51
|
Wang F, Sun P, Xie E, Ji Y, Niu Y, Li F, Wei J. Phytic acid/magnesium ion complex coating on PEEK fiber woven fabric as an artificial ligament with anti-fibrogenesis and osteogenesis for ligament-bone healing. BIOMATERIALS ADVANCES 2022; 140:213079. [PMID: 35985068 DOI: 10.1016/j.bioadv.2022.213079] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/09/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Development of an artificial ligament possessing osteogenic activity to enhance ligament-bone healing for reconstruction of anterior cruciate ligament (ACL) is a great challenge. Herein, polyetheretherketone fibers (PKF) were coated with phytic acid (PA)/magnesium (Mg) ions complex (PKPM), which were woven into fabrics as an artificial ligament. The results demonstrated that PKPM with PA/Mg complex coating exhibited optimized surface properties with improved hydrophilicity and surface energy, and slow release of Mg ions. PKPM significantly enhanced responses of rat bone marrow stem cells in vitro. Moreover, PKPM remarkably promoted M2 macrophage polarization that upregulated production of anti-inflammatory cytokine while inhibited M1 macrophage polarization that downregulated production of pro-inflammatory cytokine in vitro. Further, PKPM inhibited fibrous encapsulation by preventing M1 macrophage polarization while promoted osteogenesis for ligament-bone healing by triggering M2 macrophage polarization in vivo. The results suggested that the downregulation of M1 macrophage polarization for inhibiting fibrogenesis and upregulation of M2 macrophage polarization for improving osteogenesis of PKPM were attributed to synergistic effects of PA and sustained release of Mg ions. In summary, PKPM with PA/Mg complex coating upregulated pro-osteogenic macrophage polarization that supplied a profitable anti-inflammatory environments for osteogenesis and ligament-bone healing, thereby possessing tremendous potential for reconstruction of ACL.
Collapse
Affiliation(s)
- Fan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ping Sun
- Department of Orthopaedics, Shanghai Eighth People's Hospital, Shanghai 200235, China
| | - En Xie
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yinjun Ji
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Yunfei Niu
- Department of Orthopaedics, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.
| | - Fengqian Li
- Department of Orthopaedics, Shanghai Eighth People's Hospital, Shanghai 200235, China.
| | - Jie Wei
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Material Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
52
|
Shi L, Zhang Z, Deng M, Zheng F, Liu W, Ye S. Biological mechanisms and applied prospects of mesenchymal stem cells in premature ovarian failure. Medicine (Baltimore) 2022; 101:e30013. [PMID: 35960112 PMCID: PMC9371578 DOI: 10.1097/md.0000000000030013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/05/2022] [Accepted: 06/06/2022] [Indexed: 01/04/2023] Open
Abstract
Premature ovarian failure (POF), also known as primary ovarian insufficiency (POI), refers to the loss of ovarian function in women after puberty and before the age of 40 characterized by high serum gonadotropins and low estrogen, irregular menstruation, amenorrhea, and decreased fertility. However, the specific pathogenesis of POF is unexplained, and there is no effective therapy for its damaged ovarian tissue structure and reduced reserve function. Mesenchymal stem cells (MSCs), with multidirectional differentiation potential and self-renewal ability, as well as the cytokines and exosomes they secrete, have been studied and tested to play an active therapeutic role in a variety of degenerative pathologies, and MSCs are the most widely used stem cells in regenerative medicine. MSCs can reverse POI and enhance ovarian reserve function through differentiation into granulosa cells (GCs), immune regulation, secretion of cytokines and other nutritional factors, reduction of GCs apoptosis, and promotion of GCs regeneration. Many studies have proved that MSCs may have a restorative effect on the structure and fertility of injured ovarian tissues and turn to be a useful clinical approach to the treatment of patients with POF in recent years. We intend to use MSCs-based therapy to completely reverse POI in the future.
Collapse
Affiliation(s)
- Lan Shi
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zhifen Zhang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People’s Republic of China
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Miao Deng
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Fangyuan Zheng
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Wenhua Liu
- Department of Obstetrics and Gynecology, Hangzhou Women’s Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Shujin Ye
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
53
|
Wu M, Guo Y, Wei S, Xue L, Tang W, Chen D, Xiong J, Huang Y, Fu F, Wu C, Chen Y, Zhou S, Zhang J, Li Y, Wang W, Dai J, Wang S. Biomaterials and advanced technologies for the evaluation and treatment of ovarian aging. J Nanobiotechnology 2022; 20:374. [PMID: 35953871 PMCID: PMC9367160 DOI: 10.1186/s12951-022-01566-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/17/2022] [Indexed: 12/26/2022] Open
Abstract
Ovarian aging is characterized by a progressive decline in ovarian function. With the increase in life expectancy worldwide, ovarian aging has gradually become a key health problem among women. Over the years, various strategies have been developed to preserve fertility in women, while there are currently no clinical treatments to delay ovarian aging. Recently, advances in biomaterials and technologies, such as three-dimensional (3D) printing and microfluidics for the encapsulation of follicles and nanoparticles as delivery systems for drugs, have shown potential to be translational strategies for ovarian aging. This review introduces the research progress on the mechanisms underlying ovarian aging, and summarizes the current state of biomaterials in the evaluation and treatment of ovarian aging, including safety, potential applications, future directions and difficulties in translation.
Collapse
Affiliation(s)
- Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yibao Huang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Fangfang Fu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Su Zhou
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Jinjin Zhang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Yan Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Wenwen Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China. .,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China.,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, 430030, Hubei, China. .,Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, 430030, Hubei, China.
| |
Collapse
|
54
|
Liu X, Wu K, Gao L, Wang L, Shi X. Biomaterial strategies for the application of reproductive tissue engineering. Bioact Mater 2022; 14:86-96. [PMID: 35310354 PMCID: PMC8892081 DOI: 10.1016/j.bioactmat.2021.11.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Human reproductive organs are of vital importance to the life of an individual and the reproduction of human populations. So far, traditional methods have a limited effect in recovering the function and fertility of reproductive organs and tissues. Thus, aim to replace and facilitate the regrowth of damaged or diseased tissue, various biomaterials are developed to offer hope to overcome these difficulties and help gain further research progress in reproductive tissue engineering. In this review, we focus on the biomaterials and their four main applications in reproductive tissue engineering: in vitro generation and culture of reproductive cells; development of reproductive organoids and models; in vivo transplantation of reproductive cells or tissues; and regeneration of reproductive tissue. In reproductive tissue engineering, designing biomaterials for different applications with different mechanical properties, structure, function, and microenvironment is challenging and important, and deserves more attention. Various biomaterials have been developed and used in reproductive tissue engineering. 3D culture systems can lead to better cell-cell interactions for in vitro production of reproductive cells. Reproductive organoids and models are formed by biomaterials to simulate the environment of natural reproductive organs. Biomaterials should promote vascular regeneration and resist inflammation for in-situ reproductive tissue regeneration.
Collapse
|
55
|
Li S, Li Y, Yu F, Li N, Liu C, Mao J, Sun H, Hu Y, Zhu Y, Zhou M, Ding L. Human Endometrium-Derived Adventitial Cell Spheroid-Loaded Antimicrobial Microneedles for Uterine Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201225. [PMID: 35798313 DOI: 10.1002/smll.202201225] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Asherman's syndrome (AS) occurs as a consequence of severe damage to the endometrial basalis, usually leading to menstrual abnormalities, infertility, and recurrent miscarriage in women. Currently, human endometrium-derived adventitial cells (En-ADVs) are considered ideal seed cells with high pluripotency for regenerative medicine. However, critical issues such as noninvasive repair of tissues, targeting of native stem cells, and continuous action in the injured sites are not well resolved. Herein, En-ADV spheroid-loaded hierarchical microneedles (MN/En-ADV) for in situ intrauterine repair are developed. The flexible microneedles are fabricated with gelatin methacryloyl and lactoferrin, imparting the characteristics of rapid degradation and antimicrobial activity. Benefiting from an array of microwells on microneedles, En-ADVs can rapidly form 3D cell spheroids, which display higher potential for cell proliferation, differentiation, and migration than dissociated cells. With the application of MN/En-ADV, the repaired uteri show well-defined myometrial regeneration, angiogenesis, and an increase of endometrial receptivity in a rat AS model. Notably, embryos are able to implant in the reconstructed sites and remain viable, indicating that this system promotes the restoration of both normal morphology and reproductive function in the injured uterus. It is anticipated that multifunctional MN/En-ADV can be an ideal candidate for versatile in situ tissue regeneration.
Collapse
Affiliation(s)
- Shiyuan Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Yifan Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Fei Yu
- Center for Experimental Animal, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Ning Li
- Center for Reproductive Medicine and Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Chuanming Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Jialian Mao
- Center for Reproductive Medicine and Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Yali Hu
- Center for Reproductive Medicine and Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
| | - Yujuan Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Min Zhou
- Department of Vascular Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Lijun Ding
- Center for Reproductive Medicine and Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210008, China
- Center for Clinical Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Analytic Chemistry for Life Science, Nanjing University, Nanjing, Jiangsu, 210093, China
| |
Collapse
|
56
|
Zhang D, Ding C, Duan T, Zhou Q. Applications of Hydrogels in Premature Ovarian Failure and Intrauterine Adhesion. FRONTIERS IN MATERIALS 2022; 9. [DOI: 10.3389/fmats.2022.942957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Premature ovarian failure (POF) and intrauterine adhesion (IUA) that easily lead to reduced fertility in premenopausal women are two difficult diseases to treat in obstetrics and gynecology. Hormone therapy, in vitro fertilization and surgical treatments do not completely restore fertility. The advent of hydrogels offers new hope for the treatment of POF and IUA. Hydrogels are noncytotoxic and biodegradable, and do not cause immune rejection or inflammatory reactions. Drug delivery and stem cell delivery are the main application forms. Hydrogels are a local drug delivery reservoir, and the control of drug release is achieved by changing the physicochemical properties. The porous properties and stable three-dimensional structure of hydrogels support stem cell growth and functions. In addition, hydrogels are promising biomaterials for increasing the success rate of ovarian tissue transplantation. Hydrogel-based in vitro three-dimensional culture of follicles drives the development of artificial ovaries. Hydrogels form a barrier at the site of injury and have antibacterial, antiadhesive and antistenosis properties for IUA treatment. In this review, we evaluate the physicochemical properties of hydrogels, and focus on the latest applications of hydrogels in POF and IUA. We also found the limitations on clinical application of hydrogel and provide future prospects. Artificial ovary as the future of hydrogel in POF is worth studying, and 3D bioprinting may help the mass production of hydrogels.
Collapse
|
57
|
Xin L, Wei C, Tong X, Dai Y, Huang D, Chen J, Ma L, Zhang S. In situ delivery of apoptotic bodies derived from mesenchymal stem cells via a hyaluronic acid hydrogel: A therapy for intrauterine adhesions. Bioact Mater 2022; 12:107-119. [PMID: 35087967 PMCID: PMC8777284 DOI: 10.1016/j.bioactmat.2021.10.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/30/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cell-based and stem cell-derived exosome-based therapies have shown promising potential for endometrial regeneration and the clinical treatment of intrauterine adhesions (IUAs). Evidence shows that apoptosis occurs in a majority of grafted stem cells, and apoptotic bodies (ABs) play a critical role in compensatory tissue regeneration. However, the therapeutic potential of AB-based therapy and its mechanism have not been explored in detail. Here, a cell-free therapeutic strategy was developed by incorporating mesenchymal stem cell-derived ABs into a hyaluronic acid (HA) hydrogel to achieve endometrial regeneration and fertility restoration. Specifically, we found that the ABs could induce macrophage immunomodulation, cell proliferation, and angiogenesis in vitro. The HA hydrogel promoted the retention of ABs and facilitated their continuous release. In a murine model of acute endometrial damage and a rat model of IUAs, in situ injection of the AB-laden HA hydrogel could efficiently reduce fibrosis and promote endometrial regeneration, resulting in the fertility restoration. Consequently, ABs show good potential as therapeutic vesicles, and the AB-laden HA hydrogel appears to be a clinically feasible and cell-free alternative for endometrial regeneration and IUA treatment. Human umbilical cord derived apoptotic bodies induce macrophage immunomodulation, cell proliferation and angiogenesis A strategy of apoptotic bodies associated with hyaluronic acid hydrogel promotes apoptotic bodies retention and continuous release The implantation of the apoptotic body-laden hyaluronic acid hydrogel into uterine cavity effectively promoted endometrial regeneration and fertility restoration in a rodent model of intrauterine adhesion
Collapse
|
58
|
Zivari-Ghader T, Dolati S, Mehdizadeh A, Davaran S, Rashidi MR, Yousefi M. Recent scaffold-based tissue engineering approaches in premature ovarian failure treatment. J Tissue Eng Regen Med 2022; 16:605-620. [PMID: 35511799 DOI: 10.1002/term.3306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 11/10/2022]
Abstract
Recently, tissue engineering and regenerative medicine have received significant attention with outstanding advances. The main scope of this technology is to recover the damaged tissues and organs or to maintain and improve their function. One of the essential fields in tissue engineering is scaffold designing and construction, playing an integral role in damaged tissues reconstruction and repair. However, premature ovarian failure (POF) is a disorder causing many medical and psychological problems in women. POF treatment using tissue engineering and various scaffold has recently made tremendous and promising progress. Due to the importance of the subject, we have summarized the recently examined scaffolds in the treatment of POF in this review.
