51
|
Jian B, Hu M, Cai W, Zhang B, Lu Z. Update of Immunosenescence in Cerebral Small Vessel Disease. Front Immunol 2020; 11:585655. [PMID: 33362768 PMCID: PMC7756147 DOI: 10.3389/fimmu.2020.585655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/16/2020] [Indexed: 12/31/2022] Open
Abstract
Aging of the central nervous system (CNS) is closely associated with chronic sterile low-grade inflammation in older organisms and related immune response. As an amplifier for neuro-inflammaging, immunosenescence remodels and deteriorates immune systems gradually with the passage of time, and finally contributes to severe outcomes like stroke, dementia and neurodegeneration in elderly adults. Cerebral small vessel disease (CSVD), one of the major causes of vascular dementia, has an intensive connection with the inflammatory response and immunosenescence plays a crucial role in the pathology of this disorder. In this review, we discuss the impact of immunosenescence on the development of CSVD and its underlying mechanism. Furthermore, the clinical practice significance of immunosenescence management and the diagnosis and treatment of CSVD will be also discussed.
Collapse
Affiliation(s)
- Banghao Jian
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mengyan Hu
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Cai
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Center of Clinical Immunology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bingjun Zhang
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhengqi Lu
- Department of Neurology, Center for Mental and Neurological Disorders and Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
52
|
Bachmann MC, Bellalta S, Basoalto R, Gómez-Valenzuela F, Jalil Y, Lépez M, Matamoros A, von Bernhardi R. The Challenge by Multiple Environmental and Biological Factors Induce Inflammation in Aging: Their Role in the Promotion of Chronic Disease. Front Immunol 2020; 11:570083. [PMID: 33162985 PMCID: PMC7591463 DOI: 10.3389/fimmu.2020.570083] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
The aging process is driven by multiple mechanisms that lead to changes in energy production, oxidative stress, homeostatic dysregulation and eventually to loss of functionality and increased disease susceptibility. Most aged individuals develop chronic low-grade inflammation, which is an important risk factor for morbidity, physical and cognitive impairment, frailty, and death. At any age, chronic inflammatory diseases are major causes of morbimortality, affecting up to 5-8% of the population of industrialized countries. Several environmental factors can play an important role for modifying the inflammatory state. Genetics accounts for only a small fraction of chronic-inflammatory diseases, whereas environmental factors appear to participate, either with a causative or a promotional role in 50% to 75% of patients. Several of those changes depend on epigenetic changes that will further modify the individual response to additional stimuli. The interaction between inflammation and the environment offers important insights on aging and health. These conditions, often depending on the individual's sex, appear to lead to decreased longevity and physical and cognitive decline. In addition to biological factors, the environment is also involved in the generation of psychological and social context leading to stress. Poor psychological environments and other sources of stress also result in increased inflammation. However, the mechanisms underlying the role of environmental and psychosocial factors and nutrition on the regulation of inflammation, and how the response elicited for those factors interact among them, are poorly understood. Whereas certain deleterious environmental factors result in the generation of oxidative stress driven by an increased production of reactive oxygen and nitrogen species, endoplasmic reticulum stress, and inflammation, other factors, including nutrition (polyunsaturated fatty acids) and behavioral factors (exercise) confer protection against inflammation, oxidative and endoplasmic reticulum stress, and thus ameliorate their deleterious effect. Here, we discuss processes and mechanisms of inflammation associated with environmental factors and behavior, their links to sex and gender, and their overall impact on aging.
Collapse
Affiliation(s)
| | - Sofía Bellalta
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roque Basoalto
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Yorschua Jalil
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Macarena Lépez
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anibal Matamoros
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute of Biological Sciences (ICB), Federal University of Pará, Belem, Brazil
| | - Rommy von Bernhardi
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
53
|
Bektas A, Schurman SH, Franceschi C, Ferrucci L. A public health perspective of aging: do hyper-inflammatory syndromes such as COVID-19, SARS, ARDS, cytokine storm syndrome, and post-ICU syndrome accelerate short- and long-term inflammaging? Immun Ageing 2020; 17:23. [PMID: 32849908 PMCID: PMC7443812 DOI: 10.1186/s12979-020-00196-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 01/08/2023]
Abstract
A central clinical question as the world deals with the COVID-19 pandemic is what the long-term sequelae for the millions of individuals will be who recover from the hyperinflammatory state characterizing COVID-19 and in particular for the hundreds of thousands who are ill enough to need hospitalization and in particular ICU care. Even when the pandemic is finally controlled, will COVID-19 survivors face exaggerated internal inflammatory processes, worsening co-morbidities, and increased susceptibility to age-related diseases? Clues for what may happen in post-COVID-19 patients can be elicited from those who recovered from other conditions that lead to similar hyperinflammatory states such as Severe Acute Respiratory Syndrome (SARS), acute respiratory disease syndrome (ARDS), cytokine storm syndrome, and post-ICU syndrome. The short-and long-term sequalae following recovery from each of these conditions suggests that these syndromes lead to an accelerated state of chronic subclinical systemic inflammation often seen in aging (termed inflammaging) resulting in increased and worsening age-related conditions including frailty even in younger individuals.
Collapse
Affiliation(s)
- Arsun Bektas
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224 USA
| | - Shepherd H. Schurman
- Clinical Research Branch, National Institute of Environmental Health Sciences, National Institutes of Health, 111 TW Alexander Dr, Research Triangle Park, NC 27709 USA
| | - Claudio Franceschi
- Alma Mater Studiorum University of Bologna, Bologna, Italy
- Laboratory of Systems Biology of Healthy Aging and Department of Applied Mathematics, Lobachevsky State University, Nizhny Novgorod, Russia
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Baltimore, MD 21224 USA
| |
Collapse
|
54
|
Sil S, Niu F, Chivero ET, Singh S, Periyasamy P, Buch S. Role of Inflammasomes in HIV-1 and Drug Abuse Mediated Neuroinflammaging. Cells 2020; 9:cells9081857. [PMID: 32784383 PMCID: PMC7464640 DOI: 10.3390/cells9081857] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the effectiveness of combined antiretroviral therapy (cART) in suppressing virus replication, chronic inflammation remains one of the cardinal features intersecting HIV-1, cART, drug abuse, and likely contributes to the accelerated neurocognitive decline and aging in people living with HIV-1 (PLWH) that abuse drugs. It is also estimated that ~30–60% of PLWH on cART develop cognitive deficits associated with HIV-1-associated neurocognitive disorders (HAND), with symptomatology ranging from asymptomatic to mild, neurocognitive impairments. Adding further complexity to HAND is the comorbidity of drug abuse in PLWH involving activated immune responses and the release of neurotoxins, which, in turn, mediate neuroinflammation. Premature or accelerated aging is another feature of drug abusing PLWH on cART regimes. Emerging studies implicate the role of HIV-1/HIV-1 proteins, cART, and abused drugs in altering the inflammasome signaling in the central nervous system (CNS) cells. It is thus likely that exposure of these cells to HIV-1/HIV-1 proteins, cART, and/or abused drugs could have synergistic/additive effects on the activation of inflammasomes, in turn, leading to exacerbated neuroinflammation, ultimately resulting in premature aging referred to as “inflammaging” In this review, we summarize the current knowledge of inflammasome activation, neuroinflammation, and aging in central nervous system (CNS) cells such as microglia, astrocytes, and neurons in the context of HIV-1 and drug abuse.
Collapse
Affiliation(s)
| | | | | | | | | | - Shilpa Buch
- Correspondence: (P.P.); (S.B.); Tel.: +1-402-559-3165 (S.B.)
| |
Collapse
|
55
|
Kim SE, Mori R, Shimokawa I. Does Calorie Restriction Modulate Inflammaging via FoxO Transcription Factors? Nutrients 2020; 12:nu12071959. [PMID: 32630045 PMCID: PMC7399912 DOI: 10.3390/nu12071959] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/11/2022] Open
Abstract
Calorie restriction (CR) has been shown to extend lifespan and retard aging-related functional decline in animals. Previously, we found that the anti-neoplastic and lifespan-extending effects of CR in mice are regulated by forkhead box O transcription factors (FoxO1 and FoxO3), located downstream of growth hormone (GH)–insulin-like growth factor (IGF)-1 signaling, in an isoform-specific manner. Inflammaging is a term coined to represent that persistent low-level of inflammation underlies the progression of aging and related diseases. Attenuation of inflammaging in the body may underlie the effects of CR. Recent studies have also identified cellular senescence and activation of the nucleotide-binding domain, leucine-rich-containing family, pyrin-domain-containing-3 (NLRP3) inflammasome as causative factors of inflammaging. In this paper, we reviewed the current knowledge of the molecular mechanisms linking the effects of CR with the formation of inflammasomes, particularly focusing on possible relations with FoxO3. Inflammation in the brain that affects adult neurogenesis and lifespan was also reviewed as evidence of inflammaging. A recent progress of microRNA research was described as regulatory circuits of initiation and propagation of inflammaging. Finally, we briefly introduced our preliminary results obtained from the mouse models, in which Foxo1 and Foxo3 genes were conditionally knocked out in the myeloid cell lineage.
Collapse
Affiliation(s)
| | | | - Isao Shimokawa
- Correspondence: ; Tel.: +81-95-819-7050; Fax: +81-95-819-7051
| |
Collapse
|
56
|
Ortiz-Quintero B, Buendía-Roldán I, Ramírez-Salazar EG, Balderas-Martínez YI, Ramírez-Rodríguez SL, Martínez-Espinosa K, Selman M. Circulating microRNA Signature Associated to Interstitial Lung Abnormalities in Respiratory Asymptomatic Subjects. Cells 2020; 9:E1556. [PMID: 32604783 PMCID: PMC7348836 DOI: 10.3390/cells9061556] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Interstitial lung abnormalities (ILA) are observed in around 9% of older respiratory asymptomatic subjects, mainly smokers. Evidence suggests that ILA may precede the development of interstitial lung diseases and may evolve to progressive fibrosis. Identifying biomarkers of this subclinical status is relevant for early diagnosis and to predict outcome. We aimed to identify circulating microRNAs (miRNAs) associated to ILA in a cohort of respiratory asymptomatic subjects older than 60 years. We identified 81 subjects with ILA from our Lung-Aging Program in Mexico City (n = 826). We randomly selected 112 subjects without ILA (Ctrl) from the same cohort. Using polymerase chain reaction PCR-Array technology (24 ILA and 24 Ctrl, screening cohort) and reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR) (57 ILA and 88 Ctr, independent validation cohort) we identified seven up-regulated miRNAs in serum of ILA compared to Ctrl (miR-193a-5p, p < 0.0001; miR-502-3p, p < 0.0001; miR-200c-3p, p = 0.003; miR-16-5p, p = 0.003; miR-21-5p, p = 0.002; miR-126-3p, p = 0.004 and miR-34a-5p, p < 0.005). Pathways regulated by these miRNAs include transforming growth factor beta (TGF-β), Wnt, mammalian target of rapamycin (mTOR), Insulin, mitogen-activated protein kinase (MAPK) signaling, and senescence. Receiver operator characteristic (ROC) curve analysis indicated that miR-193a-5p (area under the curve AUC: 0.75) and miR-502-3p (AUC 0.71) have acceptable diagnostic value. This is the first identification of circulating miRNAs associated to ILA in respiratory asymptomatic subjects, providing potential non-invasive biomarkers and molecular targets to better understand the pathogenic mechanisms associated to ILA.
