51
|
Affiliation(s)
- Fan Liu
- Department
of Mechanical Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Pawan KC
- Department
of Biomedical Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Ge Zhang
- Department
of Biomedical Engineering, University of Akron, Akron, Ohio 44325, United States
| | - Jiang Zhe
- Department
of Mechanical Engineering, University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
52
|
p53-Dependent Senescence in Mesenchymal Stem Cells under Chronic Normoxia Is Potentiated by Low-Dose γ-Irradiation. Stem Cells Int 2015; 2016:6429853. [PMID: 26788069 PMCID: PMC4695678 DOI: 10.1155/2016/6429853] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/02/2015] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a source of adult multipotent cells important in tissue regeneration. Murine MSCs are known to proliferate poorly in vitro under normoxia. The aim of this study is to analyze the interaction of nonphysiological high oxygen and low-dose γ-irradiation onto growth, senescence, and DNA damage. Tri-potent bone marrow-derived MSCs from p53 wildtype and p53−/− mice were cultured under either 21% or 2% O2. Long-term observations revealed a decreasing ability of wildtype mMSCs to proliferate and form colonies under extended culture in normoxia. This was accompanied by increased senescence under normoxia but not associated with telomere shortening. After low-dose γ-irradiation, the normoxic wildtype cells further increased the level of senescence. The number of radiation-induced γH2AX DNA repair foci was higher in mMSCs kept under normoxia but not in p53−/− cells. P53-deficient MSCs additionally showed higher clonogeneity, lower senescence levels, and fewer γH2AX repair foci per cell as compared to their p53 wildtype counterparts irrespective of oxygen levels. These results reveal that oxygen levels together with γ-irradiation and p53 status are interconnected factors modulating growth capacity of BM MSCs in long-term culture. These efforts help to better understand and optimize handling of MSCs prior to their therapeutic use.
Collapse
|
53
|
Novel therapeutic core-shell hydrogel scaffolds with sequential delivery of cobalt and bone morphogenetic protein-2 for synergistic bone regeneration. Acta Biomater 2015; 23:295-308. [PMID: 26054564 DOI: 10.1016/j.actbio.2015.06.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/05/2015] [Accepted: 06/01/2015] [Indexed: 11/21/2022]
Abstract
Enabling early angiogenesis is a crucial issue in the success of bone tissue engineering. Designing scaffolds with therapeutic potential to stimulate angiogenesis as well as osteogenesis is thus considered a promising strategy. Here, we propose a novel scaffold designed to deliver angiogenic and osteogenic factors in a sequential manner to synergize the bone regeneration event. Hydrogel fibrous scaffolds comprised of a collagen-based core and an alginate-based shell were constructed. Bone morphogenetic protein 2 (BMP2) was loaded in the core, while the shell incorporated Co ions, enabled by the alginate crosslinking in CoCl2/CaCl2 solution. The incorporation of Co ions was tunable by altering the concentration of Co ions in the crosslinking solution. The incorporated Co ions, that are known to play a role in angiogenesis, were released rapidly within a week, while the BMP2, acting as an osteogenic factor, was released in a highly sustainable manner over several weeks to months. The release of Co ions significantly up-regulated the in vitro angiogenic properties of cells, including the expression of angiogenic genes (CD31, VEGF, and HIF-1α), secretion of VEGF, and the formation of tubule-like networks. However, BMP2 did not activate the angiogenic processes. Osteogenesis was also significantly enhanced by the release of Co ions as well as BMP2, characterized by higher expression of osteogenic genes (OPN, ALP, BSP, and OCN), and OCN protein secretion. An in vivo study on the designed scaffolds implanted in rat calvarium defect demonstrated significantly enhanced bone formation, evidenced by new bone volume and bone density, due to the release of BMP2 and Co ions. This is the first study using Co ions as an angiogenic element together with the osteogenic factor BMP2 within scaffolds, and the results demonstrated the possible synergistic role of Co ions with BMP2 in the bone regeneration process, suggesting a novel potential therapeutic scaffold system. STATEMENT OF SIGNIFICANCE This is the first report that utilizes Co ion as a pro-angiogenic factor in concert with osteogenic factor BMP-2 in the fine-tuned core-shell hydrogel fiber scaffolds, and ultimately achieves osteo/angiogenesis of MSCs and bone regeneration through the sequential delivery of both biofactors. This novel approach facilitates a new class of therapeutic scaffolds, aiming at successful bone regeneration with the help of angiogenesis.
Collapse
|
54
|
Liu J, Hao H, Xia L, Ti D, Huang H, Dong L, Tong C, Hou Q, Zhao Y, Liu H, Fu X, Han W. Hypoxia pretreatment of bone marrow mesenchymal stem cells facilitates angiogenesis by improving the function of endothelial cells in diabetic rats with lower ischemia. PLoS One 2015; 10:e0126715. [PMID: 25996677 PMCID: PMC4440823 DOI: 10.1371/journal.pone.0126715] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 04/07/2015] [Indexed: 01/21/2023] Open
Abstract
Endothelial dysfunction induced by unordered metabolism results in vascular reconstruction challenges in diabetic lower limb ischemia (DLLI). Mesenchymal stem cells (MSCs) are multipotent secretory cells that are suitable for clinical DLLI treatment, but their use has been hampered by poor survival after injection. Hypoxia can significantly enhance the capacity of MSCs to secrete angiogenic factors. We investigated transient hypoxia pretreatment of MSCs to facilitate revascularization in DLLI. Rat bone marrow MSCs (BM-MSCs) were cultured at different oxygen concentrations for varying time periods. The results indicated that transient pretreatment (5% O2, 48 h) not only increased the expression of VEGF-1α, ANG, HIF-1α and MMP-9 in BM-MSCs as assessed by real-time RT-PCR, but also increased the expression of Bcl-2 as determined by western blotting. The transplantation of pretreated BM-MSCs into rats with DLLI demonstrated accelerated vascular reconstruction when assayed by angiography and immunohistochemistry. CM-Dil-labeled tracer experiments indicated that the survival of BM-MSCs was significantly improved, with approximately 5% of the injected cells remaining alive at 14 days. The expression levels of VEGF-1α, MMP-9 and VEGF-R were significantly increased, and the expression of pAKT was up-regulated in ischemic muscle. Double immunofluorescence studies confirmed that the pretreated BM-MSCs promoted the proliferation and inhibited the apoptosis of endothelial cells. In vitro, pretreated BM-MSCs increased the migratory and tube forming capacity of endothelial cells (ECs). Hypoxia pretreatment of BM-MSCs significantly improved angiogenesis in response to tissue ischemia by ameliorating endothelial cell dysfunction and is a promising therapeutic treatment for DLLI.
Collapse
Affiliation(s)
- Jiejie Liu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Haojie Hao
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Lei Xia
- Department of Medical Administration, Chinese PLA General Hospital, Beijing, China
| | - Dongdong Ti
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Hong Huang
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Liang Dong
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Chuan Tong
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Qian Hou
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Yali Zhao
- Central laboratory, Hainan branch of Chinese PLA General Hospital, Sanya, China
| | - Huiling Liu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
| | - Xiaobing Fu
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
- * E-mail: (WH); ( (XF)
| | - Weidong Han
- Institute of Basic Medicine Science, College of Life Science, Chinese PLA General Hospital, Beijing, China
- * E-mail: (WH); ( (XF)
| |
Collapse
|
55
|
Effect of Metformin on Viability, Morphology, and Ultrastructure of Mouse Bone Marrow-Derived Multipotent Mesenchymal Stromal Cells and Balb/3T3 Embryonic Fibroblast Cell Line. BIOMED RESEARCH INTERNATIONAL 2015; 2015:769402. [PMID: 26064951 PMCID: PMC4430655 DOI: 10.1155/2015/769402] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 03/27/2015] [Accepted: 04/15/2015] [Indexed: 12/27/2022]
Abstract
Metformin, a popular drug used to treat diabetes, has recently gained attention as a potentially useful therapeutic agent for treating cancer. In our research metformin was added to in vitro cultures of bone marrow-derived multipotent mesenchymal stromal cells (BMSCs) and Balb/3T3 fibroblast at concentration of 1 mM, 5 mM, and 10 mM. Obtained results indicated that metformin negatively affected proliferation activity of investigated cells. The drug triggered the formation of autophagosomes and apoptotic bodies in all tested cultures. Additionally, we focused on determination of expression of genes involved in insulin-like growth factor 2 (IGF2) signaling pathway. The most striking finding was that the mRNA level of IGF2 was constant in both BMSCs and Balb/3T3. Further, the analysis of IGF2 concentration in cell supernatants showed that it decreased in BMSC cultures after 5 and 10 mM metformin treatments. In case of Balb/3T3 the concentration of IGF2 in culture supernatants decreased after 1 and 5 mM and increased after 10 mM of metformin. Our results suggest that metformin influences the cytophysiology of somatic cells in a dose- and time-dependent manner causing inhibition of proliferation and abnormalities of their morphology and ultrastructure.
