51
|
Korkmaz‐Icöz S, Radovits T, Szabó G. Targeting phosphodiesterase 5 as a therapeutic option against myocardial ischaemia/reperfusion injury and for treating heart failure. Br J Pharmacol 2018; 175:223-231. [PMID: 28213937 PMCID: PMC5758391 DOI: 10.1111/bph.13749] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/06/2017] [Accepted: 02/08/2017] [Indexed: 11/30/2022] Open
Abstract
Phosphodiesterase type 5 (PDE5) selectively hydrolyses the second messenger cGMP into 5'-GMP, thereby regulating its intracellular concentrations. Dysregulation of the cGMP-dependent pathway plays a significant role in various cardiovascular diseases. Therefore, its modulation by drugs, such as PDE5 inhibitors, may represent an effective therapeutic approach. There are currently four PDE5 inhibitors available for the treatment of erectile dysfunction: sildenafil, vardenafil, tadalafil and avanafil. Sildenafil and tadalafil have also received Food and Drug Administration approval for the treatment of pulmonary arterial hypertension. This review summarizes the pharmacological aspects and clinical potential of PDE5 inhibition for the treatment of myocardial ischaemia/reperfusion injury and heart failure. LINKED ARTICLES This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.
Collapse
Affiliation(s)
- Sevil Korkmaz‐Icöz
- Department of Cardiac SurgeryHeidelberg University HospitalHeidelbergGermany
| | - Tamás Radovits
- Heart and Vascular CentreSemmelweis UniversityBudapestHungary
| | - Gábor Szabó
- Department of Cardiac SurgeryHeidelberg University HospitalHeidelbergGermany
| |
Collapse
|
52
|
Abstract
Nitric oxide is an endogenous pulmonary vasodilator that is synthesized from L-arginine in pulmonary vascular endothelial cells by nitric oxide synthase and diffuses to adjacent vascular smooth muscle cells where it activates soluble guanylyl cyclase. This enzyme converts GTP to cGMP which activates cGMP dependent protein kinase leading to a series of events that decrease intracellular calcium and reduce vascular muscle tone. Nitric oxide is an important mediator of pulmonary vascular tone and vascular remodeling. A number of studies suggest that the bioavailability of nitric oxide is reduced in patients with pulmonary vascular disease and that augmentation of the nitric oxide/cGMP pathway may be an effective strategy for treatment. Several medications that target nitric oxide/cGMP signaling are now available for the treatment of pulmonary hypertension. This review explores the history of nitiric oxide research, describes the major NO synthetic and signaling pathways and discusses a variety of abnormalities in NO production and metabolism that may contribute to the pathophysiology of pulmonary vascular disease. A summary of the clinical use of presently available medications that target nitric oxide/cGMP signaling in the treatment of pulmonary hypertension is also presented.
Collapse
|
53
|
Comeglio P, Morelli A, Adorini L, Maggi M, Vignozzi L. Beneficial effects of bile acid receptor agonists in pulmonary disease models. Expert Opin Investig Drugs 2017; 26:1215-1228. [PMID: 28949776 DOI: 10.1080/13543784.2017.1385760] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Bile acids act as steroid hormones, controlling lipid, glucose and energy metabolism, as well as inflammation and fibrosis. Their actions are implemented through activation of nuclear (FXR, VDR, PXR) and membrane G protein-coupled (TGR5, S1PR2) receptors. Areas covered: This review discusses the potential of FXR and TGR5 as therapeutic targets in the treatment of pulmonary disorders linked to metabolism and/or inflammation. Obeticholic acid (OCA) is the most clinically advanced bile acid-derived agonist for FXR-mediated anti-inflammatory and anti-fibrotic effects. It therefore represents an attractive pharmacological approach for the treatment of lung conditions characterized by vascular and endothelial dysfunctions. Expert opinion: Inflammation, vascular remodeling and fibrotic processes characterize the progression of pulmonary arterial hypertension (PAH) and idiopathic pulmonary fibrosis (IPF). These processes are only partially targeted by the available therapeutic options and still represent a relevant medical need. The results hereby summarized demonstrate OCA efficacy in preventing experimental lung disorders, i.e. monocrotaline-induced PAH and bleomycin-induced fibrosis, by abating proinflammatory and vascular remodeling progression. TGR5 is also expressed in the lung, and targeting the TGR5 pathway, using the TGR5 agonist INT-777 or the dual FXR/TGR5 agonist INT-767, could also contribute to the treatment of pulmonary disorders mediated by inflammation and fibrosis.
Collapse
Affiliation(s)
- Paolo Comeglio
- a Department of Biomedical, Experimental and Clinical Sciences , University of Florence , Florence , Italy
| | - Annamaria Morelli
- b Department of Experimental and Clinical Medicine , University of Florence , Florence , Italy
| | | | - Mario Maggi
- a Department of Biomedical, Experimental and Clinical Sciences , University of Florence , Florence , Italy
| | - Linda Vignozzi
- a Department of Biomedical, Experimental and Clinical Sciences , University of Florence , Florence , Italy
| |
Collapse
|
54
|
Garrido-Lestache MEB, Gómez-Sánchez MÁ. Estrategia terapéutica en hipertensión arterial pulmonar. REVISTA COLOMBIANA DE CARDIOLOGÍA 2017. [DOI: 10.1016/j.rccar.2017.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
55
|
RP5063, a novel, multimodal, serotonin receptor modulator, prevents Sugen 5416-hypoxia–induced pulmonary arterial hypertension in rats. Eur J Pharmacol 2017; 810:83-91. [DOI: 10.1016/j.ejphar.2017.05.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/24/2017] [Accepted: 05/29/2017] [Indexed: 11/20/2022]
|
56
|
A Novel Therapeutic Approach in the Treatment of Pulmonary Arterial Hypertension: Allium ursinum Liophylisate Alleviates Symptoms Comparably to Sildenafil. Int J Mol Sci 2017; 18:ijms18071436. [PMID: 28677661 PMCID: PMC5535927 DOI: 10.3390/ijms18071436] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 02/07/2023] Open
Abstract
Right-sided heart failure—often caused by elevated pulmonary arterial pressure—is a chronic and progressive condition with particularly high mortality rates. Recent studies and our current findings suggest that components of Wild garlic (Allium ursinum, AU) may play a role in reducing blood pressure, inhibiting angiotensin-converting enzyme (ACE), as well as improving right ventricle function in rabbit models with heart failure. We hypothesize that AU may mitigate cardiovascular damage caused by pulmonary arterial hypertension (PAH) and has value in the supplementary treatment of the complications of the disease. In this present investigation, PAH was induced by a single dose of monocrotaline (MCT) injection in Sprague-Dawley rats, and animals were divided into 4 treatment groups as follows: I. healthy control animals (Control group); II. pulmonary hypertensive rats (PAH group); III. pulmonary hypertensive rats + daily sildenafil treatment (Sildenafil group); and IV. pulmonary hypertensive rats + Wild garlic liophylisate-enriched chow (WGLL group), for 8 weeks. Echocardiographic measurements were obtained on the 0 and 8 weeks with fundamental and Doppler imaging. Isolated working heart method was used to determinate cardiac functions ex vivo after thoracotomy on the 8th week. Histological analyses were carried out on excised lung samples, and Western blot technique was used to determine Phosphodiesterase type 5 enzyme (PDE5) expression in both myocardial and pulmonary tissues. Our data demonstrate that right ventricle function measured by echocardiography was deteriorated in PAH animals compared to controls, which was counteracted by AU treatment. Isolated working heart measurements showed elevated aortic flow in WGLL group compared to PAH animals. Histological analysis revealed dramatic increase in medial wall thickness of pulmonary arteries harvested from PAH animals, but arteries of animals in sildenafil- and WGLL-treated groups showed physiological status. Our results suggest that bioactive compounds in Allium ursinum could have beneficial effects in pulmonary hypertension.
Collapse
|
57
|
Abstract
The pathogenesis of pulmonary arterial hypertension remains undefined. Changes in the expression and effects mediated by a number of vasoactive factors have been implicated to play a role in the onset and progression of the disease. The source of many of these mediators, such as nitric oxide (NO), prostacyclin and endothelin-1 (ET-1), is the pulmonary endothelium. This article focus in the role of nitric oxide in PAH, reviewing the evidence for its involvement in regulation of pulmonary a vascular tone under physiological conditions, the mechanisms by which it can contribute to the pathological changes seen in PAH and strategies for the use of NO as a therapy for treatment of the disease.
Collapse
Affiliation(s)
- Adrian H Chester
- National Heart & Lung Institute, Imperial College London, Heart Science Centre, Harefield, Middlesex, UB9 6JH, United Kingdom
| | - Magdi H Yacoub
- National Heart & Lung Institute, Imperial College London, Heart Science Centre, Harefield, Middlesex, UB9 6JH, United Kingdom
| | - Salvador Moncada
- School of Medical Sciences, Manchester Cancer Research Centre, University of Manchester, Wilmslow Road, Manchester, M20 4QL, United Kingdom
| |
Collapse
|
58
|
Bhat L, Hawkinson J, Cantillon M, Reddy DG, Bhat SR, Laurent CE, Bouchard A, Biernat M, Salvail D. RP5063, a novel, multimodal, serotonin receptor modulator, prevents monocrotaline-induced pulmonary arterial hypertension in rats. Eur J Pharmacol 2017; 810:92-99. [PMID: 28577964 DOI: 10.1016/j.ejphar.2017.05.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 05/24/2017] [Accepted: 05/29/2017] [Indexed: 10/19/2022]
Abstract
Pulmonary arterial hypertension (PAH), a condition characterized by pulmonary vasculature constriction and remodeling, involves dysregulation of the serotonin (5-HT) receptors 5-HT2A and 5-HT2B. A rat model of monocrotaline (MCT)-induced PAH was used to examine the potential beneficial effects of RP5063, a 5-HT receptor modulator. After a single 60mg/kg dose of MCT, rats were gavaged twice-daily (b.i.d.) with vehicle, RP5063 (1, 3, or 10mg/kg), or sildenafil (50mg/kg) for 28 days. RP5063 at a dose as low as 1mg/kg, b.i.d. reduced pulmonary resistance and increased systemic blood oxygen saturation. The highest dose of RP5063 (10mg/kg, b.i.d.) reduced diastolic, systolic, and mean pulmonary pressure, right systolic ventricular pressure, ventilatory pressure, and Fulton's index (ratio of right to left ventricular weight). Doses as low as 3mg/kg RP5063, b.i.d. also increased weight gain and body temperature, suggesting an improvement in overall health of MCT-treated animals. Similar reductions in pulmonary, right ventricular, and ventilatory pressure, pulmonary resistance, and Fulton's index as well as increased systemic blood oxygen saturation were observed in animals treated with the reference agent sildenafil at a higher dose (50mg/kg, b.i.d.). Histological examination revealed that RP5063 produced dose-dependent reductions in pulmonary blood vessel wall thickness and proportion of muscular vessels, similar to sildenafil. RP5063 completely blocked MCT-induced increases in the plasma cytokines TNFα, IL-1β, and IL-6 at all doses. In summary, RP5063 improved pulmonary vascular pathology and hemodynamics, right ventricular pressure and hypertrophy, systemic oxygen saturation, and overall health of rats treated with MCT.
