51
|
Abstract
A role of genetics in primary sclerosing cholangitis (PSC) development is now firmly established. A total of 16 risk genes have been reported at highly robust ("genome-wide") significance levels, and ongoing efforts suggest that the list will ultimately be considerably longer. Importantly, this genetic risk pool so far accounts for less than 10 % of an estimated overall PSC susceptibility. The relative importance of genetic versus environmental factors (including gene-gene and gene-environment interactions) in remaining aspects of PSC pathogenesis is unknown, and other study designs than genome-wide association studies are needed to explore these aspects. For some of the loci, e.g. HLA and FUT2, distinct interacting environmental factors may exist, and working from the genetic associations may prove one valid path for determining the specific nature of environmental triggers. So far the biological implications for PSC risk genes are typically merely hypothesized based on previously published literature, and there is therefore a strong need for dedicated translational studies to determine their roles within the specific disease context of PSC. Apparently, most risk loci seem to involve in a subset of biological pathways for which genetic associations exist in a multitude of immune-mediated diseases, accounting for both inflammatory bowel disease as well as prototypical autoimmunity. In the present article, we will survey the current knowledge on PSC genetics with a particular emphasis on the pathophysiological insight potentially gained from genetic risk loci involving in this profound immunogenetic pleiotropy.
Collapse
|
52
|
Molecular mechanisms of target recognition by lipid GPCRs: relevance for cancer. Oncogene 2015; 35:4021-35. [PMID: 26640151 DOI: 10.1038/onc.2015.467] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/02/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022]
|
53
|
Role of GPR55 during Axon Growth and Target Innervation. eNeuro 2015; 2:eN-NWR-0011-15. [PMID: 26730399 PMCID: PMC4699829 DOI: 10.1523/eneuro.0011-15.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 09/24/2015] [Accepted: 10/15/2015] [Indexed: 12/26/2022] Open
Abstract
Guidance molecules regulate the navigation of retinal ganglion cell (RGC) projections toward targets in the visual thalamus. In this study, we demonstrate that the G-protein-coupled receptor 55 (GPR55) is expressed in the retina during development, and regulates growth cone (GC) morphology and axon growth. In vitro, neurons obtained from gpr55 knock-out (gpr55-/-) mouse embryos have smaller GCs, less GC filopodia, and have a decreased outgrowth compared with gpr55+/+ neurons. When gpr55+/+ neurons were treated with GPR55 agonists, lysophosphatidylinositol (LPI) and O-1602, we observed a chemo-attractive effect and an increase in GC size and filopodia number. In contrast, cannabidiol (CBD) decreased the GC size and filopodia number inducing chemo-repulsion. In absence of the receptor (gpr55-/-), no pharmacologic effects of the GPR55 ligands were observed. In vivo, compared to their wild-type (WT) littermates, gpr55-/- mice revealed a decreased branching in the dorsal terminal nucleus (DTN) and a lower level of eye-specific segregation of retinal projections in the superior colliculus (SC) and in the dorsal lateral geniculate nucleus (dLGN). Moreover, a single intraocular injection of LPI increased branching in the DTN, whereas treatment with CBD, an antagonist of GPR55, decreased it. These results indicate that GPR55 modulates the growth rate and the targets innervation of retinal projections and highlight, for the first time, an important role of GPR55 in axon refinement during development.
Collapse
|
54
|
Binder BYK, Williams PA, Silva EA, Leach JK. Lysophosphatidic Acid and Sphingosine-1-Phosphate: A Concise Review of Biological Function and Applications for Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:531-42. [PMID: 26035484 DOI: 10.1089/ten.teb.2015.0107] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The presentation and controlled release of bioactive signals to direct cellular growth and differentiation represents a widely used strategy in tissue engineering. Historically, work in this field has primarily focused on the delivery of large cytokines and growth factors, which can be costly to manufacture and difficult to deliver in a sustained manner. There has been a marked increase over the past decade in the pursuit of lipid mediators due to their wide range of effects over multiple cell types, low cost, and ease of scale-up. Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are two bioactive lysophospholipids (LPLs) that have gained attention for use as pharmacological agents in tissue engineering applications. While these lipids can have similar effects on cellular response, they possess distinct chemical backbones, mechanisms of synthesis and degradation, and signaling pathways using a discrete set of G-protein-coupled receptors (GPCRs). LPA and S1P predominantly act extracellularly on their GPCRs and can directly regulate cell survival, differentiation, cytokine secretion, proliferation, and migration--each of the important functions that must be considered in regenerative medicine. In addition to these potent physiological functions, these LPLs play pivotal roles in a number of pathophysiological processes. To capitalize on the promise of these molecules in tissue engineering, these lipids have been incorporated into biomaterials for in vivo delivery. Here, we survey the effects of LPA and S1P on both cellular- and tissue-level phenotypes, with an eye toward regulating stem/progenitor cell growth and differentiation. In particular, we examine work that has translational applications for cell-based tissue engineering strategies in promoting cell survival, bone and cartilage engineering, and therapeutic angiogenesis.
Collapse
Affiliation(s)
- Bernard Y K Binder
- 1 Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - Priscilla A Williams
- 1 Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - Eduardo A Silva
- 1 Department of Biomedical Engineering, University of California , Davis, Davis, California
| | - J Kent Leach
- 1 Department of Biomedical Engineering, University of California , Davis, Davis, California.,2 Department of Orthopaedic Surgery, School of Medicine, University of California , Davis, Sacramento, California
| |
Collapse
|
55
|
Shore DM, Reggio PH. The therapeutic potential of orphan GPCRs, GPR35 and GPR55. Front Pharmacol 2015; 6:69. [PMID: 25926795 PMCID: PMC4397721 DOI: 10.3389/fphar.2015.00069] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 03/15/2015] [Indexed: 12/19/2022] Open
Abstract
The G protein-coupled receptor (GPCR) superfamily of integral proteins is the largest family of signal transducers, comprised of ∼1000 members. Considering their prevalence and functional importance, it’s not surprising that ∼60% of drugs target GPCRs. Regardless, there exists a subset of the GPCR superfamily that is largely uncharacterized and poorly understood; specifically, more than 140 GPCRs have unknown endogenous ligands—the so-called orphan GPCRs. Orphan GPCRs offer tremendous promise, as they may provide novel therapeutic targets that may be more selective than currently known receptors, resulting in the potential reduction in side effects. In addition, they may provide access to signal transduction pathways currently unknown, allowing for new strategies in drug design. Regardless, orphan GPCRs are an important area of inquiry, as they represent a large gap in our understanding of signal transduction at the cellular level. Here, we focus on the therapeutic potential of two recently deorphanized GPCRs: GPR35/CXCR8 and GPR55. First, GPR35/CXCR8 has been observed in numerous tissues/organ systems, including the gastrointestinal tract, liver, immune system, central nervous system, and cardiovascular system. Not surprisingly, GPR35/CXCR8 has been implicated in numerous pathologies involving these tissues/systems. While several endogenous ligands have been identified, GPR35/CXCR8 has recently been observed to bind the chemokine CXCL17. Second, GPR55 has been observed to be expressed in the central nervous system, adrenal glands, gastrointestinal tract, lung, liver, uterus, bladder, kidney, and bone, as well as, other tissues/organ systems. Likewise, it is not surprising that GPR55 has been implicated in pathologies involving these tissues/systems. GPR55 was initially deorphanized as a cannabinoid receptor and this receptor does bind many cannabinoid compounds. However, the GPR55 endogenous ligand has been found to be a non-cannabinoid, lysophophatidylinositol (LPI) and subsequent high throughput assays have identified other GPR55 ligands that are not cannabinoids and do not bind to either the cannabinoid CB1 and CB2 receptors. Here, we review reports that suggest that GPR35/CXCR8 and GPR55 may be promising therapeutic targets, with diverse physiological roles.
Collapse
Affiliation(s)
- Derek M Shore
- Center for Drug Discovery, Department of Chemistry and Biochemistry, University of North Carolina Greensboro Greensboro, NC, USA
| | - Patricia H Reggio
- Center for Drug Discovery, Department of Chemistry and Biochemistry, University of North Carolina Greensboro Greensboro, NC, USA
| |
Collapse
|
56
|
Divorty N, Mackenzie AE, Nicklin SA, Milligan G. G protein-coupled receptor 35: an emerging target in inflammatory and cardiovascular disease. Front Pharmacol 2015; 6:41. [PMID: 25805994 PMCID: PMC4354270 DOI: 10.3389/fphar.2015.00041] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 02/13/2015] [Indexed: 01/13/2023] Open
Abstract
G protein-coupled receptor 35 (GPR35) is an orphan receptor, discovered in 1998, that has garnered interest as a potential therapeutic target through its association with a range of diseases. However, a lack of pharmacological tools and the absence of convincingly defined endogenous ligands have hampered the understanding of function necessary to exploit it therapeutically. Although several endogenous molecules can activate GPR35 none has yet been confirmed as the key endogenous ligand due to reasons that include lack of biological specificity, non-physiologically relevant potency and species ortholog selectivity. Recent advances have identified several highly potent synthetic agonists and antagonists, as well as agonists with equivalent potency at rodent and human orthologs, which will be useful as tool compounds. Homology modeling and mutagenesis studies have provided insight into the mode of ligand binding and possible reasons for the species selectivity of some ligands. Advances have also been made in determining the role of the receptor in disease. In the past, genome-wide association studies have associated GPR35 with diseases such as inflammatory bowel disease, type 2 diabetes, and coronary artery disease. More recent functional studies have implicated it in processes as diverse as heart failure and hypoxia, inflammation, pain transduction and synaptic transmission. In this review, we summarize the progress made in understanding the molecular pharmacology, downstream signaling and physiological function of GPR35, and discuss its emerging potential applications as a therapeutic target.
