51
|
Guo J, Qin X, Wang Y, Li X, Wang X, Zhu H, Chen S, Zhao J, Xiao K, Liu Y. Necroptosis Mediates Muscle Protein Degradation in a Cachexia Model of Weanling Pig with Lipopolysaccharide Challenge. Int J Mol Sci 2023; 24:10923. [PMID: 37446099 DOI: 10.3390/ijms241310923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Necroptosis, an actively researched form of programmed cell death closely related to the inflammatory response, is important in a variety of disorders and diseases. However, the relationship between necroptosis and muscle protein degradation in cachexia is rarely reported. This study aimed to elucidate whether necroptosis played a crucial role in muscle protein degradation in a cachexia model of weaned piglets induced by lipopolysaccharide (LPS). In Experiment 1, the piglets were intraperitoneally injected with LPS to construct the cachexia model, and sacrificed at different time points after LPS injection (1, 2, 4, 8, 12, and 24 h). In Experiment 2, necrostatin-1 (Nec-1), a necroptosis blocker, was pretreated in piglets before the injection of LPS to inhibit the occurrence of necroptosis. Blood and longissimus dorsi muscle samples were collected for further analysis. In the piglet model with LPS-induced cachexia, the morphological and ultrastructural damage, and the release of pro-inflammatory cytokines including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 were dynamically elicited in longissimus dorsi muscle. Further, protein concentration and protein/DNA ratio were dynamically decreased, and protein degradation signaling pathway, containing serine/threonine kinase (Akt), Forkhead box O (FOXO), muscular atrophy F-box (MAFbx), and muscle ring finger protein 1 (MuRF1), was dynamically activated in piglets after LPS challenge. Moreover, mRNA and protein expression of necroptosis signals including receptor-interacting protein kinase (RIP)1, RIP3, and mixed lineage kinase domain-like pseudokinase (MLKL), were time-independently upregulated. Subsequently, when Nec-1 was used to inhibit necroptosis, the morphological damage, the increase in expression of pro-inflammatory cytokines, the reduction in protein content and protein/DNA ratio, and the activation of the protein degradation signaling pathway were alleviated. These results provide the first evidence that necroptosis mediates muscle protein degradation in cachexia by LPS challenge.
Collapse
Affiliation(s)
- Junjie Guo
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xu Qin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Yang Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiangen Li
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiuying Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Shaokui Chen
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Kan Xiao
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Rd., Wuhan 430023, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, Wuhan Polytechnic University, Wuhan 430023, China
- School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Rd., Wuhan 430023, China
| |
Collapse
|
52
|
Kim J, Lee JY, Kim CY. A Comprehensive Review of Pathological Mechanisms and Natural Dietary Ingredients for the Management and Prevention of Sarcopenia. Nutrients 2023; 15:nu15112625. [PMID: 37299588 DOI: 10.3390/nu15112625] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Sarcopenia is characterized by an age-related loss of skeletal muscle mass and function and has been recognized as a clinical disease by the World Health Organization since 2016. Substantial evidence has suggested that dietary modification can be a feasible tool to combat sarcopenia. Among various natural dietary ingredients, the present study focused on botanical and marine extracts, phytochemicals, and probiotics. Aims of this review were (1) to provide basic concepts including the definition, diagnosis, prevalence, and adverse effects of sarcopenia, (2) to describe possible pathological mechanisms including protein homeostasis imbalance, inflammation, mitochondrial dysfunction, and satellite cells dysfunction, and (3) to analyze recent experimental studies reporting potential biological functions against sarcopenia. A recent literature review for dietary ingredients demonstrated that protein homeostasis is maintained via an increase in the PI3K/Akt pathway and/or a decrease in the ubiquitin-proteasome system. Regulation of inflammation has primarily targeted inhibition of NF-κB signaling. Elevated Pgc-1α or Pax7 expression reverses mitochondrial or satellite cell dysfunction. This review provides the current knowledge on dietary components with the potential to assist sarcopenia prevention and/or treatment. Further in-depth studies are required to elucidate the role of and develop various dietary materials for healthier aging, particularly concerning muscle health.
Collapse
Affiliation(s)
- Juhae Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Joo-Yeon Lee
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Choon Young Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
53
|
Maqbool J, Anwar H, Rasul A, Imran A, Saadullah M, Malik SA, Shabbir A, Akram R, Sajid F, Zafar S, Saeed S, Akram MN, Islam F, Hussain G, Islam S. Comparative evaluation of ethyl acetate and n-Hexane extracts of Cannabis sativa L. leaves for muscle function restoration after peripheral nerve lesion. Food Sci Nutr 2023; 11:2767-2775. [PMID: 37324902 PMCID: PMC10261791 DOI: 10.1002/fsn3.3255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 02/09/2023] Open
Abstract
Peripheral nerve injuries are one of those complex medical conditions for which a highly effective first-line treatment is currently missing. The use of natural compound as medicines to treat various disorders has a long history. Our previous research explored that crude Cannabis sativa L. accelerated the recovery of sensorimotor functions following nerve injury. The purpose of the current study was to investigate the effects of n-Hexane and ethyl acetate extracts of C. sativa L. leaves on the muscle function restoration in a mouse model after sciatic nerve injury. For this purpose, albino mice (n = 18) were equally divided into control and two treatment groups. The control group was fed on a plain diet while treatment groups were given a diet having n-Hexane (treatment 1) and ethyl acetate (treatment 2) extracts of C. sativa L. (10 mg/kg body weight), respectively. The hot plate test (M = 15.61, SD = 2.61, p = .001), grip strength (M = 68.32, SD = 3.22, p < .001), and sciatic functional index (SFI) (M = 11.59, SD = 6.54, p = .012) assessment indicated significant amelioration in treatment 1 as compared to treatment 2 group. Furthermore, muscle fiber cross-sectional area revealed a noticeable improvement (M = 182,319, SD = 35.80, p = .013) in treatment 1 while muscle mass ratio of Gastrocnemius (M = 0.64, SD = 0.08, p = .427) and Tibialis anterior (M = 0.57, SD = 0.04, p = .209) indicated nonsignificant change. A prominent increase in total antioxidant capacity (TAC) (M = 3.76, SD = 0.38, p < .001) and momentous decrease in total oxidant status (TOS) (M = 11.28, SD = 5.71, p < .001) along with blood glucose level indicated significant difference (M = 105.5, SD = 9.12, p < 0.001) in treatment 1 group. These results suggest that treatment 1 has the ability to speed up functional recovery after a peripheral nerve lesion. Further research is necessary, nevertheless, to better understand the extract's actual curative properties and the mechanisms that improve functional restoration.
Collapse
Affiliation(s)
- Javeria Maqbool
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
- Laboratorie of Neuroimmunologia, Department of Physiology and PharmacologySapienza UniversityRomeItaly
| | - Haseeb Anwar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Azhar Rasul
- Department of Zoology, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Ali Imran
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Malik Saadullah
- Department of Pharmaceutical Chemistry, Government College UniversityFaisalabadPakistan
| | - Shoaib Ahmad Malik
- Department of Biochemistry, Sargodha Medical CollegeUniversity of SargodhaSargodhaPakistan
| | - Asghar Shabbir
- Department of BiosciencesCOMSATS UniversityIslamabadPakistan
| | - Rabia Akram
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Faiqa Sajid
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Shamaila Zafar
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Suman Saeed
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Muhammad Numan Akram
- Department of Neurology, Allied HospitalFaisalabad Medical UniversityFaisalabadPakistan
| | - Fakhar Islam
- Department of Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL), Department of Physiology, Faculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Saiful Islam
- Institute of Nutrition and Food ScienceUniversity of DhakaDhakaBangladesh
| |
Collapse
|
54
|
Setiawan T, Sari IN, Wijaya YT, Julianto NM, Muhammad JA, Lee H, Chae JH, Kwon HY. Cancer cachexia: molecular mechanisms and treatment strategies. J Hematol Oncol 2023; 16:54. [PMID: 37217930 DOI: 10.1186/s13045-023-01454-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023] Open
Abstract
Muscle wasting is a consequence of physiological changes or a pathology characterized by increased catabolic activity that leads to progressive loss of skeletal muscle mass and strength. Numerous diseases, including cancer, organ failure, infection, and aging-associated diseases, are associated with muscle wasting. Cancer cachexia is a multifactorial syndrome characterized by loss of skeletal muscle mass, with or without the loss of fat mass, resulting in functional impairment and reduced quality of life. It is caused by the upregulation of systemic inflammation and catabolic stimuli, leading to inhibition of protein synthesis and enhancement of muscle catabolism. Here, we summarize the complex molecular networks that regulate muscle mass and function. Moreover, we describe complex multi-organ roles in cancer cachexia. Although cachexia is one of the main causes of cancer-related deaths, there are still no approved drugs for cancer cachexia. Thus, we compiled recent ongoing pre-clinical and clinical trials and further discussed potential therapeutic approaches for cancer cachexia.
Collapse
Affiliation(s)
- Tania Setiawan
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Ita Novita Sari
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yoseph Toni Wijaya
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Nadya Marcelina Julianto
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Jabir Aliyu Muhammad
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Hyeok Lee
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Ji Heon Chae
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea
| | - Hyog Young Kwon
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea.
- Soonchunhyang Institute of Medi-Bio Science (SIMS), Soonchunhyang University, Cheonan-Si, 31151, Republic of Korea.
| |
Collapse
|
55
|
Vasquez-Bolanos LS, Gibbons MC, Ruoss S, Wu IT, Esparza MC, Fithian DC, Lane JG, Singh A, Nasamran CA, Fisch KM, Ward SR. Transcriptional time course after rotator cuff repair in 6 month old female rabbits. Front Physiol 2023; 14:1164055. [PMID: 37228812 PMCID: PMC10203179 DOI: 10.3389/fphys.2023.1164055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: Rotator cuff tears are prevalent in the population above the age of 60. The disease progression leads to muscle atrophy, fibrosis, and fatty infiltration, which is not improved upon with surgical repair, highlighting the need to better understand the underlying biology impairing more favorable outcomes. Methods: In this study, we collected supraspinatus muscle tissue from 6 month old female rabbits who had undergone unilateral tenotomy for 8 weeks at 1, 2, 4, or 8 weeks post-repair (n = 4/group). RNA sequencing and enrichment analyses were performed to identify a transcriptional timeline of rotator cuff muscle adaptations and related morphological sequelae. Results: There were differentially expressed (DE) genes at 1 (819 up/210 down), 2 (776/120), and 4 (63/27) weeks post-repair, with none at 8 week post-repair. Of the time points with DE genes, there were 1092 unique DE genes and 442 shared genes, highlighting that there are changing processes in the muscle at each time point. Broadly, 1-week post-repair differentially expressed genes were significantly enriched in pathways of metabolism and energetic activity, binding, and regulation. Many were also significantly enriched at 2 weeks, with the addition of NIF/NF-kappaB signaling, transcription in response to hypoxia, and mRNA stability alongside many additional pathways. There was also a shift in transcriptional activity at 4 weeks post-repair with significantly enriched pathways for lipids, hormones, apoptosis, and cytokine activity, despite an overall decrease in the number of differentially expressed genes. At 8 weeks post-repair there were no DE genes when compared to control. These transcriptional profiles were correlated with the histological findings of increased fat, degeneration, and fibrosis. Specifically, correlated gene sets were enriched for fatty acid metabolism, TGF-B-related, and other pathways. Discussion: This study identifies the timeline of transcriptional changes in muscle after RC repair, which by itself, does not induce a growth/regenerative response as desired. Instead, it is predominately related to metabolism/energetics changes at 1 week post-repair, unclear or asynchronous transcriptional diversity at 2 weeks post-repair, increased adipogenesis at 4 weeks post-repair, and a low transcriptional steady state or a dysregulated stress response at 8 weeks post-repair.
Collapse
Affiliation(s)
- Laura S. Vasquez-Bolanos
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
| | - Michael C. Gibbons
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
| | - Severin Ruoss
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
| | - Isabella T. Wu
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
| | - Mary C. Esparza
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
| | - Donald C. Fithian
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
| | - John G. Lane
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
| | - Anshuman Singh
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
- Department of Orthopaedic Surgery, Kaiser Permanente, San Diego, CA, United States
| | - Chanond A. Nasamran
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Kathleen M. Fisch
- Center for Computational Biology and Bioinformatics, Department of Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Obstetrics, Gynecology and Reproductive Science, University of California, San Diego, San Diego, CA, United States
| | - Samuel R. Ward
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
- Department of Orthopaedic Surgery, University of California, San Diego, San Diego, CA, United States
- Department of Radiology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
56
|
Macedo AG, Almeida TAF, Massini DA, De Paula VF, De Oliveira DM, Pessôa Filho DM. Effects of exercise training on glucocorticoid-induced muscle atrophy: literature review. Steroids 2023; 195:109240. [PMID: 37061112 DOI: 10.1016/j.steroids.2023.109240] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 04/08/2023] [Accepted: 04/11/2023] [Indexed: 04/17/2023]
Abstract
Glucocorticoids (GCs) administration, such as cortisol acetate (CA) and dexamethasone (DEXA), is used worldwide due to their anti-inflammatory, anti-allergic, and immunosuppressive properties. However, muscle atrophy is one of the primary deleterious induced responses from the chronic treatment with GCs since it stimulates muscle degradation inhibiting muscle protein synthesis. Animal models allow a better understanding of the molecular pathways involved in this process of gene modulation and production of hypertrophic and atrophic proteins. The treatment with GCs, such as DEXA, promotes the reduction of hypertrophic proteins such as serine/threonine tyrosine kinase (AKT), protein kinase mammalian target of rapamycin (mTOR), and ribosomal protein S6 kinase (p70S6K) and increased gene expression or production of atrophic proteins, such as myostatin, muscle atrophic F-box (atrogin-1), or muscle ring finger protein-1 (MuRF-1). In both continuous exercise (CE) and resistance exercise (RE) forms, exercise training is used to mitigate muscle atrophy induced by GCs. The CE attenuated muscle atrophy induced by CA or DEXA in the plantaris and extensor digitorum longus muscle, while RE mitigated the DEXA-induced atrophy in plantaris and flexor hallux longus muscles. The RE response appears to have occurred by modulation of hypertrophic proteins through increased protein production or phosphorylated/total ratio of mTOR and p70S6K and decreased atrophic protein production of atrogin-1 and MuRF-1. CE needs future research to understand the molecular pathways of its protective response. Abreviations: GCs, glucocorticoids; CA, cortisol acetate. DEXA, dexamethason; ET, exercise training; CE, continuous exercise; RE, resistance exercise; AKT, serine/threonine tyrosine kinase; mTOR, protein kinase mammalian target of rapamycin; p70S6K, ribosomal protein S6 kinase; FOXO3A, forkead box 3A; atrogin-1, muscle atrophic F-box; MuRF-1, muscle ring finger protein; PI3K, phosphatidylinositol 3 kinase; IGF-I, Insulin-like Growth Factor-I; IRS-1, insulin receptor substrate; REDD1, regulated in development and DNA damage responses 1; HSP70, heat shock protein 70; GR, glucocorticoid receptor; Smad2, Cytoplasmic Smad2; Smad3, Cytoplasmic Smad3; CS, Cushing's syndrome.
