51
|
Laminin 521 Stabilizes the Pluripotency Expression Pattern of Human Embryonic Stem Cells Initially Derived on Feeder Cells. Stem Cells Int 2018. [PMID: 29535778 PMCID: PMC5835285 DOI: 10.1155/2018/7127042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Human embryonic stem (hES) cells represent an important tool to study early cell development. The previously described use of human recombinant laminin (LN) 521 represented a step forward in generating clinically safe culture conditions. To test the short-term effect of LN521 on cultured hES cells, five male hES cell lines were cultured on human foreskin fibroblasts (hFFs), Matrigel, LN521, and LN121 and characterized by qPCR, immunofluorescence analysis, as well as their potential for three-germ layer differentiation. Variations in gene expression related to pluripotency, stemness, and testicular cells at different passages and culture conditions were evaluated by qPCR. All cell lines expressed pluripotency markers at protein and RNA level and were able to differentiate into cell types of the three germ layers after being cultured on LN521 for nine passages. Reduction in variation of pluripotency marker expression could be observed after culturing the cells on LN521 for nine passages. hES cells cultured on LN521 exhibited less differentiation, faster cell growth, and attachment when compared to hES cells cultured on LN121 or Matrigel. Our results indicate a positive effect of LN521 in stabilizing pluripotency gene expression and might be the first step towards more controllable and robust culture conditions for hES cells.
Collapse
|
52
|
Abdal Dayem A, Lee S, Y. Choi H, Cho SG. The Impact of Adhesion Molecules on the In Vitro Culture and Differentiation of Stem Cells. Biotechnol J 2018; 13:1700575. [DOI: 10.1002/biot.201700575] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology; Incurable Disease Animal Model and Stem Cell Institute (IDASI); Konkuk University; 120 Neungdong-ro Gwangjin-gu 05029 Seoul Republic of Korea
| | - Soobin Lee
- Department of Stem Cell and Regenerative Biotechnology; Incurable Disease Animal Model and Stem Cell Institute (IDASI); Konkuk University; 120 Neungdong-ro Gwangjin-gu 05029 Seoul Republic of Korea
| | - Hye Y. Choi
- Department of Stem Cell and Regenerative Biotechnology; Incurable Disease Animal Model and Stem Cell Institute (IDASI); Konkuk University; 120 Neungdong-ro Gwangjin-gu 05029 Seoul Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology; Incurable Disease Animal Model and Stem Cell Institute (IDASI); Konkuk University; 120 Neungdong-ro Gwangjin-gu 05029 Seoul Republic of Korea
| |
Collapse
|
53
|
Hackethal J, Schuh CMAP, Hofer A, Meixner B, Hennerbichler S, Redl H, Teuschl AH. Human Placenta Laminin-111 as a Multifunctional Protein for Tissue Engineering and Regenerative Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1077:3-17. [PMID: 30357680 DOI: 10.1007/978-981-13-0947-2_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Laminins are major components of all basement membranes surrounding nerve or vascular tissues. In particular laminin-111, the prototype of the family, facilitates a large spectrum of fundamental cellular responses in all eukaryotic cells. Laminin-111 is a biomaterial frequently used in research, however it is primarily isolated from non-human origin or produced with time-intensive recombinant techniques at low yield.Here, we describe an effective method for isolating laminin-111 from human placenta, a clinical waste material, for various tissue engineering applications. By extraction with Tris-NaCl buffer combined with non-protein-denaturation ammonium sulfate precipitation and rapid tangential flow filtration steps, we could effectively isolate native laminin-111 within only 4 days. The resulting material was biochemically characterized using a combination of dot blot, SDS-PAGE, Western blot and HPLC-based amino acid analysis. Cytocompatibility studies demonstrated that the isolated laminin-111 promotes rapid and efficient adhesion of primary Schwann cells. In addition, the bioactivity of the isolated laminin-111 was demonstrated by (a) using the material as a substrate for outgrowth of NG 108-15 neuronal cell lines and (b) promoting the formation of interconnected vascular networks by GFP-expressing human umbilical vein endothelial cells.In summary, the isolation procedure of laminin-111 as described here from human placenta tissue, fulfills many demands for various tissue engineering and regenerative medicine approaches and therefore may represent a human alternative to various classically used xenogenic standard materials.
Collapse
Affiliation(s)
- Johannes Hackethal
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Trauma Research Center, Vienna, Austria. .,Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| | - Christina M A P Schuh
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Trauma Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Laboratory of Nano-Regenerative Medicine, Faculty of Medicine, Cells for Cells, Universidad de Los Andes, Santiago, Chile
| | - Alexandra Hofer
- Research Area Biochemical Engineering, Institute of Chemical Engineering, Vienna University of Technology, Vienna, Austria
| | - Barbara Meixner
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Trauma Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Simone Hennerbichler
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Red Cross Blood Transfusion Service of Upper Austria, Linz, Austria
| | - Heinz Redl
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Trauma Research Center, Vienna, Austria.,Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Andreas H Teuschl
- Austrian Cluster for Tissue Regeneration, Vienna, Austria.,Department of Biochemical Engineering, University of Applied Sciences Technikum Wien, Vienna, Austria
| |
Collapse
|
54
|
|
55
|
Wong CW, Chen YT, Chien CL, Yu TY, Rwei SP, Hsu SH. A simple and efficient feeder-free culture system to up-scale iPSCs on polymeric material surface for use in 3D bioprinting. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 82:69-79. [DOI: 10.1016/j.msec.2017.08.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/21/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
|
56
|
Chen X, Harkness L, Jia Z, Prowse A, Monteiro MJ, Gray PP. Methods for Expansion of Three-Dimensional Cultures of Human Embryonic Stem Cells Using a Thermoresponsive Polymer. Tissue Eng Part C Methods 2017; 24:146-157. [PMID: 29239281 DOI: 10.1089/ten.tec.2017.0331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human pluripotent stem cells (hPSCs) are viewed as promising candidates for applications in regenerative medicine and therapy due to their proliferative and pluripotent properties. However, obtaining clinically significant numbers of hPSCs remains a limiting factor and impedes their use in therapeutic applications. Conventionally, hPSCs are cultured on two-dimensional surfaces coated with a suitable substrate, such as Matrigel™. This method, however, requires a large surface area to generate sufficient cell numbers to meet clinical needs and is therefore impractical as a manufacturing platform for cell expansion. In addition, the use of enzymes for cell detachment and small molecule inhibitors to increase plating efficiency may impact future cell behavior when used for routine subculturing. In this study, we describe a protocol to generate and maintain hPSC aggregates in a three-dimensional suspension culture by utilizing thermoresponsive nanobridges. The property of the polymer used in the nanobridges enables passaging and expansion through a temperature change in combination with mechanically applied shear to dissociate aggregates; thus, we eliminate the need of enzymes or small molecules for cell dissociation and viability, respectively. Utilizing this platform, maintenance of human embryonic stem cells for three continuous passages demonstrated high expression levels in key pluripotent markers.
Collapse
Affiliation(s)
- Xiaoli Chen
- 1 Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland , Brisbane, Australia
| | - Linda Harkness
- 1 Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland , Brisbane, Australia
| | - Zhongfan Jia
- 1 Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland , Brisbane, Australia
| | - Andrew Prowse
- 2 The Garvan Institute of Medical Research , Sydney, Australia
| | - Michael J Monteiro
- 1 Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland , Brisbane, Australia
| | - Peter P Gray
- 1 Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland , Brisbane, Australia
| |
Collapse
|
57
|
Abstract
PURPOSE OF REVIEW Human pluripotent stem cells (hPSCs) are anchorage-dependent cells that can be cultured on a variety of matrices and express integrins and the machinery for integrin signaling. Until recently, there has been limited understanding of exactly how integrin signaling regulates pluripotent stem cell (PSC) behavior. This review summarizes our knowledge of how integrins and focal adhesion kinase (FAK) regulate different aspects of hPSC biology. RECENT FINDINGS The latest research suggests that mouse and human embryonic stem cells utilize similar integrin signaling players but with different biological outcomes, reflecting the known developmental difference in their pluripotent status. Notably, attachment cues via FAK signaling are crucial for hPSCs survival and pluripotency maintenance. FAK may be found cortically but also in the nucleus of hPSCs intersecting core pluripotency networks. SUMMARY Integrins and FAK have been consigned to the conventional role of cell adhesion receptor systems in PSCs. This review highlights data indicating that they are firmly integrated in pluripotency circuits, with implications for both research PSC culture and scale up and use in clinical applications.
Collapse
Affiliation(s)
- Loriana Vitillo
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, University of Manchester, Michael Smith Building, Oxford Rd, Manchester, M13 9PT UK
| | - Susan J. Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology Medicine and Health, University of Manchester, Michael Smith Building, Oxford Rd, Manchester, M13 9PT UK
| |
Collapse
|
58
|
Hyysalo A, Ristola M, Mäkinen MEL, Häyrynen S, Nykter M, Narkilahti S. Laminin α5 substrates promote survival, network formation and functional development of human pluripotent stem cell-derived neurons in vitro. Stem Cell Res 2017; 24:118-127. [DOI: 10.1016/j.scr.2017.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 08/28/2017] [Accepted: 09/07/2017] [Indexed: 01/24/2023] Open
|
59
|
Sato-Nishiuchi R, Li S, Ebisu F, Sekiguchi K. Recombinant laminin fragments endowed with collagen-binding activity: A tool for conferring laminin-like cell-adhesive activity to collagen matrices. Matrix Biol 2017; 65:75-90. [PMID: 28801205 DOI: 10.1016/j.matbio.2017.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/21/2017] [Accepted: 08/01/2017] [Indexed: 01/21/2023]
Abstract
Laminins are major components of basement membranes that sustain a wide variety of stem cells. Among 15 laminin isoforms, laminin-511 and its E8 fragment (LM511E8) have been shown to strongly promote the adhesion and proliferation of human pluripotent stem cells. The aim of this study was to endow the cell-adhesive activity of laminin-511 on collagen matrices, thereby fabricating collagen-based culture scaffolds for stem cells with defined composition. To achieve this goal, we utilized the collagen-binding domain (CBD) of fibronectin to immobilize LM511E8 on collagen matrices. CBD was attached to the N-termini of individual laminin chains (α5E8, β1E8, γ1E8), producing LM511E8s having one, two, or three CBDs. While LM511E8 did not bind to collagen, CBD-attached LM511E8s (CBD-LM511E8s) exhibited significant collagen-binding activity, dependent on the number of attached CBDs. Human iPS cells were cultured on collagen-coated plates preloaded with CBD-LM511E8s. Although iPS cells did not attach or grow on collagen, they robustly proliferated on CBD-LM511E8-loaded collagen matrices, similar to the case with LM511E8-coated plates. Importantly, iPS cells proliferated and yielded round-shaped colonies even on collagen gels preloaded with CBD-LM511E8s. These results demonstrate that CBD-attached laminin E8 fragments are promising tools for fabrication of collagen-based matrices having the cell-adhesive activity of laminins.
