51
|
Hermansky-Pudlak protein complexes, AP-3 and BLOC-1, differentially regulate presynaptic composition in the striatum and hippocampus. J Neurosci 2010; 30:820-31. [PMID: 20089890 DOI: 10.1523/jneurosci.3400-09.2010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Endosomal sorting mechanisms mediated by AP-3 and BLOC-1 are perturbed in Hermansky-Pudlak Syndrome, a human genetic condition characterized by albinism and prolonged bleeding (OMIM #203300). Additionally, mouse models defective in either one of these complexes possess defective synaptic vesicle biogenesis (Newell-Litwa et al., 2009). These synaptic vesicle phenotypes were presumed uniform throughout the brain. However, here we report that AP-3 and BLOC-1 differentially regulate the composition of presynaptic terminals in the striatum and dentate gyrus of the hippocampus. Quantitative immunoelectron microscopy demonstrated that the majority of AP-3 immunoreactivity in both wild-type striatum and hippocampus localizes to presynaptic axonal compartments, where it regulates synaptic vesicle size. In the striatum, loss of AP-3 (Ap3d(mh/mh)) resulted in decreased synaptic vesicle size. In contrast, loss of AP-3 in the dentate gyrus increased synaptic vesicle size, thus suggesting anatomically specific AP-3-regulatory mechanisms. Loss-of-function alleles of BLOC-1, Pldn(pa/pa), and Muted(mu/mu) revealed that this complex acts as a brain-region-specific regulator of AP-3. In fact, BLOC-1 deficiencies selectively reduced AP-3 and AP-3 cargo immunoreactivity in presynaptic compartments within the dentate gyrus both at the light and/or electron microscopy level. However, the striatum did not exhibit these BLOC-1-null phenotypes. Our results demonstrate that distinct brain regions differentially regulate AP-3-dependent synaptic vesicle biogenesis. We propose that anatomically restricted mechanisms within the brain diversify the biogenesis and composition of synaptic vesicles.
Collapse
|
52
|
Vizi ES, Fekete A, Karoly R, Mike A. Non-synaptic receptors and transporters involved in brain functions and targets of drug treatment. Br J Pharmacol 2010; 160:785-809. [PMID: 20136842 DOI: 10.1111/j.1476-5381.2009.00624.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Beyond direct synaptic communication, neurons are able to talk to each other without making synapses. They are able to send chemical messages by means of diffusion to target cells via the extracellular space, provided that the target neurons are equipped with high-affinity receptors. While synaptic transmission is responsible for the 'what' of brain function, the 'how' of brain function (mood, attention, level of arousal, general excitability, etc.) is mainly controlled non-synaptically using the extracellular space as communication channel. It is principally the 'how' that can be modulated by medicine. In this paper, we discuss different forms of non-synaptic transmission, localized spillover of synaptic transmitters, local presynaptic modulation and tonic influence of ambient transmitter levels on the activity of vast neuronal populations. We consider different aspects of non-synaptic transmission, such as synaptic-extrasynaptic receptor trafficking, neuron-glia communication and retrograde signalling. We review structural and functional aspects of non-synaptic transmission, including (i) anatomical arrangement of non-synaptic release sites, receptors and transporters, (ii) intravesicular, intra- and extracellular concentrations of neurotransmitters, as well as the spatiotemporal pattern of transmitter diffusion. We propose that an effective general strategy for efficient pharmacological intervention could include the identification of specific non-synaptic targets and the subsequent development of selective pharmacological tools to influence them.
Collapse
Affiliation(s)
- E S Vizi
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | |
Collapse
|
53
|
McKinney RA. Excitatory amino acid involvement in dendritic spine formation, maintenance and remodelling. J Physiol 2009; 588:107-16. [PMID: 19933758 DOI: 10.1113/jphysiol.2009.178905] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In the central nervous system, most excitatory synapses occur on dendritic spines, which are small protrusions from the dendritic tree. In the mature cortex and hippocampus, dendritic spines are heterogeneous in shape. It has been shown that the shapes of the spine can affect synapse stability and synaptic function. Dendritic spines are highly motile structures that can undergo actin-dependent shape changes, which occur over a time scale ranging from seconds to tens of minutes or even days. The formation, remodelling and elimination of excitatory synapses on dendritic spines represent ways of refining the microcircuitry in the brain. Here I review the current knowledge on the effects of modulation of AMPA and NMDA ionotropic glutamate receptors on dendritic spine formation, motility and remodelling.
Collapse
Affiliation(s)
- R Anne McKinney
- Department of Pharmacology and Therapeutics, Bellini Life Science Building, McGill University, Montreal, H3G 0B1, Canada.
| |
Collapse
|
54
|
Input-specific intrasynaptic arrangements of ionotropic glutamate receptors and their impact on postsynaptic responses. J Neurosci 2009; 29:12896-908. [PMID: 19828804 DOI: 10.1523/jneurosci.6160-08.2009] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To examine the intrasynaptic arrangement of postsynaptic receptors in relation to the functional role of the synapse, we quantitatively analyzed the two-dimensional distribution of AMPA and NMDA receptors (AMPARs and NMDARs, respectively) using SDS-digested freeze-fracture replica labeling (SDS-FRL) and assessed the implication of distribution differences on the postsynaptic responses by simulation. In the dorsal lateral geniculate nucleus, corticogeniculate (CG) synapses were twice as large as retinogeniculate (RG) synapses but expressed similar numbers of AMPARs. Two-dimensional views of replicas revealed that AMPARs form microclusters in both synapses to a similar extent, resulting in larger AMPAR-lacking areas in the CG synapses. Despite the broad difference in the AMPAR distribution within a synapse, our simulations based on the actual receptor distributions suggested that the AMPAR quantal response at individual RG synapses is only slightly larger in amplitude, less variable, and faster in kinetics than that at CG synapses having a similar number of the receptors. NMDARs at the CG synapses were expressed twice as many as those in the RG synapses. Electrophysiological recordings confirmed a larger contribution of NMDAR relative to AMPAR-mediated responses in CG synapses. We conclude that synapse size and the density and distribution of receptors have minor influences on quantal responses and that the number of receptors acts as a predominant postsynaptic determinant of the synaptic strength mediated by both the AMPARs and NMDARs.
Collapse
|
55
|
Biphasic synaptic Ca influx arising from compartmentalized electrical signals in dendritic spines. PLoS Biol 2009; 7:e1000190. [PMID: 19753104 PMCID: PMC2734993 DOI: 10.1371/journal.pbio.1000190] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 07/30/2009] [Indexed: 12/20/2022] Open
Abstract
Dendritic spines compartmentalize synaptically-evoked biochemical signals. The authors show that electrical compartmentalization provided by a spine endows the associated synapse with additional modes of calcium signaling by shaping the kinetics of synaptic calcium currents. Excitatory synapses on mammalian principal neurons are typically formed onto dendritic spines, which consist of a bulbous head separated from the parent dendrite by a thin neck. Although activation of voltage-gated channels in the spine and stimulus-evoked constriction of the spine neck can influence synaptic signals, the contribution of electrical filtering by the spine neck to basal synaptic transmission is largely unknown. Here we use spine and dendrite calcium (Ca) imaging combined with 2-photon laser photolysis of caged glutamate to assess the impact of electrical filtering imposed by the spine morphology on synaptic Ca transients. We find that in apical spines of CA1 hippocampal neurons, the spine neck creates a barrier to the propagation of current, which causes a voltage drop and results in spatially inhomogeneous activation of voltage-gated Ca channels (VGCCs) on a micron length scale. Furthermore, AMPA and NMDA-type glutamate receptors (AMPARs and NMDARs, respectively) that are colocalized on individual spine heads interact to produce two kinetically and mechanistically distinct phases of synaptically evoked Ca influx. Rapid depolarization of the spine triggers a brief and large Ca current whose amplitude is regulated in a graded manner by the number of open AMPARs and whose duration is terminated by the opening of small conductance Ca-activated potassium (SK) channels. A slower phase of Ca influx is independent of AMPAR opening and is determined by the number of open NMDARs and the post-stimulus potential in the spine. Biphasic synaptic Ca influx only occurs when AMPARs and NMDARs are coactive within an individual spine. These results demonstrate that the morphology of dendritic spines endows associated synapses with specialized modes of signaling and permits the graded and independent control of multiple phases of synaptic Ca influx. The vast majority of excitatory synapses in the mammalian central nervous system are made onto dendritic spines, small (< 1 fL) membranous structures stippled along the dendrite. The head of each spine is separated from its parent dendrite by a thin neck – a morphological feature that intuitively suggests it might function to limit the transmission of electrical and biochemical signals. Unfortunately, the extremely small size of spines has made direct measurements of their electrical properties difficult and, therefore, the functional implications of electrical compartmentalization have remained elusive. In this study, we use spatiotemporally controlled stimulation to generate calcium signals within the spine head and/or neighboring dendrite. By comparing these measurements we demonstrate that spines create specialized electrical signaling compartments, which has at least two functional consequences. First, synaptic stimulation, but not similar dendritic depolarization, can trigger the activation of voltage-gated calcium channels within the spine. Second, voltage changes in the spine head arising from compartmentalization shape the time course of synaptically evoked calcium influx such that it is biphasic. Thus, the electrical compartmentalization provided by spines allows for multiple modes of calcium signaling at excitatory synapses.
Collapse
|
56
|
Lu W, Shi Y, Jackson AC, Bjorgan K, During MJ, Sprengel R, Seeburg PH, Nicoll RA. Subunit composition of synaptic AMPA receptors revealed by a single-cell genetic approach. Neuron 2009; 62:254-68. [PMID: 19409270 DOI: 10.1016/j.neuron.2009.02.027] [Citation(s) in RCA: 514] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/06/2009] [Accepted: 02/14/2009] [Indexed: 11/24/2022]
Abstract
The precise subunit composition of synaptic ionotropic receptors in the brain is poorly understood. This information is of particular importance with regard to AMPA-type glutamate receptors, the multimeric complexes assembled from GluA1-A4 subunits, as the trafficking of these receptors into and out of synapses is proposed to depend upon the subunit composition of the receptor. We report a molecular quantification of synaptic AMPA receptors (AMPARs) by employing a single-cell genetic approach coupled with electrophysiology in hippocampal CA1 pyramidal neurons. In contrast to prevailing views, we find that GluA1A2 heteromers are the dominant AMPARs at CA1 cell synapses (approximately 80%). In cells lacking GluA1, -A2, and -A3, synapses are devoid of AMPARs, yet synaptic NMDA receptors (NMDARs) and dendritic morphology remain unchanged. These data demonstrate a functional dissociation of AMPARs from trafficking of NMDARs and neuronal morphogenesis. This study provides a functional quantification of the subunit composition of AMPARs in the CNS and suggests novel roles for AMPAR subunits in receptor trafficking.