Collapse
|
56
|
Laitinen A, Oja S, Kilpinen L, Kaartinen T, Möller J, Laitinen S, Korhonen M, Nystedt J. A robust and reproducible animal serum-free culture method for clinical-grade bone marrow-derived mesenchymal stromal cells. Cytotechnology 2015; 68:891-906. [PMID: 25777046 PMCID: PMC4960139 DOI: 10.1007/s10616-014-9841-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 12/30/2014] [Indexed: 12/19/2022] Open
Abstract
Efficient xenofree expansion methods to replace fetal bovine serum (FBS)-based culture methods are strongly encouraged by the regulators and are needed to facilitate the adoption of mesenchymal stromal cell (MSC)-based therapies. In the current study we established a clinically-compliant and reproducible animal serum-free culture protocol for bone marrow-(BM-) MSCs based on an optimized platelet-derived supplement. Our study compared two different platelet-derived supplements, platelet lysate PL1 versus PL2, produced by two different methods and lysed with different amounts of freeze–thaw cycles. Our study also explored the effect of a low oxygen concentration on BM-MSCs. FBS-supplemented BM-MSC culture served as control. Growth kinetics, differentiation and immunomodulatory potential, morphology, karyotype and immunophenotype was analysed. Growth kinetics in long-term culture was also studied. Based on the initial results, we chose to further process develop the PL1-supplemented culture protocol at 20 % oxygen. The results from 11 individual BM-MSC batches expanded in the chosen condition were consistent, yielding 6.60 × 109 ± 4.74 × 109 cells from only 20 ml of bone marrow. The cells suppressed T-cell proliferation, displayed normal karyotype and typical MSC differentiation potential and phenotype. The BM-MSCs were, however, consistently HLA-DR positive when cultured in platelet lysate (7.5–66.1 %). We additionally show that culture media antibiotics and sterile filtration of the platelet lysate can be successfully omitted. We present a robust and reproducible clinically-compliant culture method for BM-MSCs based on platelet lysate, which enables high quantities of HLA-DR positive MSCs at a low passage number (p2) and suitable for clinical use.
Collapse
Affiliation(s)
- Anita Laitinen
- Research and Cell Therapy Services, Finnish Red Cross Blood Service, Kivihaantie 7, 00310, Helsinki, Finland.
| | - Sofia Oja
- Research and Cell Therapy Services, Finnish Red Cross Blood Service, Kivihaantie 7, 00310, Helsinki, Finland
| | - Lotta Kilpinen
- Research and Cell Therapy Services, Finnish Red Cross Blood Service, Kivihaantie 7, 00310, Helsinki, Finland
| | - Tanja Kaartinen
- Research and Cell Therapy Services, Finnish Red Cross Blood Service, Kivihaantie 7, 00310, Helsinki, Finland
| | - Johanna Möller
- Research and Cell Therapy Services, Finnish Red Cross Blood Service, Kivihaantie 7, 00310, Helsinki, Finland
| | - Saara Laitinen
- Research and Cell Therapy Services, Finnish Red Cross Blood Service, Kivihaantie 7, 00310, Helsinki, Finland
| | - Matti Korhonen
- Research and Cell Therapy Services, Finnish Red Cross Blood Service, Kivihaantie 7, 00310, Helsinki, Finland
| | - Johanna Nystedt
- Research and Cell Therapy Services, Finnish Red Cross Blood Service, Kivihaantie 7, 00310, Helsinki, Finland
| |
Collapse
|
57
|
Zhang Y, Zhai W, Zhao M, Li D, Chai X, Cao X, Meng J, Chen J, Xiao X, Li Q, Mu J, Shen J, Meng A. Effects of iron overload on the bone marrow microenvironment in mice. PLoS One 2015; 10:e0120219. [PMID: 25774923 PMCID: PMC4361683 DOI: 10.1371/journal.pone.0120219] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/20/2015] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Using a mouse model, Iron Overload (IO) induced bone marrow microenvironment injury was investigated, focusing on the involvement of reactive oxygen species (ROS). METHODS Mice were intraperitoneally injected with iron dextran (12.5, 25, or 50 mg) every three days for two, four, and six week durations. Deferasirox(DFX)125 mg/ml and N-acetyl-L-cysteine (NAC) 40 mM were co-administered. Then, bone marrow derived mesenchymal stem cells (BM-MSCs) were isolated and assessed for proliferation and differentiation ability, as well as related gene changes. Immunohistochemical analysis assessed the expression of haematopoietic chemokines. Supporting functions of BM-MSCs were studied by co-culture system. RESULTS In IO condition (25 mg/ml for 4 weeks), BM-MSCs exhibited proliferation deficiencies and unbalanced osteogenic/adipogenic differentiation. The IO BM-MSCs showed a longer double time (2.07±0.14 days) than control (1.03±0.07 days) (P<0.05). The immunohistochemical analysis demonstrated that chemokine stromal cell-derived factor-1, stem cell factor -1, and vascular endothelial growth factor-1 expression were decreased. The co-cultured system demonstrated that bone marrow mononuclear cells (BMMNCs) co-cultured with IO BM-MSCs had decreased colony forming unit (CFU) count (p<0.01), which indicates IO could lead to decreased hematopoietic supporting functions of BM-MSCs. This effect was associated with elevated phosphatidylinositol 3 kinase (PI3K) and reduced of Forkhead box protein O3 (FOXO3) mRNA expression, which could induce the generation of ROS. Results also demonstrated that NAC or DFX treatment could partially attenuate cell injury and inhibit signaling pathway striggered by IO. CONCLUSION These results demonstrated that IO can impair the bone marrow microenvironment, including the quantity and quality of BM-MSCs.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Wenjing Zhai
- Department of Stem Cells Transplantation, Blood Disease Hospital of Chinese Academy of Medical Sciences, Tianjin, China
| | - Mingfeng Zhao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
- * E-mail:
| | - Deguan Li
- Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Academy of Medical Science and Peking Union Medical College, Tianjin, China
| | - Xiao Chai
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Xiaoli Cao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Juanxia Meng
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Jie Chen
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Xia Xiao
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Qing Li
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Juan Mu
- Department of Hematology, Tianjin First Central Hospital, Tianjin, China
| | - Jichun Shen
- Department of Hematology, Affiliated Hospital of Logistics University of People’s Armed Police Force, Tianjin, China
| | - Aimin Meng
- Key Lab of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Academy of Medical Science and Peking Union Medical College, Tianjin, China
| |
Collapse
|
58
|
Amiri F, Jahanian-Najafabadi A, Roudkenar MH. In vitro augmentation of mesenchymal stem cells viability in stressful microenvironments : In vitro augmentation of mesenchymal stem cells viability. Cell Stress Chaperones 2015; 20:237-51. [PMID: 25527070 PMCID: PMC4326383 DOI: 10.1007/s12192-014-0560-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/02/2014] [Accepted: 12/07/2014] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are under intensive investigation for use in cell-based therapies because their differentiation abilities, immunomodulatory effects, and homing properties offer potential for significantly augmenting regenerative capacity of many tissues. Nevertheless, major impediments to their therapeutic application, such as low proliferation and survival rates remain as obstacles to broad clinical use of MSCs. Another major challenge to evolution of MSC-based therapies is functional degradation of these cells as a result of their exposure to oxidative stressors during isolation. Indeed, oxidative stress-mediated MSC depletion occurs due to inflammatory processes associated with chemotherapy, radiotherapy, and expression of pro-apoptotic factors, and the microenvironment of damaged tissue in patients receiving MSC therapy is typically therapeutic not favorable to their survival. For this reason, any strategies that enhance the viability and proliferative capacity of MSCs associated with their therapeutic use are of great value. Here, recent strategies used by various researchers to improve MSC allograft function are reviewed, with particular focus on in vitro conditioning of MSCs in preparation for clinical application. Preconditioning, genetic manipulation, and optimization of MSC culture conditions are some examples of the methodologies described in the present article, along with novel strategies such as treatment of MSCs with secretome and MSC-derived microvesicles. This topic material is likely to find value as a guide for both research and clinical use of MSC allografts and for improvement of the value that use of these cells brings to health care.
Collapse
Affiliation(s)
- Fatemeh Amiri
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Ali Jahanian-Najafabadi
- />Department of Pharmaceutical Biotechnology, School of Pharmacy, Isfahan University of Medical Sciences and Health Services, Isfahan, Iran
| | - Mehryar Habibi Roudkenar
- />Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
59
|
Low oxygen tension enhances osteogenic potential of bone marrow-derived mesenchymal stem cells with osteonecrosis-related functional impairment. Stem Cells Int 2015; 2015:950312. [PMID: 25691905 PMCID: PMC4322297 DOI: 10.1155/2015/950312] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/01/2015] [Accepted: 01/08/2015] [Indexed: 12/21/2022] Open
Abstract
Objective. Glucocorticoids can affect the function of bone marrow-derived mesenchymal stem cells (BMMSCs) adversely and merit the requirement for a strategy to correct this anomaly; we assessed the effect of low oxygen (2%) on BMMSCs from rabbits with osteonecrosis. Methods. Bone marrow-derived mesenchymal stem cells from normal rabbits and rabbits with osteonecrosis were divided into four groups: (1) normal-normoxia group, with normal BMMSCs cultured under 20% oxygen; (2) osteonecrosis-normoxia group, with BMMSCs from rabbits with osteonecrosis cultured under 20% oxygen; (3) osteonecrosis-low oxygen treated group, with BMMSCs from rabbits with osteonecrosis cultured under 2% oxygen; (4) normal-low oxygen treated group, with normal BMMSCs cultured under 2% oxygen. The proliferation, osteogenic, and adipogenic differentiation of MSCs and expression of stemness genes, osteogenic, and adipogenic differentiation markers were investigated. Results. Compared with BMMSCs from normal rabbits, those from osteonecrosis rabbits showed significantly reduced proliferation ability, repressed expression of stemness genes, decreased osteoblasts formation, and increased adipocytes formation, indicating an osteonecrosis-related impairment. Low oxygen (2%) treated BMMSCs from osteonecrosis rabbits showed not only increased proliferation and osteogenic potential but also decreased adipogenic potential. Conclusion. Low oxygen (2%) culture represents a novel strategy to augment BMMSC function affected by glucocorticoids and holds significance for future strategies to treat femoral head osteonecrosis.