Collapse
Affiliation(s)
- Blanca Ortiz-Quintero
- Unidad de Investigación, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas. Calzada de Tlalpan 4502, Colonia Sección XVI, Mexico City 14080, Mexico; (I.B.-R.); (Y.IB.-M.); (S.L.R.-R.); (K.M.-E.)
| | - Ivette Buendía-Roldán
- Unidad de Investigación, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas. Calzada de Tlalpan 4502, Colonia Sección XVI, Mexico City 14080, Mexico; (I.B.-R.); (Y.IB.-M.); (S.L.R.-R.); (K.M.-E.)
| | - Eric Gustavo Ramírez-Salazar
- Laboratorio de Genómica del Metabolismo Óseo, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Arenal Tepepan, Tlalpan, Mexico City 14610, Mexico;
| | - Yalbi I Balderas-Martínez
- Unidad de Investigación, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas. Calzada de Tlalpan 4502, Colonia Sección XVI, Mexico City 14080, Mexico; (I.B.-R.); (Y.IB.-M.); (S.L.R.-R.); (K.M.-E.)
| | - Sandra Lizbeth Ramírez-Rodríguez
- Unidad de Investigación, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas. Calzada de Tlalpan 4502, Colonia Sección XVI, Mexico City 14080, Mexico; (I.B.-R.); (Y.IB.-M.); (S.L.R.-R.); (K.M.-E.)
| | - Karen Martínez-Espinosa
- Unidad de Investigación, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas. Calzada de Tlalpan 4502, Colonia Sección XVI, Mexico City 14080, Mexico; (I.B.-R.); (Y.IB.-M.); (S.L.R.-R.); (K.M.-E.)
| | - Moisés Selman
- Unidad de Investigación, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas. Calzada de Tlalpan 4502, Colonia Sección XVI, Mexico City 14080, Mexico; (I.B.-R.); (Y.IB.-M.); (S.L.R.-R.); (K.M.-E.)
| |
Collapse
|
57
|
Brites D. Regulatory function of microRNAs in microglia. Glia 2020; 68:1631-1642. [PMID: 32463968 DOI: 10.1002/glia.23846] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/14/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022]
Abstract
Microglia are CNS-resident cells involved in immune surveillance and maintenance of intercellular homeostasis, while also contributing to neurologic pathologies. MicroRNAs (miRNAs) are a class of small (~22 nucleotides) single-stranded noncoding RNAs that participate in gene regulation at the post-transcriptional level. miRNAs typically bind to the untranslated region (3' UTR) of RNAs. It has been shown that miRNAs are important players in controlling inflammation and that their abnormal expression is linked to cancer and ageing, and to the onset and progression of neurodegenerative disease. Furthermore, miRNAs participate in intercellular trafficking. Thus, miRNAs are released from cells in a free form, bound to proteins or packaged within extracellular vesicles (EVs), exerting paracrine and long distance signaling. In this review, recent findings on the role of miRNAs as drivers of microglia phenotypic changes and their cotribution in neurological disease are addressed. MAIN POINTS: miRNAs have a key role in microglia function/dysfunction, polarization, and restoration. Microglia are both a source and recipient of extracellular vesicles (EVs) containing miRNAs. Extracellular miRNAs may be found as soluble (free and EV cargo) and protein complexes.
Collapse
Affiliation(s)
- Dora Brites
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
58
|
Accardi G, Aiello A, Aprile S, Caldarella R, Cammarata G, Carru C, Caruso C, Ciaccio M, Colomba P, Galimberti D, Gambino CM, Davinelli S, De Vivo I, Ligotti ME, Vasto S, Zinellu A, Candore G. The Phenotypic Characterization of the Cammalleri Sisters, an Example of Exceptional Longevity. Rejuvenation Res 2020; 23:476-484. [PMID: 32242495 DOI: 10.1089/rej.2019.2299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
This article shows demographic, clinical, anamnestic, cognitive, and functional data as well as biochemical, genetic, and epigenetic parameters of two exceptional siblings: Diega (supercentenarian) and Filippa (semisupercentenarian) Cammalleri. The purpose of this study is to provide new insights into the extreme phenotypes represented by semisupercentenarians and supercentenarians. Different studies have been published on supercentenarians, but to the best of our knowledge, this is the only concerning two sisters and the most detailed from a phenotypic point of view. Our findings agree with the suggestion that supercentenarians have an increasing relative resistance to age-related diseases, approximating the limits of the functional human reserve to address successfully the acute causes of death. More interestingly, our data agree with, and extend, the suggestion that inflammation and oxidative stress predict centenarian mortality.
Collapse
Affiliation(s)
- Giulia Accardi
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Anna Aiello
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Stefano Aprile
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Rosalia Caldarella
- Department of Laboratory Medicine, "P. Giaccone" University Hospital, Palermo, Italy
| | - Giuseppe Cammarata
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari. Italy
| | - Calogero Caruso
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy.,Italian Association of Anti-Ageing Physicians, Milano, Italy
| | - Marcello Ciaccio
- Department of Laboratory Medicine, "P. Giaccone" University Hospital, Palermo, Italy.,Unit of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Paolo Colomba
- Institute for Biomedical Research and Innovation, National Research Council of Italy, Palermo, Italy
| | | | - Caterina Maria Gambino
- Unit of Clinical Biochemistry, Clinical Molecular Medicine, and Laboratory Medicine, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy.,Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Immaculata De Vivo
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Mattia Emanuela Ligotti
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Sonya Vasto
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari. Italy
| | - Giuseppina Candore
- Laboratory of Immunopathology and Immunosenescence, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
59
|
Aging and biomarkers: Transcriptional levels evaluation of Osteopontin/miRNA-181a axis in hepatic tissue of rats in different age ranges. Exp Gerontol 2020; 133:110879. [DOI: 10.1016/j.exger.2020.110879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 12/21/2022]
|
60
|
Abstract
Most cancers arise in individuals over the age of 60. As the world population is living longer and reaching older ages, cancer is becoming a substantial public health problem. It is estimated that, by 2050, more than 20% of the world's population will be over the age of 60 - the economic, healthcare and financial burdens this may place on society are far from trivial. In this Review, we address the role of the ageing microenvironment in the promotion of tumour progression. Specifically, we discuss the cellular and molecular changes in non-cancerous cells during ageing, and how these may contribute towards a tumour permissive microenvironment; these changes encompass biophysical alterations in the extracellular matrix, changes in secreted factors and changes in the immune system. We also discuss the contribution of these changes to responses to cancer therapy as ageing predicts outcomes of therapy, including survival. Yet, in preclinical studies, the contribution of the aged microenvironment to therapy response is largely ignored, with most studies designed in 8-week-old mice rather than older mice that reflect an age appropriate to the disease being modelled. This may explain, in part, the failure of many successful preclinical therapies upon their translation to the clinic. Overall, the intention of this Review is to provide an overview of the interplay that occurs between ageing cell types in the microenvironment and cancer cells and how this is likely to impact tumour metastasis and therapy response.
Collapse
Affiliation(s)
- Mitchell Fane
- The Wistar Institute, Immunology, Microenvironment and Metastasis Program, Philadelphia, PA, USA.
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA.
| | - Ashani T Weeraratna
- The Wistar Institute, Immunology, Microenvironment and Metastasis Program, Philadelphia, PA, USA.
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
61
|
van Splunter M, Perdijk O, Fick-Brinkhof H, Floris-Vollenbroek EG, Meijer B, Brugman S, Savelkoul HFJ, van Hoffen E, Joost van Neerven RJ. Plasmacytoid dendritic cell and myeloid dendritic cell function in ageing: A comparison between elderly and young adult women. PLoS One 2019; 14:e0225825. [PMID: 31830086 PMCID: PMC6907850 DOI: 10.1371/journal.pone.0225825] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022] Open
Abstract
Ageing is associated with a changing immune system, leading to inflammageing (increased levels of inflammation markers in serum) and immunosenescence (reduced immune cells and reduced responses towards pathogens). This results in reduced vaccination responses and increased infections in elderly. Much is known about the adaptive immune system upon ageing, but less is known about the innate immune system. Therefore, the aim of this study was to compare innate immune function of Toll like receptor (TLR)-mediated responses between elderly and young adult women. To this end, elderly and young adult women were compared to study the effect of ageing on the relative prevalence and reactivity to TLR-mediated responses of myeloid- and plasmacytoid dendritic cells (mDC, pDC). In addition, TLR expression and inflammatory markers in serum were investigated. Elderly women had reduced numbers of circulating pDCs. In addition, pDCs and mDCs of elderly women responded differently towards TLR stimulation, especially TLR7/8 mediated stimulation was reduced, compared to young adults. In serum, markers involved in inflammation were generally increased in elderly. In conclusion, this study confirms and extends the knowledge about immunosenescence and inflammageing on innate immunity in elderly women.
Collapse
Affiliation(s)
| | - Olaf Perdijk
- Cell Biology and Immunology, Wageningen University, Wageningen, The Netherlands
| | | | | | - Ben Meijer
- Cell Biology and Immunology, Wageningen University, Wageningen, The Netherlands
| | - Sylvia Brugman
- Cell Biology and Immunology, Wageningen University, Wageningen, The Netherlands
| | | | | | - R. J. Joost van Neerven
- Cell Biology and Immunology, Wageningen University, Wageningen, The Netherlands
- FrieslandCampina, Amersfoort, The Netherlands
- * E-mail:
| |
Collapse
|
62
|
Giuliani A, Cirilli I, Prattichizzo F, Mensà E, Fulgenzi G, Sabbatinelli J, Graciotti L, Olivieri F, Procopio AD, Tiano L, Rippo MR. The mitomiR/Bcl-2 axis affects mitochondrial function and autophagic vacuole formation in senescent endothelial cells. Aging (Albany NY) 2019; 10:2855-2873. [PMID: 30348904 PMCID: PMC6224225 DOI: 10.18632/aging.101591] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/05/2018] [Indexed: 12/27/2022]
Abstract
During senescence, cells undergo distinctive biochemical and morphological changes and become dysfunctional. MiRNAs are involved in the senescence process and specific miRNAs can localize to mitochondria (mitomiRs). We hypothesized that part of the typical alterations of senescence may depends on mitomiRs deregulation. Therefore, we thoroughly explored the phenotype of human endothelial cells undergoing replicative senescence (sHUVECs) and observed elongated/branched mitochondria, accumulation of autophagic vacuoles (AVs), increased ROS and IL-1β production and reduced expression of Bcl-2 compared to younger cells (yHUVECs). Despite these pro-apoptotic features, sHUVECs are more resistant to serum deprivation, conceivably due to development of pro-survival strategies such as upregulation of Bcl-xL and Survivin. We demonstrate that mitomiR-181a, -34a, and -146a, are overexpressed and localize to mitochondria in sHUVECs compared with yHUVECs and that they: i) down-regulate Bcl-2, ii) induce permeability transition pore opening and activation of caspase-1 and 3, iii) affect sensitivity to apoptosis and iv) promote the conversion of LC3-I to LC3-II. Overall, we document for the first time that some mitomiRs can act as mediators of the multiple but functionally linked biochemical and morphological changes that characterize aging cells and that they can promote different cellular outcomes according to the senescence status of the cell.
Collapse
Affiliation(s)
- Angelica Giuliani
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | | | - Emanuela Mensà
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Gianluca Fulgenzi
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy.,Neural Development Section, Mouse Cancer Genetics Program, CCR, NCI, Frederick, MD 21702, USA
| | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Laura Graciotti
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA National Institute, Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA National Institute, Ancona, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences (DISCLIMO), Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
63
|
Martinez M, Rossetto IMU, Arantes RMS, Lizarte FSN, Tirapelli LF, Tirapelli DPC, Chuffa LGA, Martinez FE. Serum miRNAs are differentially altered by ethanol and caffeine consumption in rats. Toxicol Res (Camb) 2019; 8:842-849. [PMID: 32055392 PMCID: PMC7003974 DOI: 10.1039/c9tx00069k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
Alcoholism is a multifactorial disease with high risk for dependence determined by genetic background, environmental factors and neuroadaptations. The excessive consumption of this substance is related to psychiatric problems, epilepsy, cardiovascular disease, cirrhosis and cancers. Caffeine is one of the most popular psychostimulants currently consumed in the world. The combination of ethanol and caffeine ingested by consuming "energy drinks" is becoming increasingly popular among young people. We analyzed the effect of simultaneous consumption of ethanol and caffeine on the serum profile of miRNAs differentially expressed in the ethanol-drinking rat model (UChB strain). Adult rats were divided into three groups (n = 5 per group): UChB group (rats fed with 1 : 10 (v/v) ethanol ad libitum); UChB + caffeine group (rats fed with 1 : 10 (v/v) ethanol ad libitum + 3 g L-1 of caffeine); control group (rats drinking water used as the control for UChB). The treatment with caffeine occurred from day 95 to 150 days old, totalizing 55 days of ethanol + caffeine ingestion. The expressions of microRNAs (miR) -9-3p, -15b-5p, -16-5p, -21-5p, -200a-3p and -222-3p were detected by Real Time-PCR (RT-PCR). The expressions of miR-9-3p, -15b-5p, -16-5p and -222-3p were upregulated in the UChB group. Conversely, simultaneous ingestion of ethanol and caffeine significantly reversed these expressions to similar levels to control animals, thus emphasizing that caffeine had a protective effect in the presence of ethanol. In addition, miR-21-5p was downregulated with ethanol consumption whereas miR-222-3p was unchanged. Ethanol and caffeine consumption was capable of altering serum miRNAs, which are potential biomarkers for the systemic effects of these addictive substances.