Collapse
Affiliation(s)
- Ryoko Sato-Nishiuchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Shaoliang Li
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Fumi Ebisu
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan; Division of Research and Development, Matrixome Inc., Suita, Osaka, Japan
| | - Kiyotoshi Sekiguchi
- Division of Matrixome Research and Application, Institute for Protein Research, Osaka University, Suita, Osaka, Japan; Division of Research and Development, Matrixome Inc., Suita, Osaka, Japan.
| |
Collapse
|
60
|
Kamei KI, Mashimo Y, Yoshioka M, Tokunaga Y, Fockenberg C, Terada S, Koyama Y, Nakajima M, Shibata-Seki T, Liu L, Akaike T, Kobatake E, How SE, Uesugi M, Chen Y. Microfluidic-Nanofiber Hybrid Array for Screening of Cellular Microenvironments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1603104. [PMID: 28272774 DOI: 10.1002/smll.201603104] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/06/2017] [Indexed: 06/06/2023]
Abstract
Cellular microenvironments are generally sophisticated, but crucial for regulating the functions of human pluripotent stem cells (hPSCs). Despite tremendous effort in this field, the correlation between the environmental factors-especially the extracellular matrix and soluble cell factors-and the desired cellular functions remains largely unknown because of the lack of appropriate tools to recapitulate in vivo conditions and/or simultaneously evaluate the interplay of different environment factors. Here, a combinatorial platform is developed with integrated microfluidic channels and nanofibers, associated with a method of high-content single-cell analysis, to study the effects of environmental factors on stem cell phenotype. Particular attention is paid to the dependence of hPSC short-term self-renewal on the density and composition of extracellular matrices and initial cell seeding densities. Thus, this combinatorial approach provides insights into the underlying chemical and physical mechanisms that govern stem cell fate decisions.
Collapse
Affiliation(s)
- Ken-Ichiro Kamei
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yasumasa Mashimo
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Department of Environmental Chemistry and Engineering, Graduate School of Interdisciplinary Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Momoko Yoshioka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yumie Tokunaga
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Christopher Fockenberg
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shiho Terada
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yoshie Koyama
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Minako Nakajima
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Teiko Shibata-Seki
- Department of Environmental Chemistry and Engineering, Graduate School of Interdisciplinary Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Li Liu
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Toshihiro Akaike
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
- Biomaterials Center for Regenerative Medical Engineering, Foundation for Advancement of International Science, Kasuga, Tsukuba-shi, Ibaraki, 305-0821, Japan
| | - Eiry Kobatake
- Department of Environmental Chemistry and Engineering, Graduate School of Interdisciplinary Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Siew-Eng How
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Jalan UMS, Kota Kinabalu, Sabah, 88400, Malaysia
| | - Motonari Uesugi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Yong Chen
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Ecole Normale Supérieure, CNRS-ENS-UPMC UMR 8640, 24 Rue Lhomond, Paris, 75005, France
| |
Collapse
|
61
|
Liu L, Kamei KI, Yoshioka M, Nakajima M, Li J, Fujimoto N, Terada S, Tokunaga Y, Koyama Y, Sato H, Hasegawa K, Nakatsuji N, Chen Y. Nano-on-micro fibrous extracellular matrices for scalable expansion of human ES/iPS cells. Biomaterials 2017; 124:47-54. [PMID: 28187394 DOI: 10.1016/j.biomaterials.2017.01.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/06/2017] [Accepted: 01/28/2017] [Indexed: 01/22/2023]
Abstract
Human pluripotent stem cells (hPSCs) hold great potential for industrial and clinical applications. Clinical-grade scaffolds and high-quality hPSCs are required for cell expansion as well as easy handling and manipulation of the products. Current hPSC culture methods do not fulfill these requirements because of a lack of proper extracellular matrices (ECMs) and cell culture wares. We developed a layered nano-on-micro fibrous cellular matrix mimicking ECM, named "fiber-on-fiber (FF)" matrix, which enables easy handling and manipulation of cultured cells. While non-woven sheets of cellulose and polyglycolic acid were used as a microfiber layer facilitating mechanical stability, electrospun gelatin nanofibers were crosslinked on the microfiber layer, generating a mesh structure with connected nanofibers facilitating cell adhesion and growth. Our results showed that the FF matrix supports effective hPSC culture with maintenance of their pluripotency and normal chromosomes over two months, as well as effective scaled-up expansion, with fold increases of 54.1 ± 15.6 and 40.4 ± 8.4 in cell number per week for H1 human embryonic stem cells and 253G1 human induced pluripotent stem cells, respectively. This simple approach to mimick the ECM may have important implications after further optimization to generate lineage-specific products.
Collapse
Affiliation(s)
- Li Liu
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Ken-Ichiro Kamei
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan.
| | - Momoko Yoshioka
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Minako Nakajima
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Junjun Li
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Nanae Fujimoto
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan; Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyotodaigaku-katsura, Nishikyo-ku, Kyoto, 615-8540, Japan
| | - Shiho Terada
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Yumie Tokunaga
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Yoshie Koyama
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan
| | - Hideki Sato
- QOL Research Center, Gunze Limited, Kyoto, 623-8512 Japan
| | - Kouichi Hasegawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan; Institute for Stem Cell Biology and Regenerative Medicine (inStem), National Centre for Biological Sciences (NCBS), Bangalore, 560065, India
| | - Norio Nakatsuji
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan; Institute for Frontier Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Yong Chen
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8501, Japan; Ecole Normale Supérieure, CNRS-ENS-UPMC UMR 8640, 24 Rue Lhomond, Paris, 75005, France.
| |
Collapse
|
62
|
Efficient Adhesion Culture of Human Pluripotent Stem Cells Using Laminin Fragments in an Uncoated Manner. Sci Rep 2017; 7:41165. [PMID: 28134277 PMCID: PMC5278368 DOI: 10.1038/srep41165] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/16/2016] [Indexed: 11/15/2022] Open
Abstract
We describe highly effective adhesion culture of human pluripotent stem cells (hPSCs) using laminin fragments without precoating. Culture substrates have been generally thought to exert a cell adhesion effect when they are precoated onto culture vessels. However, simple addition of laminin fragments to a cell suspension during passaging accelerated the adhesion of single dissociated hPSCs onto culture vessels that were not precoated with any culture substrate. Interestingly, similar to conventional precoating, the uncoated addition of laminin fragments supported robust adhesion of single hPSCs and maximum adhesion at a much lower concentration compared with precoating. Similar to precoating laminin fragments, hPSCs seeded with uncoated laminin fragments grew well without cell detachment and maintained pluripotency after continuous subculture. We tested other culture substrates, including full-length laminin and vitronectin, to support hPSC adhesion in the uncoated manner, but only laminin fragments had the potential for application in the uncoated manner. This cost-effective and time-efficient method may contribute to expansion of culture of hPSCs and accelerate the development of regenerative medicine using hPSCs.
Collapse
|
63
|
Du EY, Martin AD, Heu C, Thordarson P. The Use of Hydrogels as Biomimetic Materials for 3D Cell Cultures. Aust J Chem 2017. [DOI: 10.1071/ch16241] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
With the recent developments in cell cultures and biomimetic materials, there is growing evidence indicating that long-established two-dimensional (2D) cell culture techniques are slowly being phased out and replaced with three-dimensional (3D) cell cultures. This is due to the 3D cell cultures better mimicking the natural extracellular matrix (ECM) where cells are found. The emergence of self-assembled hydrogels as an ECM mimic has revolutionised the field owing to their ability to closely simulate the fibrous nature of the ECM. Here, we review recent progress in using hydrogels as biomimetic materials in 3D cell cultures, particularly supramolecular peptide hydrogels. With greater comprehension of the behaviour of cells in these hydrogels, a cell culture system that can be used in a wide array of 3D culture-based applications can be developed.
Collapse
|
64
|
Li J, Zhang F, Yu L, Fujimoto N, Yoshioka M, Li X, Shi J, Kotera H, Liu L, Chen Y. Culture substrates made of elastomeric micro-tripod arrays for long-term expansion of human pluripotent stem cells. J Mater Chem B 2017; 5:236-244. [DOI: 10.1039/c6tb02246d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Elastomeric micro-tripod arrays were used as novel substrates for culturing and long-term expansion of human pluripotent stem cells.