Collapse
Affiliation(s)
- Wei Lu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | | | | | | | | | | |
Collapse
|
57
|
Nusser Z. Variability in the subcellular distribution of ion channels increases neuronal diversity. Trends Neurosci 2009; 32:267-74. [PMID: 19299025 DOI: 10.1016/j.tins.2009.01.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 01/07/2009] [Accepted: 01/07/2009] [Indexed: 01/08/2023]
Abstract
The exact location of an ion channel on the axo-somato-dendritic surface of a nerve cell crucially affects its functional impact. Recent high-resolution immunolocalization experiments examining the distribution of GABA and glutamate receptors, voltage-gated potassium and sodium channels and hyperpolarization-activated mixed cation (HCN) channels clearly demonstrate the lack of simple rules concerning their subcellular distribution. For example, the density of HCN1 subunits in pyramidal cells increases 60-fold from soma to distal dendrites but is uniform over the somato-dendritic surface of olfactory bulb external tufted cells and is highest in the axon of cortical and cerebellar basket cells. Such findings highlight the necessity of determining the precise subcellular location and density of each ion channel in every cell type. Here, I suggest that variations in the subcellular distribution of ion channels are previously unrecognized means of increasing neuronal diversity and, thus, the computational power of the brain.
Collapse
Affiliation(s)
- Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, 1083 Budapest, Hungary.
| |
Collapse
|
58
|
Augmented hippocampal ripple oscillations in mice with reduced fast excitation onto parvalbumin-positive cells. J Neurosci 2009; 29:2563-8. [PMID: 19244531 DOI: 10.1523/jneurosci.5036-08.2009] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Generation of fast network oscillations in the hippocampus relies on interneurons, but the underlying specific synaptic mechanisms are not established. The excitatory recruitment of fast-spiking interneurons during hippocampal sharp waves has been suggested to be critical for the generation of 140-200 Hz ("ripple") oscillations in the CA1 area. To directly test this, we used genetically modified mice (PV-DeltaGluR-A) with reduced AMPA receptor-mediated excitation onto parvalbumin (PV)-positive interneurons and studied hippocampal oscillations in freely moving animals. In PV-DeltaGluR-A mice, ripple-amplitude and associated rhythmic modulation of pyramidal cells and fast-spiking interneurons were increased. These changes were not accompanied by concurrent alterations of firing rates. Neither theta nor gamma oscillations displayed marked alterations in the mutant. These results provide evidence that fast excitation from pyramidal cells to PV-positive interneurons differentially influences ripple and gamma oscillations in vivo.
Collapse
|
59
|
Rapid functional maturation of nascent dendritic spines. Neuron 2009; 61:247-58. [PMID: 19186167 DOI: 10.1016/j.neuron.2008.10.054] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 08/20/2008] [Accepted: 10/21/2008] [Indexed: 11/23/2022]
Abstract
Spine growth and retraction with synapse formation and elimination plays an important role in shaping brain circuits during development and in the adult brain, yet the temporal relationship between spine morphogenesis and the formation of functional synapses remains poorly defined. We imaged hippocampal pyramidal neurons to identify spines of different ages. We then used two-photon glutamate uncaging, whole-cell recording, and Ca(2+) imaging to analyze the properties of nascent spines and their older neighbors. New spines expressed glutamate-sensitive currents that were indistinguishable from mature spines of comparable volumes. Some spines exhibited negligible AMPA receptor-mediated responses, but the occurrence of these "silent" spines was uncorrelated with spine age. In contrast, NMDA receptor-mediated Ca(2+) accumulations were significantly lower in new spines. New spines reconstructed using electron microscopy made synapses. Our data support a model in which outgrowth and enlargement of nascent spines is tightly coupled to formation and maturation of glutamatergic synapses.
Collapse
|
60
|
Paspalas CD, Selemon LD, Arnsten AFT. Mapping the regulator of G protein signaling 4 (RGS4): presynaptic and postsynaptic substrates for neuroregulation in prefrontal cortex. ACTA ACUST UNITED AC 2009; 19:2145-55. [PMID: 19153107 DOI: 10.1093/cercor/bhn235] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Regulator of G protein signaling 4 (RGS4) regulates intracellular signaling via G proteins and is markedly reduced in the prefrontal cortex (PFC) of patients with schizophrenia. Characterizing the expression of RGS4 within individual neuronal compartments is thus key to understanding its actions on individual G protein-coupled receptors (GPCRs). Here we present an ultrastructural reference map of RGS4 protein in macaque PFC based on immunogold electron microscopic analysis. At the soma, all labeling was asynaptic and affiliated with subsurface cistern microdomains of pyramidal neurons. The nucleus displayed most of immunoreactivity. RGS4 levels were particularly high along proximal apical dendrites and markedly decreased with distance from the soma; clustered label was present at the bifurcation into second-order branches. In distal dendrites and in spines, the protein was found flanking or directly facing the postsynaptic density of symmetric and asymmetric synapses. Axons also expressed RGS4. In fact, the density and distribution of pre- and postsynaptic labeling was correlated with the axon ultrastructure and the type of established synapses. The data indicate that RGS4 is strategically positioned to regulate not only postsynaptic but also presynaptic signaling in response to synaptic and nonsynaptic GPCR activation, having broad yet highly selective influences on multiple aspects of PFC cellular physiology.
Collapse
|
61
|
Numbers, densities, and colocalization of AMPA- and NMDA-type glutamate receptors at individual synapses in the superficial spinal dorsal horn of rats. J Neurosci 2008; 28:9692-701. [PMID: 18815255 DOI: 10.1523/jneurosci.1551-08.2008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ionotropic glutamate receptors play important roles in spinal processing of nociceptive sensory signals and induction of central sensitization in chronic pain. Here we applied highly sensitive freeze-fracture replica labeling to laminae I-II of the spinal dorsal horn of rats and investigated the numbers, densities, and colocalization of AMPA- and NMDA-type glutamate receptors at individual postsynaptic membrane specializations with a high resolution. All glutamatergic postsynaptic membranes in laminae I-II expressed AMPA receptors, and most of them (96%) were also immunoreactive for the NR1 subunit of NMDA receptors. The numbers of gold particles for AMPA and NMDA receptors at individual postsynaptic membranes showed a linear correlation with the size of postsynaptic membrane specializations and varied in the range of 8-214 and 5-232 with median values of 37 and 28, whereas their densities varied in the range of 325-3365/microm(2) and 102-2263/microm(2) with median values of 1115/microm(2) and 777/microm(2), respectively. Virtually all (99%) glutamatergic postsynaptic membranes expressed GluR2, and most of them (87%) were also immunoreactive for GluR1. The numbers of gold particles for pan-AMPA, NR1, and GluR2 subunits showed a linear correlation with the size of postsynaptic surface areas. Concerning GluR1, there may be two populations of synapses with high and low GluR1 densities. In synapses larger than 0.1 microm(2), GluR1 subunits were recovered in very low numbers. Differential expression of GluR1 and GluR2 subunits suggests regulation of AMPA receptor subunit composition by presynaptic mechanism.
Collapse
|
62
|
Hellier JL, White A, Williams PA, Dudek FE, Staley KJ. NMDA receptor-mediated long-term alterations in epileptiform activity in experimental chronic epilepsy. Neuropharmacology 2008; 56:414-21. [PMID: 18930747 DOI: 10.1016/j.neuropharm.2008.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 09/11/2008] [Accepted: 09/12/2008] [Indexed: 10/21/2022]
Abstract
When epileptiform activity is acutely induced in vitro, transient partial blockade of N-methyl-d-aspartic acid (NMDA) receptor-mediated calcium influx leads to selective long-term depotentiation of the synapses involved in the epileptic activity as well as a reduction in the probability of further epileptiform activity. If such selective depotentiation occurred within foci of epileptic activity in vivo, the corresponding long-term reduction in seizure probability could form the basis for a novel treatment of epilepsy. Continuous radiotelemetric EEG monitoring demonstrated modest acute anticonvulsant effects but no long-term reductions in the probability of spontaneous seizures after transient partial blockade of NMDA receptors (NMDAR) during ictal and interictal activity in the kainate animal model of chronic epilepsy. In vitro, depotentiation was induced when NMDAR were partially blocked during epileptiform activity in hippocampal slices from control animals, but not in slices from chronically epileptic rats. However in slices from epileptic animals, depotentiation during epileptiform activity was induced by partial block of NMDAR using NR2B- but not NR2A-selective antagonists. These results suggest that chronic epileptic activity is associated with changes in NMDA receptor-mediated signaling that is reflected in the pharmacology of activity- and NMDA receptor-dependent depotentiation.
Collapse
Affiliation(s)
- Jennifer L Hellier
- Neuroscience Program, University of Colorado Health Sciences Center, United States
| | | | | | | | | |
Collapse
|
63
|
Burke SN, Maurer AP, Yang Z, Navratilova Z, Barnes CA. Glutamate receptor-mediated restoration of experience-dependent place field expansion plasticity in aged rats. Behav Neurosci 2008; 122:535-48. [PMID: 18513124 DOI: 10.1037/0735-7044.122.3.535] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Place fields of hippocampal pyramidal cells expand asymmetrically when adult rats repeatedly follow the same route. This behaviorally induced expression of neuronal plasticity uses an NMDAR-dependent, LTP-like mechanism and could be used by hippocampal networks to store information. Aged spatial memory-impaired rats exhibit defective experience-dependent place field expansion plasticity. One possible explanation for this aged-associated deficit is alterations in glutamatergic function. In fact, both NMDAR- and AMPAR-mediated field excitatory postsynaptic potentials in CA1 decrease with aging. The current study investigated whether modulation of either AMPA or NDMA receptor activity could restore this experience-dependent plasticity by prolonging AMPAR activity with the ampakine CX516 and modulating the NMDAR with the noncompetitive antagonist memantine. The spatial firing characteristics of multiple CA1 pyramidal cells were monitored under both treatment conditions as aged rats repeatedly traversed a circular track. Compared to the saline baseline condition, acute administration of memantine, but not CX516, reinstated experience-dependent place field expansion. Taken together, these data suggest that pharmacological manipulation of the NMDAR can improve the function of hippocampal networks critical to optimal cognition in aging.