Collapse
Affiliation(s)
- M Martinez
- Department of Morphology and Pathology , Federal University of São Carlos (UFSCar) , São Carlos , SP , Brazil
| | - I M U Rossetto
- Department Structural and Functional Biology , University of Campinas (UNICAMP) , Campinas , SP , Brazil
| | - R M S Arantes
- Department of Morphology and Pathology , Federal University of São Carlos (UFSCar) , São Carlos , SP , Brazil
| | - F S N Lizarte
- Department of Surgery and Anatomy , University of São Paulo (USP) , Ribeirão Preto , SP , Brazil
| | - L F Tirapelli
- Department of Surgery and Anatomy , University of São Paulo (USP) , Ribeirão Preto , SP , Brazil
| | - D P C Tirapelli
- Department of Surgery and Anatomy , University of São Paulo (USP) , Ribeirão Preto , SP , Brazil
| | - L G A Chuffa
- Department of Anatomy , State University of São Paulo (UNESP) , Botucatu , SP , Brazil . ; ; Tel: +55 (14) 3880-0024
| | - F E Martinez
- Department of Anatomy , State University of São Paulo (UNESP) , Botucatu , SP , Brazil . ; ; Tel: +55 (14) 3880-0024
| |
Collapse
|
64
|
Rusanova I, Fernández-Martínez J, Fernández-Ortiz M, Aranda-Martínez P, Escames G, García-García FJ, Mañas L, Acuña-Castroviejo D. Involvement of plasma miRNAs, muscle miRNAs and mitochondrial miRNAs in the pathophysiology of frailty. Exp Gerontol 2019; 124:110637. [PMID: 31199979 DOI: 10.1016/j.exger.2019.110637] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/06/2019] [Accepted: 06/10/2019] [Indexed: 02/08/2023]
Abstract
Frailty is a geriatric syndrome that leads not only to the loss of physical functions, but also to a generalized decline of the organism and a high risk of disability and dependency. Frailty's detection and management represent important goals for current gerontology. The advance in its rapid diagnosis could play a relevant role in taking measures to reduce the negative consequences it exerts on the body and to take preventive measures. microRNAs are the one of multiple epigenetic biomarkers that reflect functional changes in aged subject. In this review we analyze microRNAs as molecules involved in the control of the pathways leading to the development of frailty. miRNAs can be present in different body fluids, including plasma/serum and saliva, can be associated with organelles like the mitochondria, and can be expressed in tissues. Based on the multifactorial physiopathology of frailty, we analyzed here the microRNAs linked to "inflammaging" (inflamma-miRs), to musculoskeletal health (myomiRs), and microRNAs that can directly or indirectly affect the mitochondria (mitomiRs). Subsequently, we analyze those microRNAs that can be modified by physical exercise. In this review we will analyze the latest experimental studies carried out in animals, cell cultures, and human samples, with the aim to identify gaps in the research and in order to try to dazzle the information about the pathways regulated by each miRNA. Multiple studies revised here suggest that several miRs can be considered as possible markers of frailty, including miR-1, miR-21, miR-34a, miR-146a, miR-185, and miR-206, miR-223, among others. Normalization of miRNAs data and standardization of the protocols used for their measurement to avoid confounding variables influencing the results, are important to use miRNAs as disease biomarkers.
Collapse
Affiliation(s)
- Iryna Rusanova
- Departamento de Fisiología, Facultad de Medicina, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain; CIBERfes, Ibs.Granada, and UGC de Laboratorios Clínicos, Complejo Hospitalario de Granada, Granada, Spain.
| | - José Fernández-Martínez
- Departamento de Fisiología, Facultad de Medicina, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
| | - Marisol Fernández-Ortiz
- Departamento de Fisiología, Facultad de Medicina, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
| | - Paula Aranda-Martínez
- Departamento de Fisiología, Facultad de Medicina, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain
| | - Germaine Escames
- Departamento de Fisiología, Facultad de Medicina, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain; CIBERfes, Ibs.Granada, and UGC de Laboratorios Clínicos, Complejo Hospitalario de Granada, Granada, Spain
| | - Francisco J García-García
- CIBERfes, División de Medicina Geriátrica, Hospital Virgen del Valle, Complejo Hospitalario de Toledo, Toledo, Spain
| | - Leocadio Mañas
- CIBERfes, Servicio de Geriatría, Hospital Universitario de Getafe, Madrid, Spain
| | - Darío Acuña-Castroviejo
- Departamento de Fisiología, Facultad de Medicina, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain; CIBERfes, Ibs.Granada, and UGC de Laboratorios Clínicos, Complejo Hospitalario de Granada, Granada, Spain.
| |
Collapse
|
65
|
Shu S, Liu X, Xu M, Gao X, Fan J, Liu H, Li R. MicroRNA-424 regulates epithelial-mesenchymal transition of endometrial carcinoma by directly targeting insulin-like growth factor 1 receptor. J Cell Biochem 2019; 120:2171-2179. [PMID: 30187960 DOI: 10.1002/jcb.27528] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/01/2018] [Indexed: 01/24/2023]
Abstract
Although numerous miRNAs are reported to contribute to the carcinogenesis of malignant tumor, the specific role of miR-424 in endometrial carcinoma is seldom reported. To explore the effect of miR-424 on epithelial-mesenchymal transition and its underlying mechanism, we detected miR-424 expression in endometrial carcinoma tissue and cells. We found that miR-424 was significantly downregulated in endometrial carcinoma tissues and cells, especially in HEC-1B cells. To perform the functional analysis, we transfected HEC-1B with miR-424-mi, miR-424-inh, mi-control, and inh-control, respectively. We found that overexpression of miR-424 significantly decreases cell proliferation and migration, accompanied with the increased E-cadherin/Vimentin expression and the transition of mesenchymal to epithelial cell phenotype. We identified that insulin-like growth factor-1 receptor (IGF-1R) was a potential target of miR-424 by computational analysis followed by luciferase reporter assays. Of note, we found that the downregulation of miR-424 in HEC-1B cells enhanced endogenous IGF-1R expression. Further mechanistic analysis revealed that forced expression of IGF-1R in miR-424-mim transfected cells remedied the weakened migration resulting from overexpression of IGF-1R. Taken together, the results of the current study demonstrated that miR-424 was a tumor suppressor for endometrial carcinoma and a favorable factor against tumor progression through targeting IGF-1R, thus providing a target for the treatment of endometrial carcinoma.
Collapse
Affiliation(s)
- Shanrong Shu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, People's China
| | - Xiaoping Liu
- Department of Hematology, Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, China
| | - Ming Xu
- Department of Medical Ultrasound, Institute of Diagnostic and Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xuesong Gao
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, People's China
| | - Jin Fan
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, People's China
| | - Huan Liu
- Department of clinical medicine, Medical College of Jinan University, 613 Huangpu Road West, Guangzhou, People's Republic of China
| | - Ruiman Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou, People's China
| |
Collapse
|
66
|
Capri M, Morsiani C, Santoro A, Moriggi M, Conte M, Martucci M, Bellavista E, Fabbri C, Giampieri E, Albracht K, Flück M, Ruoss S, Brocca L, Canepari M, Longa E, Di Giulio I, Bottinelli R, Cerretelli P, Salvioli S, Gelfi C, Franceschi C, Narici M, Rittweger J. Recovery from 6-month spaceflight at the International Space Station: muscle-related stress into a proinflammatory setting. FASEB J 2019; 33:5168-5180. [PMID: 30620616 PMCID: PMC6436655 DOI: 10.1096/fj.201801625r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Sarcolab pilot study of 2 crewmembers, investigated before and after a 6-mo International Space Station mission, has demonstrated the substantial muscle wasting and weakness, along with disruption of muscle's oxidative metabolism. The present work aimed at evaluating the pro/anti-inflammatory status in the same 2 crewmembers (A, B). Blood circulating (c-)microRNAs (miRs), c-proteasome, c-mitochondrial DNA, and cytokines were assessed by real-time quantitative PCR or ELISA tests. Time series analysis was performed ( i.e., before flight and after landing) at 1 and 15 d of recovery (R+1 and R+15, respectively). C-biomarkers were compared with an age-matched control population and with 2-dimensional proteomic analysis of the 2 crewmembers' muscle biopsies. Striking differences were observed between the 2 crewmembers at R+1, in terms of inflamma-miRs (c-miRs-21-5p, -126-3p, and -146a-5p), muscle specific (myo)-miR-206, c-proteasome, and IL-6/leptin, thus making the 2 astronauts dissimilar to each other. Final recovery levels of c-proteasome, c-inflamma-miRs, and c-myo-miR-206 were not reverted to the baseline values in crewmember A. In both crewmembers, myo-miR-206 changed significantly after recovery. Muscle biopsy of astronaut A showed an impressive 80% increase of α-1-antitrypsin, a target of miR-126-3p. These results point to a strong stress response induced by spaceflight involving muscle tissue and the proinflammatory setting, where inflamma-miRs and myo-miR-206 mediate the systemic recovery phase after landing.-Capri, M., Morsiani, C., Santoro, A., Moriggi, M., Conte, M., Martucci, M., Bellavista, E., Fabbri, C., Giampieri, E., Albracht, K., Flück, M., Ruoss, S., Brocca, L., Canepari, M., Longa, E., Di Giulio, I., Bottinelli, R., Cerretelli, P., Salvioli, S., Gelfi, C., Franceschi, C., Narici, M., Rittweger, J. Recovery from 6-month spaceflight at the International Space Station: muscle-related stress into a proinflammatory setting.
Collapse
Affiliation(s)
- Miriam Capri
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Cristina Morsiani
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Manuela Moriggi
- National Research Council-Institute of Molecular Bioimaging and Physiology (CNR-IBFM), Segrate, Milan, Italy.,Italian National Olympic Committee (CONI), Rome, Italy
| | - Maria Conte
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Morena Martucci
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Elena Bellavista
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Cristina Fabbri
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Enrico Giampieri
- Galvani Interdepartmental Center, University of Bologna, Bologna, Italy.,Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Kirsten Albracht
- Faculty of Medical Engineering and Technomathematics, FH Aachen University of Applied Sciences, Aachen, Germany.,Institute of Biomechanics and Orthopaedics, German Sport University, Cologne, Germany
| | - Martin Flück
- Department of Orthopaedics, University of Zürich, Zürich, Switzerland
| | - Severin Ruoss
- Department of Orthopaedics, University of Zürich, Zürich, Switzerland
| | - Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Monica Canepari
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Emanuela Longa
- Sport Medicine Center, University of Pavia, Pavia, Italy
| | - Irene Di Giulio
- Centre of Human and Applied Physiological Sciences, King's College London, London, United Kingdom
| | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, Pavia, Italy.,Fondazione Salvatore Maugeri, Institute of Hospitalization and Scientific Care (IRCCS), Scientific Institute of Pavia, Pavia, Italy
| | - Paolo Cerretelli
- National Research Council-Institute of Molecular Bioimaging and Physiology (CNR-IBFM), Segrate, Milan, Italy.,Italian National Olympic Committee (CONI), Rome, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy.,Galvani Interdepartmental Center, University of Bologna, Bologna, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,IRCCS, Istituto Ortopedico Galeazzi, Milan, Italy
| | - Claudio Franceschi
- Department of Applied Mathematics, Institute of Information Technology, Mathematics, and Mechanics (ITMM), Lobachevsky State University of Nizhny Novgorod-National Research University (UNN), Nizhny Novogoro, Russia
| | - Marco Narici
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Jörn Rittweger
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany; and.,Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
67
|
microRNA diagnostic panel for Alzheimer's disease and epigenetic trade-off between neurodegeneration and cancer. Ageing Res Rev 2019; 49:125-143. [PMID: 30391753 DOI: 10.1016/j.arr.2018.10.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/01/2018] [Accepted: 10/19/2018] [Indexed: 12/20/2022]
Abstract
microRNAs (miRNAs) have been extensively studied as potential biomarkers for Alzheimer's disease (AD). Their profiles have been analyzed in blood, cerebrospinal fluid (CSF) and brain tissue. However, due to the high variability between the reported data, stemming from the lack of methodological standardization and the heterogeneity of AD, the most promising miRNA biomarker candidates have not been selected. Our literature review shows that out of 137 miRNAs found to be altered in AD blood, 36 have been replicated in at least one independent study, and out of 166 miRNAs reported as differential in AD CSF, 13 have been repeatedly found. Only 3 miRNAs have been consistently reported as altered in three analyzed specimens: blood, CSF and the brain (hsa-miR-146a, hsa-miR-125b, hsa-miR-135a). Nonetheless, all 36 repeatedly differential miRNAs in AD blood are promising as components of the diagnostic panel. Given their predicted functions, such miRNA panel may report multiple pathways contributing to AD pathology, enabling the design of personalized therapies. In addition, the analysis revealed that the miRNAs dysregulated in AD overlap highly with miRNAs implicated in cancer. However, the directions of the miRNA changes are usually opposite in cancer and AD, indicative of an epigenetic trade-off between the two diseases.
Collapse
|
68
|
Maldonado-Lasuncion I, Atienza M, Sanchez-Espinosa MP, Cantero JL. Aging-Related Changes in Cognition and Cortical Integrity are Associated With Serum Expression of Candidate MicroRNAs for Alzheimer Disease. Cereb Cortex 2018; 29:4426-4437. [DOI: 10.1093/cercor/bhy323] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/11/2018] [Accepted: 11/26/2018] [Indexed: 12/25/2022] Open
Abstract
Abstract
Evidence has shown that microRNAs (miRNAs) are involved in molecular pathways responsible for aging and prevalent aging-related chronic diseases. However, the lack of research linking circulating levels of miRNAs to changes in the aging brain hampers clinical translation. Here, we have investigated if serum expression of brain-enriched miRNAs that have been proposed as potential biomarkers in Alzheimer’s disease (AD) (miR-9, miR-29b, miR-34a, miR-125b, and miR-146a) are also associated with cognitive functioning and changes of the cerebral cortex in normal elderly subjects. Results revealed that candidate miRNAs were linked to changes in cortical thickness (miR-9, miR-29b, miR-34a, and miR-125b), cortical glucose metabolism (miR-29b, miR-125b, and miR-146a), and cognitive performance (miR-9, miR-34a, and miR-125b). While both miR-29b and miR-125b were related to aging-related structural and metabolic cortical changes, only expression levels of miR-125b were associated with patterns of glucose consumption shown by cortical regions that correlated with executive function. Together, these findings suggest that serum expression of AD-related miRNAs are biologically meaningful in aging and may play a role as biomarkers of cerebral vulnerability in late life.