Collapse
Affiliation(s)
- J. Li
- Institute for Integrated Cell-Material Science (iCeMS)
- Kyoto University
- Kyoto 606-8507
- Japan
| | - F. Zhang
- Institute for Integrated Cell-Material Science (iCeMS)
- Kyoto University
- Kyoto 606-8507
- Japan
- Ecole Normale Supérieure-PSL Research University
| | - L. Yu
- Institute for Integrated Cell-Material Science (iCeMS)
- Kyoto University
- Kyoto 606-8507
- Japan
- Department of Micro Engineering
| | - N. Fujimoto
- Institute for Integrated Cell-Material Science (iCeMS)
- Kyoto University
- Kyoto 606-8507
- Japan
- Department of Micro Engineering
| | - M. Yoshioka
- Institute for Integrated Cell-Material Science (iCeMS)
- Kyoto University
- Kyoto 606-8507
- Japan
| | - X. Li
- Institute for Integrated Cell-Material Science (iCeMS)
- Kyoto University
- Kyoto 606-8507
- Japan
- Ecole Normale Supérieure-PSL Research University
| | - J. Shi
- Ecole Normale Supérieure-PSL Research University
- CNRS-ENS-UPMC UMR 8640
- Paris
- France
| | - H. Kotera
- Department of Micro Engineering
- Kyoto University
- Kyoto 615-8540
- Japan
| | - L. Liu
- Institute for Integrated Cell-Material Science (iCeMS)
- Kyoto University
- Kyoto 606-8507
- Japan
| | - Y. Chen
- Institute for Integrated Cell-Material Science (iCeMS)
- Kyoto University
- Kyoto 606-8507
- Japan
- Ecole Normale Supérieure-PSL Research University
| |
Collapse
|
65
|
Walczak MP, Drozd AM, Stoczynska-Fidelus E, Rieske P, Grzela DP. Directed differentiation of human iPSC into insulin producing cells is improved by induced expression of PDX1 and NKX6.1 factors in IPC progenitors. J Transl Med 2016; 14:341. [PMID: 27998294 PMCID: PMC5168869 DOI: 10.1186/s12967-016-1097-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 11/24/2016] [Indexed: 12/21/2022] Open
Abstract
Background Induced pluripotent stem cells (iPSC) possess an enormous potential as both, scientific and therapeutic tools. Their application in the regenerative medicine provides new treatment opportunities for numerous diseases, including type 1 diabetes. In this work we aimed to derive insulin producing cells (IPC) from iPS cells established in defined conditions. Methods We optimized iPSC generation protocol and created pluripotent cell lines with stably integrated PDX1 and NKX6.1 transgenes under the transcriptional control of doxycycline-inducible promoter. These cells were differentiated using small chemical molecules and recombinant Activin A in the sequential process through the definitive endoderm, pancreatic progenitor cells and insulin producing cells. Efficiency of the procedure was assessed by quantitative gene expression measurements, immunocytochemical stainings and functional assays for insulin secretion. Results Generated cells displayed molecular markers characteristic for respective steps of the differentiation. The obtained IPC secreted insulin and produced C-peptide with significantly higher hormone release level in case of the combined expression of PDX1 and NKX6.1 induced at the last stage of the differentiation. Conclusions Efficiency of differentiation of iPSC to IPC can be increased by concurrent expression of PDX1 and NKX6.1 during progenitor cells maturation. Protocols established in our study allow for iPSC generation and derivation of IPC in chemically defined conditions free from animal-derived components, which is of the utmost importance in the light of their prospective applications in the field of regenerative medicine. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-1097-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maciej P Walczak
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193, Łódź, Poland
| | - Anna M Drozd
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193, Łódź, Poland
| | - Ewelina Stoczynska-Fidelus
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193, Łódź, Poland.,Department of Tumor Biology, Medical University of Łódź, Żeligowskiego 7/9, 90-752, Łódź, Poland
| | - Piotr Rieske
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193, Łódź, Poland.,Department of Tumor Biology, Medical University of Łódź, Żeligowskiego 7/9, 90-752, Łódź, Poland.,Research and Development Unit, Personather Ltd., Milionowa 23, 93-193, Łódź, Poland
| | - Dawid P Grzela
- Department of Research and Development, Celther Polska Ltd., Milionowa 23, 93-193, Łódź, Poland.
| |
Collapse
|
66
|
Biological Effects of Culture Substrates on Human Pluripotent Stem Cells. Stem Cells Int 2016; 2016:5380560. [PMID: 27656216 PMCID: PMC5021488 DOI: 10.1155/2016/5380560] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 07/04/2016] [Indexed: 01/03/2023] Open
Abstract
In recent years, as human pluripotent stem cells (hPSCs) have been commonly cultured in feeder-free conditions, a number of cell culture substrates have been applied or developed. However, the functional roles of these substrates in maintaining hPSC self-renewal remain unclear. Here in this review, we summarize the types of these substrates and their effect on maintaining hPSC self-renewal. Endogenous extracellular matrix (ECM) protein expression has been shown to be crucial in maintaining hPSC self-renewal. These ECM molecules interact with integrin cell-surface receptors and transmit their cellular signaling. We discuss the possible effect of integrin-mediated signaling pathways on maintaining hPSC self-renewal. Activation of integrin-linked kinase (ILK), which transmits ECM-integrin signaling to AKT (also known as protein kinase B), has been shown to be critical in maintaining hPSC self-renewal. Also, since naïve pluripotency has been widely recognized as an alternative pluripotent state of hPSCs, we discuss the possible effects of culture substrates and integrin signaling on naïve hPSCs based on the studies of mouse embryonic stem cells. Understanding the role of culture substrates in hPSC self-renewal and differentiation enables us to control hPSC behavior precisely and to establish scalable or microfabricated culture technologies for regenerative medicine and drug development.
Collapse
|
67
|
Qin Y, Rodin S, Simonson OE, Hollande F. Laminins and cancer stem cells: Partners in crime? Semin Cancer Biol 2016; 45:3-12. [PMID: 27491691 DOI: 10.1016/j.semcancer.2016.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/30/2016] [Indexed: 01/31/2023]
Abstract
As one of the predominant protein families within the extracellular matrix both structurally and functionally, laminins have been shown to be heavily involved in tumor progression and drug resistance. Laminins participate in key cellular events for tumor angiogenesis, cell invasion and metastasis development, including the regulation of epithelial-mesenchymal transition and basement membrane remodeling, which are tightly associated with the phenotypic characteristics of stem-like cells, particularly in the context of cancer. In addition, a great deal of studies and reports has highlighted the critical roles of laminins in modulating stem cell phenotype and differentiation, as part of the stem cell niche. Stemming from these discoveries a growing body of literature suggests that laminins may act as regulators of cancer stem cells, a tumor cell subpopulation that plays an instrumental role in long-term cancer maintenance, metastasis development and therapeutic resistance. The accumulating evidence in this emerging research area suggests that laminins represent potential therapeutic targets for anti-cancer treatments against cancer stem cells, and that they may be used as predictive and prognostic markers to inform clinical management and improve patient survival.
Collapse
Affiliation(s)
- Yan Qin
- Department of Pathology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Sergey Rodin
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden.
| | - Oscar E Simonson
- Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden; Department of Cardiothoracic Surgery, Uppsala University Hospital, Uppsala, Sweden.
| | - Frédéric Hollande
- Department of Pathology, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
68
|
Microcarrier-based platforms for in vitro expansion and differentiation of human pluripotent stem cells in bioreactor culture systems. J Biotechnol 2016; 234:71-82. [PMID: 27480342 DOI: 10.1016/j.jbiotec.2016.07.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/26/2016] [Accepted: 07/28/2016] [Indexed: 01/15/2023]
Abstract
Human pluripotent stem cells (hPSC) have attracted a great attention as an unlimited source of cells for cell therapies and other in vitro biomedical applications such as drug screening, toxicology assays and disease modeling. The implementation of scalable culture platforms for the large-scale production of hPSC and their derivatives is mandatory to fulfill the requirement of obtaining large numbers of cells for these applications. Microcarrier technology has been emerging as an effective approach for the large scale ex vivo hPSC expansion and differentiation. This review presents recent achievements in hPSC microcarrier-based culture systems and discusses the crucial aspects that influence the performance of these culture platforms. Recent progress includes addressing chemically-defined culture conditions for manufacturing of hPSC and their derivatives, with the development of xeno-free media and microcarrier coatings to meet good manufacturing practice (GMP) quality requirements. Finally, examples of integrated platforms including hPSC expansion and directed differentiation to specific lineages are also presented in this review.
Collapse
|
69
|
Soh YQ, Peh GSL, Mehta JS. Translational issues for human corneal endothelial tissue engineering. J Tissue Eng Regen Med 2016; 11:2425-2442. [DOI: 10.1002/term.2131] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/19/2015] [Accepted: 12/10/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Yu Qiang Soh
- Tissue Engineering and Stem Cell Group; Singapore Eye Research Institute; Singapore
- Singapore National Eye Centre; Singapore
| | - Gary S. L. Peh
- Tissue Engineering and Stem Cell Group; Singapore Eye Research Institute; Singapore
- Ophthalmology Academic Clinical Programme; Duke-NUS Graduate Medical School; Singapore
| | - Jodhbir S. Mehta
- Tissue Engineering and Stem Cell Group; Singapore Eye Research Institute; Singapore
- Singapore National Eye Centre; Singapore
- Ophthalmology Academic Clinical Programme; Duke-NUS Graduate Medical School; Singapore
- Department of Clinical Sciences; Duke-NUS Graduate Medical School; Singapore
| |
Collapse
|
70
|
Villa-Diaz LG, Kim JK, Laperle A, Palecek SP, Krebsbach PH. Inhibition of Focal Adhesion Kinase Signaling by Integrin α6β1 Supports Human Pluripotent Stem Cell Self-Renewal. Stem Cells 2016; 34:1753-64. [PMID: 26930028 DOI: 10.1002/stem.2349] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 01/14/2016] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
Self-renewal of human embryonic stem cells and human induced pluripotent stem cells (hiPSCs)-known as pluripotent stem cells (PSC)-is influenced by culture conditions, including the substrate on which they are grown. However, details of the molecular mechanisms interconnecting the substrate and self-renewal of these cells remain unclear. We describe a signaling pathway in hPSCs linking self-renewal and expression of pluripotency transcription factors to integrin α6β1 and inactivation of focal adhesion kinase (FAK). Disruption of this pathway results in hPSC differentiation. In hPSCs, α6β1 is the dominant integrin and FAK is not phosphorylated at Y397, and thus, it is inactive. During differentiation, integrin α6 levels diminish and Y397 FAK is phosphorylated and activated. During reprogramming of fibroblasts into iPSCs, integrin α6 is upregulated and FAK is inactivated. Knockdown of integrin α6 and activation of β1 integrin lead to FAK phosphorylation and reduction of Nanog, Oct4, and Sox2, suggesting that integrin α6 functions in inactivation of integrin β1 and FAK signaling and prevention of hPSC differentiation. The N-terminal domain of FAK, where Y397 is localized, is in the nuclei of hPSCs interacting with Oct4 and Sox2, and this immunolocalization is regulated by Oct4. hPSCs remodel the extracellular microenvironment and deposit laminin α5, the primary ligand of integrin α6β1. Knockdown of laminin α5 resulted in reduction of integrin α6 expression, phosphorylation of FAK and decreased Oct4. In conclusion, hPSCs promote the expression of integrin α6β1, and nuclear localization and inactivation of FAK to supports stem cell self-renewal. Stem Cells 2016;34:1753-1764.