Collapse
Affiliation(s)
- Nina Divorty
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow UK ; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow UK
| | - Amanda E Mackenzie
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow UK
| | - Stuart A Nicklin
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow UK
| | - Graeme Milligan
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow UK
| |
Collapse
|
57
|
|
58
|
Isensee J, Wenzel C, Buschow R, Weissmann R, Kuss AW, Hucho T. Subgroup-elimination transcriptomics identifies signaling proteins that define subclasses of TRPV1-positive neurons and a novel paracrine circuit. PLoS One 2014; 9:e115731. [PMID: 25551770 PMCID: PMC4281118 DOI: 10.1371/journal.pone.0115731] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 11/29/2014] [Indexed: 12/24/2022] Open
Abstract
Normal and painful stimuli are detected by specialized subgroups of peripheral sensory neurons. The understanding of the functional differences of each neuronal subgroup would be strongly enhanced by knowledge of the respective subgroup transcriptome. The separation of the subgroup of interest, however, has proven challenging as they can hardly be enriched. Instead of enriching, we now rapidly eliminated the subgroup of neurons expressing the heat-gated cation channel TRPV1 from dissociated rat sensory ganglia. Elimination was accomplished by brief treatment with TRPV1 agonists followed by the removal of compromised TRPV1(+) neurons using density centrifugation. By differential microarray and sequencing (RNA-Seq) based expression profiling we compared the transcriptome of all cells within sensory ganglia versus the same cells lacking TRPV1 expressing neurons, which revealed 240 differentially expressed genes (adj. p<0.05, fold-change>1.5). Corroborating the specificity of the approach, many of these genes have been reported to be involved in noxious heat or pain sensitization. Beyond the expected enrichment of ion channels, we found the TRPV1 transcriptome to be enriched for GPCRs and other signaling proteins involved in adenosine, calcium, and phosphatidylinositol signaling. Quantitative population analysis using a recent High Content Screening (HCS) microscopy approach identified substantial heterogeneity of expressed target proteins even within TRPV1-positive neurons. Signaling components defined distinct further subgroups within the population of TRPV1-positive neurons. Analysis of one such signaling system showed that the pain sensitizing prostaglandin PGD2 activates DP1 receptors expressed predominantly on TRPV1(+) neurons. In contrast, we found the PGD2 producing prostaglandin D synthase to be expressed exclusively in myelinated large-diameter neurons lacking TRPV1, which suggests a novel paracrine neuron-neuron communication. Thus, subgroup analysis based on the elimination rather than enrichment of the subgroup of interest revealed proteins that define subclasses of TRPV1-positive neurons and suggests a novel paracrine circuit.
Collapse
Affiliation(s)
- Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, Cologne, Germany
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
- * E-mail:
| | - Carsten Wenzel
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Rene Buschow
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Robert Weissmann
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Andreas W. Kuss
- Department of Human Genetics, University Medicine Greifswald and Interfaculty Institute of Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, Experimental Anesthesiology and Pain Research, University Hospital of Cologne, Cologne, Germany
- Department for Human Molecular Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
59
|
Im DS. Intercellular Lipid Mediators and GPCR Drug Discovery. Biomol Ther (Seoul) 2014; 21:411-22. [PMID: 24404331 PMCID: PMC3879912 DOI: 10.4062/biomolther.2013.080] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 10/30/2013] [Accepted: 11/04/2013] [Indexed: 01/08/2023] Open
Abstract
G-protein-coupled receptors (GPCR) are the largest superfamily of receptors responsible for signaling between cells and tissues, and because they play important physiological roles in homeostasis, they are major drug targets. New technologies have been developed for the identification of new ligands, new GPCR functions, and for drug discovery purposes. In particular, intercellular lipid mediators, such as, lysophosphatidic acid and sphingosine 1-phosphate have attracted much attention for drug discovery and this has resulted in the development of fingolimod (FTY-720) and AM095. The discovery of new intercellular lipid mediators and their GPCRs are discussed from the perspective of drug development. Lipid GPCRs for lysophospholipids, including lysophosphatidylserine, lysophosphatidylinositol, lysophosphatidylcholine, free fatty acids, fatty acid derivatives, and other lipid mediators are reviewed.
Collapse
Affiliation(s)
- Dong-Soon Im
- Molecular Inflammation Research Center for Aging Intervention (MRCA) and College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea
| |
Collapse
|
60
|
MacKenzie AE, Caltabiano G, Kent TC, Jenkins L, McCallum JE, Hudson BD, Nicklin SA, Fawcett L, Markwick R, Charlton SJ, Milligan G. The antiallergic mast cell stabilizers lodoxamide and bufrolin as the first high and equipotent agonists of human and rat GPR35. Mol Pharmacol 2014; 85:91-104. [PMID: 24113750 PMCID: PMC3868900 DOI: 10.1124/mol.113.089482] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 10/10/2013] [Indexed: 12/18/2022] Open
Abstract
Lack of high potency agonists has restricted analysis of the G protein-coupled receptor GPR35. Moreover, marked variation in potency and/or affinity of current ligands between human and rodent orthologs of GPR35 has limited their productive use in rodent models of physiology. Based on the reported modest potency of the antiasthma and antiallergic ligands cromolyn disodium and nedocromil sodium, we identified the related compounds lodoxamide and bufrolin as high potency agonists of human GPR35. Unlike previously identified high potency agonists that are highly selective for human GPR35, both lodoxamide and bufrolin displayed equivalent potency at rat GPR35. Further synthetic antiallergic ligands, either sharing features of the standard surrogate agonist zaprinast, or with lodoxamide and bufrolin, were also shown to display agonism at either human or rat GPR35. Because both lodoxamide and bufrolin are symmetric di-acids, their potential mode of binding was explored via mutagenesis based on swapping between the rat and human ortholog nonconserved arginine residues within proximity of a key conserved arginine at position 3.36. Computational modeling and ligand docking predicted the contributions of different arginine residues, other than at 3.36, in human GPR35 for these two ligands and were consistent with selective loss of potency of either bufrolin or lodoxamide at distinct arginine mutants. The computational models also suggested that bufrolin and lodoxamide would display reduced potency at a low-frequency human GPR35 single nucleotide polymorphism. This prediction was confirmed experimentally.
Collapse
Affiliation(s)
- Amanda E MacKenzie
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology (A.E.M., G.C., L.J., J.E.M., B.D.H., G.M.) and Institute of Cardiovascular and Medical Sciences, (J.E.M., S.A.N.), College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom; Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Autonomous University of Barcelona, Bellaterra, Spain (G.C.); and Novartis Institutes for Biomedical Research, Horsham, United Kingdom (T.C.K., L.F., R.M., S.J.C.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Acyltransferases and transacylases that determine the fatty acid composition of glycerolipids and the metabolism of bioactive lipid mediators in mammalian cells and model organisms. Prog Lipid Res 2014; 53:18-81. [DOI: 10.1016/j.plipres.2013.10.001] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/20/2013] [Accepted: 10/01/2013] [Indexed: 12/21/2022]
|
62
|
Zhao P, Lane TR, Gao HGL, Hurst DP, Kotsikorou E, Le L, Brailoiu E, Reggio PH, Abood ME. Crucial positively charged residues for ligand activation of the GPR35 receptor. J Biol Chem 2013; 289:3625-38. [PMID: 24347166 DOI: 10.1074/jbc.m113.508382] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
GPR35 is a G protein-coupled receptor expressed in the immune, gastrointestinal, and nervous systems in gastric carcinomas and is implicated in heart failure and pain perception. We investigated residues in GPR35 responsible for ligand activation and the receptor structure in the active state. GPR35 contains numerous positively charged amino acids that face into the binding pocket that cluster in two distinct receptor regions, TMH3-4-5-6 and TMH1-2-7. Computer modeling implicated TMH3-4-5-6 for activation by the GPR35 agonists zaprinast and pamoic acid. Mutation results for the TMH1-2-7 region of GPR35 showed no change in ligand efficacies at the K1.32A, R2.65A, R7.33A, and K7.40A mutants. However, mutation of arginine residues in the TMH3-4-5-6 region (R4.60, R6.58, R3.36, R(164), and R(167) in the EC2 loop) had effects on signaling for one or both agonists tested. R4.60A resulted in a total ablation of agonist-induced activation in both the β-arrestin trafficking and ERK1/2 activation assays. R6.58A increased the potency of zaprinast 30-fold in the pERK assay. The R(167)A mutant decreased the potency of pamoic acid in the β-arrestin trafficking assay. The R(164)A and R(164)L mutants decreased potencies of both agonists. Similar trends for R6.58A and R(167)A were observed in calcium responses. Computer modeling showed that the R6.58A mutant has additional interactions with zaprinast. R3.36A did not express on the cell surface but was trapped in the cytoplasm. The lack of surface expression of R3.36A was rescued by a GPR35 antagonist, CID2745687. These results clearly show that R4.60, R(164), R(167), and R6.58 play crucial roles in the agonist initiated activation of GPR35.
Collapse
|
63
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: G protein-coupled receptors. Br J Pharmacol 2013; 170:1459-581. [PMID: 24517644 PMCID: PMC3892287 DOI: 10.1111/bph.12445] [Citation(s) in RCA: 509] [Impact Index Per Article: 42.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen PH Alexander
- School of Life Sciences, University of Nottingham Medical SchoolNottingham, NG7 2UH, UK
| | - Helen E Benson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Elena Faccenda
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Adam J Pawson
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | - Joanna L Sharman
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| | | | - John A Peters
- Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of DundeeDundee, DD1 9SY, UK
| | - Anthony J Harmar
- The University/BHF Centre for Cardiovascular Science, University of EdinburghEdinburgh, EH16 4TJ, UK
| |
Collapse
|
64
|
Berlinguer-Palmini R, Masi A, Narducci R, Cavone L, Maratea D, Cozzi A, Sili M, Moroni F, Mannaioni G. GPR35 activation reduces Ca2+ transients and contributes to the kynurenic acid-dependent reduction of synaptic activity at CA3-CA1 synapses. PLoS One 2013; 8:e82180. [PMID: 24312407 PMCID: PMC3843712 DOI: 10.1371/journal.pone.0082180] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 10/22/2013] [Indexed: 12/19/2022] Open
Abstract
Limited information is available on the brain expression and role of GPR35, a Gi/o coupled receptor activated by kynurenic acid (KYNA). In mouse cultured astrocytes, we detected GPR35 transcript using RT-PCR and we found that KYNA (0.1 to 100 µM) decreased forskolin (FRSK)-induced cAMP production (p<0.05). Both CID2745687 (3 µM, CID), a recently described GPR35 antagonist, and GPR35 gene silencing significantly prevented the action of KYNA on FRSK-induced cAMP production. In these cultures, we then evaluated whether GPR35 activation was able to modulate intracellular Ca2+ concentration ([Ca2+]i ) and [Ca2+]i fluxes. We found that both KYNA and zaprinast, a phosphodiesterase (PDE) inhibitor and GPR35 agonist, did not modify either basal or peaks of [Ca2+]i induced by challenging the cells with ATP (30 µM). However, the [Ca2+]i plateau phase following peak was significantly attenuated by these compounds in a store-operated Ca2+ channel (SOC)-independent manner. The activation of GPR35 by KYNA and zaprinast was also studied at the CA3-CA1 synapse in the rat hippocampus. Evoked excitatory post synaptic currents (eEPSCs) were recorded from CA1 pyramidal neurons in acute brain slices. The action of KYNA on GPR35 was pharmacologically isolated by using NMDA and α7 nicotinic receptor blockers and resulted in a significant reduction of eEPSC amplitude. This effect was prevented in the presence of CID. Moreover, zaprinast reduced eEPSC amplitude in a PDE5- and cGMP-independent mechanism, thus suggesting that glutamatergic transmission in this area is modulated by GPR35. In conclusion, GPR35 is expressed in cultured astrocytes and its activation modulates cAMP production and [Ca2+]i. GPR35 activation may contribute to KYNA effects on the previously reported decrease of brain extracellular glutamate levels and reduction of excitatory transmission.
