51
|
Avula LR, Grodzinski P. Nanotechnology-aided advancement in the combating of cancer metastasis. Cancer Metastasis Rev 2022; 41:383-404. [PMID: 35366154 PMCID: PMC8975728 DOI: 10.1007/s10555-022-10025-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/09/2022] [Indexed: 02/03/2023]
Abstract
Cancer, especially when it has metastasized to different locations in the body, is notoriously difficult to treat. Metastatic cancer accounts for most cancer deaths and thus remains an enormous challenge. During the metastasis process, cancer cells negotiate a series of steps termed the “metastatic cascadeˮ that offer potential for developing anti-metastatic therapy strategies. Currently available conventional treatment and diagnostic methods addressing metastasis come with their own pitfalls and roadblocks. In this contribution, we comprehensively discuss the potential improvements that nanotechnology-aided approaches are able to bring, either alone or in combination with the existing conventional techniques, to the identification and treatment of metastatic disease. We tie specific nanotechnology-aided strategies to the complex biology of the different steps of the metastatic cascade in order to open up new avenues for fine-tuned targeting and development of anti-metastatic agents designed specifically to prevent or mitigate the metastatic outgrowth of cancer. We also present a viewpoint on the progress of translation of nanotechnology into cancer metastasis patient care.
Collapse
Affiliation(s)
- Leela Rani Avula
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| | - Piotr Grodzinski
- Nanodelivery Systems and Devices Branch, Cancer Imaging Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
52
|
In situ targeting nanoparticles-hydrogel hybrid system for combined chemo-immunotherapy of glioma. J Control Release 2022; 345:786-797. [PMID: 35367277 DOI: 10.1016/j.jconrel.2022.03.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/01/2022] [Accepted: 03/26/2022] [Indexed: 01/22/2023]
Abstract
It is well known that glioma is currently the most malignant brain tumor. Because of the existence of blood-brain barrier (BBB) and tumor cell heterogeneity, systemic chemotherapy exerts unsatisfied therapeutic effect for the treatment of glioma after surgical resection and may even damage the body's immune system. Here, we developed an in situ sustained-release hydrogel delivery system for combined chemo-immunotherapy of glioma by combined chemotherapy drug and immunoadjuvant through the resection cavity local delivery. Briefly, glioma homing peptide modified paclitaxel targeting nanoparticles (PNPPTX) and mannitolated immunoadjuvant CpG targeting nanoparticles (MNPCpG) were embedded into PLGA1750-PEG1500-PLGA1750 thermosensitive hydrogel framework (PNPPTX&MNPCpG@Gel). The in vitro and in vivo results showed that the targeting nanoparticles-hydrogel hybrid system could cross-link into a gel drug reservoir when injected into the resection cavity of glioma. And then, the sustained-release PNPPTX could target the residual infiltration glioma cells and produce tumor antigens. Meanwhile, MNPCpG targeted and activated the antigen-presenting cells, which enhanced the tumor antigen presentation ability and activated CD8+T and NK cells to reverse immunosuppression of glioma microenvironment. This study indicated that the PNPPTX&MNPCpG@Gel system could enhance the therapeutic effect of glioma by chemo-immunotherapy.
Collapse
|
53
|
Meng F, Wang J, Yeo Y. Nucleic acid and oligonucleotide delivery for activating innate immunity in cancer immunotherapy. J Control Release 2022; 345:586-600. [PMID: 35351528 PMCID: PMC9133138 DOI: 10.1016/j.jconrel.2022.03.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/17/2022]
Abstract
A group of nucleic acids and oligonucleotides play various roles in the innate immune system. They can stimulate pattern recognition receptors to activate innate immune cells, encode immunostimulatory proteins or peptides, or silence specific genes to block negative regulators of immune cells. Given the limitations of current cancer immunotherapy, there has been increasing interest in harnessing innate immune responses by nucleic acids and oligonucleotides. The poor biopharmaceutical properties of nucleic acids and oligonucleotides make it critical to use carriers that can protect them in circulation, retain them in the tumor microenvironment, and bring them to intracellular targets. Therefore, various gene carriers have been repurposed to deliver nucleic acids and oligonucleotides for cancer immunotherapy and improve their safety and activity. Here, we review recent studies that employed carriers to enhance the functions of nucleic acids and oligonucleotides and overall immune responses to cancer, and discuss remaining challenges and future opportunities in the development of nucleic acid-based immunotherapeutics.
Collapse
Affiliation(s)
- Fanfei Meng
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Jianping Wang
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr., West Lafayette, IN 47907, USA.
| |
Collapse
|
54
|
Navarro-Ocón A, Blaya-Cánovas JL, López-Tejada A, Blancas I, Sánchez-Martín RM, Garrido MJ, Griñán-Lisón C, Calahorra J, Cara FE, Ruiz-Cabello F, Marchal JA, Aptsiauri N, Granados-Principal S. Nanomedicine as a Promising Tool to Overcome Immune Escape in Breast Cancer. Pharmaceutics 2022; 14:505. [PMID: 35335881 PMCID: PMC8950730 DOI: 10.3390/pharmaceutics14030505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most common type of malignancy and leading cause of cancer death among women worldwide. Despite the current revolutionary advances in the field of cancer immunotherapy, clinical response in breast cancer is frequently below expectations, in part due to various mechanisms of cancer immune escape that produce tumor variants that are resistant to treatment. Thus, a further understanding of the molecular events underlying immune evasion in breast cancer may guarantee a significant improvement in the clinical success of immunotherapy. Furthermore, nanomedicine provides a promising opportunity to enhance the efficacy of cancer immunotherapy by improving the delivery, retention and release of immunostimulatory agents in targeted cells and tumor tissues. Hence, it can be used to overcome tumor immune escape and increase tumor rejection in numerous malignancies, including breast cancer. In this review, we summarize the current status and emerging trends in nanomedicine-based strategies targeting cancer immune evasion and modulating the immunosuppressive tumor microenvironment, including the inhibition of immunosuppressive cells in the tumor area, the activation of dendritic cells and the stimulation of the specific antitumor T-cell response.
Collapse
Affiliation(s)
- Alba Navarro-Ocón
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaen, 23007 Jaen, Spain
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, University of Granada, 18011 Granada, Spain
| | - Isabel Blancas
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- UGC de Oncología, Hospital Universitario “San Cecilio”, 18016 Granada, Spain
| | - Rosario M. Sánchez-Martín
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
| | - María J. Garrido
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy & Nutrition, Navarra Institute for Health Research (IdisNA), University of Navarra, 31080 Pamplona, Spain;
| | - Carmen Griñán-Lisón
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaen, 23007 Jaen, Spain
| | - Jesús Calahorra
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaen, 23007 Jaen, Spain
| | - Francisca E. Cara
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
| | - Francisco Ruiz-Cabello
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Biochemistry, Molecular Biology 3 and Immunology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - Juan A. Marchal
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Natalia Aptsiauri
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Biochemistry, Molecular Biology 3 and Immunology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - Sergio Granados-Principal
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, University of Granada, 18011 Granada, Spain
| |
Collapse
|
55
|
Singh P, Yadav M, Niveria K, Verma AK. Nano-immunotherapeutics: targeting approach as strategic regulation at tumor microenvironment for cancer treatment. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cancer is the leading cause of mortality worldwide, which necessitates our consideration related to novel treatment approach. Tumor cells at the tumor microenvironment (TME), regulate a plethora of key mechanistic signaling pathways that obstruct antitumor immune responses by immune suppression, immune resistance or acquired immune tolerance. The present therapeutic regimes are provided independently or in combination, or as immunotherapies for cancer immune targeting. Immunotherapy has altered the arena of oncology and patient care. By using the host immune system, the immunostimulatory molecules can exert a robust, personalized response against the patient’s own tumors. Alternatively, tumors may exploit these strategies to escape immune recognition, and accordingly, such mechanisms represent chances for immunotherapy intervention. Nonetheless, despite promising outcomes from immunotherapies in recurrent and metastatic cancers, immune-therapeutics in clinics has been limited owing to unpredictability in the produced immune response and reported instances of immune-related adverse effects. The unrealized potential of immunotherapies in cancer management maybe due to the obstacles such as heterogeneous nature, multiple targets, patients’ immune response, specificity for cancer or variability in response generation in toxicity levels, delivery and cost related to therapeutics etc. Further revolutionary trends related to immunotherapies are noticeable with slower progress for cancer management. Recent advances in nanomedicine strategize to ameliorate the lacuna of immunotherapy as it relies on the inherent biophysical characteristics of nanocarriers: size, shape, surface charge and multifunctionality and exploiting them as first line therapy for delivery of biomolecules, single checkpoint inhibitors and for imaging of TME. Therefore, nano-assisted immunotherapies can boost the immunotherapeutic approach, overcoming factors that are with imminent potential risks related to it, thereby significantly improving the survival rate associated with it in cancer patients. Nanotechnology is anticipated to overcome the confines of existing cancer immunotherapy and to successfully combine various cancer treatment modes.
Collapse
Affiliation(s)
- Priyanka Singh
- Nano-Biotech Lab, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Monika Yadav
- Nano-Biotech Lab, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Karishma Niveria
- Nano-Biotech Lab, Kirori Mal College, University of Delhi, Delhi 110007, India
| | - Anita Kamra Verma
- Nano-Biotech Lab, Kirori Mal College, University of Delhi, Delhi 110007, India
| |
Collapse
|
56
|
Lu Y, Wu C, Yang Y, Chen X, Ge F, Wang J, Deng J. Inhibition of tumor recurrence and metastasis via a surgical tumor-derived personalized hydrogel vaccine. Biomater Sci 2022; 10:1352-1363. [PMID: 35112690 DOI: 10.1039/d1bm01596f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tumor recurrence and metastasis have become thorny problems in clinical tumor therapy. Vaccine-mediated antitumor immune response has emerged as a significant postoperative inhibition for tumor recurrence and metastasis. However, limited tumor antigens are not conducive to trigger complete antigen-specific T cell-mediated immune responses. Herein, the design of a hydrogel vaccine system containing a granulocyte-macrophage colony stimulating factor (GM-CSF), based on surgically removed tumor cell lysates, was reported. The hydrogel was formed by crosslinking tumor cell lysates and alginate at low temperatures. The GM-CSF was released from the hydrogel to recruit dendritic cells (DCs), which provided a completely personalized tumor antigen pool. They were combined to foster the production of powerful antigen-specific T cells. The personalized hydrogel was implanted at the surgical site and it stimulated the antitumor immune response for the inhibition of residual tumor cells. Delightfully, the personalized hydrogel inhibited the tumor recurrence and metastasis well in a post-surgical mice tumor model, in combination with a programmed death-ligand 1 antibody (αPD-L1). The results demonstrated that the development of a personalized hydrogel and a combination of αPD-L1 provided a new strategy to prevent tumor recurrence and metastasis.