Collapse
Affiliation(s)
- Luis G Villa-Diaz
- Department of Biologic & Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Jin Koo Kim
- Department of Biologic & Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Alex Laperle
- Department of Biomedical Engineering, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA
| | - Sean P Palecek
- Department of Chemical & Biological Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - Paul H Krebsbach
- Department of Biologic & Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
71
|
Badenes SM, Fernandes TG, Cordeiro CSM, Boucher S, Kuninger D, Vemuri MC, Diogo MM, Cabral JMS. Defined Essential 8™ Medium and Vitronectin Efficiently Support Scalable Xeno-Free Expansion of Human Induced Pluripotent Stem Cells in Stirred Microcarrier Culture Systems. PLoS One 2016; 11:e0151264. [PMID: 26999816 PMCID: PMC4801338 DOI: 10.1371/journal.pone.0151264] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/19/2016] [Indexed: 12/24/2022] Open
Abstract
Human induced pluripotent stem (hiPS) cell culture using Essential 8™ xeno-free medium and the defined xeno-free matrix vitronectin was successfully implemented under adherent conditions. This matrix was able to support hiPS cell expansion either in coated plates or on polystyrene-coated microcarriers, while maintaining hiPS cell functionality and pluripotency. Importantly, scale-up of the microcarrier-based system was accomplished using a 50 mL spinner flask, under dynamic conditions. A three-level factorial design experiment was performed to identify optimal conditions in terms of a) initial cell density b) agitation speed, and c) to maximize cell yield in spinner flask cultures. A maximum cell yield of 3.5 is achieved by inoculating 55,000 cells/cm2 of microcarrier surface area and using 44 rpm, which generates a cell density of 1.4x106 cells/mL after 10 days of culture. After dynamic culture, hiPS cells maintained their typical morphology upon re-plating, exhibited pluripotency-associated marker expression as well as tri-lineage differentiation capability, which was verified by inducing their spontaneous differentiation through embryoid body formation, and subsequent downstream differentiation to specific lineages such as neural and cardiac fates was successfully accomplished. In conclusion, a scalable, robust and cost-effective xeno-free culture system was successfully developed and implemented for the scale-up production of hiPS cells.
Collapse
Affiliation(s)
- Sara M. Badenes
- Department of Bioengineering, and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering, and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
- * E-mail:
| | - Cláudia S. M. Cordeiro
- Department of Bioengineering, and Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Shayne Boucher
- Thermo Fisher Scientific, Cell Biology, Life Sciences Solutions, Frederick, Maryland, United States of America
| | - David Kuninger
- Thermo Fisher Scientific, Cell Biology, Life Sciences Solutions, Frederick, Maryland, United States of America
| | - Mohan C. Vemuri
- Thermo Fisher Scientific, Cell Biology, Life Sciences Solutions, Frederick, Maryland, United States of America
| | - Maria Margarida Diogo
- Thermo Fisher Scientific, Cell Biology, Life Sciences Solutions, Frederick, Maryland, United States of America
| | - Joaquim M. S. Cabral
- Thermo Fisher Scientific, Cell Biology, Life Sciences Solutions, Frederick, Maryland, United States of America
| |
Collapse
|
72
|
Long-term, feeder-free maintenance of human embryonic stem cells by mussel-inspired adhesive heparin and collagen type I. Acta Biomater 2016; 32:138-148. [PMID: 26773463 DOI: 10.1016/j.actbio.2016.01.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/24/2015] [Accepted: 01/06/2016] [Indexed: 12/31/2022]
Abstract
For practical applications of human embryonic stem cells (hESCs) in regenerative medicine, hESCs should be cultured on a large scale, and at the same time their properties have to be maintained in a controllable manner. Here, we report a chemically defined, scalable culture platform involving co-immobilization of heparin-catechol (HepC) and collagen type-1 (Col) for the long-term maintenance (>18 passages) of hESCs in a feeder-free condition. This platform utilizes a wet-adhesive, mussel-inspired heparin-catechol conjugate as a key component. We hypothesized that the heparin's affinity toward a wide range of proteins, might support undifferentiated in vitro growth of hESC. In fact, on the HepC-coated substrate, most hESC clumps were adhered (∼78% at passage 2 (P2)) and expressed pluripotency markers (Fig. 2). Although HepC alone wasn't able to support long-term maintenance of hESCs in a feeder-free system due to decrease in the adhesion rate of hESCs on HepC coating (∼ 44% at P4) during the repeated passaging processes, we found that when collagen type I was co-immobilized in the process of HepC coating, the long-term maintenance (passage 18 or more) of hESCs could be achieved with 100% adhesion efficiency (Fig. 4). One remarkable observation is that hESCs on collagen type-I underwent spontaneous differentiation after P6 (Fig. 3), which implied co-immobilized HepC played a role to suppress differentiation of hESCs. This study suggests that unlike the previous studies using proteins, peptides, or synthetic polymers, a polysaccharide, heparin, can be used as a cost-effective component for chemically defined, feeder-free culture of hESC. STATEMENT OF SIGNIFICANCE Towards practical applications of human embryonic stem cells (hESCs) in regenerative medicine, hESCs should be cultured on a large scale, and their pluripotent property has to be maintained in a controllable manner. To address these issues, studies that develop chemically defined culture substrates have been explored to replace the widely used, complex, and undefined culture materials represented by Matrigel. Most reports have focused on utilizing proteins, peptides and/or synthetic polymers. However, there have not yet been studies on using polysaccharides as two-dimensional coating materials to potentially replace Matrigel coating. Here, we report that heparin is an effective polysaccharide for the feeder-free, two dimensional culture of hESCs. Our study implies that use of polysaccharides or a polysaccharide/ECM combination can be a new, alternative design principle for hESC culture systems.
Collapse
|
73
|
Abstract
Stem cells have the ability to self-renew and differentiate into specialized cell types, and, in the human body, they reside in specialized microenvironments called "stem cell niches." Although several niches have been described and studied in vivo, their functional replication in vitro is still incomplete. The in vitro culture of pluripotent stem cells may represent one of the most advanced examples in the effort to create an artificial or synthetic stem cell niche. A focus has been placed on the development of human stem cell microenvironments due to their significant clinical implications, in addition to the potential differences between animal and human cells. In this concise review we describe the advances in human pluripotent stem cell culture, and explore the idea that the knowledge gained from this model could be replicated to create synthetic niches for other human stem cell populations, which have proven difficult to maintain in vitro.
Collapse
|
74
|
Niimi T. Leishmania tarentolae for the Production of Multi-subunit Complexes. ADVANCED TECHNOLOGIES FOR PROTEIN COMPLEX PRODUCTION AND CHARACTERIZATION 2016; 896:155-65. [DOI: 10.1007/978-3-319-27216-0_10] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
75
|
Yu G, Okawa H, Okita K, Kamano Y, Wang F, Saeki M, Yatani H, Egusa H. Gingival Fibroblasts as Autologous Feeders for Induced Pluripotent Stem Cells. J Dent Res 2016; 95:110-8. [PMID: 26467419 DOI: 10.1177/0022034515611602] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Human gingival fibroblasts (hGFs) present an attractive source of induced pluripotent stem cells (iPSCs), which are expected to be a powerful tool for regenerative dentistry. However, problems to be addressed prior to clinical application include the use of animal-derived feeder cells for cultures. The aim of this study was to establish an autologous hGF-derived iPSC (hGF-iPSC) culture system by evaluating the feeder ability of hGFs. In both serum-containing and serum-free media, hGFs showed higher proliferation than human dermal fibroblasts (hDFs). Three hGF strains were isolated under serum-free conditions, although 2 showed impaired proliferation. When hGF-iPSCs were transferred onto mitomycin C-inactivated hGFs, hDFs, or mouse-derived SNL feeders, hGF and SNL feeders were clearly hGF-iPSC supportive for more than 50 passages, whereas hDF feeders were only able to maintain undifferentiated hGF-iPSC growth for a few passages. After 20 passages on hGF feeders, embryonic stem cell marker expression and CpG methylation at the NANOG and OCT3/4 promoters were similar for hGF-iPSCs cultured on hGF and SNL feeder cells. Long-term cultures of hGF-iPSCs on hGF feeders sustained their normal karyotype and pluripotency. On hGF feeders, hGF-iPSC colonies were surrounded by many colony-derived fibroblast-like cells, and the size of intact colonies at 7 d after passage was significantly larger than that on SNL feeders. Allogeneic hGF strains also maintained hGF-iPSCs for 10 passages. Compared with hDFs, hGFs showed a higher production of laminin-332, laminin α5 chain, and insulin-like growth factor-II, which have been reported to sustain the long-term self-renewal of pluripotent stem cells. These results suggest that hGFs possess an excellent feeder capability and thus can be used as alternatives to conventional mouse-derived SNL and hDF feeders. In addition, our findings suggest that hGF feeders are promising candidates for animal component-free ex vivo expansion of autologous hGF-iPSCs, thus providing an important step toward the future therapeutic application of hGF-iPSCs.