Collapse
Affiliation(s)
| | - Jon Hawkinson
- Institute for Therapeutics Discovery & Development and Department of Medicinal Chemistry, University of Minnesota, USA
| | | | | | - Seema R Bhat
- Reviva Pharmaceuticals, Inc., Santa Clara, CA, USA
| | | | | | | | - Dany Salvail
- IPS Therapeutique Inc., Sherbrooke, Quebec, Canada
| |
Collapse
|
59
|
Vignozzi L, Morelli A, Cellai I, Filippi S, Comeglio P, Sarchielli E, Maneschi E, Vannelli GB, Adorini L, Maggi M. Cardiopulmonary protective effects of the selective FXR agonist obeticholic acid in the rat model of monocrotaline-induced pulmonary hypertension. J Steroid Biochem Mol Biol 2017; 165:277-292. [PMID: 27425465 DOI: 10.1016/j.jsbmb.2016.07.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 07/06/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
Farnesoid X receptor (FXR) activation by obeticholic acid (OCA) has been demonstrated to inhibit inflammation and fibrosis development and even induce fibrosis regression in liver, kidney and intestine in multiple disease models. OCA also inhibits liver fibrosis in nonalcoholic steatohepatitis patients. FXR activation has also been demonstrated to suppress the inflammatory response and to promote lung repair after lung injury. This study investigated the effects of OCA treatment (3, 10 or 30mg/kg, daily for 5days a week, for 7 and/or 28 days) on inflammation, tissue remodeling and fibrosis in the monocrotaline (MCT)-induced pulmonary arterial hypertension (PAH) rat model. Treatment with OCA attenuated MCT-induced increased pulmonary arterial wall thickness and right ventricular hypertrophy, by i) blunting pathogenic inflammatory mechanisms (downregulation of interleukin 6, IL-6, and monocyte chemoattractant protein-1, MCP-1) and ii) enhancing protective mechanisms counteracting fibrosis and endothelial/mesenchymal transition. MCT-injected rats also showed a marked decrease of pulmonary artery responsiveness to both endothelium-dependent and independent relaxant stimuli, such as acetylcholine and a nitric oxide donor, sodium nitroprusside. Administration of OCA (30mg/kg) normalized this decreased responsiveness. Accordingly, OCA treatment induced profound beneficial effects on lung histology. In particular, both OCA doses markedly reduced the MCT-induced medial wall thickness increase in small pulmonary arteries. To evaluate the objective functional improvement by OCA treatment of MCT-induced PAH, we performed a treadmill test and measured duration of exercise. MCT significantly reduced, and OCA normalized treadmill endurance. Results with OCA were similar, or even superior, to those obtained with tadalafil, a well-established treatment of PAH. In conclusion, OCA treatment demonstrates cardiopulmonary protective effects, modulating lung vascular remodeling, reducing right ventricular hypertrophy and significantly improving exercise capacity. Thus, OCA can restore the balance between relaxant and contractile pathways in the lung, promoting cardiopulmonary protective actions.
Collapse
Affiliation(s)
- Linda Vignozzi
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Annamaria Morelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Ilaria Cellai
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Sandra Filippi
- Interdepartmental Laboratory of Functional and Cellular Pharmacology of Reproduction, Department of Neuroscience, Drug Research and Child Care, University of Florence, Florence, Italy
| | - Paolo Comeglio
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | - Erica Sarchielli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Elena Maneschi
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy
| | | | | | - Mario Maggi
- Sexual Medicine and Andrology Unit, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Florence, Italy; I.N.B.B. (Istituto Nazionale Biostrutture e Biosistemi), Rome, Italy.
| |
Collapse
|
60
|
Chekol R, Gheysens O, Ahamed M, Cleynhens J, Pokreisz P, Vanhoof G, Janssens S, Verbruggen A, Bormans G. Carbon-11 and Fluorine-18 Radiolabeled Pyridopyrazinone Derivatives for Positron Emission Tomography (PET) Imaging of Phosphodiesterase-5 (PDE5). J Med Chem 2016; 60:486-496. [PMID: 28009175 DOI: 10.1021/acs.jmedchem.6b01666] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The cyclic guanosine monophosphate (cGMP) specific phosphodiesterase type 5 (PDE5) plays an important role in various pathologies including pulmonary arterial hypertension and cardiomyopathy. PDE5 represents an important therapeutic and/or prognostic target, but noninvasive assessment of PDE5 expression is lacking. The purpose of this study was to develop and evaluate pyridopyrazinone derivatives labeled with carbon-11 or fluorine-18 as PDE5-specific PET tracers. In biodistribution studies, highest PDE5-specific retention was observed for [11C]-12 and [18F]-17 in the lungs of wild-type mice and in the myocardium of transgenic mice with cardiomyocyte-specific PDE5 overexpression at 30 min postinjection. In vivo dynamic microPET images in rats revealed that both tracers crossed the blood-brain barrier but brain retention was not PDE5-specific. Both [11C]-12 and [18F]-17 showed specific binding to PDE5 in myocardium of transgenic mice; however [18F]-17 showed significantly higher PDE5-specific inhibitable binding than [11C]-12.
Collapse
Affiliation(s)
- Rufael Chekol
- Laboratory of Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven , BE-3000 Leuven, Belgium
| | - Olivier Gheysens
- Department of Imaging and Pathology, KU Leuven , and Nuclear Medicine, UZ Leuven, BE-300 Leuven Belgium
| | - Muneer Ahamed
- Laboratory of Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven , BE-3000 Leuven, Belgium
| | - Jan Cleynhens
- Laboratory of Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven , BE-3000 Leuven, Belgium
| | - Peter Pokreisz
- Department of Cardiovascular Sciences, UZ Leuven, KU Leuven , 3000 Leuven, Belgium
| | - Greet Vanhoof
- Discovery Sciences, Janssen Pharmaceutica, R&D , B-2340 Beerse, Belgium
| | - Stefan Janssens
- Department of Cardiovascular Sciences, UZ Leuven, KU Leuven , 3000 Leuven, Belgium
| | - Alfons Verbruggen
- Laboratory of Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven , BE-3000 Leuven, Belgium
| | - Guy Bormans
- Laboratory of Radiopharmacy, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven , BE-3000 Leuven, Belgium
| |
Collapse
|
61
|
Rashid J, Ahsan F. A highly sensitive LC-MS/MS method for concurrent determination of sildenafil and rosiglitazone in rat plasma. J Pharm Biomed Anal 2016; 129:21-27. [PMID: 27392173 DOI: 10.1016/j.jpba.2016.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 12/28/2022]
Abstract
Patients with pulmonary arterial hypertension (PAH) are currently treated with more than one drug. Sildenafil, a phosphodiesterase type 5 (PDE-5) inhibitor, and rosiglitazone, a peroxisome proliferator-activated receptor γ (PPAR-γ) activator, is one of those combinations that could be used in PAH. To monitor the pharmacokinetics of sildenafil in the presence of rosiglitazone, we have developed and validated a sensitive, specific and rapid liquid chromatography-tandem mass spectrometric (LC-MS/MS) method. We have used this validated method to study the pharmacokinetics of sildenafil and rosiglitazone after intravenous administration of sildenafil alone or a combination of sildenafil plus rosiglitazone to adult male Sprague-Dawley rats. Sildenafil and rosiglitazone were extracted from plasma by protein precipitation with methanol. With an octadeuterated sildenafil as the internal standard, the drugs were separated via gradient elution using a C18 column and formic acid in methanol or in water as the mobile phase with a flow rate of 0.25mL/min. Both sildenafil and rosiglitazone samples in rat plasma produced linear response, when the concentration ranged between 5 and 1000ng/mL (r(2)>0.99). The pharmacokinetics study suggests that intravenous co-administration rosiglitazone plus sildenafil increases the plasma concentration of sildenafil and extends the drug's elimination half-life.
Collapse
Affiliation(s)
- Jahidur Rashid
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter St., Amarillo, TX 79106, United States
| | - Fakhrul Ahsan
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, 1300 Coulter St., Amarillo, TX 79106, United States.
| |
Collapse
|
62
|
Hoeper MM. Pharmacological therapy for patients with chronic thromboembolic pulmonary hypertension. Eur Respir Rev 2016; 24:272-82. [PMID: 26028639 PMCID: PMC9487825 DOI: 10.1183/16000617.00001015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare but life-threatening disease resulting from unresolved thromboembolic obstructions. Pulmonary endarterectomy (PEA) surgery is the gold-standard treatment as it is potentially curative; however, not all patients are deemed operable and up to one-third have persistent or recurrent CTEPH after the procedure. Pulmonary arterial hypertension (PAH) and CTEPH have similar clinical presentations and histopathological features, so agents shown to be effective in PAH have often been prescribed to patients with CTEPH in the absence of proven therapies. However, clinical evidence for this strategy is not compelling. A number of small uncontrolled trials have investigated endothelin receptor antagonists, prostacyclin analogues and phosphodiesterase type 5 inhibitors in CTEPH with mixed results, and a phase III study of the endothelin receptor antagonist bosentan met only one of its two co-primary end-points. Recently, however, the soluble guanylate cyclase stimulator, riociguat, was approved in the USA and Europe for the treatment of inoperable or persistent/recurrent CTEPH following positive results from the phase III CHEST study (Chronic Thromboembolic Pulmonary Hypertension Soluble Guanylate Cyclase–Stimulator Trial). This article reviews the current evidence for the use of pharmacological therapies in CTEPH. A review of pharmacological treatment of inoperable or persistent/recurrent CTEPH and the future standard of carehttp://ow.ly/KMUQV
Collapse
Affiliation(s)
- Marius M Hoeper
- Dept of Respiratory Medicine, Hannover Medical School and German Centre for Lung Research (DZL), Hannover, Germany
| |
Collapse
|
63
|
Pediatric Cardiac Intensive Care Society 2014 Consensus Statement: Pharmacotherapies in Cardiac Critical Care Pulmonary Hypertension. Pediatr Crit Care Med 2016; 17:S89-100. [PMID: 26945333 PMCID: PMC4820013 DOI: 10.1097/pcc.0000000000000622] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To review the pharmacologic treatment options for pulmonary arterial hypertension in the cardiac intensive care setting and summarize the most-recent literature supporting these therapies. DATA SOURCES AND STUDY SELECTION Literature search for prospective studies, retrospective analyses, and case reports evaluating the safety and efficacy of pulmonary arterial hypertension therapies. DATA EXTRACTION Mechanisms of action and pharmacokinetics, treatment recommendations, safety considerations, and outcomes for specific medical therapies. DATA SYNTHESIS Specific targeted therapies developed for the treatment of adult patients with pulmonary arterial hypertension have been applied for the benefit of children with pulmonary arterial hypertension. With the exception of inhaled nitric oxide, there are no pulmonary arterial hypertension medications approved for children in the United States by the Food and Drug Administration. Unfortunately, data on treatment strategies in children with pulmonary arterial hypertension are limited by the small number of randomized controlled clinical trials evaluating the safety and efficacy of specific treatments. The treatment options for pulmonary arterial hypertension in children focus on endothelial-based pathways. Calcium channel blockers are recommended for use in a very small, select group of children who are responsive to vasoreactivity testing at cardiac catheterization. Phosphodiesterase type 5 inhibitor therapy is the most-commonly recommended oral treatment option in children with pulmonary arterial hypertension. Prostacyclins provide adjunctive therapy for the treatment of pulmonary arterial hypertension as infusions (IV and subcutaneous) and inhalation agents. Inhaled nitric oxide is the first-line vasodilator therapy in persistent pulmonary hypertension of the newborn and is commonly used in the treatment of pulmonary arterial hypertension in the ICU. Endothelin receptor antagonists have been shown to improve exercise tolerance and survival in adult patients with pulmonary arterial hypertension. Soluble guanylate cyclase stimulators are the first drug class to be Food and Drug Administration approved for the treatment of chronic thromboembolic pulmonary hypertension. CONCLUSIONS Literature and data supporting the safe and effective use of pulmonary arterial hypertension therapies in children in the cardiac intensive care are limited. Extrapolation of adult data has afforded safe medical treatment of pulmonary hypertension in children. Large multicenter trials are needed in the search for safe and effective therapy of pulmonary hypertension in children.