Collapse
Affiliation(s)
- Tayyebeh Zivari-Ghader
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sanam Dolati
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Rashidi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
59
|
Dong C, Yang C, Younis MR, Zhang J, He G, Qiu X, Fu L, Zhang D, Wang H, Hong W, Lin J, Wu X, Huang P. Bioactive NIR-II Light-Responsive Shape Memory Composite Based on Cuprorivaite Nanosheets for Endometrial Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102220. [PMID: 35218328 PMCID: PMC9036008 DOI: 10.1002/advs.202102220] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 02/08/2022] [Indexed: 05/07/2023]
Abstract
Intrauterine adhesions (IUAs) caused by mechanical damage or infection increase the risk of infertility in women. Although numerous physical barriers such as balloon or hydrogel are developed for the prevention of IUAs, the therapeutic efficacy is barely satisfactory due to limited endometrial healing, which may lead to recurrence. Herein, a second near-infrared (NIR-II) light-responsive shape memory composite based on the combination of cuprorivaite (CaCuSi4 O10 ) nanosheets (CUP NSs) as photothermal conversion agents and polymer poly(d,l-lactide-co-trimethylene carbonate) (PT) as shape memory building blocks is developed. The as-prepared CUP/PT composite possesses excellent shape memory performance under NIR-II light, and the improved operational feasibility as an antiadhesion barrier for the treatment of IUAs. Moreover, the released ions (Cu, Si) can stimulate the endometrial regeneration due to the angiogenic bioactivity. This study provides a new strategy to prevent IUA and restore the injured endometrium relied on shape memory composite with enhanced tissues reconstruction ability.
Collapse
Affiliation(s)
- Chenle Dong
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Department of Obstetrics and GynecologyShenzhen University General HospitalClinical Medical AcademyShenzhen UniversityShenzhen518060China
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Chen Yang
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325000China
- Oujiang LaboratoryWenzhouZhejiang325000China
| | - Muhammad Rizwan Younis
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Jing Zhang
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Gang He
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Xingdi Qiu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Department of Obstetrics and GynecologyShenzhen University General HospitalClinical Medical AcademyShenzhen UniversityShenzhen518060China
| | - Lian‐Hua Fu
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Dong‐Yang Zhang
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Hao Wang
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Department of Obstetrics and GynecologyShenzhen University General HospitalClinical Medical AcademyShenzhen UniversityShenzhen518060China
| | - Wenli Hong
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Department of Obstetrics and GynecologyShenzhen University General HospitalClinical Medical AcademyShenzhen UniversityShenzhen518060China
| | - Jing Lin
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Xueqing Wu
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Department of Obstetrics and GynecologyShenzhen University General HospitalClinical Medical AcademyShenzhen UniversityShenzhen518060China
| | - Peng Huang
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouZhejiang325000China
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| |
Collapse
|
60
|
Hu X, Dai Z, Pan R, Zhang Y, Liu L, Wang Y, Chen X, Yao D, Hong M, Liu C. Long-term transplantation human menstrual blood mesenchymal stem cell loaded collagen scaffolds repair endometrium histological injury. Reprod Toxicol 2022; 109:53-60. [PMID: 35288324 DOI: 10.1016/j.reprotox.2022.03.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/21/2022] [Accepted: 03/05/2022] [Indexed: 02/05/2023]
Abstract
Menstrual blood mesenchymal stem cell (MBMSC) is a potential cell source for effective therapy for intrauterine adhesion (IUA). Collagen scaffold (CS) loaded with mesenchymal stem cells promotes endometrial regeneration in IUA model animals. However, role of combination of MBMSCs and CS in IUA therapy remains elusive. In particular, transplantation of MBMSCs over a long period of time requires more in-depth research. Here in this study, transplantation of human MBMSCs loaded on CS was applied for therapy for a long term rat IUA model. A rat IUA model characterized by lower number of endometrial glands and increased fibrosis was established. At 90 days after transplantation of the human MBMSC-loaded CS, expression of HuNu, a human protein, was identified in the uteri of the transplanted IUA model rats. The transplantation increased the number of endometrial glands and decreased the fibrotic areas significantly. Moreover, transplantation of the human MBMSC-loaded CS decreased the Collagen I and increased the CK 18 significantly. Immunoblotting assay results further proved the downregulation of Collagen I and the upregulation of CK 18. Together, endometrium regeneration promoted by human MBMSC-loaded CS was demonstrated in a long term rat model of IUA, shedding a new light on the role of human MBMSCs in the therapy for IUA.
Collapse
Affiliation(s)
- Xiujuan Hu
- Department of Histology and Embryology, Institute of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Zhijun Dai
- Centre for Reproductive Medicine, Affiliated Maternity and Child Health Hospital of Anhui Medical University, Anhui Province Maternity and Child Health Hospital, Hefei, Anhui, China
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, Hangzhou, China
| | - Yi Zhang
- Centre for Reproductive Medicine, Affiliated Maternity and Child Health Hospital of Anhui Medical University, Anhui Province Maternity and Child Health Hospital, Hefei, Anhui, China
| | - Lihua Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, Anhui, China
| | - Yafei Wang
- Centre for Reproductive Medicine, Affiliated Maternity and Child Health Hospital of Anhui Medical University, Anhui Province Maternity and Child Health Hospital, Hefei, Anhui, China
| | - Xueying Chen
- Department of Histology and Embryology, Institute of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Dengpan Yao
- Anhui Bantang Rehabilitation Hospital, Hefei, Anhui, China
| | - Mingyun Hong
- Centre for Reproductive Medicine, Affiliated Maternity and Child Health Hospital of Anhui Medical University, Anhui Province Maternity and Child Health Hospital, Hefei, Anhui, China.
| | - Chao Liu
- Department of Histology and Embryology, Institute of Stem Cell and Tissue Engineering, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
61
|
Huang J, Li Q, Yuan X, Liu Q, Zhang W, Li P. Intrauterine infusion of clinically graded human umbilical cord-derived mesenchymal stem cells for the treatment of poor healing after uterine injury: a phase I clinical trial. Stem Cell Res Ther 2022; 13:85. [PMID: 35241151 PMCID: PMC8895869 DOI: 10.1186/s13287-022-02756-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
Background Intrauterine adhesion and cesarean scar diverticulum are the main complications of poor healing after uterine injury. Human umbilical cord MSCs transplantation has been regarded as the most potential treatment in the clinic, the safety and efficacy of which in the clinic, however, remains unclear. Methods In this study, ten patients were enrolled: six with intrauterine adhesion and four with cesarean scar diverticulum. All the patients were injected with human umbilical cord MSCs twice into the uterus. Beside the chest X-ray, ECG and abdominal ultrasound, many laboratory tests including blood routine, liver and renal function, ovarian function, tumor biomarkers, and immune function were used to estimate the safe after stem cell transplanted. In addition, the efficacy of stem cell transplanted was shown by the endometrial thickness, the volume of the uterus, and cesarean scar diverticulum based on 3D ultrasound imaging. Results We found that all results of these laboratory tests were normal in these enrolled patients before and after cell injection. Meanwhile, the results of the chest X-ray and ECG were also normal in the treatment process. The abdominal ultrasound showed that the size of the left and right kidneys was inconsistent in one patient after cell therapy, while those of other patients were normal. In addition, endometrial thickness, the volume of the uterus, and cesarean scar diverticulum showed an improving tendency, but no significant difference was noted. Conclusion In summary, intrauterine injection of clinically graded human umbilical cord MSCs was safe for poor healing after uterus injury. Trial registration NCT03386708. Registered 27 December 2017, https://clinicaltrials.gov/ct2/show/NCT03386708?cond=CSD&cntry=CN&draw=2&rank=2 Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02756-9.
Collapse
Affiliation(s)
- Jingrui Huang
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, 410008, Hunan, People's Republic of China
| | - Qi Li
- Reproductive Medicine Center, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xiaohua Yuan
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Qiaoshu Liu
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Weishe Zhang
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.,Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, 410008, Hunan, People's Republic of China
| | - Ping Li
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China. .,Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
62
|
Favre-Inhofer A, Carbonnel M, Domert J, Cornet N, Chastant S, Coscas R, Vialard F, Gelin V, Galio L, Richard C, Trabelsi H, Sandra O, de Ziegler D, Chavatte-Palmer P, Ayoubi JM. Involving Animal Models in Uterine Transplantation. Front Surg 2022; 9:830826. [PMID: 35284480 PMCID: PMC8904568 DOI: 10.3389/fsurg.2022.830826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 01/15/2023] Open
Abstract
Background Absolute uterine factor infertility affects 0. 2% women of childbearing age around the world. Uterine transplantation (UTx) is a promising solution for many of them since the first birth from UTx was described by the Swedish team in 2014. The success of Utx in humans has become possible after a systematic and meticulous approach involving years of research on animal models. To date, more than 80 UTx procedures have been performed worldwide and 30 children were born. Material and Method This review summarizes the research preparation conducted in animals before beginning UTx in humans. It focuses on the advantages and limits of each animal model, their place in surgical training, and current contribution in research to improve UTx successes in humans. The different steps in the process of UTx have been analyzed, such as imaging, surgery, ischemia-reperfusion effects, rejection markers, immunosuppressive treatment, and pregnancy. Conclusion Animal models have played an essential role in the implementation of UTx, which is a highly complex procedure. While respecting the 3R requirements (replacement, refinement, and reduction), the surgical training using large animal models, such as notably ewes remain irreplaceable for teams wishing to initiate a UTx program. Furthermore, animal models are still mandatory in current research to improve the success rates of UTx in humans as well as to reduce the morbidity associated with this experimental infertility treatment.
Collapse
Affiliation(s)
- Angeline Favre-Inhofer
- Department of Gynaecology and Obstetrics, Foch Hospital, Suresnes, France
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| | - Marie Carbonnel
- Department of Gynaecology and Obstetrics, Foch Hospital, Suresnes, France
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| | | | - Nathalie Cornet
- Department of Gynaecology and Obstetrics, Foch Hospital, Suresnes, France
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| | | | - Raphaël Coscas
- Department of Vascular Surgery, Ambroise Paré University Hospital, AP-HP, Boulogne-Billancourt, France
- UMR 1018, Inserm-Paris11 - CESP, Versailles Saint-Quentin-en-Yvelines University, Paris-Saclay University, Boulogne-Billancourt, France
| | - François Vialard
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- École Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
- Département de Génétique, Laboratoire de Biologie Médicale, CHI de Poissy-St Germain en Laye, Poissy, France
| | - Valérie Gelin
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- École Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Laurent Galio
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- École Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Christophe Richard
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- École Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Héla Trabelsi
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- École Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Olivier Sandra
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- École Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Dominique de Ziegler
- Department of Gynaecology and Obstetrics, Foch Hospital, Suresnes, France
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
- École Nationale Vétérinaire d'Alfort, BREED, Maisons-Alfort, France
| | - Jean-Marc Ayoubi
- Department of Gynaecology and Obstetrics, Foch Hospital, Suresnes, France
- Université Paris-Saclay, UVSQ, INRAE, BREED, Jouy-en-Josas, France
| |
Collapse
|
63
|
Yi X, Liu F, Gao K, Chen F, Wang Y, Li H, Wang X, Huang Y, Fu H, Zhou W, Fan JB, Wang S, Gao Y. Reconstructable Uterus-Derived Materials for Uterus Recovery toward Efficient Live Births. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106510. [PMID: 34854148 DOI: 10.1002/adma.202106510] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Uterine factor infertility is increasingly common in modern society and has severely affected human life and health. However, the existing biomaterial scaffold-mediated systems remain limited in efficient uterus recovery, leading to low pregnancy rate and live births. Here, reconstructable uterus-derived materials (RUMs) are demonstrated by combining uterus-derived extracellular matrix and seeded chorionic villi mesenchymal stem cells for uterus recovery, achieving highly efficient live births in rats with severe uterine injury. The RUMs can be designed into different states (such as, liquid RUMs and solid RUMs) and shapes (such as, cuboid, triangular-prism, and cube) in terms of requirements. The RUMs can effectively prevent intrauterine adhesion, and promote endometrial regeneration and muscle collagen reconstruction, as well as, accelerate wound healing by constructing a physical barrier and secreting cytokines, allowing efficient uterus recovery. The injured uterus nearly achieves complete recovery after treating with the RUMs and has normal pregnancies for supporting fetal development and live births, similar to the normal rats. The study provides a regenerative medicine therapeutics for uterine factor infertility.