Collapse
Affiliation(s)
- Yi Lu
- Nanshan School, Guangzhou Medical University, Guangzhou, 510810, China
| | - Chenghu Wu
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China. .,Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.,Oujiang Laboratory, (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Yanyan Yang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Xiangzhong Chen
- Multi-Scale Robotics Lab (MSRL), Institute of Robotics and Intelligent System (IRIS) Swiss Federal Institute of Technology (ETH) Zurich, CLA H11.1, ETH-Zentrum, Tannenstrasse 3, CH-8092 Zurich, Switzerland
| | - Feihang Ge
- Hangzhou Chinese Academy of Sciences-Hangzhou Medical College Advanced Medical Technology Institute, Hangzhou 320000, China
| | - Jilong Wang
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China. .,Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.,Oujiang Laboratory, (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| | - Junjie Deng
- Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China. .,Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.,Oujiang Laboratory, (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325000, China
| |
Collapse
|
57
|
Chen G, Xu Q, Feng Z, Xu Q, Zhang X, Yang Y, Zhang Y, Liang XJ, Yu Z, Yu M. Glutamine Antagonist Synergizes with Electrodynamic Therapy to Induce Tumor Regression and Systemic Antitumor Immunity. ACS NANO 2022; 16:951-962. [PMID: 34978417 DOI: 10.1021/acsnano.1c08544] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Electrodynamic therapy (EDT) combining nanotechnology with electronic current was used in this study to generate highly cytotoxic oxidative hydroxyl radicals (·OH) for tumor destruction. However, increasing evidence suggests that EDT treatment alone for one time still faces great challenges in achieving long-term tumor suppression in an immunosuppressive environment, which would raise the risk of later tumor recurrence. Benefitting from the marvelous potential of reactive oxygen species (ROS)-mediated dynamic therapies in tumor immunocombination therapy due to their immunogenic cell death (ICD) effect, a glutamine antagonist 6-diazo-5-oxo-l-norleucine (DON)-loaded nanocarrier (Pt-Pd@DON) was designed for combination therapy (EDT and immunotherapy) against tumor recurrence and metastasis. The protective immune response was motivated in highly immunosuppressive tumors by the joint functions of ICD and CD8+ T cell infiltration promoted by DON. A great therapeutic efficacy has been demonstrated in primary and metastatic tumor models, respectively. This study has provided an effective thought way for clinical highly immunosuppressive tumor treatment.
Collapse
Affiliation(s)
- Gui Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Qing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Zhenzhen Feng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Qinqin Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Xuhui Zhang
- The First Clinical Medical School, Southern Medical University, Guangzhou 510515, PR China
| | - Yuanyuan Yang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Yuxuan Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, PR China
| | - Zhiqiang Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Meng Yu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| |
Collapse
|
58
|
Wang M, Wang S, Pan Y, Yu R, Zhang ZR, Fu Y. In situ gel implant for postsurgical wound management and extended chemoimmunotherapy against breast cancer recurrence. Acta Biomater 2022; 138:168-181. [PMID: 34755605 DOI: 10.1016/j.actbio.2021.10.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022]
Abstract
Postsurgical recurrence of breast cancer is closely related to the inflammatory tumor microenvironment evoked by surgical wounds. Toll-like receptor 4 (TLR4) signaling contributes to NF-κB activation thus secreting various inflammatory cytokines. Herein, we developed an in situ photo-crosslinked hydrogel (D/T gel) concurrently loaded with doxorubicin (DOX) and a TLR4 antagonist, resatorvid (TAK-242). Its therapeutic effect against breast cancer postsurgical relapse was accomplished through remodeling the proinflammatory tumor microenvironment. The obtained gel network exhibited ideal biodegradability and biocompatibility, which motivated dermal wound healing in the full thickness wound model in mice. Despite the initial burst release of DOX, D/T gels exhibited extended-release of both DOX and TAK-242 for up to 21 days in vitro. TAK-242 was demonstrated to inhibit the lipopolysaccharide-induced NF-κB activation and downregulate TLR4 levels in both RAW264.7 and 4T1 cells. In a 4T1-Luc tumor postsurgical recurrence model, D/T gel significantly suppressed recurrent tumor growth by elevating the concentrations of DOX and TAK-242 at the tumor sites and remodeling the TLR4 activation-induced proinflammatory microenvironment. Overall, the D/T gel platform technology is proven to deliver therapeutics directly to the surgical wound bed, attenuating the dual inflammatory responses induced by DOX and surgical wounding thus greatly potentiating its efficacy in preventing postsurgical tumor recurrence. STATEMENT OF SIGNIFICANCE: Postsurgical recurrence of breast cancer is closely related to the inflammatory tumor microenvironment (TME) evoked by surgical wounds. Although chemotherapeutics lead to extensive residual tumor cell necrosis, multiple inflammatory cytokines are secreted simultaneously, which are conducive to tumor recurrence. In this work, a TLR4 antagonist, TAK-242, was combined with DOX to reverse the dual inflammatory TME induced by surgical wounding and chemotherapy. To elevate the concentration of therapeutics at the tumor site, a photocrosslinked hydrogel (D/T gel) implant coloaded with TAK-242 and DOX was developed and applied on the postsurgical bed. Consequently, D/T gel attenuated the dual inflammatory responses and greatly potentiated its efficacy in preventing postsurgical tumor recurrence.
Collapse
Affiliation(s)
- Mou Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Shuying Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yi Pan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ruilian Yu
- Department of Oncology, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhi-Rong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
59
|
Huang H, Shao L, Chen Y, Tang L, Liu T, Li J, Zhu H. Synergistic strategy with hyperthermia therapy based immunotherapy and engineered exosomes−liposomes targeted chemotherapy prevents tumor recurrence and metastasis in advanced breast cancer. Bioeng Transl Med 2021; 7:e10284. [PMID: 35600651 PMCID: PMC9115690 DOI: 10.1002/btm2.10284] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/28/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Advanced breast cancer with recurrent and distal organ metastasis is aggressive and incurable. The current existing treatment strategies for advanced breast cancer are difficult to achieve synergistic treatment of recurrent tumors and distant metastasis, resulting in poor clinical outcomes. Herein, a synergistic therapy strategy composed of biomimetic tumor‐derived exosomes (TEX)‐Liposome‐paclitaxel (PTX) with lung homing properties and gold nanorods (GNR)‐PEG, was designed, respectively. GNR‐PEG, with well biocompatibility, cured recurrent tumors effectively by thermal ablation under the in situ NIR irradiation. Meanwhile, GNR‐mediated thermal ablation activated the adaptive antitumor immune response, significantly increased the level of CD8+ T cells in lungs and the concentration of serum cytokines (tumor necrosis factor‐α, interlekin‐6, and interferon‐γ). Subsequently, TEX‐Liposome‐PTX preferentially accumulated in lung tissues due to autologous tumor‐derived TEX with inherent specific affinity to lung, resulting in a better therapeutic effect on lung metastasis tumors with the assistance of adaptive immunotherapy triggered by GNR in vivo. The enhanced therapeutic efficacy in advanced breast cancer was a combination of thermal ablation, adaptive antitumor immunotherapy, and targeted PTX chemotherapy. Hence, the synergistic strategy based on GNR and TEX‐Liposome provides selectivity to clinical treatment of advanced breast cancer with recurrent and metastasis.
Collapse
Affiliation(s)
- Haiqin Huang
- Department of Pharmaceutics School of Pharmacy, Nantong University Nantong China
| | - Lanlan Shao
- Department of Pharmaceutics School of Pharmacy, Nantong University Nantong China
| | - Yan Chen
- Department of Pharmaceutics School of Pharmacy, Nantong University Nantong China
| | - Lan Tang
- Department of Pharmaceutics School of Pharmacy, Nantong University Nantong China
| | - Tianqing Liu
- NICM Health Research Institute Western Sydney University Westmead New South Wales Australia
| | - Junxu Li
- Department of Pharmaceutics School of Pharmacy, Nantong University Nantong China
| | - Hongyan Zhu
- Department of Pharmaceutics School of Pharmacy, Nantong University Nantong China
| |
Collapse
|
60
|
The Immune Landscape of Breast Cancer: Strategies for Overcoming Immunotherapy Resistance. Cancers (Basel) 2021; 13:cancers13236012. [PMID: 34885122 PMCID: PMC8657247 DOI: 10.3390/cancers13236012] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/25/2021] [Accepted: 11/28/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Immunotherapy is a rapidly advancing field in breast cancer treatment, however, it encounters many obstacles that leave open gateways for breast cancer cells to resist novel immunotherapies. It is believed that the tumor microenvironment consisting of cancer, stromal, and immune cells as well as a plethora of tumor-promoting soluble factors, is responsible for the failure of therapeutic strategies in cancer, including breast tumors. Therefore, an in-depth understanding of key barriers to effective immunotherapy, focusing the research efforts on harnessing the power of the immune system, and thus, developing new strategies to overcome the resistance may contribute significantly to increase breast cancer patient survival. In this review, we discuss the latest reports regarding the strategies rendering the immunosuppressive tumor microenvironment more sensitive to immunotherapy in breast cancers, HER2-positive and triple-negative types of breast cancer, which are attractive from an immunotherapeutic point of view. Abstract Breast cancer (BC) has traditionally been considered to be not inherently immunogenic and insufficiently represented by immune cell infiltrates. Therefore, for a long time, it was thought that the immunotherapies targeting this type of cancer and its microenvironment were not justified and would not bring benefits for breast cancer patients. Nevertheless, to date, a considerable number of reports have indicated tumor-infiltrating lymphocytes (TILs) as a prognostic and clinically relevant biomarker in breast cancer. A high TILs expression has been demonstrated in primary tumors, of both, HER2-positive BC and triple-negative (TNBC), of patients before treatment, as well as after treatment with adjuvant and neoadjuvant chemotherapy. Another milestone was reached in advanced TNBC immunotherapy with the help of the immune checkpoint inhibitors directed against the PD-L1 molecule. Although those findings, together with the recent developments in chimeric antigen receptor T cell therapies, show immense promise for significant advancements in breast cancer treatments, there are still various obstacles to the optimal activity of immunotherapeutics in BC treatment. Of these, the immunosuppressive tumor microenvironment constitutes a key barrier that greatly hinders the success of immunotherapies in the most aggressive types of breast cancer, HER2-positive and TNBC. Therefore, the improvement of the current and the demand for the development of new immunotherapeutic strategies is strongly warranted.
Collapse
|
61
|
Zhang P, Meng J, Li Y, Yang C, Hou Y, Tang W, McHugh KJ, Jing L. Nanotechnology-enhanced immunotherapy for metastatic cancer. Innovation (N Y) 2021; 2:100174. [PMID: 34766099 PMCID: PMC8571799 DOI: 10.1016/j.xinn.2021.100174] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022] Open
Abstract
A vast majority of cancer deaths occur as a result of metastasis. Unfortunately, effective treatments for metastases are currently lacking due to the difficulty of selectively targeting these small, delocalized tumors distributed across a variety of organs. However, nanotechnology holds tremendous promise for improving immunotherapeutic outcomes in patients with metastatic cancer. In contrast to conventional cancer immunotherapies, rationally designed nanomaterials can trigger specific tumoricidal effects, thereby improving immune cell access to major sites of metastasis such as bone, lungs, and lymph nodes, optimizing antigen presentation, and inducing a persistent immune response. This paper reviews the cutting-edge trends in nano-immunoengineering for metastatic cancers with an emphasis on different nano-immunotherapeutic strategies. Specifically, it discusses directly reversing the immunological status of the primary tumor, harnessing the potential of peripheral immune cells, preventing the formation of a pre-metastatic niche, and inhibiting the tumor recurrence through postoperative immunotherapy. Finally, we describe the challenges facing the integration of nanoscale immunomodulators and provide a forward-looking perspective on the innovative nanotechnology-based tools that may ultimately prove effective at eradicating metastatic diseases.