Collapse
Affiliation(s)
- G Yu
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - H Okawa
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Suita, Japan Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - K Okita
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Y Kamano
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - F Wang
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - M Saeki
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - H Yatani
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Suita, Japan
| | - H Egusa
- Department of Fixed Prosthodontics, Osaka University Graduate School of Dentistry, Suita, Japan Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
76
|
Qian X, Kim JK, Tong W, Villa-Diaz LG, Krebsbach PH. DPPA5 Supports Pluripotency and Reprogramming by Regulating NANOG Turnover. Stem Cells 2015; 34:588-600. [PMID: 26661329 DOI: 10.1002/stem.2252] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 09/19/2015] [Accepted: 10/18/2015] [Indexed: 01/16/2023]
Abstract
Although a specific group of transcription factors such as OCT4, SOX2, and NANOG are known to play essential roles in pluripotent stem cell (PSC) self-renewal, pluripotency, and reprogramming, other factors and the key signaling pathways regulating these important properties are not completely understood. Here, we demonstrate that the PSC marker Developmental Pluripotency Associated 5 (DPPA5) plays an important role in human PSC (hPSC) self-renewal and cell reprogramming in feeder-free conditions. Compared to hPSCs grown on mouse embryonic fibroblasts, cells cultured on feeder-free substrates, such as Matrigel, Laminin-511, Vitronectin, or the synthetic polymer poly[2-(methacryloyloxy) ethyl dimethyl-(3-sulfopropyl) ammonium hydroxide], had significantly higher DPPA5 gene expression and protein levels. Overexpression of DPPA5 in hPSCs increased NANOG protein levels via a post-transcriptional mechanism. Coimmunoprecipitation, protein stability assays, and quantitative RT-PCR, demonstrated that DPPA5 directly interacted, stabilized, and enhanced the function of NANOG in hPSCs. Additionally, DPPA5 increased the reprogramming efficiency of human somatic cells to induced pluripotent stem cells (hiPSCs). Our study provides new insight into the function of DPPA5 and NANOG regulation in hPSCs.
Collapse
Affiliation(s)
- Xu Qian
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Jin Koo Kim
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Wilbur Tong
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Luis G Villa-Diaz
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul H Krebsbach
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
77
|
Kumar D, Dale TP, Yang Y, Forsyth NR. Self-renewal of human embryonic stem cells on defined synthetic electrospun nanofibers. Biomed Mater 2015; 10:065017. [DOI: 10.1088/1748-6041/10/6/065017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
78
|
Smith JGW, Celiz AD, Patel AK, Short RD, Alexander MR, Denning C. Scaling human pluripotent stem cell expansion and differentiation: are cell factories becoming a reality? Regen Med 2015; 10:925-30. [PMID: 26542310 DOI: 10.2217/rme.15.65] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- James G W Smith
- Wolfson Centre for Stem Cells, Tissue Engineering & Modelling Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Adam D Celiz
- Laboratory of Biophysics & Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Asha K Patel
- Wolfson Centre for Stem Cells, Tissue Engineering & Modelling Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.,David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert D Short
- Mawson Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Morgan R Alexander
- Laboratory of Biophysics & Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Chris Denning
- Wolfson Centre for Stem Cells, Tissue Engineering & Modelling Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
79
|
Clonal culturing of human embryonic stem cells on laminin-521/E-cadherin matrix in defined and xeno-free environment. Nat Commun 2015; 5:3195. [PMID: 24463987 DOI: 10.1038/ncomms4195] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 01/02/2014] [Indexed: 01/22/2023] Open
Abstract
Lack of robust methods for establishment and expansion of pluripotent human embryonic stem (hES) cells still hampers development of cell therapy. Laminins (LN) are a family of highly cell-type specific basement membrane proteins important for cell adhesion, differentiation, migration and phenotype stability. Here we produce and isolate a human recombinant LN-521 isoform and develop a cell culture matrix containing LN-521 and E-cadherin, which both localize to stem cell niches in vivo. This matrix allows clonal derivation, clonal survival and long-term self-renewal of hES cells under completely chemically defined and xeno-free conditions without ROCK inhibitors. Neither LN-521 nor E-cadherin alone enable clonal survival of hES cells. The LN-521/E-cadherin matrix allows hES cell line derivation from blastocyst inner cell mass and single blastomere cells without a need to destroy the embryo. This method can facilitate the generation of hES cell lines for development of different cell types for regenerative medicine purposes.
Collapse
|
80
|
Jaggy M, Zhang P, Greiner AM, Autenrieth TJ, Nedashkivska V, Efremov AN, Blattner C, Bastmeyer M, Levkin PA. Hierarchical Micro-Nano Surface Topography Promotes Long-Term Maintenance of Undifferentiated Mouse Embryonic Stem Cells. NANO LETTERS 2015; 15:7146-54. [PMID: 26351257 DOI: 10.1021/acs.nanolett.5b03359] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Understanding of stem cell-surface interactions and, in particular, long-term maintenance of stem cell pluripotency on well-defined synthetic surfaces is crucial for fundamental research and biomedical applications of stem cells. Here, we show that synthetic surfaces possessing hierarchical micro-nano roughness (MN-surfaces) promote long-term self-renewal (>3 weeks) of mouse embryonic stem cells (mESCs) as monitored by the expression levels of the pluripotency markers octamer-binding transcription factor 4 (Oct4), Nanog, and alkaline phosphatase. On the contrary, culturing of mESCs on either smooth (S-) or nanorough polymer surfaces (N-surfaces) leads to their fast differentiation. Moreover, we show that regular passaging of mESCs on the hierarchical MN-polymer surface leads to an increased homogeneity and percentage of Oct4-positive stem cell colonies as compared to mESCs grown on fibroblast feeder cells. Immunostaining revealed the absence of focal adhesion markers on all polymer substrates studied. However, only the MN-surfaces elicited the formation of actin-positive cell protrusions, indicating an alternative anchorage mechanism involved in the maintenance of mESC stemness.
Collapse
Affiliation(s)
- Mona Jaggy
- Karlsruhe Institute of Technology (KIT) , Department of Cell- and Neurobiology, Zoological Institute, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
- Karlsruhe Institute of Technology (KIT) , Institute of Functional Interfaces (IFG), PO Box 3640, 76021 Karlsruhe, Germany
| | - Ping Zhang
- Karlsruhe Institute of Technology (KIT) , Institute of Toxicology and Genetics (ITG), PO Box 3640, 76021 Karlsruhe, Germany
| | - Alexandra M Greiner
- Karlsruhe Institute of Technology (KIT) , Department of Cell- and Neurobiology, Zoological Institute, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
| | - Tatjana J Autenrieth
- Karlsruhe Institute of Technology (KIT) , Department of Cell- and Neurobiology, Zoological Institute, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
- Karlsruhe Institute of Technology (KIT) , Institute of Functional Interfaces (IFG), PO Box 3640, 76021 Karlsruhe, Germany
| | - Victoria Nedashkivska
- Karlsruhe Institute of Technology (KIT) , Institute of Toxicology and Genetics (ITG), PO Box 3640, 76021 Karlsruhe, Germany
| | - Alexander N Efremov
- Karlsruhe Institute of Technology (KIT) , Institute of Toxicology and Genetics (ITG), PO Box 3640, 76021 Karlsruhe, Germany
| | - Christine Blattner
- Karlsruhe Institute of Technology (KIT) , Institute of Toxicology and Genetics (ITG), PO Box 3640, 76021 Karlsruhe, Germany
| | - Martin Bastmeyer
- Karlsruhe Institute of Technology (KIT) , Department of Cell- and Neurobiology, Zoological Institute, Haid-und-Neu-Straße 9, 76131 Karlsruhe, Germany
- Karlsruhe Institute of Technology (KIT) , Institute of Functional Interfaces (IFG), PO Box 3640, 76021 Karlsruhe, Germany
| | - Pavel A Levkin
- Karlsruhe Institute of Technology (KIT) , Institute of Toxicology and Genetics (ITG), PO Box 3640, 76021 Karlsruhe, Germany
- Karlsruhe Institute of Technology (KIT) , Institute of Organic Chemistry, PO Box 3640, 76021 Karlsruhe, Germany
| |
Collapse
|
81
|
Changes in Laminin Expression Pattern during Early Differentiation of Human Embryonic Stem Cells. PLoS One 2015; 10:e0138346. [PMID: 26378917 PMCID: PMC4574950 DOI: 10.1371/journal.pone.0138346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 08/29/2015] [Indexed: 11/19/2022] Open
Abstract
Laminin isoforms laminin-511 and -521 are expressed by human embryonic stem cells (hESC) and can be used as a growth matrix to culture these cells under pluripotent conditions. However, the expression of these laminins during the induction of hESC differentiation has not been studied in detail. Furthermore, the data regarding the expression pattern of laminin chains in differentiating hESC is scarce. In the current study we aimed to fill this gap and investigated the potential changes in laminin expression during early hESC differentiation induced by retinoic acid (RA). We found that laminin-511 but not -521 accumulates in the committed cells during early steps of hESC differentiation. We also performed a comprehensive analysis of the laminin chain repertoire and found that pluripotent hESC express a more diverse range of laminin chains than shown previously. In particular, we provide the evidence that in addition to α1, α5, β1, β2 and γ1 chains, hESC express α2, α3, β3, γ2 and γ3 chain proteins and mRNA. Additionally, we found that a variant of laminin α3 chain—145 kDa—accumulated in RA-treated hESC showing that these cells produce prevalently specifically modified version of α3 chain in early phase of differentiation.