Collapse
Affiliation(s)
- Xiao Yi
- Research Centre for Artificial Organ and Tissue Engineering & Institute of Regenerative Medicine, Department of Hepatobiliary Surgery II, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, 510280, P. R. China
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, P. R. China
| | - Fan Liu
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, P. R. China
| | - Kunjie Gao
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, P. R. China
| | - Feng Chen
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, P. R. China
| | - Yifeng Wang
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, P. R. China
| | - Huayan Li
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, P. R. China
| | - Xuefeng Wang
- Department of Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Yi Huang
- Department of Gynecology, Nanhai People's Hospital, Southern Medical University, Guangzhou, Guangdong Province, P. R. China
| | - Huijiao Fu
- Department of Gynecology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Weijie Zhou
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jun-Bing Fan
- Research Centre for Artificial Organ and Tissue Engineering & Institute of Regenerative Medicine, Department of Hepatobiliary Surgery II, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, 510280, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, CAS Center for Excellence in Nanoscience, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yi Gao
- Research Centre for Artificial Organ and Tissue Engineering & Institute of Regenerative Medicine, Department of Hepatobiliary Surgery II, Zhujiang Hospital, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong Province, 510280, P. R. China
| |
Collapse
|
64
|
Gharibeh N, Aghebati-Maleki L, Madani J, Pourakbari R, Yousefi M, Ahmadian Heris J. Cell-based therapy in thin endometrium and Asherman syndrome. Stem Cell Res Ther 2022; 13:33. [PMID: 35090547 PMCID: PMC8796444 DOI: 10.1186/s13287-021-02698-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/24/2021] [Indexed: 12/17/2022] Open
Abstract
Numerous treatment strategies have so far been proposed for treating refractory thin endometrium either without or with the Asherman syndrome. Inconsistency in the improvement of endometrial thickness is a common limitation of such therapies including tamoxifen citrate as an ovulation induction agent, acupuncture, long-term pentoxifylline and tocopherol or tocopherol only, low-dose human chorionic gonadotropin during endometrial preparation, aspirin, luteal gonadotropin-releasing hormone agonist supplementation, and extended estrogen therapy. Recently, cell therapy has been proposed as an ideal alternative for endometrium regeneration, including the employment of stem cells, platelet-rich plasma, and growth factors as therapeutic agents. The mechanisms of action of cell therapy include the cytokine induction, growth factor production, natural killer cell activity reduction, Th17 and Th1 decrease, and Treg cell and Th2 increase. Since cell therapy is personalized, dynamic, interactive, and specific and could be an effective strategy. Despite its promising nature, further research is required for improving the procedure and the safety of this strategy. These methods and their results are discussed in this article.
Collapse
Affiliation(s)
- Nastaran Gharibeh
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javad Madani
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Pourakbari
- Student's Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Javad Ahmadian Heris
- Department of Allergy and Clinical Immunology, Pediatric Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
65
|
|
66
|
Zhang Y, Huang X, Sun K, Li M, Wang X, Han T, Shen H, Qi B, Xie Y, Wei X. The Potential Role of Serum IGF-1 and Leptin as Biomarkers: Towards Screening for and Diagnosing Postmenopausal Osteoporosis. J Inflamm Res 2022; 15:533-543. [PMID: 35095282 PMCID: PMC8791302 DOI: 10.2147/jir.s344009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/07/2022] [Indexed: 01/05/2023] Open
Abstract
Purpose To investigate the differences of several serum markers among population with different bone mass and to explore the utility of new potential biomarker for the diagnosing and screening for postmenopausal osteoporosis (PMOP). Materials and Methods A total of 1055 postmenopausal women were screened and gathered data on BMD screening, biological samples, and questionnaire information. A liquid chip assay was used to measure serum IL-6, IGF-1, BMP-2, VEGF, leptin and FGF23. The predictive value of the indicator panels was assessed using the area under the receiver-operator characteristic curve (AUC). Statistical analyses were conducted by using SAS 9.4 and R software 4.1.1. Figures were created in GraphPad Prism 8.0. Results When compared against the normal group, in addition to the vitamin D, the PMOP group showed a significant increase in median values for other indicators (P < 0.05), especially in P1NP and β-CTX. Among the six cytokines representing different osteoporosis mechanisms, currently, we found that only IGF-1 and leptin showed significant differences between the groups. Also, the liquid chip assay results showed that IGF-1 and leptin, as newer cytokines in osteoporosis, not only have significant differences between groups, but also have a strong correlation with each other (P < 0.05). Then, we reported the accuracy of different indicator combinations by using AUC and, moreover, we demonstrated that IGF-1 with leptin did significantly provide incremental value to the AUC of conventional indexes, it markedly improved diagnostic efficacy, displaying an IDI of 9.45% (P = 0.000). Conclusion IFG-1 and leptin seem to be key biomarker associated with PMOP. The high prevalence of PMOP makes these cytokines might bear the potential of becoming a very useful screening test also for clinical follow-up of patients.
Collapse
Affiliation(s)
- Yili Zhang
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Xinyi Huang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Kai Sun
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Mengyuan Li
- School of Traditional Chinese Medicine & School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
| | - Xu Wang
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Tao Han
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Hao Shen
- Changxindian Community Health Service Center, Beijing, People’s Republic of China
| | - Baoyu Qi
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Yanming Xie
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Correspondence: Yanming Xie; Xu Wei, Tel +86 13911112416; +86 13488716557, Email ;
| | - Xu Wei
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
67
|
Francés-Herrero E, Lopez R, Hellström M, de Miguel-Gómez L, Herraiz S, Brännström M, Pellicer A, Cervelló I. OUP accepted manuscript. Hum Reprod Update 2022; 28:798-837. [PMID: 35652272 PMCID: PMC9629485 DOI: 10.1093/humupd/dmac025] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND To provide the optimal milieu for implantation and fetal development, the female reproductive system must orchestrate uterine dynamics with the appropriate hormones produced by the ovaries. Mature oocytes may be fertilized in the fallopian tubes, and the resulting zygote is transported toward the uterus, where it can implant and continue developing. The cervix acts as a physical barrier to protect the fetus throughout pregnancy, and the vagina acts as a birth canal (involving uterine and cervix mechanisms) and facilitates copulation. Fertility can be compromised by pathologies that affect any of these organs or processes, and therefore, being able to accurately model them or restore their function is of paramount importance in applied and translational research. However, innate differences in human and animal model reproductive tracts, and the static nature of 2D cell/tissue culture techniques, necessitate continued research and development of dynamic and more complex in vitro platforms, ex vivo approaches and in vivo therapies to study and support reproductive biology. To meet this need, bioengineering is propelling the research on female reproduction into a new dimension through a wide range of potential applications and preclinical models, and the burgeoning number and variety of studies makes for a rapidly changing state of the field. OBJECTIVE AND RATIONALE This review aims to summarize the mounting evidence on bioengineering strategies, platforms and therapies currently available and under development in the context of female reproductive medicine, in order to further understand female reproductive biology and provide new options for fertility restoration. Specifically, techniques used in, or for, the uterus (endometrium and myometrium), ovary, fallopian tubes, cervix and vagina will be discussed. SEARCH METHODS A systematic search of full-text articles available in PubMed and Embase databases was conducted to identify relevant studies published between January 2000 and September 2021. The search terms included: bioengineering, reproduction, artificial, biomaterial, microfluidic, bioprinting, organoid, hydrogel, scaffold, uterus, endometrium, ovary, fallopian tubes, oviduct, cervix, vagina, endometriosis, adenomyosis, uterine fibroids, chlamydia, Asherman’s syndrome, intrauterine adhesions, uterine polyps, polycystic ovary syndrome and primary ovarian insufficiency. Additional studies were identified by manually searching the references of the selected articles and of complementary reviews. Eligibility criteria included original, rigorous and accessible peer-reviewed work, published in English, on female reproductive bioengineering techniques in preclinical (in vitro/in vivo/ex vivo) and/or clinical testing phases. OUTCOMES Out of the 10 390 records identified, 312 studies were included for systematic review. Owing to inconsistencies in the study measurements and designs, the findings were assessed qualitatively rather than by meta-analysis. Hydrogels and scaffolds were commonly applied in various bioengineering-related studies of the female reproductive tract. Emerging technologies, such as organoids and bioprinting, offered personalized diagnoses and alternative treatment options, respectively. Promising microfluidic systems combining various bioengineering approaches have also shown translational value. WIDER IMPLICATIONS The complexity of the molecular, endocrine and tissue-level interactions regulating female reproduction present challenges for bioengineering approaches to replace female reproductive organs. However, interdisciplinary work is providing valuable insight into the physicochemical properties necessary for reproductive biological processes to occur. Defining the landscape of reproductive bioengineering technologies currently available and under development for women can provide alternative models for toxicology/drug testing, ex vivo fertility options, clinical therapies and a basis for future organ regeneration studies.
Collapse
Affiliation(s)
| | | | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lucía de Miguel-Gómez
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- Fundación IVI, IVI-RMA Global, Valencia, Spain
| | - Sonia Herraiz
- Fundación IVI, IVI-RMA Global, Valencia, Spain
- Reproductive Medicine Research Group, IIS La Fe, Valencia, Spain
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Stockholm IVF-EUGIN, Stockholm, Sweden
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics and Gynecology, School of Medicine, University of Valencia, Valencia, Spain
- IVI Roma Parioli, IVI-RMA Global, Rome, Italy
| | | |
Collapse
|
68
|
Ma J, Zhan H, Li W, Zhang L, Yun F, Wu R, Lin J, Li Y. Recent trends in therapeutic strategies for repairing endometrial tissue in intrauterine adhesion. Biomater Res 2021; 25:40. [PMID: 34819167 PMCID: PMC8611984 DOI: 10.1186/s40824-021-00242-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/31/2021] [Indexed: 12/25/2022] Open
Abstract
Intrauterine adhesion (IUA) is a common gynaecological disease that develops from infection or trauma. IUA disease may seriously affect the physical and mental health of women of childbearing age, which may lead to symptoms such as hypomenorrhea or infertility. Presently, hysteroscopic transcervical resection of adhesion (TCRA) is the principal therapy for IUAs, although its function in preventing the recurrence of adhesion and preserving fertility is limited. Pharmaceuticals such as hormones and vasoactive agents and the placement of nondegradable stents are the most common postoperative adjuvant therapy methods. However, the repair of injured endometrium is relatively restricted due to the different anatomical structures of the endometrium. Recently, the treatment outcome of IUAs has improved with the advancement of hysteroscopic techniques. In particular, the application of bioactive scaffolds combined with tissue engineering technology has proven to have high therapeutic potential or endometrial repair in IUA treatment. Herein, this review has summarized past therapeutic strategies, including postoperative adjuvant therapy, cell or therapeutic molecular delivery therapy methods and bioactive scaffold-based tissue engineering methods. Therefore, this review presented the recent therapeutic strategies for repairing endometrium treatment and pointed out the issues of clinical concern to provide alternative methods for the management of IUAs.