Collapse
Affiliation(s)
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Spain
| | | | - Jose L Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, Spain
| |
Collapse
|
69
|
Prata LGPL, Ovsyannikova IG, Tchkonia T, Kirkland JL. Senescent cell clearance by the immune system: Emerging therapeutic opportunities. Semin Immunol 2018; 40:101275. [PMID: 31088710 PMCID: PMC7061456 DOI: 10.1016/j.smim.2019.04.003] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/01/2018] [Accepted: 04/15/2019] [Indexed: 12/19/2022]
Abstract
Senescent cells (SCs) arise from normal cells in multiple organs due to inflammatory, metabolic, DNA damage, or tissue damage signals. SCs are non-proliferating but metabolically active cells that can secrete a range of pro-inflammatory and proteolytic factors as part of the senescence-associated secretory phenotype (SASP). Senescent cell anti-apoptotic pathways (SCAPs) protect SCs from their own pro-apoptotic SASP. SCs can chemo-attract immune cells and are usually cleared by these immune cells. During aging and in multiple chronic diseases, SCs can accumulate in dysfunctional tissues. SCs can impede innate and adaptive immune responses. Whether immune system loss of capacity to clear SCs promotes immune system dysfunction, or conversely whether immune dysfunction permits SC accumulation, are important issues that are not yet fully resolved. SCs may be able to assume distinct states that interact differentially with immune cells, thereby promoting or inhibiting SC clearance, establishing a chronically pro-senescent and pro-inflammatory environment, leading to modulation of the SASP by the immune cells recruited and activated by the SASP. Therapies that enhance immune cell-mediated clearance of SCs could provide a lever for reducing SC burden. Such therapies could include vaccines, small molecule immunomodulators, or other approaches. Senolytics, drugs that selectively eliminate SCs by transiently disabling their SCAPs, may prove to alleviate immune dysfunction in older individuals and thereby accelerate immune-mediated clearance of SCs. The more that can be understood about the interplay between SCs and the immune system, the faster new interventions may be developed to delay, prevent, or treat age-related dysfunction and the multiple senescence-associated chronic diseases and disorders.
Collapse
Affiliation(s)
- Larissa G P Langhi Prata
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| | - Inna G Ovsyannikova
- Mayo Clinic Vaccine Research Group, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, 200 First St., S.W., Rochester, MN 55905, USA.
| |
Collapse
|
70
|
van Splunter M, Perdijk O, Fick-Brinkhof H, Feitsma AL, Floris-Vollenbroek EG, Meijer B, Brugman S, Savelkoul HFJ, van Hoffen E, van Neerven RJJ. Bovine Lactoferrin Enhances TLR7-Mediated Responses in Plasmacytoid Dendritic Cells in Elderly Women: Results From a Nutritional Intervention Study With Bovine Lactoferrin, GOS and Vitamin D. Front Immunol 2018; 9:2677. [PMID: 30515164 PMCID: PMC6255898 DOI: 10.3389/fimmu.2018.02677] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 01/15/2023] Open
Abstract
During aging the immune system is dysregulated. Especially plasmacytoid dendritic cells (pDCs) and myeloid DCs (mDCs) have reduced Toll like receptor (TLR)-mediated responses resulting in increased susceptibility to infections. Consumption of bovine lactoferrin (bLF) has been shown to reduce infections with viruses. Galacto-oligosacharides (GOS) and vitamin D are associated with reduced pro-inflammatory cytokine levels in serum, and increased TLR7/8 responses, respectively. A double-blind placebo-controlled nutritional intervention study in elderly women was performed, to investigate the potential of bLF, GOS, and vitamin D to restore TLR responsiveness of pDCs and mDCs and to reduce inflammatory markers in serum. The nutritional intervention group (n = 15) received bLF for 3 weeks, followed by 3 weeks of bLF + GOS, and subsequently 3 weeks of bLF + GOS + vitamin D. The placebo group (n = 15) received maltodextrin for 9 weeks. Every 3 weeks, blood was collected and TLR responses of pDCs and mDCs, and inflammation-related markers in serum were measured. After 3 weeks of bLF supplementation, increased TLR7/8 and TLR1/2 responses were observed in pDCs of the nutritional intervention group compared to the placebo group. When the effects of the entire nutritional intervention were investigated, increased TLR1/2 mediated responses in mDCs were observed, and in serum sVCAM tended to decrease. Finally, based on the RAND-36 questionnaire physical function tended to improve in the intervention group. Since especially TLR7-mediated responses in pDCs were enhanced after bLF supplementation compared to placebo, this suggests that bLF may contribute to antiviral responses mediated by pDC in elderly women.Clinical trial registry number: NCT03026244, clinicaltrials.gov:
Collapse
Affiliation(s)
| | - Olaf Perdijk
- Cell Biology and Immunology, Wageningen University, Wageningen, Netherlands
| | | | | | | | - Ben Meijer
- Cell Biology and Immunology, Wageningen University, Wageningen, Netherlands
| | - Sylvia Brugman
- Cell Biology and Immunology, Wageningen University, Wageningen, Netherlands
| | - Huub F J Savelkoul
- Cell Biology and Immunology, Wageningen University, Wageningen, Netherlands
| | | | - R J Joost van Neerven
- Cell Biology and Immunology, Wageningen University, Wageningen, Netherlands.,FrieslandCampina, Amersfoort, Netherlands
| |
Collapse
|
71
|
Nardini C, Moreau JF, Gensous N, Ravaioli F, Garagnani P, Bacalini MG. The epigenetics of inflammaging: The contribution of age-related heterochromatin loss and locus-specific remodelling and the modulation by environmental stimuli. Semin Immunol 2018; 40:49-60. [PMID: 30396810 DOI: 10.1016/j.smim.2018.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022]
Abstract
A growing amount of evidences indicates that inflammaging - the chronic, low grade inflammation state characteristic of the elderly - is the result of genetic as well as environmental or stochastic factors. Some of these, such as the accumulation of senescent cells that are persistent during aging or accompany its progression, seem to be sufficient to initiate the aging process and to fuel it. Others, like exposure to environmental compounds or infections, are temporary and resolve within a (relatively) short time. In both cases, however, a cellular memory of the event can be established by means of epigenetic modulation of the genome. In this review we will specifically discuss the relationship between epigenetics and inflammaging. In particular, we will show how age-associated epigenetic modifications concerned with heterochromatin loss and gene-specific remodelling, can promote inflammaging. Furthermore, we will recall how the exposure to specific nutritional, environmental and microbial stimuli can affect the rate of inflammaging through epigenetic mechanisms, touching also on the recent insight given by the concept of trained immunity.
Collapse
Affiliation(s)
- Christine Nardini
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; CNR IAC "Mauro Picone", Roma, Italy; Personal Genomics S.r.l., Verona, Italy
| | - Jean-Francois Moreau
- University of Bordeaux, CNRS-UMR5164, 146 rue Léo Saignat, 33076 Bordeaux, France; CHU Bordeaux, Place Amélie Raba-Léon, Bordeaux, France
| | - Noémie Gensous
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Francesco Ravaioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy; Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden; Laboratory of Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy; CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy; Center for Applied Biomedical Research (CRBA), St. Orsola-Malpighi University Hospital, Bologna, Italy.
| | | |
Collapse
|
72
|
Wang C, Su K, Zhang Y, Zhang W, Chu D, Zhao Q, Guo R. MicroRNA-365 targets multiple oncogenes to inhibit proliferation, invasion, and self-renewal of aggressive endometrial cancer cells. Cancer Manag Res 2018; 10:5171-5185. [PMID: 30464615 PMCID: PMC6215916 DOI: 10.2147/cmar.s174889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background MicroRNA-365 (miR-365) has been reported to be a tumor suppressor miRNA. However, the role of miR-365 in progression of endometrial cancer (EC) has not been explored, in this study, we have found that re-expression of miRNA-365 inhibits cell proliferation, causes apoptosis and senescence. Materials and methods Overexpression of miR-365 attenuated cell migration and invasion, inhibited sphere-forming capacity, and enhanced the chemosensitivity to paclitaxel. In silico prediction tools identified the potential targets of miR-365. Results We identified EZH2 and FOS as targets of miR-365 and found that downregulating these genes imitated the tumor suppressive effect of miR-365. The outcomes of the study suggested that a reverse correlation existed between low miR-365 and overexpression of FOS and EZH2 in EC tissue specimens. Conclusion The study concludes that miR-365 acts as an important tumor suppressor and contributes by suppressing cell invasiveness, proliferation, and self-renewal in cancer cell lines by regulating multiple oncogenes. We establish that miR-365-EZH2/FOS pathway is an important target for treating EC.
Collapse
Affiliation(s)
- Chunfang Wang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Ke Su
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Yanyan Zhang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Weiwei Zhang
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Danxia Chu
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Qian Zhao
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| | - Ruixia Guo
- Department of Gynecology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China,
| |
Collapse
|
73
|
Franceschi C, Garagnani P, Parini P, Giuliani C, Santoro A. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol 2018; 14:576-590. [PMID: 30046148 DOI: 10.1038/s41574-018-0059-4] [Citation(s) in RCA: 1758] [Impact Index Per Article: 251.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ageing and age-related diseases share some basic mechanistic pillars that largely converge on inflammation. During ageing, chronic, sterile, low-grade inflammation - called inflammaging - develops, which contributes to the pathogenesis of age-related diseases. From an evolutionary perspective, a variety of stimuli sustain inflammaging, including pathogens (non-self), endogenous cell debris and misplaced molecules (self) and nutrients and gut microbiota (quasi-self). A limited number of receptors, whose degeneracy allows them to recognize many signals and to activate the innate immune responses, sense these stimuli. In this situation, metaflammation (the metabolic inflammation accompanying metabolic diseases) is thought to be the form of chronic inflammation that is driven by nutrient excess or overnutrition; metaflammation is characterized by the same mechanisms underpinning inflammaging. The gut microbiota has a central role in both metaflammation and inflammaging owing to its ability to release inflammatory products, contribute to circadian rhythms and crosstalk with other organs and systems. We argue that chronic diseases are not only the result of ageing and inflammaging; these diseases also accelerate the ageing process and can be considered a manifestation of accelerated ageing. Finally, we propose the use of new biomarkers (DNA methylation, glycomics, metabolomics and lipidomics) that are capable of assessing biological versus chronological age in metabolic diseases.
Collapse
Affiliation(s)
| | - Paolo Garagnani
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
- Laboratory of Cell Biology, Rizzoli Orthopaedic Institute, Bologna, Italy
- CNR Institute of Molecular Genetics, Unit of Bologna, Bologna, Italy
| | - Paolo Parini
- Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden
| | - Cristina Giuliani
- Laboratory of Molecular Anthropology and Centre for Genome Biology, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Bologna, Italy.
- Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, Bologna, Italy.
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
- Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, Bologna, Italy
| |
Collapse
|
74
|
Modulation of Oxidative Status by Normoxia and Hypoxia on Cultures of Human Dermal Fibroblasts: How Does It Affect Cell Aging? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:5469159. [PMID: 30405877 PMCID: PMC6199889 DOI: 10.1155/2018/5469159] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/10/2018] [Accepted: 07/25/2018] [Indexed: 01/10/2023]
Abstract
Reactive oxygen species (ROS) production in the skin is among the highest compared to other organs, and a clear correlation exists between ROS production and skin aging. Many attempts are underway to reduce oxidative stress in the skin by topical treatment or supplementation with antioxidants/cosmeceuticals, and cultures of human dermal fibroblasts (HDF) are widely used for these studies. Here, we examined the influence of oxygen tension on cell aging in HDF and how this impacted ROS production, the enzymatic and nonenzymatic antioxidant response system, and the efficacy of this defense system in limiting DNA damage and in modulating gene expression of proteins involved in the extracellular matrix, linked to skin aging. We investigated a selection of parameters that represent and reflect the behavior of cellular responses to aging and oxygen tension. Serial passaging of HDF under normoxia (21%) and hypoxia (5%) leads to cell aging as confirmed by β-galactosidase activity, p16 expression, and proliferation rate. However, in HDF under 21% O2, markers of aging were significantly increased compared to those under 5% O2 at matched cell passages despite having lower levels of intracellular ROS and higher levels of CoQ10, total GSH, SOD1, SOD3, and mitochondrial superoxide anion. miRNA-181a, which is known to be upregulated in HDF senescence, was also analyzed, and indeed, its expression was significantly increased in old cells at 21% O2 compared to those at 5% O2. Upregulation of MMP1 and downregulation of COL1A1 along with increased DNA damage were also observed under 21% O2 vs 5% O2. The data highlight that chronic exposure to atmospheric 21% O2 is able to trigger hormetic adaptive responses in HDF that however fail, in the long term, to prevent cellular aging. This information could be useful in further investigating molecular mechanisms involved in adaptation of skin fibroblasts to oxidative stress and may provide useful hints in addressing antiaging strategies.