Collapse
Affiliation(s)
- Sara N Burke
- Evelyn F. McKnight Brain Institute, Life Sciences North Building, Room 384, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | | | |
Collapse
|
64
|
Hojo Y, Murakami G, Mukai H, Higo S, Hatanaka Y, Ogiue-Ikeda M, Ishii H, Kimoto T, Kawato S. Estrogen synthesis in the brain--role in synaptic plasticity and memory. Mol Cell Endocrinol 2008; 290:31-43. [PMID: 18541362 DOI: 10.1016/j.mce.2008.04.017] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Accepted: 04/16/2008] [Indexed: 12/23/2022]
Abstract
Estrogen and androgen are synthesized from cholesterol locally in hippocampal neurons of adult animals. These neurosteroids are synthesized by cytochrome P450s and hydroxysteroid dehydrogenases (HSDs) and 5alpha-reductase. The expression levels of enzymes are as low as 1/200-1/50,000 of those in endocrine organs, however these numbers are high enough for local synthesis. Localization of P450(17alpha), P450arom, 17beta-HSD and 5alpha-reductase is observed in principal glutamatergic neurons in CA1, CA3 and the dendate gyrus. Several nanomolar levels of estrogen and androgen are observed in the hippocampus. Estrogen modulates memory-related synaptic plasticity not only slowly but also rapidly in the hippocampus. Rapid action of 17beta-estradiol via membrane receptors is demonstrated for spinogenesis and long-term depression (LTD). The enhancement of LTD by 1-10nM estradiol occurs within 1 h. The density of spine is increased in CA1 pyramidal neurons within 2h after application of estradiol. The density of spine-like structure is, however, decreased by estradiol in CA3 pyramidal neurons. ERalpha, but not ERbeta, induces the same enhancement/suppression effects on both spinogenesis and LTD.
Collapse
Affiliation(s)
- Yasushi Hojo
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Szyndler J, Maciejak P, Turzyńska D, Sobolewska A, Lehner M, Taracha E, Walkowiak J, Skórzewska A, Wisłowska-Stanek A, Hamed A, Bidziński A, Płaźnik A. Changes in the concentration of amino acids in the hippocampus of pentylenetetrazole-kindled rats. Neurosci Lett 2008; 439:245-9. [DOI: 10.1016/j.neulet.2008.05.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 02/14/2008] [Accepted: 05/05/2008] [Indexed: 10/22/2022]
|
66
|
Hara Y, Pickel VM. Preferential relocation of the N-methyl-D-aspartate receptor NR1 subunit in nucleus accumbens neurons that contain dopamine D1 receptors in rats showing an apomorphine-induced sensorimotor gating deficit. Neuroscience 2008; 154:965-77. [PMID: 18479834 PMCID: PMC2587121 DOI: 10.1016/j.neuroscience.2008.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 04/08/2008] [Indexed: 11/24/2022]
Abstract
Sensorimotor gating as measured by prepulse inhibition (PPI) to startle-evoking auditory stimulation (AS) is disrupted in schizophrenia and in rodents receiving systemic administration of apomorphine, a dopamine D1/D2 receptor agonist, or MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist. The functional analogies and our prior results showing apomorphine- and AS-induced relocation of the dopamine D1 receptor (D1R) in the nucleus accumbens (Acb) shell suggest that apomorphine and AS may affect the subcellular distribution of the NMDA receptor NR1 subunit, a protein that forms protein-protein interactions with the D1R. We quantitatively compared the electron microscopic immunogold labeling for NR1 in dendritic profiles distinguished with respect to presence of D1R immunoreactivity and location in the Acb shell or core of rats receiving a single s.c. injection of vehicle (VEH) or apomorphine (APO) alone, or combined with AS (VEH+AS, APO+AS). The rats in the APO+AS group were previously shown to have PPI deficits, whereas the rats in the VEH+AS group had normal PPI. A significantly higher percentage of plasmalemmal and a lower percentage of cytoplasmic NR1 immunogold particles were seen in D1R-labeled dendritic spines in the Acb shell of the APO+AS group compared with all other groups. D1R-containing small dendrites in the Acb shell of the APO+AS group also showed a significantly higher density of plasmalemmal and a lower density of cytoplasmic NR1 immunogold particles compared with VEH or APO groups. In the Acb core, the APO+AS group had significantly fewer dendritic spines co-expressing NR1 and D1R compared with VEH or VEH+AS groups. These results, together with our earlier findings, suggest that NMDA receptors are preferentially mobilized in D1R-containing Acb neurons of rats showing apomorphine-induced disruption of PPI in a paradigm using acoustic stimulation.
Collapse
Affiliation(s)
- Y Hara
- Division of Neurobiology, Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 411 East 69th Street KB-410, New York, NY 10021, USA
| | | |
Collapse
|
67
|
Newpher TM, Ehlers MD. Glutamate receptor dynamics in dendritic microdomains. Neuron 2008; 58:472-97. [PMID: 18498731 PMCID: PMC2572138 DOI: 10.1016/j.neuron.2008.04.030] [Citation(s) in RCA: 278] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Revised: 04/28/2008] [Accepted: 04/30/2008] [Indexed: 01/08/2023]
Abstract
Among diverse factors regulating excitatory synaptic transmission, the abundance of postsynaptic glutamate receptors figures prominently in molecular memory and learning-related synaptic plasticity. To allow for both long-term maintenance of synaptic transmission and acute changes in synaptic strength, the relative rates of glutamate receptor insertion and removal must be tightly regulated. Interactions with scaffolding proteins control the targeting and signaling properties of glutamate receptors within the postsynaptic membrane. In addition, extrasynaptic receptor populations control the equilibrium of receptor exchange at synapses and activate distinct signaling pathways involved in plasticity. Here, we review recent findings that have shaped our current understanding of receptor mobility between synaptic and extrasynaptic compartments at glutamatergic synapses, focusing on AMPA and NMDA receptors. We also examine the cooperative relationship between intracellular trafficking and surface diffusion of glutamate receptors that underlies the expression of learning-related synaptic plasticity.
Collapse
Affiliation(s)
- Thomas M. Newpher
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michael D. Ehlers
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
- Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
68
|
Pinheiro PS, Mulle C. Presynaptic glutamate receptors: physiological functions and mechanisms of action. Nat Rev Neurosci 2008; 9:423-36. [PMID: 18464791 DOI: 10.1038/nrn2379] [Citation(s) in RCA: 251] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Glutamate acts on postsynaptic glutamate receptors to mediate excitatory communication between neurons. The discovery that additional presynaptic glutamate receptors can modulate neurotransmitter release has added complexity to the way we view glutamatergic synaptic transmission. Here we review evidence of a physiological role for presynaptic glutamate receptors in neurotransmitter release. We compare the physiological roles of ionotropic and metabotropic glutamate receptors in short- and long-term regulation of synaptic transmission. Furthermore, we discuss the physiological conditions that are necessary for their activation, the source of the glutamate that activates them, their mechanisms of action and their involvement in higher brain function.
Collapse
Affiliation(s)
- Paulo S Pinheiro
- Laboratoire Physiologie Cellulaire de la Synapse, Centre National de la Recherche Scientifique Unite mixte de recherche 5091, Bordeaux Neuroscience Institute, University of Bordeaux, 33077 Bordeaux, France
| | | |
Collapse
|
69
|
Subcellular and subsynaptic localization of group I metabotropic glutamate receptors in the nucleus accumbens of cocaine-treated rats. Neuroscience 2008; 154:653-66. [PMID: 18479833 DOI: 10.1016/j.neuroscience.2008.03.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/06/2008] [Accepted: 03/20/2008] [Indexed: 10/22/2022]
Abstract
There is significant pharmacological and behavioral evidence that group I metabotropic glutamate receptors (mGluR1a and mGluR5) in the nucleus accumbens play an important role in the neurochemical and pathophysiological mechanisms that underlie addiction to psychostimulants. To further address this issue, we undertook a detailed ultrastructural analysis to characterize changes in the subcellular and subsynaptic localization of mGluR1a and mGluR5 in the core and shell of nucleus accumbens following acute or chronic cocaine administration in rats. After a single cocaine injection (30 mg/kg) and 45 min withdrawal, there was a significant decrease in the proportion of plasma membrane-bound mGluR1a in accumbens shell dendrites. Similarly, the proportion of plasma membrane-bound mGluR1a was decreased in large dendrites of accumbens core neurons following chronic cocaine exposure (i.e. 1-week treatment followed by 3-week withdrawal). However, neither acute nor chronic cocaine treatments induced significant change in the localization of mGluR5 in accumbens core and shell, which is in contrast with the significant reduction of plasma membrane-bound mGluR1a and mGluR5 induced by local intra-accumbens administration of the group I mGluR agonist, (RS)-3,5-dihydroxyphenylglycine (DHPG). In conclusion, these findings demonstrate that cocaine-induced glutamate imbalance has modest effects on the trafficking of group I mGluRs in the nucleus accumbens. These results provide valuable information on the neuroadaptive mechanisms of accumbens group I mGluRs in response to cocaine administration.
Collapse
|
70
|
Tippens AL, Pare JF, Langwieser N, Moosmang S, Milner TA, Smith Y, Lee A. Ultrastructural evidence for pre- and postsynaptic localization of Cav1.2 L-type Ca2+ channels in the rat hippocampus. J Comp Neurol 2008; 506:569-83. [PMID: 18067152 DOI: 10.1002/cne.21567] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In the hippocampal formation, Ca(v)1.2 (L-type) voltage-gated Ca(2+) channels mediate Ca(2+) signals that can trigger long-term alterations in synaptic efficacy underlying learning and memory. Immunocytochemical studies indicate that Ca(v)1.2 channels are localized mainly in the soma and proximal dendrites of hippocampal pyramidal neurons, but electrophysiological data suggest a broader distribution of these channels. To define the subcellular substrates underlying Ca(v)1.2 Ca(2+) signals, we analyzed the localization of Ca(v)1.2 in the hippocampal formation by using antibodies against the pore-forming alpha(1)-subunit of Ca(v)1.2 (alpha(1)1.2). By light microscopy, alpha(1)1.2-like immunoreactivity (alpha(1)1.2-IR) was detected in pyramidal cell soma and dendritic fields of areas CA1-CA3 and in granule cell soma and fibers in the dentate gyrus. At the electron microscopic level, alpha(1)1.2-IR was localized in dendrites, but also in axons, axon terminals, and glial processes in all hippocampal subfields. Plasmalemmal immunogold particles representing alpha(1)1.2-IR were more significant for small- than large-caliber dendrites and were largely associated with extrasynaptic regions in dendritic spines and axon terminals. These findings provide the first detailed ultrastructural analysis of Ca(v)1.2 localization in the brain and support functionally diverse roles of these channels in the hippocampal formation.