Collapse
Affiliation(s)
- Junyan Ma
- Zhejiang Provincial Key Laboratory for Precision Diagnosis & Treatment of Major Gynecological Diseases, Hangzhou, 310006, Zhejiang Province, China
| | - Hong Zhan
- Department of Gynecology and Obstetrics, Women' s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China
| | - Wen Li
- Department of Gynecology and Obstetrics, Women' s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China
| | - Liqi Zhang
- Department of Gynecology and Obstetrics, Women' s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China
| | - Feng Yun
- Department of Gynecology and Obstetrics, Women' s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China
| | - Ruijin Wu
- Department of Gynecology and Obstetrics, Women' s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China.
| | - Jun Lin
- Department of Gynecology and Obstetrics, Women' s Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, Zhejiang Province, China.
| | - Yangyang Li
- Zhejiang Provincial Key Laboratory for Precision Diagnosis & Treatment of Major Gynecological Diseases, Hangzhou, 310006, Zhejiang Province, China.
| |
Collapse
|
69
|
Activated Human Umbilical Cord Blood Platelet-Rich Plasma Enhances the Beneficial Effects of Human Umbilical Cord Mesenchymal Stem Cells in Chemotherapy-Induced POF Rats. Stem Cells Int 2021; 2021:8293699. [PMID: 34733331 PMCID: PMC8560297 DOI: 10.1155/2021/8293699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/29/2021] [Accepted: 09/20/2021] [Indexed: 12/29/2022] Open
Abstract
Saving the ovarian function of premature ovarian failure (POF) patients undergoing chemotherapy is an important problem in the field of reproductive medicine. At present, human umbilical cord mesenchymal stem cells (HucMSCs) have been used in the treatment of POF, but the effect is still not optimal. The purpose of this study was to determine whether human umbilical cord blood platelet-rich plasma (ucPRP) enhances the beneficial effects of HucMSCs in the treatment of POF. First, we observed the effects of changes in the biological activity of ucPRP on HucMSCs in vitro. Subsequently, we tracked the distribution and function of the HucMSCs in POF rats, and the rats' estrus cycle and serum sex hormones, follicular development, ovarian angiogenesis, ovarian granulosa cell proliferation, and apoptosis were assessed. The results of the study showed that the addition of ucPRP in vitro accelerates proliferation and reduces apoptosis of the HucMSCs while upregulating the stemness gene of the HucMSCs. The combined transplantation of HucMSCs and ucPRP resulted in more stem cells being retained in the ovaries of POF rats, the estrus cycle of the POF rats being restored, the levels of serum E2, AMH, and FSH improving, and damaged follicles beginning to grow. Finally, we confirmed that the potential mechanism of the combination of HucMSCs and ucPRP to rescue the ovarian function of POF rats is to promote ovarian angiogenesis and to promote the proliferation and reduce the apoptosis of ovarian granulosa cells. The upregulation of AMH and FHSR expression and the downregulation of caspase-3 expression in granulosa cells are potential mechanisms for the recovery of ovarian function. Our research results suggest that the combined application of HucMSCs and ucPRP is a safe and efficient transplantation program for the treatment of POF, thus providing a reliable experimental basis for the clinical application of stem cell therapy in POF.
Collapse
|
70
|
López-Martínez S, Rodríguez-Eguren A, de Miguel-Gómez L, Francés-Herrero E, Faus A, Díaz A, Pellicer A, Ferrero H, Cervelló I. Bioengineered endometrial hydrogels with growth factors promote tissue regeneration and restore fertility in murine models. Acta Biomater 2021; 135:113-125. [PMID: 34428563 DOI: 10.1016/j.actbio.2021.08.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/10/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Extracellular matrix (ECM) hydrogels obtained from decellularized tissues are promising biocompatible materials for tissue regeneration. These biomaterials may provide important options for endometrial pathologies such as Asherman's syndrome and endometrial atrophy, which lack effective therapies thus far. First, we performed a proteomic analysis of a decellularized endometrial porcine hydrogel (EndoECM) to describe the specific role of ECM proteins related to regenerative processes. Furthermore, we investigated the ability of a bioengineered system-EndoECM alone or supplemented with growth factors (GFs)-to repair the endometrium in a murine model of endometrial damage. For this model, the uterine horns of female C57BL/6 mice were first injected with 70% ethanol, then four days later, they were treated with: saline (negative control); biotin-labeled EndoECM; or biotin-labeled EndoECM plus platelet-derived GF, basic fibroblast GF, and insulin-like GF 1 (EndoECM+GF). Endometrial regeneration and fertility restoration were evaluated by assessing the number of glands, endometrial area, cell proliferation, neaoangiogenesis, reduction of collagen deposition, and fertility restoration. Interestingly, regenerative effects such as an increased number of endometrial glands, increased area, high cell proliferative index, development of new blood vessels, reduction of collagen deposition, and higher pregnancy rate occurred in mice treated with EndoECM+GF. Thus, a bioengineered system based on EndoECM hydrogel supplemented with GFs may be promising for the clinical treatment of endometrial conditions such as Asherman's syndrome and endometrial atrophy. STATEMENT OF SIGNIFICANCE: In the last years, the bioengineering field has developed new and promising approaches to regenerate tissues or replace damaged and diseased tissues. Bioengineered hydrogels offer an ideal option because these materials can be used not only as treatments but also as carriers of drugs and other therapeutics. The present work demonstrates for the first time how hydrogels derived from pig endometrium loaded with growth factors could treat uterine pathologies in a mouse model of endometrial damage. These findings provide scientific evidence about bioengineered hydrogels based on tissue-specific extracellular matrix offering new options to treat human infertility from endometrial causes such as Asherman's syndrome or endometrial atrophy.
Collapse
Affiliation(s)
- Sara López-Martínez
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain
| | - Adolfo Rodríguez-Eguren
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain
| | - Lucía de Miguel-Gómez
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain; University of Valencia, Avenida de Blasco Ibáñez, 13, Valencia 46010, Spain
| | - Emilio Francés-Herrero
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain; University of Valencia, Avenida de Blasco Ibáñez, 13, Valencia 46010, Spain
| | - Amparo Faus
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain
| | - Ana Díaz
- University of Valencia, Avenida de Blasco Ibáñez, 13, Valencia 46010, Spain
| | - Antonio Pellicer
- University of Valencia, Avenida de Blasco Ibáñez, 13, Valencia 46010, Spain; IVIRMA Roma, Largo Ildebrando Pizzetti, 1, Roma 00197, Italy
| | - Hortensia Ferrero
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain
| | - Irene Cervelló
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106, Hospital La Fe, Torre A, Planta 1ª, Valencia 46026, Spain.
| |
Collapse
|
71
|
Song YT, Liu PC, Tan J, Zou CY, Li QJ, Li-Ling J, Xie HQ. Stem cell-based therapy for ameliorating intrauterine adhesion and endometrium injury. Stem Cell Res Ther 2021; 12:556. [PMID: 34717746 PMCID: PMC8557001 DOI: 10.1186/s13287-021-02620-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/04/2021] [Indexed: 02/08/2023] Open
Abstract
Intrauterine adhesion refers to endometrial repair disorders which are usually caused by uterine injury and may lead to a series of complications such as abnormal menstrual bleeding, recurrent abortion and secondary infertility. At present, therapeutic approaches to intrauterine adhesion are limited due to the lack of effective methods to promote regeneration following severe endometrial injury. Therefore, to develop new methods to prevent endometrial injury and intrauterine adhesion has become an urgent need. For severely damaged endometrium, the loss of stem cells in the endometrium may affect its regeneration. This article aimed to discuss the characteristics of various stem cells and their applications for uterine tissue regeneration.
Collapse
Affiliation(s)
- Yu-Ting Song
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Peng-Cheng Liu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Tan
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chen-Yu Zou
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qian-Jin Li
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jesse Li-Ling
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu, 610041, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
72
|
Charoensombut N, Kawabata K, Kim J, Chang M, Kimura T, Kishida A, Ushida T, Furukawa KS. Internal radial perfusion bioreactor promotes decellularized and recellularization of rat uterine tissue. J Biosci Bioeng 2021; 133:83-88. [PMID: 34674960 DOI: 10.1016/j.jbiosc.2021.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/31/2021] [Accepted: 09/12/2021] [Indexed: 12/12/2022]
Abstract
The advances in infertility treatment technologies such as in vitro fertilization (IVF) help many infertile women to be able to get pregnant. However, these infertility treatments cannot be applied to women who are suffering from absolute uterine factor. Fabrication of functional scaffold in tissue engineering approach is believed to play an important role for uterine regeneration and uterus replacement for treating absolute uterine factor infertility. In this research, we developed an internal radial perfusion bioreactor to promote decellularization and recellularization for fabrication of functional engineered uterine tissue. As a result, the DNA contents of the decellularized uterine tissue with high hydrostatic pressure followed by 7 days internal perfusion washing decreased by 90% compared to native tissue. Collagen and proteoglycan contents in the pressurized uterine tissue with the internal perfusion bioreactor, static (control) and shaking treatment with high hydrostatic pressure showed no significant change compared to the native tissue. The newly developed perfusion bioreactor also enabled to recellularize in the decellularized tissue with statistically significant increase of DNA by 614% compared to non-seeded cell groups. Vimentin and 4',6-diamidino-2-phenylindole (DAPI) was homogeneously expressed in the seeded endometrial stromal cells in the recellularized tissue fabricated using the bioreactor. With the developed internal radial perfusion bioreactor, we are the first group to successfully recellularized uterine tissue in all layers including epithelium, endometrium and myometrium. These results showed that the internal perfusion bioreactor has potential to be utilized for fabrication of functional engineered tissue to promote tissue regeneration.
Collapse
Affiliation(s)
- Narintadeach Charoensombut
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Kinyoshi Kawabata
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Jeonghyun Kim
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Minki Chang
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Tsuyoshi Kimura
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-1 Kanda, Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Akio Kishida
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-1 Kanda, Surugadai, Chiyoda, Tokyo 101-0062, Japan
| | - Takashi Ushida
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan; Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | - Katsuko S Furukawa
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan; Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.
| |
Collapse
|
73
|
Lei L, Lv Q, Jin Y, An H, Shi Z, Hu G, Yang Y, Wang X, Yang L. Angiogenic Microspheres for the Treatment of a Thin Endometrium. ACS Biomater Sci Eng 2021; 7:4914-4920. [PMID: 34415138 DOI: 10.1021/acsbiomaterials.1c00615] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The poor vascular development of an endometrium is the key cause of a thin endometrium due to the vascular endothelial growth factor (VEGF) decreasing in the glandular epithelium. Hence, inducing angiogenesis is an effective strategy for thin endometrium treatment in clinic. Herein, we developed a novel angiogenic hydrogel microsphere based on methacrylated hyaluronic acid (HAMA) loaded with VEGF for the treatment of a thin endometrium by a microfluidic electrospray technique. The generated HAMA microspheres with uniform size, porous structure, and satisfactory biocompatibility increased the drug-loading ability and controlled the drug-release rate by adjusting the hydrogel concentration. Besides, the HAMA microspheres loaded with VEGF showed satisfactory biocompatibility and promoted blood vessel formation in vitro. More importantly, the combination of HA and VEGF promoted new blood vessels and endometrial regeneration of a thin endometrium in vivo. Therefore, the combination of HA and VEGF would be conducive to the development of a drug-delivery microsphere with excellent biocompatibility and therapeutic effect for thin endometrium treatment and other biomedical applications.
Collapse
Affiliation(s)
- Lanjie Lei
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, P. R. China
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, P. R. China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, P. R. China
| | - Yan Jin
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, P. R. China
| | - Hong An
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, P. R. China
| | - Zhe Shi
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, P. R. China
| | - Ge Hu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, P. R. China
| | - Yuze Yang
- Beijing General Station of Animal Husbandry, Beijing 100101, P. R. China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, P. R. China
| | - Lei Yang
- Key Laboratory of System Bio-medicine of Jiangxi Province, Jiujiang University, Jiujiang, Jiangxi 332000, P. R. China
- Department of Biomedical Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
74
|
Hanuman S, Nune M. Design and Characterization of Maltose-Conjugated Polycaprolactone Nanofibrous Scaffolds for Uterine Tissue Engineering. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00231-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstract
Purpose
Uterine anomalies are prevalent in women, and the major treatment assisted to them is hysterectomy as donor availability is extremely low. To overcome this, engineering uterine myometrium smooth muscle tissue has become very important. Several studies have shown that polycaprolactone (PCL) nanofibers are very effective in engineering smooth muscles, as this type of scaffold has structural similarities to the extracellular matrices of the cells. Here, we hypothesize that by electrospinning PCL nanofibers, they form a suitable scaffold for uterine tissue engineering.
Methods
Polycaprolactone nanofibrous scaffolds were fabricated, and surface modification was performed following two step wet chemistry method. First step is aminolysis which introduces the primary amine groups on the PCL scaffolds following which maltose is conjugated on the scaffolds. This was confirmed by the ninhydrin assay for the presence of amine groups. This was followed by ELLA assay where the presence of maltose on the scaffold was quantified. Modified scaffolds were further characterized by scanning electron microscope (SEM), contact angle analysis and Fourier transform infrared spectroscopy (FTIR). MTT assay, live-dead assay and actin staining were performed on the maltose immobilization to study the improvement of the cell attachment and proliferation rates on the modified scaffolds.
Results
Human uterine fibroblast (HUF) cells displayed significant proliferation on the maltose-modified PCL scaffolds, and they also exhibited appropriate morphology indicating that these modified fibers are highly suitable for uterine cell growth.