Collapse
Affiliation(s)
- Rolando Berlinguer-Palmini
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Alessio Masi
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Roberto Narducci
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Leonardo Cavone
- Department of Health Science, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Dario Maratea
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Andrea Cozzi
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Maria Sili
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Flavio Moroni
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Guido Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
- * E-mail:
| |
Collapse
|
65
|
Holgate ST. Stratified approaches to the treatment of asthma. Br J Clin Pharmacol 2013; 76:277-91. [PMID: 23163316 DOI: 10.1111/bcp.12036] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 10/28/2012] [Indexed: 01/01/2023] Open
Abstract
While asthma is a chronic inflammatory disorder that is managed with inhaled controller and reliever drugs, there remains a large unmet need at the severe end of the disease spectrum. Here, a novel stratified approach to its treatment is reviewed, based upon identification of causal pathways, with a focus on biologics. A systematic search of the literature was made using Medline, and publications were selected on the basis of their relevance to the topic. Despite strong preclinical data for many of the more recently identified asthma targets, especially those relating to the T-helper 2 allergic pathway, clinical trials with specific biologics in moderate to severe asthma as a group have been disappointing. However, subgroup analyses based upon pathway-specific biomarkers suggest specific endotypes that are responsive. Application of hypothesis-free analytical approaches (the 'omics') to well-defined phenotypes is leading to the stratification of asthma along causal pathways. Refinement of this approach is likely to be the future for diagnosing and treating this group of diseases, as well as helping to define new causal pathways. The identification of responders and nonresponders to targeted asthma treatments provides a new way of looking at asthma diagnosis and management, especially with biologics that are costly. The identification of novel biomarkers linked to well-phenotyped patients provides a stratified approach to disease management beyond simple disease severity and involving causal pathways. In order to achieve this effectively, a closer interaction will be required between industry (therapeutic and diagnostic), academia and health workers.
Collapse
|
66
|
Ronkainen VP, Tuomainen T, Huusko J, Laidinen S, Malinen M, Palvimo JJ, Ylä-Herttuala S, Vuolteenaho O, Tavi P. Hypoxia-inducible factor 1-induced G protein-coupled receptor 35 expression is an early marker of progressive cardiac remodelling. Cardiovasc Res 2013; 101:69-77. [PMID: 24095869 DOI: 10.1093/cvr/cvt226] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS G protein-coupled receptor 35 (GPR35) has been characterized to be one of the genes that are up-regulated in human heart failure. Since mechanisms controlling GPR35 expression are not known, we investigated the regulation of GPR35 gene and protein expression in cardiac myocytes and in the mouse models of cardiac failure. METHODS AND RESULTS In cardiac myocytes, GPR35 gene expression was found to be exceptionally sensitive to hypoxia and induced by hypoxia-inducible factor-1 (HIF-1) activation. HIF-1-dependent regulation was established by genetic (HIF-1/VP16, Inhibitory Per/Arnt/Sim domain protein) and chemical [desferrioxamine (DFO)] modulation of the HIF-1 pathway and further confirmed by mutation analysis of the GPR35 promoter and by demonstrating direct binding of endogenous HIF-1 to the gene promoter. Hypoxia increased the number and density of GPR35 receptors on the cardiomyocyte cell membranes. Chemical GPR35 agonist Zaprinast caused GPR35 activation and receptor internalization in cardiac myocytes. In addition, overexpressed GPR35 disrupted actin cytoskeleton arrangement and caused morphological changes in cultured cardiomyocytes. GPR35 gene and protein expressions were also induced in mouse models of cardiac failure; the acute phase of myocardial infarction and during the compensatory and decompensatory phase of pressure-load induced cardiac hypertrophy. CONCLUSIONS Cardiac expression of GPR35 is regulated by hypoxia through activation of HIF-1. The expression of GPR35 in mouse models of cardiac infarction and pressure load suggests that GPR35 could be used as an early marker of progressive cardiac failure.
Collapse
Affiliation(s)
- Veli-Pekka Ronkainen
- Department of Physiology, Institute of Biomedicine and Biocenter Oulu, University of Oulu, FI-90014, Oulu, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Amisten S, Salehi A, Rorsman P, Jones PM, Persaud SJ. An atlas and functional analysis of G-protein coupled receptors in human islets of Langerhans. Pharmacol Ther 2013; 139:359-91. [PMID: 23694765 DOI: 10.1016/j.pharmthera.2013.05.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 12/17/2022]
Abstract
G-protein coupled receptors (GPCRs) regulate hormone secretion from islets of Langerhans, and recently developed therapies for type-2 diabetes target islet GLP-1 receptors. However, the total number of GPCRs expressed by human islets, as well as their function and interactions with drugs, is poorly understood. In this review we have constructed an atlas of all GPCRs expressed by human islets: the 'islet GPCRome'. We have used this atlas to describe how islet GPCRs interact with their endogenous ligands, regulate islet hormone secretion, and interact with drugs known to target GPCRs, with a focus on drug/receptor interactions that may affect insulin secretion. The islet GPCRome consists of 293 GPCRs, a majority of which have unknown effects on insulin, glucagon and somatostatin secretion. The islet GPCRs are activated by 271 different endogenous ligands, at least 131 of which are present in islet cells. A large signalling redundancy was also found, with 119 ligands activating more than one islet receptor. Islet GPCRs are also the targets of a large number of clinically used drugs, and based on their coupling characteristics and effects on receptor signalling we identified 107 drugs predicted to stimulate and 184 drugs predicted to inhibit insulin secretion. The islet GPCRome highlights knowledge gaps in the current understanding of islet GPCR function, and identifies GPCR/ligand/drug interactions that might affect insulin secretion, which are important for understanding the metabolic side effects of drugs. This approach may aid in the design of new safer therapeutic agents with fewer detrimental effects on islet hormone secretion.
Collapse
Affiliation(s)
- Stefan Amisten
- Diabetes Research Group, Division of Diabetes & Nutritional Sciences, King's College London School of Medicine, London, UK.
| | | | | | | | | |
Collapse
|
68
|
Thimm D, Funke M, Meyer A, Müller CE. 6-Bromo-8-(4-[3H]methoxybenzamido)-4-oxo-4H-chromene-2-carboxylic Acid: A Powerful Tool for Studying Orphan G Protein-Coupled Receptor GPR35. J Med Chem 2013; 56:7084-99. [DOI: 10.1021/jm4009373] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dominik Thimm
- PharmaCenter Bonn, Pharmaceutical
Institute, Pharmaceutical
Chemistry I, University of Bonn, An der
Immenburg 4, D-53121 Bonn, Germany
| | - Mario Funke
- PharmaCenter Bonn, Pharmaceutical
Institute, Pharmaceutical
Chemistry I, University of Bonn, An der
Immenburg 4, D-53121 Bonn, Germany
| | - Anne Meyer
- PharmaCenter Bonn, Pharmaceutical
Institute, Pharmaceutical
Chemistry I, University of Bonn, An der
Immenburg 4, D-53121 Bonn, Germany
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical
Institute, Pharmaceutical
Chemistry I, University of Bonn, An der
Immenburg 4, D-53121 Bonn, Germany
| |
Collapse
|
69
|
Davenport AP, Alexander SPH, Sharman JL, Pawson AJ, Benson HE, Monaghan AE, Liew WC, Mpamhanga CP, Bonner TI, Neubig RR, Pin JP, Spedding M, Harmar AJ. International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands. Pharmacol Rev 2013; 65:967-86. [PMID: 23686350 PMCID: PMC3698937 DOI: 10.1124/pr.112.007179] [Citation(s) in RCA: 235] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In 2005, the International Union of Basic and Clinical Pharmacology Committee on Receptor Nomenclature and Drug Classification (NC-IUPHAR) published a catalog of all of the human gene sequences known or predicted to encode G protein-coupled receptors (GPCRs), excluding sensory receptors. This review updates the list of orphan GPCRs and describes the criteria used by NC-IUPHAR to recommend the pairing of an orphan receptor with its cognate ligand(s). The following recommendations are made for new receptor names based on 11 pairings for class A GPCRs: hydroxycarboxylic acid receptors [HCA₁ (GPR81) with lactate, HCA₂ (GPR109A) with 3-hydroxybutyric acid, HCA₃ (GPR109B) with 3-hydroxyoctanoic acid]; lysophosphatidic acid receptors [LPA₄ (GPR23), LPA₅ (GPR92), LPA₆ (P2Y5)]; free fatty acid receptors [FFA4 (GPR120) with omega-3 fatty acids]; chemerin receptor (CMKLR1; ChemR23) with chemerin; CXCR7 (CMKOR1) with chemokines CXCL12 (SDF-1) and CXCL11 (ITAC); succinate receptor (SUCNR1) with succinate; and oxoglutarate receptor [OXGR1 with 2-oxoglutarate]. Pairings are highlighted for an additional 30 receptors in class A where further input is needed from the scientific community to validate these findings. Fifty-seven human class A receptors (excluding pseudogenes) are still considered orphans; information has been provided where there is a significant phenotype in genetically modified animals. In class B, six pairings have been reported by a single publication, with 28 (excluding pseudogenes) still classified as orphans. Seven orphan receptors remain in class C, with one pairing described by a single paper. The objective is to stimulate research into confirming pairings of orphan receptors where there is currently limited information and to identify cognate ligands for the remaining GPCRs. Further information can be found on the IUPHAR Database website (http://www.iuphar-db.org).