Collapse
|
60
|
Carlier A, Geris L, Gastel NV, Carmeliet G, Oosterwyck HV. Oxygen as a critical determinant of bone fracture healing—A multiscale model. J Theor Biol 2015; 365:247-64. [DOI: 10.1016/j.jtbi.2014.10.012] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 07/28/2014] [Accepted: 10/09/2014] [Indexed: 12/30/2022]
|
61
|
Peng J, Lai ZG, Fang ZL, Xing S, Hui K, Hao C, Jin Q, Qi Z, Shen WJ, Dong QN, Bing ZH, Fu DL. Dimethyloxalylglycine prevents bone loss in ovariectomized C57BL/6J mice through enhanced angiogenesis and osteogenesis. PLoS One 2014; 9:e112744. [PMID: 25394221 PMCID: PMC4231053 DOI: 10.1371/journal.pone.0112744] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 10/12/2014] [Indexed: 12/16/2022] Open
Abstract
Hypoxia-inducible factor 1-α (HIF-1α) plays a critical role in angiogenesis-osteogenesis coupling during bone development and bone regeneration. Previous studies have shown that 17β-estradiol activates the HIF-1α signaling pathway and that mice with conditional activation of the HIF-1α signaling pathway in osteoblasts are protected from ovariectomy (OVX)-induced bone loss. In addition, it has been shown that hypoxia facilitates the osteogenic differentiation of mesenchymal stem cells (MSCs) and modulates Wnt/β-catenin signaling. Therefore, we hypothesized that activation of the HIF-1α signaling pathway by hypoxia-mimicking agents would prevent bone loss due to estrogen deficiency. In this study, we confirmed the effect of dimethyloxalylglycine (DMOG), a hypoxia-mimicking agent, on the HIF-1α signaling pathway and investigated the effect of DMOG on MSC osteogenic differentiation and the Wnt/β-catenin signaling pathway. We then investigated the effect of DMOG treatment on OVX-induced bone loss. Female C57BL/6J mice were divided into sham, OVX, OVX+L-DMOG (5 mg/kg/day), and OVX+H-DMOG (20 mg/kg/day) groups. At sacrifice, static and dynamic bone histomorphometry were performed with micro computed tomography (micro-CT) and undecalcified sections, respectively. Bone strength was assessed with the three-point bending test, and femur vessels were reconstructed and analyzed by micro-CT. Serum vascular endothelial growth factor (VEGF), osteocalcin, and C-terminal telopeptides of collagen type(CTX) were measured by ELISA. Tartrate-resistant acid phosphatase staining was used to assess osteoclast formation. Alterations in the HIF-1α and Wnt/β-catenin signaling pathways in the bone were detected by western blot. Our results showed that DMOG activated the HIF-1α signaling pathway, which further activated the Wnt/β-catenin signaling pathway and enhanced MSC osteogenic differentiation. The micro-CT results showed that DMOG treatment improved trabecular bone density and restored the bone microarchitecture and blood vessels in OVX mice. Bone strength was also partly restored in DMOG-treated OVX mice. Dynamic bone histomorphometric analysis of the femur metaphysic revealed that DMOG increased the mineralizing surface, mineral apposition rate, and bone formation rate. The serum levels of VEGF and osteocalcin were higher in DMOG-treated OVX mice. However, there were no significant differences in serum CTX or in the number of tartrate-resistant acid phosphatase-stained cells between DMOG-treated OVX mice and OVX mice. Western blot results showed that DMOG administration partly rescued the decrease in HIF-1α and β-catenin expression following ovariectomy. Collectively, these results indicate that DMOG prevents bone loss due to ovariectomy in C57BL/6J mice by enhancing angiogenesis and osteogenesis, which are associated with activated HIF-1α and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Jia Peng
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Zuo Gui Lai
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopaedics, Qian Fo Shan Hospital, Shang Dong University, Ji Nan, China
| | - Zhang Lian Fang
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shen Xing
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Kang Hui
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Hao
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Qi Jin
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Zhou Qi
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Wang Jin Shen
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Nian Dong
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Zhou Han Bing
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Deng Lian Fu
- Shanghai Institute of Traumatology and Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases with Integrated Chinese-Western Medicine, Ruijin Hospital, Jiao Tong University School of Medicine, Shanghai, China
- * E-mail:
| |
Collapse
|
62
|
Huang Y, Chen B, Zhang J. Oxygen tension variation in ischemic gastrocnemius muscle, marrow, and different hypoxic conditions in vitro. Med Sci Monit 2014; 20:2171-6. [PMID: 25372971 PMCID: PMC4301230 DOI: 10.12659/msm.892354] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Bone marrow stromal cells (BMSCs) play an important role in ischemic limb angiogenesis. BMSCs cultured in vitro can be exposed to oxygen tension much higher than that experienced in vivo. This study assessed oxygen tension in bone marrow and ischemic muscle in vivo, and then identified an appropriate oxygen concentration for culturing BMSCs. MATERIAL/METHODS Unilateral hind limb ischemia was surgically induced in 30 mice, and tissue oxygen tension in bilateral gastrocnemius muscles and femoral bone marrow was monitored in vivo using a micro-electrode at 24 hours, 1 week, 2 weeks, and 3 weeks after modeling. Media used for culturing normal marrow, muscle, and artery tissue were incubated with various oxygen concentrations, and O2 tension was continuously monitored. Oxygen tension in aortic arterial blood was monitored using a micro-electrode and blood gas analyzer, and the results were compared. RESULTS Oxygen tension in ischemic gastrocnemius muscle reached a nadir at 1 week after ischemic modeling, when histological changes were most noticeable. Culture media incubated with 3%, 6%, and 14% oxygen (the normal oxygen levels of bone marrow, muscle, and arterial blood, respectively) required 9, 6, and 2 hours, respectively, to reach an equilibrated oxygen tension, and oxygen tension was elevated by 1.6-, 1.2-, and 0.4-fold, respectively, upon re-exposure of the media to air. CONCLUSIONS Physiological oxygen tension differs in different tissues. A 3% O2 concentration mimics the physiological O2 exposure experienced by BMSCs and represents the hypoxic concentration. Culture medium incubated under hypoxic conditions requires a prolonged period of time to regain equilibrated oxygen tension.
Collapse
Affiliation(s)
- Ying Huang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China (mainland)
| | - Bing Chen
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China (mainland)
| | - Jian Zhang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China (mainland)
| |
Collapse
|
63
|
Hypoxia/Reoxygenation-Preconditioned Human Bone Marrow-Derived Mesenchymal Stromal Cells Rescue Ischemic Rat Cortical Neurons by Enhancing Trophic Factor Release. Mol Neurobiol 2014; 52:792-803. [DOI: 10.1007/s12035-014-8912-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 09/28/2014] [Indexed: 02/07/2023]
|
64
|
Azevedo MM, Tsigkou O, Nair R, Jones JR, Jell G, Stevens MM. Hypoxia inducible factor-stabilizing bioactive glasses for directing mesenchymal stem cell behavior. Tissue Eng Part A 2014; 21:382-9. [PMID: 25167933 DOI: 10.1089/ten.tea.2014.0083] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Oxygen tension is a known regulator of mesenchymal stem cell (MSC) plasticity, differentiation, proliferation, and recruitment to sites of injury. Materials capable of affecting the MSC oxygen-sensing pathway, independently of the environmental oxygen pressure, are therefore of immense interest to the tissue engineering (TE) and regenerative medicine community. In this study, we describe the evaluation of the effect of hypoxia inducible factor (HIF)-stabilizing bioactive glasses (BGs) on human MSCs. The dissolution products from these hypoxia-mimicking BGs stabilized HIF-1α in a concentration-dependent manner, altered cell proliferation and metabolism, and upregulated a number of genes involved in the hypoxic response (HIF1A, HIF2A, and VHL), MSC survival (SAG and BCL2), extracellular matrix remodeling (MMP1), and angiogenesis (VEGF and PDGF). These HIF-stabilizing materials can therefore be used to improve MSC survival and enhance regeneration in a number of TE strategies.
Collapse
Affiliation(s)
- Maria M Azevedo
- 1 Department of Materials, Imperial College London , London, United Kingdom
| | | | | | | | | | | |
Collapse
|
65
|
Pinevich AA, Samoilovich MP, Shashkova OA, Vartanyan NL, Polysalov VN, Kiseleva LN, Kartashev AV, Aizenshtadt AA, Klimovich VB. Characteristics of mesenchymal stromal cells isolated from patients with breast cancer. Bull Exp Biol Med 2014; 157:666-72. [PMID: 25257437 DOI: 10.1007/s10517-014-2640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Indexed: 10/24/2022]
Abstract
Mesenchymal stromal cells were isolated from the adipose tissue obtained during surgery for breast cancer and cultured under conditions of normal or low oxygen concentrations. In patients that had received a course of radiation and polychemotherapy prior to surgery, the proliferative potential of mesenchymal stromal cells was irreversibly disturbed. In patients receiving no therapy prior to surgery, the morphological, growth, phenotypic, and differentiation characteristics of mesenchymal stromal cells did not differ from the corresponding parameters of mesenchymal stromal cells from healthy donors. Culturing under hypoxic conditions increased adipogenic differentiation potencies of mesenchymal stromal cells from donors and patients.
Collapse
Affiliation(s)
- A A Pinevich
- Russian Research Center of Radiology and Surgical Technologies, Ministry of Health of the Russian Federation, St. Petersburg, Russia,
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Kumar D, Gerges I, Tamplenizza M, Lenardi C, Forsyth NR, Liu Y. Three-dimensional hypoxic culture of human mesenchymal stem cells encapsulated in a photocurable, biodegradable polymer hydrogel: a potential injectable cellular product for nucleus pulposus regeneration. Acta Biomater 2014; 10:3463-74. [PMID: 24793656 DOI: 10.1016/j.actbio.2014.04.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 04/14/2014] [Accepted: 04/23/2014] [Indexed: 02/08/2023]
Abstract
Nucleus pulposus (NP) tissue damage can induce detrimental mechanical stresses and strains on the intervertebral disc, leading to disc degeneration. This study demonstrates the potential of a novel, photo-curable, injectable, synthetic polymer hydrogel (pHEMA-co-APMA grafted with polyamidoamine (PAA)) to encapsulate and differentiate human mesenchymal stem cells (hMSC) towards a NP phenotype under hypoxic conditions which could be used to restore NP tissue function and mechanical properties. Encapsulated hMSC cultured in media (hMSC and chondrogenic) displayed good cell viability up to day 14. The genotoxicity effects of ultraviolet (UV) on hMSC activity confirmed the acceptability of 2.5min of UV light exposure to cells. Cytotoxicity investigations revealed that hMSC cultured in media containing p(HEMA-co-APMA) grafted with PAA degradation product (10% and 20%v/v concentration) for 14days significantly decreased the initial hMSC adhesion ability and proliferation rate from 24hrs to day 14. Successful differentiation of encapsulated hMSC within hydrogels towards chondrogenesis was observed with elevated expression levels of aggrecan and collagen II when cultured in chondrogenic media under hypoxic conditions, in comparison with culture in hMSC media for 14days. Characterization of the mechanical properties revealed a significant decrease in stiffness and modulus values of cellular hydrogels in comparison with acellular hydrogels at both day 7 and day 14. These results demonstrate the potential use of an in vivo photo-curable injectable, synthetic hydrogel with encapsulated hMSC for application in the repair and regeneration of NP tissue.