Collapse
Affiliation(s)
- Anderson G Macedo
- Department of Physical Education, Science Faculty, São Paulo State University (UNESP), Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, Bauru, São Paulo, Brazil; Graduate Programe in Human Development and Technology, São Paulo State University (UNESP), 13506-900, São Paulo, Rio Claro, Brazil.
| | - Tiago A F Almeida
- Department of Physical Education, Science Faculty, São Paulo State University (UNESP), Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, Bauru, São Paulo, Brazil; Graduate Programe in Human Development and Technology, São Paulo State University (UNESP), 13506-900, São Paulo, Rio Claro, Brazil; CIPER, Faculdade de Motricidade Humana, Universidade de Lisboa, Lisboa, Portugal
| | - Danilo A Massini
- Graduate Programe in Human Development and Technology, São Paulo State University (UNESP), 13506-900, São Paulo, Rio Claro, Brazil
| | - Vinícius F De Paula
- Joint Graduate Program in Physiological Sciences, PIPGCF UFSCar/UNESP, Rodovia Washington Luiz, km 235 Monjolinho, 676, São Carlos, SP, Brazil
| | - David M De Oliveira
- Federal University Jataí, Department of Physical Education, km 195, 3900, Goiás, Jataí, Brazil
| | - Dalton M Pessôa Filho
- Department of Physical Education, Science Faculty, São Paulo State University (UNESP), Av. Eng. Luiz Edmundo Carrijo Coube, 14-01, Vargem Limpa, Bauru, São Paulo, Brazil; Graduate Programe in Human Development and Technology, São Paulo State University (UNESP), 13506-900, São Paulo, Rio Claro, Brazil
| |
Collapse
|
57
|
Xie T, Lv T, Zhang T, Feng D, Zhu F, Xu Y, Zhang L, Gu L, Guo Z, Ding C, Gong J. Interleukin-6 promotes skeletal muscle catabolism by activating tryptophan-indoleamine 2,3-dioxygenase 1-kynurenine pathway during intra-abdominal sepsis. J Cachexia Sarcopenia Muscle 2023; 14:1046-1059. [PMID: 36880228 PMCID: PMC10067504 DOI: 10.1002/jcsm.13193] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/22/2022] [Accepted: 01/22/2023] [Indexed: 03/08/2023] Open
Abstract
BACKGROUND Inflammatory cytokine interleukin-6 (IL-6) plays a pivotal role in skeletal muscle degradation after intra-abdominal sepsis (IAS), with mechanism remained to be elucidated. Indoleamine 2,3-dioxygenase 1 (IDO-1), a key enzyme in converting tryptophan into kynurenine, could be activated by IL-6, and kynurenine has been shown to be involved in muscle degradation. We hypothesized that IL-6 could promote muscle degradation via tryptophan-IDO-1-kynurenine pathway in IAS patients. METHODS Serum and rectus abdominis (RA) were obtained from IAS or non-IAS patients. Mouse model of IAS-induced muscle wasting was generated by caecal ligation and puncture (CLP) and lipopolysaccharide (LPS) injection. IL-6 signalling was blocked by anti-mouse IL-6 antibody (IL-6-AB), and the IDO-1 pathway was blocked by navoximod. To elucidate the role of kynurenine in muscle mass and physiology, kynurenine was administered to IAS mice treated with IL-6-AB. RESULTS Compared to non-IAS patients, kynurenine levels in serum (+2.30-fold vs. non-IAS, P < 0.001) and RA (+3.11-fold vs. non-IAS, P < 0.001) were elevated, whereas tryptophan levels in serum (-53.65% vs. non-IAS, P < 0.01) and RA (-61.39% vs. non-IAS, P < 0.01) were decreased. Serum IL-6 level of the IAS group was significantly higher compared to non-IAS patients (+5.82-fold vs. non-IAS, P = 0.01), and muscle cross-sectional area (MCSA) was markedly reduced compared to non-IAS patients (-27.73% vs. non-IAS, P < 0.01). In animal experiments, IDO-1 expression was up-regulated in the small intestine, colon and blood for CLP or LPS-treated mice, and there was correlation (R2 = 0.66, P < 0.01) between serum and muscle kynurenine concentrations. Navoximod significantly mitigated IAS-induced skeletal muscle loss according to MCSA analysis (+22.94% vs. CLP, P < 0.05; +23.71% vs. LPS, P < 0.01) and increased the phosphorylated AKT (+2.15-fold vs. CLP, P < 0.01; +3.44-fold vs. LPS, P < 0.01) and myosin heavy chain (+3.64-fold vs. CLP, P < 0.01; +2.13-fold vs. LPS, P < 0.01) protein expression in myocytes. In the presence of anti-IL-6 antibody, a significantly decreased IDO-1 expression was observed in the small intestine, colon and blood in CLP or LPS mice (all P < 0.01), whereas the decrease of MCSA was alleviated (+37.43% vs. CLP + IgG, P < 0.001; +30.72% vs. LPS + IgG, P < 0.001). In contrast, additional supplementation of kynurenine decreased the MCSA in septic mice treated with IL-6-AB (both P < 0.01). CONCLUSIONS This study provided novel insights into the tryptophan-IDO-1-kynurenine-dependent mechanisms that underlie inflammatory cytokine-induced skeletal muscle catabolism during intra-abdominal sepsis.
Collapse
Affiliation(s)
- Tingbin Xie
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Tengfei Lv
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Tenghui Zhang
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Dengyu Feng
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Feng Zhu
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Yi Xu
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Liang Zhang
- Department of Gastrointestinal SurgeryXuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeJiangsu, P.R.China
| | - Lili Gu
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Zhen Guo
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Chao Ding
- Department of General SurgeryDrum Tower Hospital, Medical School of Nanjing UniversityNanjingChina
| | - Jianfeng Gong
- Department of General SurgeryJinling Hospital, Medical School of Nanjing UniversityNanjingChina
| |
Collapse
|
58
|
Pan Y, Zhou T, Dong X, Wu L, Wang P, Wang S, Zhang A. Urotensin II can Induce Skeletal Muscle Atrophy Associated with Upregulating Ubiquitin-Proteasome System and Inhibiting the Differentiation of Satellite Cells in CRF Mice. Calcif Tissue Int 2023; 112:603-612. [PMID: 36892588 DOI: 10.1007/s00223-023-01073-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/21/2023] [Indexed: 03/10/2023]
Abstract
Skeletal muscle wasting and atrophy is highly prevalent in chronic renal failure (CRF) and increases the risk of mortality. According to our previous study, we speculate that urotensin II (UII) can induce skeletal muscle atrophy by upregulating ubiquitin-proteasome system(UPS) in CRF. C2C12 mouse myoblast cells were differentiated into myotubes, and myotubes were exposed to different concentrations of UII. Myotube diameters, myosin heavy chain(MHC), p-Fxo03A, skeletal muscle-specific E3 ubiquitin ligases such as muscle RING finger 1 (MuRF1) and muscle atrophy F-box (MAFbx/atrogin1) were detected. Three animal models (the sham operation mice as normal control (NC) group, wild-type C57BL/6 mice with 5/6 nephrectomy (WT CRF) group, UII receptor gene knock out (UT KO) mice with 5/6 nephrectomy (UT KO CRF) group) were designed. Cross-sectional area (CSA) of skeletal muscle tissues in three animal models were measured, and western blot detected protein of UII, p-Fxo03A, MAFbx and MuRF1, and immunofluorescence assays explored the satellite cell marker of Myod1 and Pax7, and PCR arrays detected the muscle protein degradation genes, protein synthesis genes and the genes which were involved in muscle components. UII could decrease mouse myotube diameters, and upregulate dephosphorylated Fxo03A protein. MAFbx and MuRF1 were higher in WT CRF group than that in NC group, but after UII receptor gene was knocked out (UT KO CRF), their expressions were downregulated. UII could inhibit the expression of Myod1 but not Pax7 in animal study. We first demonstrate that skeletal muscle atrophy induced by UII associated with upregulating ubiquitin-proteasome system and inhibiting the differentiation of satellite cells in CRF mice.
Collapse
Affiliation(s)
- Yajing Pan
- Department of Nephrology, Xuan Wu Hospital, Capital Medical University, No. 45, Chang-Chun Street, Xicheng District, Beijing, People's Republic of China
| | - Ting Zhou
- Department of Nephrology, Xuan Wu Hospital, Capital Medical University, No. 45, Chang-Chun Street, Xicheng District, Beijing, People's Republic of China
| | - Xingtong Dong
- Department of Nephrology, Xuan Wu Hospital, Capital Medical University, No. 45, Chang-Chun Street, Xicheng District, Beijing, People's Republic of China
| | - Leiyun Wu
- Department of Nephrology, Xuan Wu Hospital, Capital Medical University, No. 45, Chang-Chun Street, Xicheng District, Beijing, People's Republic of China
| | - Peiwen Wang
- Department of Nephrology, Xuan Wu Hospital, Capital Medical University, No. 45, Chang-Chun Street, Xicheng District, Beijing, People's Republic of China
| | - Shiyuan Wang
- Department of Nephrology, Xuan Wu Hospital, Capital Medical University, No. 45, Chang-Chun Street, Xicheng District, Beijing, People's Republic of China
| | - Aihua Zhang
- Department of Nephrology, Xuan Wu Hospital, Capital Medical University, No. 45, Chang-Chun Street, Xicheng District, Beijing, People's Republic of China.
| |
Collapse
|
59
|
Zhang L, Lv J, Wang C, Ren Y, Yong M. Myokine, a key cytokine for physical exercise to alleviate sarcopenic obesity. Mol Biol Rep 2023; 50:2723-2734. [PMID: 36571655 DOI: 10.1007/s11033-022-07821-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/29/2022] [Accepted: 07/24/2022] [Indexed: 12/27/2022]
Abstract
Skeletal muscle has a robust endocrine function as a powerful organ and can secrete and release cytokines or polypeptides known as myokines. These myokines have significant regulatory effects on signal transduction in skeletal muscle and the metabolism of peripheral tissues and organs and exert biological effects via autocrine, paracrine, or endocrine forms. Obesity and aging cause myokine secretion dysregulation, and hastening sarcopenic obesity (SO) development. Exercise is currently an excellent intervention and prevention method for SO. Meanwhile, exercise impacts many organs and tissues. These organs and tissues will produce various myokines in response to movement and metabolism throughout the body to govern muscle differentiation, growth, and remodeling. According to accumulating data, exercise can increase the release of myokines from diverse tissues into the blood and postpone the SO onset and progression by influencing protein metabolism, inflammation, mitochondrial quality control, and other mechanisms.
Collapse
Affiliation(s)
- Lei Zhang
- Physical Education and Sport Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Junjie Lv
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China
| | - Cenyi Wang
- Physical Education and Sport Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Yuanyuan Ren
- Physical Education and Sport Science, Soochow University, Suzhou, Jiangsu Province, China.
| | - Ming Yong
- Physical Education and Sport Science, Soochow University, Suzhou, Jiangsu Province, China.
| |
Collapse
|
60
|
Macvanin M, Gluvic Z, Radovanovic J, Essack M, Gao X, Isenovic ER. New insights on the cardiovascular effects of IGF-1. Front Endocrinol (Lausanne) 2023; 14:1142644. [PMID: 36843588 PMCID: PMC9947133 DOI: 10.3389/fendo.2023.1142644] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
INTRODUCTION Cardiovascular (CV) disorders are steadily increasing, making them the world's most prevalent health issue. New research highlights the importance of insulin-like growth factor 1 (IGF-1) for maintaining CV health. METHODS We searched PubMed and MEDLINE for English and non-English articles with English abstracts published between 1957 (when the first report on IGF-1 identification was published) and 2022. The top search terms were: IGF-1, cardiovascular disease, IGF-1 receptors, IGF-1 and microRNAs, therapeutic interventions with IGF-1, IGF-1 and diabetes, IGF-1 and cardiovascular disease. The search retrieved original peer-reviewed articles, which were further analyzed, focusing on the role of IGF-1 in pathophysiological conditions. We specifically focused on including the most recent findings published in the past five years. RESULTS IGF-1, an anabolic growth factor, regulates cell division, proliferation, and survival. In addition to its well-known growth-promoting and metabolic effects, there is mounting evidence that IGF-1 plays a specialized role in the complex activities that underpin CV function. IGF-1 promotes cardiac development and improves cardiac output, stroke volume, contractility, and ejection fraction. Furthermore, IGF-1 mediates many growth hormones (GH) actions. IGF-1 stimulates contractility and tissue remodeling in humans to improve heart function after myocardial infarction. IGF-1 also improves the lipid profile, lowers insulin levels, increases insulin sensitivity, and promotes glucose metabolism. These findings point to the intriguing medicinal potential of IGF-1. Human studies associate low serum levels of free or total IGF-1 with an increased risk of CV and cerebrovascular illness. Extensive human trials are being conducted to investigate the therapeutic efficacy and outcomes of IGF-1-related therapy. DISCUSSION We anticipate the development of novel IGF-1-related therapy with minimal side effects. This review discusses recent findings on the role of IGF-1 in the cardiovascular (CVD) system, including both normal and pathological conditions. We also discuss progress in therapeutic interventions aimed at targeting the IGF axis and provide insights into the epigenetic regulation of IGF-1 mediated by microRNAs.