Conclusion
Our results indicate that the fabricated maltose PCL (MPCL) scaffolds would be a potential biomaterial to treat uterine injuries and promote regeneration.
Lay Summary and Future Work
Uterine anomalies are prevalent in women, and the major treatment is hysterectomy as donor availability is extremely low. Over the past few years, considerable efforts have been directed towards uterine tissue regeneration. This study is to design a tissue engineered scaffold that could act as a human uterine myometrial patch. We propose to create uterine fibroblast-based synthetic scaffolds that act in a condition similar to the intrauterine microenvironment where the embryos are embedded in the uterine wall. For understanding of the efficiency of the myometrial patch, functional characterization will be performed to study the effects of estrogen and prostaglandins on myometrial activity of the designed patch. Results from these experiments will assist a deeper understanding of how to construct a total bioengineered uterus which can substitute the uterus transplantation procedure, which nonetheless is in its initial stages of development.
Graphical Abstract
Collapse
|
75
|
Qamar AY, Hussain T, Rafique MK, Bang S, Tanga BM, Seong G, Fang X, Saadeldin IM, Cho J. The Role of Stem Cells and Their Derived Extracellular Vesicles in Restoring Female and Male Fertility. Cells 2021; 10:2460. [PMID: 34572109 PMCID: PMC8468931 DOI: 10.3390/cells10092460] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/21/2022] Open
Abstract
Infertility is a globally recognized issue caused by different reproductive disorders. To date, various therapeutic approaches to restore fertility have been attempted including etiology-specific medication, hormonal therapies, surgical excisions, and assisted reproductive technologies. Although these approaches produce results, however, fertility restoration is not achieved in all cases. Advances in using stem cell (SC) therapy hold a great promise for treating infertile patients due to their abilities to self-renew, differentiate, and produce different paracrine factors to regenerate the damaged or injured cells and replenish the affected germ cells. Furthermore, SCs secrete extracellular vesicles (EVs) containing biologically active molecules including nucleic acids, lipids, and proteins. EVs are involved in various physiological and pathological processes and show promising non-cellular therapeutic uses to combat infertility. Several studies have indicated that SCs and/or their derived EVs transplantation plays a crucial role in the regeneration of different segments of the reproductive system, oocyte production, and initiation of sperm production. However, available evidence triggers the need to testify the efficacy of SC transplantation or EVs injection in resolving the infertility issues of the human population. In this review, we highlight the recent literature covering the issues of infertility in females and males, with a special focus on the possible treatments by stem cells or their derived EVs.
Collapse
Affiliation(s)
- Ahmad Yar Qamar
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- College of Veterinary and Animal Sciences, Jhang, Sub-Campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Tariq Hussain
- College of Veterinary and Animal Sciences, Jhang, Sub-Campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Muhammad Kamran Rafique
- College of Veterinary and Animal Sciences, Jhang, Sub-Campus of University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Bereket Molla Tanga
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- Faculty of Veterinary Medicine, Hawassa University, Hawassa 05, Ethiopia
| | - Gyeonghwan Seong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Xun Fang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Islam M Saadeldin
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jongki Cho
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
76
|
Almeida GHDR, Iglesia RP, Araújo MS, Carreira ACO, Dos Santos EX, Calomeno CVAQ, Miglino MA. Uterine Tissue Engineering: Where We Stand and the Challenges Ahead. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:861-890. [PMID: 34476997 DOI: 10.1089/ten.teb.2021.0062] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Tissue engineering is an innovative approach to develop allogeneic tissues and organs. The uterus is a very sensitive and complex organ, which requires refined techniques to properly regenerate and even, to rebuild itself. Many therapies were developed in 20th century to solve reproductive issues related to uterus failure and, more recently, tissue engineering techniques provided a significant evolution in this issue. Herein we aim to provide a broad overview and highlights of the general concepts involved in bioengineering to reconstruct the uterus and its tissues, focusing on strategies for tissue repair, production of uterine scaffolds, biomaterials and reproductive animal models, highlighting the most recent and effective tissue engineering protocols in literature and their application in regenerative medicine. In addition, we provide a discussion about what was achieved in uterine tissue engineering, the main limitations, the challenges to overcome and future perspectives in this research field.
Collapse
Affiliation(s)
- Gustavo Henrique Doná Rodrigues Almeida
- University of São Paulo, Faculty of Veterinary and Animal Science, Professor Orlando Marques de Paiva Avenue, 87, Butantã, SP, Sao Paulo, São Paulo, Brazil, 05508-900.,University of São Paulo Institute of Biomedical Sciences, 54544, Cell and Developmental Biology, Professor Lineu Prestes Avenue, 1374, Butantã, SP, Sao Paulo, São Paulo, Brazil, 05508-900;
| | - Rebeca Piatniczka Iglesia
- University of São Paulo Institute of Biomedical Sciences, 54544, Cell and Developmental Biology, Sao Paulo, São Paulo, Brazil;
| | - Michelle Silva Araújo
- University of São Paulo, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil., São Paulo, São Paulo, Brazil;
| | - Ana Claudia Oliveira Carreira
- University of São Paulo, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, SP, Brazil, São Paulo, São Paulo, Brazil;
| | - Erika Xavier Dos Santos
- State University of Maringá, 42487, Department of Morphological Sciences, State University of Maringá, Maringá, PR, Brazil, Maringa, PR, Brazil;
| | - Celso Vitor Alves Queiroz Calomeno
- State University of Maringá, 42487, Department of Morphological Sciences, State University of Maringá, Maringá, PR, Brazil, Maringa, PR, Brazil;
| | - Maria Angélica Miglino
- University of São Paulo, Faculty of Veterinary and Animal Science Professor Orlando Marques de Paiva Avenue, 87 Butantã SP Sao Paulo, São Paulo, BR 05508-900, São Paulo, São Paulo, Brazil;
| |
Collapse
|
77
|
Li Z, Zhang M, Tian Y, Li Q, Huang X. Mesenchymal Stem Cells in Premature Ovarian Insufficiency: Mechanisms and Prospects. Front Cell Dev Biol 2021; 9:718192. [PMID: 34414193 PMCID: PMC8369507 DOI: 10.3389/fcell.2021.718192] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/14/2021] [Indexed: 01/01/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a complex endocrine disease that severely affects the physiological and reproductive functions of females. The current conventional clinical treatment methods for POI are characterized by several side effects, and most do not effectively restore the physiological functions of the ovaries. Transplantation of mesenchymal stem cells (MSCs) is a promising regenerative medicine approach, which has received significant attention in the management of POI with high efficacy. Associated pre-clinical and clinical trials are also proceeding orderly. However, the therapeutic mechanisms underlying the MSCs-based treatment are complex and have not been fully elucidated. In brief, proliferation, apoptosis, immunization, autophagy, oxidative stress, and fibrosis of ovarian cells are modulated through paracrine effects after migration of MSCs to the injured ovary. This review summarizes therapeutic mechanisms of MSCs-based treatments in POI and explores their therapeutic potential in clinical practice. Therefore, this review will provide a theoretical basis for further research and clinical application of MSCs in POI.
Collapse
Affiliation(s)
- Zhongkang Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mingle Zhang
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yanpeng Tian
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qian Li
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xianghua Huang
- Department of Obstetrics and Gynecology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
78
|
Lv H, Wu B, Song J, Wu W, Cai W, Xu J. Hydrogel, a novel therapeutic and delivery strategy, in the treatment of intrauterine adhesions. J Mater Chem B 2021; 9:6536-6552. [PMID: 34324619 DOI: 10.1039/d1tb01005k] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intrauterine adhesions (IUAs) are caused by damage to the underlying lining of the endometrium. They' re related to disorder of endometrial repair. In recent years, hydrogels with controllable biological activity have been widely used for treating IUAs. They encapsulate estrogen, cytokines, cells, or exosomes, forming a delivery system to release therapeutic components for the treatment of IUAs. In addition, the hydrogel acting as a barrier can be degraded in the body automatically, reducing the risk of infection caused by secondary surgeries. In this review, we summarize the recent progress of hydrogels and their application in IUAs as both a novel alternative therapeutic and an artificial delivery strategy.
Collapse
Affiliation(s)
- Houyi Lv
- Department of Reproductive Medicine, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
79
|
de Miguel-Gómez L, Romeu M, Pellicer A, Cervelló I. Strategies for managing asherman's syndrome and endometrial atrophy: Since the classical experimental models to the new bioengineering approach. Mol Reprod Dev 2021; 88:527-543. [PMID: 34293229 DOI: 10.1002/mrd.23523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/11/2021] [Accepted: 06/30/2021] [Indexed: 11/07/2022]
Abstract
Endometrial function is essential for embryo implantation and pregnancy, but managing endometrial thickness that is too thin to support pregnancy or an endometrium of compromised functionality due to intrauterine adhesions is an ongoing challenge in reproductive medicine. Here, we review current and emerging therapeutic and experimental options for endometrial regeneration with a focus on animal models used to study solutions for Asherman's syndrome and endometrial atrophy, which both involve a damaged endometrium. A review of existing literature was performed that confirmed the lack of consensus on endometrial therapeutic options, though promising new alternatives have emerged in recent years (platelet-rich plasma, exosomes derived from stem cells, bioengineering-based techniques, endometrial organoids, among others). In the future, basic research using established experimental models of endometrial pathologies (combined with new high-tech solutions) and human clinical trials with large population sizes are needed to evaluate these emerging and new endometrial therapies.
Collapse
Affiliation(s)
- Lucía de Miguel-Gómez
- Fundación Instituto Valenciano de Infertilidad (FIVI), La Fe Health Research Institute, Valencia, Spain
- University of Valencia, Valencia, Spain
| | - Mónica Romeu
- Reproductive Medicine Research Group, La Fe Health Research Institute, La Fe University Hospital, Valencia, Spain
- Women's Health Area, Human Reproduction Unit, La Fe University Hospital, Valencia, Spain
| | | | - Irene Cervelló
- Fundación Instituto Valenciano de Infertilidad (FIVI), La Fe Health Research Institute, Valencia, Spain
| |
Collapse
|
80
|
Shao X, Qin J, Wan C, Cheng J, Wang L, Ai G, Cheng Z, Tong X. ADSC Exosomes Mediate lncRNA-MIAT Alleviation of Endometrial Fibrosis by Regulating miR-150-5p. Front Genet 2021; 12:679643. [PMID: 34178037 PMCID: PMC8220143 DOI: 10.3389/fgene.2021.679643] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/22/2021] [Indexed: 12/23/2022] Open
Abstract
Background Secondary infertility remains a major complication of endometrial fibrosis in women. The use of exosomes from adipose-derived mesenchymal stem cells (ADSCs) has shown promising results for the treatment of endometrial fibrosis. However, the mechanisms of action of ADSC-exosome (ADSC-Exo) therapy remain unclear. Materials and Methods An endometrial fibrosis model was established in mice treated with alcohol and endometrial epithelial cells (ESCs) treated with TGF-β1. ADSCs were isolated from Sprague Dawley (SD) rats, and exosomes were isolated from ADSCs using ExoQuick reagent. Exosomes were identified by transmission electron microscopy (TEM), NanoSight, and Western blot analysis. The expression level of lncRNA-MIAT was detected by qPCR analysis. Western blot analysis was carried out to determine the protein levels of fibrosis markers (TGFβR1, α-SMA, and CK19). A dual-luciferase reporter gene assay was used to verify the relationship between target genes. The endometrial tissues of the endometrial fibrosis model were stained with HE and Masson’s trichrome. Results ADSCs and ADSC-Exos were successfully isolated, and the expression level of lncRNA-MIAT was significantly down-regulated in endometrial tissue and the TGF-β1-induced ESC injury model, whereas ADSC-Exos increased the expression of lncRNA-MIAT in the TGF-β1-induced ESC model. Functionally, ADSC-Exo treatment repressed endometrial fibrosis in vivo and in vitro by decreasing the expression of hepatic fibrosis markers (α-SMA and TGFβR1) and increasing the expression of CK19. Moreover, miR-150-5p expression was repressed by lncRNA-MIAT in the TGF-β1-induced ESC injury model. The miR-150-5p mimic promoted TGF-β1-induced ESC fibrosis. Conclusion ADSC-Exos mediate lncRNA-MIAT alleviation of endometrial fibrosis by regulating miR-150-5p, which suggests that lncRNA-MIAT from ADSC-Exos may be a viable treatment for endometrial fibrosis.