Collapse
Affiliation(s)
- Alyssa L Tippens
- Department of Pharmacology, Emory University, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Peddie CJ, Davies HA, Colyer FM, Stewart MG, Rodríguez JJ. Colocalisation of serotonin2A receptors with the glutamate receptor subunits NR1 and GluR2 in the dentate gyrus: an ultrastructural study of a modulatory role. Exp Neurol 2008; 211:561-73. [PMID: 18439999 DOI: 10.1016/j.expneurol.2008.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Revised: 03/03/2008] [Accepted: 03/06/2008] [Indexed: 11/24/2022]
Abstract
The serotonin(2A) receptor (5-HT(2A)R) is implicated in many neurological disorders and has a role in cognitive processes, reliant upon hippocampal glutamate receptors. Recent studies show that 5-HT(2A)R agonists and/or antagonists can influence cognitive function, suggesting a critical hippocampal role for these receptors, yet their cellular and subcellular distribution within this region has not been comprehensively analysed. Here, we have conducted an electron microscopic examination of 5-HT(2A)R distribution with the glutamate N-methyl-D-aspartate (NMDA) and amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptor subunits NR1 and GluR2 in the hippocampal dentate gyrus (DG) in order to investigate whether 5-HT(2A)R location is compatible with a modulatory role over NMDA and/or AMPA receptor mediated neurotransmission. Of 5-HT(2A)R positive profiles, 56% were dendrites and 16% were dendritic spines. Labelling was both cytoplasmic and membranous. Spinous labelling was more frequently membranous at peri- and extra-synaptic sites, though was also associated with synaptic specialisations. Profiles displaying colocalisation of immunoreactivity for 5-HT(2A)Rs with NR1 or GluR2 were predominantly dendrites, representing 11% and 8% of 5-HT(2A)R positive profiles, respectively. Additionally, 12% of 5-HT(2A)R labelled profiles also displayed immunoreactivity for gamma-aminobutyric acid (GABA). These data indicate most 5-HT(2A)Rs are expressed on granule cell projections, with a smaller subpopulation expressed on GABAergic interneurons.
Collapse
Affiliation(s)
- C J Peddie
- Department of Life Sciences, The Open University, Milton Keynes, MK7 6AA, UK.
| | | | | | | | | |
Collapse
|
72
|
Ogiue-Ikeda M, Tanabe N, Mukai H, Hojo Y, Murakami G, Tsurugizawa T, Takata N, Kimoto T, Kawato S. Rapid modulation of synaptic plasticity by estrogens as well as endocrine disrupters in hippocampal neurons. ACTA ACUST UNITED AC 2008; 57:363-75. [PMID: 17822775 DOI: 10.1016/j.brainresrev.2007.06.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2007] [Revised: 05/31/2007] [Accepted: 06/01/2007] [Indexed: 02/05/2023]
Abstract
Estrogen modulates memory-related synaptic plasticity not only slowly but also rapidly in the hippocampus. However, molecular mechanisms of the rapid action are yet largely unknown. We here describe rapid modulation of representative synaptic plasticity, i.e., long-term depression (LTD), long-term potentiation (LTP) and spinogenesis, by 17beta-estradiol, selective estrogen agonists as well as endocrine disrupters. The authors demonstrated that 1-10 nM estradiol induced rapid enhancement of LTD within 1 h in not only CA1 but also CA3 and dentate gyrus (DG). On the other hand, the modulation of LTP by estradiol was not statistically significant. The total density of spines was increased in CA1 pyramidal neurons, within 2 h after application of estradiol. The total density of thorns (postsynaptic spine-like structure) was, however, decreased by estradiol in CA3 pyramidal neurons. Both the increase of spines in CA1 and the decrease of thorns in CA3 were completely suppressed by Erk MAP kinase inhibitor. Only ERalpha agonist PPT induced the same enhancement/suppression effect as estradiol on both LTD and spinogenesis in CA1 and CA3. ERbeta agonist DPN induced completely different results. ERalpha localized in spines and presynapses of principal glutamatergic neurons in CA1, CA3 and DG. The same ERalpha was also located in nuclei and cytoplasm. Identification of ERalpha was successfully performed using purified RC-19 antibody. Non-purified ERalpha antisera, however, reacted significantly with unknown proteins, resulting in wrong immunostaining different from real ERalpha distribution. An issue of 'endocrine disrupters' (1-100 nM low dose of environmental chemicals), which are artificial xenoestrogenic or anti-xenoestrogenic substances, has emerged as a social and environmental problem. Endocrine disrupters were found to significantly modulate LTD and spinogenesis. Bisphenol A (BPA) and diethylstilbestrol (DES) enhanced LTD in CA1 and CA3. The total spine density was significantly increased by BPA and DES in CA1. Most probable receptors for BPA and DES may be Ralpha; however, other receptors might also be involved.
Collapse
Affiliation(s)
- Mari Ogiue-Ikeda
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Synapse elimination accompanies functional plasticity in hippocampal neurons. Proc Natl Acad Sci U S A 2008; 105:3123-7. [PMID: 18287055 DOI: 10.1073/pnas.0800027105] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A critical component of nervous system development is synapse elimination during early postnatal life, a process known to depend on neuronal activity. Changes in synaptic strength in the form of long-term potentiation (LTP) and long-term depression (LTD) correlate with dendritic spine enlargement or shrinkage, respectively, but whether LTD can lead to an actual separation of the synaptic structures when the spine shrinks or is lost remains unknown. Here, we addressed this issue by using concurrent imaging and electrophysiological recording of live synapses. Slices of rat hippocampus were cultured on multielectrode arrays, and the neurons were labeled with genes encoding red or green fluorescent proteins to visualize presynaptic and postsynaptic neuronal processes, respectively. LTD-inducing stimulation led to a reduction in the synaptic green and red colocalization, and, in many cases, it induced a complete separation of the presynaptic bouton from the dendritic spine. This type of synapse loss was associated with smaller initial spine size and greater synaptic depression but not spine shrinkage during LTD. All cases of synapse separation were observed without an accompanying loss of the spine during this period. We suggest that repeated low-frequency stimulation simultaneous with LTD induction is capable of restructuring synaptic contacts. Future work with this model will be able to provide critical insight into the molecular mechanisms of activity- and experience-dependent refinement of brain circuitry during development.
Collapse
|
74
|
Abstract
Long-term potentiation (LTP), a cellular model of learning and memory, produces both an enhancement of synaptic function and an increase in the size of the associated dendritic spine. Synaptic insertion of AMPA receptors is known to play an important role in mediating the increase in synaptic strength during LTP, whereas the role of AMPA receptor trafficking in structural changes remains unexplored. Here, we examine how the cell maintains the correlation between spine size and synapse strength during LTP. We found that cells exploit an elegant solution by linking both processes to a single molecule: the AMPA-type glutamate receptor subunit 1 (GluR1). Synaptic insertion of GluR1 is required to permit a stable increase in spine size, both in hippocampal slice cultures and in vivo. Synaptic insertion of GluR1 is not sufficient to drive structural plasticity. Although crucial to the expression of LTP, the ion channel function of GluR1 is not required for the LTP-driven spine size enhancement. Remarkably, a recombinant cytosolic C-terminal fragment (C-tail) of GluR1 is driven to the postsynaptic density after an LTP stimulus, and the synaptic incorporation of this isolated GluR1 C-tail is sufficient to permit spine enlargement even when postsynaptic exocytosis of endogenous GluR1 is blocked. We conclude that during plasticity, synaptic insertion of GluR1 has two functions: the established role of increasing synaptic strength via its ligand-gated ion channel, and a novel role through the structurally stabilizing effect of its C terminus that permits an increase in spine size.
Collapse
|
75
|
Store-operated Ca2+ entry in astrocytes: different spatial arrangement of endoplasmic reticulum explains functional diversity in vitro and in situ. Cell Calcium 2007; 43:591-601. [PMID: 18054077 DOI: 10.1016/j.ceca.2007.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 09/19/2007] [Accepted: 10/05/2007] [Indexed: 11/23/2022]
Abstract
Ca(2+) signaling is the astrocyte form of excitability and the endoplasmic reticulum (ER) plays an important role as an intracellular Ca(2+) store. Since the subcellular distribution of the ER influences Ca(2+) signaling, we compared the arrangement of ER in astrocytes of hippocampus tissue and astrocytes in cell culture by electron microscopy. While the ER was usually located in close apposition to the plasma membrane in astrocytes in situ, the ER in cultured astrocytes was close to the nuclear membrane. Activation of metabotropic receptors linked to release of Ca(2+) from ER stores triggered distinct responses in cultured and in situ astrocytes. In culture, Ca(2+) signals were commonly first recorded close to the nucleus and with a delay at peripheral regions of the cells. Store-operated Ca(2+) entry (SOC) as a route to refill the Ca(2+) stores could be easily identified in cultured astrocytes as the Zn(2+)-sensitive component of the Ca(2+) signal. In contrast, such a Zn(2+)-sensitive component was not recorded in astrocytes from hippocampal slices despite of evidence for SOC. Our data indicate that both, astrocytes in situ and in vitro express SOC necessary to refill stores, but that a SOC-related signal is not recorded in the cytoplasm of astrocytes in situ since the stores are close to the plasma membrane and the refill does not affect cytoplasmic Ca(2+) levels.
Collapse
|
76
|
Soleimannejad E, Naghdi N, Semnanian S, Fathollahi Y, Kazemnejad A. Antinociceptive effect of intra-hippocampal CA1 and dentate gyrus injection of MK801 and AP5 in the formalin test in adult male rats. Eur J Pharmacol 2007; 562:39-46. [PMID: 17362915 DOI: 10.1016/j.ejphar.2006.11.051] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2006] [Revised: 11/10/2006] [Accepted: 11/24/2006] [Indexed: 11/17/2022]
Abstract
Previous research has shown that the hippocampus processes pain related-information, probably through hippocampal neurons that respond exclusively to painful stimulation. In the current experiments we tested whether blocking NMDA receptors in the hippocampal CA1 region and dentate gyrus could reduce nociceptive behaviors in rats. The competitive and noncompetitive NMDA receptor antagonists 2-amino-5-phosphonopentanoic acid (AP5; 3.75 microg/0.75 microl) and MK801 (1.5, 3, 6 microg/0.5 microl) were injected into the dentate gyrus and CA1 area of behaving rats 5 min before subcutaneous injection of formalin irritant. Pain behaviors in both acute and tonic phases of the formalin test were significantly reduced by AP5 (3.75 microg/0.75 microl) and MK801 (3 microg/0.5 microl, but not 1.5 and 6 microg/0.5 microl) injection to the dentate gyrus. In the CA1, injection of AP5 had no effect while injection of the effective dose of MK801 (3 microg/0.5 microl) had a significant antinociceptive effect. This effect was apparent only during the late phase of the formalin test. These results support the hypothesis that NMDA-sensitive mechanisms are involved in acute and persistent pain-related processing in the dentate gyrus and with tonic pain processing in the hippocampal CA1 region.