Collapse
Affiliation(s)
- Mirjana Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zoran Gluvic
- Clinic for Internal Medicine, Department of Endocrinology and Diabetes, Zemun Clinical Hospital, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Radovanovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Magbubah Essack
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Xin Gao
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
61
|
Liang J, Zhang H, Zeng Z, Lv J, Huang J, Wu X, Wang M, Xu J, Fan J, Chen N. MicroRNA profiling of different exercise interventions for alleviating skeletal muscle atrophy in naturally aging rats. J Cachexia Sarcopenia Muscle 2023; 14:356-368. [PMID: 36457259 PMCID: PMC9891923 DOI: 10.1002/jcsm.13137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/06/2022] [Accepted: 11/03/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Exercise is an affordable and practical strategy to alleviate several detrimental outcomes from the aging process, including sarcopenia. The elucidation of molecular mechanisms to alleviate sarcopenia is one of the most important steps towards understanding human aging. Although microRNAs (miRNAs) regulate muscle growth, regeneration and aging, the potential role of exercise-mediated miRNAs during the prevention and rehabilitation of skeletal muscle atrophy upon exercise interventions remains unclear. METHODS A miRNA profile by miRNA sequencing for gastrocnemius muscle of a 24-month-old aged male rat model mimicking the naturally aging process was established through screening the differentially expressed miRNAs (DEMs) for alleviating aging-induced skeletal muscle atrophy upon optimal exercise intervention. The screened miRNAs and hub genes, as well as biomarkers with the most significantly enriched pathways, were validated by quantitative real-time polymerase chain reaction and western blotting. RESULTS The sarcopenia index (SI) value and cross-sectional area (CSA) of rats from the old control (OC) group significantly decreased when compared with the youth control (YC) group (P < 0.001, P < 0.01), whereas an increased SI value and an enlarged CSA of rats from the old-aerobic exercise (OE), old-resistance exercise (OR) and old-mixed exercise (OM) groups were determined (P < 0.01, P < 0.001, P < 0.05; P < 0.01, P < 0.01, P < 0.05). Our results demonstrate that 764 known miRNAs, 201 novel miRNAs and 505 miRNA-mRNA interaction networks were identified to be related to aging-induced muscular atrophy. Among them, 13 miRNAs were differentially expressed (P < 0.05 and log2 |fold change| > 1) between the YC group and the OC group. Compared with the OC group, 7, 2 and 11 miRNAs were differentially expressed in the OE, OR and OM groups after exercise interventions, respectively. Meanwhile, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the identified DEMs were primarily related to apoptosis, autophagy and the NF-κB/MuRF1 signalling pathways (P < 0.05). Meanwhile, four DEMs (miR-7a-1-3p, miR-135a-5p, miR-151-5p and miR-196b-5p), six hub genes (Ar, Igf1, Hif1a, Bdnf, Fak and Nras) and several biomarkers (LC3, Beclin1, p62, Bax, Bcl-2 and NF-κB/MuRF1) with the most significantly enriched pathways were confirmed, which may play a key role in muscular atrophy during the aging process. CONCLUSIONS These findings are closely correlated with the progression of sarcopenia and could act as potential biomarkers for the diagnosis and interventional monitoring of aging-induced skeletal muscle atrophy.
Collapse
Affiliation(s)
- Jiling Liang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, Hubei, China
| | - Hu Zhang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, Hubei, China
| | - Zhengzhong Zeng
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, Hubei, China
| | - Jun Lv
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, Hubei, China
| | - Jielun Huang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, Hubei, China
| | - Xiaowen Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, Hubei, China
| | - Minghui Wang
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, Hubei, China
| | - Jiahao Xu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, Hubei, China
| | - Jingjing Fan
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, Hubei, China
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Health Science, Wuhan Sports University, Wuhan, Hubei, China
| |
Collapse
|
62
|
Optimal design and 3D printing of prosthetic socket based on the interface pressure between the socket and residual limb. Prosthet Orthot Int 2023; 47:87-93. [PMID: 35511448 DOI: 10.1097/pxr.0000000000000147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/16/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND At present, the quantifiable pressure distribution at the interface between the socket and stump is seldom applied in the design and fabrication of the socket. OBJECTIVES This study aimed to optimize the socket based on the interface pressure of residual limb-socket, thereby avoiding excessive local load on the residual limb, reducing the load on the pressure-sensitive (PS) regions and making the limb more evenly loaded. METHODS The residual limb was divided into the main load-bearing regions, the pressure-tolerant regions, and the PS regions according to the carrying capacity at its different regions. Based on these bearing regions, a mathematical function was developed, which applied modifications/adjustments to the socket design in a Computer Aided Design (CAD) environment by using the adjustment function. Besides, three adjusted sockets were produced by using selective laser sintering 3D printing technology. RESULTS The wearing of the 3D-adjusted printed sockets reduced the contact interface pressures in the distal tibial region and the fibular head region by 85.6% and 84.4%, respectively. In addition, the walking distance of the subject was increased by 18.34%, and the overall pressure distribution on the stump became more uniform. CONCLUSIONS The pressures in the original overpressure regions and the PS regions could reduce, whereas the pressure in the low-load regions of main load-bearing or pressure-tolerant regions could increase by modifying the socket with the pressure adjustment function. At the same time, the pressure among different regions was more uniform except for the sensitive regions.
Collapse
|
63
|
Zhang D, Tao J, Zhang X, Ma X, Li C, Li H, Li W, Chen J, Liu H. Novel Pro-myogenic Factor Neoruscogenin Induces Muscle Fiber Hypertrophy by Inhibiting MSTN Maturation and Activating the Akt/mTOR Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:499-511. [PMID: 36563293 DOI: 10.1021/acs.jafc.2c06527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Neoruscogenin is a plant-origin sapogenin that has the potential to modulate muscle growth among the small-molecule compounds that we previously predicted by artificial intelligence to target myostatin (MSTN). This study aimed to elucidate the biological role of neoruscogenin on muscle growth and its relationship with MSTN. Using molecular biological techniques, we found that neoruscogenin inhibited MSTN maturation, thereby repressing its signal transduction; further facilitated protein synthesis metabolism and reduced protein degradation metabolism, ultimately promoting the differentiation of myoblasts and hypertrophy of muscle fibers; and had the effect of repairing muscle injury. This study enriched the biological functions of neoruscogenin and provided a theoretical basis for the treatment of human myopathy and its application in the livestock industry.
Collapse
Affiliation(s)
- Dingding Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingli Tao
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangfei Ma
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengyu Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongmin Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weijian Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Chen
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Honglin Liu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
64
|
Ferguson TD, Loos CMM, Vanzant ES, Urschel KL, Klotz JL, McLeod KR. Impact of ergot alkaloid and steroidal implant on whole-body protein turnover and expression of mTOR pathway proteins in muscle of cattle. Front Vet Sci 2023; 10:1104361. [PMID: 37143501 PMCID: PMC10151678 DOI: 10.3389/fvets.2023.1104361] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/28/2023] [Indexed: 05/06/2023] Open
Abstract
Introduction Holstein steers (n = 32) were used to determine if the ergot analog, bromocriptine decreases muscle protein synthesis through inhibitory action on the mTOR pathway via a direct effect on signal proteins, and if these negative effects can be alleviated with anabolic agents. Methods Steers were treated with intramuscular administration of bromocriptine (vehicle or 0.1 mg/kg BW) and a subdermal commercial steroidal implant containing trenbolone acetate (TBA) and estradiol 17β (with or without), in a 2×2 factorial design. During the 35 day experiment, intake was restricted to 1.5 times maintenance energy requirement. On days 27 through 32, steers were moved to metabolism stalls for urine collection, and whole-body protein turnover was determined using a single pulse dose of [15N] glycine into the jugular vein on day 28. On day 35, skeletal muscle samples were collected before (basal state) and 60 min after (stimulated state) an i.v. glucose challenge (0.25 g glucose/kg). Blood samples were collected at regular intervals before and after glucose infusion for determination of circulating concentrations of glucose and insulin. Results Bromocriptine reduced insulin and glucose clearance following the glucose challenge, indicating decreased insulin sensitivity and possible disruption of glucose uptake and metabolism in the skeletal muscle. Conversely, analysis of whole-body protein turnover demonstrated that bromocriptine does not appear to affect protein synthesis or urea excretion. Western immunoblot analysis of skeletal muscle showed that it did not affect abundance of S6K1 or 4E-BP1, so bromocriptine does not appear to inhibit activation of the mTOR pathway or protein synthesis. Estradiol/TBA implant decreased urea excretion and protein turnover but had no effect on protein synthesis, suggesting that steroidal implants promote protein accretion through unchanged rates of synthesis and decreased degradation, even in the presence of bromocriptine, resulting in improved daily gains. Implanted steers likely experienced increased IGF-1 signaling, but downstream activation of mTOR, S6K and 4E-BP1, and thus increased protein synthesis did not occur as expected. Conclusions Overall, this data suggests that bromocriptine does not have a negative impact on muscle protein synthetic pathways independent of DMI.
Collapse
Affiliation(s)
- Taylor D. Ferguson
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Caroline M. M. Loos
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Eric S. Vanzant
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Kristine L. Urschel
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - James L. Klotz
- Forage Animal Production Research Unit, Agricultural Research Service, United States Department of Agriculture, Lexington, KY, United States
| | - Kyle R. McLeod
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
- *Correspondence: Kyle R. McLeod,
| |
Collapse
|
65
|
Viggars MR, Sutherland H, Lanmüller H, Schmoll M, Bijak M, Jarvis JC. Adaptation of the transcriptional response to resistance exercise over 4 weeks of daily training. FASEB J 2023; 37:e22686. [PMID: 36468768 DOI: 10.1096/fj.202201418r] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/05/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022]
Abstract
We present the time course of change in the muscle transcriptome 1 h after the last exercise bout of a daily resistance training program lasting 2, 10, 20, or 30 days. Daily exercise in rat tibialis anterior muscles (5 sets of 10 repetitions over 20 min) induced progressive muscle growth that approached a new stable state after 30 days. The acute transcriptional response changed along with progressive adaptation of the muscle phenotype. For example, expression of type 2B myosin was silenced. Time courses recently synthesized from human exercise studies do not demonstrate so clearly the interplay between the acute exercise response and the longer-term consequences of repeated exercise. We highlight classes of transcripts and transcription factors whose expression increases during the growth phase and declines again as the muscle adapts to a new daily pattern of activity and reduces its rate of growth. Myc appears to play a central role.
Collapse
Affiliation(s)
- Mark R Viggars
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK.,Department of Physiology and Aging, University of Florida, Gainesville, Florida, USA.,Myology Institute, University of Florida, Gainesville, Florida, USA
| | - Hazel Sutherland
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Hermann Lanmüller
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Martin Schmoll
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Manfred Bijak
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Jonathan C Jarvis
- Research Institute for Sport & Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
66
|
Wu Y, Che J, Jia P, Ma Y, Han Q, Wang X, Fu L, Dou H, Zheng Y. Near-infrared light-triggered polypyrrole promotes C2C12 cell differentiation and inhibits TNF-α induced myotube atrophy. Cell Signal 2022; 100:110463. [PMID: 36075558 DOI: 10.1016/j.cellsig.2022.110463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/20/2022] [Accepted: 08/31/2022] [Indexed: 11/03/2022]
Abstract
Treatment of skeletal muscle atrophy and strengthening the muscles remain a challenge in modern medicine. Studies have shown that photobiomodulation can inhibit skeletal muscle atrophy and aid in functional recovery. Near-infrared radiation (NIR) therapy has emerged as a complementary therapy for the treatment of skeletal muscle atrophy, but its underlying mechanism remains unclear. Polypyrrole (PPy) is an organic polymer with strong near-infrared absorption, which can generate heat from absorbed NIR. In this study, MHC immunofluorescence staining was performed on C2C12 myoblasts to investigate the differentiation of C2C12 cells after NIR-triggered PPy exposure. As TNF-α-induced C2C12 myotubes were used as a model of muscular atrophy. Giemsa staining was used to determine the myotube diameter. Western blot analysis was performed to examine the proteins involved in the differentiation and atrophy of muscle cells, as well as in the Akt/P70S6K signaling pathway. PPy triggered by NIR promoted the differentiation of C2C12 cells, inhibited C2C12 myotube atrophy caused by TNF-α, and downregulated the expression levels of Atrogin-1 and MuRF 1 protein. In addition, we determined that Akt/P70S6K signaling pathway activity plays a crucial role in the therapeutic effect of NIR-triggered polypyrrole, which was further confirmed by the administration of the Akt inhibitor GDC0068. The optimal conditions for these effects were a PPy concentration of 0.125 mg/ml and NIR exposure for 80 s. We show that the photothermal effect of PPy triggered by near-infrared light can increase the beneficial effects of NIR, promote the differentiation of C2C12 cells, and improve C2C12 myotube atrophy, laying a foundation for its future clinical use.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200040, China; Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200030, China
| | - Ji Che
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200040, China; Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai 200030, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200030, China
| | - Peiyu Jia
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200040, China
| | - Yantao Ma
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200040, China
| | - Qi Han
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200040, China
| | - Xiaolei Wang
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200040, China
| | - Lei Fu
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| | - Hongjing Dou
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, National Research Center for Translational Medicine at Shanghai, Shanghai Jiao Tong University, Shanghai, China.
| | - Yongjun Zheng
- Department of Pain, Huadong Hospital, Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai 200040, China.
| |
Collapse
|
67
|
Sherafati-Moghadam M, Pahlavani HA, Daryanoosh F, Salesi M. The effect of high-intensity interval training (HIIT) on protein expression in Flexor Hallucis Longus (FHL) and soleus (SOL) in rats with type 2 diabetes. J Diabetes Metab Disord 2022; 21:1499-1508. [PMID: 36404870 PMCID: PMC9672293 DOI: 10.1007/s40200-022-01091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE In people with diabetes, one of the problems for patients is muscle wasting and inhibition of the protein synthesis pathway. This study aimed to evaluate the effects of HIIT on protein expression in two skeletal muscles, flexor hallucis longus (FHL) and soleus (SOL) in rats with type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS Diabetes initially was induced by streptozotocin (STZ) and nicotinamide. Rats with type 2 diabetes were randomly and equally divided into control (n = 6) and HIIT groups (n = 6). After 8 weeks of training, the content of total and phosphorylated proteins of serine/threonine-protein kinases (AKT1), mammalian target of rapamycin (mTOR), P70 ribosomal protein S6 kinase 1 (P70S6K1), and 4E (eIF4E)-binding protein 1 (4E-BP1) in FHL and SOL muscles were measured by Western blotting. While body weight and blood glucose were also controlled. RESULTS In the HIIT training group, compared to the control group, a significant increase in the content of AKT1 (0.003) and mTOR (0.001) proteins was observed in the FHL muscle. Also, after 8 weeks of HIIT training, protein 4E-BP1 (0.001) was increased in SOL muscle. However, there was no significant change in other proteins in FHL and SOL muscle. CONCLUSIONS In rats with type 2 diabetes appear to HIIT leading to more protein expression of fast-twitch muscles than slow-twitch muscles. thus likely HIIT exercises can be an important approach to increase protein synthesis and prevent muscle atrophy in people with type 2 diabetes.
