. Despite these similarities and in contrast to Mxi1, Mxi1-0 is predominantly localized to the cytoplasm and fails to repress c-Myc-dependent transcription. Although Mxi1-0 and Mxi1 are coexpressed in both human and mouse cells, the relative levels of Mxi1-0 are higher in primary glioblastoma tumors than in normal brain tissue. This variation in the levels of Mxi1-0 and Mxi1 suggests that Mxi1-0 may modulate the Myc-inhibitory activity of Mxi1. The identification of Mxi1-0 as an alternatively transcribed Mxi1 isoform has significant implications for the interpretation of previous Mxi1 studies, particularly those related to the phenotype of the mxi1 knockout mouse.
Collapse
Affiliation(s)
- Lars D Engstrom
- Section of Pediatric Hematology-Oncology, Department of Pediatrics and Communicable Diseases, The University of Michigan School of Medicine, Ann Arbor, MI 48109-0936, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Swanson KA, Knoepfler PS, Huang K, Kang RS, Cowley SM, Laherty CD, Eisenman RN, Radhakrishnan I. HBP1 and Mad1 repressors bind the Sin3 corepressor PAH2 domain with opposite helical orientations. Nat Struct Mol Biol 2004; 11:738-46. [PMID: 15235594 DOI: 10.1038/nsmb798] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Accepted: 05/05/2004] [Indexed: 11/09/2022]
Abstract
Recruitment of the histone deacetylase (HDAC)-associated Sin3 corepressor is an obligatory step in many eukaryotic gene silencing pathways. Here we show that HBP1, a cell cycle inhibitor and regulator of differentiation, represses transcription in a HDAC/Sin3-dependent manner by targeting the mammalian Sin3A (mSin3A) PAH2 domain. HBP1 is unrelated to the Mad1 repressor for which high-resolution structures in complex with PAH2 have been described. We show that like Mad1, the HBP1 transrepression domain binds through a helical structure to the hydrophobic cleft of mSin3A PAH2. Notably, the HBP1 helix binds PAH2 in a reversed orientation relative to Mad1 and, equally unexpectedly, this is correlated with a chain reversal of the minimal Sin3 interaction motifs. These results not only provide insights into how multiple, unrelated transcription factors recruit the same coregulator, but also have implications for how sequence similarity searches are conducted.
Collapse
Affiliation(s)
- Kurt A Swanson
- Department of Biochemistry, Molecular Biology, and Cell Biology, Northwestern University, Evanston, Illinois 60208-3500, USA
| | | | | | | | | | | | | | | |
Collapse
|