Collapse
Affiliation(s)
- Elaheh Soleimannejad
- School of Cognitive Sciences, Institute for Studies in Theoretical Physics and Mathematics (IPM), Niavaran, P.O.Box 19395-5746,Tehran, Iran
| | | | | | | | | |
Collapse
|
77
|
Bats C, Groc L, Choquet D. The interaction between Stargazin and PSD-95 regulates AMPA receptor surface trafficking. Neuron 2007; 53:719-34. [PMID: 17329211 DOI: 10.1016/j.neuron.2007.01.030] [Citation(s) in RCA: 444] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 12/11/2006] [Accepted: 01/26/2007] [Indexed: 10/23/2022]
Abstract
Accumulation of AMPA receptors at synapses is a fundamental feature of glutamatergic synaptic transmission. Stargazin, a member of the TARP family, is an AMPAR auxiliary subunit allowing interaction of the receptor with scaffold proteins of the postsynaptic density, such as PSD-95. How PSD-95 and Stargazin regulate AMPAR number in synaptic membranes remains elusive. We show, using single quantum dot and FRAP imaging in live hippocampal neurons, that exchange of AMPAR by lateral diffusion between extrasynaptic and synaptic sites mostly depends on the interaction of Stargazin with PSD-95 and not upon the GluR2 AMPAR subunit C terminus. Disruption of interactions between Stargazin and PSD-95 strongly increases AMPAR surface diffusion, preventing AMPAR accumulation at postsynaptic sites. Furthermore, AMPARs and Stargazin diffuse as complexes in and out synapses. These results propose a model in which the Stargazin-PSD-95 interaction plays a key role to trap and transiently stabilize diffusing AMPARs in the postsynaptic density.
Collapse
Affiliation(s)
- Cecile Bats
- Physiologie Cellulaire de la Synapse, UMR 5091 CNRS - Institut François Magendie, Université Bordeaux, Bordeaux 33077, France
| | | | | |
Collapse
|
78
|
Pitkänen A, Mathiesen C, Rønn LCB, Møller A, Nissinen J. Effect of novel AMPA antagonist, NS1209, on status epilepticus. Epilepsy Res 2007; 74:45-54. [PMID: 17289347 DOI: 10.1016/j.eplepsyres.2006.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 12/19/2006] [Accepted: 12/22/2006] [Indexed: 10/23/2022]
Abstract
The current first line treatment of status epilepticus (SE) is based on the use of compounds that enhance GABAergic transmission or block sodium channels. These treatments discontinue SE in only two-thirds of patients, and therefore new therapeutic approaches are needed. We investigated whether a novel water-soluble AMPA antagonist, NS1209, discontinues SE in adult rats. SE was induced by electrical stimulation of the amygdala or subcutaneous administration of kainic acid. Animals were monitored continuously with video-electroencephalography during SE and drug treatment. We found that NS1209 could be safely administered to rats undergoing electrically induced SE at doses up to 50mg/kg followed by intravenous infusion of 5mg/kg for up to 24h. NS1209 administered as a bolus dose of 10-50mg/kg (i.p. or i.v.) followed by infusion of 4 or 5mg/kg h (i.v.) for 2-24h effectively discontinued electrically induced SE in all animals within 30-60 min, and there was no recurrence of SE after a 24-h infusion. Kainate-induced SE was similarly blocked by 10 or 30 mg/kg NS1209 (i.v.). To compare the efficacy and neuroprotective effects of NS1209 with those of diazepam (DZP), one group of rats received DZP (20mg/kg, i.p. and another dose of 10 mg/kg 6h later). By using the administration protocols described, the anticonvulsant effect of NS1209 was faster and more complete than that of DZP. NS1209 treatment (20 mg/kg bolus followed by 5mg/kg h infusion for 24 h) was neuroprotective against SE-induced hippocampal neurodegeneration, but to a lesser extent than DZP. These findings suggest that AMPA receptor blockade by NS1209 provides a novel and mechanistically complimentary addition to the armamentarium of drugs used to treat SE in humans.
Collapse
Affiliation(s)
- Asla Pitkänen
- A.I. Virtanen Institute, University of Kuopio, PO Box 1627, FIN-70 211 Kuopio, Finland.
| | | | | | | | | |
Collapse
|
79
|
Masugi-Tokita M, Tarusawa E, Watanabe M, Molnár E, Fujimoto K, Shigemoto R. Number and density of AMPA receptors in individual synapses in the rat cerebellum as revealed by SDS-digested freeze-fracture replica labeling. J Neurosci 2007; 27:2135-44. [PMID: 17314308 PMCID: PMC6673557 DOI: 10.1523/jneurosci.2861-06.2007] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The number of AMPA receptor (AMPAR) is the major determinant of synaptic strength at glutamatergic synapses, but little is known about the absolute number and density of AMPARs in individual synapses. Using SDS-digested freeze-fracture replica labeling, which has high detection efficiency comparable with electrophysiological noise analysis for functional AMPAR, we analyzed three kinds of excitatory synapses in the molecular layer of the adult rat cerebellum. In parallel fiber (PF)-Purkinje cell (PC) synapses, we found large variability in the number (38.1 +/- 34.4 particles per synapse, mean +/- SD; range, 2-178 particles per synapse) and density (437 +/- 277 particles/microm2; range, 48-1210 particles/microm2) of immunogold-labeled AMPARs. Two-dimensional view and high sensitivity of this method revealed irregular-shaped small AMPAR clusters within synapses. Climbing fiber (CF)-PC synapses had higher number of AMPAR labeling (68.6 +/- 34.5 particles per synapse) than PF-PC and PF-interneuron synapses (36.8 +/- 14.4 particles per synapse). Furthermore, AMPAR density at CF-PC and PF-interneuron synapses was approximately five times higher and more uniform than that at PF-PC synapses. These results suggest input- and target-dependent regulation of AMPAR-mediated synaptic strength.
Collapse
Affiliation(s)
- Miwako Masugi-Tokita
- Division of Cerebral Structure, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8787, Japan
- Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Etsuko Tarusawa
- Division of Cerebral Structure, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8787, Japan
- Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- Department of Physiological Sciences, Graduate University for Advanced Studies, Sokendai 444-8787, Japan
| | | | - Elek Molnár
- Medical Research Council, Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom, and
| | - Kazushi Fujimoto
- Section of Physiological Anatomy, Fukui Prefectural University, Fukui 910-1195, Japan
| | - Ryuichi Shigemoto
- Division of Cerebral Structure, National Institute for Physiological Sciences, Myodaiji, Okazaki 444-8787, Japan
- Solution Oriented Research for Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
- Department of Physiological Sciences, Graduate University for Advanced Studies, Sokendai 444-8787, Japan
| |
Collapse
|
80
|
Rostaing P, Real E, Siksou L, Lechaire JP, Boudier T, Boeckers TM, Gertler F, Gundelfinger ED, Triller A, Marty S. Analysis of synaptic ultrastructure without fixative using high-pressure freezing and tomography. Eur J Neurosci 2007; 24:3463-74. [PMID: 17229095 DOI: 10.1111/j.1460-9568.2006.05234.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electron microscopy allows the analysis of synaptic ultrastructure and its modifications during learning or in pathological conditions. However, conventional electron microscopy uses aldehyde fixatives that alter the morphology of the synapse by changing osmolarity and collapsing its molecular components. We have used high-pressure freezing (HPF) to capture within a few milliseconds structural features without aldehyde fixative, and thus to provide a snapshot of living synapses. CA1 hippocampal area slices from P21 rats were frozen at -173 degrees C under high pressure to reduce crystal formation, and synapses on dendritic spines were analysed after cryosubstitution and embedding. Synaptic terminals were larger than after aldehyde fixation, and synaptic vesicles in these terminals were less densely packed. Small filaments linked the vesicles in subgroups. The postsynaptic densities (PSDs) exhibited filamentous projections extending into the spine cytoplasm. Tomographic analysis showed that these projections were connected with the spine cytoskeletal meshwork. Using immunocytochemistry, we found as expected GluR1 at the synaptic cleft and CaMKII in the PSD. Actin immunoreactivity (IR) labelled the cytoskeletal meshwork beneath the filamentous projections, but was very scarce within the PSD itself. ProSAP2/Shank3, cortactin and Ena/VASP-IRs were concentrated on the cytoplasmic face of the PSD, at the level of the PSD projections. Synaptic ultrastructure after HPF was different from that observed after aldehyde fixative. The boutons were larger, and filamentous components were preserved. Particularly, filamentous projections were observed linking the PSD to the actin cytoskeleton. Thus, synaptic ultrastructure can be analysed under more realistic conditions following HPF.
Collapse
Affiliation(s)
- Philippe Rostaing
- INSERM U789, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Chong A, Zhang Z, Choi KP, Choudhary V, Djamgoz MBA, Zhang G, Bajic VB. Promoter profiling and coexpression data analysis identifies 24 novel genes that are coregulated with AMPA receptor genes, GRIAs. Genomics 2007; 89:378-84. [PMID: 17208408 DOI: 10.1016/j.ygeno.2006.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 11/14/2006] [Accepted: 11/24/2006] [Indexed: 11/17/2022]
Abstract
We identified a set of transcriptional elements that are conserved and overrepresented within the promoters of human, mouse, and rat GRIAs by comparing these promoters against a collection of 10,741 gene promoters. Cells regulate functional groups of genes by coordinating the transcriptional and/or posttranscriptional mRNA levels of interacting genes. As such, it is expected that functional groups of genes share the same transcriptional features within their promoters. We found 47 genes whose promoters contain the same combination of transcriptional elements that are overrepresented within the promoters of the GRIA gene family. Coexpressed genes may be transcriptionally coregulated, which in turn suggests that these genes may play complementary roles within a particular functional context. Using microarray expression data, we found 24 (of the 47) genes that share not only a similar promoter profile with GRIAs but also a well-correlated gene expression profile and, thus, we believe these to be coregulated with GRIAs.
