51
|
Nogacka AM, de Los Reyes-Gavilán CG, Martínez-Faedo C, Ruas-Madiedo P, Suarez A, Mancabelli L, Ventura M, Cifuentes A, León C, Gueimonde M, Salazar N. Impact of Extreme Obesity and Diet-Induced Weight Loss on the Fecal Metabolome and Gut Microbiota. Mol Nutr Food Res 2020; 65:e2000030. [PMID: 32966685 DOI: 10.1002/mnfr.202000030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
SCOPE A limited number of human studies have characterized fecal microbiota and metabolome in extreme obesity and after diet-induced weight loss. METHODS AND RESULTS Fecal samples from normal-weight and extremely obese adults and from obese participants before and after moderate diet-induced weight loss are evaluated for their interaction with the intestinal adenocarcinoma cell line HT29 using an impedance-based in vitro model, which reveals variations in the interaction between the gut microbiota and host linked to obesity status. Microbiota composition, short chain fatty acids, and other intestinal metabolites are further analyzed to assess the interplay among diet, gut microbiota, and host in extreme obesity. Microbiota profiles are distinct between normal-weight and obese participants and are accompanied by fecal signatures in the metabolism of biliary compounds and catecholamines. Moderate diet-induced weight loss promotes shifts in the gut microbiota, and the primary fecal metabolomics features are associated with diet and the gut-liver and gut-brain axes. CONCLUSIONS Analyses of the fecal microbiota and metabolome enable assessment of the impact of diet on gut microbiota composition and activity, supporting the potential use of certain fecal metabolites or members of the gut microbiota as biomarkers for the efficacy of weight loss in extreme obesity.
Collapse
Affiliation(s)
- Alicja M Nogacka
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, 33300, Spain.,Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
| | - Clara G de Los Reyes-Gavilán
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, 33300, Spain.,Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
| | - Ceferino Martínez-Faedo
- Endocrinology and Nutrition Service, Central University Hospital of Asturias (HUCA), Oviedo, Asturias, 33011, Spain.,Endocrinology, Nutrition, Diabetes and Obesity Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, 33300, Spain.,Functionality and Ecology of Beneficial Microorganisms, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
| | - Adolfo Suarez
- Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, 33011, Spain.,Digestive Service, Central University Hospital of Asturias (HUCA), Oviedo, Asturias, 33011, Spain
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, 43121, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, 43121, Italy
| | - Alejandro Cifuentes
- Laboratory of Foodomics, Institute of Food Science Research, CIAL, CSIC, Nicolás Cabrera 9, Madrid, 28049, Spain
| | - Carlos León
- Department of Bioengineering, Universidad Carlos III de Madrid, Leganés, Madrid, Spain
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, 33300, Spain.,Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
| | - Nuria Salazar
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Villaviciosa, Asturias, 33300, Spain.,Diet, Human Microbiota and Health Group, Institute of Health Research of the Principality of Asturias (ISPA), Oviedo, 33011, Spain
| |
Collapse
|
52
|
Houttu V, Boulund U, Grefhorst A, Soeters MR, Pinto-Sietsma SJ, Nieuwdorp M, Holleboom AG. The role of the gut microbiome and exercise in non-alcoholic fatty liver disease. Therap Adv Gastroenterol 2020; 13:1756284820941745. [PMID: 32973925 PMCID: PMC7495942 DOI: 10.1177/1756284820941745] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 06/08/2020] [Indexed: 02/04/2023] Open
Abstract
In recent years, the human gut microbiome has been found to influence a multitude of non-communicable diseases such as cardiovascular disease and metabolic syndrome, with its components type 2 diabetes mellitus and obesity. It is recognized to be mainly influenced by environmental factors, such as lifestyle, but also genetics may play a role. The interaction of gut microbiota and obesity has been widely studied, but in regard to non-alcoholic fatty liver disease (NAFLD) as a manifestation of obesity and insulin resistance, the causal role of the gut microbiome has not been fully established. The mechanisms by which the gut microbiome influences lipid accumulation, inflammatory responses, and occurrence of fibrosis in the liver are a topic of active research. In addition, the influence of exercise on gut microbiome composition is also being investigated. In clinical trials, exercise reduced hepatic steatosis independently of weight reduction. Other studies indicate that exercise may modulate the gut microbiome. This puts forward the question whether exercise could mediate its beneficial effects on NAFLD via changes in gut microbiome. Yet, the specific mechanisms underlying this potential connection are largely unknown. Thus, associative evidence from clinical trials, as well as mechanistic studies in vivo are called for to elucidate the relationship between exercise and the gut microbiome in NAFLD. Here, we review the current literature on exercise and the gut microbiome in NAFLD.
Collapse
Affiliation(s)
- Veera Houttu
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Ulrika Boulund
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Aldo Grefhorst
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Maarten R. Soeters
- Department of Endocrinology and Metabolism, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Sara-Joan Pinto-Sietsma
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| | - Adriaan G. Holleboom
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC at University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
53
|
Shan HM, Zang M, Zhang Q, Shi RB, Shi XJ, Mamtilahun M, Liu C, Luo LL, Tian X, Zhang Z, Yang GY, Tang Y, Pu J, Wang Y. Farnesoid X receptor knockout protects brain against ischemic injury through reducing neuronal apoptosis in mice. J Neuroinflammation 2020; 17:164. [PMID: 32450881 PMCID: PMC7249620 DOI: 10.1186/s12974-020-01838-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background Farnesoid X receptor (FXR) is a nuclear receptor that plays a critical role in controlling cell apoptosis in diverse diseases. Previous studies have shown that knocking out FXR improved cardiac function by reducing cardiomyocyte apoptosis in myocardial ischemic mice. However, the role of FXR after cerebral ischemia remains unknown. In this study, we explored the effects and mechanisms of FXR knockout (KO) on the functional recovery of mice post cerebral ischemia-reperfusion. Methods Adult male C57BL/6 wild type and FXR KO mice were subjected to 90-min transient middle cerebral artery occlusion (tMCAO). The mice were divided into five groups: sham, wild-type tMCAO, FXR KO tMCAO, wild-type tMCAO treated with calcium agonist Bayk8644, and FXR KO tMCAO treated with Bayk8644. FXR expression was examined using immunohistochemistry and Western blot. Brain infarct and brain atrophy volume were examined at 3 and 14 days after stroke respectively. Neurobehavioral tests were conducted up to 14 days after stroke. The protein levels of apoptotic factors (Bcl-2, Bax, and Cleaved caspase-3) and mRNA levels of pro-inflammatory factors (TNF-α, IL-6, IL-1β, IL-17, and IL-18) were examined using Western blot and RT-PCR. TUNEL staining and calcium imaging were obtained using confocal and two-photon microscopy. Results The expression of FXR was upregulated after ischemic stroke, which is located in the nucleus of the neurons. FXR KO was found to reduce infarct volume and promote neurobehavioral recovery following tMCAO compared to the vehicle. The expression of apoptotic and pro-inflammatory factors decreased in FXR KO mice compared to the control. The number of NeuN+/TUNEL+ cells declined in the peri-infarct area of FXR KO mice compared to the vehicle. We further demonstrated that inhibition of FXR reduced calcium overload and addition of ionomycin could reverse this neuroprotective effect in vitro. What is more, in vivo results showed that enhancement of intracellular calcium concentrations could aggravate ischemic injury and reverse the neuroprotective effect of FXR KO in mice. Conclusions FXR KO can promote neurobehavioral recovery and attenuate ischemic brain injury, inflammatory release, and neuronal apoptosis via reducing calcium influx, suggesting its role as a therapeutic target for stroke treatments.