Collapse
|
75
|
Fraternale D, Teodori L, Rudov A, Prattichizzo F, Olivieri F, Guidarelli A, Albertini MC. The In Vitro Activity of Angelica archangelica L. Essential Oil on Inflammation. J Med Food 2018; 21:1238-1243. [PMID: 30156459 DOI: 10.1089/jmf.2018.0017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The use of herbs with medicinal value and biomedical effects has increased tremendously in the last years. However, inadequate basic knowledge of their mode of action is the main issue related to phytotherapy, although they have shown promising potential. To provide insights into these important issues, we tested here on appropriate in vitro models the efficacy of Angelica archangelica essential oil (Aa-EO) for anti-inflammatory properties. The results demonstrated that Aa-EO induced significant apoptosis and necrosis at high doses in U937 cells. We used nontoxic concentrations to treat for anti-inflammatory capacity. The results also demonstrated a decreased proinflammatory cytokine interleukin-6 level in human umbilical vein endothelial cells, as senescence in vitro model, when cells are challenged with lipopolysaccharide (LPS), one of the most powerful proinflammatory inducer in the presence of Aa-EO. In addition, down expression of miR-126 and miR-146a (inflammamirs) produced by LPS stimulation was reverted by Aa-EO simultaneous treatment. These results provide noteworthy basis for the development/formulation of new drugs for future clinical uses and new food products or dietary supplements for contrasting inflammation.
Collapse
Affiliation(s)
- Daniele Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Laura Teodori
- Diagnostics and Metrology Laboratory, FSN-TECFIS-DIM. ENEA, Frascati, Rome, Italy
| | - Alexander Rudov
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | | | - Fabiola Olivieri
- Department of Molecular and Clinical Science, Marche Polytechnic University, Ancona, Italy.,Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Andrea Guidarelli
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | | |
Collapse
|
76
|
Detecting senescent fate in mesenchymal stem cells: a combined cytofluorimetric and ultrastructural approach. Biogerontology 2018; 19:401-414. [PMID: 30101381 DOI: 10.1007/s10522-018-9766-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 08/06/2018] [Indexed: 02/08/2023]
Abstract
Senescence can impair the therapeutic potential of stem cells. In this study, senescence-associated morphofunctional changes in periosteum-derived progenitor cells (PDPCs) from old and young individuals were investigated by combining cytofluorimetry, immunohistochemistry, and transmission electron microscopy. Cell cycle analysis demonstrated a large number of G0/G1 phase cells in PDPCs from old subjects and a progressive accumulation of G0/G1 cells during passaging in cultures from young subjects. Cytofluorimetry documented significant changes in light scattering parameters and closely correlated with the ultrastructural features, especially changes in mitochondrial shape and autophagy, which are consistent with the mitochondrial-lysosomal axis theory of ageing. The combined morphological, biofunctional, and ultrastructural approach enhanced the flow cytometric study of PDPC ageing. We speculate that impaired autophagy, documented in replicative senescent and old PDPCs, reflect a switch from quiescence to senescence. Its demonstration in a tissue with limited turnover-like the cambium layer of the periosteum, where reversible quiescence is the normal stem cell state throughout life-adds a new piece to the regenerative medicine jigsaw in an ageing society.
Collapse
|
77
|
Piasecka D, Braun M, Kordek R, Sadej R, Romanska H. MicroRNAs in regulation of triple-negative breast cancer progression. J Cancer Res Clin Oncol 2018; 144:1401-1411. [PMID: 29923083 PMCID: PMC6061037 DOI: 10.1007/s00432-018-2689-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/13/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE Dysregulation of miRNA profile has been associated with a broad spectrum of cellular processes underlying progression of various human malignancies. Increasing evidence suggests that specific microRNA clusters might be of clinical utility, especially in triple-negative breast carcinoma (TNBC), devoid of both predictive markers and potential therapeutic targets. Here we provide a comprehensive review of the existing data on microRNAs in TNBC, their molecular targets, a putative role in invasive progression with a particular emphasis on the epithelial-to-mesenchymal transition (EMT) and acquisition of stem-cell properties (CSC), regarded both as prerequisites for metastasis, and significance for therapy. METHODS PubMed and Medline databases were systematically searched for the relevant literature. 121 articles have been selected and thoroughly analysed. RESULTS Several miRNAs associated with EMT/CSC and invasion were identified as significantly (1) upregulated: miR-10b, miR-21, miR-29, miR-9, miR-221/222, miR-373 or (2) downregulated: miR-145, miR-199a-5p, miR-200 family, miR-203, miR-205 in TNBC. Dysregulation of miR-10b, miR-21, miR-29, miR-145, miR-200 family, miR-203, miR-221/222 was reported of prognostic value in TNBC patients. CONCLUSION Available data suggest that specific microRNA clusters might play an important role in biology of TNBC, understanding of which should assist disease prognostication and therapy.
Collapse
Affiliation(s)
| | - Marcin Braun
- Department of Pathology, Medical University of Lodz, Lodz, Poland
- Postgraduate School for Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Radzislaw Kordek
- Department of Pathology, Medical University of Lodz, Lodz, Poland
| | - Rafal Sadej
- Department of Molecular Enzymology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland.
| | - Hanna Romanska
- Department of Pathology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
78
|
Nath KA, O'Brien DR, Croatt AJ, Grande JP, Ackerman AW, Nath MC, Yamada S, Terzic A, Tchkonia T, Kirkland JL, Katusic ZS. The murine dialysis fistula model exhibits a senescence phenotype: pathobiological mechanisms and therapeutic potential. Am J Physiol Renal Physiol 2018; 315:F1493-F1499. [PMID: 30019935 DOI: 10.1152/ajprenal.00308.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is no therapy that promotes maturation and functionality of a dialysis arteriovenous fistula (AVF). The search for such therapies largely relies on evaluation of vascular responses and putative therapies in experimental AVFs. We studied an AVF in mice with chronic kidney disease (CKD). We demonstrate numerous stressors in the vein of the AVF-CKD group, including pathological shear, mitogenic, inflammatory, and hypoxia-reoxygenation stress. Because stress promotes premature senescence, we examined whether senescence is induced in the vein of the AVF-CKD model. We demonstrate a senescence phenotype in the AVF-CKD model, as indicated by increased expression of p16Ink4a, p21Cip1, and p53 and expected changes for certain senescence-associated microRNAs. RNA-sequencing analysis demonstrated differential expression of ~10,000 genes, including upregulation of proinflammatory and proliferative genes, in the vein of the AVF-CKD group. The vein in the AVF-CKD group exhibited telomere erosion and increased senescence-associated β-galactosidase activity and staining. Senescence was induced in the artery of the AVF-CKD group and in the vein of the AVF without CKD. Finally, given the rapidly rising clinical interest in senolytics, we provide proof of concept of senolytics as a therapeutic approach by demonstrating that senolytics decrease p16Ink4a expression in the AVF-CKD model. This study introduces a novel concept underlying the basis for maturational and functional failure in human dialysis AVFs and identifies a new target for senolytic therapy.
Collapse
Affiliation(s)
- Karl A Nath
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic , Rochester, Minnesota
| | - Daniel R O'Brien
- Division of Biomedical Statistics and Informatics, Department of Health Science Research, Mayo Clinic , Rochester, Minnesota
| | - Anthony J Croatt
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic , Rochester, Minnesota
| | - Joseph P Grande
- Department of Laboratory Medicine and Pathology, Mayo Clinic , Rochester, Minnesota
| | - Allan W Ackerman
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic , Rochester, Minnesota
| | - Meryl C Nath
- Department of Laboratory Medicine and Pathology, Mayo Clinic , Rochester, Minnesota
| | - Satsuki Yamada
- Department of Cardiovascular Medicine, Mayo Clinic , Rochester, Minnesota.,Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota
| | - Andre Terzic
- Department of Cardiovascular Medicine, Mayo Clinic , Rochester, Minnesota.,Center for Regenerative Medicine, Mayo Clinic , Rochester, Minnesota
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic , Rochester, Minnesota
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
79
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to discuss recent observations of epigenetic changes related to the complex pathogenesis of systemic vasculitides and their contribution to the field. RECENT FINDINGS There have been new observations of epigenetic changes in vasculitis and their potential role in disease pathogenesis in antineutrophil cytoplasmic antibody-associated vasculitis, giant-cell arteritis, Kawasaki disease, Behçet's disease, and IgA vasculitis. Some of this recent work has focused on the efficacy of using DNA methylation and miRNA expression as clinical biomarkers for disease activity and how DNA methylation and histone modifications interact to regulate disease-related gene expression. SUMMARY DNA methylation, histone modification, and miRNA expression changes are all fruitful ground for biomarker discovery and therapeutic targets in vasculitis. Current knowledge has provided targeted and suggested effects, but in many cases, has relied upon small cohorts, cosmopolitan cell populations, and limited knowledge of functional interactions. Expanding our knowledge of how these epigenetic mechanisms interact in a disease-specific and cell-specific manner will help to better understand the pathogenesis of systemic vasculitis.
Collapse
|
80
|
Wang W, Wang L, Ruan L, Oh J, Dong X, Zhuge Q, Su DM. Extracellular vesicles extracted from young donor serum attenuate inflammaging via partially rejuvenating aged T-cell immunotolerance. FASEB J 2018; 32:fj201800059R. [PMID: 29782203 PMCID: PMC6181631 DOI: 10.1096/fj.201800059r] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 04/30/2018] [Indexed: 12/27/2022]
Abstract
Biologic aging results in a chronic inflammatory condition, termed inflammaging, which establishes a risk for such age-related diseases as neurocardiovascular diseases; therefore, it is of great importance to develop rejuvenation strategies that are able to attenuate inflammaging as a means of intervention for age-related diseases. A promising rejuvenation factor that is present in young blood has been found that can make aged neurons younger; however, the component in the young blood and its mechanism of action are poorly elucidated. We assessed rejuvenation in naturally aged mice with extracellular vesicles (EVs) or exosomes extracted from young murine serum on the basis of different spectrums of microRNAs in these vesicles from young and old sera. We found that EVs extracted from young donor mouse serum, rather than EVs extracted from old donor mouse serum or non-EV supernatant extracted from young donor mouse serum, were able to attenuate inflammaging in old mice. Inflammaging is attributed to multiple factors, one of which is thymic aging-released self-reactive T cell-induced pathology. We found that the attenuation of inflammaging after treatment with EVs from young serum partially contributed to the rejuvenation of thymic aging, which is characterized by partially reversed thymic involution, enhancement of negative selection signals, and reduced autoreactions in the periphery. Our results provide evidence for understanding of the potential rejuvenation factor in the young donor serum, which holds great promise for the development of novel therapeutics to reduce morbidity and mortality caused by age-related inflammatory diseases.-Wang, W., Wang, L., Ruan, L., Oh, J., Dong, X., Zhuge, Q., Su, D.-M. Extracellular vesicles extracted from young donor serum attenuate inflammaging via partially rejuvenating aged T-cell immunotolerance.
Collapse
Affiliation(s)
- Weikan Wang
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Liefeng Wang
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Department of Biotechnology, Gannan Medical University, Ganzhou, China
| | - Linhui Ruan
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiyoung Oh
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Xiaowei Dong
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Dong-Ming Su
- Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas, USA
| |
Collapse
|
81
|
Horiguchi H, Loftus TJ, Hawkins RB, Raymond SL, Stortz JA, Hollen MK, Weiss BP, Miller ES, Bihorac A, Larson SD, Mohr AM, Brakenridge SC, Tsujimoto H, Ueno H, Moore FA, Moldawer LL, Efron PA. Innate Immunity in the Persistent Inflammation, Immunosuppression, and Catabolism Syndrome and Its Implications for Therapy. Front Immunol 2018; 9:595. [PMID: 29670613 PMCID: PMC5893931 DOI: 10.3389/fimmu.2018.00595] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/09/2018] [Indexed: 12/12/2022] Open
Abstract
Clinical and technological advances promoting early hemorrhage control and physiologic resuscitation as well as early diagnosis and optimal treatment of sepsis have significantly decreased in-hospital mortality for many critically ill patient populations. However, a substantial proportion of severe trauma and sepsis survivors will develop protracted organ dysfunction termed chronic critical illness (CCI), defined as ≥14 days requiring intensive care unit (ICU) resources with ongoing organ dysfunction. A subset of CCI patients will develop the persistent inflammation, immunosuppression, and catabolism syndrome (PICS), and these individuals are predisposed to a poor quality of life and indolent death. We propose that CCI and PICS after trauma or sepsis are the result of an inappropriate bone marrow response characterized by the generation of dysfunctional myeloid populations at the expense of lympho- and erythropoiesis. This review describes similarities among CCI/PICS phenotypes in sepsis, cancer, and aging and reviews the role of aberrant myelopoiesis in the pathophysiology of CCI and PICS. In addition, we characterize pathogen recognition, the interface between innate and adaptive immune systems, and therapeutic approaches including immune modulators, gut microbiota support, and nutritional and exercise therapy. Finally, we discuss the future of diagnostic and prognostic approaches guided by machine and deep-learning models trained and validated on big data to identify patients for whom these approaches will yield the greatest benefits. A deeper understanding of the pathophysiology of CCI and PICS and continued investigation into novel therapies harbor the potential to improve the current dismal long-term outcomes for critically ill post-injury and post-infection patients.