Collapse
Affiliation(s)
- Allen Chong
- Molecular Bioinformatics Group, Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613, Singapore.
| | | | | | | | | | | | | |
Collapse
|
82
|
Fukaya M, Tsujita M, Yamazaki M, Kushiya E, Abe M, Akashi K, Natsume R, Kano M, Kamiya H, Watanabe M, Sakimura K. Abundant distribution of TARP gamma-8 in synaptic and extrasynaptic surface of hippocampal neurons and its major role in AMPA receptor expression on spines and dendrites. Eur J Neurosci 2006; 24:2177-90. [PMID: 17074043 DOI: 10.1111/j.1460-9568.2006.05081.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Transmembrane alpha-amino-3-hydroxyl-5-isoxazolepropionate (AMPA) receptor regulatory proteins (TARPs) play pivotal roles in AMPA receptor trafficking and gating. Here we examined cellular and subcellular distribution of TARP gamma-8 in the mouse brain. Immunoblot and immunofluorescence revealed the highest concentration of gamma-8 in the hippocampus. Immunogold electron microscopy demonstrated dense distribution of gamma-8 on the synaptic and extrasynaptic surface of hippocampal neurons with very low intracellular labeling. Of the neuronal surface, gamma-8 was distributed at the highest level on asymmetrical synapses of pyramidal cells and interneurons, whereas their symmetrical synapses selectively lacked immunogold labeling. Then, the role of gamma-8 in AMPA receptor expression was pursued in the hippocampus using mutant mice defective in the gamma-8 gene. In the mutant cornu ammonis (CA)1 region, synaptic and extrasynaptic AMPA receptors on dendrites and spines were severely reduced to 35-37% of control levels, whereas reduction was mild for extrasynaptic receptors on somata (74%) and no significant decrease was seen for intracellular receptors within spines. In the mutant CA3 region, synaptic AMPA receptors were reduced mildly at asymmetrical synapses in the stratum radiatum (67% of control level), and showed no significant decrease at mossy fiber-CA3 synapses. Therefore, gamma-8 is abundantly distributed on hippocampal excitatory synapses and extrasynaptic membranes, and plays an important role in increasing the number of synaptic and extrasynaptic AMPA receptors on dendrites and spines, particularly, in the CA1 region. Variable degrees of reduction further suggest that other TARPs may also mediate this function at different potencies depending on hippocampal subregions, input sources and neuronal compartments.
Collapse
Affiliation(s)
- Masahiro Fukaya
- Department of Anatomy, Hokkaido University School of Medicine, Sapporo 060-8638, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Orbán G, Kiss T, Erdi P. Intrinsic and Synaptic Mechanisms Determining the Timing of Neuron Population Activity During Hippocampal Theta Oscillation. J Neurophysiol 2006; 96:2889-904. [PMID: 16899632 DOI: 10.1152/jn.01233.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hippocampal theta (3–8 Hz) is a major electrophysiological activity in rodents, which can be found in primates and humans as well. During theta activity, pyramidal cells and different classes of interneurons were shown to discharge at different phases of the extracellular theta. A recent in vitro study has shown that theta-frequency oscillation can be elicited in a hippocampal CA1 slice by the activation of metabotropic glutamate receptors with similar pharmacological and physiological profile that was found in vivo. We constructed a conductance based three-population network model of the hippocampal CA1 region to study the specific roles of neuron types in the generation of the in vitro theta oscillation and the emergent network properties. Interactions between pairs of neuron populations were studied systematically to assess synchronization and delay properties. We showed that the circuitry consisting of pyramidal cells and two types of hippocampal interneurons [basket and oriens lacunosum-moleculare (O-LM) neurons] was able to generate coherent theta-frequency population oscillation. Furthermore, we found that hyperpolarization-activated nonspecific cation current in pyramidal cells, but not in O-LM neurons, plays an important role in the timing of spike generation, and thus synchronization of pyramidal cells. The model was shown to exhibit the same phase differences between neuron population activities found in vivo, supporting the idea that these patterns of activity are determined internal to the hippocampus.
Collapse
Affiliation(s)
- Gergo Orbán
- Department of Biophysics, KFKI Research Inst. for Particle and Nuclear Physics, Hungarian Academy of Sciences, 29-33 Konkoly-Thege M. út, Budapest H-1121, Hungary.
| | | | | |
Collapse
|
84
|
Zhang J, Diamond JS. Distinct perisynaptic and synaptic localization of NMDA and AMPA receptors on ganglion cells in rat retina. J Comp Neurol 2006; 498:810-20. [PMID: 16927255 PMCID: PMC2577313 DOI: 10.1002/cne.21089] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
At most excitatory synapses, AMPA and NMDA receptors (AMPARs and NMDARs) occupy the postsynaptic density (PSD) and contribute to miniature excitatory postsynaptic currents (mEPSCs) elicited by single transmitter quanta. Juxtaposition of AMPARs and NMDARs may be crucial for certain types of synaptic plasticity, although extrasynaptic NMDARs may also contribute. AMPARs and NMDARs also contribute to evoked EPSCs in retinal ganglion cells (RGCs), but mEPSCs are mediated solely by AMPARs. Previous work indicates that an NMDAR component emerges in mEPSCs when glutamate uptake is reduced, suggesting that NMDARs are located near the release site but perhaps not directly beneath in the PSD. Consistent with this idea, NMDARs on RGCs encounter a lower glutamate concentration during synaptic transmission than do AMPARs. To understand better the roles of NMDARs in RGC function, we used immunohistochemical and electron microscopic techniques to determine the precise subsynaptic localization of NMDARs in RGC dendrites. RGC dendrites were labeled retrogradely with cholera toxin B subunit (CTB) injected into the superior colliculus (SC) and identified using postembedding immunogold methods. Colabeling with antibodies directed toward AMPARs and/or NMDARs, we found that nearly all AMPARs are located within the PSD, while most NMDARs are located perisynaptically, 100-300 nm from the PSD. This morphological evidence for exclusively perisynaptic NMDARs localizations suggests a distinct role for NMDARs in RGC function.
Collapse
Affiliation(s)
- Jun Zhang
- Synaptic Physiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-3701, USA
| | | |
Collapse
|
85
|
Galvan A, Kuwajima M, Smith Y. Glutamate and GABA receptors and transporters in the basal ganglia: what does their subsynaptic localization reveal about their function? Neuroscience 2006; 143:351-75. [PMID: 17059868 PMCID: PMC2039707 DOI: 10.1016/j.neuroscience.2006.09.019] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 09/10/2006] [Accepted: 09/13/2006] [Indexed: 01/29/2023]
Abstract
GABA and glutamate, the main transmitters in the basal ganglia, exert their effects through ionotropic and metabotropic receptors. The dynamic activation of these receptors in response to released neurotransmitter depends, among other factors, on their precise localization in relation to corresponding synapses. The use of high resolution quantitative electron microscope immunocytochemical techniques has provided in-depth description of the subcellular and subsynaptic localization of these receptors in the CNS. In this article, we review recent findings on the ultrastructural localization of GABA and glutamate receptors and transporters in monkey and rat basal ganglia, at synaptic, extrasynaptic and presynaptic sites. The anatomical evidence supports numerous potential locations for receptor-neurotransmitter interactions, and raises important questions regarding mechanisms of activation and function of synaptic versus extrasynaptic receptors in the basal ganglia.
Collapse
Affiliation(s)
- A Galvan
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
86
|
Holmes WR, Grover LM. Quantifying the magnitude of changes in synaptic level parameters with long-term potentiation. J Neurophysiol 2006; 96:1478-91. [PMID: 16760350 DOI: 10.1152/jn.00248.2006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Experimental evidence supports a number of mechanisms for the synaptic change that occurs with long-term potentiation (LTP) including insertion of AMPA receptors, an increase in AMPA receptor single channel conductance, unmasking silent synapses, and increases in vesicle release probability. Here we combine experimental and modeling studies to quantify the magnitude of the change needed at the synaptic level to explain LTP with these proposed mechanisms. Whole cell patch recordings were used to measure excitatory postsynaptic potential (EPSP) amplitude in response to near minimal afferent stimulation before and after LTP induction in CA1 pyramidal cells. Detailed neuron and synapse level models were constructed to estimate quantitatively the changes needed to explain the experimental results. For cells in normal artificial cerebrospinal fluid (ACSF), we found a 60% average increase in EPSP amplitude with LTP. This was explained in the models by a 63% increase in the number of activated synapses, a 64% increase in the AMPA receptor single channel conductance, or a 73% increase in the number of AMPA receptors per potentiated synapse. When the percentage LTP was above the average, the required increases through the proposed mechanisms became nonlinear, particularly for increases in the number of receptors. Given constraints from other experimental studies, our quantification suggests that neither unmasking silent synapses nor increasing the numbers of AMPA receptors at synapses is sufficient to explain the magnitude of LTP we observed, but increasing AMPA single channel conductance or vesicle release probability can be sufficient. Our results are most compatible with a combination of mechanisms producing LTP.
Collapse
Affiliation(s)
- William R Holmes
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, OH 45701, USA.
| | | |
Collapse
|
87
|
Yoshida T, Fukaya M, Uchigashima M, Miura E, Kamiya H, Kano M, Watanabe M. Localization of diacylglycerol lipase-alpha around postsynaptic spine suggests close proximity between production site of an endocannabinoid, 2-arachidonoyl-glycerol, and presynaptic cannabinoid CB1 receptor. J Neurosci 2006; 26:4740-51. [PMID: 16672646 PMCID: PMC6674155 DOI: 10.1523/jneurosci.0054-06.2006] [Citation(s) in RCA: 277] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
2-arachidonoyl-glycerol (2-AG) is an endocannabinoid that is released from postsynaptic neurons, acts retrogradely on presynaptic cannabinoid receptor CB1, and induces short- and long-term suppression of transmitter release. To understand the mechanisms of the 2-AG-mediated retrograde modulation, we investigated subcellular localization of a major 2-AG biosynthetic enzyme, diacylglycerol lipase-alpha (DAGLalpha), by using immunofluorescence and immunoelectron microscopy in the mouse brain. In the cerebellum, DAGLalpha was predominantly expressed in Purkinje cells. DAGLalpha was detected on the dendritic surface and occasionally on the somatic surface, with a distal-to-proximal gradient from spiny branchlets toward somata. DAGLalpha was highly concentrated at the base of spine neck and also accumulated with much lower density on somatodendritic membrane around the spine neck. However, DAGLalpha was excluded from the main body of spine neck and head. In hippocampal pyramidal cells, DAGLalpha was also accumulated in spines. In contrast to the distribution in Purkinje cells, DAGLalpha was distributed in the spine head, neck, or both, whereas somatodendritic membrane was labeled very weakly. These results indicate that DAGLalpha is essentially targeted to postsynaptic spines in cerebellar and hippocampal neurons, but its fine distribution within and around spines is differently regulated between the two neurons. The preferential spine targeting should enable efficient 2-AG production on excitatory synaptic activity and its swift retrograde modulation onto nearby presynaptic terminals expressing CB1. Furthermore, different fine localization within and around spines suggests that the distance between postsynaptic 2-AG production site and presynaptic CB1 is differentially controlled depending on neuron types.