Collapse
Affiliation(s)
- Peisen Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Junli Meng
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Yingying Li
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Chen Yang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wen Tang
- South China Advanced Institute for Soft Matter Science and Technology, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Kevin J McHugh
- Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, TX 77005, USA
| | - Lihong Jing
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Bei Yi Jie 2, Zhong Guan Cun, Beijing 100190, China
| |
Collapse
|
62
|
Preparation of Cationic Amphiphilic Nanoparticles with Modified Chitosan Derivatives for Doxorubicin Delivery. MATERIALS 2021; 14:ma14227010. [PMID: 34832408 PMCID: PMC8623570 DOI: 10.3390/ma14227010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/06/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022]
Abstract
Polymeric micelle-like nanoparticles have demonstrated effectiveness for the delivery of some poorly soluble or hydrophobic anticancer drugs. In this study, a hydrophobic moiety, deoxycholic acid (DCA) was first bonded on a polysaccharide, chitosan (CS), for the preparation of amphiphilic chitosan (CS-DCA), which was further modified with a cationic glycidyltrimethylammounium chloride (GTMAC) to form a novel soluble chitosan derivative (HT-CS-DCA). The cationic amphiphilic HT-CS-DCA was easily self-assembled to micelle-like nanoparticles about 200 nm with narrow size distribution (PDI 0.08–0.18). The zeta potential of nanoparticles was in the range of 14 to 24 mV, indicating higher positive charges. Then, doxorubicin (DOX), an anticancer drug with poor solubility, was entrapped into HT-CS-DCA nanoparticles. The DOX release test was performed in PBS (pH 7.4) at 37 °C, and the results showed that there was no significant burst release in the first two hours, and the cumulative release increased steadily and slowly in the following hours. HT-CS-DCA nanoparticles loaded with DOX could easily enter into MCF-7 cells, as observed by a confocal microscope. As a result, DOX-loaded HT-CS-DCA nanoparticles demonstrated a significant inhibition activity on MCF-7 growth without obvious cellular toxicity in comparison with blank nanoparticles. Therefore, the anticancer efficacy of these cationic HT-CS-DCA nanoparticles showed great promise for the delivery of DOX in cancer therapy.
Collapse
|
63
|
Nagareddy R, Thomas RG, Jeong YY. Stimuli-Responsive Polymeric Nanomaterials for the Delivery of Immunotherapy Moieties: Antigens, Adjuvants and Agonists. Int J Mol Sci 2021; 22:ijms222212510. [PMID: 34830392 PMCID: PMC8625613 DOI: 10.3390/ijms222212510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/09/2021] [Accepted: 11/17/2021] [Indexed: 01/05/2023] Open
Abstract
Immunotherapy has been investigated for decades, and it has provided promising results in preclinical studies. The most important issue that hinders researchers from advancing to clinical studies is the delivery system for immunotherapy agents, such as antigens, adjuvants and agonists, and the activation of these agents at the tumour site. Polymers are among the most versatile materials for a variety of treatments and diagnostics, and some polymers are reactive to either endogenous or exogenous stimuli. Utilizing this advantage, researchers have been developing novel and effective polymeric nanomaterials that can deliver immunotherapeutic moieties. In this review, we summarized recent works on stimuli-responsive polymeric nanomaterials that deliver antigens, adjuvants and agonists to tumours for immunotherapy purposes.
Collapse
Affiliation(s)
- Raveena Nagareddy
- Department of Biomedical Sciences, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea;
| | - Reju George Thomas
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea;
| | - Yong Yeon Jeong
- Department of Radiology, Chonnam National University Hwasun Hospital, Hwasun 58128, Korea;
- Correspondence:
| |
Collapse
|
64
|
Koo BI, Jin S, Kim H, Lee DJ, Lee E, Nam YS. Conjugation-Free Multilamellar Protein-Lipid Hybrid Vesicles for Multifaceted Immune Responses. Adv Healthc Mater 2021; 10:e2101239. [PMID: 34467659 DOI: 10.1002/adhm.202101239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Various lipid-based nanocarriers have been developed for the co-delivery of protein antigens with immunological adjuvants. However, their in vivo potency in vaccine delivery is limited by structural instability, which causes off-target delivery and low cross-presentation efficacies. Recent works employ covalent cross-linking to stabilize the lipid nanostructures, though the immunogenicity and side effects of chemically modified protein antigens and lipids can cause a long-lasting safety issue. Here robust "conjugation-free" multilamellar protein antigen-lipid hybrid nanovesicles (MPLVs) are introduced through the antigen-mediated self-assembly of unilamellar lipid vesicles for the co-delivery of protein antigens and immunologic adjuvants. The nanocarriers coated with monophosphoryl lipid A and hyaluronic acids elicit highly increase antigen-specific immune responses in vitro and in vivo. The MPLVs increase the generation of immunological surface markers and cytokines in mouse-derived bone-marrow dendritic cells compared to soluble antigens with adjuvants. Besides, the vaccination of mice with the MPLVs significantly increase the production of anti-antigen antibody and interferon-gamma via the activation of CD4+ and CD8+ T cells, respectively. These findings suggest that MPLVs can serve as a promising nanovaccine delivery platform for efficient antigen cross-presentation through the efficient co-delivery of protein antigens with adjuvants.
Collapse
Affiliation(s)
- Bon Il Koo
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
| | - Seon‐Mi Jin
- School of Materials Science and Engineering Gwangju Institute of Science and Technology 123 Cheomdan‐gwagiro Gwangju 61005 Republic of Korea
| | - Hayeon Kim
- School of Materials Science and Engineering Gwangju Institute of Science and Technology 123 Cheomdan‐gwagiro Gwangju 61005 Republic of Korea
| | - Dong Jae Lee
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
| | - Eunji Lee
- School of Materials Science and Engineering Gwangju Institute of Science and Technology 123 Cheomdan‐gwagiro Gwangju 61005 Republic of Korea
| | - Yoon Sung Nam
- Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
- KAIST Institute for NanoCentury Korea Advanced Institute of Science and Technology 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
- KAIST Institute for Health Science and Technology Korea Advanced Institute of Science and Technology 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea
| |
Collapse
|
65
|
Yang Y, Liu Q, Shi X, Zheng Q, Chen L, Sun Y. Advances in plant-derived natural products for antitumor immunotherapy. Arch Pharm Res 2021; 44:987-1011. [PMID: 34751930 DOI: 10.1007/s12272-021-01355-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022]
Abstract
In recent years, immunotherapy has emerged as a novel antitumor strategy in addition to traditional surgery, radiotherapy and chemotherapy. It uniquely focuses on immune cells and immunomodulators in the tumor microenvironment and helps eliminate tumors at the root by rebuilding the immune system. Despite remarkable breakthroughs, cancer immunotherapy still faces many challenges: lack of predictable and prognostic biomarkers, adverse side effects, acquired treatment resistance, high costs, etc. Therefore, more efficacious and efficient, safer and cheaper antitumor immunomodulatory drugs have become an urgent requirement. For decades, plant-derived natural products obtained from land and sea have provided the most important source for the development of antitumor drugs. Currently, more attention is being paid to the discovery of potential cancer immunotherapy modulators from plant-derived natural products, such as polysaccharides, phenols, terpenoids, quinones and alkaloids. Some of these agents have outstanding advantages of multitargeting and low side effects and low cost compared to conventional immunotherapeutic agents. We intend to summarize the progress of comprehensive research on these plant-derived natural products and their derivatives and discuss their possible mechanisms in regulating the immune system and their efficacy as monotherapies or in combination with regular chemotherapeutic agents.
Collapse
Affiliation(s)
- Yi Yang
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Xianai Shi
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China
| | - Qiuhong Zheng
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Li Chen
- Fujian Provincial Key Laboratory of Medical Instrument and Pharmaceutical Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, 350108, China.
| | - Yang Sun
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China.
- Department of Gyn-Surgical Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China.
| |
Collapse
|
66
|
Yan P, Luo Y, Li X, Li Y, Wang Y, Wu J, Zhou S. A Redox-Responsive Nanovaccine Combined with A2A Receptor Antagonist for Cancer Immunotherapy. Adv Healthc Mater 2021; 10:e2101222. [PMID: 34494380 DOI: 10.1002/adhm.202101222] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/24/2021] [Indexed: 01/02/2023]
Abstract
In situ vaccination can trigger an antitumor immune response. However, the therapeutic effect is still limited since the high expression of adenosine binding to G protein-coupled receptor A2AR induces an immunosuppressive effect. In this work, a new formulation is presented with the combination of a nanovaccine based on redox-responsive polymer micelles and A2AR antagonist SCH58261. The micelles simultaneously encapsulate immunogenic cell death (ICD) inducer doxorubicin (DOX) and adjuvant toll-like receptor 7 and 8 (TLR7/8) agonist R848, acting as the potent in situ vaccines. A high concentration of glutathione in tumor cells leads to the disintegration of these micelles, releasing DOX and R848 to mediate ICD, inducing the activation of dendritic cells and initiating an immune response. Meanwhile, A2AR antagonist SCH58261, a generation immune checkpoint blocker, inhibits the immunosuppressive adenosinergic pathway in the tumor microenvironment, activating natural killer (NK) cells and CD8+ T cells, and inhibiting the proliferation of regulatory T cells. Therefore, this formulation can trigger a robust systemic antitumor immune response.
Collapse
Affiliation(s)
- Peng Yan
- School of Life Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
| | - Yang Luo
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
| | - Xinyang Li
- School of Life Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
| | - Yingmin Li
- School of Life Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
| | - Yi Wang
- School of Life Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
| | - Jian Wu
- School of Life Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
| |
Collapse
|
67
|
Domb AJ, Sharifzadeh G, Nahum V, Hosseinkhani H. Safety Evaluation of Nanotechnology Products. Pharmaceutics 2021; 13:pharmaceutics13101615. [PMID: 34683908 PMCID: PMC8539492 DOI: 10.3390/pharmaceutics13101615] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 01/11/2023] Open
Abstract
Nanomaterials are now being used in a wide variety of biomedical applications. Medical and health-related issues, however, have raised major concerns, in view of the potential risks of these materials against tissue, cells, and/or organs and these are still poorly understood. These particles are able to interact with the body in countless ways, and they can cause unexpected and hazardous toxicities, especially at cellular levels. Therefore, undertaking in vitro and in vivo experiments is vital to establish their toxicity with natural tissues. In this review, we discuss the underlying mechanisms of nanotoxicity and provide an overview on in vitro characterizations and cytotoxicity assays, as well as in vivo studies that emphasize blood circulation and the in vivo fate of nanomaterials. Our focus is on understanding the role that the physicochemical properties of nanomaterials play in determining their toxicity.