Collapse
|
64
|
Henrie AM, Nawarskas JJ, Anderson JR. Clinical utility of tadalafil in the treatment of pulmonary arterial hypertension: an evidence-based review. CORE EVIDENCE 2015; 10:99-109. [PMID: 26587013 PMCID: PMC4636095 DOI: 10.2147/ce.s58457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic and disabling condition characterized by an elevated pulmonary vascular resistance and an elevated mean pulmonary arterial pressure. Despite recent improvements in treatment availability, PAH remains challenging to treat, burdensome for patients, and ultimately incurable. Tadalafil is a phos-phodiesterase-5 inhibitor that is administered once daily by mouth for the treatment of PAH. Current treatment guidelines recommend tadalafil as an option for patients with World Health Organization functional class II or III PAH. In a placebo-controlled clinical trial, patients taking tadalafil demonstrated significantly improved exercise capacity as measured by the 6-minute walk distance. Patients also experienced decreased incidence of clinical worsening, increased quality of life, and improved cardiopulmonary hemodynamics. Uncontrolled studies and smaller trials have indicated a possible role for tadalafil as a suitable alternative to sildenafil and as a beneficial add-on option when used in combination with other treatments for PAH. Tadalafil is generally safe and well tolerated. Adverse events are typically mild-to-moderate in intensity, and discontinuation rates are usually low. The purpose of this review is to provide an evidence-based evaluation of the clinical utility of tadalafil in the treatment of PAH.
Collapse
Affiliation(s)
- Adam M Henrie
- College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| | | | - Joe R Anderson
- College of Pharmacy, University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
65
|
Abstract
Until recently, three classes of medical therapy were available for the treatment of pulmonary arterial hypertension (PAH)--prostanoids, endothelin receptor antagonists and phosphodiesterase type 5 (PDE5) inhibitors. With the approval of the soluble guanylate cyclase stimulator riociguat, an additional drug class has become available targeting a distinct molecular target in the same pathway as PDE5 inhibitors. Treatment recommendations currently include the use of all four drug classes to treat PAH, but there is a lack of comparative data for these therapies. Therefore, an understanding of the mechanistic differences between these agents is critical when making treatment decisions. Combination therapy is often used to treat PAH and it is therefore important that physicians understand how the modes of action of these drugs may interact to work as complementary partners, or potentially with unwanted consequences. Furthermore, different patient phenotypes mean that patients respond differently to treatment; while a certain monotherapy may be adequate for some patients, for others it will be important to consider alternating or combining compounds with different molecular targets. This review describes how the four currently approved drug classes target the complex pathobiology of PAH and will consider the distinct target molecules of each drug class, their modes of action, and review the pivotal clinical trial data supporting their use. It will also discuss the rationale for combining drugs (or not) from the different classes, and review the clinical data from studies on combination therapy.
Collapse
Affiliation(s)
- Marc Humbert
- Service de Pneumologie, DHU Thorax Innovation, Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Paris, France Université Paris-Sud, Laboratoire d'Excellence en Recherche sur le Médicament et Innovation Thérapeutique, Paris, France INSERM Unité 999, Le Kremlin-Bicêtre, Paris, France
| | - Hossein-Ardeschir Ghofrani
- University of Giessen and Marburg Lung Center (UGMLC), member of the German Center of Lung Research (DZL), Giessen, Germany Department of Medicine, Imperial College London, London, UK
| |
Collapse
|
66
|
Management of severe pulmonary hypertension in patients undergoing mitral valve surgery. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2015; 17:382. [PMID: 25912147 DOI: 10.1007/s11936-015-0382-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OPINION STATEMENT Pulmonary hypertension (PH) is simply defined as a mean pulmonary artery pressure greater than 25 mmHg at rest; however, may result from varying combinations of abnormal pulmonary artery (PA) blood flow, pulmonary vascular resistance (PVR), PA compliance, and pulmonary venous pressure. Mitral regurgitation (MR) allows for partial transmission of systemic arterial pressure into the pulmonary venous system. Mitral stenosis (MS) prevents pulmonary venous drainage into the left ventricle. In either case, the direct result is marked pressurization of the pulmonary venous system, with the primary cause of PH in significant mitral valve disease (PHMVD) being pulmonary venous hypertension (PVH). Chronic and severe PVH may then lead to muscularization of the pulmonary arterial bed, with a rise in PVR and loss of pulmonary arterial compliance that follows ("reactive" pulmonary vascular disease). Right heart dysfunction ensues once the PVR rises and the compliance falls to a point in which the right ventricle (RV) cannot overcome the increased afterload. However, it is worth emphasizing that in the setting of PHMVD, no matter the degree of mismatch between RV afterload and RV function, the root condition in the patient and cause of the PH remains severe MV disease. Without correction of the primary condition, the patient's heart failure (HF), PH, PVR, and RV dysfunction will remain or progress. Moreover, direct PH medical therapies are ineffective and may actually worsen left heart congestion in the setting of unremediated MVD. Therefore, although surgery may be a higher risk in some patients with PHMVD, the potential benefits justify the risks in the majority of cases. If needed, direct medical management of PH is far simpler and more effective once the MVD is corrected, given the degree of left heart congestion often improves dramatically. Therefore, corrective mitral valve intervention should be considered as the main and definitive treatment for these patients.
Collapse
|
67
|
Degen CV, Bishu K, Zakeri R, Ogut O, Redfield MM, Brozovich FV. The emperor's new clothes: PDE5 and the heart. PLoS One 2015; 10:e0118664. [PMID: 25747598 PMCID: PMC4351884 DOI: 10.1371/journal.pone.0118664] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 01/21/2015] [Indexed: 02/07/2023] Open
Abstract
Phosphodiesterase-5 (PDE5) is highly expressed in the pulmonary vasculature, but its expression in the myocardium is controversial. Cyclic guanosine monophosphate (cGMP) activates protein kinase G (PKG), which has been hypothesized to blunt cardiac hypertrophy and negative remodeling in heart failure. Although PDE5 has been suggested to play a significant role in the breakdown of cGMP in cardiomyocytes and hence PKG regulation in the myocardium, the RELAX trial, which tested effect of PDE5 inhibition on exercise capacity in patients with heart failure with preserved ejection fraction (HFpEF) failed to show a beneficial effect. These results highlight the controversy regarding the role and expression of PDE5 in the healthy and failing heart. This study used one- and two-dimensional electrophoresis and Western blotting to examine PDE5 expression in mouse (before and after trans-aortic constriction), dog (control and HFpEF) as well as human (healthy and failing) heart. We were unable to detect PDE5 in any cardiac tissue lysate, whereas PDE5 was present in the murine and bovine lung samples used as positive controls. These results indicate that if PDE5 is expressed in cardiac tissue, it is present in very low quantities, as PDE5 was not detected in either humans or any model of heart failure examined. Therefore in cardiac muscle, it is unlikely that PDE5 is involved the regulation of cGMP-PKG signaling, and hence PDE5 does not represent a suitable drug target for the treatment of cardiac hypertrophy. These results highlight the importance of rigorous investigation prior to clinical trial design.
Collapse
Affiliation(s)
- Chantal V. Degen
- Mayo Medical School, Department of Cardiovascular Diseases, Rochester, MN, 55905, United States of America
| | - Kalkidan Bishu
- Mayo Medical School, Department of Cardiovascular Diseases, Rochester, MN, 55905, United States of America
| | - Rosita Zakeri
- Mayo Medical School, Department of Cardiovascular Diseases, Rochester, MN, 55905, United States of America
| | - Ozgur Ogut
- Mayo Medical School, Department of Cardiovascular Diseases, Rochester, MN, 55905, United States of America
| | - Margaret M. Redfield
- Mayo Medical School, Department of Cardiovascular Diseases, Rochester, MN, 55905, United States of America
| | - Frank V. Brozovich
- Mayo Medical School, Department of Cardiovascular Diseases, Rochester, MN, 55905, United States of America
- * E-mail:
| |
Collapse
|
68
|
Butrous G. The role of phosphodiesterase inhibitors in the management of pulmonary vascular diseases. Glob Cardiol Sci Pract 2014; 2014:257-90. [PMID: 25780785 PMCID: PMC4352681 DOI: 10.5339/gcsp.2014.42] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/11/2014] [Indexed: 01/07/2023] Open
Abstract
Phosphodiesterase inhibitors (PDE) can be used as therapeutic agents for various diseases such as dementia, depression, schizophrenia and erectile dysfunction in men, as well as congestive heart failure, chronic obstructive pulmonary disease, rheumatoid arthritis, other inflammatory diseases, diabetes and various other conditions. In this review we will concentrate on one type of PDE, mainly PDE5 and its role in pulmonary vascular diseases.
Collapse
|
69
|
Bubb KJ, Trinder SL, Baliga RS, Patel J, Clapp LH, MacAllister RJ, Hobbs AJ. Inhibition of phosphodiesterase 2 augments cGMP and cAMP signaling to ameliorate pulmonary hypertension. Circulation 2014; 130:496-507. [PMID: 24899690 DOI: 10.1161/circulationaha.114.009751] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Pulmonary hypertension (PH) is a life-threatening disorder characterized by increased pulmonary artery pressure, remodeling of the pulmonary vasculature, and right ventricular failure. Loss of endothelium-derived nitric oxide (NO) and prostacyclin contributes to PH pathogenesis, and current therapies are targeted to restore these pathways. Phosphodiesterases (PDEs) are a family of enzymes that break down cGMP and cAMP, which underpin the bioactivity of NO and prostacyclin. PDE5 inhibitors (eg, sildenafil) are licensed for PH, but a role for PDE2 in lung physiology and disease has yet to be established. Herein, we investigated whether PDE2 inhibition modulates pulmonary cyclic nucleotide signaling and ameliorates experimental PH. METHODS AND RESULTS The selective PDE2 inhibitor BAY 60-7550 augmented atrial natriuretic peptide- and treprostinil-evoked pulmonary vascular relaxation in isolated arteries from chronically hypoxic rats. BAY 60-7550 prevented the onset of both hypoxia- and bleomycin-induced PH and produced a significantly greater reduction in disease severity when given in combination with a neutral endopeptidase inhibitor (enhances endogenous natriuretic peptides), trepostinil, inorganic nitrate (NO donor), or a PDE5 inhibitor. Proliferation of pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension was reduced by BAY 60-7550, an effect further enhanced in the presence of atrial natriuretic peptide, NO, and treprostinil. CONCLUSIONS PDE2 inhibition elicits pulmonary dilation, prevents pulmonary vascular remodeling, and reduces the right ventricular hypertrophy characteristic of PH. This favorable pharmacodynamic profile is dependent on natriuretic peptide bioactivity and is additive with prostacyclin analogues, PDE5 inhibitor, and NO. PDE2 inhibition represents a viable, orally active therapy for PH.