Collapse
|
67
|
Effect of Hypoxia on Porphyrin Metabolism in Bone Marrow Mesenchymal Stem Cells. Bull Exp Biol Med 2014; 157:167-71. [DOI: 10.1007/s10517-014-2516-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Indexed: 12/16/2022]
|
68
|
Wu G, Schöler HR. Role of Oct4 in the early embryo development. CELL REGENERATION 2014; 3:7. [PMID: 25408886 PMCID: PMC4230828 DOI: 10.1186/2045-9769-3-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/25/2014] [Indexed: 02/07/2023]
Abstract
Oct4 is a key component of the pluripotency regulatory network, and its reciprocal interaction with Cdx2 has been shown to be a determinant of either the self-renewal of embryonic stem cells (ESCs) or their differentiation into trophoblast. Oct4 of maternal origin is postulated to play critical role in defining totipotency and inducing pluripotency during embryonic development. However, the genetic elimination of maternal Oct4 using a Cre-lox approach in mouse revealed that the establishment of totipotency in maternal Oct4–depleted embryos was not affected, and that these embryos could complete full-term development without any obvious defect. These results indicate that Oct4 is not essential for the initiation of pluripotency, in contrast to its critical role in maintaining pluripotency. This conclusion is further supported by the formation of Oct4-GFP– and Nanog- expressing inner cell masses (ICMs) in embryos with complete inactivation of both maternal and zygotic Oct4 expression and the reprogramming of fibroblasts into fully pluripotent cells by Oct4-deficient oocytes.
Collapse
Affiliation(s)
- Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, 48149 Münster, Germany ; Medical Faculty, University of Münster, Domagkstr. 3, 48149 Münster, Germany
| |
Collapse
|
69
|
Zhou Y, Guan X, Yu M, Wang X, Zhu W, Wang C, Yu M, Wang H. Angiogenic/osteogenic response of BMMSCs on bone-derived scaffold: effect of hypoxia and role of PI3K/Akt-mediated VEGF-VEGFR pathway. Biotechnol J 2014; 9:944-53. [PMID: 24421279 DOI: 10.1002/biot.201300310] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/15/2013] [Accepted: 01/09/2014] [Indexed: 11/05/2022]
Abstract
Bone tissue deficiency is a common clinical challenge. Tissue-engineered bone constructs are an effective approach for the repair of orthopedic bone defects. Mimicking the essential components of the in vivo microenvironment is an efficient way to develop functional constructs. In this study, bone marrow-derived mesenchymal stromal cells (BMMSCs) were seeded into bone-derived scaffolds, a material with similar structure to natural bone. This was done under hypoxic conditions, an environment that imitates that experienced by BMMSCs in vivo. Our data indicate that hypoxia (5% O2 ) significantly increases the proliferation of BMMSCs seeded in scaffolds. As reflected by highly expressed osteogenesis- and angiogenesis-associated biomarkers, including vascular endothelial growth factor (VEGF), RUNX2, bone morphogenetic protein-2/4 and osteopontin, hypoxia also significantly increases the osteogenic and angiogenic responses of BMMSCs seeded into bone-derived scaffold composites. PI3K/Akt-mediated regulation of VEGF-activated VEGFR1/2 signaling is important for hypoxia-induced proliferative/osteogenic/angiogenic responses in BMMSC cellular scaffolds. The combination of bone-derived scaffolds and hypoxia is conducive to the differentiation of BMMSCs into functional tissue-engineered scaffold composites.
Collapse
Affiliation(s)
- Yi Zhou
- Affiliated Hospital of Stomatology, Medical College, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Boyette LB, Creasey OA, Guzik L, Lozito T, Tuan RS. Human bone marrow-derived mesenchymal stem cells display enhanced clonogenicity but impaired differentiation with hypoxic preconditioning. Stem Cells Transl Med 2014; 3:241-54. [PMID: 24436440 DOI: 10.5966/sctm.2013-0079] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Stem cells are promising candidate cells for regenerative applications because they possess high proliferative capacity and the potential to differentiate into other cell types. Mesenchymal stem cells (MSCs) are easily sourced but do not retain their proliferative and multilineage differentiative capabilities after prolonged ex vivo propagation. We investigated the use of hypoxia as a preconditioning agent and in differentiating cultures to enhance MSC function. Culture in 5% ambient O(2) consistently enhanced clonogenic potential of primary MSCs from all donors tested. We determined that enhanced clonogenicity was attributable to increased proliferation, increased vascular endothelial growth factor secretion, and increased matrix turnover. Hypoxia did not impact the incidence of cell death. Application of hypoxia to osteogenic cultures resulted in enhanced total mineral deposition, although this effect was detected only in MSCs preconditioned in normoxic conditions. Osteogenesis-associated genes were upregulated in hypoxia, and alkaline phosphatase activity was enhanced. Adipogenic differentiation was inhibited by exposure to hypoxia during differentiation. Chondrogenesis in three-dimensional pellet cultures was inhibited by preconditioning with hypoxia. However, in cultures expanded under normoxia, hypoxia applied during subsequent pellet culture enhanced chondrogenesis. Whereas hypoxic preconditioning appears to be an excellent way to expand a highly clonogenic progenitor pool, our findings suggest that it may blunt the differentiation potential of MSCs, compromising their utility for regenerative tissue engineering. Exposure to hypoxia during differentiation (post-normoxic expansion), however, appears to result in a greater quantity of functional osteoblasts and chondrocytes and ultimately a larger quantity of high-quality differentiated tissue.
Collapse
Affiliation(s)
- Lisa B Boyette
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA; Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, McGowan Institute for Regenerative Medicine, and Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
71
|
Hsiao ST, Dilley RJ, Dusting GJ, Lim SY. Ischemic preconditioning for cell-based therapy and tissue engineering. Pharmacol Ther 2013; 142:141-53. [PMID: 24321597 DOI: 10.1016/j.pharmthera.2013.12.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 12/02/2013] [Indexed: 01/07/2023]
Abstract
Cell- and tissue-based therapies are innovative strategies to repair and regenerate injured hearts. Despite major advances achieved in optimizing these strategies in terms of cell source and delivery method, the clinical outcome of cell-based therapy remains unsatisfactory. The non-genetic approach of ischemic/hypoxic preconditioning to enhance cell- and tissue-based therapies has received much attention in recent years due to its non-invasive drug-free application. Here we discuss the current development of hypoxic/ischemic preconditioning to enhance stem cell-based cardiac repair and regeneration.
Collapse
Affiliation(s)
- Sarah T Hsiao
- Department of Cardiovascular Science, University of Sheffield, United Kingdom
| | - Rodney J Dilley
- Ear Science Institute Australia and Ear Sciences Centre, School of Surgery, University of Western Australia, Nedlands, Western Australia, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia and Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Department of Ophthalmology, University of Melbourne, East Melbourne, Victoria, Australia; Department of Surgery, University of Melbourne, Fitzroy, Victoria, Australia; O'Brien Institute, Fitzroy, Victoria, Australia
| | - Shiang Y Lim
- Department of Surgery, University of Melbourne, Fitzroy, Victoria, Australia; O'Brien Institute, Fitzroy, Victoria, Australia.
| |
Collapse
|
72
|
Shim JH, Lee TR, Shin DW. Novel in vitro culture condition improves the stemness of human dermal stem/progenitor cells. Mol Cells 2013; 36:556-63. [PMID: 24241684 PMCID: PMC3887967 DOI: 10.1007/s10059-013-0260-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 09/25/2013] [Indexed: 02/08/2023] Open
Abstract
Cell therapy using adult stem cells has emerged as a potentially new approach for the treatment of various diseases. Therefore, it is an essential procedure to maintain the stemness of adult stem cells for clinical treatment. We previously reported that human dermal stem/progenitor cells (hDSPCs) can be enriched using collagen type IV. However, hDSPCs gradually lose their stem cell properties as in vitro passages continue. In the present study, we developed optimized in vitro culture condition to improve the stemness of these hDSPCs. To evaluate whether the stemness of hDSPCs is well sustained in various culture conditions, we measured the expression levels of SOX2, NANOG, and S100B, which are well-known representative dermal progenitor markers. We observed that hDSPCs grown in three-dimensional (3D) culture condition had higher expression levels of those markers compared with hDSPCs grown in two-dimensional (2D) culture condition. Under the 3D culture condition, we further demonstrated that a high glucose (4.5 g/L) concentration enhanced the expression levels of the dermal progenitor markers, whereas O(2) concentration did not affect. We also found that skin-derived precursor (SKP) culture medium was the most effective, among various culture media, in increasing the dermal progenitor marker expression. We finally demonstrated that this optimized culture condition enhanced the expression level of human telomerase reverse transcriptase (hTERT), the proliferation, and the multipotency of hDSPCs, an important characteristic of stem cells. Taken together, these results suggested that this novel in vitro culture condition improves the stemness of hDSPCs.