Collapse
|
82
|
Nagaoka M, Kobayashi M, Kawai C, Mallanna SK, Duncan SA. Design of a Vitronectin-Based Recombinant Protein as a Defined Substrate for Differentiation of Human Pluripotent Stem Cells into Hepatocyte-Like Cells. PLoS One 2015; 10:e0136350. [PMID: 26308339 PMCID: PMC4550348 DOI: 10.1371/journal.pone.0136350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/01/2015] [Indexed: 01/05/2023] Open
Abstract
Maintenance and differentiation of human pluripotent stem cells (hPSCs) usually requires culture on a substrate for cell adhesion. A commonly used substratum is Matrigel purified from Engelbreth—Holm—Swarm sarcoma cells, and consists of a complex mixture of extracellular matrix proteins, proteoglycans, and growth factors. Several studies have successfully induced differentiation of hepatocyte-like cells from hPSCs. However, most of these studies have used Matrigel as a cell adhesion substrate, which is not a defined culture condition. In an attempt to generate a substratum that supports undifferentiated properties and differentiation into hepatic lineage cells, we designed novel substrates consisting of vitronectin fragments fused to the IgG Fc domain. hPSCs adhered to these substrates via interactions between integrins and the RGD (Arg-Gly-Asp) motif, and the cells maintained their undifferentiated phenotypes. Using a previously established differentiation protocol, hPSCs were efficiently differentiated into mesendodermal and hepatic lineage cells on a vitronectin fragment-containing substrate. We found that full-length vitronectin did not support stable cell adhesion during the specification stage. Furthermore, the vitronectin fragment with the minimal RGD-containing domain was sufficient for differentiation of human induced pluripotent stem cells into hepatic lineage cells under completely defined conditions that facilitate the clinical application of cells differentiated from hPSCs.
Collapse
Affiliation(s)
- Masato Nagaoka
- Tenure-track Program for Innovative Research, University of Fukui, Yoshida-gun, Fukui, Japan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| | - Motohiro Kobayashi
- Division of Tumor Pathology, Department of Pathological Sciences, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui, Japan
| | - Chie Kawai
- Tenure-track Program for Innovative Research, University of Fukui, Yoshida-gun, Fukui, Japan
| | - Sunil K. Mallanna
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Stephen A. Duncan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| |
Collapse
|
83
|
Yamada M, Sekiguchi K. Molecular Basis of Laminin-Integrin Interactions. CURRENT TOPICS IN MEMBRANES 2015; 76:197-229. [PMID: 26610915 DOI: 10.1016/bs.ctm.2015.07.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Laminins are composed of three polypeptide chains, designated as α, β, and γ. The C-terminal region of laminin heterotrimers, containing coiled-coil regions, short tails, and laminin globular (LG) domains, is necessary and sufficient for binding to integrins, which are the major laminin receptor class. Laminin recognition by integrins critically requires the α chain LG domains and a glutamic acid residue of the γ chain at the third position from the C-terminus. Furthermore, the C-terminal region of the β chain contains a short amino acid sequence that modulates laminin affinity for integrins. Thus, all three of the laminin chains act cooperatively to facilitate integrin binding. Mammals possess 5 α (α1-5), 3 β (β1-3), and 3 γ (γ1-3) chains, combinations of which give rise to 16 distinct laminin isoforms. Each isoform is expressed in a tissue-specific and developmental stage-specific manner, exerting its functions through binding of integrins. In this review, we detail the current knowledge surrounding the molecular basis and physiological relevance of specific interactions between laminins and integrins, and describe the mechanisms underlying laminin action through integrins.
Collapse
Affiliation(s)
- Masashi Yamada
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Kiyotoshi Sekiguchi
- Laboratory of Extracellular Matrix Biochemistry, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
84
|
Abstract
The cellular microenvironment is extremely complex, and a plethora of materials and methods have been employed to mimic its properties in vitro. In particular, scientists and engineers have taken an interdisciplinary approach in their creation of synthetic biointerfaces that replicate chemical and physical aspects of the cellular microenvironment. Here the focus is on the use of synthetic materials or a combination of synthetic and biological ligands to recapitulate the defined surface chemistries, microstructure, and function of the cellular microenvironment for a myriad of biomedical applications. Specifically, strategies for altering the surface of these environments using self-assembled monolayers, polymer coatings, and their combination with patterned biological ligands are explored. Furthermore, methods for augmenting an important physical property of the cellular microenvironment, topography, are highlighted, and the advantages and disadvantages of these approaches are discussed. Finally, the progress of materials for prolonged stem cell culture, a key component in the translation of stem cell therapeutics for clinical use, is featured.
Collapse
Affiliation(s)
- A.M. Ross
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
| | - J. Lahann
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany
- Biointerfaces Institute,
- Department of Chemical Engineering,
- Department of Materials Science and Engineering, and
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
85
|
Celiz AD, Smith JGW, Patel AK, Hook AL, Rajamohan D, George VT, Flatt L, Patel MJ, Epa VC, Singh T, Langer R, Anderson DG, Allen ND, Hay DC, Winkler DA, Barrett DA, Davies MC, Young LE, Denning C, Alexander MR. Discovery of a Novel Polymer for Human Pluripotent Stem Cell Expansion and Multilineage Differentiation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:4006-12. [PMID: 26033422 PMCID: PMC4862031 DOI: 10.1002/adma.201501351] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/23/2015] [Indexed: 05/20/2023]
Abstract
A scalable and cost-effective synthetic polymer substrate that supports robust expansion and subsequent multilineage differentiation of human pluripotent stem cells (hPSCs) with defined commercial media is presented. This substrate can be applied to common cultureware and used off-the-shelf after long-term storage. Expansion and differentiation of hPSCs are performed entirely on the polymeric surface, enabling the clinical potential of hPSC-derived cells to be realized.
Collapse
Affiliation(s)
- Adam D Celiz
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
- Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - James G W Smith
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Asha K Patel
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andrew L Hook
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Divya Rajamohan
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Vinoj T George
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Luke Flatt
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Minal J Patel
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Vidana C Epa
- CSIRO Manufacturing Flagship, 343 Royal Parade, Parkville, 3052, Australia
| | - Taranjit Singh
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Nicholas D Allen
- Cardiff School of Biosciences, The Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, UK
| | - David C Hay
- MRC Centre for Regenerative Medicine SCRM Building, The University of Edinburgh, Edinburgh BioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - David A Winkler
- CSIRO Manufacturing Flagship, Bayview Avenue, Clayton, 3168, Australia
- Monash Institute of Pharmaceutical Sciences, 399 Royal Parade, Parkville, 3052, Australia
- Latrobe Institute for Molecular Science, Latrobe University, Bundoora, 3086, Australia
| | - David A Barrett
- Centre for Analytical Bioscience, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Martyn C Davies
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Lorraine E Young
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Chris Denning
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Morgan R Alexander
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
86
|
Assou S, Pourret E, Péquignot M, Rigau V, Kalatzis V, Aït-Ahmed O, Hamamah S. Cultured Cells from the Human Oocyte Cumulus Niche Are Efficient Feeders to Propagate Pluripotent Stem Cells. Stem Cells Dev 2015; 24:2317-27. [PMID: 26153797 DOI: 10.1089/scd.2015.0043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pluripotency is at the crossroads of stem cell research and biology of reproduction. The mature metaphase II oocyte contains the key factors for pluripotency induction and maintenance as assessed by its capacity to reprogram somatic nuclei. The cumulus cells (CCs) niche that surrounds the oocyte is crucial for its maturation and presumably for the oocyte to acquire its competence to confer pluripotency. In this study, we examined whether cells cultured from the human mature metaphase II oocyte CC niche (hCC) could be used as feeders for the propagation of human induced pluripotent stem cells. The induced pluripotent (iPS) cells cultured on hCC (hCC-iPS) were assessed for their pluripotency potential by their expression of pluripotency-associated genes such as Oct4, Nanog, and TRA1-60 and their competence to differentiate into the three germ layers in vitro (embryoid bodies) as well as in vivo (teratoma formation). We show that not only the hCC-iPS cells maintained their pluripotency potential, but they also exhibited much better self-renewal performance in terms of proliferation rate compared to the same cells cultured on human foreskin fibroblast (hFF) feeders (hFF-iPS). A comparative gene expression profile study of hCC and hFF revealed significant differences (P < 0.05) in expression of cellular matrix components and an upregulation in hCC of genes known to be important players in cell proliferation such as interleukin 6 gene (IL6).