Collapse
Affiliation(s)
- Hiroyuki Horiguchi
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States.,Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Tyler J Loftus
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Russell B Hawkins
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Steven L Raymond
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Julie A Stortz
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - McKenzie K Hollen
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Brett P Weiss
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Elizabeth S Miller
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Azra Bihorac
- Department of Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Shawn D Larson
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Alicia M Mohr
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Scott C Brakenridge
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Hironori Tsujimoto
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Hideki Ueno
- Department of Surgery, National Defense Medical College, Tokorozawa, Japan
| | - Frederick A Moore
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lyle L Moldawer
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Philip A Efron
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | | |
Collapse
|
82
|
miR-200a Modulates the Expression of the DNA Repair Protein OGG1 Playing a Role in Aging of Primary Human Keratinocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9147326. [PMID: 29765508 PMCID: PMC5889889 DOI: 10.1155/2018/9147326] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 12/13/2017] [Accepted: 01/22/2018] [Indexed: 12/20/2022]
Abstract
Oxidative DNA damage accumulation may induce cellular senescence. Notably, senescent cells accumulate in aged tissues and are present at the sites of age-related pathologies. Although the signaling of DNA strand breaks has been extensively studied, the role of oxidative base lesions has not fully investigated in primary human keratinocyte aging. In this study, we show that primary human keratinocytes from elderly donors are characterized by a significant accumulation of the oxidative base lesion 8-OH-dG, impairment of oxidative DNA repair, and increase of miR-200a levels. Notably, OGG1-2a, a critical enzyme for 8-OH-dG repair, is a direct target of miR-200a and its expression levels significantly decrease in aged keratinocytes. The 8-OH-dG accumulation displays a significant linear relationship with the aging biomarker p16 expression during keratinocyte senescence. Interestingly, we found that miR-200a overexpression down-modulates its putative target Bmi-1, a well-known p16 repressor, and up-regulates p16 itself. miR-200a overexpression also up-regulates the NLRP3 inflammasome and IL-1β expression. Of note, primary keratinocytes from elderly donors are characterized by NRPL3 activation and IL-1β secretion. These findings point to miR-200a as key player in primary human keratinocyte aging since it is able to reduce oxidative DNA repair activity and may induce several senescence features through p16 and IL-1β up-regulation.
Collapse
|
83
|
Chatterjee D, Bandyopadhyay A, Sarma N, Basu S, Roychowdhury T, Roy SS, Giri AK. Role of microRNAs in senescence and its contribution to peripheral neuropathy in the arsenic exposed population of West Bengal, India. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 233:596-603. [PMID: 29107899 DOI: 10.1016/j.envpol.2017.09.063] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 08/24/2017] [Accepted: 09/17/2017] [Indexed: 06/07/2023]
Abstract
Arsenic induced senescence (AIS) has been identified in the population of West Bengal, India very recently. Also there is a high incidence of arsenic induced peripheral neuropathy (PN) throughout India. However, the epigenetic regulation of AIS and its contribution in arsenic induced PN remains unexplored. We recruited seventy two arsenic exposed and forty unexposed individuals from West Bengal to evaluate the role of senescence associated miRNAs (SA-miRs) in AIS and their involvement if any, in PN. The downstream molecules of the miRNA associated with the disease outcome, was also checked by immuoblotting. In vitro studies were conducted with HEK 293 cells and sodium arsenite exposure. Our results show that all the SA-miRs were upregulated in comparison to unexposed controls. miR-29a was the most significantly altered, highest expression being in the arsenic exposed group with PN, suggesting its association with the occurrence of PN. We looked for the expression of peripheral myelin protein 22 (PMP22), a specific target of miR-29a associated with myelination and found that both in vitro and in vivo results showed over-expression of the protein. Since this was quite contrary to miRNA regulation, we checked for intermediate players β-catenin and GSK-3β upon arsenic exposure which affects PMP22 expression. We found that β-catenin was upregulated in vitro and was also highest in the arsenic exposed group with PN while GSK-3β followed the reverse pattern. Our findings suggest that arsenic exposure alters the expression of SA-miRs and the mir-29a/beta catenin/PMP22 axis might be responsible for arsenic induced PN.
Collapse
Affiliation(s)
- Debmita Chatterjee
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Apurba Bandyopadhyay
- Health Point Multispeciality Hospital, Kolkata 700025, India; Ramakrishna Sarada Mission Matri Bhavan, Kolkata 700 026, India
| | - Nilendu Sarma
- Dr. B.C. Roy Post Graduate Institute of Paediatric Science, Kolkata 700054, India
| | - Santanu Basu
- Department of General Medicine, Sri Aurobindo Seva Kendra, Kolkata 700068, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| | - Sib Sankar Roy
- Cell Biology & Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Ashok K Giri
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India.
| |
Collapse
|
84
|
Calabrese V, Santoro A, Monti D, Crupi R, Di Paola R, Latteri S, Cuzzocrea S, Zappia M, Giordano J, Calabrese EJ, Franceschi C. Aging and Parkinson's Disease: Inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis. Free Radic Biol Med 2018; 115:80-91. [PMID: 29080843 DOI: 10.1016/j.freeradbiomed.2017.10.379] [Citation(s) in RCA: 243] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/06/2017] [Accepted: 10/24/2017] [Indexed: 12/26/2022]
Abstract
In order to better understand the pathogenesis of Parkinson's Disease (PD) it is important to consider possible contributory factors inherent to the aging process, as age-related changes in a number of physiological systems (perhaps incurred within particular environments) appear to influence the onset and progression of neurodegenerative disorders. Accordingly, we posit that a principal mechanism underlying PD is inflammaging, i.e. the chronic inflammatory process characterized by an imbalance of pro- and anti-inflammatory mechanisms which has been recognized as operative in several age-related, and notably neurodegenerative diseases. Recent conceptualization suggests that inflammaging is part of the complex adaptive mechanisms ("re-modeling") that are ongoing through the lifespan, and which function to prevent or mitigate endogenous processes of tissue disruption and degenerative change(s). The absence of an adequate anti-inflammatory response can fuel inflammaging, which propagates on both local (i.e.- from cell to cell) and systemic levels (e.g.- via exosomes and other molecules present in the blood). In general, this scenario is compatible with the hypothesis that inflammaging represents a hormetic or hormetic-like effect, in which low levels of inflammatory stress may prompt induction of anti-inflammatory mediators and mechanisms, while sustained pro-inflammatory stress incurs higher and more durable levels of inflammatory substances, which, in turn prompt a local-to-systemic effect and more diverse inflammatory response(s). Given this perspective, new treatments of PD may be envisioned that strategically are aimed at exerting hormetic effects to sustain anti-inflammatory responses, inclusive perhaps, of modulating the inflammatory influence of the gut microbiota.
Collapse
Affiliation(s)
- Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, via Santa Sofia 97, 95123 Catania, Italy; IBREGENS, Nutraceuticals and Functional Food Biotechnologies Research Associated, University of Catania, Italy.
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy; Interdepartmental Center "L. Galvani" (CIG), University of Bologna, Via San Giacomo 12, 40126 Bologna, Italy
| | - Daniela Monti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Morgagni 50, 50134 Florence, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Saverio Latteri
- Department of General Surgery, Cannizzaro Hospital, University of Catania, Catania, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Mario Zappia
- Department of Medical Sciences, Surgical and Advanced Technologies G.F. Ingrassia, Section of Neurosciences, University of Catania, Italy
| | - James Giordano
- Departments of Neurology and Biochemistry, and Neuroethics Studies Program, Georgetown University Medical Center, Washington, DC, USA
| | - Edward J Calabrese
- Environmental Health Sciences Division, School of Public Health, University of Massachusetts, Amherst, MA, USA
| | - Claudio Franceschi
- IRCCS, Institute of Neurological Sciences of Bologna, Via Altura 3, 40139 Bologna, Italy
| |
Collapse
|
85
|
Foley NM, Hughes GM, Huang Z, Clarke M, Jebb D, Whelan CV, Petit EJ, Touzalin F, Farcy O, Jones G, Ransome RD, Kacprzyk J, O’Connell MJ, Kerth G, Rebelo H, Rodrigues L, Puechmaille SJ, Teeling EC. Growing old, yet staying young: The role of telomeres in bats' exceptional longevity. SCIENCE ADVANCES 2018; 4:eaao0926. [PMID: 29441358 PMCID: PMC5810611 DOI: 10.1126/sciadv.aao0926] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 01/10/2018] [Indexed: 05/02/2023]
Abstract
Understanding aging is a grand challenge in biology. Exceptionally long-lived animals have mechanisms that underpin extreme longevity. Telomeres are protective nucleotide repeats on chromosome tips that shorten with cell division, potentially limiting life span. Bats are the longest-lived mammals for their size, but it is unknown whether their telomeres shorten. Using >60 years of cumulative mark-recapture field data, we show that telomeres shorten with age in Rhinolophus ferrumequinum and Miniopterus schreibersii, but not in the bat genus with greatest longevity, Myotis. As in humans, telomerase is not expressed in Myotis myotis blood or fibroblasts. Selection tests on telomere maintenance genes show that ATM and SETX, which repair and prevent DNA damage, potentially mediate telomere dynamics in Myotis bats. Twenty-one telomere maintenance genes are differentially expressed in Myotis, of which 14 are enriched for DNA repair, and 5 for alternative telomere-lengthening mechanisms. We demonstrate how telomeres, telomerase, and DNA repair genes have contributed to the evolution of exceptional longevity in Myotis bats, advancing our understanding of healthy aging.
Collapse
Affiliation(s)
- Nicole M. Foley
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Ireland
| | - Graham M. Hughes
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Ireland
| | - Zixia Huang
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Ireland
| | - Michael Clarke
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Ireland
| | - David Jebb
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Ireland
| | - Conor V. Whelan
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eric J. Petit
- Ecologie et Santé des Ecosystèmes (ESE), Ecology and Ecosystem Health, Agrocampus Ouest, INRA, 35042 Rennes, France
| | - Frédéric Touzalin
- Laboratoire Évolution et Diversité Biologique, UMR 5174: Université Toulouse III, CNRS, ENFA, 118 Route de Narbonne, 31062 Toulouse cedex 9, France
| | - Olivier Farcy
- Le Groupe Chiroptères de Bretagne Vivante/SEPNB, 19 rue Gouesnou BP 62132, 29221 Brest cedex 2, France
| | - Gareth Jones
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TH, UK
| | - Roger D. Ransome
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TH, UK
| | - Joanna Kacprzyk
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Ireland
| | - Mary J. O’Connell
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Gerald Kerth
- University of Greifswald, Loitzer Strasse 26, 17489 Greifswald, Germany
| | - Hugo Rebelo
- School of Biological Sciences, Life Sciences Building, University of Bristol, Bristol BS8 1TH, UK
- CIBIO-InBIO, Universidade do Porto, Campus de Agrário Vairão, Rua Padre Armando Quintas, 4485-661 Vairão, Portugal
- CEABN-InBIO, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-015 Lisboa, Portugal
| | - Luísa Rodrigues
- Instituto da Conservação da Natureza e das Florestas, Avenida da República 16-16B, 1050-191 Lisboa, Portugal
| | - Sébastien J. Puechmaille
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Ireland
- University of Greifswald, Loitzer Strasse 26, 17489 Greifswald, Germany
| | - Emma C. Teeling
- School of Biology and Environmental Science, Science Centre West, University College Dublin, Belfield, Dublin 4, Ireland
- Corresponding author.
| |
Collapse
|
86
|
Leonardi GC, Accardi G, Monastero R, Nicoletti F, Libra M. Ageing: from inflammation to cancer. IMMUNITY & AGEING 2018; 15:1. [PMID: 29387133 PMCID: PMC5775596 DOI: 10.1186/s12979-017-0112-5] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 12/28/2017] [Indexed: 02/08/2023]
Abstract
Ageing is the major risk factor for cancer development. Hallmark of the ageing process is represented by inflammaging, which is a chronic and systemic low-grade inflammatory process. Inflammation is also a hallmark of cancer and is widely recognized to influence all cancer stages from cell transformation to metastasis. Therefore, inflammaging may represent the biological phenomena able to couple ageing process with cancer development. Here we review the molecular and cellular pathway involved in age-related chronic inflammation along with its potential triggers and their connection with cancer development.