Collapse
Affiliation(s)
| | | | - Farhad Daryanoosh
- Department of Exercise Physiology, Faculty of Education and Psychology, University of Shiraz, Shiraz, Iran
| | - Mohsen Salesi
- Department of Exercise Physiology, Faculty of Education and Psychology, University of Shiraz, Shiraz, Iran
| |
Collapse
|
68
|
Miura I, Okada K, Ishii A, Warabi E, Watahiki T, To K, Shimano H, Ariizumi S, Shoda J. p62/Sqstm1 rescue in muscle retards the progression of steatohepatitis in p62/Sqstm1-null mice fed a high-fat diet. Front Physiol 2022; 13:993995. [PMID: 36439272 PMCID: PMC9692207 DOI: 10.3389/fphys.2022.993995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
Introduction: Obesity is a risk factor for many diseases because it leads to a reduction in skeletal muscle mass and promotes insulin resistance. p62/Sqstm1-knockout mice are a model of metabolic syndrome; show obesity, insulin resistance, and non-alcoholic fatty liver (NAFL); and develop non-alcoholic steatohepatitis (NASH) in response to the feeding of a high-fat diet (HFD). These phenotypes suggest that muscle p62 may prevent obesity-induced muscle dysfunction. In the present study, we aimed to determine the effects of muscle p62 on skeletal muscle mass, muscle strength, insulin resistance, and NASH pathology. Methods: We generated muscle-specific p62 gene rescue mice (p62-mRes), which express p62 only in muscle and were derived from p62-knock out mice (p62KIKI) using the cre/loxp system. p62KIKI and p62-mRes mice were fed an HFD for 20 weeks and their phenotypes were compared. Results: HFD-feeding caused severe obesity in both p62KIKI and p62-mRes mice, but there was no effect of muscle p62 on body mass. Limb skeletal muscle mass, grip strength, and the cross-sectional area of muscle fibers were higher in p62-mRes mice than in p62KIKI. The glucose tolerance and insulin sensitivity of the p62-mRes mice were also superior. The protein expression of mechanistic target of rapamycin, which promotes muscle protein synthesis, and GLUT4, a glucose transporter in skeletal muscle, were higher in the p62-mRes mice. p62KIKI mice developed severe NASH when fed an HFD, but the progression of NASH was retarded by p62 gene rescue in muscle, and the expression of Tgf-β1, which encodes a factor that promotes hepatic fibrosis, was reduced. Conclusion: Rescue of muscle-specific p62 in the whole-body p62 knock-out mice ameliorates the insulin resistance and retards the progression of NASH caused by systemic p62 ablation.
Collapse
Affiliation(s)
- Ikuru Miura
- Doctoral Program in Sports Medicine, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Kosuke Okada
- Department of Medical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Akiko Ishii
- Department of Internal Medicine (Neurology), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Eiji Warabi
- Laboratory Animal Resource Center in Transborder Medical Research Center, and Department of Anatomy and Embryology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Takahisa Watahiki
- Doctoral Program in Clinical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Keii To
- Doctoral Program in Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shunichi Ariizumi
- Department of Surgery, Institute of Gastroenterology, Tokyo Women's Medical University, Shinjuku, Japan
| | - Junichi Shoda
- Department of Medical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
69
|
Chen TH, Koh KY, Lin KMC, Chou CK. Mitochondrial Dysfunction as an Underlying Cause of Skeletal Muscle Disorders. Int J Mol Sci 2022; 23:12926. [PMID: 36361713 PMCID: PMC9653750 DOI: 10.3390/ijms232112926] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/21/2022] [Accepted: 10/21/2022] [Indexed: 09/19/2023] Open
Abstract
Mitochondria are an important energy source in skeletal muscle. A main function of mitochondria is the generation of ATP for energy through oxidative phosphorylation (OXPHOS). Mitochondrial defects or abnormalities can lead to muscle disease or multisystem disease. Mitochondrial dysfunction can be caused by defective mitochondrial OXPHOS, mtDNA mutations, Ca2+ imbalances, mitochondrial-related proteins, mitochondrial chaperone proteins, and ultrastructural defects. In addition, an imbalance between mitochondrial fusion and fission, lysosomal dysfunction due to insufficient biosynthesis, and/or defects in mitophagy can result in mitochondrial damage. In this review, we explore the association between impaired mitochondrial function and skeletal muscle disorders. Furthermore, we emphasize the need for more research to determine the specific clinical benefits of mitochondrial therapy in the treatment of skeletal muscle disorders.
Collapse
Affiliation(s)
- Tsung-Hsien Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Kok-Yean Koh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Kurt Ming-Chao Lin
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Zhunan 35053, Taiwan
| | - Chu-Kuang Chou
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
- Obesity Center, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| |
Collapse
|
70
|
Hanssen B, Peeters N, De Beukelaer N, Vannerom A, Peeters L, Molenaers G, Van Campenhout A, Deschepper E, Van den Broeck C, Desloovere K. Progressive resistance training for children with cerebral palsy: A randomized controlled trial evaluating the effects on muscle strength and morphology. Front Physiol 2022; 13:911162. [PMID: 36267577 PMCID: PMC9577365 DOI: 10.3389/fphys.2022.911162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Children with spastic cerebral palsy often present with muscle weakness, resulting from neural impairments and muscular alterations. While progressive resistance training (PRT) improves muscle weakness, the effects on muscle morphology remain inconclusive. This investigation evaluated the effects of a PRT program on lower limb muscle strength, morphology and gross motor function. Forty-nine children with spastic cerebral palsy were randomized by minimization. The intervention group (nparticipants = 26, age: 8.3 ± 2.0 years, Gross Motor Function Classification System [GMFCS] level I/II/III: 17/5/4, nlegs = 41) received a 12-week PRT program, consisting of 3-4 sessions per week, with exercises performed in 3 sets of 10 repetitions, aiming at 60%-80% of the 1-repetition maximum. Training sessions were performed under supervision with the physiotherapist and at home. The control group (nparticipants = 22, age: 8.5 ± 2.1 year, GMFCS level I/II/III: 14/5/3, nlegs = 36) continued usual care including regular physiotherapy and use of orthotics. We assessed pre- and post-training knee extension, knee flexion and plantar flexion isometric strength, rectus femoris, semitendinosus and medial gastrocnemius muscle morphology, as well as functional strength, gross motor function and walking capacity. Data processing was performed blinded. Linear mixed models were applied to evaluate the difference in evolution over time between the control and intervention group (interaction-effect) and within each group (time-effect). The α-level was set at p = 0.01. Knee flexion strength and unilateral heel raises showed a significant interaction-effect (p ≤ 0.008), with improvements in the intervention group (p ≤ 0.001). Moreover, significant time-effects were seen for knee extension and plantar flexion isometric strength, rectus femoris and medial gastrocnemius MV, sit-to-stand and lateral step-up in the intervention group (p ≤ 0.004). Echo-intensity, muscle lengths and gross motor function showed limited to no changes. PRT improved strength and MV in the intervention group, whereby strength parameters significantly or close to significantly differed from the control group. Although, relative improvements in strength were larger than improvements in MV, important effects were seen on the maintenance of muscle size relative to skeletal growth. In conclusion, this study proved the effectiveness of a home-based, physiotherapy supervised, PRT program to improve isometric and functional muscle strength in children with SCP without negative effects on muscle properties or any serious adverse events. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT03863197.
Collapse
Affiliation(s)
- Britta Hanssen
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | - Nicky Peeters
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Department of Rehabilitation Sciences, Ghent University, Ghent, Belgium
| | | | - Astrid Vannerom
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Faculty of Medicine, KU Leuven, Leuven, Belgium
| | - Leen Peeters
- CP Reference Center, University Hospitals Leuven, Leuven, Belgium
| | - Guy Molenaers
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Pediatric Orthopedics, Department of Orthopedics, University Hospitals Leuven, Leuven, Belgium
| | - Anja Van Campenhout
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Pediatric Orthopedics, Department of Orthopedics, University Hospitals Leuven, Leuven, Belgium
| | - Ellen Deschepper
- Biostatistics Unit, Department of Public Health and Primary Care, Ghent University, Ghent, Belgium
| | | | - Kaat Desloovere
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
- Clinical Motion Analysis Laboratory, University Hospitals Leuven, Pellenberg, Belgium
| |
Collapse
|
71
|
Hah YS, Lee WK, Lee S, Kim EJ, Lee JH, Lee SJ, Ji YH, Kim SG, Lee HH, Hong SY, Yoo JI. β-Sitosterol Attenuates Dexamethasone-Induced Muscle Atrophy via Regulating FoxO1-Dependent Signaling in C2C12 Cell and Mice Model. Nutrients 2022; 14:2894. [PMID: 35889851 PMCID: PMC9315776 DOI: 10.3390/nu14142894] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/24/2022] [Accepted: 07/04/2022] [Indexed: 12/10/2022] Open
Abstract
Sarcopenia refers to a decline in muscle mass and strength with age, causing significant impairment in the ability to carry out normal daily functions and increased risk of falls and fractures, eventually leading to loss of independence. Maintaining protein homeostasis is an important factor in preventing muscle loss, and the decrease in muscle mass is caused by an imbalance between anabolism and catabolism of muscle proteins. Although β-sitosterol has various effects such as anti-inflammatory, protective effect against nonalcoholic fatty liver disease (NAFLD), antioxidant, and antidiabetic activity, the mechanism of β-sitosterol effect on the catabolic pathway was not well known. β-sitosterol was assessed in vitro and in vivo using a dexamethasone-induced muscle atrophy mice model and C2C12 myoblasts. β-sitosterol protected mice from dexamethasone-induced muscle mass loss. The thickness of gastrocnemius muscle myofibers was increased in dexamethasone with the β-sitosterol treatment group (DS). Grip strength and creatine kinase (CK) activity were also recovered when β-sitosterol was treated. The muscle loss inhibitory efficacy of β-sitosterol in dexamethasone-induced muscle atrophy in C2C12 myotube was also verified in C2C12 myoblast. β-sitosterol also recovered the width of myotubes. The protein expression of muscle atrophy F-box (MAFbx) was increased in dexamethasone-treated animal models and C2C12 myoblast, but it was reduced when β-sitosterol was treated. MuRF1 also showed similar results to MAFbx in the mRNA level of C2C12 myotubes. In addition, in the gastrocnemius and tibialis anterior muscles of mouse models, Forkhead Box O1 (FoxO1) protein was increased in the dexamethasone-treated group (Dexa) compared with the control group and reduced in the DS group. Therefore, β-sitosterol would be a potential treatment agent for aging sarcopenia.
Collapse
Affiliation(s)
- Young-Sool Hah
- Department of Orthopedics, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea; (Y.-S.H.); (J.H.L.)
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea; (W.K.L.); (S.L.); (E.J.K.)
| | - Won Keong Lee
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea; (W.K.L.); (S.L.); (E.J.K.)
| | - Sangyeob Lee
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea; (W.K.L.); (S.L.); (E.J.K.)
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Eun Ji Kim
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea; (W.K.L.); (S.L.); (E.J.K.)
| | - Jung Hyeon Lee
- Department of Orthopedics, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea; (Y.-S.H.); (J.H.L.)
| | - Seung-Jun Lee
- Department of Convergence of Medical Sciences, Gyeongsang National University, Jinju 52828, Korea; (S.-J.L.); (Y.H.J.)
| | - Yeong Ho Ji
- Department of Convergence of Medical Sciences, Gyeongsang National University, Jinju 52828, Korea; (S.-J.L.); (Y.H.J.)
| | - Sang Gon Kim
- Anti-Aging Research Group, Gyeongnam Oriental Anti-Aging Institute, Sancheong 52215, Korea; (S.G.K.); (H.-H.L.)
| | - Hyeong-Hwan Lee
- Anti-Aging Research Group, Gyeongnam Oriental Anti-Aging Institute, Sancheong 52215, Korea; (S.G.K.); (H.-H.L.)
- Division of Applied Life Science (BK21 PLUS), IALS, Gyeongsang National University, Jinju 52727, Korea
| | - Seo Yeon Hong
- Crop Production Technology Research Division, NICS, RDA, Miryang 50424, Korea;
| | - Jun-Il Yoo
- Department of Orthopedics, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Korea; (Y.-S.H.); (J.H.L.)