Collapse
Affiliation(s)
- Abraham J. Domb
- The Centers for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
- Correspondence: (A.J.D.); (H.H.)
| | - Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia;
| | - Victoria Nahum
- The Centers for Nanoscience and Nanotechnology, Alex Grass Center for Drug Design and Synthesis and Cannabinoids Research, School of Pharmacy, Faculty of Medicine, Institute of Drug Research, The Hebrew University of Jerusalem, Jerusalem 91120, Israel;
| | - Hossein Hosseinkhani
- Innovation Center for Advanced Technology, Matrix, Inc., New York, NY 10029, USA
- Correspondence: (A.J.D.); (H.H.)
| |
Collapse
|
68
|
Lakshmanan VK, Jindal S, Packirisamy G, Ojha S, Lian S, Kaushik A, Alzarooni AIMA, Metwally YAF, Thyagarajan SP, Do Jung Y, Chouaib S. Nanomedicine-based cancer immunotherapy: recent trends and future perspectives. Cancer Gene Ther 2021; 28:911-923. [PMID: 33558704 DOI: 10.1038/s41417-021-00299-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 01/20/2021] [Indexed: 01/30/2023]
Abstract
The combination of cancer immunotherapy with efficient functionalized nanosystems has emerged as a beneficial treatment strategy and its use has increased rapidly. The roles of stimuli-responsive nanosystems and nanomedicine-based cancer immunotherapy, a subsidiary discipline in the field of immunology, are pivotal. The present era is witnessing rapid advancements in the use of nanomedicine as a platform for investigating novel therapeutic applications and modern intelligent healthcare management strategies. The development of cancer nanomedicine has posthaste ratified the outcomes of immunotherapy to the subsequent stage in the current era of medical research. This review focuses on key findings with respect to the effectiveness of nanomedicine-based cancer immunotherapies and their applications, which include i) immune checkpoint inhibitors and nanomedicine, ii) CRISPR-Cas nanoparticles (NPs) in cancer immunotherapy, iii) combination cancer immunotherapy with core-shell nanoparticles, iv) biomimetic NPs for cancer immunotherapy, and v) CAR-T cells and cancer nanoimmunotherapy. By evaluating the state-of-the-art tools and taking the challenges involved into consideration, various aspects of the proposed nano-enabled therapeutic approaches have been discussed in this review.
Collapse
Affiliation(s)
- Vinoth-Kumar Lakshmanan
- Centre for Preclinical and Translational Medical Research (CPTMR), Central Research Facility (CRF), Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India. .,Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates. .,Department of Biomedical Sciences, College of Medicine, Gulf Medical University, Ajman, United Arab Emirates.
| | - Shlok Jindal
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, India
| | - Gopinath Packirisamy
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, India. .,Centre for Nanotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee, Uttarakhand, India.
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Sen Lian
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Ajeet Kaushik
- NanoBio Tech Laboratory, Health System Engineering, Department of Natural Sciences, Division of Sciences, Arts & Mathematics, Florida Polytechnic University, Lakeland, FL, USA
| | | | - Yasser Abdelraouf Farahat Metwally
- Department of Urology, H.H. Sheikh Khalifa General Hospital, Al Salama, Opp. Ministry of Community Development, Umm Al Quwain, United Arab Emirates
| | - Sadras Panchatcharam Thyagarajan
- Centre for Preclinical and Translational Medical Research (CPTMR), Central Research Facility (CRF), Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Porur, Chennai, Tamil Nadu, India
| | - Young Do Jung
- Department of Biochemistry, Chonnam National University Medical School, Gwangju, South Korea
| | - Salem Chouaib
- Thumbay Research Institute for Precision Medicine, Gulf Medical University, Ajman, United Arab Emirates. .,INSERM UMR1186, Integrative Tumor Immunology and Genetic Oncology, Gustave Roussy, Equipe Labellisée par la Ligue Contre le Cancer, EPHE, Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, Villejuif, France.
| |
Collapse
|
69
|
Zhao Y, Bilal M, Qindeel M, Khan MI, Dhama K, Iqbal HMN. Nanotechnology-based immunotherapies to combat cancer metastasis. Mol Biol Rep 2021; 48:6563-6580. [PMID: 34424444 DOI: 10.1007/s11033-021-06660-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/16/2021] [Indexed: 02/05/2023]
Abstract
Emerging concepts in nanotechnology have gained particular attention for their clinical translation of immunotherapies of cancer, autoimmune and infectious diseases. Several nanoconstructs have been engineered with unique structural, physicochemical, and functional features as robust alternatives for conventional chemotherapies. Traditional cancer therapies like chemotherapy, radiotherapy, and ultimately surgery are the most widely practiced in biomedical settings. Biomaterials and nanotechnology have introduced vehicles for drug delivery and have revolutionized the concept of the modern immunotherapeutic paradigm. Various types of nanomaterials, such as nanoparticles and, more specifically, drug-loaded nanoparticles are becoming famous for drug delivery applications because of safety, patient compliance, and smart action. Such therapeutic modalities have acknowledged regulatory endorsement and are being used in twenty-first-century clinical settings. Considering the emerging concepts and landscaping potentialities, herein, we spotlight and discuss nanoparticle-based immunotherapies as a smart and sophisticated drug delivery approach to combat cancer metastasis. The introductory part of this manuscript discusses a broad overview of cancer immunotherapy to understand better the tumor microenvironment and nanotechnology-oriented immunomodulatory strategies to cope with advanced-stage cancers. Following that, most addressable problems allied with conventional immunotherapies are given in comparison to nanoparticle-based immunotherapies. The later half of this work comprehensively highlights the requisite delivery of various bioactive entities with particular cases and examples. Finally, this review also encompasses a comprehensive concluding overview and future standpoints to strengthen a successful clinical translation of nanoparticle-based immunotherapies as a smart and sophisticated drug delivery approach.
Collapse
Affiliation(s)
- Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Maimoona Qindeel
- Department of Pharmacy, Quaid-i-Azam University, Islamabad, 45320, Pakistan
- Hamdard Institute of Pharmaceutical Sciences, Hamdard University Islamabad Campus, Islamabad, Pakistan
| | - Muhammad Imran Khan
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243 122, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
| |
Collapse
|
70
|
Polla Ravi S, Shamiya Y, Chakraborty A, Elias C, Paul A. Biomaterials, biological molecules, and polymers in developing vaccines. Trends Pharmacol Sci 2021; 42:813-828. [PMID: 34454774 DOI: 10.1016/j.tips.2021.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/23/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
Vaccines have been used to train the immune system to recognize pathogens, and prevent and treat diseases, such as cancer, for decades. However, there are continuing challenges in their manufacturing, large-scale production, and storage. Some of them also show suboptimal immunogenicity, requiring additional adjuvants and booster doses. As an alternate vaccination strategy, a new class of biomimetic materials with unique functionalities has emerged in recent years. Here, we explore the current bioengineering techniques that make use of hydrogels, modified polymers, cell membranes, self-assembled proteins, virus-like particles (VLPs), and nucleic acids to deliver and develop biomaterial-based vaccines. We also review design principles and key regulatory issues associated with their development. Finally, we critically assess their limitations, explore approaches to overcome these limitations, and discuss potential future applications for clinical translation.
Collapse
Affiliation(s)
- Shruthi Polla Ravi
- School of Biomedical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Yasmeen Shamiya
- Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Aishik Chakraborty
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada
| | - Cynthia Elias
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada; Biologics Manufacturing Centre, The National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Arghya Paul
- School of Biomedical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada; Department of Chemistry, The University of Western Ontario, London, ON, N6A 5B9, Canada; Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada.
| |
Collapse
|
71
|
Thangam R, Patel KD, Kang H, Paulmurugan R. Advances in Engineered Polymer Nanoparticle Tracking Platforms towards Cancer Immunotherapy-Current Status and Future Perspectives. Vaccines (Basel) 2021; 9:vaccines9080935. [PMID: 34452059 PMCID: PMC8402739 DOI: 10.3390/vaccines9080935] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/17/2022] Open
Abstract
Engineering polymeric nanoparticles for their shape, size, surface chemistry, and functionalization using various targeting molecules has shown improved biomedical applications for nanoparticles. Polymeric nanoparticles have created tremendous therapeutic platforms, particularly applications related to chemo- and immunotherapies in cancer. Recently advancements in immunotherapies have broadened this field in immunology and biomedical engineering, where "immunoengineering" creates solutions to target translational science. In this regard, the nanoengineering field has offered the various techniques necessary to manufacture and assemble multifunctional polymeric nanomaterial systems. These include nanoparticles functionalized using antibodies, small molecule ligands, targeted peptides, proteins, and other novel agents that trigger and encourage biological systems to accept the engineered materials as immune enhancers or as vaccines to elevate therapeutic functions. Strategies to engineer polymeric nanoparticles with therapeutic and targeting molecules can provide solutions for developing immune vaccines via maintaining the receptor storage in T- and B cells. Furthermore, cancer immunotherapy using polymeric nanomaterials can serve as a gold standard approach for treating primary and metastasized tumors. The current status of the limited availability of immuno-therapeutic drugs highlights the importance of polymeric nanomaterial platforms to improve the outcomes via delivering anticancer agents at localized sites, thereby enhancing the host immune response in cancer therapy. This review mainly focuses on the potential scientific enhancements and recent developments in cancer immunotherapies by explicitly discussing the role of polymeric nanocarriers as nano-vaccines. We also briefly discuss the role of multifunctional nanomaterials for their therapeutic impacts on translational clinical applications.
Collapse
Affiliation(s)
- Ramar Thangam
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea; (K.D.P.); (H.K.)
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
- Correspondence: (R.T.); (R.P.)
| | - Kapil D. Patel
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea; (K.D.P.); (H.K.)
| | - Heemin Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Korea; (K.D.P.); (H.K.)
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
- Department of Biomicrosystem Technology, Korea University, Seoul 02841, Korea
| | - Ramasamy Paulmurugan
- Department of Radiology, Molecular Imaging Program at Stanford, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Department of Radiology, Canary Center at Stanford for Cancer Early Detection, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
- Correspondence: (R.T.); (R.P.)
| |
Collapse
|
72
|
Su Q, Wang C, Song H, Zhang C, Liu J, Huang P, Zhang Y, Zhang J, Wang W. Co-delivery of anionic epitope/CpG vaccine and IDO inhibitor by self-assembled cationic liposomes for combination melanoma immunotherapy. J Mater Chem B 2021; 9:3892-3899. [PMID: 33928989 DOI: 10.1039/d1tb00256b] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Immunotherapy is revolutionizing cancer treatment. Vaccination of antigenic peptides has been identified as a promising strategy for cancer immunotherapy while insufficient immune responses were stimulated due to low antigenicity. Moreover, immune checkpoint blockade therapy is still limited by a low objective response rate. In this work, cationic polymer-lipid hybrid nanovesicle (P/LNV)-based liposomes are designed to simultaneously deliver tumor vaccines composed of anionic antigen epitopes, toll-like receptor-9 agonist (TLR9), CpG (AE/CpG), and indoleamine-2,3-dioxygenase (IDO) inhibitor, 1-methyl-tryptophan (1-MT), to increase the immunogenicity of peptide antigens and meanwhile block the immune checkpoint. P/LNV liposomes efficiently enhanced the uptake of vaccines by dendritic cells (DCs) and improved the maturation of DCs indicated by the significantly increased percentage of CD86+MHCI+ DCs, resulting in a potent cytotoxic T-lymphocyte (CTL) response against B16-OVA tumor cells in vitro. Importantly, the combination immunotherapy showed significantly higher therapeutic efficiency towards melanoma tumors in mice, compared with an untreated or individual therapy modality. Mechanistically, the co-delivery system could elicit a strong cancer-specific T-cell response, as characterized by the remarkably increased infiltration of CD8+ T cells in the tumor and draining lymph nodes. Altogether, cationic liposomes delivered with tumor vaccines and IDO inhibitor provide a promising platform for cancer immunotherapy by provoking antitumor T-cell immunity and simultaneously reversing the immunosuppressive tumor microenvironment.