Collapse
Affiliation(s)
- Hui-Min Shan
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Minhua Zang
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai, 200127, China
| | - Qi Zhang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Ru-Bing Shi
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Xiao-Jing Shi
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Muyassar Mamtilahun
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Chang Liu
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Long-Long Luo
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Xiaoying Tian
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Zhijun Zhang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Guo-Yuan Yang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China
| | - Yaohui Tang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China.
| | - Jun Pu
- Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 PuJian Road, Shanghai, 200127, China.
| | - Yongting Wang
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Hua-Shan Road, Shanghai, 200030, China.
| |
Collapse
|
54
|
Verdugo-Meza A, Ye J, Dadlani H, Ghosh S, Gibson DL. Connecting the Dots Between Inflammatory Bowel Disease and Metabolic Syndrome: A Focus on Gut-Derived Metabolites. Nutrients 2020; 12:E1434. [PMID: 32429195 PMCID: PMC7285036 DOI: 10.3390/nu12051434] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
The role of the microbiome in health and disease has gained considerable attention and shed light on the etiology of complex diseases like inflammatory bowel disease (IBD) and metabolic syndrome (MetS). Since the microorganisms inhabiting the gut can confer either protective or harmful signals, understanding the functional network between the gut microbes and the host provides a comprehensive picture of health and disease status. In IBD, disruption of the gut barrier enhances microbe infiltration into the submucosae, which enhances the probability that gut-derived metabolites are translocated from the gut to the liver and pancreas. Considering inflammation and the gut microbiome can trigger intestinal barrier dysfunction, risk factors of metabolic diseases such as insulin resistance may have common roots with IBD. In this review, we focus on the overlap between IBD and MetS, and we explore the role of common metabolites in each disease in an attempt to connect a common origin, the gut microbiome and derived metabolites that affect the gut, liver and pancreas.
Collapse
Affiliation(s)
- Andrea Verdugo-Meza
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Jiayu Ye
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Hansika Dadlani
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Sanjoy Ghosh
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
| | - Deanna L. Gibson
- Department of Biology, University of British Columbia, Okanagan campus, Kelowna, BC V6T 1Z4, Canada; (A.V.-M.); (J.Y.); (H.D.)
- Department of Medicine, University of British Columbia, Okanagan campus, Kelowna, BC V1V 1V7, Canada
| |
Collapse
|
55
|
Nguyen T, Brody H, Lin GH, Rangé H, Kuraji R, Ye C, Kamarajan P, Radaic A, Gao L, Kapila Y. Probiotics, including nisin-based probiotics, improve clinical and microbial outcomes relevant to oral and systemic diseases. Periodontol 2000 2020; 82:173-185. [PMID: 31850634 DOI: 10.1111/prd.12324] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of probiotic supplementation on systemic health and gastrointestinal diseases have been investigated in numerous studies. The aim of this review is to provide an overview of probiotics and their effects on periodontal health. Probiotics show beneficial effects as adjunctive therapeutics and as stand-alone agents in the treatment and prevention of gingivitis as well as specific clinical parameters of periodontitis. This review focuses on the clinical and microbiological aspects of probiotics in the context of health, gingivitis, and periodontitis. In addition, a special focus on nisin-producing probiotics and nisin itself showcase their significant potential for oral and systemic use.
Collapse
Affiliation(s)
- Trang Nguyen
- School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Hanna Brody
- School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Guo-Hao Lin
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Hélène Rangé
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA.,Department of Periodontology, UFR of Odontology, APHP, Rothschild Hospital, University of Paris Diderot, Paris, France.,Faculty of Dental Surgery, University of Paris Descartes, Montrouge, France
| | - Ryutaro Kuraji
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA.,Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan.,Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Changchang Ye
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA.,State Key Laboratory of Oral Diseases, Department of Periodontology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| | - Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA.,Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, The University of Campinas, Campinas, Sao Paulo, Brazil
| | - Li Gao
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA.,Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yvonne Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
56
|
Wu W, Zhang L, Xia B, Tang S, Xie J, Zhang H. Modulation of Pectin on Mucosal Innate Immune Function in Pigs Mediated by Gut Microbiota. Microorganisms 2020; 8:microorganisms8040535. [PMID: 32276396 PMCID: PMC7232157 DOI: 10.3390/microorganisms8040535] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/22/2020] [Accepted: 04/03/2020] [Indexed: 12/19/2022] Open
Abstract
The use of prebiotics to regulate gut microbiota is a promising strategy to improve gut health. Pectin (PEC) is a prebiotic carbohydrate that enhances the health of the gut by promoting the growth of beneficial microbes. These microbes produce metabolites that are known to improve mucosal immune responses. This study was conducted to better understand effects of PEC on the microbiome and mucosal immunity in pigs. Pigs were fed two diets, with or without 5% apple PEC, for 72 days. Effects of PEC on the microbiota, cytokine expression, short-chain fatty acids (SCFAs) concentration and barrier function were examined in the ileum and cecum of the pigs. An integrative analysis was used to determine interactions of PEC consumption with bacterial metabolites and microbiome composition and host mucosal responses. Consumption of PEC reduced expression of pro-inflammatory cytokines such as IFN-γ, IL-6, IL-8, IL-12 and IL-18, and the activation of the pro-inflammatory NF-κB signaling cascade. Expression of MUC2 and TFF and the sIgA content was upregulated in the mucosa of PEC-fed pigs. Network analysis revealed that PEC induced significant interactions between microbiome composition in the ileum and cecum on mucosal immune pathways. PEC-induced changes in bacterial genera and fermentation metabolites, such as Akkermansia, Faecalibacterium, Oscillibacter, Lawsonia and butyrate, correlated with the differentially expressed genes and cytokines in the mucosa. In summary, the results demonstrate the anti-inflammatory properties of PEC on mucosal immune status in the ileum and cecum effected through modulation of the host microbiome.
Collapse
Affiliation(s)
- Weida Wu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.W.); (B.X.); (S.T.); (J.X.)
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China;
| | - Bing Xia
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.W.); (B.X.); (S.T.); (J.X.)
| | - Shanlong Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.W.); (B.X.); (S.T.); (J.X.)
| | - Jingjing Xie
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.W.); (B.X.); (S.T.); (J.X.)
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (W.W.); (B.X.); (S.T.); (J.X.)
- Correspondence: ; Tel.: +86-10-62816013
| |
Collapse
|
57
|
Jena PK, Sheng L, Li Y, Wan YJY. Probiotics VSL#3 are effective in reversing non-alcoholic steatohepatitis in a mouse model. Hepatobiliary Surg Nutr 2020; 9:170-182. [PMID: 32355675 DOI: 10.21037/hbsn.2019.09.07] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background Probiotic VSL#3 is used to treat ulcerative colitis. This study examines the effect of VSL#3 in non-alcoholic steatohepatitis (NASH) that has liver carcinogenic potential. Methods Western diet (WD)-fed wild-type (WT) mice that do not have hepatic inflammation with lymphocyte infiltration and carcinogenic potential were used for baseline comparison. Age-, sex-, and diet-matched bile acid (BA) receptor farnesoid X receptor (FXR) knockout (KO) mice, which developed severe NASH and had the potential for liver cancer development, were supplemented with and without VSL#3 for 7 months. All the mice were euthanized when they were 10 months old. Results Supplementation with VSL#3 completely abolished hepatic lymphocyte infiltration, reduced hepatic fat content, and improved insulin sensitivity in WD-fed FXR KO mice. In addition, VSL#3 normalized dysregulated BA homoeostasis by inhibiting the classical BA synthesis pathway, inducing the alternative BA pathway, and activating ileal G-protein coupled BA receptor 1 (GPBAR1)-regulated signaling. Moreover, VSL#3 reconstructed the gut microbiota by reducing Bacteroidaceae, Porphyromonadaceae, and Helicobacteraceae as well as increasing Lachnospiraceae. Further, VSL#3 enriched the abundance of Ruminococcus and Faecalibacterium, which generate butyrate, at the genus level. It also increased the copy number of the butyrate-producing genes bcoA and buk, suggesting their anti-inflammatory and metabolic effects. Conclusions VSL#3 is useful in reversing NASH that occurred due to dysregulated BA synthesis and dysbiosis, suggesting its potential in liver cancer prevention.