Collapse
|
88
|
Kopec CD, Li B, Wei W, Boehm J, Malinow R. Glutamate receptor exocytosis and spine enlargement during chemically induced long-term potentiation. J Neurosci 2006; 26:2000-9. [PMID: 16481433 PMCID: PMC6674938 DOI: 10.1523/jneurosci.3918-05.2006] [Citation(s) in RCA: 381] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The changes in synaptic morphology and receptor content that underlie neural plasticity are poorly understood. Here, we use a pH-sensitive green fluorescent protein to tag recombinant glutamate receptors and monitor their dynamics onto dendritic spine surfaces. We show that chemically induced long-term potentiation (chemLTP) drives robust exocytosis of AMPA receptors. In contrast, the same stimulus produces a small reduction of NMDA receptors from the spine surface. chemLTP produces similar modification of small and large spines. Interestingly, during chemLTP induction, spines increase in volume before accumulation of AMPA receptors on their surface, indicating that distinct mechanisms underlie changes in morphology and receptor content.
Collapse
|
89
|
Tsurugizawa T, Mukai H, Tanabe N, Murakami G, Hojo Y, Kominami S, Mitsuhashi K, Komatsuzaki Y, Morrison JH, Janssen WGM, Kimoto T, Kawato S. Estrogen induces rapid decrease in dendritic thorns of CA3 pyramidal neurons in adult male rat hippocampus. Biochem Biophys Res Commun 2005; 337:1345-52. [PMID: 16242668 DOI: 10.1016/j.bbrc.2005.09.188] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2005] [Accepted: 09/26/2005] [Indexed: 10/25/2022]
Abstract
Modulation of hippocampal synaptic plasticity by estrogen has been attracting much attention. Thorns of thorny excrescences of CA3 hippocampal neurons are post-synaptic regions whose presynaptic partners are mossy fiber terminals. Here we demonstrated the rapid effect of estradiol on the density of thorns of thorny excrescences, by imaging Lucifer Yellow-injected CA3 neurons in adult male rat hippocampal slices. The application of 1nM estradiol induced rapid decrease in the density of thorns on pyramidal neurons within 2h. The estradiol-mediated decrease in the density of thorns was blocked by CNQX (AMPA receptor antagonist) and PD98059 (MAP kinase inhibitor), but not by MK-801 (NMDA receptor antagonist). ERalpha agonist PPT induced the same suppressive effect as that induced by estradiol on the density of thorns, but ERbeta agonist DPN did not affect the density of thorns. Note that a 1nM estradiol treatment did not affect the density of spines in the stratum radiatum and stratum oriens. A search for synaptic ERalpha was performed using purified RC-19 antibody. The localization of ERalpha (67kDa) in the CA3 mossy fiber terminals and thorns was demonstrated using immunogold electron microscopy. These results imply that estradiol drives the signaling pathway including ERalpha and MAP kinase.
Collapse
Affiliation(s)
- Tomokazu Tsurugizawa
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo at Komaba, 3-8-1 Meguro, Tokyo 153, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Zilberter Y, Harkany T, Holmgren CD. Dendritic release of retrograde messengers controls synaptic transmission in local neocortical networks. Neuroscientist 2005; 11:334-44. [PMID: 16061520 DOI: 10.1177/1073858405275827] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The contribution of retrograde signaling to information processing in the brain has been contemplated for a long time, especially with respect to central nervous system development and long-term synaptic plasticity. During the past few years, however, the concept of retrograde signaling has been expanding to include short-term modifications of synaptic efficacy. The classic point of view on synaptic transmission represents it as a unidirectional transfer of information from presynaptic to postsynaptic sites. This paradigm has, however, been questioned in several experimental studies of neurons in different brain regions. These results suggest that a fast retrograde signal, which provides feedback, exists in active synaptic contacts. In particular, it was found that the dendritic release of retrograde messengers controls the efficacy of synaptic transmission in both excitatory and inhibitory connections between neocortical pyramidal cells and interneurons. The present review discusses these findings and the mechanisms underlying synaptic retrograde signaling.
Collapse
|
91
|
Hagiwara A, Fukazawa Y, Deguchi-Tawarada M, Ohtsuka T, Shigemoto R. Differential distribution of release-related proteins in the hippocampal CA3 area as revealed by freeze-fracture replica labeling. J Comp Neurol 2005; 489:195-216. [PMID: 15983999 DOI: 10.1002/cne.20633] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Synaptic vesicle release occurs at a specialized membrane domain known as the presynaptic active zone (AZ). Several membrane proteins are involved in the vesicle release processes such as docking, priming, and exocytotic fusion. Cytomatrix at the active zone (CAZ) proteins are structural components of the AZ and are highly concentrated in it. Localization of other release-related proteins including target soluble N-ethylmaleimide-sensitive-factor attachment protein receptor (t-SNARE) proteins, however, has not been well demonstrated in the AZ. Here, we used sodium dodecyl sulfate-digested freeze-fracture replica labeling (SDS-FRL) to analyze quantitatively the distribution of CAZ and t-SNARE proteins in the hippocampal CA3 area. The AZ in replicated membrane was identified by immunolabeling for CAZ proteins (CAZ-associated structural protein [CAST] and Bassoon). Clusters of immunogold particles for these proteins were found on the P-face of presynaptic terminals of the mossy fiber and associational/commissural (A/C) fiber. Co-labeling with CAST revealed distribution of the t-SNARE proteins syntaxin and synaptosomal-associated protein of 25 kDa (SNAP-25) in the AZ as well as in the extrasynaptic membrane surrounding the AZ (SZ). Quantitative analysis demonstrated that the density of immunoparticles for CAST in the AZ was more than 100 times higher than in the SZ, whereas that for syntaxin and SNAP-25 was not significantly different between the AZ and SZ in both the A/C and mossy fiber terminals. These results support the involvement of the t-SNARE proteins in exocytotic fusion in the AZ and the role of CAST in specialization of the membrane domain for the AZ.
Collapse
Affiliation(s)
- Akari Hagiwara
- Division of Cerebral Structure, National Institute for Physiological Sciences, Okazaki 444-8787, Japan.
| | | | | | | | | |
Collapse
|
92
|
Paspalas CD, Goldman-Rakic PS. Presynaptic D1 dopamine receptors in primate prefrontal cortex: target-specific expression in the glutamatergic synapse. J Neurosci 2005; 25:1260-7. [PMID: 15689564 PMCID: PMC6725972 DOI: 10.1523/jneurosci.3436-04.2005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dopaminergic modulation of glutamate neurotransmission in prefrontal cortex (PFC) microcircuits is commonly perceived as a basis for cognitive operations. Yet it appears that although the control of recurrent excitation between deep-layer prefrontal pyramids may involve presynaptic and postsynaptic D1 receptor (D1R) mechanisms, pyramid-to-interneuron communication will engage a postsynaptic D1R component. The substrate underlying such target-specific neuromodulatory patterns was investigated in the infragranular PFC with immunoelectron microscopy for D1R and parvalbumin, a marker for fast-spiking interneurons. In addition to their proverbial postsynaptic expression, gold-labeled D1Rs were distinctly distributed on perisynaptic/extrasynaptic membranes and the axoplasm of 13% of excitatory-like, presumably glutamatergic varicosities. Most importantly, presynaptic D1Rs were highly specific with regard to the cellular compartment and neurochemical identity of the postsynaptic neuron, being present in spine-targeting varicosities but distinctly absent from those synapsing with parvalbumin profiles often coexpressing D1Rs. We define therein an axonal D1 heteroreceptor component, apparently mediating volume neurotransmission, yet strategically positioned to convey target cell-specific modulation of the glutamatergic drive. We also indicate that presynaptic D1R mechanisms may indeed be associated with recurrent excitation in prefrontal microcircuits, consistent with physiological evidence for a role of these receptors in modulating the persistent activity-profile of neurons essential for working memory.
Collapse
Affiliation(s)
- Constantinos D Paspalas
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
93
|
Jabs R, Pivneva T, Hüttmann K, Wyczynski A, Nolte C, Kettenmann H, Steinhäuser C. Synaptic transmission onto hippocampal glial cells with hGFAP promoter activity. J Cell Sci 2005; 118:3791-803. [PMID: 16076898 DOI: 10.1242/jcs.02515] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Glial cells increasingly gain importance as part of the brain's communication network. Using transgenic mice expressing green fluorescent protein (EGFP) under the control of the human GFAP promoter, we tested for synaptic input to identified glial cells in the hippocampus. Electron microscopic inspection identified synapse-like structures with EGFP-positive postsynaptic compartments. Sub-threshold stimulation to Schaffer collaterals resulted in stimulus-correlated, postsynaptic responses in a subpopulation of EGFP-positive cells studied with the patch-clamp technique in acute slices. This cell population can be recognized by its distinct morphology and has been termed GluR cells in a preceding study. These cells are distinct from the classical astrocytes due to their antigen profile and functional properties, but also lack characteristic features of oligodendrocytes or neurons. GluR cells also received spontaneous synaptic input. Stimulus-correlated and spontaneous responses were quantitatively analysed by ascertaining amplitude distributions, failure rates, kinetics as well as pharmacological properties. The data demonstrate that GABAergic and glutamatergic neurons directly synapse onto GluR cells and suggest a low number of neuronal release sites. These data demonstrate that a distinct type of glial cells is integrated into the synaptic circuit of the hippocampus, extending the finding that synapse-based brain information processing is not a property exclusive to neurons.
Collapse
Affiliation(s)
- Ronald Jabs
- Experimental Neurobiology, Department of Neurosurgery, University of Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany.
| | | | | | | | | | | | | |
Collapse
|
94
|
Gryder DS, Castaneda DC, Rogawski MA. Evidence for low GluR2 AMPA receptor subunit expression at synapses in the rat basolateral amygdala. J Neurochem 2005; 94:1728-38. [PMID: 16045445 PMCID: PMC1352164 DOI: 10.1111/j.1471-4159.2005.03334.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fast excitatory synaptic responses in basolateral amygdala (BLA) neurons are mainly mediated by ionotropic glutamate receptors of the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) subtype. AMPA receptors containing an edited GluR2 subunit are calcium impermeable, whereas those that lack this subunit are calcium permeable and also inwardly rectifying. Here, we sought to determine the extent to which synapses in the rat BLA have AMPA receptors with GluR2 subunits. We assessed GluR2 protein expression in the BLA by immunocytochemistry with a GluR2 subunit-specific antiserum at the light and electron microscopic level; for comparison, a parallel examination was carried out in the hippocampus. We also recorded from amygdala brain slices to examine the voltage-dependent properties of AMPA receptor- mediated evoked synaptic currents in BLA principal neurons. At the light microscopic level, GluR2 immunoreactivity was localized to the perikarya and proximal dendrites of BLA neurons; dense labeling was also present over the pyramidal cell layer of hippocampal subfields CA1 and CA3. In electron micrographs from the BLA, most of the synapses were asymmetrical with pronounced postsynaptic densities (PSD). They contained clear, spherical vesicles apposed to the PSD and were predominantly onto spines (86%), indicating that they are mainly with BLA principal neurons. Only 11% of morphological synapses in the BLA were onto postsynaptic elements that showed GluR2 immunoreactivity, in contrast to hippocampal subfields CA1 and CA3 in which 76% and 71% of postsynaptic elements were labeled (p < 0.001). Synaptic staining in the BLA and hippocampus, when it occurred, was exclusively postsynaptic, and particularly heavy over the PSD. In whole-cell voltage clamp recordings, 72% of BLA principal neurons exhibited AMPA receptor-mediated synaptic currents evoked by external capsule stimulation that were inwardly rectifying. Although BLA principal neurons express perikaryal and proximal dendritic GluR2 immunoreactivity, few synapses onto these neurons express GluR2, and a preponderance of principal neurons have inwardly rectifying AMPA-mediated synaptic currents, suggesting that targeting of GluR2 to synapses is restricted. Many BLA synaptic AMPA receptors are likely to be calcium permeable and could play roles in synaptic plasticity, epileptogenesis and excitoxicity.