Collapse
Affiliation(s)
- Joong Hyun Shim
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin 446-729,
Korea
| | - Tae Ryong Lee
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin 446-729,
Korea
| | - Dong Wook Shin
- Bioscience Research Institute, Amorepacific Corporation R&D Center, Yongin 446-729,
Korea
| |
Collapse
|
73
|
Zhang HY, Liu R, Xing YJ, Xu P, Li Y, Li CJ. Effects of hypoxia on the proliferation, mineralization and ultrastructure of human periodontal ligament fibroblasts in vitro.. Exp Ther Med 2013; 6:1553-1559. [PMID: 24255690 PMCID: PMC3829746 DOI: 10.3892/etm.2013.1349] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 10/02/2013] [Indexed: 12/28/2022] Open
Abstract
This study aimed to investigate the effects of hypoxia on the proliferation, mineralization and ultrastructure of human periodontal ligament fibroblasts (HPLFs) at various times in vitro in order to further study plateau-hypoxia-induced periodontal disease. HPLFs (fifth passage) cultured by the tissue culture method were assigned to the slight (5% O2), middle (2% O2), and severe hypoxia (1% O2) groups and the control (21% O2) group, respectively. At 12, 24, 48 and 72 h, the proliferation and alkaline phosphatase (ALP) activities were detected. The ultrastructure of the severe hypoxia group was observed. HPLFs grew more rapidly with an increase in the degree of hypoxia at 12 and 24 h, and significant levels of proliferation (P<0.05) were observed in the severe hypoxia group at 24 h. Cell growth was restrained with an increase in the degree of hypoxia at 48 and 72 h, and the restrictions were clear (P<0.05) in the middle and severe hypoxia groups. ALP activity was restrained with increasing hypoxia at each time point. The restrictions were marked (P<0.05) in the severe hypoxia group at 24 h and in the middle and severe hypoxia groups at 48 and 72 h. However, the restriction was more marked (P<0.05) in the severe hypoxia group at 72 h. An increase was observed in the number of mitochondria and rough endoplasmic reticula (RER), with slightly expanded but complete membrane structures, in the severe hypoxia group at 24 h. At 48 h, the number of mitochondria and RER decreased as the mitochondria increased in size. Furthermore, mitochondrial cristae appeared to be vague, and a RER structural disorder was observed. At 72 h, the number of mitochondria and RER decreased further when the mitochondrial cristae were broken, vacuolar degeneration occurred, and the RER particles were reduced while the number of lysosomes increased. HPLF proliferation and mineralization was restrained. Additionally, HPLF structure was broken for a relatively long period of time in the middle and severe hypoxia groups. This finding demonstrated that hypoxia was capable of damaging the metabolism, reconstruction and recovery of HPLFs. The poor state of HPLFs under hypoxic conditions may therefore initiate or aggravate periodontal disease.
Collapse
Affiliation(s)
- Hai-Yuan Zhang
- Department of Stomatology, Chengdu Military General Hospital of PLA, Chengdu, Sichuan 610083, P.R. China
| | | | | | | | | | | |
Collapse
|
74
|
Sadie-Van Gijsen H, Hough FS, Ferris WF. Determinants of bone marrow adiposity: the modulation of peroxisome proliferator-activated receptor-γ2 activity as a central mechanism. Bone 2013; 56:255-65. [PMID: 23800517 DOI: 10.1016/j.bone.2013.06.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 06/04/2013] [Accepted: 06/12/2013] [Indexed: 12/23/2022]
Abstract
Although the presence of adipocytes in the bone marrow is a normal physiological phenomenon, the role of these cells in bone homeostasis and during pathological states has not yet been fully delineated. As osteoblasts and adipocytes originate from a common progenitor, with an inverse relationship existing between osteoblastogenesis and adipogenesis, bone marrow adiposity often negatively correlates with osteoblast number and bone mineral density. Bone adiposity can be affected by several physiological and pathophysiological factors, with abnormal, elevated marrow fat resulting in a pathological state. This review focuses on the regulation of bone adiposity by physiological factors, including aging, mechanical loading and growth factor expression, as well as the pathophysiological factors, including diseases such as anorexia nervosa and dyslipidemia, and pharmacological agents such as thiazolidinediones and statins. Although these factors regulate bone marrow adiposity via a plethora of different intracellular signaling pathways, these diverse pathways often converge on the modulation of the expression and/or activity of the pro-adipogenic transcription factor peroxisome proliferator-activated receptor (PPAR)-γ2, suggesting that any factor that affects PPAR-γ2 may have an impact on the fat content of bone.
Collapse
Affiliation(s)
- H Sadie-Van Gijsen
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, University of Stellenbosch, Francie van Zijl Drive, Tygerberg 7505, South Africa.
| | | | | |
Collapse
|
75
|
Park IH, Kim KH, Choi HK, Shim JS, Whang SY, Hahn SJ, Kwon OJ, Oh IH. Constitutive stabilization of hypoxia-inducible factor alpha selectively promotes the self-renewal of mesenchymal progenitors and maintains mesenchymal stromal cells in an undifferentiated state. Exp Mol Med 2013; 45:e44. [PMID: 24071737 PMCID: PMC3789268 DOI: 10.1038/emm.2013.87] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 07/07/2013] [Accepted: 07/10/2013] [Indexed: 12/12/2022] Open
Abstract
With the increasing use of culture-expanded mesenchymal stromal cells (MSCs) for cell therapies, factors that regulate the cellular characteristics of MSCs have been of major interest. Oxygen concentration has been shown to influence the functions of MSCs, as well as other normal and malignant stem cells. However, the underlying mechanisms of hypoxic responses and the precise role of hypoxia-inducible factor-1α (Hif-1α), the master regulatory protein of hypoxia, in MSCs remain unclear, due to the limited span of Hif-1α stabilization and the complex network of hypoxic responses. In this study, to further define the significance of Hif-1α in MSC function during their self-renewal and terminal differentiation, we established adult bone marrow (BM)-derived MSCs that are able to sustain high level expression of ubiquitin-resistant Hif-1α during such long-term biological processes. Using this model, we show that the stabilization of Hif-1α proteins exerts a selective influence on colony-forming mesenchymal progenitors promoting their self-renewal and proliferation, without affecting the proliferation of the MSC mass population. Moreover, Hif-1α stabilization in MSCs led to the induction of pluripotent genes (oct-4 and klf-4) and the inhibition of their terminal differentiation into osteogenic and adipogenic lineages. These results provide insights into the previously unrecognized roles of Hif-1α proteins in maintaining the primitive state of primary MSCs and on the cellular heterogeneities in hypoxic responses among MSC populations.
Collapse
Affiliation(s)
- In-Ho Park
- Catholic High-Performance Cell Therapy Center and Department of Medical Lifescience, The Catholic University of Korea, College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Effects of severe hypoxia on bone marrow mesenchymal stem cells differentiation potential. Stem Cells Int 2013; 2013:232896. [PMID: 24082888 PMCID: PMC3777136 DOI: 10.1155/2013/232896] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 06/27/2013] [Accepted: 06/30/2013] [Indexed: 02/06/2023] Open
Abstract
Background. The interests in mesenchymal stem cells (MSCs) and their application in cell therapy have resulted in a better understanding of the basic biology of these cells. Recently hypoxia has been indicated as crucial for complete chondrogenesis. We aimed at analyzing bone marrow MSCs (BM-MSCs) differentiation capacity under normoxic and severe hypoxic culture conditions. Methods. MSCs were characterized by flow cytometry and differentiated towards adipocytes, osteoblasts, and chondrocytes under normoxic or severe hypoxic conditions. The differentiations were confirmed comparing each treated point with a control point made of cells grown in DMEM and fetal bovine serum (FBS). Results. BM-MSCs from the donors displayed only few phenotypical differences in surface antigens expressions. Analyzing marker genes expression levels of the treated cells compared to their control point for each lineage showed a good differentiation in normoxic conditions and the absence of this differentiation capacity in severe hypoxic cultures. Conclusions. In our experimental conditions, severe hypoxia affects the in vitro differentiation potential of BM-MSCs. Adipogenic, osteogenic, and chondrogenic differentiations are absent in severe hypoxic conditions. Our work underlines that severe hypoxia slows cell differentiation by means of molecular mechanisms since a decrease in the expression of adipocyte-, osteoblast-, and chondrocyte-specific genes was observed.
Collapse
|
77
|
Cortes Y, Ojeda M, Araya D, Dueñas F, Fernández MS, Peralta OA. Isolation and multilineage differentiation of bone marrow mesenchymal stem cells from abattoir-derived bovine fetuses. BMC Vet Res 2013; 9:133. [PMID: 23826829 PMCID: PMC3751243 DOI: 10.1186/1746-6148-9-133] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 06/28/2013] [Indexed: 01/22/2023] Open
Abstract
Background Mesenchymal stem cells (MSC) are multipotent progenitor cells localized in the stromal compartment of the bone marrow (BM). The potential of MSC for mesenchymal differentiation has been well documented in different animal models predominantly on rodents. However, information regarding bovine MSC (bMSC) is limited, and the differentiation potential of bMSC derived from fetal BM remains unknown. In the present study we sought to isolate bMSC from abattoir-derived fetal BM and to characterize the multipotent and differentiation potential under osteogenic, chondrogenic and adipogenic conditions by quantitative and qualitative analyses. Results Plastic-adherent bMSC isolated from fetal BM maintained a fibroblast-like morphology under monolayer culture conditions. These cells expressed high levels of MSC surface markers (CD73, CD90, and CD105) and low levels of hematopoietic surface markers (CD34 and CD45). Culture of bMSC under osteogenic conditions during a 27-day period induced up-regulation of the osteocalcin (OC) gene expression and alkaline phosphatase (ALPL) activity, and promoted mineralization of the matrix. Increasing supplementation levels of ascorbic acid to culture media enhanced osteogenic differentiation of bMSC; whereas, reduction of FBS supplementation compromised osteogenesis. bMSC increased expression of cartilage-specific genes aggrecan (ACAN), collagen 2A1 (COL2A1) and SRY (sex-determining region Y) box 9 (SOX9) at Day 21 of chondrogenic differentiation. Treatment of bMSC with adipogenic factors increased levels of fatty acid-binding protein 2 (AP2) mRNA and accumulation of lipid vacuoles after 18 days of culture. NANOG mRNA levels in differentiating bMSC were not affected during adipogenic culture; however, osteogenic and chondrogenic conditions induced higher and lower levels, respectively. Conclusions Our analyses revealed the potential multilineage differentiation of bMSC isolated from abattoir-derived fetal BM. NANOG mRNA pattern in differentiating bMSC varied according to differentiation culture conditions. The osteogenic differentiation of bMSC was affected by ascorbic acid and FBS concentrations in culture media. The simplicity of isolation and the differentiation potential suggest that bMSC from abattoir-derived fetal BM are appropriate candidate for investigating MSC biology and for eventual applications for regenerative therapy.