Collapse
Affiliation(s)
- Xiaowen Shao
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinlong Qin
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chendong Wan
- Department of Obstetrics and Gynecology, Fourth People's Hospital of Yixing City, Wuxi, China
| | - Jiajing Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lian Wang
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Guihai Ai
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongping Cheng
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaowen Tong
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
81
|
Lv Q, Wang L, Luo X, Chen X. Adult stem cells in endometrial regeneration: Molecular insights and clinical applications. Mol Reprod Dev 2021; 88:379-394. [PMID: 34014590 PMCID: PMC8362170 DOI: 10.1002/mrd.23476] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 03/23/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023]
Abstract
Endometrial damage is an important cause of female reproductive problems, manifested as menstrual abnormalities, infertility, recurrent pregnancy loss, and other complications. These conditions are collectively termed "Asherman syndrome" (AS) and are typically associated with recurrent induced pregnancy terminations, repeated diagnostic curettage and intrauterine infections. Cancer treatment also has unexpected detrimental side effects on endometrial function in survivors independently of ovarian effects. Endometrial stem cells act in the regeneration of the endometrium and in repair through direct differentiation or paracrine effects. Nonendometrial adult stem cells, such as bone marrow-derived mesenchymal stem cells and umbilical cord-derived mesenchymal stem cells, with autologous and allogenic applications, can also repair injured endometrial tissue in animal models of AS and in human studies. However, there remains a lack of research on the repair of the damaged endometrium after the reversal of tumors, especially endometrial cancers. Here, we review the biological mechanisms of endometrial regeneration, and research progress and challenges for adult stem cell therapy for damaged endometrium, and discuss the potential applications of their use for endometrial repair after cancer remission, especially in endometrial cancers. Successful application of such cells will improve reproductive parameters in patients with AS or cancer. Significance: The endometrium is the fertile ground for embryos, but damage to the endometrium will greatly impair female fertility. Adult stem cells combined with tissue engineering scaffold materials or not have made great progress in repairing the injured endometrium due to benign lesions. However, due to the lack of research on the repair of the damaged endometrium caused by malignant tumors or tumor therapies, the safety and effectiveness of such stem cell-based therapies need to be further explored. This review focuses on the molecular insights and clinical application potential of adult stem cells in endometrial regeneration and discusses the possible challenges or difficulties that need to be overcome in stem cell-based therapies for tumor survivors. The development of adult stem cell-related new programs will help repair damaged endometrium safely and effectively and meet fertility needs in tumor survivors.
Collapse
Affiliation(s)
- Qiaoying Lv
- Department of GynecologyObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Lulu Wang
- Department of GynecologyObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Xuezhen Luo
- Department of GynecologyObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| | - Xiaojun Chen
- Department of GynecologyObstetrics and Gynecology Hospital of Fudan UniversityShanghaiChina
| |
Collapse
|
82
|
Li S, Ding L. Endometrial Perivascular Progenitor Cells and Uterus Regeneration. J Pers Med 2021; 11:477. [PMID: 34071743 PMCID: PMC8230145 DOI: 10.3390/jpm11060477] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 12/23/2022] Open
Abstract
Ovarian steroid-regulated cyclical regeneration of the endometrium is crucial for endometrial receptivity and embryo implantation, and it is dependent on the dynamic remodeling of the endometrial vasculature. Perivascular cells, including pericytes surrounding capillaries and microvessels and adventitial cells located in the outermost layer of large vessels, show properties of mesenchymal stem cells, and they are thus promising candidates for uterine regeneration. In this review, we discuss the structure and functions of the endometrial blood vasculature and their roles in endometrial regeneration, the main biomarkers and characteristics of perivascular cells in the endometrium, and stem cell-based angiogenetic therapy for Asherman's syndrome.
Collapse
Affiliation(s)
- Shiyuan Li
- Center for Reproductive Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China;
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, China
- Center for Clinical Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Lijun Ding
- Center for Reproductive Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China;
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing 210008, China
- Center for Clinical Stem Cell Research, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
- MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
83
|
Padma AM, Carrière L, Krokström Karlsson F, Sehic E, Bandstein S, Tiemann TT, Oltean M, Song MJ, Brännström M, Hellström M. Towards a bioengineered uterus: bioactive sheep uterus scaffolds are effectively recellularized by enzymatic preconditioning. NPJ Regen Med 2021; 6:26. [PMID: 34021161 PMCID: PMC8140118 DOI: 10.1038/s41536-021-00136-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 04/20/2021] [Indexed: 12/23/2022] Open
Abstract
Uterine factor infertility was considered incurable until recently when we reported the first successful live birth after uterus transplantation. However, risky donor surgery and immunosuppressive therapy are factors that may be avoided with bioengineering. For example, transplanted recellularized constructs derived from decellularized tissue restored fertility in rodent models and mandate translational studies. In this study, we decellularized whole sheep uterus with three different protocols using 0.5% sodium dodecyl sulfate, 2% sodium deoxycholate (SDC) or 2% SDC, and 1% Triton X-100. Scaffolds were then assessed for bioactivity using the dorsal root ganglion and chorioallantoic membrane assays, and we found that all the uterus scaffolds exhibited growth factor activity that promoted neurogenesis and angiogenesis. Extensive recellularization optimization was conducted using multipotent sheep fetal stem cells and we report results from the following three in vitro conditions; (a) standard cell culturing conditions, (b) constructs cultured in transwells, and (c) scaffolds preconditioned with matrix metalloproteinase 2 and 9. The recellularization efficiency was improved short-term when transwells were used compared with standard culturing conditions. However, the recellularization efficiency in scaffolds preconditioned with matrix metalloproteinases was 200–300% better than the other strategies evaluated herein, independent of decellularization protocol. Hence, a major recellularization hurdle has been overcome with the improved recellularization strategies and in vitro platforms described herein. These results are an important milestone and should facilitate the production of large bioengineered grafts suitable for future in vivo applications in the sheep, which is an essential step before considering these principles in a clinical setting.
Collapse
Affiliation(s)
- Arvind Manikantan Padma
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Laura Carrière
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Frida Krokström Karlsson
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Edina Sehic
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Sara Bandstein
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Tom Tristan Tiemann
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Gynecology and Obstetrics, University Hospital of Heidelberg, Heidelberg, Germany
| | - Mihai Oltean
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Surgery, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Min Jong Song
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Yeouido St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Stockholm IVF-EUGIN, Hammarby allé 93, Stockholm, Sweden
| | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden. .,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
84
|
Padma AM, Alsheikh AB, Song MJ, Akouri R, Akyürek LM, Oltean M, Brännström M, Hellström M. Immune response after allogeneic transplantation of decellularized uterine scaffolds in the rat. Biomed Mater 2021; 16. [PMID: 33946053 DOI: 10.1088/1748-605x/abfdfe] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/04/2021] [Indexed: 11/11/2022]
Abstract
Data on how the immune system reacts to decellularized scaffolds after implantation is scarce and difficult to interpret due to many heterogeneous parameters such as tissue-type match, decellularization method and treatment application. The engraftment of these scaffolds must prove safe and that they remain inert to the recipient's immune system to enable successful translational approaches and potential future clinical evaluation. Herein, we investigated the immune response after the engraftment of three decellularized scaffold types that previously showed potential to repair a uterine injury in the rat. Protocol (P) 1 and P2 were based on Triton-X100 and generated scaffolds containing 820 ng mg-1and 33 ng mg-1donor DNA per scaffold weight, respectively. Scaffolds obtained with a sodium deoxycholate-based protocol (P3) contained 160 ng donor DNA per mg tissue. The total number of infiltrating cells, and the population of CD45+leukocytes, CD4+T-cells, CD8a+cytotoxic T-cells, CD22+B-cells, NCR1+NK-cells, CD68+and CD163+macrophages were quantified on days 5, 15 and 30 after a subcutaneous allogenic (Lewis to Sprague Dawley) transplantation. Gene expression for the pro-inflammatory cytokines INF-γ, IL-1β, IL-2, IL-6 and TNF were also examined. P1 scaffolds triggered an early immune response that may had been negative for tissue regeneration but it was stabilized after 30 d. Conversely, P3 initiated a delayed immune response that appeared negative for scaffold survival. P2 scaffolds were the least immunogenic and remained similar to autologous tissue implants. Hence, an effective decellularization protocol based on a mild detergent was advantageous from an immunological perspective and appears the most promising for futurein vivouterus bioengineering applications.
Collapse
Affiliation(s)
- Arvind Manikantan Padma
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Ahmed Baker Alsheikh
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Min Jong Song
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden.,Department of Obstetrics and Gynecology, Yeouido St Mary's Hospital, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Republic of Korea
| | - Randa Akouri
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Levent M Akyürek
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| | - Mihai Oltean
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Surgery, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden
| | - Mats Brännström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden.,Stockholm IVF-EUGIN, Hammarby allé 93, 120 63, Stockholm, Sweden
| | - Mats Hellström
- Laboratory for Transplantation and Regenerative Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 45, Sweden.,Department of Obstetrics and Gynecology, Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-405 30, Sweden
| |
Collapse
|
85
|
Mesenchymal Stem Cells in Preclinical Infertility Cytotherapy: A Retrospective Review. Stem Cells Int 2021; 2021:8882368. [PMID: 34054970 PMCID: PMC8143877 DOI: 10.1155/2021/8882368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 04/06/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
Infertility is a global reproductive disorder which is caused by a variety of complex diseases. Infertility affects the individual, family, and community through physical, psychological, social and economic consequences. The results from recent preclinical studies regarding stem cell-based therapies are promising. Stem cell-based therapies cast a new hope for infertility treatment as a replacement or regeneration strategy. The main features and application prospects of mesenchymal stem cells in the future of infertility should be understood by clinicians. Mesenchymal stem cells (MSCs) are multipotent stem cells with abundant source, active proliferation, and multidirectional differentiation potential. MSCs play a role through cell homing, secretion of active factors, and participation in immune regulation. Another advantage is that, compared with embryonic stem cells, there are fewer ethical factors involved in the application of MSCs. However, a number of questions remain to be answered prior to safe and effective clinical application. In this review, we summarized the recent status of MSCs in the application of the diseases related to or may cause to infertility and suggest a possible direction for future cytotherapy to infertility.
Collapse
|
86
|
Keyhanvar N, Zarghami N, Bleisinger N, Hajipour H, Fattahi A, Nouri M, Dittrich R. Cell-based endometrial regeneration: current status and future perspectives. Cell Tissue Res 2021; 384:241-254. [PMID: 33650018 DOI: 10.1007/s00441-021-03419-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 01/18/2021] [Indexed: 02/08/2023]
Abstract
Endometrial-related disorders including Asherman's syndrome, thin endometrium, pelvic organ prolapse, and cesarean scar pregnancies can be accompanied by different symptoms such as amenorrhea, infertility, abnormal placental implantation and recurrent miscarriage. Different methods have been introduced to overcome these problems such as surgery and hormonal therapy but none of them has shown promising outcomes. On the other hand, the development of novel regenerative therapeutic strategies has opened new avenues for the treatment of endometrial-related deficiencies. In this regard, different types of scaffolds, acellular matrices and also cell therapy with adult or stem cells have been investigated for the treatment of endometrial-related deficiencies. In this paper, we review the current status of cell-based endometrium regeneration using scaffold dependent and scaffold-free methods and future perspectives in this field. Moreover, we discuss the endometrial diseases that can be candidates for cell-based treatments. Also, the cells with the potential for endometrial regeneration are explained.
Collapse
Affiliation(s)
- Neda Keyhanvar
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nathalie Bleisinger
- University Hospital Erlangen, OB/GYN, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Hamed Hajipour
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Fattahi
- Department of Reproductive Biology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Nouri
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ralf Dittrich
- University Hospital Erlangen, OB/GYN, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
87
|
Regenerative Medicine Approaches in Bioengineering Female Reproductive Tissues. Reprod Sci 2021; 28:1573-1595. [PMID: 33877644 DOI: 10.1007/s43032-021-00548-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Diseases, disorders, and dysfunctions of the female reproductive tract tissues can result in either infertility and/or hormonal imbalance. Current treatment options are limited and often do not result in tissue function restoration, requiring alternative therapeutic approaches. Regenerative medicine offers potential new therapies through the bioengineering of female reproductive tissues. This review focuses on some of the current technologies that could address the restoration of functional female reproductive tissues, including the use of stem cells, biomaterial scaffolds, bio-printing, and bio-fabrication of tissues or organoids. The use of these approaches could also be used to address issues in infertility. Strategies such as cell-based hormone replacement therapy could provide a more natural means of restoring normal ovarian physiology. Engineering of reproductive tissues and organs could serve as a powerful tool for correcting developmental anomalies. Organ-on-a-chip technologies could be used to perform drug screening for personalized medicine approaches and scientific investigations of the complex physiological interactions between the female reproductive tissues and other organ systems. While some of these technologies have already been developed, others have not been translated for clinical application. The continuous evolution of biomaterials and techniques, advances in bioprinting, along with emerging ideas for new approaches, shows a promising future for treating female reproductive tract-related disorders and dysfunctions.