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju 52727, Korea; (W.K.L.); (S.L.); (E.J.K.)
| |
Collapse
|
72
|
Initiation of muscle protein synthesis was unrelated to simultaneously upregulated local production of IGF-1 by amino acids in non-proliferating L6 muscle cells. PLoS One 2022; 17:e0270927. [PMID: 35802556 PMCID: PMC9269383 DOI: 10.1371/journal.pone.0270927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/17/2022] [Indexed: 11/19/2022] Open
Abstract
Background
IGF-1 is considered an important regulator of muscle protein synthesis. However, its role in stimulation of muscle protein synthesis by amino acids (AA) is not clear, despite pronounced alterations in IGF-1 mRNA expression and signaling in muscle tissues by feeding. This study evaluates the role of locally produced IGF-1 and IGF-1 signaling when skeletal muscle protein synthesis is activated by increased amino acid availability in confluent, non-proliferating cells.
Methods
L6 skeletal muscle cells were subjected to amino acid starvation (24 h, 0.14 mM) followed by 18 h amino acid refeeding in Low AA (0.28 mM) or High AA concentrations (9 mM). Protein synthesis rates were estimated by L-[U-14C]-phenylalanine incorporation into cellular proteins. IGF-1 and IGF-1 receptor mRNA expression were quantified by real time PCR. SiRNA knockdown, antibodies and chemical inhibitors were used to attenuate muscle IGF-1 production and signaling.
Results
High AA concentrations (9mM) increased IGF-1 mRNA expression (+ 30%, p<0.05) and increased L-[U-14C]-phenylalanine incorporation compared to Low AA in confluent, non-proliferating muscle cells. Blocking IGF-1 signaling by chemical inhibitors reduced IGF-1 mRNA upregulation (~50%, p< 0.01), without decrease of protein synthesis. SiRNA knockdown of IGF-1 reduced protein synthesis, mainly explained by reduced cell proliferation. High AA or IGF-1 inhibitors did not change IGF-1 receptor mRNA expressions.
Conclusion
Amino acids increased IGF-1 mRNA expression and stimulated muscle protein synthesis. However, simultaneous upregulation of IGF-1 mRNA did not relate to increased protein synthesis by amino acids. The results indicate that increased IGF-1 mRNA expression is rather a covariate to amino acid initiation of protein synthesis in non-proliferating muscle cells; effects that may be related to unrecognized metabolic activities, such as transport of amino acids.
Collapse
|
73
|
Yoo A, Ahn J, Kim MJ, Seo HD, Hahm JH, Jung CH, Ha TY. Fruit of Schisandra chinensis and its bioactive component schizandrin B ameliorate obesity-induced skeletal muscle atrophy. Food Res Int 2022; 157:111439. [PMID: 35761679 DOI: 10.1016/j.foodres.2022.111439] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/13/2022] [Accepted: 05/26/2022] [Indexed: 11/17/2022]
Abstract
Schisandra chinensis fruit (Omiza in Korean), used for the production tea or liquor, and is known to enhance skeletal muscle function. However, the effect of Omiza extract (OM) on obesity-induced skeletal muscle atrophy remains unclear. This study investigated the effect of OM on skeletal muscle mass and performance in obese mice. OM increased skeletal muscle weight, size and improved skeletal muscle performance. Further, it also suppressed obesity-induced increases in proinflammatory cytokines, MuRF1, and Atrogin1 in mouse skeletal muscle and enhanced the expression of MHC and the phosphorylation of AKT/mTOR signaling molecules, thereby suppressing myostatin expression and regulating Smad-FOXO signaling. Schizandrin B, a major component of OM inhibited palmitic acid induced atrophy in C2C12 cells via Smad-FOXO regulation, suggesting that it partially contributed to the effects of OM against obesity-induced muscle atrophy. Taken together, OM may have the potential to prevent and treat obesity-induced muscle atrophy.
Collapse
Affiliation(s)
- Ahyoung Yoo
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; Department of Food and Nutrition, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jiyun Ahn
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Min Jung Kim
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea.
| | - Hyo-Deok Seo
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea.
| | - Jeong-Hoon Hahm
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea.
| | - Chang Hwa Jung
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| | - Tae Youl Ha
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
74
|
Nagendra AH, Najar MA, Bose B, Shenoy PS. High concentration of sodium fluoride in drinking water induce hypertrophy versus atrophy in mouse skeletal muscle via modulation of sarcomeric proteins. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128654. [PMID: 35286933 DOI: 10.1016/j.jhazmat.2022.128654] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Fluoride at high doses is a well-known toxic agent for the musculoskeletal system, primarily in bone and cartilage cells. Research on fluoride toxicity concerning particularly on the skeletal muscle is scanty. We hypothesized that during skeletal fluorosis, along with bone, muscle is also affected, so we have evaluated the effects of Sodium fluoride (NaF) on mouse skeletal muscles. Sodium fluoride (80 ppm) was administered to 5-week-old C57BL6 mice drinking water for 15 and 60 days, respectively. We carried out histology, primary culture, molecular and proteomic analysis of fluoride administered mouse skeletal muscles. Results indicated an increase in the muscle mass (hypertrophy) in vivo and myotubes ex vivo by activating the IGF1/PI3/Akt/mTOR signalling pathway due to short term NaF exposure. The long-term exposure of mice to NaF caused loss of muscle proteins leading to muscle atrophy due to activation of the ubiquitin-proteasome pathway. Differentially expressed proteins were characterized and mapped using a proteomic approach. Moreover, the factors responsible for protein synthesis and PI3/Akt/mTOR pathway were upregulated, leading to muscle hypertrophy during the short term NaF exposure. Long term exposure to NaF resulted in down-regulation of metabolic pathways. Elevated myostatin resulted in the up-regulation of the muscle-specific E3 ligases-MuRF1, promoting the ubiquitination and proteasome-mediated degradation of critical sarcomeric proteins.
Collapse
Affiliation(s)
- Apoorva H Nagendra
- Stem cells and Regenerative medicine centre, Yenepoya research centre, Yenepoya Deemed to be University, University Road, Derlakatte, Mangalore 575018, Karnataka, India
| | - Mohd Altaf Najar
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bipasha Bose
- Stem cells and Regenerative medicine centre, Yenepoya research centre, Yenepoya Deemed to be University, University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| | - P Sudheer Shenoy
- Stem cells and Regenerative medicine centre, Yenepoya research centre, Yenepoya Deemed to be University, University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| |
Collapse
|
75
|
14-3-3β is essential for milk composition stimulated by Leu/IGF-1 via IGF1R signaling pathway in BMECs. In Vitro Cell Dev Biol Anim 2022; 58:384-395. [PMID: 35648337 DOI: 10.1007/s11626-022-00682-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/29/2022] [Indexed: 11/05/2022]
Abstract
The cell proliferation of bovine mammary epithelial cells (BMECs) and consequent milk synthesis are regulated by multiple factors. The purpose of this study was to examine the effect of 14-3-3β on cellular proliferation and milk fat/β-casein synthesis in BMECs and reveal its underlying mechanisms. In this study, we employed gene function analysis to explore the regulatory effect and molecular mechanisms of 14-3-3β on milk synthesis and proliferation in BMECs. We found that leucine and IGF-1 enhance cell proliferation and milk synthesis in a 14-3-3β-dependent manner and only exhibiting such effect in the presence of 14-3-3β. We further determined that 14-3-3β interacts with the IGF1R self-phosphorylation site and it additionally mediated leucine and IGF-1 to stimulate the synthesis of milk through the IGF1R-AKT-mTORC1 signaling pathway. In summary, our data indicated that 14-3-3β mediates the expression of milk fat and protein stimulated by leucine and IGF-1, leading to lactogenesis through IGF1R signaling pathway in BMECs.
Collapse
|
76
|
Shin JE, Jeon SH, Lee SJ, Choung SY. The Administration of Panax Ginseng Berry Extract Attenuates High-Fat-Diet-Induced Sarcopenic Obesity in C57BL/6 Mice. Nutrients 2022; 14:nu14091747. [PMID: 35565712 PMCID: PMC9099595 DOI: 10.3390/nu14091747] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 01/05/2023] Open
Abstract
Sarcopenia and obesity are serious health problems that are highly related to several metabolic diseases. Sarcopenic obesity, a combined state of sarcopenia and obesity, results in higher risks of metabolic diseases and even mortality than sarcopenia or obesity alone. Therefore, the development of therapeutic agents for sarcopenic obesity is crucial. C57BL/6 mice were fed with a high-fat diet (HFD) for 9 weeks. Then, mice were administered with Panax ginseng berry extract (GBE) for an additional 4 weeks, with continuous HFD intake. GBE significantly decreased the food efficiency ratio, serum lipid and insulin levels, adipose tissue weights, and adipocyte size. It significantly increased the grip strength, muscle masses, and myofiber cross-sectional area. It deactivated the protein kinase C (PKC) theta and zeta, resulting in activation of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway, which is known to regulate muscle synthesis and degradation. Furthermore, it inhibited the production of inflammatory cytokines in the muscle tissue. GBE attenuated both obesity and sarcopenia. Thus, GBE is a potential agent to prevent or treat sarcopenic obesity.
Collapse
Affiliation(s)
- Ji-Eun Shin
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea;
| | - So-Hyun Jeon
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
| | | | - Se-Young Choung
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea;
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea;
- Department of Preventive Pharmacy and Toxicology, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-2-961-9198; Fax: +82-2-961-0372
| |
Collapse
|
77
|
Astragalus membranaceus Enhances Myotube Hypertrophy through PI3K-Mediated Akt/mTOR Signaling Phosphorylation. Nutrients 2022; 14:nu14081670. [PMID: 35458232 PMCID: PMC9028211 DOI: 10.3390/nu14081670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/10/2022] [Accepted: 04/14/2022] [Indexed: 12/14/2022] Open
Abstract
Astragalus membranaceus (AM) is classified as a high-class traditional herbal medicine, which has strengthened vitality and multifunctional pharmacological activities, but limited empirical evidence is available to support its effects in muscular hypertrophy. It evokes skeletal muscle hypertrophy by increasing anabolic pathway, which is essential to prevent sarcopenia in elderly population. In this study, we examined the effects of AM on skeletal muscle hypertrophy by focusing on the molecular mechanism. We employed an in vitro model to investigate whether AM-treated skeletal muscle, as represented by myotube C2C12 cells, was hypertrophic, and to further investigate the efficacy of AM-activated phosphorylation of PI3K/Akt/mTOR signaling that must occur prior to myotube hypertrophy. The results showed that the myotubes formed larger multinucleated myotubes with increased diameter and thickness (1.16-fold relative to control group, p < 0.05). Administration of PI3K and mTOR inhibitors abolished AM-induced muscular hypertrophy. Moreover, AM-induced PI3K-mediated myotube hypertrophy was accompanied by the activation of Akt and mTOR signaling. We concluded that the AM is a nutritional activator to enhance muscular hypertrophy by increasing PI3K/Akt/mTOR signaling phosphorylation. As the AM is effective in myotube hypertrophy, AM and its derivatives may be promising candidates for ergogenic aid to prevent sarcopenia.
Collapse
|
78
|
Identification and characterization of circular RNAs in Longissimus dorsi muscle tissue from two goat breeds using RNA-Seq. Mol Genet Genomics 2022; 297:817-831. [DOI: 10.1007/s00438-022-01887-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
|
79
|
Sarcopenia in Children with Solid Organ Tumors: An Instrumental Era. Cells 2022; 11:cells11081278. [PMID: 35455957 PMCID: PMC9024674 DOI: 10.3390/cells11081278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 11/17/2022] Open
Abstract
Sarcopenia has recently been studied in both adults and children and was found to be a prognostic marker for adverse outcome in a variety of patient groups. Our research showed that sarcopenia is a relevant marker in predicting outcome in children with solid organ tumors, such as hepatoblastoma and neuroblastoma. This was especially true in very ill, high-risk groups. Children with cancer have a higher likelihood of ongoing loss of skeletal muscle mass due to a mismatch in energy intake and expenditure. Additionally, the effects of cancer therapy, hormonal alterations, chronic inflammation, multi-organ dysfunction, and a hypermetabolic state all contribute to a loss of skeletal muscle mass. Sarcopenia seems to be able to pinpoint this waste to a high degree in a new and objective way, making it an additional tool in predicting and improving outcome in children. This article focuses on the current state of sarcopenia in children with solid organ tumors. It details the pathophysiological mechanisms behind sarcopenia, highlighting the technical features of the available methods for measuring muscle mass, strength, and function, including artificial intelligence (AI)-based techniques. It also reviews the latest research on sarcopenia in children, focusing on children with solid organ tumors.
Collapse
|
80
|
Dong XR, Wan SM, Zhou JJ, Nie CH, Chen YL, Diao JH, Gao ZX. Functional Differentiation of BMP7 Genes in Zebrafish: bmp7a for Dorsal-Ventral Pattern and bmp7b for Melanin Synthesis and Eye Development. Front Cell Dev Biol 2022; 10:838721. [PMID: 35372349 PMCID: PMC8964609 DOI: 10.3389/fcell.2022.838721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/23/2022] [Indexed: 01/02/2023] Open
Abstract
Bone morphogenetic protein 7 (BMP7) belongs to the transforming growth factor β (TGF-β) family, which not only induces cartilage and bone formation, but also regulates eye development and melanoma tumorigenesis in mammals. In teleosts, BMP7 differentiates into two subtypes, bmp7a and bmp7b, which have clearly differentiated structures. To fully understand the functional differentiation of bmp7a and bmp7b in fish species, we successfully constructed bmp7a and bmp7b gene deletion mutants in zebrafish using CRISPR/Cas9-mediated gene editing technology. Our results showed that bmp7a mutation caused abnormal development of the embryo’s dorsal-ventral pattern that led to death; bmp7b mutation induced growth inhibition and increased melanin production in the skin and eye of mutants. Histological analysis revealed that melanin in the retina of the eyes in bmp7b mutants increased, and behavioral observation showed that the vision and sensitivity to food of the mutants were reduced. Transcriptome analysis of the skin and eye tissues showed that the expression changes of wnt7ba and gna14 in bmp7b mutants might promote the increase of melanin. Additionally, the eye transcriptome analysis indicated that changes in the structure of the eyes in bmp7b mutants led to defects in phototransduction, and seven DEGs (rgs9a, rgs9b, rcvrn2, guca1d, grk1b, opn1mw4, and gc2) were identified as key candidate genes that affected the photonic response of the eyes. The study revealed the functional differentiation of bmp7a and bmp7b in teleosts and the first report about the inhibitory effect of bmp7b on melanogenesis may provide useful information for the future research on human melanoma-related diseases.