Collapse
Affiliation(s)
- Prasant Kumar Jena
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Lili Sheng
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Yongchun Li
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA.,Department of Gastroenterology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.,Department of Infectious Diseases, Nanhai Hospital, Southern Medical University, Foshan 528200, China
| | - Yui-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
58
|
Shi Z, Wu X, Yu S, Huynh M, Jena PK, Nguyen M, Wan YJY, Hwang ST. Short-Term Exposure to a Western Diet Induces Psoriasiform Dermatitis by Promoting Accumulation of IL-17A-Producing γδ T Cells. J Invest Dermatol 2020; 140:1815-1823. [PMID: 32057839 DOI: 10.1016/j.jid.2020.01.020] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/08/2019] [Accepted: 01/15/2020] [Indexed: 12/12/2022]
Abstract
A Western diet (WD)-characterized by its high fat and simple sugar content-is thought to predispose individuals to inflammatory skin diseases such as psoriasis through the development of obesity. This scenario, however, is being challenged by emerging data suggesting that dietary components, rather than obesity itself, may exacerbate psoriasis. We herein show that short-term feeding with a diet analogous to the WD in mice leads to T helper type 1-/T helper type 17-biased skin inflammation before significant body weight gain. Feeding for as little as 4 weeks with a WD promoted mild dermatitis and accumulation of IL-17A-producing γδ T cells in the skin. Strikingly, γδ T cells from WD-fed mice exhibited enriched IL-23 receptor expression and increased the potential to produce IL-17A after IL-23 stimulation. In contrast to wild-type mice, WD-fed TCRδ-deficient and CCR6-deficient mice had reduced skin inflammation and IL-17A expression. Supplementation with a bile acid sequestrant, cholestyramine, prevented WD-induced skin inflammation along with a reduction in the infiltration of γδ T cells and the expression of proinflammatory mediators. In summary, our data revealed dietary influences in inflammatory signaling in the skin. The dysregulation of IL-23 pathways and bile acid pathways may be key to the development of WD-associated psoriasiform dermatitis.
Collapse
Affiliation(s)
- Zhenrui Shi
- Department of Dermatology, University of California, Davis, Sacramento, California, USA; Department of Dermatology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, China
| | - Xuesong Wu
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Sebastian Yu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Mindy Huynh
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Prasant Kumar Jena
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| | - Mimi Nguyen
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| | - Samuel T Hwang
- Department of Dermatology, University of California, Davis, Sacramento, California, USA.
| |
Collapse
|
59
|
NAFLD Preclinical Models: More than a Handful, Less of a Concern? Biomedicines 2020; 8:biomedicines8020028. [PMID: 32046285 PMCID: PMC7167756 DOI: 10.3390/biomedicines8020028] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/01/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver diseases ranging from simple steatosis to non-alcoholic steatohepatitis, fibrosis, cirrhosis, and/or hepatocellular carcinoma. Due to its increasing prevalence, NAFLD is currently a major public health concern. Although a wide variety of preclinical models have contributed to better understanding the pathophysiology of NAFLD, it is not always obvious which model is best suitable for addressing a specific research question. This review provides insights into currently existing models, mainly focusing on murine models, which is of great importance to aid in the identification of novel therapeutic options for human NAFLD.
Collapse
|
60
|
Yu S, Wu X, Shi Z, Huynh M, Jena PK, Sheng L, Zhou Y, Han D, Wan YJY, Hwang ST. Diet-induced obesity exacerbates imiquimod-mediated psoriasiform dermatitis in anti-PD-1 antibody-treated mice: Implications for patients being treated with checkpoint inhibitors for cancer. J Dermatol Sci 2020; 97:194-200. [PMID: 32044178 DOI: 10.1016/j.jdermsci.2020.01.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/22/2019] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND An ever-increasing number of cancer patients are being treated with checkpoint inhibitors such as anti-PD-1 antibodies, and a small percentage of these patients develop a psoriasis-like skin eruption or severe flares of prior psoriasis. OBJECTIVE We investigated the role of obesity in immune checkpoint inhibitors-exacerbated psoriasiform eruption. METHODS We fed female C57BL/6 mice a so-called Western diet (WD) or a control diet (CD). Imiquimod (IMQ) was applied topically on ears for 5 consecutive days to induce psoriasiform dermatitis (PsD). Psoriasis-related markers were examined by quantitative real-time PCR. Then we induced PsD in WD- and CD-fed mice in the presence or absence of systemic treatment of anti-PD-1 antibodies to examine if obese mice are more susceptible to anti-PD-1 related PsD than lean mice. RESULTS WD-fed mice showed higher baseline mRNA expression levels of psoriasis-associated cytokines such as IL-17, S100A8, and S100A9 compared to mice fed with CD. Furthermore, WD-fed mice had more γδ low (GDL) T cells in the whole skin and higher expression of PD-1 on GDL T cells than CD-fed mice. WD-fed mice receiving anti-PD-1 had more prominent ear swelling than lean mice receiving anti-PD-1 during the 5-day IMQ course (2-fold increase, P < 0.0001 on day 5). CONCLUSION WD-induced obesity enhances IMQ-induced psoriasiform inflammation. The finding that WD-fed mice have a more dramatic response to anti-PD-1 than lean mice in terms of IMQ-induced ear swelling suggests that obesity could be a risk factor in the development of psoriasiform eruption during anti-PD-1 therapy.
Collapse
Affiliation(s)
- Sebastian Yu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dermatology, University of California, Davis, Sacramento, CA, USA; Department of Dermatology, Kaohsiung Medical University Hospital, and Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Xuesong Wu
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Zhenrui Shi
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Mindy Huynh
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Prasant Kumar Jena
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Lili Sheng
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Yan Zhou
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Dan Han
- Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Samuel T Hwang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Dermatology, University of California, Davis, Sacramento, CA, USA.
| |
Collapse
|
61
|
Lonardo A, Nascimbeni F, Ballestri S, Fairweather D, Win S, Than TA, Abdelmalek MF, Suzuki A. Sex Differences in Nonalcoholic Fatty Liver Disease: State of the Art and Identification of Research Gaps. Hepatology 2019; 70:1457-1469. [PMID: 30924946 PMCID: PMC6766425 DOI: 10.1002/hep.30626] [Citation(s) in RCA: 654] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 03/19/2019] [Indexed: 12/11/2022]
Abstract
Despite tremendous research advancements in nonalcoholic fatty liver disease (NAFLD), our understanding of sex differences in NAFLD remains insufficient. This review summarizes the current knowledge on sex differences in NAFLD, identifies gaps, and discusses important considerations for future research. The prevalence and severity of NAFLD are higher in men than in women during the reproductive age. However, after menopause, NAFLD occurs at a higher rate in women, suggesting that estrogen is protective. Sex differences also exist for the major risk factors of NAFLD. In general, animal models of NAFLD recapitulate the sex differences observed in patients, with more severe steatosis and steatohepatitis, more proinflammatory/profibrotic cytokines, and a higher incidence of hepatic tumors in male than female subjects. Based on computer modeling, female and male livers are metabolically distinct with unique regulators modulating sex-specific metabolic outcomes. Analysis of the literature reveals that most published clinical and epidemiological studies fail to examine sex differences appropriately. Considering the paucity of data on sex differences and the knowledge that regulators of pathways relevant to current therapeutic targets for NAFLD differ by sex, clinical trials should be designed to test drug efficacy and safety according to sex, age, reproductive stage (i.e., menopause), and synthetic hormone use. Conclusion: Sex differences do exist in the prevalence, risk factors, fibrosis, and clinical outcomes of NAFLD, suggesting that, while not yet incorporated, sex will probably be considered in future practice guidelines; adequate consideration of sex differences, sex hormones/menopausal status, age, and other reproductive information in clinical investigation and gene association studies of NAFLD are needed to fill current gaps and implement precision medicine for patients with NAFLD.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | | | | | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Sanda Win
- University of Southern California Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Tin A. Than
- University of Southern California Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Manal F. Abdelmalek
- Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, USA
| | - Ayako Suzuki
- Division of Gastroenterology, Duke University Medical Center, Durham, North Carolina, USA
- Division of Gastroenterology, Durham VA Medical Center, Durham. North Carolina, USA
| |
Collapse
|
62
|
Cao Y, Xiao Y, Zhou K, Yan J, Wang P, Yan W, Cai W. FXR agonist GW4064 improves liver and intestinal pathology and alters bile acid metabolism in rats undergoing small intestinal resection. Am J Physiol Gastrointest Liver Physiol 2019; 317:G108-G115. [PMID: 30920307 DOI: 10.1152/ajpgi.00356.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mortality associated with liver disease has been observed in patients with short bowel syndrome (SBS); however, its mechanism remains unclear, but bile acid (BA) dysmetabolism has been proposed as a possible cause. The farnesoid X receptor (FXR) is the key regulator of BA synthesis. Here, we showed that, in a rat model of short bowel resection associated with liver disease (SBR-ALD), the BA composition of hepatic tissues reflected a larger proportion of primary and secondary unconjugated BAs, whereas that of the colon contents and serum showed an increased ratio of secondary unconjugated BAs. Both hepatic and intestinal regulation of BA synthesis was characterized by a blunted hepatic FXR activation response. The mRNA expression levels of cholesterol 7a-hydroxylase (CYP7A1), sterol 12a-hydroxylase (CYP8B1), and sterol 27 hydroxylase (CYP27A1), the key enzymes in BA synthesis, were upregulated. After intervention with the FXR agonist GW4064, both the liver histology and serum transaminase activity were improved, which demonstrated the attenuation of SBR-ALD. The BA compositions of hepatic tissue, the colon contents, and serum recovered and were closer to those of the sham group. The expression levels of hepatic FXR increased, and its target genes were activated. Consistent with this, the expression levels of CYP7A1, CYP8B1, and CYP27A1 were downregulated. Ileum tissue FXR and its target genes were slightly elevated. This study showed that the FXR agonist GW4064 could correct BA dysmetabolism to alleviate hepatotoxicity in SBR animals. GW4064 intervention resulted in a decrease in fecal bile excretion and elevated plasma/hepatic conjugated BA levels. GW4064 increased the reabsorption of conjugated BAs by inducing apical sodium-dependent bile salt transporter expression in the ileum. Concomitantly, FXR activation in the presence of GW4064 decreased BA production by repressing the expression of key synthetases, including CYP7A1, CYP8B1, and CYP27A1. These findings provide a clinical research direction for the prevention of liver disease in patients with SBS.NEW & NOTEWORTHY This study assessed the impact of treatment with GW4064, a farnesoid X receptor agonist, on the development of short bowel resection (SBR) associated with liver disease in a rat model of SBR. GW4064 was able to correct bile acid dysmetabolism and alleviate hepatotoxicity in SBR animals.