Collapse
Affiliation(s)
- Kristen J Bubb
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom
| | - Sarah L Trinder
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom
| | - Reshma S Baliga
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom
| | - Jigisha Patel
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom
| | - Lucie H Clapp
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom
| | - Raymond J MacAllister
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom
| | - Adrian J Hobbs
- From the William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London (K.J.B., S.L.T., R.S.B., A.J.H.); and Centre for Clinical Pharmacology, University College London (J.P., L.H.C., R.J.M.), London, United Kingdom.
| |
Collapse
|
70
|
Jasińska-Stroschein M, Orszulak-Michalak D. The current approach into signaling pathways in pulmonary arterial hypertension and their implication in novel therapeutic strategies. Pharmacol Rep 2014; 66:552-64. [PMID: 24948054 DOI: 10.1016/j.pharep.2014.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 04/02/2014] [Accepted: 04/07/2014] [Indexed: 02/01/2023]
Abstract
Many mediators and signaling pathways, with their downstream effectors, have been implicated in the pathogenesis of pulmonary hypertension. Currently approved drugs, representing an option of specific therapy, target NO, prostacyclin or ET-1 pathways and provide a significant improvement in the symptomatic status of patients and a slower rate of clinical deterioration. However, despite such improvements in the treatment, PAH remains a chronic disease without a cure, the mortality associated with PAH remains high and effective therapeutic regimens are still required. Knowledge about the role of the pathways involved in PAH and their interactions provides a better understanding of the pathogenesis of the disease and may highlight directions for novel therapeutic strategies for PAH. This paper reviews some novel, promising PAH-associated signaling pathways, such as RAAS, RhoA/ROCK, PDGF, PPAR, and TGF, focusing also on their possible interactions with well-established ones such as NO, ET-1 and prostacyclin pathways.
Collapse
|
71
|
Targeted therapies in pulmonary arterial hypertension. Pharmacol Ther 2014; 141:172-91. [DOI: 10.1016/j.pharmthera.2013.10.002] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 08/21/2013] [Indexed: 12/21/2022]
|
72
|
Zhou Z, de Beer VJ, de Wijs-Meijler D, Bender SB, Hoekstra M, Laughlin MH, Duncker DJ, Merkus D. Pulmonary vasoconstrictor influence of endothelin in exercising swine depends critically on phosphodiesterase 5 activity. Am J Physiol Lung Cell Mol Physiol 2014; 306:L442-52. [PMID: 24414253 DOI: 10.1152/ajplung.00057.2013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Both phosphodiesterase 5 (PDE5) inhibition and endothelin (ET) receptor blockade have been shown to induce pulmonary vasodilation. However, little is known about the effect of combined blockade of these two vasoconstrictor pathways. Since nitric oxide (NO) exerts its pulmonary vasodilator influence via production of cyclic guanosine monophosphate (cGMP) as well as through inhibition of ET, we hypothesized that interaction between the respective signaling pathways precludes an additive vasodilator effect. We tested this hypothesis in chronically instrumented swine exercising on a treadmill by comparing the vasodilator effect of the PDE5 inhibitor EMD360527, the ETA/ETB antagonist tezosentan, and combined EMD360527 and tezosentan. In the systemic circulation, vasodilation by tezosentan and EMD360527 was additive, both at rest and during exercise, resulting in a 17 ± 2% drop in blood pressure. In the pulmonary circulation, both EMD360527 and tezosentan produced vasodilation. However, tezosentan produced no additional pulmonary vasodilation in the presence of EMD360527, either at rest or during exercise. Moreover, in isolated preconstricted porcine pulmonary small arteries (∼300 μm) EMD360527 (1 nM-10 μM) induced dose-dependent vasodilation, whereas tezosentan (1 nM-10 μM) failed to elicit vasodilation irrespective of the presence of EMD360527. However, both PDE5 inhibition and 8Br-cGMP, but not 8Br-cAMP, blunted pulmonary small artery contraction to ET and its precursor Big ET in vitro. In conclusion, in healthy swine, either at rest or during exercise, PDE5 inhibition and the associated increase in cGMP produce pulmonary vasodilation that is mediated in part through inhibition of the ET pathway, thereby precluding an additional vasodilator effect of ETA/ETB receptor blockade in the presence of PDE5 inhibition.
Collapse
Affiliation(s)
- Zhichao Zhou
- Experimental Cardiology, Thoraxcenter, Erasmus MC, Univ. Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Laughlin MH, Davis MJ, Secher NH, van Lieshout JJ, Arce-Esquivel AA, Simmons GH, Bender SB, Padilla J, Bache RJ, Merkus D, Duncker DJ. Peripheral circulation. Compr Physiol 2013; 2:321-447. [PMID: 23728977 DOI: 10.1002/cphy.c100048] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood flow (BF) increases with increasing exercise intensity in skeletal, respiratory, and cardiac muscle. In humans during maximal exercise intensities, 85% to 90% of total cardiac output is distributed to skeletal and cardiac muscle. During exercise BF increases modestly and heterogeneously to brain and decreases in gastrointestinal, reproductive, and renal tissues and shows little to no change in skin. If the duration of exercise is sufficient to increase body/core temperature, skin BF is also increased in humans. Because blood pressure changes little during exercise, changes in distribution of BF with incremental exercise result from changes in vascular conductance. These changes in distribution of BF throughout the body contribute to decreases in mixed venous oxygen content, serve to supply adequate oxygen to the active skeletal muscles, and support metabolism of other tissues while maintaining homeostasis. This review discusses the response of the peripheral circulation of humans to acute and chronic dynamic exercise and mechanisms responsible for these responses. This is accomplished in the context of leading the reader on a tour through the peripheral circulation during dynamic exercise. During this tour, we consider what is known about how each vascular bed controls BF during exercise and how these control mechanisms are modified by chronic physical activity/exercise training. The tour ends by comparing responses of the systemic circulation to those of the pulmonary circulation relative to the effects of exercise on the regional distribution of BF and mechanisms responsible for control of resistance/conductance in the systemic and pulmonary circulations.
Collapse
Affiliation(s)
- M Harold Laughlin
- Department of Medical Pharmacology and Physiology, and the Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Chekol R, Gheysens O, Cleynhens J, Pokreisz P, Vanhoof G, Ahamed M, Janssens S, Verbruggen A, Bormans G. Evaluation of PET radioligands for in vivo visualization of phosphodiesterase 5 (PDE5). Nucl Med Biol 2013; 41:155-62. [PMID: 24290227 DOI: 10.1016/j.nucmedbio.2013.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/23/2013] [Accepted: 10/23/2013] [Indexed: 10/26/2022]
Abstract
INTRODUCTION The cyclic guanosine monophosphate (cGMP) specific phosphodiesterase type 5 (PDE5) is considered to play an important role in various etiologies such as pulmonary arterial hypertension (PAH) and chronic heart failure. This PDE5 modulation represents an important prognostic and/or therapeutic target; however, there is currently no method to non-invasively evaluate the PDE5 expression levels in vivo. METHODS Radiolabeled tracers were prepared by N-alkylation of the corresponding precursors with [(11)C]methyl trifluoromethanesulfonate ([(11)C]CH3OTf) or 2-[(18)F]fluoroethyl trifluoromethanesulfonate ([(18)F]FEtOTf). Biodistribution of radiolabeled tracers was studied in NMRI mice and their specific binding to PDE5 was investigated by comparing their lung retention as the enzyme is abundantly expressed in this organ. RESULTS The overall radiochemical yields ranged between 24% and 60% for labeled radiotracers with radiochemical purity of>99%. The highest retention in the lungs at 30min post injection was observed for vardenafil derivatives [(11)C]-7 and [(18)F]-11 and the retention of the ethoxyethyl pyrazolopyrimidine derivative [(11)C]-37 was moderate. The other investigated compounds [(11)C]-8, [(11)C]-14, [(11)C]-21 and [(11)C]-33 showed lower retention in lungs in agreement with their lower in-vitro affinity for PDE5. CONCLUSION Among the different radiolabeled PDE5 inhibitors evaluated in this study, the vardenafil derivatives [(11)C]-7 and [(18)F]-11 are found to be promising tracers for in vivo visualization of PDE5.
Collapse
Affiliation(s)
- Rufael Chekol
- KU Leuven, Laboratory of Radiopharmacy, Leuven, Belgium
| | - Olivier Gheysens
- KU Leuven, Department of Imaging and Pathology, Leuven, Belgium and Nuclear Medicine, UZ Leuven
| | - Jan Cleynhens
- KU Leuven, Laboratory of Radiopharmacy, Leuven, Belgium
| | - Peter Pokreisz
- KU Leuven, Departement of Cardiovascular Sciences, Leuven, Belgium
| | - Greet Vanhoof
- C.R.E.A.Te Translational Sciences, Janssen Pharmaceutica, R&D, Beerse, Belgium
| | - Muneer Ahamed
- KU Leuven, Laboratory of Radiopharmacy, Leuven, Belgium
| | - Stefan Janssens
- KU Leuven, Departement of Cardiovascular Sciences, Leuven, Belgium
| | | | - Guy Bormans
- KU Leuven, Laboratory of Radiopharmacy, Leuven, Belgium.
| |
Collapse
|
75
|
Andersen CU, Mellemkjær S, Nielsen-Kudsk JE, Bendstrup E, Hilberg O, Simonsen U. Pulmonary hypertension in chronic obstructive and interstitial lung diseases. Int J Cardiol 2013; 168:1795-804. [PMID: 23849967 DOI: 10.1016/j.ijcard.2013.06.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/25/2013] [Accepted: 06/20/2013] [Indexed: 12/27/2022]
Abstract
The purpose of the present review is to summarize the current knowledge on PH in relation to COPD and ILD from a clinical perspective with emphasis on diagnosis, biomarkers, prevalence, impact, treatment, and practical implications. PH in COPD and ILD is associated with a poor prognosis, and is considered one of the most frequent types of PH. However, the prevalence of PH among patients with COPD and ILD is not clear. The diagnosis of PH in chronic lung disease is often established by echocardiographic screening, but definitive diagnosis requires right heart catheterization, which is not systematically performed in clinical practice. Given the large number of patients with chronic lung disease, biomarkers to preclude or increase suspicion of PH are needed. NT-proBNP may be used as a rule-out test, but biomarkers with a high specificity for PH are still required. It is not known whether specific treatment with existent drugs effective in pulmonary arterial hypertension (PAH) is beneficial in lung disease related PH. Studies investigating existing PAH drugs in animal models of lung disease related PH have indicated a positive effect, and so have case reports and open label studies. However, treatment with systemically administered pulmonary vasodilators implies the risk of worsening the ventilation-perfusion mismatch in patients with lung disease. Inhaled vasodilators may be better suited for PH in lung disease, but new treatment modalities are also required.