Collapse
Affiliation(s)
- Said Assou
- 1 Université Montpellier , UFR de Médecine, Montpellier, France .,2 Institute for Regenerative Medicine and Biotherapy, INSERM U1203, CHRU Montpellier, Hôpital Saint-Eloi , Montpellier, France
| | - Emilie Pourret
- 2 Institute for Regenerative Medicine and Biotherapy, INSERM U1203, CHRU Montpellier, Hôpital Saint-Eloi , Montpellier, France
| | - Marie Péquignot
- 3 Institut des Neurosciences de Montpellier, INSERM U1051, Hôpital Saint-Eloi , Montpellier, France
| | - Valérie Rigau
- 4 Pathology Department, University Hospital Gui de Chauliac , Montpellier, France
| | - Vasiliki Kalatzis
- 3 Institut des Neurosciences de Montpellier, INSERM U1051, Hôpital Saint-Eloi , Montpellier, France
| | - Ounissa Aït-Ahmed
- 2 Institute for Regenerative Medicine and Biotherapy, INSERM U1203, CHRU Montpellier, Hôpital Saint-Eloi , Montpellier, France
| | - Samir Hamamah
- 1 Université Montpellier , UFR de Médecine, Montpellier, France .,2 Institute for Regenerative Medicine and Biotherapy, INSERM U1203, CHRU Montpellier, Hôpital Saint-Eloi , Montpellier, France .,5 ART-PGD Department, CHU Montpellier, Hôpital Arnaud de Villeneuve , Montpellier, France
| |
Collapse
|
87
|
Lam ATL, Li J, Chen AKL, Birch WR, Reuveny S, Oh SKW. Improved Human Pluripotent Stem Cell Attachment and Spreading on Xeno-Free Laminin-521-Coated Microcarriers Results in Efficient Growth in Agitated Cultures. Biores Open Access 2015; 4:242-57. [PMID: 26309800 PMCID: PMC4540119 DOI: 10.1089/biores.2015.0010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Human pluripotent stem cells (hPSC) are self-renewing cells having the potential of differentiation into the three lineages of somatic cells and thus can be medically used in diverse cellular therapies. One of the requirements for achieving these clinical applications is development of completely defined xeno-free systems for large-scale cell expansion and differentiation. Previously, we demonstrated that microcarriers (MCs) coated with mouse laminin-111 (LN111) and positively charged poly-l-lysine (PLL) critically enable the formation and evolution of cells/MC aggregates with high cell yields obtained under agitated conditions. In this article, we further improved the MC system into a defined xeno-free MC one in which the MCs are coated with recombinant human laminin-521 (LN521) alone without additional positive charge. The high binding affinity of the LN521 to cell integrins enables efficient initial HES-3 cell attachment (87%) and spreading (85%), which leads to generation of cells/MC aggregates (400 μm in size) and high cell yields (2.4–3.5×106 cells/mL) within 7 days in agitated plate and scalable spinner cultures. The universality of the system was demonstrated by propagation of an induced pluripotent cells line in this defined MC system. Long-term pluripotent (>90% expression Tra-1-60) cell expansion and maintenance of normal karyotype was demonstrated after 10 cell passages. Moreover, tri-lineage differentiation as well as directed differentiation into cardiomyocytes was achieved. The new LN521-based MC system offers a defined, xeno-free, GMP-compatible, and scalable bioprocessing platform for the production of hPSC with the quantity and quality compliant for clinical applications. Use of LN521 on MCs enabled a 34% savings in matrix and media costs over monolayer cultures to produce 108 cells.
Collapse
Affiliation(s)
- Alan Tin-Lun Lam
- Stem Cell Group, Bioprocessing Technology Institute , Agency for Science, Technology and Research (ASTAR), Singapore , Singapore
| | - Jian Li
- Institute of Materials Research and Engineering , Agency for Science, Technology and Research (ASTAR), Singapore , Singapore
| | - Allen Kuan-Liang Chen
- Stem Cell Group, Bioprocessing Technology Institute , Agency for Science, Technology and Research (ASTAR), Singapore , Singapore
| | - William R Birch
- Institute of Materials Research and Engineering , Agency for Science, Technology and Research (ASTAR), Singapore , Singapore
| | - Shaul Reuveny
- Stem Cell Group, Bioprocessing Technology Institute , Agency for Science, Technology and Research (ASTAR), Singapore , Singapore
| | - Steve Kah-Weng Oh
- Stem Cell Group, Bioprocessing Technology Institute , Agency for Science, Technology and Research (ASTAR), Singapore , Singapore
| |
Collapse
|
88
|
Enam S, Jin S. Substrates for clinical applicability of stem cells. World J Stem Cells 2015; 7:243-252. [PMID: 25815112 PMCID: PMC4369484 DOI: 10.4252/wjsc.v7.i2.243] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/23/2014] [Accepted: 12/19/2014] [Indexed: 02/06/2023] Open
Abstract
The capability of human pluripotent stem cells (hPSCs) to differentiate into a variety of cells in the human body holds great promise for regenerative medicine. Many substrates exist on which hPSCs can be self-renewed, maintained and expanded to further the goal of clinical application of stem cells. In this review, we highlight numerous extracellular matrix proteins, peptide and polymer based substrates, scaffolds and hydrogels that have been pioneered. We discuss their benefits and shortcomings and offer future directions as well as emphasize commercially available synthetic peptides as a type of substrate that can bring the benefits of regenerative medicine to clinical settings.
Collapse
|
89
|
Desai N, Rambhia P, Gishto A. Human embryonic stem cell cultivation: historical perspective and evolution of xeno-free culture systems. Reprod Biol Endocrinol 2015; 13:9. [PMID: 25890180 PMCID: PMC4351689 DOI: 10.1186/s12958-015-0005-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 02/09/2015] [Indexed: 01/23/2023] Open
Abstract
Human embryonic stem cells (hESC) have emerged as attractive candidates for cell-based therapies that are capable of restoring lost cell and tissue function. These unique cells are able to self-renew indefinitely and have the capacity to differentiate in to all three germ layers (ectoderm, endoderm and mesoderm). Harnessing the power of these pluripotent stem cells could potentially offer new therapeutic treatment options for a variety of medical conditions. Since the initial derivation of hESC lines in 1998, tremendous headway has been made in better understanding stem cell biology and culture requirements for maintenance of pluripotency. The approval of the first clinical trials of hESC cells for treatment of spinal cord injury and macular degeneration in 2010 marked the beginning of a new era in regenerative medicine. Yet it was clearly recognized that the clinical utility of hESC transplantation was still limited by several challenges. One of the most immediate issues has been the exposure of stem cells to animal pathogens, during hESC derivation and during in vitro propagation. Initial culture protocols used co-culture with inactivated mouse fibroblast feeder (MEF) or human feeder layers with fetal bovine serum or alternatively serum replacement proteins to support stem cell proliferation. Most hESC lines currently in use have been exposed to animal products, thus carrying the risk of xeno-transmitted infections and immune reaction. This mini review provides a historic perspective on human embryonic stem cell culture and the evolution of new culture models. We highlight the challenges and advances being made towards the development of xeno-free culture systems suitable for therapeutic applications.
Collapse
Affiliation(s)
- Nina Desai
- Department of Obstetrics and Gynecology, Cleveland Clinic, Beachwood, OH, USA.
| | - Pooja Rambhia
- Department of Obstetrics and Gynecology, Cleveland Clinic, Beachwood, OH, USA.
| | - Arsela Gishto
- Department of Obstetrics and Gynecology, Cleveland Clinic, Beachwood, OH, USA.
| |
Collapse
|
90
|
Abstract
Anchorage-dependent cells are of great interest for various biotechnological applications. (i) They represent a formidable production means of viruses for vaccination purposes at very large scales (in 1000-6000 l reactors) using microcarriers, and in the last decade many more novel viral vaccines have been developed using this production technology. (ii) With the advent of stem cells and their use/potential use in clinics for cell therapy and regenerative medicine purposes, the development of novel culture devices and technologies for adherent cells has accelerated greatly with a view to the large-scale expansion of these cells. Presently, the really scalable systems--microcarrier/microcarrier-clump cultures using stirred-tank reactors--for the expansion of stem cells are still in their infancy. Only laboratory scale reactors of maximally 2.5 l working volume have been evaluated because thorough knowledge and basic understanding of critical issues with respect to cell expansion while retaining pluripotency and differentiation potential, and the impact of the culture environment on stem cell fate, etc., are still lacking and require further studies. This article gives an overview on critical issues common to all cell culture systems for adherent cells as well as specifics for different types of stem cells in view of small- and large-scale cell expansion and production processes.
Collapse
|
91
|
Miyazaki T, Kawase E. Efficient and scalable culture of single dissociated human pluripotent stem cells using recombinant E8 fragments of human laminin isoforms. ACTA ACUST UNITED AC 2015; 32:1C.18.1-1C.18.8. [PMID: 25640816 DOI: 10.1002/9780470151808.sc01c18s32] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This unit describes a protocol for efficient expansion of human pluripotent stem cells (hPSCs). A key feature of this method is subculture of hPSCs by single-cell dissociation passaging on substrates coated with recombinant E8 fragments of human laminin isoforms (LM-E8s). LM-E8s, provide superior adhesion over intact laminin isoforms and Matrigel. Single hPSCs seeded on LM-E8s show accelerated migration and rapid reconstruction of clusters, resulting in robust survival and proliferation. This protocol yields 200-fold more hPSCs than conventional subculture methods in 1 month of culture. Furthermore, this protocol can be easily adapted to most hPSC lines in combination with the use of various xeno-free, defined culture media, and large-scale expansion of hPSCs is easily achievable to facilitate the practical applications of hPSCs.
Collapse
Affiliation(s)
- Takamichi Miyazaki
- Department of Embryonic Stem Cell Research, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Eihachiro Kawase
- Department of Embryonic Stem Cell Research, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
92
|
Joddar B, Nishioka C, Takahashi E, Ito Y. Chemically fixed autologous feeder cell-derived niche for human induced pluripotent stem cell culture. J Mater Chem B 2015; 3:2301-2307. [DOI: 10.1039/c4tb01635a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A newer method of hiPS culture on feeder cell-derived niche is reported in this study.
Collapse
Affiliation(s)
- Binata Joddar
- Nano Medical Engineering Laboratory
- RIKEN
- Wako
- Japan
- Department of Mechanical Engineering & Biomedical Engineering Program at The University of Texas at El Paso
| | - Chieko Nishioka
- Support Unit for Animal Experiment
- Research Resources Center
- RIKEN Brain Science Institute
- Wako
- Japan
| | - Eiki Takahashi
- Support Unit for Animal Experiment
- Research Resources Center
- RIKEN Brain Science Institute
- Wako
- Japan
| | | |
Collapse
|
93
|
Villa-Diaz LG, Kim JK, Lahann J, Krebsbach PH. Derivation and long-term culture of transgene-free human induced pluripotent stem cells on synthetic substrates. Stem Cells Transl Med 2014; 3:1410-7. [PMID: 25313201 DOI: 10.5966/sctm.2014-0087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We describe a platform to derive, culture, and differentiate genomically stable, transgene-free human induced pluripotent stem cells (iPSCs) on a fully synthetic polymer substrate made of a grafted zwitterionic hydrogel: poly2-(methacryloyloxy)ethyl dimethyl-(3-sulfopropyl) ammonium hydroxide (PMEDSAH). Three independent transgene-free iPSC lines derived in these conditions demonstrated continuous self-renewal, genomic stability, and pluripotency in vitro and in vivo after up to 9 months of continuous in vitro culture on PMEDSAH-grafted plates. Together, these data demonstrate the strength this alternative platform offers to generate and maintain human iPSCs for regenerative medicine.