Collapse
Affiliation(s)
- Yi Cao
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Yongtao Xiao
- Shanghai Institute of Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - KeJun Zhou
- Shanghai Institute of Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Junkai Yan
- Shanghai Institute of Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Panliang Wang
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Weihui Yan
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China
| | - Wei Cai
- Department of Pediatric Surgery, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Institute of Pediatric Research, Shanghai, China.,Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
63
|
Jena PK, Sheng L, Mcneil K, Chau TQ, Yu S, Kiuru M, Fung MA, Hwang ST, Wan YJY. Long-term Western diet intake leads to dysregulated bile acid signaling and dermatitis with Th2 and Th17 pathway features in mice. J Dermatol Sci 2019; 95:13-20. [PMID: 31213388 DOI: 10.1016/j.jdermsci.2019.05.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/09/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Dietary interventions are implicated in the development of atopic dermatitis, psoriasis, and acne. OBJECTIVE To investigate the effect of diet and the bile acid (BA) receptors, such as TGR5 (Takeda G protein receptor 5) and S1PR2 (sphingosine-1-phosphate receptor 2) in the development of dermatitis. METHODS C57BL/6 mice were fed a control diet (CD) or Western diet (WD) since weaning until they were 10 months old followed by analyzing histology, gene expression, and BA profiling. RESULTS Mice developed dermatitis as they aged and the incidence was higher in females than males. Additionally, WD intake substantially increased the incidence of dermatitis. Cutaneous antimicrobial peptide genesS100A8, S100A9, and Defb4 were reduced in WD-fed mice, but increased when mice developed skin lesions. In addition, Tgr5 and TGR5-regulated Dio2 and Nos3 were reduced in WD intake but induced in dermatitic lesions. Trpa1 and Trpv1, which mediate itch, were also increased in dermatitic lesions. The expression of S1pr2 and genes encoding sphingosine kinases, S1P phosphatases, binding protein, and transporter were all reduced by WD intake but elevated in dermatitic lesions. Furthermore, dermatitis development increased total cutaneous BA with an altered profile, which may change TGR5 and S1PR2 activity. Moreover, supplementation with BA sequestrant cholestyramine reduced epidermal thickening as well as cutaneous inflammatory cytokines. CONCLUSION In summary, activation of TGR5 and S1PR2, which regulate itch, keratinocyte proliferation, metabolism, and inflammation, may contribute to WD-exacerbated dermatitis with Th2 and Th17 features. In addition, elevated total BA play a significant role in inducing dermatitis and cutaneous inflammation.
Collapse
Affiliation(s)
- Prasant Kumar Jena
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Lili Sheng
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Kyle Mcneil
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Thinh Q Chau
- Department of Dermatology, University of California, Davis, Sacramento, CA, 95817, USA
| | - Sebastian Yu
- Department of Dermatology, University of California, Davis, Sacramento, CA, 95817, USA
| | - Maija Kiuru
- Department of Dermatology, University of California, Davis, Sacramento, CA, 95817, USA
| | - Maxwell A Fung
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, 95817, USA; Department of Dermatology, University of California, Davis, Sacramento, CA, 95817, USA
| | - Samuel T Hwang
- Department of Dermatology, University of California, Davis, Sacramento, CA, 95817, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, 95817, USA.
| |
Collapse
|
64
|
Nakanishi K, Kaji K, Kitade M, Kubo T, Furukawa M, Saikawa S, Shimozato N, Sato S, Seki K, Kawaratani H, Moriya K, Namisaki T, Yoshiji H. Exogenous Administration of Low-Dose Lipopolysaccharide Potentiates Liver Fibrosis in a Choline-Deficient l-Amino-Acid-Defined Diet-Induced Murine Steatohepatitis Model. Int J Mol Sci 2019; 20:2724. [PMID: 31163617 PMCID: PMC6600174 DOI: 10.3390/ijms20112724] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/28/2019] [Accepted: 06/01/2019] [Indexed: 01/10/2023] Open
Abstract
Various rodent models have been proposed for basic research; however, the pathogenesis of human nonalcoholic steatohepatitis (NASH) is difficult to closely mimic. Lipopolysaccharide (LPS) has been reported to play a pivotal role in fibrosis development during NASH progression via activation of toll-like receptor 4 (TLR4) signaling. This study aimed to clarify the impact of low-dose LPS challenge on NASH pathological progression and to establish a novel murine NASH model. C57BL/6J mice were fed a choline-deficient l-amino-acid-defined (CDAA) diet to induce NASH, and low-dose LPS (0.5 mg/kg) was intraperitoneally injected thrice a week. CDAA-fed mice showed hepatic CD14 overexpression, and low-dose LPS challenge enhanced TLR4/NF-κB signaling activation in the liver of CDAA-fed mice. LPS challenge potentiated CDAA-diet-mediated insulin resistance, hepatic steatosis with upregulated lipogenic genes, and F4/80-positive macrophage infiltration with increased proinflammatory cytokines. It is noteworthy that LPS administration extensively boosted pericellular fibrosis with the activation of hepatic stellate cells in CDAA-fed mice. Exogenous LPS administration exacerbated pericellular fibrosis in CDAA-mediated steatohepatitis in mice. These findings suggest a key role for LPS/TLR4 signaling in NASH progression, and the authors therefore propose this as a suitable model to mimic human NASH.
Collapse
Affiliation(s)
- Keisuke Nakanishi
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Kosuke Kaji
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Mitsuteru Kitade
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Takuya Kubo
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Masanori Furukawa
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Soichiro Saikawa
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Naotaka Shimozato
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Shinya Sato
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Kenichiro Seki
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Hideto Kawaratani
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Kei Moriya
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Tadashi Namisaki
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| | - Hitoshi Yoshiji
- Third Department of Internal Medicine, Nara Medical University, Kashihara, Nara 634-8521, Japan.
| |
Collapse
|
65
|
Pedersen KB, Pulliam CF, Patel A, Del Piero F, Watanabe TTN, Wankhade UD, Shankar K, Hicks C, Ronis MJ. Liver tumorigenesis is promoted by a high saturated fat diet specifically in male mice and is associated with hepatic expression of the proto-oncogene Agap2 and enrichment of the intestinal microbiome with Coprococcus. Carcinogenesis 2019; 40:349-359. [PMID: 30325408 PMCID: PMC6487682 DOI: 10.1093/carcin/bgy141] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/20/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022] Open
Abstract
Liver cancer results in a high degree of mortality, especially among men. As fatty liver disease is a risk factor for development of hepatocellular carcinoma, we investigated the role of dietary fat type in tumor promotion by high-fat diets in mice after initiation with the chemical carcinogen diethyl nitrosamine. Tumor incidence and multiplicity were significantly greater in males than those in females. In males, fat type had complex effects on tumorigenesis. Preneoplastic foci were most prevalent in mice fed a polyunsaturated fat diet enriched in docosahexaenoic acid, whereas carcinomas and large visible liver tumors were significantly greater in mice fed a saturated fat diet made with cocoa butter relative to mice fed mono- or polyunsaturated fats. Different mechanisms thus seemed involved in early and late tumor promotion. The hepatic transcriptome and gut microbiome were assessed for traits associated with tumorigenesis. Hepatic expression of more than 20% of all genes was affected by sex, whereas fat type affected fewer genes. In males, the saturated fat diet induced expression of the proto-oncogene Agap2 and affected the expression of several cytochrome P450 genes, and genes involved in lipid, bile acid and fatty acid metabolism. The gut microbiome had a higher level of genus Akkermansia and a lower level of Firmicutes in females than in males. Males fed saturated fat had an altered microbiome, including an enrichment of the genus Coprococcus. In conclusion, sex and the dietary fat type affect the gut microbiome, the hepatic transcriptome and ultimately hepatic tumor growth.