Collapse
|
88
|
Jiang X, Li X, Fei X, Shen J, Chen J, Guo M, Li Y. Endometrial membrane organoids from human embryonic stem cell combined with the 3D Matrigel for endometrium regeneration in asherman syndrome. Bioact Mater 2021; 6:3935-3946. [PMID: 33937593 PMCID: PMC8079828 DOI: 10.1016/j.bioactmat.2021.04.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/29/2021] [Accepted: 04/04/2021] [Indexed: 12/18/2022] Open
Abstract
Asherman's syndrome (AS), a leading cause of uterine infertility worldwide, is characterized by scarring of the uterine surfaces lacking endometrial epithelial cells, which prevents endometrial regeneration. Current research on cell therapy for AS focuses on mesenchymal and adult stem cells from the endometrium. However, insufficient number, lack of purity, and rapid senescence of endometrial epithelial progenitor cells (EEPCs) during experimental processes restrict their use in cell therapies. In this study, we induced human embryonic stem cells-9 (H9-ESC) into EEPCs by optimizing the induction factors from the definitive endoderm. EEPCs, which act as endometrial epithelial cells, accompanied by human endometrial stromal cells provide a niche environment for the development of endometrial membrane organoids (EMOs) in an in vitro 3D culture model. To investigate the function of EMOs, we transplanted tissue-engineered constructs with EMOs into an in vivo rat AS model. The implantation of EMOs into the damaged endometrium facilitates endometrial regeneration and angiogenesis. Implanting EMOs developed from human embryonic stem cells into the endometrium might prove useful for "endometrial re-engineering" in the treatment of Asherman's syndrome.
Collapse
Affiliation(s)
- Xiuxiu Jiang
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310006, China
| | - Xingmiao Li
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310006, China
| | - Xiangwei Fei
- Key Laboratory of Women′s Reproductive Health Research of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310006, China
| | - Jiajie Shen
- Key Laboratory of Women′s Reproductive Health Research of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310006, China
| | - Jianhua Chen
- Department of Pathology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310006, China
| | - Meijun Guo
- Department of Gynecology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310006, China
| | - Yangyang Li
- Key Laboratory of Women′s Reproductive Health Research of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, 310006, China
- Corresponding author.
| |
Collapse
|
89
|
Abstract
Impairment of uterine structure and function causes infertility, pregnancy loss, and perinatal complications in humans. Some types of uterine impairments such as Asherman’s syndrome, also known as uterine synechiae, can be treated medically and surgically in a standard clinical setting, but absolute defects of uterine function or structure cannot be cured by conventional approaches. To overcome such hurdles, partial or whole regeneration and reconstruction of the uterus have recently emerged as new therapeutic strategies. Transplantation of the whole uterus into patients with uterine agenesis results in the successful birth of children. However, it remains an experimental treatment with numerous difficulties such as the need for continuous and long-term use of immunosuppressive drugs until a live birth is achieved. Thus, the generation of the uterus by tissue engineering technologies has become an alternative but indispensable therapeutic strategy to treat patients without a functional or well-structured uterus. For the past 20 years, the bioengineering of the uterus has been studied intensively in animal models, providing the basis for clinical applications. A variety of templates and scaffolds made from natural biomaterials, synthetic materials, or decellularized matrices have been characterized to efficiently generate the uterus in a manner similar to the bioengineering of other organs and tissues. The goal of this review is to provide a comprehensive overview and perspectives of uterine bioengineering focusing on the type, preparation, and characteristics of the currently available scaffolds.
Collapse
|
90
|
Wang MY, Wang YX, Li-Ling J, Xie HQ. Adult Stem Cell Therapy for Premature Ovarian Failure: From Bench to Bedside. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:63-78. [PMID: 33427039 DOI: 10.1089/ten.teb.2020.0205] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Premature ovarian failure (POF) is a devastating condition for women of childbearing age with serious health consequences, including distress, infertility, osteoporosis, autoimmune disorders, ischemic heart disease, and increased mortality. In addition to the mainstay estrogen therapy, stem cell therapy has been tested as the result of rapid progress in cell biology and reprogramming research. We hereby provide a review for the latest research and issues related with stem cell-based therapy for POF, and provide a commentary on various methods for enhancing its effect. Large amount of animal studies have demonstrated an extensive benefit of stem cells for failed ovarian recovering. As shown by such studies, stem cell therapy can result in recovery of hormonal levels, follicular activation, ovarian angiogenesis, and functional restoration. Meanwhile, a study of molecular pathways revealed that the function of stem cells mainly depends on their paracrine actions, which can produce multiple factors for the promotion of ovarian angiogenesis and regulation of cellular functions. Nevertheless, studies using disease models also revealed certain drawbacks. Clinical trials have shown that menstrual cycle and even pregnancy may occur in POF patients following transplantation of stem cells, although the limitations, including inadequate number of cases and space for the improvement of transplantation methodology. Only with its safety and effect get substantial improvement through laboratory experiments and clinical trials, can stem cell therapy really bring benefits to more patients. Additionally, effective pretreatment and appropriate transplantation methods for stem cells are also required. Taken together, stem cell therapy has shown a great potential for the reversal of POF and is stepping from bench to bedside. Impact statement Premature ovarian failure (POF) is a devastating condition with serious clinical consequences. The purpose of this review was to summarize the current status of stem cell therapy for POF. Considering the diversity of cell types and functions, a rigorous review is required for the guidance for further research into this field. Meanwhile, the challenges and prospect for clinical application of stem cell treatment, methodological improvements, and innovations are addressed.
Collapse
Affiliation(s)
- Ming-Yao Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yi-Xuan Wang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jesse Li-Ling
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
91
|
de Miguel-Gómez L, López-Martínez S, Francés-Herrero E, Rodríguez-Eguren A, Pellicer A, Cervelló I. Stem Cells and the Endometrium: From the Discovery of Adult Stem Cells to Pre-Clinical Models. Cells 2021; 10:cells10030595. [PMID: 33800355 PMCID: PMC7998473 DOI: 10.3390/cells10030595] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Adult stem cells (ASCs) were long suspected to exist in the endometrium. Indeed, several types of endometrial ASCs were identified in rodents and humans through diverse isolation and characterization techniques. Putative stromal and epithelial stem cell niches were identified in murine models using label-retention techniques. In humans, functional methods (clonogenicity, long-term culture, and multi-lineage differentiation assays) and stem cell markers (CD146, SUSD2/W5C5, LGR5, NTPDase2, SSEA-1, or N-cadherin) facilitated the identification of three main types of endogenous endometrial ASCs: stromal, epithelial progenitor, and endothelial stem cells. Further, exogenous populations of stem cells derived from bone marrow may act as key effectors of the endometrial ASC niche. These findings are promoting the development of stem cell therapies for endometrial pathologies, with an evolution towards paracrine approaches. At the same time, promising therapeutic alternatives based on bioengineering have been proposed.
Collapse
Affiliation(s)
- Lucía de Miguel-Gómez
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain; (L.d.M.-G.); (S.L.-M.); (E.F.-H.); (A.R.-E.)
- Department of Pediatrics, Obstetrics, and Gynaecology, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Sara López-Martínez
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain; (L.d.M.-G.); (S.L.-M.); (E.F.-H.); (A.R.-E.)
| | - Emilio Francés-Herrero
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain; (L.d.M.-G.); (S.L.-M.); (E.F.-H.); (A.R.-E.)
- Department of Pediatrics, Obstetrics, and Gynaecology, School of Medicine, University of Valencia, 46010 Valencia, Spain;
| | - Adolfo Rodríguez-Eguren
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain; (L.d.M.-G.); (S.L.-M.); (E.F.-H.); (A.R.-E.)
| | - Antonio Pellicer
- Department of Pediatrics, Obstetrics, and Gynaecology, School of Medicine, University of Valencia, 46010 Valencia, Spain;
- IVIRMA Rome Parioli, 00197 Rome, Italy
| | - Irene Cervelló
- IVI Foundation, Health Research Institute La Fe, 46026 Valencia, Spain; (L.d.M.-G.); (S.L.-M.); (E.F.-H.); (A.R.-E.)
- Correspondence: ; Tel.: +34-963-903-305
| |
Collapse
|
92
|
Li X, Lv HF, Zhao R, Ying MF, Samuriwo A, Zhao YZ. Recent developments in bio-scaffold materials as delivery strategies for therapeutics for endometrium regeneration. Mater Today Bio 2021; 11:100101. [PMID: 34036261 PMCID: PMC8138682 DOI: 10.1016/j.mtbio.2021.100101] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 02/11/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Intrauterine adhesions (IUAs) refer to the repair disorder after endometrial injury and may lead to uterine infertility, recurrent miscarriage, abnormal menstrual bleeding, and other obstetric complications. It is a pressing public health issue among women of childbearing age. Presently, there are limited clinical treatments for IUA, and there is no sufficient evidence that these treatment modalities can effectively promote regeneration after severe endometrial injury or improve pregnancy outcome. The inhibitory pathological micro-environment is the main factor hindering the repair of endometrial damaged tissues. To address this, tissue engineering and regenerative medicine have been achieving promising developments. Particularly, biomaterials have been used to load stem cells or therapeutic factors or construct an in situ delivery system as a treatment strategy for endometrial injury repair. This article comprehensively discusses the characteristics of various bio-scaffold materials and their application as stem cell or therapeutic factor delivery systems constructed for uterine tissue regeneration.
Collapse
Key Words
- Asherman's syndrome/endometrium regeneration
- BMNCs, autologous bone marrow mononuclear cells
- BMSCs, bone marrow mesenchymal stem cells
- Biological scaffold material
- D&C, Dilatation and curettage
- ECM, extracellular matrix
- En-PSC, endometrial perivascular cells
- IUA, Intrauterine adhesions
- KGF, Keratinocyte growth factor
- MSC-Sec, Mesenchymal stem cell-secretome
- SDF-1α, stromal cell-derived factor-1α
- Scaffold-based therapeutics delivery systems
- Stem cell
- Therapeutic factor
- UCMSCs, umbilical cord derived mesenchymal stem cells
- VEGF, vascular endothelial growth factor
- bFGF, basic fibroblast growth factors
- dEMSCs, endometrial stromal cells
- hESCs, human embryonic stem cells
Collapse
Affiliation(s)
- X. Li
- Department of Pharmacy, Xiasha Campus, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University (Hangzhou Xiasha Hospital), Hangzhou 310018, China
| | - H.-F. Lv
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310053, China
- Corresponding author.
| | - R. Zhao
- Department of Pharmacy, Xiasha Campus, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University (Hangzhou Xiasha Hospital), Hangzhou 310018, China
| | - M.-f. Ying
- Department of Pharmacy, Xiasha Campus, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University (Hangzhou Xiasha Hospital), Hangzhou 310018, China
| | - A.T. Samuriwo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Y.-Z. Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Corresponding author.
| |
Collapse
|
93
|
Xie Y, Chen J, Celik H, Akkus O, King MW. Evaluation of an electrochemically aligned collagen yarn for textile scaffold fabrication. Biomed Mater 2021; 16:025001. [PMID: 33494084 DOI: 10.1088/1748-605x/abdf9e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Collagen is the major component of the extracellular matrix in human tissues and widely used in the fabrication of tissue engineered scaffolds for medical applications. However, these forms of collagen gels and films have limitations due to their inferior strength and mechanical performance and their relatively fast rate of degradation. A new form of continuous collagen yarn has recently been developed for potential usage in fabricating textile tissue engineering scaffolds. In this study, we prepared the continuous electrochemical aligned collagen yarns from acid-soluble collagen that was extracted from rat tail tendons (RTTs) using 0.25 M acetic acid. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and Fourier transform infrared spectroscopy confirmed that the major component of the extracted collagen contained alpha 1 and alpha 2 chains and the triple helix structure of Type 1 collagen. The collagen solution was processed to monofilament yarns in continuous lengths by using a rotating electrode electrochemical compaction device. Exposing the non-crosslinked collagen yarns and the collagen yarns crosslinked with 1-ethyl-3-(-3-dimethyl-aminopropyl) carbodiimide hydrochloride to normal physiological hydrolytic degradation conditions showed that both yarns were able to maintain their tensile strength during the first 6 weeks of the study. Cardiosphere-derived cells showed significantly enhanced attachment and proliferation on the collagen yarns compared to synthetic polylactic acid filaments. Moreover, the cells were fully spread and covered the surface of the collagen yarns, which confirmed the superiority of collagen in terms of promoting cellular adhesion. The results of this work indicated that the aligned RTT collagen yarns are favorable for fabricating biotextile scaffolds and are encouraging for further studies of various textile structure for different tissue engineering applications.