Collapse
Affiliation(s)
- Luis Gerardo Villa-Diaz
- Department of Biologic and Materials Sciences, Biointerfaces Institute, and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Jin Koo Kim
- Department of Biologic and Materials Sciences, Biointerfaces Institute, and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Joerg Lahann
- Department of Biologic and Materials Sciences, Biointerfaces Institute, and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Paul H Krebsbach
- Department of Biologic and Materials Sciences, Biointerfaces Institute, and Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
94
|
Monolayer culturing and cloning of human pluripotent stem cells on laminin-521-based matrices under xeno-free and chemically defined conditions. Nat Protoc 2014; 9:2354-68. [PMID: 25211513 DOI: 10.1038/nprot.2014.159] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A robust method for culturing human pluripotent stem (hPS) cells under chemically defined and xeno-free conditions is an important tool for stem cell research and for the development of regenerative medicine. Here, we describe a protocol for monolayer culturing of Oct-4-positive hPS cells on a specific laminin-521 (LN-521) isoform, under xeno-free and chemically defined conditions. The cells are dispersed into single-cell suspension and then plated on LN-521 isoform at densities higher than 5,000 cells per cm², where they attach, migrate and survive by forming small monolayer cell groups. The cells avidly divide and expand horizontally until the entire dish is covered by a confluent monolayer. LN-521, in combination with E-cadherin, allows cloning of individual hPS cells in separate wells of 96-well plates without the presence of rho-associated protein kinase (ROCK) inhibitors or any other inhibitors of anoikis. Characterization of cells maintained for several months in culture reveals pluripotency with a minimal degree of genetic abnormalities.
Collapse
|
95
|
Qian X, Villa-Diaz LG, Kumar R, Lahann J, Krebsbach PH. Enhancement of the propagation of human embryonic stem cells by modifications in the gel architecture of PMEDSAH polymer coatings. Biomaterials 2014; 35:9581-90. [PMID: 25189518 DOI: 10.1016/j.biomaterials.2014.08.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 08/08/2014] [Indexed: 01/08/2023]
Abstract
Well-defined culture conditions are essential for realizing the full potential of human embryonic stem cells (hESCs) in regenerative medicine where large numbers of cells are required. Synthetic polymers such as poly[2-(methacryloyloxy) ethyl dimethyl-(3-sulfopropyl) ammonium hydroxide] (PMEDSAH), offer multiple advantages over mouse embryonic fibroblasts (MEFs) and Matrigel™ for hESC culture and expansion. However, there is limited understanding of the mechanisms by which hESCs are propagated on synthetic polymers coatings. Here, the effects of PMEDSAH gel architecture on hESC self-renewal were determined. By increasing the atom transfer radical polymerization (ATRP) reaction time, the thickness of PMEDSAH was increased and its internal hydrogel architecture was modified, while maintaining its overall chemical structure. A 105 nm thick ATRP PMEDSAH coating showed a significant increase in the expansion rate of hESCs. Theoretical calculations suggested that 20,000 hESCs cultured on this substrate could be expanded up to 4.7 × 10(9) undifferentiated cells in five weeks. In addition, hESCs grown on ATRP PMEDSAH coatings retained pluripotency and displayed a normal karyotype after long-term culture. These data demonstrate the importance of polymer physical properties in hESC expansion. This modification of PMEDSAH coatings may be used to obtain large populations of hESCs required for many applications in regenerative medicine.
Collapse
Affiliation(s)
- Xu Qian
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Luis G Villa-Diaz
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ramya Kumar
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Joerg Lahann
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA
| | - Paul H Krebsbach
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
96
|
Nanofibrous gelatin substrates for long-term expansion of human pluripotent stem cells. Biomaterials 2014; 35:6259-67. [DOI: 10.1016/j.biomaterials.2014.04.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 04/06/2014] [Indexed: 11/30/2022]
|
97
|
Higuchi A, Ling QD, Kumar SS, Munusamy M, Alarfajj AA, Umezawa A, Wu GJ. Design of polymeric materials for culturing human pluripotent stem cells: Progress toward feeder-free and xeno-free culturing. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
98
|
Celiz AD, Smith JGW, Langer R, Anderson DG, Winkler DA, Barrett DA, Davies MC, Young LE, Denning C, Alexander MR. Materials for stem cell factories of the future. NATURE MATERIALS 2014; 13:570-9. [PMID: 24845996 DOI: 10.1038/nmat3972] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 03/31/2014] [Indexed: 05/10/2023]
Abstract
Polymeric substrates are being identified that could permit translation of human pluripotent stem cells from laboratory-based research to industrial-scale biomedicine. Well-defined materials are required to allow cell banking and to provide the raw material for reproducible differentiation into lineages for large-scale drug-screening programs and clinical use. Yet more than 1 billion cells for each patient are needed to replace losses during heart attack, multiple sclerosis and diabetes. Producing this number of cells is challenging, and a rethink of the current predominant cell-derived substrates is needed to provide technology that can be scaled to meet the needs of millions of patients a year. In this Review, we consider the role of materials discovery, an emerging area of materials chemistry that is in large part driven by the challenges posed by biologists to materials scientists.
Collapse
Affiliation(s)
- Adam D Celiz
- 1] Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK [2] Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, Massachusetts 02115, USA
| | - James G W Smith
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Robert Langer
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Department of Chemical Engineering, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - David A Winkler
- 1] CSIRO Materials Science and Engineering, Bag 10, Clayton South MDC 3169, Australia [2] Monash Institute of Pharmaceutical Sciences, 399 Royal Parade, Parkville 3052, Australia
| | - David A Barrett
- School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Martyn C Davies
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| | - Lorraine E Young
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Chris Denning
- Wolfson Centre for Stem Cells, Tissue Engineering and Modelling, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Morgan R Alexander
- Laboratory of Biophysics and Surface Analysis, School of Pharmacy, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
99
|
Lam ATL, Li J, Chen AKL, Reuveny S, Oh SKW, Birch WR. Cationic surface charge combined with either vitronectin or laminin dictates the evolution of human embryonic stem cells/microcarrier aggregates and cell growth in agitated cultures. Stem Cells Dev 2014; 23:1688-703. [PMID: 24641164 DOI: 10.1089/scd.2013.0645] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The expansion of human pluripotent stem cells (hPSC) for biomedical applications generally compels a defined, reliable, and scalable platform. Bioreactors offer a three-dimensional culture environment that relies on the implementation of microcarriers (MC), as supports for cell anchorage and their subsequent growth. Polystyrene microspheres/MC coated with adhesion-promoting extracellular matrix (ECM) protein, vitronectin (VN), or laminin (LN) have been shown to support hPSC expansion in a static environment. However, they are insufficient to promote human embryonic stem cells (hESC) seeding and their expansion in an agitated environment. The present study describes an innovative technology, consisting of a cationic charge that underlies the ECM coatings. By combining poly-L-lysine (PLL) with a coating of ECM protein, cell attachment efficiency and cell spreading are improved, thus enabling seeding under agitation in a serum-free medium. This coating combination also critically enables the subsequent formation and evolution of hPSC/MC aggregates, which ensure cell viability and generate high yields. Aggregate dimensions of at least 300 μm during early cell growth give rise to ≈15-fold expansion at 7 days' culture. Increasing aggregate numbers at a quasi-constant size of ≈300 μm indicates hESC growth within a self-regulating microenvironment. PLL+LN enables cell seeding and aggregate evolution under constant agitation, whereas PLL+VN requires an intermediate 2-day static pause to attain comparable aggregate sizes and correspondingly high expansion yields. The cells' highly reproducible bioresponse to these defined and characterized MC surface properties is universal across multiple cell lines, thus confirming the robustness of this scalable expansion process in a defined environment.
Collapse
Affiliation(s)
- Alan Tin-Lun Lam
- 1 Stem Cell Group, Bioprocessing Technology Institute , Agency for Science, Technology and Research (A*STAR), Singapore , Singapore
| | | | | | | | | | | |
Collapse
|
100
|
Biologically-active laminin-111 fragment that modulates the epithelial-to-mesenchymal transition in embryonic stem cells. Proc Natl Acad Sci U S A 2014; 111:5908-13. [PMID: 24706882 DOI: 10.1073/pnas.1403139111] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dynamic interplay between the extracellular matrix and embryonic stem cells (ESCs) constitutes one of the key steps in understanding stem cell differentiation in vitro. Here we report a biologically-active laminin-111 fragment generated by matrix metalloproteinase 2 (MMP2) processing, which is highly up-regulated during differentiation. We show that the β1-chain-derived fragment interacts via α3β1-integrins, thereby triggering the down-regulation of MMP2 in mouse and human ESCs. Additionally, the expression of MMP9 and E-cadherin is up-regulated in mouse ESCs--key players in the epithelial-to-mesenchymal transition. We also demonstrate that the fragment acts through the α3β1-integrin/extracellular matrix metalloproteinase inducer complex. This study reveals a previously unidentified role of laminin-111 in early stem cell differentiation that goes far beyond basement membrane assembly and a mechanism by which an MMP2-cleaved laminin fragment regulates the expression of E-cadherin, MMP2, and MMP9.
Collapse
|