Collapse
|
78
|
Polarized neural stem cells derived from adult bone marrow stromal cells develop a rosette-like structure. In Vitro Cell Dev Biol Anim 2013; 49:638-52. [PMID: 23771792 DOI: 10.1007/s11626-013-9628-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 04/26/2013] [Indexed: 12/19/2022]
|
79
|
Knuth CA, Clark ME, Meeson AP, Khan SK, Dowen DJ, Deehan DJ, Oldershaw RA. Low Oxygen Tension is Critical for the Culture of Human Mesenchymal Stem Cells with Strong Osteogenic Potential from Haemarthrosis Fluid. Stem Cell Rev Rep 2013; 9:599-608. [DOI: 10.1007/s12015-013-9446-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
80
|
Sahai S, Williams A, Skiles ML, Blanchette JO. Osteogenic differentiation of adipose-derived stem cells is hypoxia-inducible factor-1 independent. Tissue Eng Part A 2013; 19:1583-91. [PMID: 23394201 DOI: 10.1089/ten.tea.2012.0378] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Tissue engineering is a promising approach to repair critical-size defects in bone. Damage to vasculature at the defect site can create a lower O2 environment compared with healthy bone. Local O2 levels influence stem cell behavior, as O2 is not only a nutrient, but also a signaling molecule. The hypoxia-inducible factor-1 (HIF-1) is a transcription factor that regulates a wide range of O2-related genes and its contribution in bone repair/formation is an important area that can be exploited. In this study, we examined the effect of low O2 environments (1% and 2% O2) on the osteogenic differentiation of adipose-derived stem cells in both two-dimensional (2-D) and three-dimensional (3-D) culture systems. To determine the role of HIF-1 in the differentiation process, an inhibitor was used to block the HIF-1 activity. The samples were examined for osteogenesis markers as measured by quantification of the alkaline phosphatase (ALP) activity, mineral deposition, and expression of osteonectin (ON) and osteopontin (OPN). Results show a downregulation of the osteogenic markers (ALP activity, mineralization, ON, OPN) in both 1% and 2% O2 when compared to 20% O2 in both 2-D and 3-D culture. Vascular endothelial growth factor secretion over 28 days was significantly higher in low O2 environments and HIF-1 inhibition reduced this effect. The inhibition of the HIF-1 activity did not have a significant impact on the expression of the osteogenic markers, suggesting HIF-1-independent inhibition of osteogenic differentiation in hypoxic conditions.
Collapse
Affiliation(s)
- Suchit Sahai
- Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
| | | | | | | |
Collapse
|
81
|
Hung SC. Effects of hypoxic culture on bone marrow mesenchymal stem cells: From bench to bedside. FORMOSAN JOURNAL OF SURGERY 2013. [DOI: 10.1016/j.fjs.2013.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
82
|
Stem cells and molecular advances in the treatment of facial skin. Facial Plast Surg Clin North Am 2013; 21:77-80. [PMID: 23369591 DOI: 10.1016/j.fsc.2012.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Stem cell technology has been discussed chiefly in terms of organ replacement in end-stage diseases. However, improved understanding of adult stem cells and a more nuanced appreciation of aging skin as a disease state has focused greater attention on the potential for truly regenerative and rejuvenative skin therapy with autologous cells. Through enhanced understanding of the normal processes of wound healing, systems of treatment and avenues of therapy are emerging based on modulation and amplification of the natural processes of wound healing. This article presents skin-specific developments in stem cell and growth factor science and suggests further avenues of investigation.
Collapse
|
83
|
Krishnappa V, Boregowda SV, Phinney DG. The peculiar biology of mouse mesenchymal stromal cells--oxygen is the key. Cytotherapy 2013; 15:536-41. [PMID: 23352463 DOI: 10.1016/j.jcyt.2012.11.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 11/30/2012] [Indexed: 02/08/2023]
Abstract
Because of the ability to manipulate their genome, mice are the experimental tool of choice for many areas of scientific investigation. Moreover, established experimental mouse models of human disease are widely available and offer a valuable resource to obtain proof-of-concept for many cell-based therapies. Nevertheless, efforts to establish reliable methods to isolate mesenchymal stromal cells (MSCs) from mouse bone marrow have been elusive. Indeed, a variety of physical and genetic approaches have been described to fractionate MSCs from other cell lineages in bone marrow, but few have achieved high yields or purity while maintaining the genomic integrity of the cells. We provide a historic overview of published procedures dedicated to the isolation of mouse MSCs from bone marrow and compact bone. We also review current findings indicating that growth-restrictive conditions imposed by atmospheric oxygen promotes immortalization of mouse MSCs and how expansion in a low-oxygen environment enhances cell yields and maintains genomic stability. Finally, we provide basic recommendations for isolating primary mouse MSCs and discuss potential pitfalls associated with these isolation methods.
Collapse
Affiliation(s)
- Veena Krishnappa
- Kellogg School of Science & Technology, The Scripps Research Institute, Jupiter, FL, USA
| | | | | |
Collapse
|
84
|
Berniakovich I, Giorgio M. Low oxygen tension maintains multipotency, whereas normoxia increases differentiation of mouse bone marrow stromal cells. Int J Mol Sci 2013; 14:2119-34. [PMID: 23340651 PMCID: PMC3565369 DOI: 10.3390/ijms14012119] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 01/04/2013] [Accepted: 01/05/2013] [Indexed: 12/28/2022] Open
Abstract
Optimization of mesenchymal stem cells (MSC) culture conditions is of great importance for their more successful application in regenerative medicine. O2 regulates various aspects of cellular biology and, in vivo, MSC are exposed to different O2 concentrations spanning from very low tension in the bone marrow niche, to higher amounts in wounds. In our present work, we isolated mouse bone marrow stromal cells (BMSC) and showed that they contained a population meeting requirements for MSC definition. In order to establish the effect of low O2 on cellular properties, we examined BSMC cultured under hypoxic (3% O2) conditions. Our results demonstrate that 3% O2 augmented proliferation of BMSC, as well as the formation of colonies in the colony-forming unit assay (CFU-A), the percentage of quiescent cells, and the expression of stemness markers Rex-1 and Oct-4, thereby suggesting an increase in the stemness of culture when exposed to hypoxia. In contrast, intrinsic differentiation processes were inhibited by 3% O2. Overall yield of differentiation was dependent on the adjustment of O2 tension to the specific stage of BMSC culture. Thus, we established a strategy for efficient BMSC in vitro differentiation using an initial phase of cell propagation at 3% O2, followed by differentiation stage at 21% O2. We also demonstrated that 3% O2 affected BMSC differentiation in p53 and reactive oxygen species (ROS) independent pathways. Our findings can significantly contribute to the obtaining of high-quality MSC for effective cell therapy.
Collapse
Affiliation(s)
- Ina Berniakovich
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello16, 20139 Milan, Italy.
| | | |
Collapse
|
85
|
Vertelov G, Kharazi L, Muralidhar MG, Sanati G, Tankovich T, Kharazi A. High targeted migration of human mesenchymal stem cells grown in hypoxia is associated with enhanced activation of RhoA. Stem Cell Res Ther 2013; 4:5. [PMID: 23295150 PMCID: PMC3706803 DOI: 10.1186/scrt153] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/07/2013] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION A feature which makes stem cells promising candidates for cell therapy is their ability to migrate effectively into damaged or diseased tissues. Recent reports demonstrated the increased motility of human mesenchymal stem cells (hMSC) grown under hypoxic conditions compared to normoxic cells. However, the directional migration of hMSC cultured in hypoxia has not been investigated. In this study we examined the in vitro transmembrane migration of hMSC permanently cultured in hypoxia in response to various cytokines. We also studied the involvement of RhoA, a molecule believed to play an essential role in the migration of MSC via reorganization of the cytoskeleton. METHODS We compared the directional migration of human hMSCs grown permanently under normal (21%, normoxic) and low O2 (5%, hypoxic) conditions until passage 4 using an in vitro transmembrane migration assay. A series of 17 cytokines was used to induce chemotaxis. We also compared the level of GTP-bound RhoA in the cell extracts of calpeptin-activated hypoxic and normoxic hMSC. RESULTS We found that hMSC cultured in hypoxia demonstrate markedly higher targeted migration activity compared to normoxic cells, particularly towards wound healing cytokines, including those found in ischemic and myocardial infarction. We also demonstrated for the first time that hMSC are dramatically more sensitive to activation of RhoA. CONCLUSIONS The results of this study indicate that high directional migration of hMSCs permanently grown in hypoxia is associated with the enhanced activation of RhoA. The enhanced migratory capacity of hypoxic hMSC would further suggest their potential advantages for clinical applications.