Collapse
Affiliation(s)
- Xiao-Ru Dong
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shi-Ming Wan
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Jia-Jia Zhou
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Chun-Hong Nie
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yu-Long Chen
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jing-Han Diao
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Ze-Xia Gao
- Key Lab of Freshwater Animal Breeding, College of Fisheries, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt of Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Ze-Xia Gao,
| |
Collapse
|
81
|
Ritchie JA, Ng JQ, Kemi OJ. When one says yes and the other says no; does calcineurin participate in physiologic cardiac hypertrophy? ADVANCES IN PHYSIOLOGY EDUCATION 2022; 46:84-95. [PMID: 34762541 DOI: 10.1152/advan.00104.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
Developing engaging activities that build skills for understanding and appreciating research is important for undergraduate and postgraduate science students. Comparing and contrasting opposing research studies does this, and more: it also appropriately for these cohorts challenges higher level cognitive processing. Here, we present and discuss one such scenario, that of calcineurin in the heart and its response to exercise training. This scenario is further accentuated by the existence of only two studies. The background is that regular aerobic endurance exercise training stimulates the heart to physiologically adapt to chronically increase its ability to produce a greater cardiac output to meet the increased demand for oxygenated blood in working muscles, and this happens by two main mechanisms: 1) increased cardiac contractile function and 2) physiologic hypertrophy. The major underlying mechanisms have been delineated over the last decades, but one aspect has not been resolved: the potential role of calcineurin in modulating physiologic hypertrophy. This is partly because the existing research has provided opposing and contrasting findings, one line showing that exercise training does activate cardiac calcineurin in conjunction with myocardial hypertrophy, but another line showing that exercise training does not activate cardiac calcineurin even if myocardial hypertrophy is blatantly occurring. Here, we review and present the current evidence in the field and discuss reasons for this controversy. We present real-life examples from physiology research and discuss how this may enhance student engagement and participation, widen the scope of learning, and thereby also further facilitate higher level cognitive processing.
Collapse
Affiliation(s)
- Jonathan A Ritchie
- School of Medicine, Dentistry and Nursing, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jun Q Ng
- School of Life Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ole J Kemi
- School of Life Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
82
|
Hartono FA, Martin-Arrowsmith PW, Peeters WM, Churchward-Venne TA. The Effects of Dietary Protein Supplementation on Acute Changes in Muscle Protein Synthesis and Longer-Term Changes in Muscle Mass, Strength, and Aerobic Capacity in Response to Concurrent Resistance and Endurance Exercise in Healthy Adults: A Systematic Review. Sports Med 2022; 52:1295-1328. [PMID: 35113389 DOI: 10.1007/s40279-021-01620-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Engaging in both resistance and endurance exercise within the same training program, termed 'concurrent exercise training,' is common practice in many athletic disciplines that require a combination of strength and endurance and is recommended by a number of organizations to improve muscular and cardiovascular health and reduce the risk of chronic metabolic disease. Dietary protein ingestion supports skeletal muscle remodeling after exercise by stimulating the synthesis of muscle proteins and can optimize resistance exercise-training mediated increases in skeletal muscle size and strength; however, the effects of protein supplementation on acute and longer-term adaptive responses to concurrent resistance and endurance exercise are unclear. OBJECTIVES The purpose of this systematic review is to evaluate the effects of dietary protein supplementation on acute changes in muscle protein synthesis and longer-term changes in muscle mass, strength, and aerobic capacity in responses to concurrent resistance and endurance exercise in healthy adults. METHODS A systematic search was conducted in five databases: Scopus, Embase, Medline, PubMed, and Web of Science. Acute and longer-term controlled trials involving concurrent exercise and protein supplementation in healthy adults (ages 18-65 years) were included in this systematic review. Main outcomes of interest were changes in skeletal muscle protein synthesis rates, muscle mass, muscle strength, and whole-body aerobic capacity (i.e., maximal/peak aerobic capacity [VO2max/peak]). The quality of studies was assessed using the National Institute of Health Quality Assessment for Controlled Intervention Studies. RESULTS Four acute studies including 84 trained young males and ten longer-term studies including 167 trained and 391 untrained participants fulfilled the eligibility criteria. All included acute studies demonstrated that protein ingestion enhanced myofibrillar protein synthesis rates, but not mitochondrial protein synthesis rates during post-exercise recovery after an acute bout of concurrent exercise. Of the included longer-term training studies, five out of nine reported that protein supplementation enhanced concurrent training-mediated increases in muscle mass, while five out of nine studies reported that protein supplementation enhanced concurrent training-mediated increases in muscle strength and/or power. In terms of aerobic adaptations, all six included studies reported no effect of protein supplementation on concurrent training-mediated increases in VO2max/peak. CONCLUSION Protein ingestion after an acute bout of concurrent exercise further increases myofibrillar, but not mitochondrial, protein synthesis rates during post-exercise recovery. There is some evidence that protein supplementation during longer-term training further enhances concurrent training-mediated increases in skeletal muscle mass and strength/power, but not whole-body aerobic capacity (i.e., VO2max/peak).
Collapse
Affiliation(s)
| | - Patrick W Martin-Arrowsmith
- Department of Kinesiology and Physical Education, McGill University, Currie Memorial Gymnasium A205, 475 Pine Avenue West, Montreal, QC, H2W 1S4, Canada
| | - Wouter M Peeters
- School of Biomedical, Nutritional, and Sports Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Tyler A Churchward-Venne
- Department of Kinesiology and Physical Education, McGill University, Currie Memorial Gymnasium A205, 475 Pine Avenue West, Montreal, QC, H2W 1S4, Canada.
- Division of Geriatric Medicine, McGill University, Montreal, QC, Canada.
- Research Institute of the McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
83
|
Aase-Remedios ME, Coll-Lladó C, Ferrier DEK. Amphioxus muscle transcriptomes reveal vertebrate-like myoblast fusion genes and a highly conserved role of insulin signalling in the metabolism of muscle. BMC Genomics 2022; 23:93. [PMID: 35105312 PMCID: PMC8805411 DOI: 10.1186/s12864-021-08222-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The formation and functioning of muscles are fundamental aspects of animal biology, and the evolution of 'muscle genes' is central to our understanding of this tissue. Feeding-fasting-refeeding experiments have been widely used to assess muscle cellular and metabolic responses to nutrition. Though these studies have focused on vertebrate models and only a few invertebrate systems, they have found similar processes are involved in muscle degradation and maintenance. Motivation for these studies stems from interest in diseases whose pathologies involve muscle atrophy, a symptom also triggered by fasting, as well as commercial interest in the muscle mass of animals kept for consumption. Experimentally modelling atrophy by manipulating nutritional state causes muscle mass to be depleted during starvation and replenished with refeeding so that the genetic mechanisms controlling muscle growth and degradation can be understood. RESULTS Using amphioxus, the earliest branching chordate lineage, we address the gap in previous work stemming from comparisons between distantly related vertebrate and invertebrate models. Our amphioxus feeding-fasting-refeeding muscle transcriptomes reveal a highly conserved myogenic program and that the pro-orthologues of many vertebrate myoblast fusion genes were present in the ancestral chordate, despite these invertebrate chordates having unfused mononucleate myocytes. We found that genes differentially expressed between fed and fasted amphioxus were orthologous to the genes that respond to nutritional state in vertebrates. This response is driven in a large part by the highly conserved IGF/Akt/FOXO pathway, where depleted nutrient levels result in activation of FOXO, a transcription factor with many autophagy-related gene targets. CONCLUSION Reconstruction of these gene networks and pathways in amphioxus muscle provides a key point of comparison between the distantly related groups assessed thus far, significantly refining the reconstruction of the ancestral state for chordate myoblast fusion genes and identifying the extensive role of duplicated genes in the IGF/Akt/FOXO pathway across animals. Our study elucidates the evolutionary trajectory of muscle genes as they relate to the increased complexity of vertebrate muscles and muscle development.
Collapse
Affiliation(s)
- Madeleine E Aase-Remedios
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
| | - Clara Coll-Lladó
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK
| | - David E K Ferrier
- The Scottish Oceans Institute, Gatty Marine Laboratory, School of Biology, University of St Andrews, St Andrews, Fife, KY16 8LB, UK.
| |
Collapse
|
84
|
MicroRNA-100 Reduced Fetal Bovine Muscle Satellite Cell Myogenesis and Augmented Intramuscular Lipid Deposition by Modulating IGF1R. Cells 2022; 11:cells11030451. [PMID: 35159261 PMCID: PMC8833961 DOI: 10.3390/cells11030451] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
Previously, microRNA-100 (miR-100) and its putative mRNA target, insulin-like growth factor receptor-1 (IGF1R) were identified as differentially and inversely expressed in bovine longissimus dorsi (LD) muscles with divergent intramuscular fat (IMF) content by our group. While IGF1R signaling is implicated in myogenesis and muscle lipid metabolism, the underlying regulatory mechanisms are poorly understood. In the present study, we aimed to investigate the regulation of IGF1R by miR-100 during bovine muscle satellite cell (BMSC) myogenesis and lipid deposition. MiR-100 was confirmed to target the IGF1R 3′-untranslated region (3′-UTR) by luciferase reporter assay. Furthermore, expression of miR-100 and IGF1R was reciprocal during BMSC differentiation, suggesting a crosstalk between the two. Correspondingly, miR-100 mimic (agomiR) suppressed the levels of IGF1R, PI3K/AKT pathway signaling, myogenic gene MYOG, muscle structural components MYH7 and MYH8, whereas the inhibitor (antagomiR) had no clear stimulating effects. The IGF1R inhibitor (BMS-754807) curtailed receptor levels and triggered atrophy in muscle myotubes but did not influence miR-100 expression. AgomiR increased oleic acid-induced lipid deposition in BMSC myotubes supporting its involvement in intramuscular fat deposition, while antagomiR had no effect. Moreover, mitochondrial beta-oxidation and long-chain fatty acid synthesis-related genes were modulated by agomiR addition. Our results demonstrate modulatory roles of miR-100 in BMSC development, lipid deposition, and metabolism and suggest a role of miR-100 in marbling characteristics of meat animals and fat oxidation in muscle.
Collapse
|
85
|
Endurance exercise training under normal diet conditions activates skeletal muscle protein synthesis and inhibits protein degradation signaling except MuRF1. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-021-00888-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
86
|
Karadağ Gürel A, Gürel S. To detect potential pathways and target genes in infantile Pompe patients using computational analysis. BIOIMPACTS 2022; 12:89-105. [PMID: 35411297 PMCID: PMC8905584 DOI: 10.34172/bi.2022.23467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/08/2021] [Accepted: 02/13/2021] [Indexed: 11/21/2022]
Abstract
![]()
Introduction: Pompe disease (PD) is a disease caused by pathogenic variations in the GAA gene known as glycogen storage disease type II, characterized by heart hypertrophy, respiratory failure, and muscle hypotonia, leading to premature death if not treated early. The only treatment option, enzyme replacement therapy (ERT), significantly improves the prognosis for some patients while failing to help others. In this study, the determination of key genes involved in the response to ERT and potential molecular mechanisms were investigated.
Methods: Gene Expression Omnibus (GEO) data, accession number GSE38680, containing samples of biceps and quadriceps muscles was used. Expression array data were analyzed using BRB-Array Tools. Biceps group patients did not receive ERT, while quadriceps received treatment with rhGAA at 0, 12, and 52 weeks. Differentially expressed genes (DEGs) were deeply analyzed by DAVID, GO, KEGG and STRING online analyses, respectively.
Results: A total of 1727 genes in the biceps group and 1198 genes in the quadriceps group are expressed differently. It was observed that DEGs were enriched in the group that responded poorly to ERT in the 52nd week. Genes frequently changed in the weak response group; the expression of 530 genes increased and 1245 genes decreased compared to 0 and 12 weeks. The GO analysis demonstrated that the DEGs were mainly involved in vascular smooth muscle contraction, lysosomes, autophagy, regulation of actin cytoskeleton, inflammatory response, and the WNT signaling pathway. We also discovered that the WNT signaling pathway is highly correlated with DEGs. Several DEGs, such as WNT11, WNT5A, CTNNB1, M6PR, MYL12A, VCL, TLN, FYN, YES1, and BCL2, may be important in elucidating the mechanisms underlying poor response to ERT.
Conclusion: Early diagnosis and treatment of PD are very important for the clinic of the disease. As a result, it suggests that the enriched genes and new pathways emerging as a result of the analysis may help identify the group that responds poorly to treatment and the outcome of the treatment. Obtained genes and pathways in neonatal screening will guide diagnosis and treatment.