Collapse
Affiliation(s)
- Kim B Pedersen
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA, USA
| | - Casey F Pulliam
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA, USA
| | - Aarshvi Patel
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA, USA
| | - Fabio Del Piero
- Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Tatiane T N Watanabe
- Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| | - Umesh D Wankhade
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kartik Shankar
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Chindo Hicks
- Department of Genetics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA, USA
| | - Martin J Ronis
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center (LSUHSC), New Orleans, LA, USA
| |
Collapse
|
66
|
Robinson RC. Structures and Metabolic Properties of Bovine Milk Oligosaccharides and Their Potential in the Development of Novel Therapeutics. Front Nutr 2019; 6:50. [PMID: 31069231 PMCID: PMC6491812 DOI: 10.3389/fnut.2019.00050] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/04/2019] [Indexed: 12/13/2022] Open
Abstract
Among the many bioactive components in human milk, the free oligosaccharides (OS) have been intensely studied in recent decades due to their unique ability to selectively modulate the infant gut microbiota, in addition to providing numerous other health benefits. In light of the demonstrated value of these compounds, recent studies have set out to characterize the structures and properties of the similar and more widely-available OS in the dairy industry. This mini review gives a brief overview of the common analytical techniques used to characterize bovine milk OS and highlights several recent, key studies that have identified valuable physiological and metabolic effects of these molecules in vivo. Although traditionally considered indigestible by human enzymes, evidence now suggests that milk OS are partially absorbed in the intestines and likely contribute to the development of molecular structures in the brain. Furthermore, aside from their prebiotic effects, these compounds show promise as therapeutics that could alleviate numerous metabolic abnormalities, including undernutrition, obesity, and excessive intestinal permeability. The need for novel treatments to address these and related health issues is motivating the development of scalable techniques to produce large quantities of milk OS for use as food ingredients. The safety and tolerability of high dosages of bovine milk OS have been demonstrated in two independent human studies, which potentially opens the door for further research aiming to utilize these molecules to alleviate common metabolic health issues.
Collapse
Affiliation(s)
- Randall C. Robinson
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
67
|
Sun L, Zhang X, Zhang Y, Zheng K, Xiang Q, Chen N, Chen Z, Zhang N, Zhu J, He Q. Antibiotic-Induced Disruption of Gut Microbiota Alters Local Metabolomes and Immune Responses. Front Cell Infect Microbiol 2019; 9:99. [PMID: 31069173 PMCID: PMC6491449 DOI: 10.3389/fcimb.2019.00099] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/25/2019] [Indexed: 12/04/2022] Open
Abstract
Gut microbiome plays an essential role in modulating host immune responses. However, little is known about the interaction of microbiota, their metabolites and relevant inflammatory responses in the gut. By treating the mice with three different antibiotics (enrofloxacin, vancomycin, and polymixin B sulfate), we aimed to investigate the effects of different antibiotics exposure on gut microbiota, microbial metabolism, inflammation responses in the gut, and most importantly, pinpoint the underlying interactions between them. Although the administration of different antibiotics can lead to different effects on mouse models, the treatment did not affect the average body weight of the mice. A heavier caecum was observed in vancomycin treated mice. Treatment by these three antibiotics significantly up-regulated gene expression of various cytokines in the colon. Enrofloxacin treated mice seemed to have an increased Th1 response in the colon. However, such a difference was not found in mice treated by vancomycin or polymixin B sulfate. Vancomycin treatment induced significant changes in bacterial composition at phylum and family level and decreased richness and diversity at species level. Enrofloxacin treatment only induced changes in composition at family presenting as an increase in Prevotellaceae and Rikenellaceae and a decrease in Bacteroidaceae. However, no significant difference was observed after polymixin B sulfate treatment. When compared with the control group, significant metabolic shift was found in the enrofloxacin and vancomycin treated group. The metabolic changes mainly occurred in Valine, leucine, and isoleucine biosynthesis pathway and beta-Alanine metabolism in enrofloxacin treated group. For vancomycin treatment metabolic changes were mainly found in beta-Alanine metabolism and Alanine, aspartate and glutamate metabolism pathway. Moreover, modifications observed in the microbiota compositions were correlated with the metabolite concentrations. For example, concentration of pentadecanoic acid was positively correlated with richness of Rikenellaceae and Prevotellaceae and negatively correlated with Enterobacteriaceae. This study suggests that the antibiotic-induced changes in gut microbiota might contribute to the inflammation responses through the alternation of metabolic status, providing a novel insight regarding a complex network that integrates the different interactions between gut microbiota, metabolic functions, and immune responses in host.
Collapse
Affiliation(s)
- Lin Sun
- Department of Medical Microbiology, Capital Medical University, Beijing, China
- Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaoyan Zhang
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Yuxiao Zhang
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Kai Zheng
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Qiaoyan Xiang
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Ning Chen
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Zhiyun Chen
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Nan Zhang
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Junping Zhu
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Qiushui He
- Department of Medical Microbiology, Capital Medical University, Beijing, China
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| |
Collapse
|
68
|
Abstract
Over the past decade, many studies have revealed the importance of the gut microbiome in disease development and treatment, including in cancer. Because both host genetics and the gut microbiome can influence host phenotype and treatment outcome, there is an urgent need to develop precision medicine and personalize dietary supplementation based on an individual’s microbiome.
Collapse
|
69
|
Abstract
Liver cancer is the sixth most common cancer worldwide, and the third most common cause of cancer-related death. Hepatocellular carcinoma (HCC), which accounts for more than 90% of primary liver cancers, is an important public health problem. In addition to cirrhosis caused by hepatitis B viral (HBV) or hepatitis C viral (HCV) infection, non-alcoholic fatty liver disease (NAFLD) is becoming a major risk factor for liver cancer because of the prevalence of obesity. Non-alcoholic steatohepatitis (NASH) will likely become the leading indication for liver transplantation in the future. It is well recognized that gut microbiota is a key environmental factor in the pathogenesis of liver disease and cancer. The interplay between gut microbiota and liver disease has been investigated in animal and clinical studies. In this article, we summarize the roles of gut microbiota in the development of liver disease as well as gut microbiota-targeted therapies.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA,The College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA,Corresponding author. Department of medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA. (Y.-J.Y. Wan)
| |
Collapse
|
70
|
Yu HH, Hsieh MC, Wu SY, Sy ED, Shan YS. Effects of duodenal-jejunal bypass surgery in ameliorating nonalcoholic steatohepatitis in diet-induced obese rats. Diabetes Metab Syndr Obes 2019; 12:149-159. [PMID: 30705600 PMCID: PMC6342211 DOI: 10.2147/dmso.s190631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Duodenal-jejunal bypass (DJB) is an important component of many types of current bariatric surgery including Roux-en-Y gastric bypass, mini-gastric bypass, biliopancreatic diversion, duodenal switch, and DJB plus sleeve gastrectomy. Surgery is often observed to ameliorate nonalcoholic steatohepatitis (NASH), but without a clearly delineated mechanism. In this study, we investigated the effects of DJB in diet-induced obese rats with NASH. MATERIALS AND METHODS Male Wistar rats were divided into four groups and fed the following diets over 6 months: A) normal chow (NC group, n=6); B) methionine-choline-deficient (MCD)-high-fat (HF) diet (HF group, n=6); C) MCD-HF diet for 3 months followed by DJB and MCD-HF diet for subsequent 3 months (DJB group, n=6); and D) MCD-HF diet for 3 months followed by treatment with pioglitazone (PGZ) with MCD-HF diet for subsequent 3 months (PGZ group, n=6). Body weight, glucose tolerance, the homeostatic model assessment-insulin resistance index, and lipid profiles were compared. Liver and visceral adipose tissue histology, inflammatory marker and hepatic stellate cell (HSC) activity, and hepatocyte autophagy were assessed. RESULTS Compared with the HF group, the DJB group showed improved body weight, insulin sensitivity, lipid metabolism, and steatosis severity. The DJB group exhibited a significantly lower nonalcoholic fatty liver disease activity score than the HF and PGZ group (P<0.001 and P=0.003, respectively). Furthermore, DJB significantly reduced fat mass and adipocyte size. These effects were also observed in the PGZ group. Therefore, we speculated that the improvements induced by DJB are closely related to an alteration in insulin sensitivity. Moreover, DJB reduced HSC activity and TNF-α expression and enhanced hepatocyte autophagy. CONCLUSION DJB improves NASH through several mechanisms, particularly by altering insulin sensitivity, inflammatory responses, HSC activity, and hepatocyte autophagy.