Collapse
Affiliation(s)
| | | | - Michael A. Rogawski
- Address for correspondence: Michael A. Rogawski, M.D., Ph.D., Epilepsy Research Section, NINDS, NIH, Porter Neuroscience Research Center, Building 35, Room 1C-1002, 35 Convent Drive MSC 3702, Bethesda, MD 20892-3702, Telephone 301-496-8013, Fax 775-249-7715, E-mail:
| |
Collapse
|
95
|
Palmer CL, Cotton L, Henley JM. The molecular pharmacology and cell biology of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors. Pharmacol Rev 2005; 57:253-77. [PMID: 15914469 PMCID: PMC3314513 DOI: 10.1124/pr.57.2.7] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptors (AMPARs) are of fundamental importance in the brain. They are responsible for the majority of fast excitatory synaptic transmission, and their overactivation is potently excitotoxic. Recent findings have implicated AMPARs in synapse formation and stabilization, and regulation of functional AMPARs is the principal mechanism underlying synaptic plasticity. Changes in AMPAR activity have been described in the pathology of numerous diseases, such as Alzheimer's disease, stroke, and epilepsy. Unsurprisingly, the developmental and activity-dependent changes in the functional synaptic expression of these receptors are under tight cellular regulation. The molecular and cellular mechanisms that control the postsynaptic insertion, arrangement, and lifetime of surface-expressed AMPARs are the subject of intense and widespread investigation. For example, there has been an explosion of information about proteins that interact with AMPAR subunits, and these interactors are beginning to provide real insight into the molecular and cellular mechanisms underlying the cell biology of AMPARs. As a result, there has been considerable progress in this field, and the aim of this review is to provide an account of the current state of knowledge.
Collapse
Affiliation(s)
- Claire L Palmer
- Medical Research Council Centre for Synaptic Plasticity, Department of Anatomy, School of Medical Sciences, Bristol University, Bristol, UK
| | | | | |
Collapse
|
96
|
Charara A, Pare JF, Levey AI, Smith Y. Synaptic and extrasynaptic GABA-A and GABA-B receptors in the globus pallidus: an electron microscopic immunogold analysis in monkeys. Neuroscience 2005; 131:917-33. [PMID: 15749345 DOI: 10.1016/j.neuroscience.2004.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2004] [Indexed: 10/25/2022]
Abstract
GABA-A and GABA-B receptors mediate differential effects in the CNS. To better understand the role of these receptors in regulating pallidal functions, we compared their subcellular and subsynaptic localization in the external and internal segments of the globus pallidus (GPe and GPi) in monkeys, using pre- and post-embedding immunocytochemistry with antibodies against GABA-A (alpha1, beta2/3 subunits) and GABA-BR1 receptor subtype. Our results demonstrate that GABA-A and GABA-B receptors display a differential pattern of subcellular and subsynaptic localization in both segments of the globus pallidus. The majority of GABA-BR1 immunolabeling is intracellular, whereas immunoreactivity for GABA-A receptor subunits is mostly bound to the plasma membrane. A significant proportion of both GABA-BR1 and GABA-A receptor immunolabeling is extrasynaptic, but GABA-A receptor subunits also aggregate in the main body of putative GABAergic symmetric synapses established by striatal- and pallidal-like terminals. GABA-BR1 immunoreactivity is expressed presynaptically in putative glutamatergic terminals, while GABA-A alpha1 and beta2/3 receptor subunits are exclusively post-synaptic and often coexist at individual symmetric synapses in both GPe and GPi. In conclusion, our findings corroborate the concept that ionotropic and metabotropic GABA receptors are located to subserve different effects in pallidal neurons. Although the aggregation of GABA-A receptors at symmetric synapses is consistent with their role in fast inhibitory synaptic transmission, the extrasynaptic distribution of both GABA-A and GABA-B receptors provides a substrate for complex modulatory functions that rely predominantly on the spillover of GABA.
Collapse
Affiliation(s)
- A Charara
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
97
|
Triller A, Choquet D. Surface trafficking of receptors between synaptic and extrasynaptic membranes: and yet they do move! Trends Neurosci 2005; 28:133-9. [PMID: 15749166 DOI: 10.1016/j.tins.2005.01.001] [Citation(s) in RCA: 207] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Concentration of neurotransmitter receptors at synapses is thought to result from stable binding to subsynaptic scaffold proteins. Recent data on synaptic plasticity have shown that changes in synaptic strength derive partly from modification of postsynaptic receptor numbers. This has led to the notion of receptor trafficking into and out of synapses. The proposed underlying mechanisms have under-evaluated the role of extrasynaptic receptors. Recent technological advances have allowed imaging of receptor movements at the single-molecule level, and these experiments demonstrate that receptors switch at unexpected rates between extrasynaptic and synaptic localizations by lateral diffusion. Variation in receptor numbers at postsynaptic sites is therefore likely to depend on regulation of diffusion by modification of the structure of the membrane and/or by transient interactions with scaffolding proteins. This review is part of the TINS Synaptic Connectivity series.
Collapse
Affiliation(s)
- Antoine Triller
- INSERM UR497, Ecole Normale Supérieure, 46 Rue d'Ulm, Paris F75005, France.
| | | |
Collapse
|
98
|
Tang FR, Chia SC, Zhang S, Chen PM, Gao H, Liu CP, Khanna S, Lee WL. Glutamate receptor 1-immunopositive neurons in the gliotic CA1 area of the mouse hippocampus after pilocarpine-induced status epilepticus. Eur J Neurosci 2005; 21:2361-74. [PMID: 15932595 DOI: 10.1111/j.1460-9568.2005.04071.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Significant reduction in glutamate receptor 1 (GluR1)- and GluR2/3-immunopositive neurons was demonstrated in the hilus of the dentate gyrus in mice killed on days 1, 7 and 60 after pilocarpine-induced status epilepticus (PISE). In addition, GluR1 and GluR2/3 immunostaining in the strata oriens, radiatum and lacunosum moleculare of areas CA1-3 decreased drastically on days 7 and 60 after PISE. Neuronal loss observed in the above regions may account, at least in part, for a decrease in GluR immunoreactivity. By contrast, many GluR1-immunopositive neurons were observed in the gliotic area of CA1. Of these, about 42.8% were immunopositive for markers for hippocampal interneurons, namely calretinin (7.6%), calbindin (12.8%) and parvalbumin (22.4%). GluR1 or GluR2/3 and BrdU double-labelling showed that the GluR1- and GluR2/3-immunopositive neurons at 60 days after PISE were neurons that had survived rather than newly generated neurons. Furthermore, anterograde tracer and double-labelling studies performed on animals at 60 days after PISE indicated a projection from the hilus of the dentate gyrus to gliotic areas in both CA3 and CA1, where the projecting fibres apparently established connections with GluR1-immunopositive neurons. The projection to CA1 was unexpected. These novel findings suggest that the intrinsic hippocampal neuronal network is altered after PISE. We speculate that GluR1-immunopositive neurons in gliotic CA1 act as a bridge between dentate gyrus and subiculum contributing towards epileptogenesis.
Collapse
Affiliation(s)
- Feng Ru Tang
- Epilepsy Research Laboratory, National Neuroscience Institute, 11 Jalan Tan Tock Seng, Singapore 308433.
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Nicholson DA, Yoshida R, Berry RW, Gallagher M, Geinisman Y. Reduction in size of perforated postsynaptic densities in hippocampal axospinous synapses and age-related spatial learning impairments. J Neurosci 2005; 24:7648-53. [PMID: 15342731 PMCID: PMC6729620 DOI: 10.1523/jneurosci.1725-04.2004] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A central problem in the neurobiology of normal aging is why learning is preserved in some aged individuals yet impaired in others. To investigate this issue, we examined whether age-related deficits in spatial learning are associated with a reduction in postsynaptic density (PSD) area in hippocampal excitatory synapses (i.e., with a structural modification that is likely to have a deleterious effect on synaptic function). A hippocampus-dependent version of the Morris water maze task was used to separate Long-Evans male rats into young adult, aged learning-unimpaired, and equally aged learning-impaired groups. Axospinous synapses from the CA1 stratum radiatum were analyzed using systematic random sampling and serial section analyses. We report that aged learning-impaired rats exhibit a marked ( approximately 30%) and significant reduction in PSD area, whereas aged learning-unimpaired rats do not. The observed structural alteration involves a substantial proportion of perforated synapses but is not observed in nonperforated synapses. These findings support the notion that many hippocampal perforated synapses become less efficient in aged learning-impaired rats, which may contribute to cognitive decline during normal aging.
Collapse
Affiliation(s)
- Daniel A Nicholson
- Department of Cell and Molecular Biology, Feinberg School of Medicine and Institute of Neuroscience, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
100
|
Abstract
Glutamate receptor antagonists, although effective in preventing in vitro excitotoxic death, also block the glutamatergic signalling that is essential for normal excitatory neurotransmission and neuronal survival. This has contributed to the failure of clinical trials employing glutamate receptor antagonists as stroke therapeutics. However, recent years have seen an increased understanding of the molecular organisation of glutamate receptors in the neuronal postsynaptic density. This and a dissection of their associated intracellular signalling cascades has allowed the identification of distinct pathways responsible for excitotoxicity. It has become possible to uncouple toxic signalling cascades from glutamate receptors by targeting the interactions of membrane receptors with downstream proteins. Toxic signalling can be effectively uncoupled from glutamate receptors using targeted, cell-permeable peptides to disrupt specific protein-protein interactions. This approach does not block essential excitatory neurotransmission, but attenuates neurotoxic signals specifically and reduces stroke damage. This novel approach to blocking excitotoxic signalling in cerebral ischaemia may constitute a practical approach to stroke therapy.
Collapse
Affiliation(s)
- Michelle M Aarts
- Toronto Western Hospital, Suite 4W-435, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada
| | | |
Collapse
|