Collapse
Affiliation(s)
- Aynur Karadağ Gürel
- Department of Medical Biology, School of Medicine, Usak University, Usak, Turkey
| | - Selçuk Gürel
- Department of Pediatrics, School of Medicine, Bahcesehir University, İstanbul, Turkey
| |
Collapse
|
87
|
Amino Acids and IGF1 Regulation of Fish Muscle Growth Revealed by Transcriptome and microRNAome Integrative Analyses of Pacu ( Piaractus mesopotamicus) Myotubes. Int J Mol Sci 2022; 23:ijms23031180. [PMID: 35163102 PMCID: PMC8835699 DOI: 10.3390/ijms23031180] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/04/2022] Open
Abstract
Amino acids (AA) and IGF1 have been demonstrated to play essential roles in protein synthesis and fish muscle growth. The myoblast cell culture is useful for studying muscle regulation, and omics data have contributed enormously to understanding its molecular biology. However, to our knowledge, no study has performed the large-scale sequencing of fish-cultured muscle cells stimulated with pro-growth signals. In this work, we obtained the transcriptome and microRNAome of pacu (Piaractus mesopotamicus)-cultured myotubes treated with AA or IGF1. We identified 1228 and 534 genes differentially expressed by AA and IGF1. An enrichment analysis showed that AA treatment induced chromosomal changes, mitosis, and muscle differentiation, while IGF1 modulated IGF/PI3K signaling, metabolic alteration, and matrix structure. In addition, potential molecular markers were similarly modulated by both treatments. Muscle-miRNAs (miR-1, -133, -206 and -499) were up-regulated, especially in AA samples, and we identified molecular networks with omics integration. Two pairs of genes and miRNAs demonstrated a high-level relationship, and involvement in myogenesis and muscle growth: marcksb and miR-29b in AA, and mmp14b and miR-338-5p in IGF1. Our work helps to elucidate fish muscle physiology and metabolism, highlights potential molecular markers, and creates a perspective for improvements in aquaculture and in in vitro meat production.
Collapse
|
88
|
Abrigo J, Simon F, Cabrera D, Vilos C, Cabello-Verrugio C. Combined Administration of Andrographolide and Angiotensin- (1-7) Synergically Increases the Muscle Function and Strength in Aged Mice. Curr Mol Med 2021; 22:908-918. [PMID: 34875988 DOI: 10.2174/1566524021666211207112106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Sarcopenia is a progressive and generalized skeletal muscle disorder characterized by muscle weakness, loss of muscle mass, and decline in the capacity of force generation. Aging can cause sarcopenia. Several therapeutic strategies have been evaluated to prevent or alleviate this disorder. One of them is angiotensin 1-7 [Ang-(1-7)], an anti-atrophic peptide for skeletal muscles that regulates decreased muscle mass for several causes, including aging. Another regulator of muscle mass and function is andrographolide, a bicyclic diterpenoid lactone that decreases the nuclear factor kappa B (NF-κB) signaling and attenuates the severity of some muscle diseases. OBJECTIVE Evaluate the effect of combined administration of Ang-(1-7) with andrographolide on the physical performance, muscle strength, and fiber´s diameter in a murine model of sarcopenia by aging. METHODS Aged male mice of the C57BL/6J strain were treated with Andrographolide, Ang-(1-7), or combined for three months. The physical performance, muscle strength, and fiber´s diameter were measured. RESULTS The results showed that aged mice (24 months old) treated with Ang-(1-7) or Andrographolide improved their performance on a treadmill test, muscle strength, and their fiber´s diameter compared to aged mice without treatment. The combined administration of Ang-(1-7) with andrographolide to aged mice has an enhanced synergically effect on physical performance, muscle strength, and fiber´s diameter. CONCLUSION Our results indicated that in aged mice, the effects of andrographolide and Ang-(1-7) on muscle function, strength, and fiber´s diameter are potentiated.
Collapse
Affiliation(s)
- Johanna Abrigo
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello. Santiago. Chile
| | - Felipe Simon
- Millennium Institute on Immunology and Immunotherapy. Santiago. Chile
| | - Daniel Cabrera
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica de Chile. Santiago. Chile
| | - Cristian Vilos
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile. Santiago. Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Department of Biological Sciences, Faculty of Life Sciences, Universidad Andres Bello. Santiago. Chile
| |
Collapse
|
89
|
Rodrigues GDA, Júnior DTV, Soares MH, da Silva CB, Fialho FA, Barbosa LMDR, Neves MM, Rocha GC, Duarte MDS, Saraiva A. L-Arginine Supplementation for Nulliparous Sows during the Last Third of Gestation. Animals (Basel) 2021; 11:ani11123476. [PMID: 34944251 PMCID: PMC8698042 DOI: 10.3390/ani11123476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
We evaluated the effects of L-arginine supplementation during the last third of gestation on molecular mechanisms related to skeletal muscle development of piglets and litter traits at birth. Twenty-three nulliparous sows averaging 205.37 ± 11.50 kg of body weight were randomly assigned to the following experimental treatments: control (CON), where pregnant sows were fed diets to meet their nutritional requirements; arginine (ARG), where sows where fed CON + 1.0% L-arginine. Skeletal muscle from piglets born from sows from ARG group had greater mRNA expression of MYOD (p = 0.043) and MYOG (p ≤ 0.01), and tended to present greater mRNA expression (p = 0.06) of IGF-2 gene compared to those born from CON sows. However, there were no differences (p > 0.05) in the histomorphometric variables of fetuses' skeletal muscle. The total weight of born piglets, total weight of born alive piglets, piglet weight at birth, coefficient of variation of birth weight, and the incidence of intrauterine growth restriction (IUGR) piglets did not differ between groups. No stillborn piglets (p < 0.01) were verified in the ARG sows compared to CON group. The blood levels of estradiol (p = 0.035) and urea (p = 0.03) were higher in ARG sows compared to those from the CON group. In summary, our data show that arginine supplementation of nulliparous sows at late gestation enhance mRNA expression of key myogenic regulatory factors, which likely contribute to improve animal growth rates in later stages of development.
Collapse
Affiliation(s)
- Gustavo de Amorim Rodrigues
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (G.d.A.R.); (D.T.V.J.); (M.H.S.); (C.B.d.S.); (F.A.F.); (L.M.d.R.B.); (M.M.N.); (G.C.R.)
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Dante Teixeira Valente Júnior
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (G.d.A.R.); (D.T.V.J.); (M.H.S.); (C.B.d.S.); (F.A.F.); (L.M.d.R.B.); (M.M.N.); (G.C.R.)
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Marcos Henrique Soares
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (G.d.A.R.); (D.T.V.J.); (M.H.S.); (C.B.d.S.); (F.A.F.); (L.M.d.R.B.); (M.M.N.); (G.C.R.)
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Caroline Brito da Silva
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (G.d.A.R.); (D.T.V.J.); (M.H.S.); (C.B.d.S.); (F.A.F.); (L.M.d.R.B.); (M.M.N.); (G.C.R.)
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Fernanda Abranches Fialho
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (G.d.A.R.); (D.T.V.J.); (M.H.S.); (C.B.d.S.); (F.A.F.); (L.M.d.R.B.); (M.M.N.); (G.C.R.)
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Lívia Maria dos Reis Barbosa
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (G.d.A.R.); (D.T.V.J.); (M.H.S.); (C.B.d.S.); (F.A.F.); (L.M.d.R.B.); (M.M.N.); (G.C.R.)
| | - Mariana Machado Neves
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (G.d.A.R.); (D.T.V.J.); (M.H.S.); (C.B.d.S.); (F.A.F.); (L.M.d.R.B.); (M.M.N.); (G.C.R.)
- Structural Biology Laboratory, Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | - Gabriel Cipriano Rocha
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (G.d.A.R.); (D.T.V.J.); (M.H.S.); (C.B.d.S.); (F.A.F.); (L.M.d.R.B.); (M.M.N.); (G.C.R.)
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
| | | | - Alysson Saraiva
- Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil; (G.d.A.R.); (D.T.V.J.); (M.H.S.); (C.B.d.S.); (F.A.F.); (L.M.d.R.B.); (M.M.N.); (G.C.R.)
- Muscle Biology and Nutrigenomics Laboratory, Department of Animal Sciences, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil
- Correspondence:
| |
Collapse
|
90
|
Liu SH, Chen YC, Tzeng HP, Chiang MT. Fish oil enriched ω-3 fatty acids ameliorates protein synthesis/degradation imbalance, inflammation, and wasting in muscles of diet-induced obese rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
91
|
Li-Li F, Bo-Wen L, Yue X, Zhen-Jun T, Meng-Xin C. Aerobic exercise and resistance exercise alleviate skeletal muscle atrophy through IGF-1/IGF-1R-PI3K/Akt pathway in mice with myocardial infarction. Am J Physiol Cell Physiol 2021; 322:C164-C176. [PMID: 34852207 DOI: 10.1152/ajpcell.00344.2021] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVES Myocardial infarction (MI)-induced heart failure (HF) is commonly accompanied with profound effects on skeletal muscle. With the process of MI-induced HF, perturbations in skeletal muscle contribute to muscle atrophy. Exercise is viewed as a feasible strategy to prevent muscle atrophy. The aims of this study were to investigate whether exercise could alleviate MI-induced skeletal muscle atrophy via insulin-like growth factor 1 (IGF-1) pathway in mice. MATERIALS AND METHODS Male C57/BL6 mice were used to establish the MI model and divided into three groups: sedentary MI group, MI with aerobic exercise group and MI with resistance exercise group, sham-operated group was used as control. Exercise-trained animals were subjected to four-weeks of aerobic exercise (AE) or resistance exercise (RE). Cardiac function, muscle weight, myofiber size, levels of IGF-1 signaling and proteins related to myogenesis, protein synthesis and degradation and cell apoptosis in gastrocnemius muscle were detected. And H2O2-treated C2C12 cells were intervened with recombinant human IGF-1, IGF-1R inhibitor NVP-AEW541 and PI3K inhibitor LY294002 to explore the mechanism. Results:Exercises up-regulated the IGF-1/IGF-1R-phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling, increased the expressions of Pax7, myogenic regulatory factors (MRFs) and protein synthesis, reduced protein degradation and cell apoptosis in MI-mice. In vitro, IGF-1 up-regulated the levels of Pax7 and MRFs, mTOR and P70S6K, reduced MuRF1, MAFbx and inhibited cell apoptosis via IGF-1R-PI3K/Akt pathway. CONCLUSION AE and RE, safely and effectively, alleviate skeletal muscle atrophy by regulating the levels of myogenesis, protein degradation and cells apoptosis in mice with MI via activating IGF-1/IGF-1R-PI3K/Akt pathway.
Collapse
Affiliation(s)
- Feng Li-Li
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, China
| | - Li Bo-Wen
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, China.,College of Education, Physical Education Department, Zhejiang University, China
| | - Xi Yue
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, China
| | - Tian Zhen-Jun
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, China
| | - Cai Meng-Xin
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
92
|
MicroRNAs associated with signaling pathways and exercise adaptation in sarcopenia. Life Sci 2021; 285:119926. [PMID: 34480932 DOI: 10.1016/j.lfs.2021.119926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 01/06/2023]
Abstract
Considering the expansion of human life-span over the past few decades; sarcopenia, a physiological consequence of aging process characterized with a diminution in mass and strength of skeletal muscle, has become more frequent. Thus, there is a growing need for expanding our knowledge on the molecular mechanisms of muscle atrophy in sarcopenia which are complex and involve many signaling pathways associated with protein degradation and synthesis. MicroRNAs (miRNAs) as evolutionary conserved small RNAs, could complementarily bind to their target mRNAs and post-transcriptionally inhibit their translation. Aberrant expression of miRNAs contributes to the development of sarcopenia by regulating the expression of critical genes involved in age-related skeletal muscle mass loss. Here we have a review on the signaling pathways along with the miRNAs controlling their components expression and subsequently we provide a brief overview on the effects of exercise on expression pattern of miRNAs in sarcopenia.
Collapse
|
93
|
Effect of repeated bouts of fasting and refeeding on body composition and proteolysis gene expression in skeletal muscles and liver of C57BL/6J mice. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00873-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
94
|
Wu C, Zhu M, Lu Z, Zhang Y, Li L, Li N, Yin L, Wang H, Song W, Xu H. L-carnitine ameliorates the muscle wasting of cancer cachexia through the AKT/FOXO3a/MaFbx axis. Nutr Metab (Lond) 2021; 18:98. [PMID: 34724970 PMCID: PMC8559414 DOI: 10.1186/s12986-021-00623-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/04/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Recent studies suggest potential benefits of applying L-carnitine in the treatment of cancer cachexia, but the precise mechanisms underlying these benefits remain unknown. This study was conducted to determine the mechanism by which L-carnitine reduces cancer cachexia. METHODS C2C12 cells were differentiated into myotubes by growing them in DMEM for 24 h (hrs) and then changing the media to DMEM supplemented with 2% horse serum. Differentiated myotubes were treated for 2 h with TNF-α to establish a muscle atrophy cell model. After treated with L-carnitine, protein expression of MuRF1, MaFbx, FOXO3, p-FOXO3a, Akt, p-Akt, p70S6K and p-p70S6K was determined by Western blotting. Then siRNA-Akt was used to determine that L-carnitine ameliorated cancer cachexia via the Akt/FOXO3/MaFbx. In vivo, the cancer cachexia model was established by subcutaneously transplanting CT26 cells into the left flanks of the BALB/c nude mice. After treated with L-carnitine, serum levels of IL-1, IL-6 and TNF-α, and the skeletal muscle content of MuRF1, MaFbx, FOXO3, p-FOXO3a, Akt, p-Akt, p70S6K and p-p70S6K were measured. RESULTS L-carnitine increased the gastrocnemius muscle (GM) weight in the CT26-bearing cachexia mouse model and the cross-sectional fiber area of the GM and myotube diameters of C2C12 cells treated with TNF-α. Additionally, L-carnitine reduced the protein expression of MuRF1, MaFbx and FOXO3a, and increased the p-FOXO3a level in vivo and in vitro. Inhibition of Akt, upstream of FOXO3a, reversed the effects of L-carnitine on the FOXO3a/MaFbx pathway and myotube diameters, without affecting FOXO3a/MuRF-1. In addition to regulating the ubiquitination of muscle proteins, L-carnitine also increased the levels of p-p70S6K and p70S6K, which are involved in protein synthesis. Akt inhibition did not reverse the effects of L-carnitine on p70S6K and p-p70S6K. Hence, L-carnitine ameliorated cancer cachexia via the Akt/FOXO3/MaFbx and p70S6K pathways. Moreover, L-carnitine reduced the serum levels of IL-1 and IL-6, factors known to induce cancer cachexia. However, there were minimal effects on TNF-α, another inducer of cachexia, in the in vivo model. CONCLUSION These results revealed a novel mechanism by which L-carnitine protects muscle cells and reduces inflammation related to cancer cachexia.