Collapse
|
86
|
Amorin B, Alegretti AP, Valim VDS, Silva AMPD, Silva MALD, Sehn F, Silla L. Characteristics of Mesenchymal Stem Cells under Hypoxia. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/cellbio.2013.21002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
87
|
Wuchter P, Wagner W, Ho AD. Mesenchymal Stem Cells – An Oversimplified Nomenclature for Extremely Heterogeneous Progenitors. Regen Med 2013. [DOI: 10.1007/978-94-007-5690-8_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
88
|
Chang J, Lei H, Liu Q, Qin S, Ma K, Luo S, Zhang X, Huang W, Zuo Z, Fu H, Xia Y. Optimization of culture of mesenchymal stem cells: a comparison of conventional plate and microcarrier cultures. Cell Prolif 2012; 45:430-7. [PMID: 22925502 DOI: 10.1111/j.1365-2184.2012.00836.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES There has been increasing interest in mesenchymal stem cells (MSCs) because of their potential use for regenerative therapy; however, there is no well-defined protocol for MSCs culture. This study compares techniques of conventional plate and microcarrier culturing of MSCs. METHODS AND RESULTS Here, different conditions for isolation and expansion of rat MSCs have been examined and it was found that plating density and plating time in primary culture played important roles for culture of these rat MSCs. When plated at 10(8) /cm(2) density for 72 h, in primary culture, recycling stem cells (RS cells) predominated, and characteristics of rat MSCs (including morphology, growth rate, phenotype and differentiation potentials) remained stable during expansion until passage 14. For subculture of the cells, it was found that their growth rate when incubated at 33 °C was higher than those incubated at 37 °C, and maximal increase was 10- and 6-fold respectively. When cultured using microcarriers, at a density of 1 × 10(5) /mg beads, growth kinetics, phenotype and differentiation potentials also remained constant for cells between passage 2nd and 14th; their maximal number increased 16-fold. CONCLUSIONS Compared to conventional plate culture, culture using gelatine porous microcarrier Cultispher-S was superior for large-scale production of rat MSCs.
Collapse
Affiliation(s)
- J Chang
- Cardiology Department, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Goossens GH, Blaak EE. Adipose tissue oxygen tension: implications for chronic metabolic and inflammatory diseases. Curr Opin Clin Nutr Metab Care 2012; 15:539-46. [PMID: 23037900 DOI: 10.1097/mco.0b013e328358fa87] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE OF REVIEW The present review aims to address the role of adipose tissue oxygen partial pressure (PO2) in the metabolic and endocrine derangements in conditions characterized by insulin resistance. RECENT FINDINGS The balance between adipose tissue oxygen supply and its metabolic rate seems to determine adipose tissue PO2. Studies in ob/ob and dietary-induced obese mice have provided evidence for adipose tissue hypoxia in obesity, which has been explained by insufficient adipose tissue angiogenesis during the massive and rapid weight gain in these animals. However, conflicting data have been reported in humans, showing both increased and decreased adipose tissue PO2 in obese compared with lean individuals. Both low and high adipose tissue PO2 may induce a proinflammatory phenotype in (pre)adipocytes, but most studies have been performed under rather extreme PO2 levels, not reflecting human adipose tissue physiology. Furthermore, adipose tissue PO2 may affect glucose and lipid metabolism as well as adipogenic differentiation, but many issues still need to be addressed. SUMMARY Adipose tissue hypoxia has been demonstrated in animal models of obesity, but findings in humans are controversial and require further investigation. Although adipose tissue PO2 seems to be involved in metabolic and endocrine derangements in human adipose tissue, future studies should investigate how low and high adipose tissue PO2 within the human physiological range (3-11% O2) relates to adipose tissue blood flow and oxygen consumption, cellular metabolic responses, and the inflammatory phenotype.
Collapse
Affiliation(s)
- Gijs H Goossens
- Department of Human Biology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands.
| | | |
Collapse
|
90
|
Ranera B, Remacha AR, Álvarez-Arguedas S, Romero A, Vázquez FJ, Zaragoza P, Martín-Burriel I, Rodellar C. Effect of hypoxia on equine mesenchymal stem cells derived from bone marrow and adipose tissue. BMC Vet Res 2012; 8:142. [PMID: 22913590 PMCID: PMC3483288 DOI: 10.1186/1746-6148-8-142] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 08/13/2012] [Indexed: 12/31/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) derived from bone marrow (BM-MSCs) and adipose tissue (AT-MSCs) are being applied to equine cell therapy. The physiological environment in which MSCs reside is hypoxic and does not resemble the oxygen level typically used in in vitro culture (20% O2). This work compares the growth kinetics, viability, cell cycle, phenotype and expression of pluripotency markers in both equine BM-MSCs and AT-MSCs at 5% and 20% O2. Results At the conclusion of culture, fewer BM-MSCs were obtained in hypoxia than in normoxia as a result of significantly reduced cell division. Hypoxic AT-MSCs proliferated less than normoxic AT-MSCs because of a significantly higher presence of non-viable cells during culture. Flow cytometry analysis revealed that the immunophenotype of both MSCs was maintained in both oxygen conditions. Gene expression analysis using RT-qPCR showed that statistically significant differences were only found for CD49d in BM-MSCs and CD44 in AT-MSCs. Similar gene expression patterns were observed at both 5% and 20% O2 for the remaining surface markers. Equine MSCs expressed the embryonic markers NANOG, OCT4 and SOX2 in both oxygen conditions. Additionally, hypoxic cells tended to display higher expression, which might indicate that hypoxia retains equine MSCs in an undifferentiated state. Conclusions Hypoxia attenuates the proliferative capacity of equine MSCs, but does not affect the phenotype and seems to keep them more undifferentiated than normoxic MSCs.
Collapse
Affiliation(s)
- Beatriz Ranera
- Laboratorio de Genética Bioquímica, Facultad de Veterinaria, Universidad de Zaragoza, 50013 Zaragoza, Spain
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Mamidi MK, Nathan KG, Singh G, Thrichelvam ST, Mohd Yusof NAN, Fakharuzi NA, Zakaria Z, Bhonde R, Das AK, Majumdar AS. Comparative cellular and molecular analyses of pooled bone marrow multipotent mesenchymal stromal cells during continuous passaging and after successive cryopreservation. J Cell Biochem 2012; 113:3153-64. [DOI: 10.1002/jcb.24193] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
92
|
Sahai S, McFarland R, Skiles ML, Sullivan D, Williams A, Blanchette JO. Tracking hypoxic signaling in encapsulated stem cells. Tissue Eng Part C Methods 2012; 18:557-65. [PMID: 22250882 PMCID: PMC4003466 DOI: 10.1089/ten.tec.2011.0518] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 01/17/2012] [Indexed: 01/28/2023] Open
Abstract
Oxygen is not only a nutrient but also an important signaling molecule whose concentration can influence the fate of stem cells. This study details the development of a marker of hypoxic signaling for use with encapsulated cells. Testing of the marker was performed with adipose-derived stem cells (ADSCs) in two-dimensional (2D) and 3D culture conditions in varied oxygen environments. The cells were genetically modified with our hypoxia marker, which produces a red fluorescent protein (DsRed-DR), under the control of a hypoxia-responsive element (HRE) trimer. For 3D culture, ADSCs were encapsulated in poly(ethylene glycol)-based hydrogels. The hypoxia marker (termed HRE DsRed-DR) is built on a recombinant adenovirus and ADSCs infected with the marker will display red fluorescence when hypoxic signaling is active. This marker was not designed to measure local oxygen concentration but rather to show how a cell perceives its local oxygen concentration. ADSCs cultured in both 2D and 3D were exposed to 20% or 1% oxygen environments for 96 h. In 2D at 20% O(2), the marker signal was not observed during the study period. In 1% O(2), the fluorescent signal was first observed at 24 h, with maximum prevalence observed at 96 h as 59%±3% cells expressed the marker. In 3D, the signal was observed in both 1% and 20% O(2). The onset of signal in 1% O(2) was observed at 4 h, reaching maximum prevalence at 96 h with 76%±4% cells expressing the marker. Interestingly, hypoxic signal was also observed in 20% O(2), with 13%±3% cells showing positive marker signal after 96 h. The transcription factor subunit hypoxia inducible factor-1α was tracked in these cells over the same time period by immunostaining and western blot analysis. Immunostaining results in 2D correlated well with our marker at 72 h and 96 h, but 3D results did not correlate well. The western blotting results in 2D and 3D correlated well with the fluorescent marker. The HRE DsRed-DR virus can be used to track the onset of this response for encapsulated, mesenchymal stem cells. Due to the importance of hypoxic signaling in determination of stem cell differentiation, this marker could be a useful tool for the tissue engineering community.
Collapse
Affiliation(s)
- Suchit Sahai
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina
| | - Rachel McFarland
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Mathew L. Skiles
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina
| | - Denise Sullivan
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina
| | - Amanda Williams
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina
| | - James O. Blanchette
- Biomedical Engineering Program, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina
- Department of Chemical Engineering, College of Engineering and Computing, University of South Carolina, Columbia, South Carolina
| |
Collapse
|
93
|
Famulla S, Schlich R, Sell H, Eckel J. Differentiation of human adipocytes at physiological oxygen levels results in increased adiponectin secretion and isoproterenol-stimulated lipolysis. Adipocyte 2012; 1:132-181. [PMID: 23700522 PMCID: PMC3609092 DOI: 10.4161/adip.19962] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Adipose tissue (AT) hypoxia occurs in obese humans and mice. Acute hypoxia in adipocytes causes dysregulation of adipokine secretion with an increase in inflammatory factors and diminished adiponectin release. O2 levels in humans range between 3 and 11% revealing that conventional in vitro culturing at ambient air and acute hypoxia treatment (1% O2) are performed under non-physiological conditions. In this study, we mimicked physiological conditions by differentiating human primary adipocytes under 10% or 5% O2 in comparison to 21% O2. Induction of differentiation markers was comparable between all three conditions. Adipokine release by adipocytes differentiated at lower oxygen levels was altered, with a marked upregulation of adiponectin, IL-6 and DPP4 secretion, and reduced leptin levels compared with adipocytes differentiated at 21% O2. Isoproterenol-induced lipolysis was significantly elevated in adipocytes differentiated at 10% and 5% compared with 21% O2. This effect was accompanied by increased protein expression of β-1 and -2 adrenergic receptor, HSL and perilipin. Conditioned medium (CM) of adipocytes differentiated at the three different conditions was generated for stimulation of human skeletal muscle cells (SkMC) or smooth muscle cells (SMC). CM-induced insulin resistance in SkMC was comparable for the different CMs. However, the SMC proliferative effect of CM from adipocytes differentiated at 10% O2 was significantly reduced compared with 21% O2. This study demonstrates that oxygen levels during adipogenesis are important factors altering adipocyte functionality such as adipokine release, in particular adiponectin secretion, as well as the hormone-induced lipolytic pathway.