Collapse
Affiliation(s)
- Qi Su
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Tianjin Key Laboratory of Biomaterial Research Institute of Biomedical Engineering Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Changrong Wang
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, Guanhai Road 346, Yantai 264003, China
| | - Huijuan Song
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research Institute of Biomedical Engineering Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research Institute of Biomedical Engineering Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Jianhuan Zhang
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research Institute of Biomedical Engineering Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| |
Collapse
|
73
|
Chen W, Jiang M, Yu W, Xu Z, Liu X, Jia Q, Guan X, Zhang W. CpG-Based Nanovaccines for Cancer Immunotherapy. Int J Nanomedicine 2021; 16:5281-5299. [PMID: 34385817 PMCID: PMC8352601 DOI: 10.2147/ijn.s317626] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/14/2021] [Indexed: 12/21/2022] Open
Abstract
Cancer has been a serious health hazard to the people all over the world with its high incidence and horrible mortality. In recent years, tumor vaccines in immunotherapy have become a hotspot in cancer therapy due to their many practical advantages and good therapeutic potentials. Among the various vaccines, nanovaccine utilized nanoparticles (NPs) as the carrier and/or adjuvant has presented significant therapeutic effect in cancer treatment. For tumor nanovaccines, unmethylated cytosine-phosphate-guanine oligodeoxynucleotide (CpG ODN) is a commonly used adjuvant. It has been reported that CpG ODN was the most effective immune stimulant among the currently known adjuvants. It could be recognized by toll-like receptor 9 (TLR9) to activate humoral and cellular immunity for preventing or treating cancer. In this review, the topic of CpG-based nanovaccines for cancer immunotherapy will be focused. The types and properties of different CpG will be introduced in detail first, and then some representative tumor nanovaccines will be reviewed according to the diverse loading modes of CpG, such as electrostatic adsorption, covalent bonding, hydrophilic and hydrophobic interaction, and DNA self-assembly, for summarizing the current progress of CpG-based tumor nanovaccines. Finally, the challenges and future perspectives will be discussed. It is hoped that this review will provide valuable references for the development of nanovaccines in cancer immunotherapy.
Collapse
Affiliation(s)
- Wenqiang Chen
- College of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Mingxia Jiang
- College of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Wenjing Yu
- College of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Zhiwei Xu
- College of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Xinyue Liu
- College of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Qingmiao Jia
- College of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Xiuwen Guan
- College of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang, 261053, People’s Republic of China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, 261053, People’s Republic of China
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang, 261053, People’s Republic of China
- Collaborative Innovation Center for Target Drug Delivery System, Weifang Medical University, Weifang, 261053, People’s Republic of China
- Shandong Engineering Research Center for Smart Materials and Regenerative Medicine, Weifang Medical University, Weifang, 261053, People’s Republic of China
| |
Collapse
|
74
|
Yu Y, Feng Z, Liu J, Hou X, Zhou X, Gao J, Wang W, Zhang Y, Li G, Liu J. γ-Ray-Triggered Drug Release of Reactive Oxygen Species-Sensitive Nanomedicine for Enhanced Concurrent Chemoradiation Therapy. ACS OMEGA 2021; 6:19445-19457. [PMID: 34368532 PMCID: PMC8340104 DOI: 10.1021/acsomega.1c01500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Radiotherapy (RT) combined with chemotherapy remains a dominant therapeutic manner in clinical tumor treatment, which is irreplaceable in a short term. To seek an intrinsic connection of combined chemoradiation therapy and maximize the antitumor efficacy, we developed a reactive oxygen species (ROS)-sensitive nanomicelle drug delivery system based on a self-assembled amphiphilic polymer, hyaluronic acid-graft-poly-(propylene sulfide) (HA-PPS). A chemical radiosensitizer, doxorubicin (DOX), was encapsulated into the core of HA-PPS nanomicelles, constituting the DOX-loaded nanomicelles (HA-PPS@DOX NMs) with a spherical structure of around 205.10 ± 11.33 nm diameter with a narrow polydispersity index (PDI) of 0.135 ± 0.01. When combined with RT, the ROS-sensitive HA-PPS@DOX NMs disintegrated and released great drug cargos, which further enhanced cytotoxicity. Meanwhile, as a radiosensitizer, the released DOX sensitized cancer cells to radiotherapy, which has been confirmed by an enhanced sensitizer enhancement ratio (SER) value of 1.78 contributing to the increased cytotoxicity of concurrent chemoradiation tumor therapy, as evidenced by the improvement of half maximal inhibitory concentration (IC50 value) of DOX from 2.316 to 0.8235 μg/mL. Moreover, in vivo studies revealed that HA-PPS@DOX NMs exhibited prolonged circulation time and improved tumor accumulation. Particularly, the released DOX triggered by radiation strengthened radiotherapy sensitization in return. Consequently, these superiorities of HA-PPS@DOX NMs shown by the concurrent chemoradiation tumor therapy resulted in an ideal tumor inhibition rate of 70.4%, thus providing a promising ROS-sensitive nanomedicine for cancer treatment.
Collapse
Affiliation(s)
- Ying Yu
- Lab
of Functional and Biomedical Nanomaterials, College of Materials Science
and Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Zujian Feng
- Department
of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering
(Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jinjian Liu
- Tianjin
Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine,
Institute of Radiation Medicine, Chinese
Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiaoxue Hou
- Tianjin
Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine,
Institute of Radiation Medicine, Chinese
Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Xiaoqian Zhou
- Lab
of Functional and Biomedical Nanomaterials, College of Materials Science
and Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Jie Gao
- Tianjin
Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine,
Institute of Radiation Medicine, Chinese
Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Wei Wang
- Lab
of Functional and Biomedical Nanomaterials, College of Materials Science
and Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Yumin Zhang
- Tianjin
Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine,
Institute of Radiation Medicine, Chinese
Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Guoliang Li
- Lab
of Functional and Biomedical Nanomaterials, College of Materials Science
and Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
| | - Jianfeng Liu
- Lab
of Functional and Biomedical Nanomaterials, College of Materials Science
and Engineering, Qingdao University of Science
and Technology, Qingdao 266042, China
- Tianjin
Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine,
Institute of Radiation Medicine, Chinese
Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
75
|
Su FY, Mac QD, Sivakumar A, Kwong GA. Interfacing Biomaterials with Synthetic T Cell Immunity. Adv Healthc Mater 2021; 10:e2100157. [PMID: 33887123 PMCID: PMC8349871 DOI: 10.1002/adhm.202100157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/28/2021] [Indexed: 12/14/2022]
Abstract
The clinical success of cancer immunotherapy is providing exciting opportunities for the development of new methods to detect and treat cancer more effectively. A new generation of biomaterials is being developed to interface with molecular and cellular features of immunity and ultimately shape or control anti-tumor responses. Recent advances that are supporting the advancement of engineered T cells are focused here. This class of cancer therapy has the potential to cure disease in subsets of patients, yet there remain challenges such as the need to improve response rates and safety while lowering costs to expand their use. To provide a focused overview, recent strategies in three areas of biomaterials research are highlighted: low-cost cell manufacturing to broaden patient access, noninvasive diagnostics for predictive monitoring of immune responses, and strategies for in vivo control that enhance anti-tumor immunity. These research efforts shed light on some of the challenges associated with T cell immunotherapy and how engineered biomaterials that interface with synthetic immunity are gaining traction to solve these challenges.
Collapse
Affiliation(s)
- Fang-Yi Su
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA
| | - Quoc D Mac
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA
| | - Anirudh Sivakumar
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA
| | - Gabriel A Kwong
- The Wallace H. Coulter Department of Biomedical Engineering, Institute for Electronics and Nanotechnology, Parker H. Petit Institute of Bioengineering and Bioscience, Integrated Cancer Research Center, Georgia Immunoengineering Consortium, Winship Cancer Institute, Emory University, Georgia Institute of Technology & Emory University, Atlanta, GA, 30332, USA
| |
Collapse
|
76
|
Zhang Y, Wang T, Tian Y, Zhang C, Ge K, Zhang J, Chang J, Wang H. Gold nanorods-mediated efficient synergistic immunotherapy for detection and inhibition of postoperative tumor recurrence. Acta Pharm Sin B 2021; 11:1978-1992. [PMID: 34386332 PMCID: PMC8343192 DOI: 10.1016/j.apsb.2021.03.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor recurrence after surgery is the main cause of treatment failure. However, the initial stage of recurrence is not easy to detect, and it is difficult to cure in the late stage. In order to improve the life quality of postoperative patients, an efficient synergistic immunotherapy was developed to achieve early diagnosis and treatment of post-surgical tumor recurrence, simultaneously. In this paper, two kinds of theranostic agents based on gold nanorods (AuNRs) platform were prepared. AuNRs and quantum dots (QDs) in one agent was used for the detection of carcinoembryonic antigen (CEA), using fluorescence resonance energy transfer (FRET) technology to indicate the occurrence of in situ recurrence, while AuNRs in the other agent was used for photothermal therapy (PTT), together with anti-PDL1 mediated immunotherapy to alleviate the process of tumor metastasis. A series of assays indicated that this synergistic immunotherapy could induce tumor cell death and the increased generation of CD3+/CD4+ T-lymphocytes and CD3+/CD8+ T-lymphocytes. Besides, more immune factors (IL-2, IL-6, and IFN-γ) produced by synergistic immunotherapy were secreted than mono-immunotherapy. This cooperative immunotherapy strategy could be utilized for diagnosis and treatment of postoperative tumor recurrence at the same time, providing a new perspective for basic and clinical research.