Collapse
Affiliation(s)
- Yu Xie
- Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina, United States of America
| | | | | | | | | |
Collapse
|
94
|
Zhu X, Yu F, Yan G, Hu Y, Sun H, Ding L. Human endometrial perivascular stem cells exhibit a limited potential to regenerate endometrium after xenotransplantation. Hum Reprod 2021; 36:145-159. [PMID: 33283858 DOI: 10.1093/humrep/deaa261] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
STUDY QUESTION What are the localization, characteristics and potential for tissue regeneration of two perivascular stem cells, namely CD34+ adventitial cells and CD146+ pericytes, in human endometrium? SUMMARY ANSWER Human endometrial CD34+ adventitial cells (located in the outermost layer of blood vessels and mainly in the basal layer) and CD146+ pericytes showed mesenchymal stem cell (MSC) phenotypes in in vitro culture, but presented limited potential to regenerate endometrium. WHAT IS KNOWN ALREADY Periodic endometrial regeneration is considered to be maintained by MSCs. Blood vessel wall, regarded as stem cell niche, harbors a large reserve of progenitor cells that may be integral to the origin of MSCs. However, a lack of validated markers has hampered the isolation of putative endometrial MSCs. Currently, CD146+ pericytes and Sushi Domain Containing 2 (SUSD2) positive cells have been identified in the endometrial perivascular region as sharing MSCs characteristics. STUDY DESIGN, SIZE, DURATION The locations of adventitial cells and pericytes in the human endometrium were identified by immunofluorescence staining (n = 4). After CD34+CD146-CD45-CD56-CD144- adventitial cells and CD146+CD34-CD45-CD56-CD144- pericytes were isolated from the endometrium of normal women (n = 6) by fluorescence-activated cell sorting, their characteristics were investigated in culture. Adventitial cells and pericytes were induced to differentiate, respectively, into vascular endothelial-like cells or endometrial stromal-like cells in vitro, with their potential explored by in vivo xenotransplantation (n = 2 in each group) and eutopic transplantation (n = 2 in each group). PARTICIPANTS/MATERIALS, SETTING, METHODS CD34+ adventitial cells and CD146+ pericytes were cultured in the inducing medium to differentiate into endothelial-like cells in vitro, and then analyzed for CD31, von Willebrand factor immunofluorescent staining and tube formation. They were also cultured to differentiate into endometrial stromal cells in vitro, with the expression of vimentin and CD13 being detected by western blot before and after induction, and the expression of prolactin and insulin-like growth factor-binding protein 1 being determined as well. Single dispersed CD34+ adventitial cells and CD146+ pericytes were respectively transplanted under the kidney capsule of NOG mice to investigate their differentiation potential in vivo. A eutopic transplantation model was constructed by grafting recellularized uterine matrix loaded up with CM-Dil labeled adventitial cells or pericytes into the injury region of nude rat's uterus. MAIN RESULTS AND THE ROLE OF CHANCE CD34+ adventitial cells were mainly located at the outmost layer of endometrial large vessels, while CD146+ pericytes were found surrounding the inner endothelial cells of microvessels. A small proportion of CD34+ adventitial cells expressed SUSD2. The number of adventitial cells was ∼40 times higher than that of pericytes in the endometrium. Both adventitial cells and pericytes showed MSC phenotypes after in vitro culture. After in vitro induction into endometrial endothelial-like cells and stromal-like cells, adventitial cells showed higher plasticity than pericytes and a closer correlation with stromal-like cells. In the mouse xenotransplantation model, vimentin+ cells, CD31+ endothelial-like cells and CD146+ pericyte-like cells could be observed after adventitial cells were transplanted. CM-Dil-labeled adventitial cells or pericytes could survive in the immunocompromised nude rats after eutopic transplantation, and vimentin+ cells were detected. In addition, CM-Dil-labeled adventitial cells or pericytes did not express α-smooth muscle actin or E-cadherin after transplantation. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION CD34 was chosen as a novel marker to isolate adventitial cells from human endometrium according to previous literature. The association of endometrial CD34+ adventitial cells and SUSD2+ MSCs should be further investigated. WIDER IMPLICATIONS OF THE FINDINGS The decellularized uterine matrix model might be useful in endometrial stem cell therapy. STUDY FUNDING/COMPETING INTEREST(S) L.D. is supported by grants from National Key Research and Development Program of China (2018YFC1004700), Nature Science Foundation of China (81871128, 81571391) and Nanjing Medical Science Development Project (ZKX16042). H.S. is supported by a grant from Jiangsu Province Social Development Project (BE2018602). X.Z. was supported by grants from the Postgraduate Innovative Project of Jiangsu Province (KYCX19-1177). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Xinxin Zhu
- Center for Reproductive Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fei Yu
- Center for Experimental Animal, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Guijun Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yali Hu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Haixiang Sun
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, China
| | - Lijun Ding
- Center for Reproductive Medicine, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- Clinical Center for Stem Cell Research, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
- MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
95
|
Campo H, López-Martínez S, Cervelló I. Decellularization Methods of Uterus in Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1345:141-152. [PMID: 34582020 DOI: 10.1007/978-3-030-82735-9_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A new field of investigation which aims to design tissues and organs similar to their native origin has been developed recently, named as regenerative medicine (tissue engineering and bio-engineering). Uterus is the main organ for regeneration and contributes in the fertility. At an ultimate level, the uterus plays a role in embryo implantation, sperm migration and fetal nutrition. Uterine congenital anomalies, attained uterine lesions and immune system disorders may affect such uterine functions preventing successful pregnancy. Due to following reasons, it is essential to consider regenerative medicine as a new approach for the treatment of uterine dysfunctions to overcome the failures that cannot be treated with clinical medication.
Collapse
Affiliation(s)
- Hannes Campo
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI/INCLIVA, Valencia, Spain
| | - Sara López-Martínez
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI/INCLIVA, Valencia, Spain
| | - Irene Cervelló
- Fundación Instituto Valenciano de Infertilidad (FIVI), Instituto Universitario IVI/INCLIVA, Valencia, Spain.
| |
Collapse
|
96
|
Wang X, Wu D, Li W, Yang L. Emerging biomaterials for reproductive medicine. ENGINEERED REGENERATION 2021; 2:230-245. [DOI: 10.1016/j.engreg.2021.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
97
|
Chen Y, Fei W, Zhao Y, Wang F, Zheng X, Luan X, Zheng C. Sustained delivery of 17β-estradiol by human amniotic extracellular matrix (HAECM) scaffold integrated with PLGA microspheres for endometrium regeneration. Drug Deliv 2020; 27:1165-1175. [PMID: 32755258 PMCID: PMC7470125 DOI: 10.1080/10717544.2020.1801891] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 01/06/2023] Open
Abstract
The endometrial injury usually results in intrauterine adhesions (IUAs). However, there is no effective treatment to promote the regeneration of the endometrium currently. The decellularized amnion membrane (AM) is a promising material in human tissue repair and regeneration due to its biocompatibility, biodegradability, as well as the preservation of abundant bioactive components. Here, an innovative drug-delivering system based on human amniotic extracellular matrix (HAECM) scaffolds were developed to facilitate endometrium regeneration. The 17β-estradiol (E2) loaded PLGA microspheres (E2-MS) were well dispersed in the scaffolds without altering their high porosity. E2 released from E2-MS-HAECM scaffolds in vitro showed a decreased initial burst release followed with a sustained release for 21 days, which coincided with the female menstrual cycle. Results of cell proliferation suggested E2-MS-HAECM scaffolds had good biocompatibility and provided more biologic guidance of endometrial cell proliferation except for mechanical supports. Additionally, the mRNA expression of growth factors in endometrial cells indicated that HAECM scaffolds could upregulate the expression of EGF and IGF-1 to achieve endometrium regeneration. Therefore, these advantages provide the drug-loaded bioactive scaffolds with new choices for the treatments of IUAs.
Collapse
Affiliation(s)
- Yue Chen
- Department of Pharmacy, Women’s Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Weidong Fei
- Department of Pharmacy, Women’s Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Yunchun Zhao
- Department of Pharmacy, Women’s Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women’s Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Xiaoling Zheng
- Department of Pharmacy, Women’s Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Xiaofei Luan
- Department of Pharmacy, Women’s Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women’s Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| |
Collapse
|
98
|
Pourakbari R, Ahmadi H, Yousefi M, Aghebati-Maleki L. Cell therapy in female infertility-related diseases: Emphasis on recurrent miscarriage and repeated implantation failure. Life Sci 2020; 258:118181. [DOI: 10.1016/j.lfs.2020.118181] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/19/2020] [Accepted: 07/28/2020] [Indexed: 12/25/2022]
|
99
|
Zhang W, Zhang X, Zhang Y, Zhang X, Zou T, Zhao W, Lv Y, Wang J, Dai P, Cui H, Zhang Y, Gao D, Ruan C, Zhang X. Retracted: Cell Fate and Tissue Remodeling in Canine Urethral Repair Using a Bone Marrow Mesenchymal Stem Cell+Endothelial Progenitor Cell Amniotic Patch. Tissue Eng Part A 2020; 26:e1403-e1412. [PMID: 32808578 DOI: 10.1089/ten.tea.2020.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The Editors of Tissue Engineering: Part A retract the article entitled, "Cell Fate and Tissue Remodeling in Canine Urethral Repair Using a Bone Marrow Mesenchymal Stem Cell+Endothelial Progenitor Cell Amniotic Patch," by Wenxin Zhang, Xin Zhang, Yihua Zhang, Xinke Zhang, Tong Zou, Wen Zhao, Yangou Lv, Jinglu Wang, Pengxiu Dai, Hao Cui, Yi Zhang, Dengke Gao, Chenmei Ruan, and Xia Zhang (epub ahead of print September 21, 2020; DOI: http://doi.org/10.1089/ten.tea.2020.0129). After the online publication of the article, the authors have indicated that they "feel that we have not yet studied our work completely and some new great results are discovered. So after carefully thinking, we are going to rearrange this manuscript and try to give more precise model. [sic]" The authors have not explained what those expected results will be, so it remains unclear the direction their work is headed. The authors also indicated that they plan to submit an updated version of the paper to Tissue Engineering in the future. Upon submission the new manuscript will undergo rigorous peer review, and there is no guarantee of acceptance.
Collapse
Affiliation(s)
- Wenxin Zhang
- Shaanxi Branch of National Stem Cell Engineering and Technology Center, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Xin Zhang
- Shaanxi Branch of National Stem Cell Engineering and Technology Center, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Yihua Zhang
- Shaanxi Branch of National Stem Cell Engineering and Technology Center, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Xinke Zhang
- Shaanxi Branch of National Stem Cell Engineering and Technology Center, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Tong Zou
- Shaanxi Branch of National Stem Cell Engineering and Technology Center, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Wen Zhao
- Shaanxi Branch of National Stem Cell Engineering and Technology Center, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Yangou Lv
- Shaanxi Branch of National Stem Cell Engineering and Technology Center, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Jinglu Wang
- Shaanxi Branch of National Stem Cell Engineering and Technology Center, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Pengxiu Dai
- Shaanxi Branch of National Stem Cell Engineering and Technology Center, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Hao Cui
- Shaanxi Branch of National Stem Cell Engineering and Technology Center, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Yi Zhang
- Shaanxi Branch of National Stem Cell Engineering and Technology Center, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Dengke Gao
- Shaanxi Branch of National Stem Cell Engineering and Technology Center, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Chenmei Ruan
- Shaanxi Branch of National Stem Cell Engineering and Technology Center, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| | - Xia Zhang
- Shaanxi Branch of National Stem Cell Engineering and Technology Center, College of Veterinary Medicine, Northwest A&F University, Shaanxi, China
| |
Collapse
|
100
|
Kim SW, Kim YY, Kim H, Ku SY. Animal models closer to intrauterine adhesive pathology. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1125. [PMID: 33240974 PMCID: PMC7576092 DOI: 10.21037/atm-20-3598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/05/2020] [Indexed: 02/02/2023]
Affiliation(s)
- Sung Woo Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
| | - Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
| | - Hoon Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul, South Korea
| |
Collapse
|