Collapse
Affiliation(s)
- Hsin-Hsien Yu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan,
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mao-Chih Hsieh
- Division of General Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Szu-Yuan Wu
- Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Edgar D Sy
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan,
| | - Yan-Shen Shan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan,
- Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan,
| |
Collapse
|
71
|
Porras D, Nistal E, Martínez-Flórez S, González-Gallego J, García-Mediavilla MV, Sánchez-Campos S. Intestinal Microbiota Modulation in Obesity-Related Non-alcoholic Fatty Liver Disease. Front Physiol 2018; 9:1813. [PMID: 30618824 PMCID: PMC6305464 DOI: 10.3389/fphys.2018.01813] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022] Open
Abstract
Obesity and associated comorbidities, including non-alcoholic fatty liver disease (NAFLD), are a major concern to public well-being worldwide due to their high prevalence among the population, and its tendency on the rise point to as important threats in the future. Therapeutic approaches for obesity-associated disorders have been circumscribed to lifestyle modifications and pharmacological therapies have demonstrated limited efficacy. Over the last few years, different studies have shown a significant role of intestinal microbiota (IM) on obesity establishment and NAFLD development. Therefore, modulation of IM emerges as a promising therapeutic strategy for obesity-associated diseases. Administration of prebiotic and probiotic compounds, fecal microbiota transplantation (FMT) and exercise protocols have shown a modulatory action over the IM. In this review we provide an overview of current approaches targeting IM which have shown their capacity to counteract NAFLD and metabolic syndrome features in human patients and animal models.
Collapse
Affiliation(s)
- David Porras
- Institute of Biomedicine, University of León, León, Spain
| | - Esther Nistal
- Institute of Biomedicine, University of León, León, Spain.,Department of Gastroenterology, Complejo Asistencial Universitario de León, León, Spain
| | | | - Javier González-Gallego
- Institute of Biomedicine, University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - María Victoria García-Mediavilla
- Institute of Biomedicine, University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Sonia Sánchez-Campos
- Institute of Biomedicine, University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| |
Collapse
|
72
|
Yu S, Wu X, Zhou Y, Sheng L, Jena PK, Han D, Wan YJY, Hwang ST. A Western Diet, but Not a High-Fat and Low-Sugar Diet, Predisposes Mice to Enhanced Susceptibility to Imiquimod-Induced Psoriasiform Dermatitis. J Invest Dermatol 2018; 139:1404-1407. [PMID: 30571973 DOI: 10.1016/j.jid.2018.12.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/01/2018] [Accepted: 12/03/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Sebastian Yu
- Department of Dermatology, University of California, Davis, Sacramento, California, USA; Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Xuesong Wu
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Yan Zhou
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Lili Sheng
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| | - Prasant Kumar Jena
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| | - Dan Han
- Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - Yu Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| | - Samuel T Hwang
- Department of Dermatology, University of California, Davis, Sacramento, California, USA.
| |
Collapse
|
73
|
Abstract
Many receptors can be activated by bile acids (BAs) and their derivatives. These include nuclear receptors farnesoid X receptor (FXR), pregnane X receptor (PXR), and vitamin D receptor (VDR), as well as membrane receptors Takeda G protein receptor 5 (TGR5), sphingosine-1-phosphate receptor 2 (S1PR2), and cholinergic receptor muscarinic 2 (CHRM2). All of them are implicated in the development of metabolic and immunological diseases in response to endobiotic and xenobiotic exposure. Because epigenetic regulation is critical for organisms to adapt to constant environmental changes, this review article summarizes epigenetic regulation as well as post-transcriptional modification of bile acid receptors. In addition, the focus of this review is on the liver and digestive tract although these receptors may have effects on other organs. Those regulatory mechanisms are implicated in the disease process and critically important in uncovering innovative strategy for prevention and treatment of metabolic and immunological diseases.
Collapse
|
74
|
Rosa CP, Brancaglion GA, Miyauchi-Tavares TM, Corsetti PP, de Almeida LA. Antibiotic-induced dysbiosis effects on the murine gastrointestinal tract and their systemic repercussions. Life Sci 2018; 207:480-491. [DOI: 10.1016/j.lfs.2018.06.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/20/2018] [Accepted: 06/28/2018] [Indexed: 02/07/2023]
|
75
|
Smith CK, Trinchieri G. The interplay between neutrophils and microbiota in cancer. J Leukoc Biol 2018; 104:701-715. [PMID: 30044897 DOI: 10.1002/jlb.4ri0418-151r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
The role of the microbiota in many diseases including cancer has gained increasing attention. Paired with this is our expanding appreciation for the heterogeneity of the neutrophil compartment regarding surface marker expression and functionality. In this review, we will discuss the influence of the microbiota on granulopoiesis and consequent activity of neutrophils in cancer. As evidence for this microbiota-neutrophil-cancer axis builds, it exposes new therapeutic targets to improve a cancer patient's outcome.
Collapse
Affiliation(s)
- Carolyne K Smith
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
76
|
Ishizawa M, Akagi D, Makishima M. Lithocholic Acid Is a Vitamin D Receptor Ligand That Acts Preferentially in the Ileum. Int J Mol Sci 2018; 19:ijms19071975. [PMID: 29986424 PMCID: PMC6073204 DOI: 10.3390/ijms19071975] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 06/22/2018] [Accepted: 07/03/2018] [Indexed: 12/17/2022] Open
Abstract
The vitamin D receptor (VDR) is a nuclear receptor that mediates the biological action of the active form of vitamin D, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], and regulates calcium and bone metabolism. Lithocholic acid (LCA), which is a secondary bile acid produced by intestinal bacteria, acts as an additional physiological VDR ligand. Despite recent progress, however, the physiological function of the LCA−VDR axis remains unclear. In this study, in order to elucidate the differences in VDR action induced by 1,25(OH)2D3 and LCA, we compared their effect on the VDR target gene induction in the intestine of mice. While the oral administration of 1,25(OH)2D3 induced the Cyp24a1 expression effectively in the duodenum and jejunum, the LCA increased target gene expression in the ileum as effectively as 1,25(OH)2D3. 1,25(OH)2D3, but not LCA, increased the expression of the calcium transporter gene Trpv6 in the upper intestine, and increased the plasma calcium levels. Although LCA could induce an ileal Cyp24a1 expression as well as 1,25(OH)2D3, the oral LCA administration was not effective in the VDR target gene induction in the kidney. No effect of LCA on the ileal Cyp24a1 expression was observed in the VDR-null mice. Thus, the results indicate that LCA is a selective VDR ligand acting in the lower intestine, particularly the ileum. LCA may be a signaling molecule, which links intestinal bacteria and host VDR function.