Collapse
Affiliation(s)
- Giulia C Leonardi
- 1Department of Biomedical and Biotechnological Sciences, Pathology and Oncology Section, University of Catania, Catania, Italy
| | - Giulia Accardi
- 2Department of Pathobiology and Medical Biotechnologies, Immunosenescence and Ageing Group, University of Palermo, Palermo, Italy
| | - Roberto Monastero
- 3Department of Experimental Biomedicine and Clinical Neurosciences, Neurology Section, University of Palermo, Palermo, Italy
| | - Ferdinando Nicoletti
- 1Department of Biomedical and Biotechnological Sciences, Pathology and Oncology Section, University of Catania, Catania, Italy
| | - Massimo Libra
- 1Department of Biomedical and Biotechnological Sciences, Pathology and Oncology Section, University of Catania, Catania, Italy
| |
Collapse
|
87
|
Mitochondrial (Dys) Function in Inflammaging: Do MitomiRs Influence the Energetic, Oxidative, and Inflammatory Status of Senescent Cells? Mediators Inflamm 2017; 2017:2309034. [PMID: 29445253 PMCID: PMC5763118 DOI: 10.1155/2017/2309034] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/20/2017] [Indexed: 12/19/2022] Open
Abstract
A relevant feature of aging is chronic low-grade inflammation, termed inflammaging, a key process promoting the development of all major age-related diseases. Senescent cells can acquire the senescence-associated (SA) secretory phenotype (SASP), characterized by the secretion of proinflammatory factors fuelling inflammaging. Cellular senescence is also accompanied by a deep reshaping of microRNA expression and by the modulation of mitochondria activity, both master regulators of the SASP. Here, we synthesize novel findings regarding the role of mitochondria in the SASP and in the inflammaging process and propose a network linking nuclear-encoded SA-miRNAs to mitochondrial gene regulation and function in aging cells. In this conceptual structure, SA-miRNAs can translocate to mitochondria (SA-mitomiRs) and may affect the energetic, oxidative, and inflammatory status of senescent cells. We discuss the potential role of several of SA-mitomiRs (i.e., let-7b, miR-1, miR-130a-3p, miR-133a, miR-146a-5p, miR-181c-5p, and miR-378-5p), using miR-146a as a proof-of-principle model. Finally, we propose a comprehensive, metabolic, and epigenetic view of the senescence process, in order to amplify the range of possible approaches to target inflammaging, with the ultimate goal of decelerating the aging rate, postponing or blunting the development of age-related diseases.
Collapse
|
88
|
Aging, inflammation and the environment. Exp Gerontol 2017; 105:10-18. [PMID: 29275161 DOI: 10.1016/j.exger.2017.12.015] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 12/16/2022]
Abstract
The aging process is driven by interrelated mechanisms that lead to the emergence of characteristic phenotypes that include changes in body composition, energy production and utilization imbalance, homeostatic dysregulation, and neurodegeneration and loss of neuroplasticity. Mainstream theories of aging all recognize that the aging phenotypes result from an imbalance between stressors and stress buffering mechanisms and a resultant loss of compensatory reserve leading to accumulation of unrepaired damage. This in turn results in increased disease susceptibility, reduced functional reserve, reduced healing capacity and stress resistance, unstable health and finally failure to thrive. The resultant physical and cognitive decline that culminates with the frailty syndrome is a tipping point of healthspan and implies a high risk of system decompensation and death. Preserving physical and cognitive function is the main focus of geriatric and gerontological research, but it is important to recognize that accomplishing this goal requires a profound understanding of the molecular, cellular and physiological mechanisms that ultimately determine functional changes. In this context, the proinflammatory state of aging plays a major role. Longitudinal studies have shown that with aging most individuals tend to develop a chronic low-grade proinflammatory state, and that such a state is a strong risk factor for multimorbidity, physical and cognitive disability, frailty and death. A number of environmental factors may play an important role in modifying the proinflammatory state. We explore processes and mechanisms of aging that affect human biology and the possible links of inflammation and the environment to aging, especially those related to metabolism. We point out that longitudinal studies with a life course approach are needed to gain further mechanistic insight on the processes that lead to functional decline with aging, and the role played in this process by inflammation and environmental challenges.
Collapse
|
89
|
Victoria B, Nunez Lopez YO, Masternak MM. MicroRNAs and the metabolic hallmarks of aging. Mol Cell Endocrinol 2017; 455:131-147. [PMID: 28062199 PMCID: PMC5724961 DOI: 10.1016/j.mce.2016.12.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 10/10/2016] [Accepted: 12/16/2016] [Indexed: 12/12/2022]
Abstract
Aging, the natural process of growing older, is characterized by a progressive deterioration of physiological homeostasis at the cellular, tissue, and organismal level. Metabolically, the aging process is characterized by extensive changes in body composition, multi-tissue/multi-organ insulin resistance, and physiological declines in multiple signaling pathways including growth hormone, insulin/insulin-like growth factor 1, and sex steroids regulation. With this review, we intend to consolidate published information about microRNAs that regulate critical metabolic processes relevant to aging. In certain occasions we uncover relationships likely relevant to aging, which has not been directly described before, such as the miR-451/AMPK axis. We have also included a provocative section highlighting the potential role in aging of a new designation of miRNAs, namely fecal miRNAs, recently discovered to regulate intestinal microbiota in mammals.
Collapse
Affiliation(s)
- Berta Victoria
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA.
| | - Yury O Nunez Lopez
- Translational Research Institute for Metabolism & Diabetes. Florida Hospital, 301 East Princeton St, Orlando, FL 32804, USA.
| | - Michal M Masternak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA; Department of Head and Neck Surgery, The Greater Poland Cancer Centre, 15 Garbary St., 61-866, Poznan, Poland.
| |
Collapse
|
90
|
Calder PC, Bosco N, Bourdet-Sicard R, Capuron L, Delzenne N, Doré J, Franceschi C, Lehtinen MJ, Recker T, Salvioli S, Visioli F. Health relevance of the modification of low grade inflammation in ageing (inflammageing) and the role of nutrition. Ageing Res Rev 2017; 40:95-119. [PMID: 28899766 DOI: 10.1016/j.arr.2017.09.001] [Citation(s) in RCA: 290] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 08/03/2017] [Accepted: 09/05/2017] [Indexed: 02/06/2023]
Abstract
Ageing of the global population has become a public health concern with an important socio-economic dimension. Ageing is characterized by an increase in the concentration of inflammatory markers in the bloodstream, a phenomenon that has been termed "inflammageing". The inflammatory response is beneficial as an acute, transient reaction to harmful conditions, facilitating the defense, repair, turnover and adaptation of many tissues. However, chronic and low grade inflammation is likely to be detrimental for many tissues and for normal functions. We provide an overview of low grade inflammation (LGI) and determine the potential drivers and the effects of the "inflamed" phenotype observed in the elderly. We discuss the role of gut microbiota and immune system crosstalk and the gut-brain axis. Then, we focus on major health complications associated with LGI in the elderly, including mental health and wellbeing, metabolic abnormalities and infections. Finally, we discuss the possibility of manipulating LGI in the elderly by nutritional interventions. We provide an overview of the evidence that exists in the elderly for omega-3 fatty acid, probiotic, prebiotic, antioxidant and polyphenol interventions as a means to influence LGI. We conclude that slowing, controlling or reversing LGI is likely to be an important way to prevent, or reduce the severity of, age-related functional decline and the onset of conditions affecting health and well-being; that there is evidence to support specific dietary interventions as a strategy to control LGI; and that a continued research focus on this field is warranted.
Collapse
Affiliation(s)
- Philip C Calder
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom; NIHR Southampton Biomedical Research Centre, University Hospital NHS Foundation Trust and University of Southampton, Southampton, United Kingdom
| | - Nabil Bosco
- Nestlé Research Center Asia, 21 Biopolis Road, 138567, Singapore
| | | | - Lucile Capuron
- INRA, Nutrition and Integrative Neurobiology, 33076 Bordeaux, France; Nutrition and Integrative Neurobiology (NutriNeuro), UMR 1286, University of Bordeaux, 33076 Bordeaux, France
| | - Nathalie Delzenne
- Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Catholic University of Louvain, B-1200 Brussels, Belgium
| | - Joel Doré
- MetaGénoPolis, INRA, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Claudio Franceschi
- IRCCS, Institute of Neurological Sciences of Bologna, Bologna 40124, Italy
| | - Markus J Lehtinen
- DuPont Nutrition and Health, Global Health and Nutrition Science, 02460 Kantvik, Finland
| | - Tobias Recker
- International Life Sciences Institute European Branch, 1200 Brussels, Belgium.
| | - Stefano Salvioli
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, 40126 Bologna, Italy
| | - Francesco Visioli
- Department of Molecular Medicine, University of Padova, 35121 Padova, Italy; IMDEA-Food, 28049 Madrid, Spain
| |
Collapse
|
91
|
Li F, Liang A, Lv Y, Liu G, Jiang A, Liu P. MicroRNA-200c Inhibits Epithelial-Mesenchymal Transition by Targeting the BMI-1 Gene Through the Phospho-AKT Pathway in Endometrial Carcinoma Cells In Vitro. Med Sci Monit 2017; 23:5139-5149. [PMID: 29080395 PMCID: PMC5673031 DOI: 10.12659/msm.907207] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background MicroRNA-200c (miR-200c) is a short non-coding RNA that has a role in tumorigenesis and cancer progression. The aims of this study were to investigate the role of miR-200c in cell migration and epithelial-mesenchymal transition (EMT) in endometrial carcinoma cells in vitro. Material/Methods Potential direct targets of miR-200c were identified through the TargetScan database. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was used study the expression of miR-200c in the endometrial carcinoma cell lines, Ishikawa and JEC, in vitro. Cell migration was studied using transwell assays. Expression of the mesenchymal marker, N-cadherin, the epithelial marker, E-cadherin, the transcription factor, Slug, the BMI-1 protein, AKT, and p-AKT were measured using Western blot. Small interfering RNA (siRNA) was used to silence the BMI-1 gene to study the targeting effect. Results Over-expression of miR-200c in Ishikawa and JEC cells resulted in reduced cell migration and proliferation. Western blot showed that overexpression of miR-200c downregulated the expression of the BMI-1 protein, p-AKT, N-cadherin and Slug, and the expression E-cadherin was upregulated; silencing miR-200c reversed these results. Silencing the BMI-1 gene inhibited EMT and suppressed p-AKT in miR-200c-inhibited endometrial carcinoma cells by increasing E-cadherin expression, reducing the expression of N-cadherin and the EMT-associated transcription factor, Slug. Conclusions In endometrial carcinoma cells in vitro, miR-200c inhibited EMT by targeting the BMI-1 gene through the p-AKT pathway.
Collapse
Affiliation(s)
- Fengling Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland).,Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China (mainland)
| | - Aihua Liang
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China (mainland)
| | - Yan Lv
- Department of Obstetrics and Gynecology, First Peoples' Hospital of Guiyang City, Guiyang, Guizhou, China (mainland)
| | - Guohong Liu
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China (mainland)
| | - Aili Jiang
- Department of Obstetrics and Gynecology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong, China (mainland)
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China (mainland)
| |
Collapse
|
92
|
Straub RH. The brain and immune system prompt energy shortage in chronic inflammation and ageing. Nat Rev Rheumatol 2017; 13:743-751. [PMID: 29021568 DOI: 10.1038/nrrheum.2017.172] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sequelae frequently seen in patients with chronic inflammatory diseases, such as fatigue, depressed mood, sleep alterations, loss of appetite, muscle wasting, cachectic obesity, bone loss and hypertension, can be the result of energy shortages caused by an overactive immune system. These sequelae can also be found in patients with chronic inflammatory diseases that are in remission and in ageing individuals, despite the immune system being less active in these situations. This Perspectives article proposes a new way of understanding situations of chronic inflammation (such as rheumatic diseases) and ageing based on the principles of evolutionary medicine, energy regulation and neuroendocrine-immune crosstalk. A conceptual framework is provided to enable physicians and scientists to better understand the signs and symptoms of chronic inflammatory diseases and long-term disease consequences resulting from physical and mental inactivity.