Collapse
|
76
|
Nickel KF, Laux V, Heumann R, von Degenfeld G. Thrombin has biphasic effects on the nitric oxide-cGMP pathway in endothelial cells and contributes to experimental pulmonary hypertension. PLoS One 2013; 8:e63504. [PMID: 23785394 PMCID: PMC3681801 DOI: 10.1371/journal.pone.0063504] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 04/06/2013] [Indexed: 01/29/2023] Open
Abstract
Background A potential role for coagulation factors in pulmonary arterial hypertension has been recently described, but the mechanism of action is currently not known. Here, we investigated the interactions between thrombin and the nitric oxide-cGMP pathway in pulmonary endothelial cells and experimental pulmonary hypertension. Principal Findings Chronic treatment with the selective thrombin inhibitor melagatran (0.9 mg/kg daily via implanted minipumps) reduced right ventricular hypertrophy in the rat monocrotaline model of experimental pulmonary hypertension. In vitro, thrombin was found to have biphasic effects on key regulators of the nitric oxide-cGMP pathway in endothelial cells (HUVECs). Acute thrombin stimulation led to increased expression of the cGMP-elevating factors endothelial nitric oxide synthase (eNOS) and soluble guanylate cyclase (sGC) subunits, leading to increased cGMP levels. By contrast, prolonged exposition of pulmonary endothelial cells to thrombin revealed a characteristic pattern of differential expression of the key regulators of the nitric oxide-cGMP pathway, in which specifically the factors contributing to cGMP elevation (eNOS and sGC) were reduced and the cGMP-hydrolyzing PDE5 was elevated (qPCR and Western blot). In line with the differential expression of key regulators of the nitric oxide-cGMP pathway, a reduction of cGMP by prolonged thrombin stimulation was found. The effects of prolonged thrombin exposure were confirmed in endothelial cells of pulmonary origin (HPAECs and HPMECs). Similar effects could be induced by activation of protease-activated receptor-1 (PAR-1). Conclusion These findings suggest a link between thrombin generation and cGMP depletion in lung endothelial cells through negative regulation of the nitric oxide-cGMP pathway, possibly mediated via PAR-1, which could be of relevance in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Katrin F. Nickel
- Cardiology Research, Bayer HealthCare AG, Wuppertal, Germany
- Department of Molecular Medicine and Surgery, Karolinska Institutet and University Hospital, Stockholm, Sweden
| | - Volker Laux
- Cardiology Research, Bayer HealthCare AG, Wuppertal, Germany
| | - Rolf Heumann
- Biochemistry II – Molecular Neurobiochemistry, Ruhr-University Bochum, Bochum, Germany
| | - Georges von Degenfeld
- Common Mechanism Research, Bayer HealthCare AG, Wuppertal, Germany, and Institute for Research in Operative Medicine, University of Witten/Herdecke, Cologne, Germany
- * E-mail:
| |
Collapse
|
77
|
Chaumais MC, Perrin S, Sitbon O, Simonneau G, Humbert M, Montani D. Pharmacokinetic evaluation of sildenafil as a pulmonary hypertension treatment. Expert Opin Drug Metab Toxicol 2013; 9:1193-205. [DOI: 10.1517/17425255.2013.804063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Marie-Camille Chaumais
- Université Paris-Sud, Faculté de Pharmacie,
Chatenay-Malabry, France
- AP-HP, Service de Pharmacie, DHU Thorax Innovation, Hôpital Antoine Béclère,
Clamart, France
- INSERM UMR 999, LabEx LERMIT, DHU Thorax Innovation, Centre Chirurgical Marie Lannelongue,
Le Plessis Robinson, France
| | - Swanny Perrin
- INSERM UMR 999, LabEx LERMIT, DHU Thorax Innovation, Centre Chirurgical Marie Lannelongue,
Le Plessis Robinson, France
- Université Paris-Sud, Faculté de Médecine,
Kremlin-Bicêtre, France
- AP-HP, Centre de Référence de l’Hypertension Pulmonaire Sévère, Service de Pneumologie et Réanimation Respiratoire, DHU Thorax Innovation, Hôpital de Bicêtre,
78, rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France .
| | - Olivier Sitbon
- INSERM UMR 999, LabEx LERMIT, DHU Thorax Innovation, Centre Chirurgical Marie Lannelongue,
Le Plessis Robinson, France
- Université Paris-Sud, Faculté de Médecine,
Kremlin-Bicêtre, France
- AP-HP, Centre de Référence de l’Hypertension Pulmonaire Sévère, Service de Pneumologie et Réanimation Respiratoire, DHU Thorax Innovation, Hôpital de Bicêtre,
78, rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France .
| | - Gérald Simonneau
- INSERM UMR 999, LabEx LERMIT, DHU Thorax Innovation, Centre Chirurgical Marie Lannelongue,
Le Plessis Robinson, France
- Université Paris-Sud, Faculté de Médecine,
Kremlin-Bicêtre, France
- AP-HP, Centre de Référence de l’Hypertension Pulmonaire Sévère, Service de Pneumologie et Réanimation Respiratoire, DHU Thorax Innovation, Hôpital de Bicêtre,
78, rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France .
| | - Marc Humbert
- INSERM UMR 999, LabEx LERMIT, DHU Thorax Innovation, Centre Chirurgical Marie Lannelongue,
Le Plessis Robinson, France
- Université Paris-Sud, Faculté de Médecine,
Kremlin-Bicêtre, France
- AP-HP, Centre de Référence de l’Hypertension Pulmonaire Sévère, Service de Pneumologie et Réanimation Respiratoire, DHU Thorax Innovation, Hôpital de Bicêtre,
78, rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France .
| | - David Montani
- INSERM UMR 999, LabEx LERMIT, DHU Thorax Innovation, Centre Chirurgical Marie Lannelongue,
Le Plessis Robinson, France
- Université Paris-Sud, Faculté de Médecine,
Kremlin-Bicêtre, France
- AP-HP, Centre de Référence de l’Hypertension Pulmonaire Sévère, Service de Pneumologie et Réanimation Respiratoire, DHU Thorax Innovation, Hôpital de Bicêtre,
78, rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France .
| |
Collapse
|
78
|
Fan YF, Zhang R, Jiang X, Wen L, Wu DC, Liu D, Yuan P, Wang YL, Jing ZC. The phosphodiesterase-5 inhibitor vardenafil reduces oxidative stress while reversing pulmonary arterial hypertension. Cardiovasc Res 2013; 99:395-403. [DOI: 10.1093/cvr/cvt109] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
79
|
Henrohn D, Sandqvist A, Hedeland M, Egeröd H, Bondesson U, Wikström G. Acute haemodynamic response in relation to plasma vardenafil concentrations in patients with pulmonary hypertension. Br J Clin Pharmacol 2013; 74:990-8. [PMID: 22515706 DOI: 10.1111/j.1365-2125.2012.04303.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
AIMS To evaluate the acute haemodynamic effects of a single oral dose of vardenafil and to study the drug concentration in relation to haemodynamic effects in patients with pulmonary hypertension (PH). METHODS Sixteen patients with PH (aged 29-85\ years), received one single oral dose of vardenafil (5, 10 or 20 mg). The haemodynamic effect was assessed over a 60 min period. Vardenafil plasma concentrations were measured after 15, 30, 45 and 60 min using liquid chromatography-tandem mass spectrometry. RESULTS At 60 min a reduction in mPAP with a median % decrease of -20.3% (range -48.3 to 3.0; P < 0.001) and an increase in cardiac output and the cardiac index with a median % change of 10.6% (range -25.0 to 88.1; P = 0.015) and 12.1% (range -24.0 to 94.4; P = 0.01) respectively was observed. The pulmonary vascular resistance (PVR) was reduced with a median % decrease of -28.9% (range -61.5 to -5.9; P < 0.001), and pulmonary selectivity was reflected by a median percent reduction of -16.9% (range -49.0 to 16.5; P = 0.002; n = 14) in the PVR/systemic vascular resistance ratio. There was a correlation between the plasma concentrations of vardenafil and change in mPAP (r = -0.579, P = 0.019) and between vardenafil concentrations and change in PVR (r = -0.662, P = 0.005). CONCLUSIONS Vardenafil causes rapid changes in cardiopulmonary haemodynamics and there is a correlation between plasma vardenafil drug concentration and the acute changes in mPAP as well as PVR in patients with PH.
Collapse
Affiliation(s)
- Dan Henrohn
- Department of Medical Sciences, Uppsala University, Uppsala University Hospital, Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
80
|
Schroll S, Sebah D, Wagner M, Popara V, Pfeifer M, Blumberg F. Improvement of exercise capacity in monocrotaline-induced pulmonary hypertension by the phosphodiesterase-5 inhibitor Vardenafil. Respir Physiol Neurobiol 2013; 186:61-4. [DOI: 10.1016/j.resp.2012.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 10/27/2022]
|
81
|
Noel S, Dhooghe B, Leal T. PDE5 Inhibitors as Potential Tools in the Treatment of Cystic Fibrosis. Front Pharmacol 2012; 3:167. [PMID: 23024633 PMCID: PMC3444771 DOI: 10.3389/fphar.2012.00167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 08/24/2012] [Indexed: 12/31/2022] Open
Abstract
Despite great advances in the understanding of the genetics and pathophysiology of cystic fibrosis (CF), there is still no cure for the disease. Using phosphodiesterase type 5 (PDE5) inhibitors, we and others have provided evidence of rescued F508del-CFTR trafficking and corrected deficient chloride transport activity. Studies using PDE5 inhibitors in mice homozygous for the clinically relevant F508del mutation have been conducted with the aim of restoring F508del-CFTR protein function. We demonstrated, by measuring transepithelial nasal potential difference in F508del mice following intraperitoneal injection of sildenafil, vardenafil, or taladafil at clinical doses are able to restore the decreased CFTR-dependent chloride transport across the nasal mucosa. Moreover, vardenafil, but not sildenafil, stimulates chloride transport through the normal CFTR protein. We developed a specific nebulizer setup for mice, with which we demonstrated, through a single inhalation of PDE5 inhibitors, local activation of CFTR protein in CF. Significant potential advantages of inhalation drug therapy over oral or intravenous routes include rapid onset of pharmacological action, reduced systemic secondary effects, and reduced effective drug doses compared to the drug delivered orally; this underlines the relevance and impact of our work for translational science. More recently, we analyzed the bronchoalveolar lavage of CF and wild-type mice for cell infiltrates and expression of pro-inflammatory cytokines and chemokines; we found that the CFTR activating effect of vardenafil, selected as a representative long-lasting PDE5 inhibitor, breaks the vicious circle of lung inflammation which plays a major role in morbi-mortality in CF. Our data highlight the potential use of PDE5 inhibitors in CF. Therapeutic approaches using clinically approved PDE5 inhibitors to address F508del-CFTR defects could speed up the development of new therapies for CF.