Collapse
Affiliation(s)
- Michiyasu Ishizawa
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Daisuke Akagi
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| | - Makoto Makishima
- Division of Biochemistry, Department of Biomedical Sciences, Nihon University School of Medicine, 30-1 Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan.
| |
Collapse
|
77
|
Sheng L, Jena PK, Liu HX, Hu Y, Nagar N, Bronner DN, Settles ML, Bäumler AJ, Wan YJY. Obesity treatment by epigallocatechin-3-gallate-regulated bile acid signaling and its enriched Akkermansia muciniphila. FASEB J 2018; 32:fj201800370R. [PMID: 29882708 PMCID: PMC6219838 DOI: 10.1096/fj.201800370r] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/14/2018] [Indexed: 12/21/2022]
Abstract
Dysregulated bile acid (BA) synthesis is accompanied by dysbiosis, leading to compromised metabolism. This study analyzes the effect of epigallocatechin-3-gallate (EGCG) on diet-induced obesity through regulation of BA signaling and gut microbiota. The data revealed that EGCG effectively reduced diet-increased obesity, visceral fat, and insulin resistance. Gene profiling data showed that EGCG had a significant impact on regulating genes implicated in fatty acid uptake, adipogenesis, and metabolism in the adipose tissue. In addition, metabolomics analysis revealed that EGCG altered the lipid and sugar metabolic pathways. In the intestine, EGCG reduced the FXR agonist chenodeoxycholic acid, as well as the FXR-regulated pathway, suggesting intestinal FXR deactivation. However, in the liver, EGCG increased the concentration of FXR and TGR-5 agonists and their regulated signaling. Furthermore, our data suggested that EGCG activated Takeda G protein receptor (TGR)-5 based on increased GLP-1 release and elevated serum PYY level. EGCG and antibiotics had distinct antibacterial effects. They also differentially altered body weight and BA composition. EGCG, but not antibiotics, increased Verrucomicrobiaceae, under which EGCG promoted intestinal bloom of Akkermansia muciniphila. Excitingly, A. muciniphila was as effective as EGCG in treating diet-induced obesity. Together, EGCG shifts gut microbiota and regulates BA signaling thereby having a metabolic beneficial effect.-Sheng, L., Jena, P. K., Liu, H.-X., Hu, Y., Nagar, N., Bronner, D. N., Settles, M. L., Bäumler, A. J. Wan, Y.-J. Y. Obesity treatment by epigallocatechin-3-gallate-regulated bile acid signaling and its enriched Akkermansia muciniphila.
Collapse
Affiliation(s)
- Lili Sheng
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| | - Prasant Kumar Jena
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| | - Hui-Xin Liu
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| | - Ying Hu
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| | - Nidhi Nagar
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| | - Denise N. Bronner
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California, USA
| | - Matthew L. Settles
- Bioinformatics Core Facility in the Genome Center, University of California, Davis, Davis, California, USA
| | - Andreas J. Bäumler
- Department of Medical Microbiology and Immunology, University of California, Davis, Davis, California, USA
| | - Yu-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
78
|
Jena PK, Sheng L, Nagar N, Wu C, Barile D, Mills DA, Wan YJY. The effect of synbiotics Bifidobacterium infantis and milk oligosaccharides on shaping gut microbiota community structure and NASH treatment. Data Brief 2018; 19:1025-1029. [PMID: 29900399 PMCID: PMC5997954 DOI: 10.1016/j.dib.2018.05.127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/21/2018] [Indexed: 12/12/2022] Open
Abstract
Probiotic Bifidobacterium longum subspecies infantis (Bifidobacterium infantis) consumes human milk oligosaccharides (MO) and protects intestinal permeability thereby having anti-inflammatory effects (Underwood et al., 2015; Bode, 2006; Asakuma et al., 2011) [1-3]. Via the gut-liver axis, gut barrier disruption and dysbiosis lead to hepatic inflammation (Sheng et al., 2017; Jena et al., 2017) [4,5,6]. Our published data revealed that butyrate, as well as synbiotics of B. infantis in combination with MO, had protective effects against cancer-prone non-alcoholic steatohepatitis (NASH) mouse models, i.e., Western diet (WD)-fed bile acid receptor FXR (farnesoid x receptor) knockout (KO) mice (Jena et al., 2018) [6,7]. In addition, MO was particularly effective in increasing the blooming of butyrate-generating bacteria (Jena et al., 2018) [7]. In the present study, we further showed that the reduced ileal short chain fatty acid (SCFA) signaling found in WD-fed FXR KO mice could be reversed by B. infantis and/or MO treatment. Moreover, ileal mRNA levels of SCFA receptors i.e. Gpr41 (Ffar3), Gpr109 (Hcar2), and Gpr43 (Ffar2) were increased in B. infantis and/or MO-treated mice suggesting increased SCFA signaling (Fig. 1). Further, nuclear magnetic resonance (NMR) data revealed that MO and B. Infantis plus MO increased intestinal acetate, propionate, butyrate, and valerate levels (Fig. 2). In addition, B. infantis and/or MO reduced the abundance of genus Bilophila and the relative copy number of bacterial genes including dissimilatory sulfite reductase (dsrA) and methyl coenzyme M reductase A (mcrA), which were all increased in cancer-prone FXR KO mice (Fig. 3).
Collapse
Affiliation(s)
- Prasant Kumar Jena
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Lili Sheng
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Nidhi Nagar
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| | - Chao Wu
- Research and Development, Hilmar Ingredients, Hilmar, CA, USA
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis, CA, USA
| | - David A Mills
- Department of Food Science and Technology, University of California, Davis, CA, USA.,Department of Viticulture and Enology, University of California, Davis, CA, USA
| | - Yui-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA
| |
Collapse
|
79
|
Abstract
Bile acids facilitate intestinal nutrient absorption and biliary cholesterol secretion to maintain bile acid homeostasis, which is essential for protecting liver and other tissues and cells from cholesterol and bile acid toxicity. Bile acid metabolism is tightly regulated by bile acid synthesis in the liver and bile acid biotransformation in the intestine. Bile acids are endogenous ligands that activate a complex network of nuclear receptor farnesoid X receptor and membrane G protein-coupled bile acid receptor-1 to regulate hepatic lipid and glucose metabolic homeostasis and energy metabolism. The gut-to-liver axis plays a critical role in the regulation of enterohepatic circulation of bile acids, bile acid pool size, and bile acid composition. Bile acids control gut bacteria overgrowth, and gut bacteria metabolize bile acids to regulate host metabolism. Alteration of bile acid metabolism by high-fat diets, sleep disruption, alcohol, and drugs reshapes gut microbiome and causes dysbiosis, obesity, and metabolic disorders. Gender differences in bile acid metabolism, FXR signaling, and gut microbiota have been linked to higher prevalence of fatty liver disease and hepatocellular carcinoma in males. Alteration of bile acid homeostasis contributes to cholestatic liver diseases, inflammatory diseases in the digestive system, obesity, and diabetes. Bile acid-activated receptors are potential therapeutic targets for developing drugs to treat metabolic disorders.
Collapse
Affiliation(s)
- John Y. L. Chiang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Jessica M. Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, USA
| |
Collapse
|
80
|
Jena PK, Sheng L, Nagar N, Wu C, Barile D, Mills DA, Wan YJY. Synbiotics Bifidobacterium infantis and milk oligosaccharides are effective in reversing cancer-prone nonalcoholic steatohepatitis using western diet-fed FXR knockout mouse models. J Nutr Biochem 2018; 57:246-254. [PMID: 29800811 DOI: 10.1016/j.jnutbio.2018.04.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/12/2018] [Accepted: 04/17/2018] [Indexed: 12/23/2022]
Abstract
Milk oligosaccharides (MO) selectively increase the growth of Bifidobacterium infantis (B. infantis). This study examines the effects of bovine MO and B. infantis in preventing nonalcoholic steatohepatitis (NASH) in Western diet (WD)-fed bile acid (BA) receptor FXR (farnesoid x receptor) knockout (KO) mice. WD-fed FXR KO mice have cancer-prone NASH and reduced B. infantis. MO and/or B. infantis supplementation improved their insulin sensitivity and reduced hepatic inflammation. Additionally, B. infantis, but not MO, decreased hepatic triglyceride and cholesterol. A combination of both further reduced hepatic cholesterol, the precursor of BAs. All three treatments modulated serum and hepatic BA profile. Moreover, B. infantis and MO decreased hepatic CYP7A1 and induced Sult2a1, Sult2a2, and Sult2a3 suggesting reduced BA synthesis and increased detoxification. Furthermore, B. infantis and MO increased ileal BA membrane receptor TGR5-regulated signaling. Together, via BA-regulated signaling, synbiotics B. infantis and MO have their unique and combined effects in reversing NASH.