Collapse
Key Words
- AFP, alpha fetoprotein
- AP1-QDs, CEA aptamer-modified CdTe QDs
- AP2-AuNRs, CEA aptamer-modified AuNRs
- AP2-AuNRs, and interferon-γ
- AgNO3, silver nitrate
- AuNRs, gold nanorods
- CA, cancer antigen
- CEA, carcinoembryonic antigen
- CTAB, cetrimonium bromide
- CTCs, circulating tumor cells
- Carcinoembryonic antigen
- CdCl2, cadmium chloride
- CdTe QDs, CdTe quantum dots
- DC, dendritic cells
- DLS, dynamic light scattering
- EDC, 1-ethyl-3-(3′-dimethylaminopropyl) carbodiimide
- FBS, fetal bovine serum
- FRET, fluorescence resonance energy transfer
- Fluorescence resonance energy transfer
- GSH, glutathione
- Gold nanorods
- HAuCl4, gold chloride
- Helf, human embryonic lung fibroblasts lines
- Hydrogel+IFN-γ+QA, thermal responsive hydrogels co-loaded with AP1-QDs
- Hydrogel+IFN-γ, thermal responsive hydrogels loaded with interferon-γ
- ICG, indocyanine green
- IFN-γ, interferon-γ
- IR, infrared
- LA+NIR, liposomes encapsulated AuNRs with near-infrared irradiation
- LA, liposomes encapsulated AuNRs
- LAI, liposomes loaded with ICG and encapsulated AuNRs
- LLC, murine lung cancer cells
- Lung metastasis
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- NHS, N-hydroxysuccinimide
- NIR, near-infrared irradiation
- NaBH4, sodium borohydride
- NaHTe, sodium hydrogen telluride
- PD1, programmed cell death protein 1
- PDL1, programmed cell death-ligand 1
- PI, propidium iodide
- PLGA-PEG-PLGA, thermal responsive hydrogel
- PTT, photothermal therapy
- Phototherapy
- Post-surgical tumor recurrence
- QDs, quantum dots
- Synergistic immunotherapy
- TEM, transmission electron microscope
- Theranostics
- aPDL1-LA+NIR, anti-PDL1-modified liposomes encapsulated AuNRs with near-infrared irradiation
- aPDL1-LA, anti-PDL1-modified liposomes encapsulated AuNRs
- aPDL1-LAI, anti-PDL1-modified liposomes loaded with ICG and encapsulated AuNRs
- anti-PDL1, anti-programmed cell death-ligand 1
Collapse
Affiliation(s)
- Yingying Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, China
| | - Tiange Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, China
| | - Yu Tian
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, China
| | - Chaonan Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, China
| | - Kun Ge
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, China
- Corresponding authors.
| | - Hanjie Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, China
- Corresponding authors.
| |
Collapse
|
77
|
PolyTLR7/8a-conjugated, antigen-trapping gold nanorods elicit anticancer immunity against abscopal tumors by photothermal therapy-induced in situ vaccination. Biomaterials 2021; 275:120921. [PMID: 34139508 DOI: 10.1016/j.biomaterials.2021.120921] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
Nanovaccine can elicit antigen-specific immune responses against tumor cells expressing homologous antigens and has attracted enormous attention in cancer immunotherapy. However, tumor heterogeneity remarkably hinders the development of nanovaccines. Here we demonstrate that PTT-induced in situ vaccination cancer therapy can elicit potent antitumor immunity against disseminated and metastatic tumors. Gold nanorods (AuNRs) covalently coupled with amphiphilic polyTLR7/8a and MMP-2-sensitive R9-PEG conjugate (AuNRs-IMQD-R9-PEG) were developed as a new biocompatible PTT agent with favorable photothermal efficiency and stability. Importantly, AuNRs-IMQD-R9-PEG can effectively absorb tumor-derived protein antigens, forming nanovaccines directly in vivo and enhance the activation of host dendritic cells (DCs), thereby amplifying adaptive antitumor T-cell responses, triggering effector memory immune responses, and activating innate antitumor immunity. Remarkably, peri-tumoral administration of low-dose multifunctional AuNRs followed by non-invasive near-infrared (NIR) laser irradiation enables efficient tandem PTT-vaccination treatment modality that can inhibit local as well as untreated distant and metastatic tumors in mice inoculated with poorly immunogenic, highly metastatic 4T1 tumors. Our findings indicate that AuNRs-IMQD-R9-PEG-mediated in situ cancer vaccination provides a powerful immunotherapy characterized by markedly increased infiltration of effector CD8+ T, natural killer T (NKT) cells in tumors and long-term animal survival, thus, offering a promising therapeutic strategy for advanced, disseminated cancers.
Collapse
|
78
|
Wang TT, Xia YY, Gao JQ, Xu DH, Han M. Recent Progress in the Design and Medical Application of In Situ Self-Assembled Polypeptide Materials. Pharmaceutics 2021; 13:753. [PMID: 34069645 PMCID: PMC8160760 DOI: 10.3390/pharmaceutics13050753] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Inspired by molecular self-assembly, which is ubiquitous in natural environments and biological systems, self-assembled peptides have become a research hotspot in the biomedical field due to their inherent biocompatibility and biodegradability, properties that are afforded by the amide linkages forming the peptide backbone. This review summarizes the biological advantages, principles, and design strategies of self-assembled polypeptide systems. We then focus on the latest advances in in situ self-assembly of polypeptides in medical applications, such as oncotherapy, materials science, regenerative medicine, and drug delivery, and then briefly discuss their potential challenges in clinical treatment.
Collapse
Affiliation(s)
- Tian-Tian Wang
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China;
| | - Yi-Yi Xia
- Institution of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.-Y.X.); (J.-Q.G.)
| | - Jian-Qing Gao
- Institution of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.-Y.X.); (J.-Q.G.)
| | - Dong-Hang Xu
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China;
| | - Min Han
- Institution of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; (Y.-Y.X.); (J.-Q.G.)
| |
Collapse
|
79
|
Preclinical models and technologies to advance nanovaccine development. Adv Drug Deliv Rev 2021; 172:148-182. [PMID: 33711401 DOI: 10.1016/j.addr.2021.03.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
The remarkable success of targeted immunotherapies is revolutionizing cancer treatment. However, tumor heterogeneity and low immunogenicity, in addition to several tumor-associated immunosuppression mechanisms are among the major factors that have precluded the success of cancer vaccines as targeted cancer immunotherapies. The exciting outcomes obtained in patients upon the injection of tumor-specific antigens and adjuvants intratumorally, reinvigorated interest in the use of nanotechnology to foster the delivery of vaccines to address cancer unmet needs. Thus, bridging nano-based vaccine platform development and predicted clinical outcomes the selection of the proper preclinical model will be fundamental. Preclinical models have revealed promising outcomes for cancer vaccines. However, only few cases were associated with clinical responses. This review addresses the major challenges related to the translation of cancer nano-based vaccines to the clinic, discussing the requirements for ex vivo and in vivo models of cancer to ensure the translation of preclinical success to patients.
Collapse
|
80
|
Tumor hypoxia-activated combinatorial nanomedicine triggers systemic antitumor immunity to effectively eradicate advanced breast cancer. Biomaterials 2021; 273:120847. [PMID: 33932702 DOI: 10.1016/j.biomaterials.2021.120847] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 02/05/2023]
Abstract
Hypoxia is a major obstacle towards successful cancer treatment, due to the hypoxia-mediated resistance to radiotherapy and chemotherapy, as well as immunosuppression. Therefore, engineering hypoxia-sensitive cytotoxic and immunogenic nanomedicines would promote the therapeutic efficacy. In this study, we developed novel tumor-targeted polymeric micelles sensing hypoxia in tumors to activate strong cytotoxicity and immunogenic responses for effectively eradicating advanced breast cancer. The hypoxia-activatable polymeric micelles could efficiently deliver anticancer drugs and photosensitizers into cancer cells, to trigger synergistic cytotoxicity and immunogenic cell death through chemotherapy and photodynamic therapy (PDT)/photothermal therapy (PTT). The long-circulating micelles efficiently delivered drugs to triple negative 4T1 breast tumors for accurate tumor diagnosis by photoacoustic imaging (PA), and effectively eliminating primary tumors without recurrence, including hypoxic 4T1 tumors. In addition, the micelle-based eradication of primary tumors could elicit robust systemic immune responses to inhibit tumor recurrence and significantly suppress distant 4T1 tumors and lung metastasis by combining with CpG and aCTLA4. These results indicate the high performance of our innovative multifunctional micelles for synergistic therapy against tumor malignancy, bringing opportunity for effectively dealing with disseminated and metastatic tumors.
Collapse
|
81
|
Zhang Y, Yuan T, Li Z, Luo C, Wu Y, Zhang J, Zhang X, Fan W. Hyaluronate-Based Self-Stabilized Nanoparticles for Immunosuppression Reversion and Immunochemotherapy in Osteosarcoma Treatment. ACS Biomater Sci Eng 2021; 7:1515-1525. [PMID: 33793187 DOI: 10.1021/acsbiomaterials.1c00081] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Immunotherapy is regarded as a potential strategy to combat cancer, especially when immunotherapy is combined with appropriate chemotherapy. However, the immunosuppressive tumor microenvironment (TME) and serious side effects extremely limit the application of immunotherapy. Herein, a self-stabilized hyaluronic acid nanoparticle is synthesized for tumor-targeted delivery of doxorubicin (DOX), cisplatin (CDDP), and resiquimod (R848) in osteosarcoma immunochemotherapy, which is referred to as CDDPNPDOX&R848. CDDPNPDOX&R848 exhibits sufficient stability, great pH responsibility, and brilliant tumor-targeting accumulation in vivo, which make it suitable for further in vivo applications. After intravenous injection, CDDPNPDOX&R848 can release the loaded cargoes under the acidic TME continuously. DOX can induce tumor cell apoptosis in combination with CDDP and trigger immunogenic cell death. More importantly, the immune-activated TME created by R848 can facilitate tumor-associated antigen presentation and antitumor immunity elicitation. Benefiting from the synergistic effect of chemotherapy and immunotherapy, the growth of tumors and lung metastasis was greatly inhibited by CDDPNPDOX&R848 in the K7M2 orthotopic osteosarcoma mouse model. Thus, this intelligent codelivery platform might be a competitive candidate for osteosarcoma immunochemotherapy.
Collapse
Affiliation(s)
- Yi Zhang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tao Yuan
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zuxi Li
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chunyang Luo
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yuxuan Wu
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jiyong Zhang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiao Zhang
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Weimin Fan
- The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
82
|
Nano-delivery systems focused on tumor microenvironment regulation and biomimetic strategies for treatment of breast cancer metastasis. J Control Release 2021; 333:374-390. [PMID: 33798666 DOI: 10.1016/j.jconrel.2021.03.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022]
Abstract
Breast cancer metastasis and recurrence accounts for vast majority of breast cancer-induced mortality. Tumor microenvironment (TME) plays an important role at each step of metastasis, evasion of immunosurveillance, and therapeutic resistance. Consequently, TME-targeting alternatives to traditional therapies focused on breast cancer cells are gaining increasing attention. These new therapies involve the use of tumor cells, and key TME components or secreted bioactive molecules as therapeutic targets, alone or in combination. Recently, TME-related nanoparticles have been developed to deliver various agents, such as bioactive ingredients extracted from natural sources or chemotherapeutic agents, genes, proteins, small interfering RNAs, and vaccines; they have shown great therapeutic potential against breast cancer metastasis. Among various types of nanoparticles, biomimetic nanovesicles are a promising means of addressing the limitations of conventional nanocarriers. This review highlights various nanoparticles related to or mediated by TME according to the key TME components responsible for metastasis. Furthermore, TME-related biomimetic nanoparticles against breast cancer metastasis have garnered attention owing to their promising efficiency, especially in payload delivery and therapeutic action. Here, we summarize recent representative studies on nanoparticles related to cancer-associated fibroblasts, extracellular matrix, endothelial cells, angiogenesis, and immune cells, as well as advanced biomimetic nanoparticles. Future challenges and opportunities in the field are also discussed.