Collapse
Affiliation(s)
- Anthony P Davenport
- Clinical Pharmacology Unit, University of Cambridge, Level 6, Centre for Clinical Investigation, Box 110, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Funke M, Thimm D, Schiedel AC, Müller CE. 8-Benzamidochromen-4-one-2-carboxylic acids: potent and selective agonists for the orphan G protein-coupled receptor GPR35. J Med Chem 2013; 56:5182-97. [PMID: 23713606 DOI: 10.1021/jm400587g] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
8-Amido-chromen-4-one-2-carboxylic acid derivatives were identified as novel agonists at the G protein-coupled orphan receptor GPR35. They were characterized by a β-arrestin recruitment assay and optimized to obtain agonists with nanomolar potency for the human GPR35. The compounds were found to exhibit high selectivity versus the related GPR55. The most potent agonists were 6-bromo-8-(4-methoxybenzamido)-4-oxo-4H-chromene-2-carboxylic acid (85, EC50 12.1 nM) and 6-bromo-8-(2-chloro-4-methoxybenzamido)-4-oxo-4H-chromene-2-carboxylic acid (90, EC50 11.1 nM), both of which were >1700-fold selective versus GPR55. Most compounds were considerably less potent at rat and mouse than at human GPR35. 6-Bromo-8-(2-methoxybenzamido)-4-oxo-4H-chromene-2-carboxylic acid (87) was the only derivative that activated GPR35 of all three species at similar, low micromolar concentration. Compounds 85 and 90 are the most potent agonists at the human GPR35 known to date and might thus serve as powerful pharmacological tools to further elucidate the receptor's (patho)physiological role and its potential as a future drug target.
Collapse
Affiliation(s)
- Mario Funke
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Chemistry I, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany
| | | | | | | |
Collapse
|
71
|
Yamashita A, Oka S, Tanikawa T, Hayashi Y, Nemoto-Sasaki Y, Sugiura T. The actions and metabolism of lysophosphatidylinositol, an endogenous agonist for GPR55. Prostaglandins Other Lipid Mediat 2013; 107:103-16. [PMID: 23714700 DOI: 10.1016/j.prostaglandins.2013.05.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 12/12/2022]
Abstract
Lysophosphatidylinositol (LPI) is a subspecies of lysophospholipid and is assumed to be not only a degradation product of phosphatidylinositol (PI), but also a bioactive lysophospholipid mediator. However, not much attention has been directed toward LPI compared to lysophosphatidic acid (LPA), since the receptor for LPI has not been identified. During screening for an agonist for the orphan G protein coupled receptor GPR55, we identified LPI, 2-arachidonoyl LPI in particular, as an agonist for GPR55. Our efforts to identify an LPI receptor facilitated research on LPI as a lipid messenger. In addition, we also found that DDHD1, previously identified as phosphatidic acid-preferring phospholipase A1, was one of the synthesizing enzymes of 2-arachidonoyl LPI. Here, we summarized the background for discovering the LPI receptor, and the actions/metabolism of LPI. We also referred to the biosynthesis of PI, a 1-stearoyl-2-arachidonoyl species, since the molecule is the precursor of 2-arachidonoyl LPI. Furthermore, we discussed physiological and/or pathophysiological processes involving LPI and GPR55, including the relevance of LPI-GPR55 and cannabinoids, since GPR55 was previously postulated to be another cannabinoid receptor. Although there is no doubt that GPR55 is the LPI receptor, we should re-consider whether or not GPR55 is in fact another cannabinoid receptor.
Collapse
Affiliation(s)
- Atsushi Yamashita
- Faculty of Pharma-Sciences, Teikyo University, Kaga 2-11-1, Itabashi-Ku, Tokyo 173-8605, Japan.
| | | | | | | | | | | |
Collapse
|
72
|
Deng H, Fang Y. The Three Catecholics Benserazide, Catechol and Pyrogallol are GPR35 Agonists. Pharmaceuticals (Basel) 2013; 6:500-509. [PMID: 24276120 PMCID: PMC3816702 DOI: 10.3390/ph6040500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 03/20/2013] [Accepted: 04/01/2013] [Indexed: 11/16/2022] Open
Abstract
Nearly 1% of all clinically used drugs are catecholics, a family of catechol-containing compounds. Using label-free dynamic mass redistribution and Tango β-arrestin translocation assays, we show that several catecholics, including benserazide, catechol, 3-methoxycatechol, pyrogallol, (+)-taxifolin and fenoldopam, display agonistic activity against GPR35.
Collapse
Affiliation(s)
- Huayun Deng
- Biochemical Technologies, Science and Technology Division, Corning Inc., Corning, NY 14831, USA.
| | | |
Collapse
|
73
|
Hilger A, Schramm C, Pennimpede T, Wittler L, Dworschak GC, Bartels E, Engels H, Zink AM, Degenhardt F, Müller AM, Schmiedeke E, Grasshoff-Derr S, Märzheuser S, Hosie S, Holland-Cunz S, Wijers CHW, Marcelis CLM, van Rooij IALM, Hildebrandt F, Herrmann BG, Nöthen MM, Ludwig M, Reutter H, Draaken M. De novo microduplications at 1q41, 2q37.3, and 8q24.3 in patients with VATER/VACTERL association. Eur J Hum Genet 2013; 21:1377-82. [PMID: 23549274 DOI: 10.1038/ejhg.2013.58] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Revised: 02/25/2013] [Accepted: 02/26/2013] [Indexed: 11/09/2022] Open
Abstract
The acronym VATER/VACTERL association describes the combination of at least three of the following congenital anomalies: vertebral defects (V), anorectal malformations (A), cardiac defects (C), tracheoesophageal fistula with or without esophageal atresia (TE), renal malformations (R), and limb defects (L). We aimed to identify highly penetrant de novo copy number variations (CNVs) that contribute to VATER/VACTERL association. Array-based molecular karyotyping was performed in a cohort of 41 patients with VATER/VACTERL association and 6 patients with VATER/VACTERL-like phenotype including all of the patients' parents. Three de novo CNVs were identified involving chromosomal regions 1q41, 2q37.3, and 8q24.3 comprising one (SPATA17), two (CAPN10, GPR35), and three (EPPK1, PLEC, PARP10) genes, respectively. Pre-existing data from the literature prompted us to choose GPR35 and EPPK1 for mouse expression studies. Based on these studies, we prioritized GPR35 for sequencing analysis in an extended cohort of 192 patients with VATER/VACTERL association and VATER/VACTERL-like phenotype. Although no disease-causing mutation was identified, our mouse expression studies suggest GPR35 to be involved in the development of the VATER/VACTERL phenotype. Follow-up of GPR35 and the other genes comprising the identified duplications is warranted.
Collapse
Affiliation(s)
- Alina Hilger
- 1] Institute of Human Genetics, University of Bonn, Bonn, Germany [2] Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany [3] Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Neetoo-Isseljee Z, MacKenzie AE, Southern C, Jerman J, McIver EG, Harries N, Taylor DL, Milligan G. High-throughput identification and characterization of novel, species-selective GPR35 agonists. J Pharmacol Exp Ther 2013; 344:568-78. [PMID: 23262279 PMCID: PMC3583504 DOI: 10.1124/jpet.112.201798] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 12/20/2012] [Indexed: 12/26/2022] Open
Abstract
Drugs targeting the orphan receptor GPR35 have potential therapeutic application in a number of disease areas, including inflammation, metabolic disorders, nociception, and cardiovascular disease. Currently available surrogate GPR35 agonists identified from pharmacologically relevant compound libraries have limited utility due to the likelihood of off-target effects in vitro and in vivo and the variable potency that such ligands exhibit across species. We sought to identify and characterize novel GPR35 agonists to facilitate studies aimed at defining the physiologic role of GPR35. PathHunter β-arrestin recruitment technology was validated as a human GPR35 screening assay, and a high-throughput screen of 100,000 diverse low molecular weight compounds was conducted. Confirmed GPR35 agonists from five distinct chemotypes were selected for detailed characterization using both β-arrestin recruitment and G protein-dependent assays and each of the human, mouse, and rat GPR35 orthologs. These studies identified 4-{(Z)-[(2Z)-2-(2-fluorobenzylidene)-4-oxo-1,3-thiazolidin-5-ylidene]methyl}benzoic acid (compound 1) as the highest potency full agonist of human GPR35 yet described. As with certain other GPR35 agonists, compound 1 was markedly selective for human GPR35, but displayed elements of signal bias between β-arrestin-2 and G protein-dependent assays. Compound 1 also displayed competitive behavior when assessed against the human GPR35 antagonist, ML-145 (2-hydroxy-4-[4-(5Z)-5-[(E)-2-methyl-3-phenylprop-2-enylidene]-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl]butanoylamino]benzoic acid). Of the other chemotypes studied, compounds 2 and 3 were selective for the human receptor, but compounds 4 and 5 demonstrated similar activity at human, rat, and mouse GPR35 orthologs. Further characterization of these compounds and related analogs is likely to facilitate a better understanding of GPR35 in health and disease.