Collapse
Affiliation(s)
- Sabrina Noel
- Louvain Centre for Toxicology and Applied Pharmacology, Institut de Recherche Expérimentale et Clinique, Secteur des Sciences de la Santé, Université Catholique de Louvain Brussels, Belgium
| | | | | |
Collapse
|
82
|
Chen CN, Watson G, Zhao L. Cyclic guanosine monophosphate signalling pathway in pulmonary arterial hypertension. Vascul Pharmacol 2012; 58:211-8. [PMID: 22982057 DOI: 10.1016/j.vph.2012.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/28/2012] [Accepted: 09/04/2012] [Indexed: 12/19/2022]
Abstract
During the last decade, it emerged that cyclic guanosine monophosphate (cGMP) is a novel drug target for the treatment of pulmonary arterial hypertension (PAH). cGMP regulates many cellular functions, ranging from contractility to growth, of relevance to the disease. Generated from guanylyl cyclases in response to natriuretic peptides or nitric oxide (NO), cGMP transduces its effects through a number of cGMP effectors, including cGMP-regulated phosphodiesterases and protein kinases. Furthermore, the cGMP concentration is modulated by cGMP-degrading phosphodiesterases. Data to date demonstrate that increasing intracellular cGMP through stimulation of GCs, inhibition of PDEs, or both is a valid therapeutic strategy in drug development for PAH. New advances in understanding of cGMP are unravelled, as well as the pathobiology of PAH. cGMP remains an attractive future PAH drug target. This review makes a more detailed examination of cGMP signalling with particular reference to PAH.
Collapse
Affiliation(s)
- Chien-nien Chen
- Experimental Medicine, Imperial College London, Hammersmith Hospital, London W12 0NN, UK
| | | | | |
Collapse
|
83
|
Zeidan A, Siam A, Al Kaabba A, Mohammad M, Khatib S. The ability of phosphodiesterase-5 inhibitors sildenafil and ordonafil to reverse L-NAME induced cardiac hypertrophy in the rabbit: possible role of calcineurin and p38. Can J Physiol Pharmacol 2012; 90:1247-55. [PMID: 22913522 DOI: 10.1139/y2012-098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Phosphodiesterase 5 inhibitors (PDE-5Is) can suppress and (or) reverse pressure overload induced myocardial hypertrophy. This study investigated the suppressive effect of 2 PDE-5Is (sildenafil and ordonafil) on N-nitro-l-arginine methyl ester (L-NAME)-induced cardiac hypertrophy in rabbit heart, and examined their possible mechanism of action. L-NAME increased left ventricular thickness to 6.1± 0.18 mm from 4.6 ± 0.13 mm (p < 0.05), which regressed after treatment with either sildenafil or ordonafil to 5.1 ± 0.1 mm and 4.8 ± 0.2 mm, respectively (p < 0.05). Phenylephrine increased neonatal rat ventricular myocyte cell surface area to 131% ± 3% of the control value, which was associated with significant increment in ERK1/2 to 143% ± 5% of the control value (p < 0.05). Ordonafil and sildenafil decreased cell surface area to 95% ± 3% and 90% ± 1% of the control value, respectively. Both drugs decreased ERK1/2 to 88% ± 4% of the control value. Calcineurin activity was significantly decreased after 1 h of treatment with 0.1 mg·L(-1) ordonafil (1.15 ± 0.05, p < 0.05). For sildenafil (0.1 mg·L(-1)), calcineurin activity significantly decreased only after 24 h of incubation (22%). Also p38 activation was attenuated by ordonafil and sildenafil (0.1 mg·L(-1)). It is suggested that both drugs have the ability to reverse L-NAME-induced cardiac hypertrophy and suppress phenylphrine-induced myocyte hypertrophy, and that these effects may be mediated through the attenuation of calcineurin and its downstream signaling pathways (p38) in neonatal rat ventricular myocytes.
Collapse
Affiliation(s)
- Asad Zeidan
- Department of Anatomy, Cell Biology, and Physiological Sciences, American University of Beirut, Lebanon
| | | | | | | | | |
Collapse
|
84
|
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening and progressive disease of various origins characterized by pulmonary vascular remodeling that leads to increased pulmonary vascular resistance and pulmonary arterial pressure, most often resulting in right-sided heart failure. The most common symptom at presentation is breathlessness, with impaired exercise capacity as a hallmark of the disease. Advances in understanding the pathobiology over the last 2 decades have led to therapies (endothelin receptor antagonists, phosphodiesterase type 5 inhibitors, and prostacyclins or analogs) initially directed at reversing the pulmonary vasoconstriction and more recently directed toward reversing endothelial cell dysfunction and smooth muscle cell proliferation. Despite these advances, disease progression is common even with use of combination regimens targeting multiple mechanistic pathways. Overall 5-year survival for PAH has increased significantly from approximately 30% in the 1980s to approximately 60% at present, yet remains abysmal. This review summarizes the mechanisms of action, clinical data, and regulatory histories of approved PAH therapies and describes the latest agents in late-stage clinical development.
Collapse
|
85
|
Karasu-Minareci E, Ozbudak IH, Ozbilim G, Sadan G. Acute effects of vardenafil on pulmonary artery responsiveness in pulmonary hypertension. ScientificWorldJournal 2012; 2012:718279. [PMID: 22649315 PMCID: PMC3354596 DOI: 10.1100/2012/718279] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 12/28/2011] [Indexed: 11/24/2022] Open
Abstract
Phosphodiesterase type-5 (PDE-5) inhibitors are novel and important options for the treatment of pulmonary arterial hypertension (PAH). Therefore, we aimed to examine effects of vardenafil, a PDE-5 inhibitor, on the pulmonary arteries isolated from rats with monocrotaline- (MCT-) induced pulmonary hypertension. MCT (60 mg/kg) or its vehicle was administered by a single intraperitoneal injection to 6-week-old male Sprague Dawley rats. Rats were sacrificed 21 days after MCT injection, and the main pulmonary arteries were isolated and then mounted in 20 mL organ baths. Concentration-response curves for vardenafil (10−10–10−5 M) were constructed in phenylephrine- (Phe-) precontracted rings. PAH caused marked rightward shift in the curves to vardenafil whereas maximal responses were not affected. Inhibition of NO synthase (L-NAME, 10−4 M) or guanylyl cyclase (ODQ, 10−5 M) caused similar attenuation in responses evoked by vardenafil. Moreover, contraction responses induced by CaCl2 (3×10−5–3×10−2 M) were significantly reduced in concentration-dependent manner by vardenafil. In conclusion, vardenafil induced pulmonary vasodilatation via inhibition of extracellular calcium entry in addition to NO-cGMP pathway activation. These results provide evidence that impaired arterial relaxation in PAH can be prevented by vardenafil. Thus, vardenafil represents a valuable therapeutic approach in PAH besides other PDE-5 inhibitors.
Collapse
Affiliation(s)
- Edibe Karasu-Minareci
- Department of Pharmacology, Akdeniz University School of Medicine, 07070 Antalya, Turkey.
| | | | | | | |
Collapse
|
86
|
Mietens A, Tasch S, Feuerstacke C, Eichner G, Volkmann J, Schermuly RT, Grimminger F, Müller D, Middendorff R. Phosphodiesterase 5 (PDE5) inhibition, ANP and NO rapidly reduce epididymal duct contractions, but long-term PDE5 inhibition in vivo does not. Mol Cell Endocrinol 2012; 349:145-53. [PMID: 21996373 DOI: 10.1016/j.mce.2011.09.039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 09/21/2011] [Accepted: 09/21/2011] [Indexed: 10/17/2022]
Abstract
Contractility of the peritubular smooth muscle layer ensures the transit of immotile spermatozoa through the epididymal duct to acquire their fertilizing capacity. Atrial natriuretic peptide (ANP) and nitric oxide (NO) affect contractility via cGMP signals that are controlled by phosphodiesterases (PDEs). Sildenafil inhibits the cGMP-hydrolyzing PDE5 and thereby promotes relaxation of smooth muscle cells. While sildenafil is increasingly used in young patients for the treatment of pulmonary hypertension, virtually no knowledge exists about PDEs in the epididymis. Western blotting, immunohistochemistry and RT-PCR analyses after laser capture microdissection localized PDE5 to smooth muscle cells, but not to epithelial cells, of the epididymal duct in man and rat. Sildenafil, ANP and NO significantly slowed spontaneous contractions of rat epididymal duct segments in organ bath studies. Sildenafil effects were additive to ANP and NO. Long-term exposure to sildenafil in vivo did not change the PDE5 expression or the observed contractility pattern with the rapid relaxing response toward ANP, NO and sildenafil. Data demonstrate that PDE5 is an important member of cGMP signaling pathways regulating the finely orchestrated process of epididymal duct contractility and suggest, however, that in the epididymis side effects of therapeutically used sildenafil are unlikely.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Atrial Natriuretic Factor/pharmacology
- Cyclic GMP/metabolism
- Cyclic Nucleotide Phosphodiesterases, Type 5/genetics
- Cyclic Nucleotide Phosphodiesterases, Type 5/metabolism
- Epididymis/drug effects
- Epididymis/physiology
- Humans
- Hypertension, Pulmonary/drug therapy
- Hypertension, Pulmonary/enzymology
- Hypertension, Pulmonary/physiopathology
- Male
- Middle Aged
- Muscle Contraction/drug effects
- Muscle, Smooth/drug effects
- Muscle, Smooth/physiology
- Nitric Oxide/metabolism
- Nitric Oxide Donors/pharmacology
- Nitroprusside/pharmacology
- Organ Culture Techniques
- Phosphodiesterase 5 Inhibitors/adverse effects
- Phosphodiesterase 5 Inhibitors/pharmacology
- Phosphodiesterase 5 Inhibitors/therapeutic use
- Piperazines/adverse effects
- Piperazines/pharmacology
- Piperazines/therapeutic use
- Purines/adverse effects
- Purines/pharmacology
- Purines/therapeutic use
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Sildenafil Citrate
- Sulfones/adverse effects
- Sulfones/pharmacology
- Sulfones/therapeutic use
Collapse
Affiliation(s)
- Andrea Mietens
- Institute of Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35385 Giessen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Jacobs KA, Kressler J, Stoutenberg M, Roos BA, Friedlander AL. Sildenafil has little influence on cardiovascular hemodynamics or 6-km time trial performance in trained men and women at simulated high altitude. High Alt Med Biol 2012; 12:215-22. [PMID: 21962064 DOI: 10.1089/ham.2011.0011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
UNLABELLED Sildenafil improves maximal exercise capacity at high altitudes (∼4350-5800 m) by reducing pulmonary arterial pressure and enhancing oxygen delivery, but the effects on exercise performance at less severe altitudes are less clear. PURPOSE To determine the effects of sildenafil on cardiovascular hemodynamics (heart rate, stroke volume, and cardiac output), arterial oxygen saturation (SaO2), and 6-km time-trial performance of endurance-trained men and women at a simulated altitude of ∼3900 m. METHODS Twenty men and 15 women, endurance-trained, completed one experimental exercise trial (30 min at 55% of altitude-specific capacity +6-km time trial) at sea level (SL) and two trials at simulated high altitude (HA) while breathing hypoxic gas (12.8% FIo2) after ingestion of either placebo or 50 mg sildenafil in double-blind, randomized, and counterbalanced fashion. RESULTS Maximal exercise capacity and SaO2 were significantly reduced at HA compared to SL (18%-23%), but sildenafil did not significantly improve cardiovascular hemodynamics or time-trial performance in either men or women compared to placebo and only improved SaO2 in women (4%). One male subject (5% of male subjects, 2.8% of all subjects) exhibited a meaningful 36-s improvement in time-trial performance with sildenafil compared to placebo. CONCLUSIONS In this group of endurance trained men and women, sildenafil had very little influence on cardiovascular hemodynamics, SaO2, and 6-km time-trial performance at a simulated altitude of ∼3900 m. It appears that a very small percentage of endurance-trained men and women derive meaningful improvements in aerobic performance from sildenafil at a simulated altitude of ∼3900 m.