Collapse
|
83
|
Polymer-based hydrogels with local drug release for cancer immunotherapy. Biomed Pharmacother 2021; 137:111333. [PMID: 33571834 DOI: 10.1016/j.biopha.2021.111333] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy that boosts the body's immune system to treat local and distant metastatic tumors has offered a new treatment option for cancer. However, cancer immunotherapy via systemic administration of immunotherapeutic agents often has two major issues of limited immune responses and potential immune-related adverse events in the clinic. Hydrogels, a class of three-dimensional network biomaterials with unique porous structures can achieve local delivery of drugs into tumors to trigger the antitumor immunity, resulting in amplified immunotherapy at lower dosages. In this review, we summarize the recent development of polymer-based hydrogels as drug release systems for local delivery of various immunotherapeutic agents for cancer immunotherapy. The constructions of polymer-based hydrogels and their local delivery of various drugs in tumors to achieve sole immunotherapy, and chemotherapy-, and phototherapy-combinational immunotherapy are introduced. Furthermore, a brief conclusion is given and existing challenges and further perspectives of polymer-based hydrogels for cancer immunotherapy are discussed.
Collapse
|
84
|
Chen F, Wang Y, Gao J, Saeed M, Li T, Wang W, Yu H. Nanobiomaterial-based vaccination immunotherapy of cancer. Biomaterials 2021; 270:120709. [PMID: 33581608 DOI: 10.1016/j.biomaterials.2021.120709] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 12/15/2022]
Abstract
Cancer immunotherapies including cancer vaccines, immune checkpoint blockade or chimeric antigen receptor T cells have been exploited as the attractive treatment modalities in recent years. Among these approaches, cancer vaccines that designed to deliver tumor antigens and adjuvants to activate the antigen presenting cells (APCs) and induce antitumor immune responses, have shown significant efficacy in inhibiting tumor growth, preventing tumor relapse and metastasis. Despite the potential of cancer vaccination strategies, the therapeutic outcomes in preclinical trials are failed to promote their clinical translation, which is in part due to their inefficient vaccination cascade of five critical steps: antigen identification, antigen encapsulation, antigen delivery, antigen release and antigen presentation to T cells. In recent years, it has been demonstrated that various nanobiomaterials hold great potential to enhance cancer vaccination cascade and improve their antitumor performance and reduce the off-target effect. We summarize the cutting-edge advances of nanobiomaterials-based vaccination immunotherapy of cancer in this review. The various cancer nanovaccines including antigen peptide/adjuvant-based nanovaccines, nucleic acid-based nanovaccines as well as biomimetic nanobiomaterials-based nanovaccines are discussed in detail. We also provide some challenges and perspectives associated with the clinical translation of cancer nanovaccines.
Collapse
Affiliation(s)
- Fangmin Chen
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingjie Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Jing Gao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Madiha Saeed
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tianliang Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Weiqi Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
85
|
Chen J, Zhang H, Zhou L, Hu Y, Li M, He Y, Li Y. Enhancing the Efficacy of Tumor Vaccines Based on Immune Evasion Mechanisms. Front Oncol 2021; 10:584367. [PMID: 33614478 PMCID: PMC7886973 DOI: 10.3389/fonc.2020.584367] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Tumor vaccines aim to expand tumor-specific T cells and reactivate existing tumor-specific T cells that are in a dormant or unresponsive state. As such, there is growing interest in improving the durable anti-tumor activity of tumor vaccines. Failure of vaccine-activated T cells to protect against tumors is thought to be the result of the immune escape mechanisms of tumor cells and the intricate immunosuppressive tumor microenvironment. In this review, we discuss how tumor cells and the tumor microenvironment influence the effects of tumor infiltrating lymphocytes and summarize how to improve the efficacy of tumor vaccines by improving the design of current tumor vaccines and combining tumor vaccines with other therapies, such as metabolic therapy, immune checkpoint blockade immunotherapy and epigenetic therapy.
Collapse
Affiliation(s)
- Jianyu Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Honghao Zhang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lijuan Zhou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuxing Hu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Meifang Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yanjie He
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuhua Li
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
86
|
Griñan-Lison C, Blaya-Cánovas JL, López-Tejada A, Ávalos-Moreno M, Navarro-Ocón A, Cara FE, González-González A, Lorente JA, Marchal JA, Granados-Principal S. Antioxidants for the Treatment of Breast Cancer: Are We There Yet? Antioxidants (Basel) 2021; 10:205. [PMID: 33572626 PMCID: PMC7911462 DOI: 10.3390/antiox10020205] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
Breast cancer is the most frequent cancer and the leading cause of cancer death in women. Oxidative stress and the generation of reactive oxygen species (ROS) have been related to cancer progression. Compared to their normal counterparts, tumor cells show higher ROS levels and tight regulation of REDOX homeostasis to maintain a low degree of oxidative stress. Traditionally antioxidants have been extensively investigated to counteract breast carcinogenesis and tumor progression as chemopreventive agents; however, there is growing evidence indicating their potential as adjuvants for the treatment of breast cancer. Aimed to elucidate whether antioxidants could be a reality in the management of breast cancer patients, this review focuses on the latest investigations regarding the ambivalent role of antioxidants in the development of breast cancer, with special attention to the results derived from clinical trials, as well as their potential use as plausible agents in combination therapy and their power to ameliorate the side effects attributed to standard therapeutics. Data retrieved herein suggest that antioxidants play an important role in breast cancer prevention and the improvement of therapeutic efficacy; nevertheless, appropriate patient stratification based on "redoxidomics" or tumor subtype is mandatory in order to define the dosage for future standardized and personalized treatments of patients.
Collapse
Affiliation(s)
- Carmen Griñan-Lison
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (C.G.-L.); (J.A.M.)
- Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Marta Ávalos-Moreno
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Alba Navarro-Ocón
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Francisca E. Cara
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Adrián González-González
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
| | - Jose A. Lorente
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
- Department of Legal Medicine, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Juan A. Marchal
- Centre for Biomedical Research (CIBM), Biopathology and Regenerative Medicine Institute (IBIMER), University of Granada, 18100 Granada, Spain; (C.G.-L.); (J.A.M.)
- Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18100 Granada, Spain
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Sergio Granados-Principal
- Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospitals of Granada-University of Granada, 18100 Granada, Spain
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (J.L.B.-C.); (A.L.-T.); (M.Á.-M.); (A.N.-O.); (F.E.C.); (A.G.-G.); (J.A.L.)
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18011 Granada, Spain
| |
Collapse
|
87
|
Yu Y, Cheng Y, Tong J, Zhang L, Wei Y, Tian M. Recent advances in thermo-sensitive hydrogels for drug delivery. J Mater Chem B 2021; 9:2979-2992. [DOI: 10.1039/d0tb02877k] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Thermo-sensitive hydrogels based on different polymers have been broadly used in the pharmaceutical fields. In this review, the state-of-the-art thermo-sensitive hydrogels for drug delivery are elaborated
Collapse
Affiliation(s)
- Yibin Yu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- China
| | - Yi Cheng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- China
| | - Junye Tong
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- China
| | - Lei Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences
- Changchun 130022
- China
| | - Yen Wei
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Department of Chemistry, Tsinghua University
- Beijing 100084
- China
| | - Mei Tian
- Department of Nuclear Medicine and PET-CT Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou
- Zhejiang, 310009
- China
| |
Collapse
|
88
|
Bahreyni A, Mohamud Y, Luo H. Emerging nanomedicines for effective breast cancer immunotherapy. J Nanobiotechnology 2020; 18:180. [PMID: 33298099 PMCID: PMC7727246 DOI: 10.1186/s12951-020-00741-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/30/2020] [Indexed: 02/07/2023] Open
Abstract
Breast cancer continues to be the most frequently diagnosed malignancy among women, putting their life in jeopardy. Cancer immunotherapy is a novel approach with the ability to boost the host immune system to recognize and eradicate cancer cells with high selectivity. As a promising treatment, immunotherapy can not only eliminate the primary tumors, but also be proven to be effective in impeding metastasis and recurrence. However, the clinical application of cancer immunotherapy has faced some limitations including generating weak immune responses due to inadequate delivery of immunostimulants to the immune cells as well as uncontrolled modulation of immune system, which can give rise to autoimmunity and nonspecific inflammation. Growing evidence has suggested that nanotechnology may meet the needs of current cancer immunotherapy. Advanced biomaterials such as nanoparticles afford a unique opportunity to maximize the efficiency of immunotherapy and significantly diminish their toxic side-effects. Here we discuss recent advancements that have been made in nanoparticle-involving breast cancer immunotherapy, varying from direct activation of immune systems through the delivery of tumor antigens and adjuvants to immune cells to altering immunosuppression of tumor environment and combination with other conventional therapies.
Collapse
Affiliation(s)
- Amirhossein Bahreyni
- Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, V6Z 1Y6, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Yasir Mohamud
- Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, V6Z 1Y6, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Honglin Luo
- Centre for Heart Lung Innovation, St. Paul's Hospital, 1081 Burrard St, Vancouver, BC, V6Z 1Y6, Canada. .,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
89
|
Zhou X, Su Q, Zhao H, Cao X, Yang Y, Xue W. Metal-Phenolic Network-Encapsulated Nanovaccine with pH and Reduction Dual Responsiveness for Enhanced Cancer Immunotherapy. Mol Pharm 2020; 17:4603-4615. [PMID: 33175556 DOI: 10.1021/acs.molpharmaceut.0c00802] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cancer nanovaccines have been widely explored to enhance immunotherapy efficiency, in which the significant irritation of antigen-specific cytotoxic T cells (CTLs) is the critical point. In this study, we developed a pH and reduction dual-sensitive nanovaccine (PMSN@OVA-MPN) composed of two parts. The inner part was made up of polyethyleneimine (PEI)-modified mesoporous silica nanoparticles (MSNs) loaded with model antigen ovalbumin (OVA) and the outer part was made up of disulfide bond-involved metal-phenolic networks (MPNs) as a protective corona. In vitro release experiments proved that PMSN@OVA-MPN could intelligently release OVA in the presence of reductive glutathione, but not in neutral phosphate-buffered saline (PBS). Moreover, in vitro cell assays indicated that the nanovaccine promoted not only the OVA uptake efficiency by DC2.4 cells but also antigen lysosome escape due to the proton sponge effect of PEI. Furthermore, in vivo animal experiments indicated that PMSN@OVA-MPN induced a large tumor-specific cellular immune response so as to effectively inhibit the growth of an existing tumor. Finally, the immune memory effect caused by the nanovaccine afforded conspicuous prophylaxis efficacy in neonatal tumors. Hence, the multifunctional vaccine delivery system prepared in this work exhibits a great application potential in cancer immunotherapy and offers a platform for the development of nanovaccines.