Collapse
Affiliation(s)
- Zaynab Neetoo-Isseljee
- Medical Research Council Technology Centre for Therapeutics Discovery, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
75
|
Southern C, Cook JM, Neetoo-Isseljee Z, Taylor DL, Kettleborough CA, Merritt A, Bassoni DL, Raab WJ, Quinn E, Wehrman TS, Davenport AP, Brown AJ, Green A, Wigglesworth MJ, Rees S. Screening β-arrestin recruitment for the identification of natural ligands for orphan G-protein-coupled receptors. ACTA ACUST UNITED AC 2013; 18:599-609. [PMID: 23396314 DOI: 10.1177/1087057113475480] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A variety of G-protein-coupled receptor (GPCR) screening technologies have successfully partnered a number of GPCRs with their cognate ligands. GPCR-mediated β-arrestin recruitment is now recognized as a distinct intracellular signaling pathway, and ligand-receptor interactions may show a bias toward β-arrestin over classical GPCR signaling pathways. We hypothesized that the failure to identify native ligands for the remaining orphan GPCRs may be a consequence of biased β-arrestin signaling. To investigate this, we assembled 10 500 candidate ligands and screened 82 GPCRs using PathHunter β-arrestin recruitment technology. High-quality screening assays were validated by the inclusion of liganded receptors and the detection and confirmation of these established ligand-receptor pairings. We describe a candidate endogenous orphan GPCR ligand and a number of novel surrogate ligands. However, for the majority of orphan receptors studied, measurement of β-arrestin recruitment did not lead to the identification of cognate ligands from our screening sets. β-Arrestin recruitment represents a robust GPCR screening technology, and ligand-biased signaling is emerging as a therapeutically exploitable feature of GPCR biology. The identification of cognate ligands for the orphan GPCRs and the extent to which receptors may exist to preferentially signal through β-arrestin in response to their native ligand remain to be determined.
Collapse
Affiliation(s)
- Craig Southern
- Medical Research Council Technology, Centre for Therapeutic Discovery, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Morishige J, Uto Y, Hori H, Satouchi K, Yoshiomoto T, Tokumura A. Lysophosphatidic acid produced by hen egg white lysophospholipase D induces vascular development on extraembryonic membranes. Lipids 2013; 48:251-62. [PMID: 23381130 DOI: 10.1007/s11745-013-3765-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/09/2013] [Indexed: 01/23/2023]
Abstract
Lysophosphatidic acid (lysoPtdOH), a lysophospholipid mediator, exerts diverse physiological effects, including angiogenesis, through its specific G-protein-coupled receptors. Previously, we showed that unfertilized hen egg white contains polyunsaturated fatty acid-rich lysoPtdOH and lysophospholipase D (lysoPLD). Here, we examined whether lysoPtdOH was produced by lysoPLD in the presence and absence of a hen fertilized ovum and what the physiological role of lysoPtdOH in hen egg white is. Mass spectrometry showed that fertilized hen egg white contained about 8 μM lysoPtdOH before incubation with an ovum, mainly comprised of 18:1- (12.6 %), 18:2- (37.8 %) and 20:4-molecular species (41.5 %). In an early gestation period, the lysoPtdOH was increased up to 9.6 μM, concomitant with a decrease in the level of polyunsaturated lysophosphatidylcholine (lysoPtdCho). Moreover, lysoPtdOH-degrading activities were found in egg white and the vitelline membrane, showing that these enzymes control lysoPtdOH levels in egg white. In an egg yolk angiogenesis assay, two lysoPtdOH receptor antagonists, Ki16425 and N-palmitoyl serine phosphoric acid (NASP), inhibited blood vessel formation induced by exogenously added 18:1-lysoPtdOH and its precursor lysoPtdCho on the hen yolk sac. Ki16425 and NASP also inhibited blood vessel formation in the chorioallantoic membrane (CAM). Furthermore, the relatively higher levels of LPA₁, LPA₂, LPA₄ and LPA₆ mRNA were present in the yolk sac and CAM. These results suggest that lysoPtdOH produced from lysoPtdCho by the action of lysoPLD in hen egg white is involved in the formation of blood vessel networks through several lysoPtdOH receptors on various extraembryonic membranes, including the yolk sac membrane and CAM.
Collapse
Affiliation(s)
- Junichi Morishige
- Department of Pharmaceutical Health Chemistry, Institute of Health Biosciences, University of Tokushima Graduate School, 1-78-1 Shomachi, Tokushima 770-8505, Japan
| | | | | | | | | | | |
Collapse
|
77
|
Brindley DN, Lin FT, Tigyi GJ. Role of the autotaxin-lysophosphatidate axis in cancer resistance to chemotherapy and radiotherapy. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1831:74-85. [PMID: 22954454 PMCID: PMC3584168 DOI: 10.1016/j.bbalip.2012.08.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/20/2012] [Accepted: 08/21/2012] [Indexed: 02/01/2023]
Abstract
High expression of autotaxin in cancers is often associated with increased tumor progression, angiogenesis and metastasis. This is explained mainly since autotaxin produces the lipid growth factor, lysophosphatidate (LPA), which stimulates cell division, survival and migration. It has recently become evident that these signaling effects of LPA also produce resistance to chemotherapy and radiation-induced cell death. This results especially from the stimulation of LPA(2) receptors, which depletes the cell of Siva-1, a pro-apoptotic signaling protein and stimulates prosurvival kinase pathways through a mechanism mediated via TRIP-6. LPA signaling also increases the formation of sphingosine 1-phosphate, a pro-survival lipid. At the same time, LPA decreases the accumulation of ceramides, which are used in radiation therapy and by many chemotherapeutic agents to stimulate apoptosis. The signaling actions of extracellular LPA are terminated by its dephosphorylation by a family of lipid phosphate phosphatases (LPP) that act as ecto-enzymes. In addition, lipid phosphate phoshatase-1 attenuates signaling downstream of the activation of both LPA receptors and receptor tyrosine kinases. This makes many cancer cells hypersensitive to the action of various growth factors since they often express low LPP1/3 activity. Increasing our understanding of the complicated signaling pathways that are used by LPA to stimulate cell survival should identify new therapeutic targets that can be exploited to increase the efficacy of chemo- and radio-therapy. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
Affiliation(s)
- David N Brindley
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
78
|
Alteration of fatty-acid-metabolizing enzymes affects mitochondrial form and function in hereditary spastic paraplegia. Am J Hum Genet 2012. [PMID: 23176821 DOI: 10.1016/j.ajhg.2012.11.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is considered one of the most heterogeneous groups of neurological disorders, both clinically and genetically. The disease comprises pure and complex forms that clinically include slowly progressive lower-limb spasticity resulting from degeneration of the corticospinal tract. At least 48 loci accounting for these diseases have been mapped to date, and mutations have been identified in 22 genes, most of which play a role in intracellular trafficking. Here, we identified mutations in two functionally related genes (DDHD1 and CYP2U1) in individuals with autosomal-recessive forms of HSP by using either the classical positional cloning or a combination of whole-genome linkage mapping and next-generation sequencing. Interestingly, three subjects with CYP2U1 mutations presented with a thin corpus callosum, white-matter abnormalities, and/or calcification of the basal ganglia. These genes code for two enzymes involved in fatty-acid metabolism, and we have demonstrated in human cells that the HSP pathophysiology includes alteration of mitochondrial architecture and bioenergetics with increased oxidative stress. Our combined results focus attention on lipid metabolism as a critical HSP pathway with a deleterious impact on mitochondrial bioenergetic function.
Collapse
|
79
|
Jenkins L, Harries N, Lappin JE, MacKenzie AE, Neetoo-Isseljee Z, Southern C, McIver EG, Nicklin SA, Taylor DL, Milligan G. Antagonists of GPR35 display high species ortholog selectivity and varying modes of action. J Pharmacol Exp Ther 2012; 343:683-95. [PMID: 22967846 PMCID: PMC3500541 DOI: 10.1124/jpet.112.198945] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/10/2012] [Indexed: 02/05/2023] Open
Abstract
Variation in pharmacology and function of ligands at species orthologs can be a confounding feature in understanding the biology and role of poorly characterized receptors. Substantial selectivity in potency of a number of GPR35 agonists has previously been demonstrated between human and rat orthologs of this G protein-coupled receptor. Via a bioluminescence resonance energy transfer-based assay of induced interactions between GPR35 and β-arrestin-2, addition of the mouse ortholog to such studies indicated that, as for the rat ortholog, murine GPR35 displayed very low potency for pamoate, whereas potency for the reference GPR35 agonist zaprinast was intermediate between the rat and human orthologs. This pattern was replicated in receptor internalization and G protein activation assays. The effectiveness and mode of action of two recently reported GPR35 antagonists, methyl-5-[(tert-butylcarbamothioylhydrazinylidene)methyl]-1-(2,4-difluorophenyl)pyrazole-4-carboxylate (CID-2745687) and 2-hydroxy-4-[4-(5Z)-5-[(E)-2-methyl-3-phenylprop-2-enylidene]-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl]butanoylamino)benzoic acid (ML-145), were investigated. Both CID-2745687 and ML-145 competitively inhibited the effects at human GPR35 of cromolyn disodium and zaprinast, two agonists that share an overlapping binding site. By contrast, although ML-145 also competitively antagonized the effects of pamoate, CID-2745687 acted in a noncompetitive fashion. Neither ML-145 nor CID-2745687 was able to effectively antagonize the agonist effects of either zaprinast or cromolyn disodium at either rodent ortholog of GPR35. These studies demonstrate that marked species selectivity of ligands at GPR35 is not restricted to agonists and considerable care is required to select appropriate ligands to explore the function of GPR35 in nonhuman cells and tissues.
Collapse
Affiliation(s)
- Laura Jenkins
- Molecular Pharmacology Group, Institute of Molecular, Cell, and Systems Biology, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Schicho R, Storr M. A potential role for GPR55 in gastrointestinal functions. Curr Opin Pharmacol 2012; 12:653-8. [PMID: 23063456 PMCID: PMC3660623 DOI: 10.1016/j.coph.2012.09.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 07/29/2012] [Accepted: 09/19/2012] [Indexed: 01/06/2023]
Abstract
Despite sharing little homology (10–15%) with cannabinoid-1 (CB1) and cannabinoid-2 (CB2) receptors, the G protein-coupled receptor 55 (GPR55) was initially thought to be a new member of the cannabinoid receptor family. Apart from being activated by various exogenous cannabinoids, GPR55 is also activated by endocannabinoids like anandamide, which is found in organs with high GPR55 expression such as the brain and the gastrointestinal (GI) tract. The phylogenetic distance to the classical CB receptors and its pharmacological responsiveness to certain cannabinoids suggests that GPR55 may constitute a novel class of cannabinoid receptors. GPR55 influences mechanisms in the nervous system, vasculature, kidney and bone. Recent research revealed that GPR55 is also involved in cancer development and inflammatory pain. Because of its presence in the GI tract, several studies have started to focus on the involvement of GPR55 in the physiology and pathophysiology of the gut. The following article intends to discuss the potential role of GPR55 in GI functions.