Collapse
|
94
|
Némos C, Basciano L, Dalloul A. Effet et applications potentielles de la culture des cellules souches mésenchymateuses de moelle osseuse en condition d’hypoxie. ACTA ACUST UNITED AC 2012; 60:193-8. [DOI: 10.1016/j.patbio.2011.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 07/05/2011] [Indexed: 01/01/2023]
|
95
|
Refinement of Culture Conditions for Maintenance of Undifferentiated Equine Umbilical Cord Blood Stem Cells. J Equine Vet Sci 2012. [DOI: 10.1016/j.jevs.2011.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
96
|
Saller MM, Prall WC, Docheva D, Schönitzer V, Popov T, Anz D, Clausen-Schaumann H, Mutschler W, Volkmer E, Schieker M, Polzer H. Increased stemness and migration of human mesenchymal stem cells in hypoxia is associated with altered integrin expression. Biochem Biophys Res Commun 2012; 423:379-85. [PMID: 22664105 DOI: 10.1016/j.bbrc.2012.05.134] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 12/15/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are regularly cultured and characterised under normoxic (21% O(2)) conditions, although the physiological oxygen tension in the stem cell niche is known to be as low as 1-2%. Oxygen itself is an important signalling molecule, but the distinct impact on various stem cell characteristics is still unclear. Therefore, the aim of this study was to evaluate the influence of oxygen concentration on the hMSC subpopulation composition, cell morphology and migration on different surfaces (polystyrene, collagen I, fibronectin, laminin) as well as on the expression of integrin receptors. Bone marrow-derived hMSCs were cultured either in normoxic (21% O(2)) or hypoxic (2% O(2)) conditions. The hMSC subpopulations were assessed by aspect ratio and cell area. Hypoxia promoted a more homogeneous cell population with a significantly higher fraction of rapidly self-renewing cells which are believed to be the true stem cells. Under hypoxic conditions hMSC volume and height were significantly decreased on all surfaces as measured by white light confocal microscopy. Furthermore, low oxygen tension led to a significant increase in cell velocity and Euclidian distance on all matrixes, which was evaluated by time-lapse microscopy. With regard to cell-matrix contacts, expression of several integrin subunits was evaluated by semi-quantitative RT-PCR. Increased expression of the subunits α(1), α(3), α(5,) α(6), α(11), α(v), β(1) and β(3) was observed in hypoxic conditions, while α(2) was higher expressed in normoxic cultured hMSCs. Taken together, our results indicate that hypoxic conditions promote stemness and migration of hMSC along with altering their integrin expression.
Collapse
Affiliation(s)
- Maximilian Michael Saller
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilian-University, Nussbaumstr. 20, 80336 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Abstract
This review provides a thorough and clear discussion on the outcomes of stem cells in treating chronic wounds. With recent technological developments that now allow isolation and culture of stem cells, researchers are able to perform vigorous studies on somatic or adult stem cells. Human and animal stem cell studies are discussed with a focus on the basic process of stem cells in wound healing and the authors' first-hand clinical experience with stem cells used for chronic wound healing.
Collapse
|
98
|
Lee WYW, Lui PPY, Rui YF. Hypoxia-mediated efficient expansion of human tendon-derived stem cells in vitro. Tissue Eng Part A 2012; 18:484-498. [PMID: 21943340 PMCID: PMC3286812 DOI: 10.1089/ten.tea.2011.0130] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 09/21/2011] [Indexed: 01/16/2023] Open
Abstract
Tendons regenerate and repair slowly and inefficiently after injury. Tendon-derived stem cells (TDSCs) have been isolated recently and have been shown to promote tendon repair. The ability to achieve sufficient numbers of cells for transplantation is essential for their clinical application. In this study, we aimed to study the effect of low oxygen (O(2)) tension (2%) on the clonogenicity, metabolic rate, DNA incorporation, population doubling time, β-galactosidase activity, immunophenotypes, multilineage differentiation potential, and tenocyte-like properties of human TDSCs (hTDSCs). hTDSCs were isolated from patellar tendon and characterized according to their adherence to plastic; colony-forming ability; multilineage differentiation potential; and high expression level of CD44, CD73, CD 90, and CD105 but low CD34, CD45, CD146, and Stro-1 at 20% O(2) tension. Low O(2) tension increased DNA incorporation but not metabolic rate of hTDSCs. It increased cell number 25% and the number of colonies but reduced the osteogenic, adipogenic, and chondrogenic differentiation potential of hTDSCs. The reduction in differentiation potential was associated with lower messenger RNA (mRNA) expression ratios of some lineage-related markers, including BGLAP, ALP, C/EBPα, PPARγ2, ACAN, and SOX9; the expression of a tendon-related marker, TNMD, was greater. There was no significant difference in the production of collagenous to noncollagenous protein ratio; the immunophenotypes and β-galactosidase activity were similar at 2% and 20% O(2) tension. Hypoxia-preconditioned hTDSCs could successfully differentiate at 20% O(2) tension, as shown by the return of the mRNA expression ratios of lineage-related markers to levels comparable to cells pre-incubated and differentiated at 20% O(2) tension. In conclusion, hypoxia is advantageous for efficient expansion of hTDSCs in vitro for tendon tissue engineering.
Collapse
Affiliation(s)
- Wayne Yuk Wai Lee
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Jockey Club Sports Medicine and Health Sciences Centre, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Pauline Po Yee Lui
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Jockey Club Sports Medicine and Health Sciences Centre, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
- Program of Stem Cell and Regeneration, School of Biomedical Science, Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yun Feng Rui
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
- Hong Kong Jockey Club Sports Medicine and Health Sciences Centre, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
99
|
Poncin G, Beaulieu A, Humblet C, Thiry A, Oda K, Boniver J, Defresne MP. Characterization of spontaneous bone marrow recovery after sublethal total body irradiation: importance of the osteoblastic/adipocytic balance. PLoS One 2012; 7:e30818. [PMID: 22363493 PMCID: PMC3281884 DOI: 10.1371/journal.pone.0030818] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 12/21/2011] [Indexed: 12/16/2022] Open
Abstract
Many studies have already examined the hematopoietic recovery after irradiation but paid with very little attention to the bone marrow microenvironment. Nonetheless previous studies in a murine model of reversible radio-induced bone marrow aplasia have shown a significant increase in alkaline phosphatase activity (ALP) prior to hematopoietic regeneration. This increase in ALP activity was not due to cell proliferation but could be attributed to modifications of the properties of mesenchymal stem cells (MSC). We thus undertook a study to assess the kinetics of the evolution of MSC correlated to their hematopoietic supportive capacities in mice treated with sub lethal total body irradiation. In our study, colony-forming units – fibroblasts (CFU-Fs) assay showed a significant MSC rate increase in irradiated bone marrows. CFU-Fs colonies still possessed differentiation capacities of MSC but colonies from mice sacrificed 3 days after irradiation displayed high rates of ALP activity and a transient increase in osteoblastic markers expression while pparγ and neuropilin-1 decreased. Hematopoietic supportive capacities of CFU-Fs were also modified: as compared to controls, irradiated CFU-Fs significantly increased the proliferation rate of hematopoietic precursors and accelerated the differentiation toward the granulocytic lineage. Our data provide the first evidence of the key role exerted by the balance between osteoblasts and adipocytes in spontaneous bone marrow regeneration. First, (pre)osteoblast differentiation from MSC stimulated hematopoietic precursor's proliferation and granulopoietic regeneration. Then, in a second time (pre)osteoblasts progressively disappeared in favour of adipocytic cells which down regulated the proliferation and granulocytic differentiation and then contributed to a return to pre-irradiation conditions.
Collapse
Affiliation(s)
- Géraldine Poncin
- Department of Cytology & Histology, University of Liège, CHU-B23, Liège, Belgium.
| | | | | | | | | | | | | |
Collapse
|
100
|
The effect of secretory factors of adipose-derived stem cells on human keratinocytes. Int J Mol Sci 2012; 13:1239-1257. [PMID: 22312315 PMCID: PMC3269749 DOI: 10.3390/ijms13011239] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 01/12/2012] [Accepted: 01/13/2012] [Indexed: 01/03/2023] Open
Abstract
The beneficial effects of adipose-derived stem cell conditioned medium (ADSC-CM) on skin regeneration have been reported. Although the mechanism of how ADSC-CM promotes skin regeneration is unclear, ADSC-CM contained various growth factors and it is an excellent raw material for skin treatment. ADSC-CM produced in a hypoxia condition of ADSC—in other words, Advanced Adipose-Derived Stem cell Protein Extract (AAPE)—has great merits for skin regeneration. In this study, human primary keratinocytes (HKs), which play fundamental roles in skin tissue, was used to examine how AAPE affects HK. HK proliferation was significantly higher in the experimental group (1.22 μg/mL) than in the control group. DNA gene chip demonstrated that AAPE in keratinocytes (p < 0.05) notably affected expression of 290 identified transcripts, which were associated with cell proliferation, cycle and migration. More keratinocyte wound healing and migration was shown in the experimental group (1.22 μg/mL). AAPE treatment significantly stimulated stress fiber formation, which was linked to the RhoA-ROCK pathway. We identified 48 protein spots in 2-D gel analysis and selected proteins were divided into 64% collagen components and 30% non-collagen components as shown by the MALDI-TOF analysis. Antibody array results contained growth factor/cytokine such as HGF, FGF-1, G-CSF, GM-CSF, IL-6, VEGF, and TGF-β3 differing from that shown by 2-D analysis. Conclusion: AAPE activates HK proliferation and migration. These results highlight the potential of the topical application of AAPE in the treatment of skin regeneration.
Collapse
|