Collapse
Affiliation(s)
- Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine, University Hospital Regensburg, Franz Josef Strauß Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
93
|
Issler MVC, Mombach JCM. MicroRNA-16 feedback loop with p53 and Wip1 can regulate cell fate determination between apoptosis and senescence in DNA damage response. PLoS One 2017; 12:e0185794. [PMID: 28968438 PMCID: PMC5624635 DOI: 10.1371/journal.pone.0185794] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/19/2017] [Indexed: 01/30/2023] Open
Abstract
Cell fate regulation is an open problem whose comprehension impacts several areas of the biosciences. DNA damage induces cell cycle checkpoints that activate the p53 pathway to regulate cell fate mechanisms such as apoptosis or senescence. Experiments with different cell types show that the p53 pathway regulates cell fate through a switch behavior in its dynamics. For low DNA damage the pathway presents an oscillatory pattern associated with intense DNA damage repair while for high damage there are no oscillations and either p53 concentration increases inducing apoptosis or the cell enters a senescence state. Apoptosis and senescence phenotypes seem to have compensatory functions in tissues and the microRNA 16-1 (miR-16) is involved in the regulation of the fate between both phenotypes in cancer cells. To investigate the regulation of cell fate we developed a logical model of the G1/S checkpoint in DNA damage response that takes into account different levels of damage and contemplates the influence of miR-16 through its positive feedback loop formed with p53 and Wip1. The model reproduces the observed cellular phenotypes in experiments: oscillatory (for low DNA damage) regulated by negative feedback loops involving mainly p53 and Mdm2 and apoptotic or senescent (for high DNA damage) regulated by the positive p53/Wip1/miR-16 feedback loop. We find good agreement between the level of DNA damage and the probability of the phenotype produced according to experiments. We also find that this positive feedback makes senescent and apoptotic phenotypes to be determined stochastically (bistable), however controlling the expression level of miR-16 allows the control of fate determination as observed experimentally.
Collapse
Affiliation(s)
- Maria Vitória C Issler
- Department of Physics, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - José Carlos M Mombach
- Department of Physics, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
94
|
Zinger A, Cho WC, Ben-Yehuda A. Cancer and Aging - the Inflammatory Connection. Aging Dis 2017; 8:611-627. [PMID: 28966805 PMCID: PMC5614325 DOI: 10.14336/ad.2016.1230] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/30/2016] [Indexed: 12/13/2022] Open
Abstract
Aging and cancer are highly correlated biological phenomena. Various cellular processes such as DNA damage responses and cellular senescence that serve as tumor suppressing mechanisms throughout life result in degenerative changes and contribute to the aging phenotype. In turn, aging is considered a pro-tumorigenic state, and constitutes the single most important risk factor for cancer development. However, the causative relations between aging and cancer is not straight forward, as these processes carry contradictory hallmarks; While aging is characterized by tissue degeneration and organ loss of function, cancer is a state of sustained cellular proliferation and gain of new functions. Here, we review the molecular and cellular pathways that stand in the base of aging related cancer. Specifically, we deal with the inflammatory perspective that link these two processes, and suggest possible molecular targets that may be exploited to modify their courses.
Collapse
Affiliation(s)
- Adar Zinger
- 1Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - William C Cho
- 2Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Arie Ben-Yehuda
- 1Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
95
|
MicroRNA Profiling Reveals Distinct Profiles for Tissue-Derived and Cultured Endothelial Cells. Sci Rep 2017; 7:10943. [PMID: 28887500 PMCID: PMC5591252 DOI: 10.1038/s41598-017-11487-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/25/2017] [Indexed: 12/19/2022] Open
Abstract
Endothelial plasticity enables the cells to switch their phenotype according to the surrounding vascular microenvironment. MicroRNAs (miRNAs) are small noncoding RNAs that control endothelial plasticity. The objective of this study was to investigate the differences in miRNA profiles of tissue-derived cells and cultured endothelial cells. To this end, miRNA expression was profiled from freshly isolated tissue-derived human vascular endothelial cells and endothelial cells cultured until cellular senescence using miRNA sequencing. In addition, the data was searched for putative novel endothelial miRNAs and miRNA isoforms. The data analysis revealed a striking change in endothelial miRNA profile as the cells adapted from tissue to cell culture environment and the overall miRNA expression decreased significantly in cultured compared to tissue-derived endothelial cells. In addition to changes in mechanosensitive miRNA expression, alterations in senescence-associated and endothelial-to-mesenchymal-transition-associated miRNAs were observed in aging cells. Collectively, the data illustrates the adaptability of endothelial cell miRNA expression that mirrors prevailing cellular environment.
Collapse
|
96
|
Bulati M, Caruso C, Colonna-Romano G. From lymphopoiesis to plasma cells differentiation, the age-related modifications of B cell compartment are influenced by "inflamm-ageing". Ageing Res Rev 2017; 36:125-136. [PMID: 28396185 DOI: 10.1016/j.arr.2017.04.001] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/26/2022]
Abstract
Ageing is a complex process characterized by a general decline in physiological functions with increasing morbidity and mortality. The most important aspect of ageing is the chronic inflammatory status, named "inflamm-ageing", strictly associated with the deterioration of the immune function, termed "immunosenescence". Both are causes of increased susceptibility of elderly to infectious diseases, cancer, dementia, cardiovascular diseases and autoimmunity, and of a decreased response to vaccination. It has been widely demonstrated that ageing has a strong impact on the remodelling of the B cell branch of immune system. The first evident effect is the significant decrease in circulating B cells, primarily due to the reduction of new B cell coming from bone marrow (BM) progenitors, as inflammation directly impacts on B lymphopoiesis. Besides, in aged individuals, there is a shift from naïve to memory immunoglobulins production, accompanied by the impaired ability to produce high affinity protective antibodies against newly encountered antigens. This is accompanied by the increase of expanded clones of B cells, which correlates with poor health status. Age-related modifications also occur in naïve/memory B cells subsets. Indeed, in the elderly, there is a reduction of naïve B cells, accompanied by the expansion of memory B cells that show a senescence-associated phenotype. Finally, elderly show the impaired ability of memory B cells to differentiate into plasma cells. It can be concluded that inflammation is the leading cause of the age-related impairment of B cell compartment, which play certainly a key role in the development of age-related diseases. This makes study of B cells in the aged an important tool for monitoring immunosenescence, chronic inflammatory disorders and the effectiveness of vaccines or pharmacological therapies.
Collapse
|
97
|
Olivieri F, Capri M, Bonafè M, Morsiani C, Jung HJ, Spazzafumo L, Viña J, Suh Y. Circulating miRNAs and miRNA shuttles as biomarkers: Perspective trajectories of healthy and unhealthy aging. Mech Ageing Dev 2017; 165:162-170. [PMID: 27986629 PMCID: PMC5481482 DOI: 10.1016/j.mad.2016.12.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 12/22/2022]
Abstract
Human aging is a lifelong process characterized by a continuous trade-off between pro-and anti-inflammatory responses, where the best-adapted and/or remodeled genetic/epigenetic profile may develop a longevity phenotype. Centenarians and their offspring represent such a phenotype and their comparison to patients with age-related diseases (ARDs) is expected to maximize the chance to unravel the genetic makeup that better associates with healthy aging trajectories. Seemingly, such comparison is expected to allow the discovery of new biomarkers of longevity together with risk factor for the most common ARDs. MicroRNAs (miRNAs) and their shuttles (extracellular vesicles in particular) are currently conceived as those endowed with the strongest ability to provide information about the trajectories of healthy and unhealthy aging. We review the available data on miRNAs in aging and underpin the evidence suggesting that circulating miRNAs (and cognate shuttles), especially those involved in the regulation of inflammation (inflamma-miRs) may constitute biomarkers capable of reliably depicting healthy and unhealthy aging trajectories.
Collapse
Affiliation(s)
- Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Via Tronto 10/A, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging, INRCA-IRCCS, Ancona, Italy
| | - Miriam Capri
- DIMES- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, Via S. Giacomo, 12, Bologna, Italy; CIG, Interdepartmental Center "L. Galvani", Alma Mater Studiorum, Pzza Porta S. Donato, 1, Bologna, Italy.
| | - Massimiliano Bonafè
- DIMES- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, Via S. Giacomo, 12, Bologna, Italy
| | - Cristina Morsiani
- DIMES- Department of Experimental, Diagnostic and Specialty Medicine, Alma Mater Studiorum, Via S. Giacomo, 12, Bologna, Italy; CIG, Interdepartmental Center "L. Galvani", Alma Mater Studiorum, Pzza Porta S. Donato, 1, Bologna, Italy
| | - Hwa Jin Jung
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Liana Spazzafumo
- Center of Clinical Pathology and Innovative Therapy, Italian National Research Center on Aging, INRCA-IRCCS, Ancona, Italy
| | - Jose Viña
- Department of Physiology, Faculty of Medicine, University of Valencia. INCLIVA Avda, Blasco Ibañez 15, 46010 Valencia, Spain
| | - Yousin Suh
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
98
|
Dato S, Rose G, Crocco P, Monti D, Garagnani P, Franceschi C, Passarino G. The genetics of human longevity: an intricacy of genes, environment, culture and microbiome. Mech Ageing Dev 2017; 165:147-155. [DOI: 10.1016/j.mad.2017.03.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 03/04/2017] [Accepted: 03/30/2017] [Indexed: 12/13/2022]
|
99
|
Role of Kallistatin Treatment in Aging and Cancer by Modulating miR-34a and miR-21 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5025610. [PMID: 28744338 PMCID: PMC5506461 DOI: 10.1155/2017/5025610] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 05/17/2017] [Indexed: 12/19/2022]
Abstract
Kallistatin is an endogenous protein that regulates differential signaling pathways and a wide spectrum of biological activities via its two structural elements: an active site and a heparin-binding domain. Kallistatin via its heparin-binding site inhibits vascular inflammation and oxidative stress by antagonizing TNF-α-induced NADPH oxidase activity, NF-κB activation, and inflammatory gene expression in endothelial cells. Moreover, kallistatin via its active site inhibits microRNA-34a (miR-34a) synthesis and stimulates eNOS and SIRT1 expression in endothelial progenitor cells, whereas its heparin-binding site is crucial for blocking TNF-α-induced miR-21 expression and oxidative stress, thus reducing cellular senescence. By downregulating miR-34a and miR-21 expression, kallistatin treatment attenuates oxidative damage and aortic senescence in streptozotocin-induced diabetic mice and extends Caenorhabditis elegans lifespan under stress conditions. Likewise, kallistatin through the heparin-binding site inhibits TGF-β-induced miR-21 synthesis and oxidative stress in endothelial cells, resulting in inhibition of endothelial-mesenchymal transition, a process contributing to fibrosis and cancer. Furthermore, kallistatin's active site is essential for stimulating miR-34a and p53 expression and inhibiting the miR-21-Akt-Bcl-2 signaling pathway, thus inducing apoptosis in breast cancer cells. These findings reveal novel mechanisms of kallistatin in protection against senescence, aging, and cancer development by modulating miR-34a and miR-21 levels and inhibiting oxidative stress.
Collapse
|
100
|
Senescence-associated microRNAs target cell cycle regulatory genes in normal human lung fibroblasts. Exp Gerontol 2017; 96:110-122. [PMID: 28658612 DOI: 10.1016/j.exger.2017.06.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 06/19/2017] [Accepted: 06/24/2017] [Indexed: 12/20/2022]
Abstract
Senescence recapitulates the ageing process at the cell level. A senescent cell stops dividing and exits the cell cycle. MicroRNAs (miRNAs) acting as master regulators of transcription, have been implicated in senescence. In the current study we investigated and compared the expression of miRNAs in young versus senescent human fibroblasts (HDFs), and analysed the role of mRNAs expressed in replicative senescent HFL-1 HDFs. Cell cycle analysis confirmed that HDFs accumulated in G1/S cell cycle phase. Nanostring analysis of isolated miRNAs from young and senescent HFL-1 showed that a distinct set of 15 miRNAs were significantly up-regulated in senescent cells including hsa-let-7d-5p, hsa-let-7e-5p, hsa-miR-23a-3p, hsa-miR-34a-5p, hsa-miR-122-5p, hsa-miR-125a-3p, hsa-miR-125a-5p, hsa-miR-125b-5p, hsa-miR-181a-5p, hsa-miR-221-3p, hsa-miR-222-3p, hsa-miR-503-5p, hsa-miR-574-3p, hsa-miR-574-5p and hsa-miR-4454. Importantly, pathway analysis of miRNA target genes down-regulated during replicative senescence in a public RNA-seq data set revealed a significant high number of genes regulating cell cycle progression, both G1/S and G2/M cell cycle phase transitions and telomere maintenance. The reduced expression of selected miRNA targets, upon replicative and oxidative-stress induced senescence, such as the cell cycle effectors E2F1, CcnE, Cdc6, CcnB1 and Cdc25C was verified at the protein and/or RNA levels. Induction of G1/S cell cycle phase arrest and down-regulation of cell cycle effectors correlated with the up-regulation of miR-221 upon both replicative and oxidative stress-induced senescence. Transient expression of miR-221/222 in HDFs promoted the accumulation of HDFs in G1/S cell cycle phase. We propose that miRNAs up-regulated during replicative senescence may act in concert to induce cell cycle phase arrest and telomere erosion, establishing a senescent phenotype.
Collapse
|