Collapse
Affiliation(s)
- Kevin A Jacobs
- University of Miami, Department of Kinesiology and Sport Sciences, Coral Gables, Florida 33146, USA.
| | | | | | | | | |
Collapse
|
88
|
Houweling B, Quispel J, Beier N, Verdouw PD, Duncker DJ, Merkus D. Endothelial dysfunction enhances the pulmonary and systemic vasodilator effects of phosphodiesterase-5 inhibition in awake swine at rest and during treadmill exercise. Exp Biol Med (Maywood) 2012; 237:201-10. [PMID: 22312057 DOI: 10.1258/ebm.2011.011232] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cardiovascular disease is characterized by impaired exercise capacity and endothelial dysfunction, i.e. reduced bioavailability of nitric oxide (NO). Phosphodiesterase-5 (PDE5) inhibition is a promising vasodilator therapy, but its effects on pulmonary and systemic hemodynamic responses to exercise in the absence, and particularly in the presence, of endothelial dysfunction have not been studied. We investigated the effects of PDE5 inhibitor EMD360527 in chronically instrumented swine at rest and during exercise with and without NO synthase inhibition (N(ω)-nitro-l-arginine; NLA). PDE5 inhibition caused a 19 ± 3% decrease in systemic vascular resistance (SVR) and a 24 ± 4% decrease in pulmonary vascular resistance (PVR) at rest. At maximal exercise, PDE5 inhibition caused a 13 ± 1% decrease in SVR and a 29 ± 3% decrease in PVR. NLA enhanced PDE5-inhibition-induced pulmonary (decrease in PVR 32 ± 12% at rest and 41 ± 3% during exercise) and systemic (decrease in SVR 24 ± 5% at rest and 18 ± 3% during exercise) vasodilation. Similarly, NLA increased the pulmonary and systemic vasodilation to nitroprusside and 8-bromo-cyclic guanosine monophosphate (cGMP), indicating that inhibition of NO synthase increases responsiveness to stimulation of the NO/cGMP pathway. Thus, PDE5 inhibition causes pulmonary and systemic vasodilation that is, respectively, maintained and slightly blunted during exercise. The degree of dilation in both the pulmonary and systemic beds were paradoxically enhanced in the presence of reduced bioavailability of NO, suggesting that this vasodilator therapy is most effective in patients with cardiovascular disease.
Collapse
Affiliation(s)
- Birgit Houweling
- Experimental Cardiology, Thoraxcenter, Cardiovascular Research Institute COEUR, Erasmus University Medical Center, Dr Molewaterplein 50, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
89
|
Abstract
Pulmonary arterial hypertension is an orphan disease and a model for drug developments over recent years. Expert centers have focused basic science on the pulmonary vasculature and the right ventricle, followed by a direct transfer of innovative concepts to clinical research. Successful examples for translational experimentation are the endothelin receptor antagonists, prostacyclin receptor agonists, and the activators of soluble guanylate cyclase. On the other hand, there have been failures such as vasoactive intestinal peptide, statins, and escitalopram. Several new drugs and gene therapy are under investigation, thus significant advances are anticipated.
Collapse
|
90
|
Matamis D, Pampori S, Papathanasiou A, Papakonstantinou P, Tsagourias M, Galiatsou E, Koulouras V, Nakos G. Inhaled NO and sildenafil combination in cardiac surgery patients with out-of-proportion pulmonary hypertension: acute effects on postoperative gas exchange and hemodynamics. Circ Heart Fail 2011; 5:47-53. [PMID: 22057829 DOI: 10.1161/circheartfailure.111.963314] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The goal of this study was to examine the effects of coadministration of sildenafil and inhaled nitric oxide (iNO) in patients with out-of-proportion pulmonary hypertension who underwent cardiac valve replacement surgery. METHODS AND RESULTS Twenty consecutive cardiac surgery patients with out-of-proportion pulmonary hypertension were randomly assigned postoperatively into 2 groups: group A received 10 ppm of iNO followed by sildenafil (100 mg) orally 30 minutes later, and group B initially received sildenafil (100 mg) orally followed by 10 ppm of iNO 60 minutes later. Hemodynamic and gas exchange data were obtained at baseline, after administration of either iNO or sildenafil alone, and at 90 minutes from baseline. In group A, iNO resulted in a significant reduction in mean pulmonary artery pressure (MPAP) and pulmonary vascular resistance index (PVRI) (by 9.6% and 20.8%, respectively). In group B, sildenafil administration also resulted in a significant decrease in mean arterial pressure, MPAP, pulmonary artery occlusive pressure, PVRI, and systemic vascular resistance index but also in the PaO(2)/inspired fraction of oxygen ratio (by 18.7%, 22.0%, 15.7%, 31.6%, 21.3%, and 14%, respectively). In both groups, the coadministration of the 2 drugs resulted in a significant further reduction of mean arterial pressure, MPAP, pulmonary artery occlusive pressure, systemic vascular resistance index, and PVRI, whereas cardiac index and mixed venous oxygen saturation remained unchanged. The hypoxemia after sildenafil administration in group B improved after the coadministration of iNO, and thus PaO(2)/inspired fraction of oxygen returned to values near baseline. CONCLUSION In this study, the postoperative coadministration of iNO and oral sildenafil in patients with out-of-proportion pulmonary hypertension undergoing cardiac surgery is safe and results in an additive favorable effect on pulmonary arterial pressure and pulmonary vascular resistance, without systemic hypotension and ventilation/perfusion mismatch.
Collapse
Affiliation(s)
- Dimitrios Matamis
- Intensive Care Unit, Papageorgiou General Hospital, Thessalonica, Greece
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Armani A, Marzolla V, Rosano GMC, Fabbri A, Caprio M. Phosphodiesterase type 5 (PDE5) in the adipocyte: a novel player in fat metabolism? Trends Endocrinol Metab 2011; 22:404-11. [PMID: 21741267 DOI: 10.1016/j.tem.2011.05.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/18/2011] [Accepted: 05/25/2011] [Indexed: 12/19/2022]
Abstract
Phosphodiesterase type 5 (PDE5) is expressed in many tissues (e.g. heart, lung, pancreas, penis) and plays a specific role in hydrolyzing cyclic guanosine monophosphate (cGMP). In adipocytes, cGMP regulates crucial functions by activating cGMP-dependent protein kinase (PKG). Interestingly, PDE5 was recently identified in adipose tissue, although its role remains unclear. Its inhibition, however, was recently shown to affect adipose differentiation and aromatase function. This review summarizes evidence supporting a role for the PDE5-regulated cGMP/PKG system in adipose tissue and its effects on adipocyte function. A better elucidation of the role of PDE5 in the adipocyte could reveal new therapeutic strategies for fighting obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Andrea Armani
- Center for Clinical and Basic Research, Scientific Institute for Research, Hospitalization and Health Care (IRCCS) San Raffaele Pisana, Rome, Italy
| | | | | | | | | |
Collapse
|
92
|
Zopf DA, das Neves LAA, Nikula KJ, Huang J, Senese PB, Gralinski MR. C-122, a novel antagonist of serotonin receptor 5-HT2B, prevents monocrotaline-induced pulmonary arterial hypertension in rats. Eur J Pharmacol 2011; 670:195-203. [PMID: 21914448 DOI: 10.1016/j.ejphar.2011.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/22/2011] [Accepted: 08/17/2011] [Indexed: 10/17/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a chronic disease characterized by sustained elevation of pulmonary arterial pressure that leads to right ventricle failure and death. Pulmonary resistance arterioles in PAH undergo progressive narrowing and/or occlusion. Currently approved therapies for PAH are directed primarily at relief of symptoms by interfering with vasoconstrictive signals, but do not halt the microvascular cytoproliferative process. In this study we show that C-122 (2-amino-N-(2-{4-[3-(2-trifluoromethyl-phenothiazin-10-yl)-propyl]-piperazin-1-yl}-ethyl)-acetamide trihydrochloride, a novel antagonist of serotonin receptor 5-HT(2B) (Ki=5.2 nM, IC(50)=6.9 nM), when administered to rats for three weeks in daily oral 10mg/kg doses, prevents not only monocrotaline (MCT)-induced elevations in pressure in the pulmonary arterial circuit (19 ± 0.9 mmHg vs. 28 ± 2 mmHg in MCT-vehicle group, P<0.05) and hypertrophy of the right ventricle (right ventricular wt./body wt. ratio 0.52 ± 0.02 vs. 0.64 ± 0.04 in MCT-vehicle group, P<0.05), but also muscularization of pulmonary arterioles (23% vs. 56% fully muscularized in MCT-vehicle group, P<0.05), and perivascular fibrosis in the lung. C-122 is orally absorbed in the rat, and partitions strongly into multiple tissues, including heart and lung. C-122 has significant off-target antagonist activity for histamine H-1 and several dopamine receptors, but shows no evidence of crossing the blood-brain barrier after a single 10mg/kg oral dose in rats. We conclude that C-122 can prevent microvascular remodeling and associated elevated pressures in the rat MCT model for PAH, and offers promise as a new therapeutic entity to suppress vascular smooth muscle cell proliferation in PAH patients.
Collapse
|
93
|
Abstract
BACKGROUND Drug repositioning is a current strategy to find new uses for existing drugs, patented or not, and for late-stage candidates that failed for lack of efficacy. RESULTS In silico profiling of several marketed drugs (methadone, rapamycin, saquinavir and telmisartan) was performed, exploiting a vast amount of published information. Similar compounds were assessed in terms of target-activity profiles for major drug-target families. In silico profiles were visualized within an interactive heat map and detailed analysis was performed associated with the accessible current knowledge. CONCLUSION Based on a basic principle assuming that similar molecules share similar target activity, new potential targets and, therefore, opportunities of potential new indications have been identified and discussed.