Collapse
Affiliation(s)
- Rudolf Schicho
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | | |
Collapse
|
81
|
Current progress in non-Edg family LPA receptor research. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1831:33-41. [PMID: 22902318 DOI: 10.1016/j.bbalip.2012.08.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 08/01/2012] [Accepted: 08/02/2012] [Indexed: 01/08/2023]
Abstract
Lysophosphatidic acid (LPA) is the simplest phospholipid yet possesses myriad biological functions. Until 2003, the functions of LPA were thought to be elicited exclusively by three subtypes of the endothelial differentiation gene (Edg) family of G protein-coupled receptors - LPA(1), LPA(2), and LPA(3). However, several biological functions of LPA could not be assigned to any of these receptors indicating the existence of one or more additional LPA receptor(s). More recently, the discovery of a second cluster of LPA receptors which includes LPA(4), LPA(5), and LPA(6) has paved the way for new avenues of LPA research. Analyses of these non-Edg family LPA receptors have begun to fill in gaps to understand biological functions of LPA such as platelet aggregation and vascular development that could not be ascribed to classical Edg family LPA receptors and are also unveiling new biological functions. Here we review recent progress in the non-Edg family LPA receptor research, with special emphasis on the pharmacology, signaling, and physiological roles of this family of receptors. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.
Collapse
|
82
|
Zhao P, Abood ME. GPR55 and GPR35 and their relationship to cannabinoid and lysophospholipid receptors. Life Sci 2012; 92:453-7. [PMID: 22820167 DOI: 10.1016/j.lfs.2012.06.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/25/2012] [Accepted: 06/27/2012] [Indexed: 01/23/2023]
Abstract
This review presents a summary of what is known about the G-protein coupled receptors GPR35 and GPR55 and their potential characterization as lysophospholipid or cannabinoid receptors, respectively. Both GPR35 and GPR55 have been implicated as important targets in pain and cancer, and additional diseases as well. While kynurenic acid was suggested to be an endogenous ligand for GPR35, so was 2-arachidonoyl lysophosphatidic acid (LPA). Similarly, GPR55 has been suggested to be a cannabinoid receptor, but is quite clearly also a receptor for lysophosphatidylinositol. Interestingly, 2-arachidonyl glycerol (2-AG), an endogenous ligand for cannabinoid receptors, can be metabolized to 2-arachidonoyl LPA through the action of a monoacylglycerol kinase; the reverse reaction has also been demonstrated. Thus, it appears that mutual interconversion is possible between 2-arachidonoyl LPA and 2-AG within a cell, though the direction of the reaction may be site-dependent. The GPR55 natural ligand, 2-arachidonoyl LPI, can be degraded either to 2-AG by phospholipase C or to 2-arachidonoyl LPA by phospholipase D. Thus, GPR35, GPR55 and CB receptors are linked together through their natural ligand conversions. Additional agonists and antagonists have been identified for both GPR35 and GPR55, which will facilitate the future study of these receptors with respect to their physiological function. Potential therapeutic targets include pain, cancer, metabolic diseases and drug addiction.
Collapse
MESH Headings
- Animals
- Cannabinoids/pharmacology
- Cannabinoids/therapeutic use
- Gene Expression
- Humans
- Ligands
- Receptors, Cannabinoid/drug effects
- Receptors, Cannabinoid/genetics
- Receptors, Cannabinoid/physiology
- Receptors, G-Protein-Coupled/biosynthesis
- Receptors, G-Protein-Coupled/drug effects
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/physiology
- Receptors, Lysophospholipid/drug effects
- Receptors, Lysophospholipid/genetics
- Receptors, Lysophospholipid/physiology
Collapse
Affiliation(s)
- Pingwei Zhao
- Center for Substance Abuse Research and Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA
| | | |
Collapse
|
83
|
Deng H, Fang Y. Synthesis and Agonistic Activity at the GPR35 of 5,6-Dihydroxyindole-2-carboxylic Acid Analogues. ACS Med Chem Lett 2012; 3:550-4. [PMID: 24900508 DOI: 10.1021/ml300076u] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 06/06/2012] [Indexed: 11/29/2022] Open
Abstract
5,6-Dihydroxyindole-2-carboxylic acid (DHICA), an intermediate of melanin synthesis and an eumelanin building block, was recently discovered to be a GPR35 agonist with moderate potency. Here, we report the synthesis and pharmacological characterization of a series of DHICA analogues against GPR35 using both label-free dynamic mass redistribution and Tango β-arrestin translocation assays. This led to identification of novel GPR35 agonists with improved potency and/or having biased agonism.
Collapse
Affiliation(s)
- Huayun Deng
- Biochemical Technologies, Science and Technology Division, Corning Inc., Corning, New York 14831, United States
| | - Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning Inc., Corning, New York 14831, United States
| |
Collapse
|
84
|
Kozian DH, Evers A, Florian P, Wonerow P, Joho S, Nazare M. Selective non-lipid modulator of LPA5 activity in human platelets. Bioorg Med Chem Lett 2012; 22:5239-43. [PMID: 22801643 DOI: 10.1016/j.bmcl.2012.06.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/15/2012] [Accepted: 06/18/2012] [Indexed: 02/04/2023]
Abstract
Lysophosphatidic acid (LPA) is a potent activator of human platelets in vitro. Recently, the G protein-coupled receptor LPA5/GPR92 has been identified to be the relevant LPA receptor responsible for the activation of human platelets by LPA. In a high-throughput screening campaign we identified a diphenyl pyrazole carboxylic acid as a small-molecule inhibitor for LPA5. Confirmation for the specificity of this small molecule was achieved in human platelets as the relevant cellular in vitro model. We could confirm using antagonists for alternative LPA receptors that we identified in our work the first non-lipid, small-molecule inhibitor for LPA5/GPR92 specifically inhibiting LPA-mediated platelet activation in vitro.
Collapse
Affiliation(s)
- Detlef H Kozian
- Sanofi-Aventis Deutschland GmbH, Industriepark Hoechst, 65962 Frankfurt, Germany.
| | | | | | | | | | | |
Collapse
|
85
|
Holgate ST. Trials and tribulations in identifying new biologic treatments for asthma. Trends Immunol 2012; 33:238-46. [PMID: 22436378 DOI: 10.1016/j.it.2012.02.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2011] [Revised: 01/29/2012] [Accepted: 02/13/2012] [Indexed: 12/14/2022]
Abstract
Drugs used to treat asthma have a long history, beginning with the bronchodilators and evolving into compounds that suppress airway inflammation. Guidelines for treatment of asthma are largely based on disease severity and control, rather than underlying mechanisms. However, identification of biomarkers in the causal pathways of asthma is enabling responders to be differentiated from nonresponders. Initial efforts have focused on biomarkers of the T helper (Th)2 pathway because this is a target of novel therapeutics. A concerted effort is now needed to substratify asthma beyond Th2 pathways, and using appropriate biomarkers, to target only those patients likely to respond to a specific biologic. To achieve this goal, a different type of relationship is needed between academia and industry, and also within industry, to promote collaboration in the precompetitive space.
Collapse
Affiliation(s)
- Stephen T Holgate
- Inflammation, Infection and Immunity Division, Sir Henry Wellcome Laboratories, Mail Point 810, Level F, South Block, Southampton General Hospital, Southampton SO16 6YD, UK.
| |
Collapse
|
86
|
Abstract
Both kynurenic acid and 2-acyl lysophosphatidic acid have been postulated to be the endogenous agonists of GPR35. However, controversy remains whether alternative endogenous agonists exist. The molecular targets accounted for many nongenomic actions of thyroid hormones are mostly unknown. Here we report the agonist activity of multiple tyrosine metabolites at the GPR35. Tyrosine metabolism intermediates that contain carboxylic acid and/or catechol functional groups were first selected. Whole cell dynamic mass redistribution (DMR) assays enabled by label-free optical biosensor were then used to characterize their agonist activity in native HT-29. Molecular assays including β-arrestin translocation, ERK phosphorylation and receptor internalization confirmed that GPR35 functions as a receptor for 5,6-dihydroxyindole-2-carboxylic acid, 3,3',5'-triiodothyronine, 3,3',5-triiodothyronine, gentisate, rosmarinate, and 3-nitrotyrosine. These results suggest that multiple tyrosine metabolites are alternative endogenous ligands of GPR35, and GPR35 may represent a druggable target for treating certain diseases associated with abnormality of tyrosine metabolism.
Collapse
|
87
|
Hu H, Deng H, Fang Y. Label-free phenotypic profiling identified D-luciferin as a GPR35 agonist. PLoS One 2012; 7:e34934. [PMID: 22511974 PMCID: PMC3325260 DOI: 10.1371/journal.pone.0034934] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 03/09/2012] [Indexed: 11/18/2022] Open
Abstract
Fluorescent and luminescent probes are essential to both in vitro molecular assays and in vivo imaging techniques, and have been extensively used to measure biological function. However, little is known about the biological activity, thus potential interferences with the assay results, of these probe molecules. Here we show that D-luciferin, one of the most widely used bioluminescence substrates, is a partial agonist for G protein-coupled receptor-35 (GPR35). Label-free phenotypic profiling using dynamic mass redistribution (DMR) assays showed that D-luciferin led to a DMR signal in native HT-29 cells, whose characteristics are similar to those induced by known GPR35 agonists including zaprinast and pamoic acid. DMR assays further showed that D-luciferin is a partial agonist competitive to several known GPR35 agonists and antagonists. D-luciferin was found to cause the phosphorylation of ERK that was suppressed by known GPR35 antagonists, and also result in β-arrestin translocation signal but with low efficacy. These results not only suggest that D-luciferin is a partial agonist of GPR35, but also will evoke careful interpretation of biological data obtained using molecular and in vivo imaging assays when these probe molecules are used.