Collapse
Affiliation(s)
- Changpeng Wu
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Changjiangzhilu 10#, Chongqing, China
| | - Mingxing Zhu
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Changjiangzhilu 10#, Chongqing, China
| | - Zongliang Lu
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Changjiangzhilu 10#, Chongqing, China
| | - Yaowen Zhang
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Changjiangzhilu 10#, Chongqing, China
| | - Long Li
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Changjiangzhilu 10#, Chongqing, China
| | - Na Li
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Changjiangzhilu 10#, Chongqing, China
| | - Liangyu Yin
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Changjiangzhilu 10#, Chongqing, China
| | - He Wang
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Changjiangzhilu 10#, Chongqing, China
| | - Wei Song
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Changjiangzhilu 10#, Chongqing, China
| | - Hongxia Xu
- Department of Clinical Nutrition, Daping Hospital, Army Medical University (Third Military Medical University), Changjiangzhilu 10#, Chongqing, China.
| |
Collapse
|
95
|
Wilburn D, Ismaeel A, Machek S, Fletcher E, Koutakis P. Shared and distinct mechanisms of skeletal muscle atrophy: A narrative review. Ageing Res Rev 2021; 71:101463. [PMID: 34534682 DOI: 10.1016/j.arr.2021.101463] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 12/15/2022]
Abstract
Maintenance of skeletal muscle mass and function is an incredibly nuanced balance of anabolism and catabolism that can become distorted within different pathological conditions. In this paper we intend to discuss the distinct intracellular signaling events that regulate muscle protein atrophy for a given clinical occurrence. Aside from the common outcome of muscle deterioration, several conditions have at least one or more distinct mechanisms that creates unique intracellular environments that facilitate muscle loss. The subtle individuality to each of these given pathologies can provide both researchers and clinicians with specific targets of interest to further identify and increase the efficacy of medical treatments and interventions.
Collapse
Affiliation(s)
- Dylan Wilburn
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA
| | - Ahmed Ismaeel
- Department of Biology, Baylor University, Waco, TX 76706, USA
| | - Steven Machek
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA
| | - Emma Fletcher
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX 76706, USA; Department of Biology, Baylor University, Waco, TX 76706, USA
| | | |
Collapse
|
96
|
Kruse A, Rivares C, Weide G, Tilp M, Jaspers RT. Stimuli for Adaptations in Muscle Length and the Length Range of Active Force Exertion-A Narrative Review. Front Physiol 2021; 12:742034. [PMID: 34690815 PMCID: PMC8531727 DOI: 10.3389/fphys.2021.742034] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/08/2021] [Indexed: 12/03/2022] Open
Abstract
Treatment strategies and training regimens, which induce longitudinal muscle growth and increase the muscles’ length range of active force exertion, are important to improve muscle function and to reduce muscle strain injuries in clinical populations and in athletes with limited muscle extensibility. Animal studies have shown several specific loading strategies resulting in longitudinal muscle fiber growth by addition of sarcomeres in series. Currently, such strategies are also applied to humans in order to induce similar adaptations. However, there is no clear scientific evidence that specific strategies result in longitudinal growth of human muscles. Therefore, the question remains what triggers longitudinal muscle growth in humans. The aim of this review was to identify strategies that induce longitudinal human muscle growth. For this purpose, literature was reviewed and summarized with regard to the following topics: (1) Key determinants of typical muscle length and the length range of active force exertion; (2) Information on typical muscle growth and the effects of mechanical loading on growth and adaptation of muscle and tendinous tissues in healthy animals and humans; (3) The current knowledge and research gaps on the regulation of longitudinal muscle growth; and (4) Potential strategies to induce longitudinal muscle growth. The following potential strategies and important aspects that may positively affect longitudinal muscle growth were deduced: (1) Muscle length at which the loading is performed seems to be decisive, i.e., greater elongations after active or passive mechanical loading at long muscle length are expected; (2) Concentric, isometric and eccentric exercises may induce longitudinal muscle growth by stimulating different muscular adaptations (i.e., increases in fiber cross-sectional area and/or fiber length). Mechanical loading intensity also plays an important role. All three training strategies may increase tendon stiffness, but whether and how these changes may influence muscle growth remains to be elucidated. (3) The approach to combine stretching with activation seems promising (e.g., static stretching and electrical stimulation, loaded inter-set stretching) and warrants further research. Finally, our work shows the need for detailed investigation of the mechanisms of growth of pennate muscles, as those may longitudinally grow by both trophy and addition of sarcomeres in series.
Collapse
Affiliation(s)
- Annika Kruse
- Department of Biomechanics, Training, and Movement Science, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Cintia Rivares
- Laboratory for Myology, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| | - Guido Weide
- Laboratory for Myology, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands.,Department of Rehabilitation Sciences, Faculty of Kinesiology and Rehabilitation Sciences, University Hospital Leuven, Leuven, Belgium
| | - Markus Tilp
- Department of Biomechanics, Training, and Movement Science, Institute of Human Movement Science, Sport and Health, University of Graz, Graz, Austria
| | - Richard T Jaspers
- Laboratory for Myology, Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, Netherlands
| |
Collapse
|
97
|
Petry B, Moreira GCM, Copola AGL, de Souza MM, da Veiga FC, Jorge EC, de Oliveira Peixoto J, Ledur MC, Koltes JE, Coutinho LL. SAP30 Gene Is a Probable Regulator of Muscle Hypertrophy in Chickens. Front Genet 2021; 12:709937. [PMID: 34646299 PMCID: PMC8502938 DOI: 10.3389/fgene.2021.709937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/20/2021] [Indexed: 11/13/2022] Open
Abstract
Animals with muscle hypertrophy phenotype are targeted by the broiler industry to increase the meat production and the quality of the final product. Studies characterizing the molecular machinery involved with these processes, such as quantitative trait loci studies, have been carried out identifying several candidate genes related to this trait; however, validation studies of these candidate genes in cell culture is scarce. The aim of this study was to evaluate SAP30 as a candidate gene for muscle development and to validate its function in cell culture in vitro. The SAP30 gene was downregulated in C2C12 muscle cell culture using siRNA technology to evaluate its impact on morphometric traits and gene expression by RNA-seq analysis. Modulation of SAP30 expression increased C2C12 myotube area, indicating a role in muscle hypertrophy. RNA-seq analysis identified several upregulated genes annotated in muscle development in treated cells (SAP30-knockdown), corroborating the role of SAP30 gene in muscle development regulation. Here, we provide experimental evidence of the involvement of SAP30 gene as a regulator of muscle cell hypertrophy.
Collapse
Affiliation(s)
- Bruna Petry
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | | | - Aline Gonçalves Lio Copola
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Fernanda Cristina da Veiga
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| | - Erika Cristina Jorge
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | | | - James E Koltes
- Animal Science Department, Iowa State University, Ames, IA, United States
| | - Luiz Lehmann Coutinho
- Animal Science Department, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba, Brazil
| |
Collapse
|
98
|
Hybrid Sequencing in Different Types of Goat Skeletal Muscles Reveals Genes Regulating Muscle Development and Meat Quality. Animals (Basel) 2021; 11:ani11102906. [PMID: 34679927 PMCID: PMC8532877 DOI: 10.3390/ani11102906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 02/06/2023] Open
Abstract
Domestic goats are commonly reared for meat and milk production in several regions of the world. However, the genetic mechanism underlying muscle development and meat quality of goats is limited. Therefore, the aim of this study was to identify known and novel genes regulating muscle development and meat quality of goats using second- and third-generation sequencing technologies. To achieve this, the meat quality and transcriptomes of longissimus dorsi (LD) and biceps femoris (BF) muscle tissues of Lingqiu Greyback goats were examined and compared. Differentially expressed genes (DEGs) and isoforms (DEIs) were functionally annotated. Results showed that 45,574 full-length transcripts covering 18,491 loci were characterized, and 12,566 genes were co-expressed in all samples. Differential expression analysis identified 231 DEGs, including 45 novel genes in the LD and BF muscles of the goats. Additionally, 1173 DEIs were found, in which 642 novel isoforms were identified in this study. Functional annotation and pathway analysis of the DEGs and DEIs revealed that some of them were associated with muscle growth and lipid metabolism. Overall, the findings of this study contribute to the understanding of the transcriptomic diversity underlying meat quality and muscle development of goat.
Collapse
|
99
|
Yoo A, Jang YJ, Ahn J, Jung CH, Ha TY. 2,6-Dimethoxy-1,4-benzoquinone increases skeletal muscle mass and performance by regulating AKT/mTOR signaling and mitochondrial function. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153658. [PMID: 34332284 DOI: 10.1016/j.phymed.2021.153658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/01/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND 2,6-Dimethoxy-1,4-benzoquinone (DMBQ), a natural phytochemical present in fermented wheat germ, has been reported to exert anti-cancer, anti-inflammatory, and anti-adipogenic effects. However, the effect of DMBQ on muscle hypertrophy and myoblast differentiation has not been elucidated. PURPOSE We investigated the effect of DMBQ on skeletal muscle mass and muscle function and then determined the possible mechanism of DMBQ. METHODS To examine myogenic differentiation and hypertrophy, confluent C2C12 cells were incubated in differentiation medium with or without various concentrations of DMBQ for 4 days. In animal experiments, C57BL/6 mice were fed DMBQ-containing AIN-93 diet for 7 weeks. Grip strength, treadmill, microscopic evaluation of muscle tissue, western blotting, and quantitative real-time PCR were performed. RESULTS DMBQ significantly increased fusion index, myotube size, and the protein expression of myosin heavy chain (MHC). DMBQ increased the phosphorylation of protein kinase B (AKT) and p70 ribosomal protein S6 kinase (S6K), whereas the phosphorylation of these proteins was abolished by the phosphoinositide 3-kinase inhibitor LY294002 in C2C12 cells. In addition, DMBQ treatment increased peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC1α), which programs mitochondrial biogenesis, protein levels compared with control C2C12 cells. DMBQ significantly increased maximal respiration and spare respiratory capacity in C2C12 cells. In animal experiments, DMBQ increased skeletal muscle weights and skeletal muscle fiber size compared with the control group values. In addition, the DMBQ group showed increased grip strength and running distance on an accelerating treadmill. The protein expression of total MHC, MHC1, MHC2A, and MHC2B in skeletal muscle was upregulated by DMBQ supplementation. We found that DMBQ increased the phosphorylation of AKT and mammalian target of rapamycin (mTOR), as well as downstream S6K and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) in skeletal muscle. DMBQ also stimulated mRNA expression of PGC1α, accompanied by an increase in mitochondrial DNA content, oxidative phosphorylation (OXPHOS) proteins, and oxidative enzyme activity. CONCLUSION Collectively, DMBQ was shown to increase skeletal muscle mass and performance by regulating the AKT/mTOR signaling pathway and enhancing mitochondrial function, which might be useful for the treatment and prevention of skeletal muscle atrophy.
Collapse
Affiliation(s)
- Ahyoung Yoo
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, South Korea; Department of Food and Nutrition, Chungnam National University, Daejeon 34134, South Korea
| | - Young Jin Jang
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, South Korea
| | - Jiyun Ahn
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, South Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, South Korea
| | - Chang Hwa Jung
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, South Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, South Korea
| | - Tae Youl Ha
- Division of Food Functionality Research, Korea Food Research Institute, Wanju-gun 55365, South Korea; Division of Food Biotechnology, University of Science and Technology, Daejeon 34113, South Korea.
| |
Collapse
|
100
|
Ong C, Lee JH, Leow MKS, Puthucheary ZA. A narrative review of skeletal muscle atrophy in critically ill children: pathogenesis and chronic sequelae. Transl Pediatr 2021; 10:2763-2777. [PMID: 34765499 PMCID: PMC8578782 DOI: 10.21037/tp-20-298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/18/2020] [Indexed: 11/10/2022] Open
Abstract
Muscle wasting is now recognized as a growing, debilitating problem in critically ill adults, resulting in long-term deficits in function and an impaired quality of life. Ultrasonography has demonstrated decreases in skeletal muscle size during pediatric critical illness, although variations exist. However, muscle protein turnover patterns during pediatric critical illness are unclear. Understanding muscle protein turnover during critical illness is important in guiding interventions to reduce muscle wasting. The aim of this review was to explore the possible protein synthesis and breakdown patterns in pediatric critical illness. Muscle protein turnover studies in critically ill children are lacking, with the exception of those with burn injuries. Children with burn injuries demonstrate an elevation in both muscle protein breakdown (MPB) and synthesis during critical illness. Extrapolations from animal models and whole-body protein turnover studies in children suggest that children may be more dependent on anabolic factors (e.g., nutrition and growth factors), and may experience greater muscle degradation in response to insults than adults. Yet, children, particularly the younger ones, are more responsive to anabolic agents, suggesting modifiable muscle wasting during critical illness. There is a lack of evidence for muscle wasting in critically ill children and its correlation with outcomes, possibly due to current available methods to study muscle protein turnover in children-most of which are invasive or tedious. In summary, children may experience muscle wasting during critical illness, which may be more reversible by the appropriate anabolic agents than adults. Age appears an important determinant of skeletal muscle turnover. Less invasive methods to study muscle protein turnover and associations with long-term outcome would strengthen the evidence for muscle wasting in critically ill children.
Collapse
Affiliation(s)
- Chengsi Ong
- Nutrition and Dietetics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Jan Hau Lee
- Children's Intensive Care Unit, KK Women's Children's Hospital, Singapore, Singapore.,Duke-NUS Medical School, Singapore, Singapore
| | - Melvin K S Leow
- Duke-NUS Medical School, Singapore, Singapore.,Clinical Nutrition Research Center, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Zudin A Puthucheary
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Adult Critical Care Unit, Royal London Hospital, London, UK
| |
Collapse
|