Collapse
|
94
|
Jing ZC, Yu ZX, Shen JY, Wu BX, Xu KF, Zhu XY, Pan L, Zhang ZL, Liu XQ, Zhang YS, Jiang X, Galiè N. Vardenafil in Pulmonary Arterial Hypertension. Am J Respir Crit Care Med 2011; 183:1723-9. [DOI: 10.1164/rccm.201101-0093oc] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
95
|
Müller D, Mukhopadhyay AK, Davidoff MS, Middendorff R. Cyclic GMP signaling in rat urinary bladder, prostate, and epididymis: tissue-specific changes with aging and in response to Leydig cell depletion. Reproduction 2011; 142:333-43. [PMID: 21511885 DOI: 10.1530/rep-10-0517] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Aging of the male reproductive system leads to changes in endocrine signaling and is frequently associated with the emergence of prostate hyperplasia and bladder dysfunctions. Recent reports highlight prostate and bladder as promising targets for therapeutic interventions with inhibitors of the cyclic GMP (cGMP)-degrading phosphodiesterase 5 (PDE5). However, the cGMP signaling system in these organs is as yet poorly characterized, and the possibility of age-related alterations has not been addressed. This study investigates key proteins of cGMP pathways in bladder, prostate, and epididymis of young (3 months) and old (23-24 months) Wistar rats. Local differences in the abundance of PDE5, soluble guanylyl cyclase (sGC) and particulate guanylyl cyclases (GC-A, GC-B), endothelial nitric oxide synthase, and cGMP-dependent protein kinase I (PRKG1 (cGKI)) revealed pronounced tissue-specific peculiarities. Although cGMP-generating enzymes were not affected by age in all organs, we recognized age-related decreases of PDE5 expression in bladder and a selective diminishment of membrane-associated PRKG1 in epididymis. In disagreement with published data, all cGMP pathway proteins including PDE5 are poorly expressed in prostate. However, prostatic PRKG1 expression increases with aging. Androgen withdrawal during temporary Leydig cell elimination induced a massive (>12-fold) upregulation of PRKG1 in prostate but not in other (penis and epididymis) androgen-dependent organs. These findings identify PRKG1 as a key androgen-sensitive signaling protein in prostate of possible importance for growth regulation. The elucidated effects may have significance for age-associated pathologies in the male lower-urinary tract.
Collapse
Affiliation(s)
- Dieter Müller
- Institute of Anatomy and Cell Biology, Justus-Liebig-University, Aulweg 123, 35385 Giessen, Germany.
| | | | | | | |
Collapse
|
96
|
Gebska MA, Stevenson BK, Hemnes AR, Bivalacqua TJ, Haile A, Hesketh GG, Murray CI, Zaiman AL, Halushka MK, Krongkaew N, Strong TD, Cooke CA, El-Haddad H, Tuder RM, Berkowitz DE, Champion HC. Phosphodiesterase-5A (PDE5A) is localized to the endothelial caveolae and modulates NOS3 activity. Cardiovasc Res 2011; 90:353-63. [PMID: 21421555 DOI: 10.1093/cvr/cvq410] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
AIMS It has been well demonstrated that phosphodiesterase-5A (PDE5A) is expressed in smooth muscle cells and plays an important role in regulation of vascular tone. The role of endothelial PDE5A, however, has not been yet characterized. The present study was undertaken to determine the presence, localization, and potential physiologic significance of PDE5A within vascular endothelial cells. METHODS AND RESULTS We demonstrate primary location of human, mouse, and bovine endothelial PDE5A at or near caveolae. We found that the spatial localization of PDE5A at the level of caveolin-rich lipid rafts allows for a feedback loop between endothelial PDE5A and nitric oxide synthase (NOS3). Treatment of human endothelium with PDE5A inhibitors resulted in a significant increase in NOS3 activity, whereas overexpression of PDE5A using an adenoviral vector, both in vivo and in cell culture, resulted in decreased NOS3 activity and endothelium-dependent vasodilation. The molecular mechanism responsible for these interactions is primarily regulated by cGMP-dependent second messenger. PDE5A overexpression also resulted in a significant decrease in protein kinase 1 (PKG1) activity. Overexpression of PKG1 rapidly activated NOS3, whereas silencing of the PKG1 gene with siRNA inhibited both NOS3 phosphorylation (S1179) and activity, indicating a novel role for PKG1 in direct regulation of NOS3. CONCLUSION Our data collectively suggest another target for PDE5A inhibition in endothelial dysfunction and provide another physiologic significance for PDE5A in the modulation of endothelial-dependent flow-mediated vasodilation. Using both in vitro and in vivo models, as well as human data, we show that inhibition of endothelial PDE5A improves endothelial function.
Collapse
Affiliation(s)
- Milena A Gebska
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Rutland Avenue, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Murray F, Maclean MR, Insel PA. Role of phosphodiesterases in adult-onset pulmonary arterial hypertension. Handb Exp Pharmacol 2011:279-305. [PMID: 21695645 DOI: 10.1007/978-3-642-17969-3_12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by increased mean pulmonary artery pressure (mPAP) due to vasoconstriction and structural changes in the small pulmonary arteries (PAs); proliferation of pulmonary artery smooth muscle cells (PASMCs) contributes to the remodeling. The abnormal pathophysiology in the pulmonary vasculature relates to decreased cyclic nucleotide levels in PASMCs. Phosphodiesterases (PDEs) catalyze the hydrolysis of cAMP and cGMP, thereby PDE inhibitors are effective in vasodilating the PA and decreasing PASMC proliferation. Experimental studies support the use of PDE3, PDE5, and PDE1 inhibitors in PAH. PDE5 inhibitors such as sildenafil are clinically approved to treat different forms of PAH and lower mPAP, increase functional capacity, and decrease right ventricular hypertrophy, without decreasing systemic arterial pressure. New evidence suggests that the combination of PDE inhibitors with other therapies for PAH may be beneficial in treating the disease. Furthermore, inhibiting PDEs in the heart and the inflammatory cells that infiltrate the PA may offer new targets to reduce right ventricular hypertrophy and inhibit inflammation that is associated with and contributes to the development of PAH. This chapter summarizes the advances in the area and the future of PDEs in PAH.
Collapse
Affiliation(s)
- F Murray
- Department of Pharmacology and Department of Medicine, BSB 3073, University of California, 9500 Gilman Drive, La Jolla, San Diego, CA 92093-0636, USA.
| | | | | |
Collapse
|
98
|
Francis SH, Sekhar KR, Ke H, Corbin JD. Inhibition of cyclic nucleotide phosphodiesterases by methylxanthines and related compounds. Handb Exp Pharmacol 2011:93-133. [PMID: 20859794 DOI: 10.1007/978-3-642-13443-2_4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Naturally occurring methylxanthines were the first inhibitors of cyclic nucleotide (cN) phosphodiesterases (PDEs) to be discovered. To improve potency and specificity for inhibition of various PDEs in research and for treatment of diseases, thousands of compounds with related structures have now been synthesized. All known PDE inhibitors contain one or more rings that mimic the purine in the cN substrate and directly compete with cN for access to the catalytic site; this review focuses on inhibitors that contain a nucleus that is closely related to the xanthine ring of theophylline and caffeine and the purine ring of cNs. The specificity and potency of these compounds for blocking PDE action have been improved by appending groups at positions on the rings as well as by modification of the number and distribution of nitrogens and carbons in those rings. Several of these inhibitors are highly selective for particular PDEs; potent and largely selective PDE5 inhibitors are used clinically for treatment of erectile dysfunction [sildenafil (Viagra™), tadalafil (Cialis™) and vardenafil (Levitra™)] and pulmonary hypertension [sildenafil (Revatio™) and tadalafil (Adenocirca)]. Related compounds target other PDEs and show therapeutic promise for a number of maladies.
Collapse
Affiliation(s)
- Sharron H Francis
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA.
| | | | | | | |
Collapse
|
99
|
Abstract
During the development of the pulmonary vasculature in the fetus, many structural and functional changes occur to prepare the lung for the transition to air breathing. The development of the pulmonary circulation is genetically controlled by an array of mitogenic factors in a temporo-spatial order. With advancing gestation, pulmonary vessels acquire increased vasoreactivity. The fetal pulmonary vasculature is exposed to a low oxygen tension environment that promotes high intrinsic myogenic tone and high vasocontractility. At birth, a dramatic reduction in pulmonary arterial pressure and resistance occurs with an increase in oxygen tension and blood flow. The striking hemodynamic differences in the pulmonary circulation of the fetus and newborn are regulated by various factors and vasoactive agents. Among them, nitric oxide, endothelin-1, and prostaglandin I2 are mainly derived from endothelial cells and exert their effects via cGMP, cAMP, and Rho kinase signaling pathways. Alterations in these signaling pathways may lead to vascular remodeling, high vasocontractility, and persistent pulmonary hypertension of the newborn.
Collapse
Affiliation(s)
- Yuansheng Gao
- Department of Physiology and Pathophysiology, Peking University, Health Science Center, Beijing, China; and Department of Pediatrics, University of Illinois, College of Medicine at Chicago, Chicago, Illinois
| | - J. Usha Raj
- Department of Physiology and Pathophysiology, Peking University, Health Science Center, Beijing, China; and Department of Pediatrics, University of Illinois, College of Medicine at Chicago, Chicago, Illinois
| |
Collapse
|
100
|
Francis SH, Busch JL, Corbin JD, Sibley D. cGMP-dependent protein kinases and cGMP phosphodiesterases in nitric oxide and cGMP action. Pharmacol Rev 2010; 62:525-63. [PMID: 20716671 PMCID: PMC2964902 DOI: 10.1124/pr.110.002907] [Citation(s) in RCA: 733] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
To date, studies suggest that biological signaling by nitric oxide (NO) is primarily mediated by cGMP, which is synthesized by NO-activated guanylyl cyclases and broken down by cyclic nucleotide phosphodiesterases (PDEs). Effects of cGMP occur through three main groups of cellular targets: cGMP-dependent protein kinases (PKGs), cGMP-gated cation channels, and PDEs. cGMP binding activates PKG, which phosphorylates serines and threonines on many cellular proteins, frequently resulting in changes in activity or function, subcellular localization, or regulatory features. The proteins that are so modified by PKG commonly regulate calcium homeostasis, calcium sensitivity of cellular proteins, platelet activation and adhesion, smooth muscle contraction, cardiac function, gene expression, feedback of the NO-signaling pathway, and other processes. Current therapies that have successfully targeted the NO-signaling pathway include nitrovasodilators (nitroglycerin), PDE5 inhibitors [sildenafil (Viagra and Revatio), vardenafil (Levitra), and tadalafil (Cialis and Adcirca)] for treatment of a number of vascular diseases including angina pectoris, erectile dysfunction, and pulmonary hypertension; the PDE3 inhibitors [cilostazol (Pletal) and milrinone (Primacor)] are used for treatment of intermittent claudication and acute heart failure, respectively. Potential for use of these medications in the treatment of other maladies continues to emerge.
Collapse
Affiliation(s)
- Sharron H Francis
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, 2215 Garland Avenue, Nashville, TN 37232-0615, USA.
| | | | | | | |
Collapse
|