Collapse
Affiliation(s)
| | | | - Ye Fang
- Biochemical Technologies, Science and Technology Division, Corning Inc., Corning, New York, United States of America
| |
Collapse
|
88
|
Deng H, Hu H, Ling S, Ferrie AM, Fang Y. Discovery of Natural Phenols as G Protein-Coupled Receptor-35 (GPR35) Agonists. ACS Med Chem Lett 2012; 3:165-9. [PMID: 24900447 DOI: 10.1021/ml2003058] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 01/17/2012] [Indexed: 01/09/2023] Open
Abstract
We report the discovery and characterization of natural phenols as G protein-coupled receptor-35 (GPR35) agonists. Pharmacological characterization using label-free dynamic mass redistribution and Tango β-arrestin translocation assays revealed that GPR35-active natural phenols are divergent in their biased agonism.
Collapse
Affiliation(s)
- Huayun Deng
- Biochemical Technologies, Science and Technology Division,
Corning Inc., Corning, New York 14831, United States
| | - Haibei Hu
- Biochemical Technologies, Science and Technology Division,
Corning Inc., Corning, New York 14831, United States
| | - Shizhang Ling
- Biochemical Technologies, Science and Technology Division,
Corning Inc., Corning, New York 14831, United States
| | - Ann M. Ferrie
- Biochemical Technologies, Science and Technology Division,
Corning Inc., Corning, New York 14831, United States
| | - Ye Fang
- Biochemical Technologies, Science and Technology Division,
Corning Inc., Corning, New York 14831, United States
| |
Collapse
|
89
|
Hwang SH, Shin TJ, Choi SH, Cho HJ, Lee BH, Pyo MK, Lee JH, Kang J, Kim HJ, Park CW, Shin HC, Nah SY. Gintonin, newly identified compounds from ginseng, is novel lysophosphatidic acids-protein complexes and activates G protein-coupled lysophosphatidic acid receptors with high affinity. Mol Cells 2012; 33:151-62. [PMID: 22286231 PMCID: PMC3887723 DOI: 10.1007/s10059-012-2216-z] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 11/30/2011] [Accepted: 12/02/2011] [Indexed: 11/27/2022] Open
Abstract
Recently, we isolated a subset of glycolipoproteins from Panax ginseng, that we designated gintonin, and demonstrated that it induced [Ca2+]i transients in cells via G protein-coupled receptor (GPCR) signaling pathway(s). However, active components responsible for Ca2+ mobilization and the corresponding receptor(s) were unknown. Active component(s) for [Ca2+]i transients of gintonin were analyzed by liquid chromatography-electrospray ionization-tandem mass spectrometry and ion-mobility mass spectrometry, respectively. The corresponding receptor(s)were investigated through gene expression assays. We found that gintonin contains LPA C18:2 and other LPAs. Proteomic analysis showed that ginseng major latex-like protein and ribonuclease-like storage proteins are protein components of gintonin. Gintonin induced [Ca2+]i transients in B103 rat neuroblastoma cells transfected with human LPA receptors with high affinity in order of LPA2 >LPA5 > LPA1 > LPA3 > LPA4. The LPA1/LPA3 receptor antagonist Ki16425 blocked gintonin action in cells expressing LPA1 or LPA3. Mutations of binding sites in the LPA3 receptor attenuated gintonin action. Gintonin acted via pertussis toxin (PTX)-sensitive and -insensitive G protein-phospholipase C (PLC)-inositol 1,4,5-trisphosphate (IP3)-Ca2+ pathways. However, gintonin had no effects on other receptors examined. In human umbilical vein endothelial cells (HUVECs) gintonin stimulated cell proliferation and migration. Gintonin stimulated ERK1/2 phosphorylation. PTX blocked gintonin-mediated migration and ERK1/2 phosphorylation. In PC12 cells gintonin induced morphological changes, which were blocked by Rho kinase inhibitorY-27632. Gintonin contains GPCR ligand LPAs in complexes with ginseng proteins and could be useful in the development of drugs targeting LPA receptors.
Collapse
Affiliation(s)
- Sung Hee Hwang
- Ginsentology Research Laboratory and Department of Physiology, and Bio/Molecular Informatics Center, College of Veterinary Medicine, Konkuk University, Seoul 143-701,
Korea
| | - Tae-Joon Shin
- Ginsentology Research Laboratory and Department of Physiology, and Bio/Molecular Informatics Center, College of Veterinary Medicine, Konkuk University, Seoul 143-701,
Korea
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, and Bio/Molecular Informatics Center, College of Veterinary Medicine, Konkuk University, Seoul 143-701,
Korea
| | - Hee-Jung Cho
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul 143-701,
Korea
| | - Byung-Hwan Lee
- Ginsentology Research Laboratory and Department of Physiology, and Bio/Molecular Informatics Center, College of Veterinary Medicine, Konkuk University, Seoul 143-701,
Korea
| | - Mi Kyung Pyo
- International Ginseng and Herb Research Institute, Geumsan 312-804,
Korea
| | - Jun-Ho Lee
- Ginsentology Research Laboratory and Department of Physiology, and Bio/Molecular Informatics Center, College of Veterinary Medicine, Konkuk University, Seoul 143-701,
Korea
| | - Jiyeon Kang
- Ginsentology Research Laboratory and Department of Physiology, and Bio/Molecular Informatics Center, College of Veterinary Medicine, Konkuk University, Seoul 143-701,
Korea
| | - Hyeon-Joong Kim
- Ginsentology Research Laboratory and Department of Physiology, and Bio/Molecular Informatics Center, College of Veterinary Medicine, Konkuk University, Seoul 143-701,
Korea
| | - Chan-Woo Park
- Ginsentology Research Laboratory and Department of Physiology, and Bio/Molecular Informatics Center, College of Veterinary Medicine, Konkuk University, Seoul 143-701,
Korea
| | - Ho-Chul Shin
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Konkuk University, Seoul 143-701,
Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, and Bio/Molecular Informatics Center, College of Veterinary Medicine, Konkuk University, Seoul 143-701,
Korea
| |
Collapse
|
90
|
Smith NJ. Low affinity GPCRs for metabolic intermediates: challenges for pharmacologists. Front Endocrinol (Lausanne) 2012; 3:1. [PMID: 22649402 PMCID: PMC3355937 DOI: 10.3389/fendo.2012.00001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 01/03/2012] [Indexed: 12/22/2022] Open
Abstract
The discovery that a number of metabolites and metabolic intermediates can act through G protein-coupled receptors has attracted great interest in the field and has led to new therapeutic targets for diseases such as hypertension, type 2 diabetes, inflammation, and metabolic syndrome. However, the low apparent affinity of these ligands for their cognate receptors poses a number of challenges for pharmacologists interested in investigating receptor structure, function or physiology. Furthermore, the endogenous ligands matched to their receptors have other, well established metabolic roles and thus selectivity is difficult to achieve. This review discusses some of the issues researchers face when working with these receptors and highlights the ways in which a number of these obstacles have been overcome.
Collapse
Affiliation(s)
- Nicola J Smith
- Molecular Cardiology, Victor Chang Cardiac Research Institute Darlinghurst, NSW, Australia.
| |
Collapse
|
91
|
|
92
|
Deng H, Hu H, He M, Hu J, Niu W, Ferrie AM, Fang Y. Discovery of 2-(4-methylfuran-2(5H)-ylidene)malononitrile and thieno[3,2-b]thiophene-2-carboxylic acid derivatives as G protein-coupled receptor 35 (GPR35) agonists. J Med Chem 2011; 54:7385-96. [PMID: 21950657 PMCID: PMC3198121 DOI: 10.1021/jm200999f] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Screening with dynamic mass redistribution (DMR) assays in a native cell line HT-29 led to identification of two novel series of chemical compounds, 2-(4-methylfuran-2(5H)-ylidene)malononitrile and thieno[3,2-b]thiophene-2-carboxylic acid derivatives, as GPR35 agonists. Of these, 2-(3-cyano-5-(3,4-dichlorophenyl)-4,5-dimethylfuran-2(5H)-ylidene)malononitrile (YE120) and 6-bromo-3-methylthieno[3,2-b]thiophene-2-carboxylic acid (YE210) were found to be the two most potent GPR35 agonists with an EC50 of 32.5 ± 1.7 nM and 63.7 ± 4.1 nM, respectively. Both agonists exhibited better potency than that of zaprinast, a known GPR35 agonist. DMR antagonist assays, knockdown of GPR35 with interference RNA, receptor internalization assays, and Tango β-arrestin translocation assays confirmed that the agonist activity of these ligands is specific to GPR35. The present study provides novel chemical series as a starting point for further investigations of GPR35 biology and pharmacology.
Collapse
Affiliation(s)
- Huayun Deng
- Biochemical Technologies, Science and Technology Division, Corning Inc., Corning, New York 14831, United States
| | | | | | | | | | | | | |
Collapse
|
93
|
Tyrphostin analogs are GPR35 agonists. FEBS Lett 2011; 585:1957-62. [PMID: 21601572 DOI: 10.1016/j.febslet.2011.05.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/07/2011] [Accepted: 05/11/2011] [Indexed: 11/20/2022]
Abstract
GPR35 is an orphan G protein-coupled receptor that is not well-characterized. Here we employ dynamic mass redistribution (DMR) assays to discover new GPR35 agonists. DMR assays identified tyrphostin analogs as GPR35 agonists, which were confirmed with receptor internalization, Tango β-arrestin translocation, and extracellular-signal-regulated kinase phosphorylation assays. These agonists provide pharmacological tools to study the biology and function of GPR35.