Collapse
Affiliation(s)
- Prasant Kumar Jena
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento 95817, CA, USA
| | - Lili Sheng
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento 95817, CA, USA
| | - Nidhi Nagar
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento 95817, CA, USA
| | - Chao Wu
- Research and Development, Hilmar Ingredients, Hilmar 95324, CA, USA
| | - Daniela Barile
- Department of Food Science and Technology, University of California, Davis 95616, CA, USA
| | - David A Mills
- Department of Food Science and Technology, University of California, Davis 95616, CA, USA; Department of Viticulture and Enology, University of California, Davis 95616, CA, USA
| | - Yui-Jui Yvonne Wan
- Department of Pathology and Laboratory Medicine, University of California, Davis, Sacramento 95817, CA, USA.
| |
Collapse
|
81
|
Jena PK, Sheng L, Di Lucente J, Jin LW, Maezawa I, Wan YJY. Dysregulated bile acid synthesis and dysbiosis are implicated in Western diet-induced systemic inflammation, microglial activation, and reduced neuroplasticity. FASEB J 2018; 32:2866-2877. [PMID: 29401580 DOI: 10.1096/fj.201700984rr] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The goal of this study was to identify the intrinsic links that explain the effect of a Western diet (WD) on cognitive dysfunction. Specific pathogen-free, wild-type mice were fed either a control diet (CD) or a high-fat, high-sucrose WD after weaning and were euthanized at 10 mo of age to study the pathways that affect cognitive health. The results showed that long-term WD intake reduced hippocampal synaptic plasticity and the level of brain-derived neurotrophic factor mRNA in the brain and isolated microglia. A WD also activated ERK1/2 and reduced postsynaptic density-95 in the brain, suggesting postsynaptic damage. Moreover, WD-fed mice had increased inflammatory signaling in the brain, ileum, liver, adipose tissue, and spleen, which was accompanied by microglia activation. In the brain, as well as in the digestive tract, a WD reduced signaling regulated by retinoic acid and bile acids (BAs), whose receptors form heterodimers to control metabolism and inflammation. Furthermore, a WD intake caused dysbiosis and dysregulated BA synthesis with reduced endogenous ligands for BA receptors, i.e., farnesoid X receptor and G-protein-coupled bile acid receptor in the liver and brain. Together, dysregulated BA synthesis and dysbiosis were accompanied by systemic inflammation, microglial activation, and reduced neuroplasticity induced by WD.-Jena, P. K., Sheng, L., Di Lucente, J., Jin, L.-W., Maezawa, I., Wan, Y.-J. Y. Dysregulated bile acid synthesis and dysbiosis are implicated in Western diet-induced systemic inflammation, microglial activation, and reduced neuroplasticity.
Collapse
Affiliation(s)
- Prasant Kumar Jena
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and
| | - Lili Sheng
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and
| | - Jacopo Di Lucente
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and.,Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, Sacramento, California, USA
| | - Lee-Way Jin
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and.,Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, Sacramento, California, USA
| | - Izumi Maezawa
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and.,Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, Sacramento, California, USA
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine University of California, Davis, Sacramento, California, USA; and
| |
Collapse
|
82
|
Chiu CC, Ching YH, Li YP, Liu JY, Huang YT, Huang YW, Yang SS, Huang WC, Chuang HL. Nonalcoholic Fatty Liver Disease Is Exacerbated in High-Fat Diet-Fed Gnotobiotic Mice by Colonization with the Gut Microbiota from Patients with Nonalcoholic Steatohepatitis. Nutrients 2017; 9:nu9111220. [PMID: 29113135 PMCID: PMC5707692 DOI: 10.3390/nu9111220] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/24/2017] [Accepted: 11/02/2017] [Indexed: 12/20/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a serious liver disorder associated with the accumulation of fat and inflammation. The objective of this study was to determine the gut microbiota composition that might influence the progression of NAFLD. Germ-free mice were inoculated with feces from patients with nonalcoholic steatohepatitis (NASH) or from healthy persons (HL) and then fed a standard diet (STD) or high-fat diet (HFD). We found that the epididymal fat weight, hepatic steatosis, multifocal necrosis, and inflammatory cell infiltration significantly increased in the NASH-HFD group. These findings were consistent with markedly elevated serum levels of alanine transaminase, aspartate transaminase, endotoxin, interleukin 6 (IL-6), monocyte chemotactic protein 1 (Mcp1), and hepatic triglycerides. In addition, the mRNA expression levels of Toll-like receptor 2 (Tlr2), Toll-like receptor 4 (Tlr4), tumor necrosis factor alpha (Tnf-α), Mcp1, and peroxisome proliferator-activated receptor gamma (Ppar-γ) significantly increased. Only abundant lipid accumulation and a few inflammatory reactions were observed in group HL-HFD. Relative abundance of Bacteroidetes and Firmicutes shifted in the HFD-fed mice. Furthermore, the relative abundance of Streptococcaceae was the highest in group NASH-HFD. Nevertheless, obesity-related Lactobacillaceae were significantly upregulated in HL-HFD mice. Our results revealed that the gut microbiota from NASH Patients aggravated hepatic steatosis and inflammation. These findings might partially explain the NAFLD progress distinctly was related to different compositions of gut microbiota.
Collapse
Affiliation(s)
- Chien-Chao Chiu
- Animal Technology Laboratories, Agricultural Technology Research Institute, Miaoli 350, Taiwan.
| | - Yung-Hao Ching
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien 970, Taiwan.
| | - Yen-Peng Li
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 402, Taiwan.
| | - Ju-Yun Liu
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei 115, Taiwan.
| | - Yen-Te Huang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei 115, Taiwan.
| | - Yi-Wen Huang
- Liver Center, Cathay General Hospital Medical Center, Taipei 106, Taiwan.
- School of Medicine, Taipei Medical University College of Medicine, Taipei 110, Taiwan.
| | - Sien-Sing Yang
- Liver Center, Cathay General Hospital Medical Center, Taipei 106, Taiwan.
| | - Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan.
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei 115, Taiwan.
| |
Collapse
|
83
|
Massafra V, van Mil SWC. Farnesoid X receptor: A "homeostat" for hepatic nutrient metabolism. Biochim Biophys Acta Mol Basis Dis 2017; 1864:45-59. [PMID: 28986309 DOI: 10.1016/j.bbadis.2017.10.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/27/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023]
Abstract
The Farnesoid X receptor (FXR) is a nuclear receptor activated by bile acids (BAs). BAs are amphipathic molecules that serve as fat solubilizers in the intestine under postprandial conditions. In the post-absorptive state, BAs bind FXR in the hepatocytes, which in turn provides feedback signals on BA synthesis and transport and regulates lipid, glucose and amino acid metabolism. Therefore, FXR acts as a homeostat of all three classes of nutrients, fats, sugars and proteins. Here we re-analyze the function of FXR in the perspective of nutritional metabolism, and discuss the role of FXR in liver energy homeostasis in postprandial, post-absorptive and fasting/starvation states. FXR, by regulating nutritional metabolism, represses autophagy in conditions of nutrient abundance, and controls the metabolic needs of proliferative cells. In addition, FXR regulates inflammation via direct effects and via its impact on nutrient metabolism. These functions indicate that FXR is an attractive therapeutic target for liver diseases.
Collapse
Affiliation(s)
- Vittoria Massafra
- Center for Molecular Medicine, UMC Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
84
|
Chiang JYL. Linking Sex Differences in Non-Alcoholic Fatty Liver Disease to Bile Acid Signaling, Gut Microbiota, and High Fat Diet. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:1658-1659. [PMID: 28728746 DOI: 10.1016/j.ajpath.2017.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/05/2017] [Indexed: 12/12/2022]
Abstract
This commentary highlights the article by Jena et al that studied the complex interplay between diet, bile acids, sex, and dysbiosis in hepatic steatosis and inflammation.
Collapse
Affiliation(s)
- John Y L Chiang
- Department of Integrative Medical Sciences, College of Medicine, Northeast Ohio Medical University, Rootstown, Ohio.
| |
Collapse
|