Collapse
|
94
|
Milligan G. Orthologue selectivity and ligand bias: translating the pharmacology of GPR35. Trends Pharmacol Sci 2011; 32:317-25. [PMID: 21392828 DOI: 10.1016/j.tips.2011.02.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 02/01/2011] [Accepted: 02/04/2011] [Indexed: 01/14/2023]
Abstract
GPR35 is a poorly characterized G protein-coupled receptor (GPCR) that has been suggested as a potential therapeutic target for the treatment of diabetes, hypertension and asthma. Two endogenously produced ligands have been suggested as activators of GPR35, although the relevance of these remains unclear. Recently, a series of surrogate agonist ligands and the first antagonists of GPR35 have been identified. However, marked differences in the potency of agonists at species orthologues of GPR35 have been noted, and this presents substantial challenges in translating the pharmacology at the cloned human receptor to ex vivo and in vivo studies of the physiological function of this receptor in animal models. Currently identified agonists will probably not display high selectivity for GPR35. By contrast, comparisons of the potency of ligands at species orthologues of GPR35 have provided insight into the nature of the ligand binding pocket and could result in the identification of more potent and selective ligands.
Collapse
Affiliation(s)
- Graeme Milligan
- Molecular Pharmacology Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G128QQ, UK.
| |
Collapse
|
95
|
Identification of novel species-selective agonists of the G-protein-coupled receptor GPR35 that promote recruitment of β-arrestin-2 and activate Gα13. Biochem J 2011; 432:451-9. [PMID: 20919992 DOI: 10.1042/bj20101287] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The poorly characterized G-protein-coupled receptor GPR35 has been suggested as a potential exploratory target for the treatment of both metabolic disorders and hypertension. It has also been indicated to play an important role in immune modulation. A major impediment to validation of these concepts and further study of the role of this receptor has been a paucity of pharmacological tools that interact with GPR35. Using a receptor-β-arrestin-2 interaction assay with both human and rat orthologues of GPR35, we identified a number of compounds possessing agonist activity. These included the previously described ligand zaprinast. Although a number of active compounds, including cromolyn disodium and dicumarol, displayed similar potency at both orthologues of GPR35, a number of ligands, including pamoate and niflumic acid, had detectable activity only at human GPR35 whereas others, including zaprinast and luteolin, were markedly selective for the rat orthologue. Previous studies have demonstrated activation of Gα13 by GPR35. A Saccharomyces cerevisiae-based assay employing a chimaeric Gpa1-Gα13 G-protein confirmed that all of the compounds active at human GPR35 in the β-arrestin-2 interaction assay were also able to promote cell growth via Gα13. Each of these ligands also promoted binding of [35S]GTP[S] (guanosine 5'-[γ-[35S]thio]triphosphate) to an epitope-tagged form of Gα13 in a GPR35-dependent manner. The ligands identified in these studies will be useful in interrogating the biological actions of GPR35, but appreciation of the species selectivity of ligands at this receptor will be vital to correctly attribute function.
Collapse
|
96
|
Tokumura A. Physiological Significance of Lysophospholipids that Act on the Lumen Side of Mammalian Lower Digestive Tracts. ACTA ACUST UNITED AC 2011. [DOI: 10.1248/jhs.57.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Akira Tokumura
- Department of Pharmaceutical Health Chemistry, Institute of Biosciences, University of Tokushima Graduate School
| |
Collapse
|
97
|
MacKenzie AE, Lappin JE, Taylor DL, Nicklin SA, Milligan G. GPR35 as a Novel Therapeutic Target. Front Endocrinol (Lausanne) 2011; 2:68. [PMID: 22654822 PMCID: PMC3356001 DOI: 10.3389/fendo.2011.00068] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/16/2011] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) remain the best studied class of cell surface receptors and the most tractable family of proteins for novel small molecule drug discovery. Despite this, a considerable number of GPCRs remain poorly characterized and in a significant number of cases, endogenous ligand(s) that activate them remain undefined or are of questionable physiological relevance. GPR35 was initially discovered over a decade ago but has remained an "orphan" receptor. Recent publications have highlighted novel ligands, both endogenously produced and synthetic, which demonstrate significant potency at this receptor. Furthermore, evidence is accumulating which highlights potential roles for GPR35 in disease and therefore, efforts to characterize GPR35 more fully and develop it as a novel therapeutic target in conditions that range from diabetes and hypertension to asthma are increasing. Recently identified ligands have shown marked species selective properties, indicating major challenges for future drug development. As we begin to understand these issues, the continuing efforts to identify novel agonist and antagonist ligands for GPR35 will help to decipher its true physiological relevance; translating multiple assay systems in vitro, to animal disease systems in vivo and finally to man.
Collapse
Affiliation(s)
- A. E. MacKenzie
- Molecular Pharmacology Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
| | - J. E. Lappin
- Molecular Pharmacology Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
| | - D. L. Taylor
- Centre for Therapeutics Discovery, MRC TechnologyLondon, UK
| | - S. A. Nicklin
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
| | - G. Milligan
- Molecular Pharmacology Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgow, UK
- *Correspondence: G. Milligan, Molecular Pharmacology Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland G12 8QQ, UK. e-mail:
| |
Collapse
|
98
|
Chun J, Hla T, Lynch KR, Spiegel S, Moolenaar WH. International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid receptor nomenclature. Pharmacol Rev 2010; 62:579-87. [PMID: 21079037 PMCID: PMC2993255 DOI: 10.1124/pr.110.003111] [Citation(s) in RCA: 255] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lysophospholipids are cell membrane-derived lipids that include both glycerophospholipids such as lysophosphatidic acid (LPA) and sphingoid lipids such as sphingosine 1-phosphate (S1P). These and related molecules can function in vertebrates as extracellular signals by binding and activating G protein-coupled receptors. There are currently five LPA receptors, along with a proposed sixth (LPA₁-LPA₆), and five S1P receptors (S1P₁-S1P₅). A remarkably diverse biology and pathophysiology has emerged since the last review, driven by cloned receptors and targeted gene deletion ("knockout") studies in mice, which implicate receptor-mediated lysophospholipid signaling in most organ systems and multiple disease processes. The entry of various lysophospholipid receptor modulatory compounds into humans through clinical trials is ongoing and may lead to new medicines that are based on this signaling system. This review incorporates IUPHAR Nomenclature Committee guidelines in updating the nomenclature for lysophospholipid receptors ( http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=36).
Collapse
Affiliation(s)
- Jerold Chun
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037, USA.
| | | | | | | | | |
Collapse
|
99
|
Zhao P, Sharir H, Kapur A, Cowan A, Geller EB, Adler MW, Seltzman HH, Reggio PH, Heynen-Genel S, Sauer M, Chung TDY, Bai Y, Chen W, Caron MG, Barak LS, Abood ME. Targeting of the orphan receptor GPR35 by pamoic acid: a potent activator of extracellular signal-regulated kinase and β-arrestin2 with antinociceptive activity. Mol Pharmacol 2010; 78:560-8. [PMID: 20826425 PMCID: PMC2981393 DOI: 10.1124/mol.110.066746] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 07/22/2010] [Indexed: 12/19/2022] Open
Abstract
Known agonists of the orphan receptor GPR35 are kynurenic acid, zaprinast, 5-nitro-2-(3-phenylproplyamino) benzoic acid, and lysophosphatidic acids. Their relatively low affinities for GPR35 and prominent off-target effects at other pathways, however, diminish their utility for understanding GPR35 signaling and for identifying potential therapeutic uses of GPR35. In a screen of the Prestwick Library of drugs and drug-like compounds, we have found that pamoic acid is a potent GPR35 agonist. Pamoic acid is considered by the Food and Drug Administration as an inactive compound that enables long-acting formulations of numerous drugs, such as the antihelminthics oxantel pamoate and pyrantel pamoate; the psychoactive compounds hydroxyzine pamoate (Vistaril) and imipramine pamoate (Tofranil-PM); and the peptide hormones triptorelin pamoate (Trelstar) and octreotide pamoate (OncoLar). We have found that pamoic acid induces a G(i/o)-linked, GPR35-mediated increase in the phosphorylation of extracellular signal-regulated kinase 1/2, recruitment of β-arrestin2 to GPR35, and internalization of GPR35. In mice, it attenuates visceral pain perception, indicating an antinociceptive effect, possibly through GPR35 receptors. We have also identified in collaboration with the Sanford-Burnham Institute Molecular Libraries Probe Production Center new classes of GPR35 antagonist compounds, including the nanomolar potency antagonist methyl-5-[(tert-butylcarbamothioylhydrazinylidene)methyl]-1-(2,4-difluorophenyl)pyrazole-4-carboxylate (CID2745687). Pamoic acid and potent antagonists such as CID2745687 present novel opportunities for expanding the chemical space of GPR35, elucidating GPR35 pharmacology, and stimulating GPR35-associated drug development. Our results indicate that the unexpected biological functions of pamoic acid may yield potential new uses for a common drug constituent.
Collapse
Affiliation(s)
- Pingwei Zhao
- Department of Anatomy and Cell Biology, Center for Substance Abuse Research, Temple University School of Medicine, 3420 North Broad St, Philadelphia, PA 19140, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Tigyi G. Aiming drug discovery at lysophosphatidic acid targets. Br J Pharmacol 2010; 161:241-70. [PMID: 20735414 PMCID: PMC2989581 DOI: 10.1111/j.1476-5381.2010.00815.x] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 02/12/2010] [Accepted: 03/20/2010] [Indexed: 12/22/2022] Open
Abstract
Lysophosphatidic acid (LPA, 1-radyl-2-hydroxy-sn-glycero-3-phosphate) is the prototype member of a family of lipid mediators and second messengers. LPA and its naturally occurring analogues interact with G protein-coupled receptors on the cell surface and a nuclear hormone receptor within the cell. In addition, there are several enzymes that utilize LPA as a substrate or generate it as a product and are under its regulatory control. LPA is present in biological fluids, and attempts have been made to link changes in its concentration and molecular composition to specific disease conditions. Through their many targets, members of the LPA family regulate cell survival, apoptosis, motility, shape, differentiation, gene transcription, malignant transformation and more. The present review depicts arbitrary aspects of the physiological and pathophysiological actions of LPA and attempts to link them with select targets. Many of us are now convinced that therapies targeting LPA biosynthesis and signalling are feasible for the treatment of devastating human diseases such as cancer, fibrosis and degenerative conditions. However, successful targeting of the pathways associated with this pleiotropic lipid will depend on the future development of as yet undeveloped pharmacons.
Collapse
Affiliation(s)
- Gabor Tigyi
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|