Collapse
Affiliation(s)
- Xin Zhou
- College of Food Science and Engineering, Hainan University, Haikou 570228, Hainan, China
| | - Qianhong Su
- College of Food Science and Engineering, Hainan University, Haikou 570228, Hainan, China
| | - Hongwei Zhao
- School of Material Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Xianying Cao
- College of Food Science and Engineering, Hainan University, Haikou 570228, Hainan, China
| | - Yong Yang
- College of Food Science and Engineering, Hainan University, Haikou 570228, Hainan, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
90
|
Engineering immunogenic cell death with nanosized drug delivery systems improving cancer immunotherapy. Curr Opin Biotechnol 2020; 66:36-43. [DOI: 10.1016/j.copbio.2020.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023]
|
91
|
Zhang M, Chen X, Radacsi N. New tricks of old drugs: Repurposing non-chemo drugs and dietary phytochemicals as adjuvants in anti-tumor therapies. J Control Release 2020; 329:96-120. [PMID: 33259852 DOI: 10.1016/j.jconrel.2020.11.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Combination therapy has long been applied to enhance therapeutic effect and deal with the occurrence of multi-drug resistance in cancer treatment. However, the overlapping toxicity of multiple anticancer drugs to healthy tissues and increasing financial burden on patients emerged as major concerns. As promising alternatives to chemo agents, repurposed non-chemo drugs and dietary phytochemicals have been investigated as adjuvants to conventional anti-tumor therapeutics, offering a safe and economic strategy for combination therapy. In this review, we aim to highlight the advances in research about combination therapy using conventional therapeutics and repurposed drugs or phytochemicals for an enhanced anti-tumor efficacy, along with the mechanisms involved in the synergism. Beyond these, we outlined the potential challenges and solutions for clinical translation of the proposed combination therapy, providing a safe and affordable strategy to improve the reach of cancer therapy to low income regions with such new tricks of old drugs.
Collapse
Affiliation(s)
- Mei Zhang
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom; School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, United Kingdom.
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, United Kingdom.
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom.
| |
Collapse
|
92
|
Wang C, Shi X, Song H, Zhang C, Wang X, Huang P, Dong A, Zhang Y, Kong D, Wang W. Polymer-lipid hybrid nanovesicle-enabled combination of immunogenic chemotherapy and RNAi-mediated PD-L1 knockdown elicits antitumor immunity against melanoma. Biomaterials 2020; 268:120579. [PMID: 33278683 DOI: 10.1016/j.biomaterials.2020.120579] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
Immunotherapy has revolutionized cancer treatment; however, only a limited portion of patients show responses to currently available immunotherapy regimens. Here, we demonstrate that RNA interference (RNAi) combined with immunogenic chemotherapy can elicit potent antitumor immunity against melanoma. Specially, we developed cationic polymer-lipid hybrid nanovesicles (P/LNVs) as a new delivery system for doxorubicin and small interfering RNA (siRNA) with extensive cytotoxicity and gene silencing efficiency towards B16 cells. The deployment of doxorubicin-loaded P/LNVs augmented the expression and presentation of endogenous tumor antigens directly in situ by inducing the immunogenic cell death of B16 cells through poly(ADP-ribose) polymerase 1-dependent (PARP1) apoptosis pathway; thereby, eliciting remarkable antitumor immune responses in mice. Leveraging dying B16 cells as a vaccination strategy in combination with RNAi-based programmed cell death ligand 1 (PD-L1) knockdown showed efficacy in both prophylactic and metastasis melanoma settings. Strikingly, PD-L1 blockade synergized with a sub-therapeutic dose of doxorubicin triggered robust therapeutic antitumor T-cell responses and eradicated pre-established tumors in 30% of mice bearing B16 melanoma. Our findings indicated that this combination treatment provided a new powerful immunotherapy modality, characterized by markedly increased infiltration of effector CD8+ T cells and effective alleviation of the immunosuppressive microenvironment in tumors. P/LNVs is a versatile and highly scalable carrier that can enable a broad combination of nanomedicine and RNAi, providing new therapeutic strategies for advanced cancers.
Collapse
Affiliation(s)
- Changrong Wang
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, Guanhai Road 346, Yantai, 264003, China; Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Xiaoguang Shi
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Huijuan Song
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xiaoli Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Anjie Dong
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
| | - Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
93
|
Zhang W, Wang F, Hu C, Zhou Y, Gao H, Hu J. The progress and perspective of nanoparticle-enabled tumor metastasis treatment. Acta Pharm Sin B 2020; 10:2037-2053. [PMID: 33304778 PMCID: PMC7714986 DOI: 10.1016/j.apsb.2020.07.013] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/14/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
As one of the most serious threats to human being, cancer is hard to be treated when metastasis happens. What's worse, there are few identified targets of metastasis for drug development. Therefore, it is important to develop strategies to prevent metastasis or treat existed metastasis. This review focuses on the procedure of metastasis, and first summarizes the targeting delivery strategies, including primary tumor targeting drug delivery, tumor metastasis targeting drug delivery and hijacking circulation cells. Then, as a promising treatment, the application of immunotherapy in tumor metastasis treatment is introduced, and strategies that stimulating immune response are reviewed, including chemotherapy, photothermal therapy, photodynamic therapy, ferroptosis, sonodynamic therapy, and nanovaccines. Finally, the challenges and perspective about nanoparticle-enabled tumor metastasis treatment are discussed.
Collapse
|
94
|
Mehrotra N, Kharbanda S, Singh H. Peptide-based combination nanoformulations for cancer therapy. Nanomedicine (Lond) 2020; 15:2201-2217. [PMID: 32914691 DOI: 10.2217/nnm-2020-0220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Research in cancer therapy is moving towards the use of biomolecules in combination with conventional approaches for improved disease outcome. Among the biomolecules explored, peptides are strong contenders due to their small size, high specificity, low systemic toxicity and wide inter/intracellular targets. The use of nanoformulations for such combination approaches can lead to further improvement in efficacy by reducing off-target cytotoxicity, increasing circulation time, tumor penetration and accumulation. This review focuses on nanodelivery systems for peptide-based combinations with chemo, immuno, radiation and hormone therapy. It gives an overview of the latest therapeutic research being conducted using combination nanoformulations with anticancer peptides, cell penetrating/tumor targeting peptides, peptide nanocarriers, peptidomimetics, peptide-based hormones and peptide vaccines. The challenges hindering clinical translation are also discussed.
Collapse
Affiliation(s)
- Neha Mehrotra
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Surender Kharbanda
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Harpal Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
95
|
Sun JY, Zhang D, Wu S, Xu M, Zhou X, Lu XJ, Ji J. Resistance to PD-1/PD-L1 blockade cancer immunotherapy: mechanisms, predictive factors, and future perspectives. Biomark Res 2020; 8:35. [PMID: 32864132 PMCID: PMC7450549 DOI: 10.1186/s40364-020-00212-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/07/2020] [Indexed: 12/16/2022] Open
Abstract
PD-1/PD-L1 blockade therapy is a promising cancer treatment strategy, which has revolutionized the treatment landscape of malignancies. Over the last decade, PD-1/PD-L1 blockade therapy has been trialed in a broad range of malignancies and achieved clinical success. Despite the potentially cure-like survival benefit, only a minority of patients are estimated to experience a positive response to PD-1/PD-L1 blockade therapy, and the primary or acquired resistance might eventually lead to cancer progression in patients with clinical responses. Accordingly, the resistance to PD-1/PD-L1 blockade remains a significant challenge hindering its further application. To overcome the limitation in therapy resistance, substantial effort has been made to improve or develop novel anti-PD-1/PD-L1 based immunotherapy strategies with better clinical response and reduced immune-mediated toxicity. In this review, we provide an overview on the resistance to PD-1/PD-L1 blockade and briefly introduce the mechanisms underlying therapy resistance. Moreover, we summarize potential predictive factors for the resistance to PD-1/PD-L1 blockade. Furthermore, we give an insight into the possible solutions to improve efficacy and clinical response. In the following research, combined efforts of basic researchers and clinicians are required to address the limitation of therapy resistance.
Collapse
Affiliation(s)
- Jin-Yu Sun
- The First College of Clinical Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| | - Dengke Zhang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University/ The Fifth Affiliated Hospital of Wenzhou Medical University/ Clinical Medicine of Center Hospital of Lishui College, Lishui, 323000 China
- College of Medicine, Lishui College, Lishui, 323000 China
| | - Songquan Wu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University/ The Fifth Affiliated Hospital of Wenzhou Medical University/ Clinical Medicine of Center Hospital of Lishui College, Lishui, 323000 China
- College of Medicine, Lishui College, Lishui, 323000 China
| | - Min Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University/ The Fifth Affiliated Hospital of Wenzhou Medical University/ Clinical Medicine of Center Hospital of Lishui College, Lishui, 323000 China
- College of Medicine, Lishui College, Lishui, 323000 China
| | - Xiao Zhou
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Jie Lu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University/ The Fifth Affiliated Hospital of Wenzhou Medical University/ Clinical Medicine of Center Hospital of Lishui College, Lishui, 323000 China
- College of Medicine, Lishui College, Lishui, 323000 China
- Department of radiology, Affiliated Lishui Hospital of Zhejiang University, Lishui, 323000 China
| |
Collapse
|
96
|
Sorolla A, Sorolla MA, Wang E, Ceña V. Peptides, proteins and nanotechnology: a promising synergy for breast cancer targeting and treatment. Expert Opin Drug Deliv 2020; 17:1597-1613. [PMID: 32835538 DOI: 10.1080/17425247.2020.1814733] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION The use of nanoparticles for breast cancer targeting and treatment has become a reality. They are safe and possess interesting peculiarities such as the unspecific accumulation into the tumor site and the possibility to activate controlled drug release as compared to free drugs. However, there are still many areas of improvement which can certainly be addressed with the use of peptide-based elements. AREAS COVERED The article reviews different preclinical strategies employing peptides and proteins in combination with nanoparticles for breast cancer targeting and treatment as well as peptide and protein-targeted encapsulated drugs, and it lists the current clinical status of therapies using peptides and proteins for breast cancer. EXPERT OPINION The conjugation of protein and peptides can improve tumor homing of nanoparticles, increase cellular penetration and attack specific drivers and vulnerabilities of the breast cancer cell to promote tumor cytotoxicity while reducing secondary effects in healthy tissues. Examples are the use of antibodies, arginylglycylaspartic acid (RGD) peptides, membrane disruptive peptides, interference peptides, and peptide vaccines. Although their implementation in the clinic has been relatively slow up to now, we anticipate great progress in the field which will translate into more efficacious and selective nanotherapies for breast cancer.
Collapse
Affiliation(s)
- Anabel Sorolla
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia , Crawley, Australia
| | - Maria Alba Sorolla
- Biomedical Research Institute (IRB Lleida), Research Group of Cancer Biomarkers , Lleida, Spain
| | - Edina Wang
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands and Centre for Medical Research, The University of Western Australia , Crawley, Australia
| | - Valentín Ceña
- Unidad Asociada Neurodeath, Universidad De Castilla-La Mancha , Albacete, Spain.,Centro De Investigación En Red Sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII , Madrid, Spain
| |
Collapse
|
97
|
Deng LJ, Qi M, Li N, Lei YH, Zhang DM, Chen JX. Natural products and their derivatives: Promising modulators of tumor immunotherapy. J Leukoc Biol 2020; 108:493-508. [PMID: 32678943 PMCID: PMC7496826 DOI: 10.1002/jlb.3mr0320-444r] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 12/11/2022] Open
Abstract
A wealth of evidence supports the role of tumor immunotherapy as a vital therapeutic option in cancer. In recent decades, accumulated studies have revealed the anticancer activities of natural products and their derivatives. Increasing interest has been driven toward finding novel potential modulators of tumor immunotherapy from natural products, a hot research topic worldwide. These works of research mainly focused on natural products, including polyphenols (e.g., curcumin, resveratrol), cardiotonic steroids (e.g., bufalin and digoxin), terpenoids (e.g., paclitaxel and artemisinins), and polysaccharide extracts (e.g., lentinan). Compelling data highlight that natural products have a promising future in tumor immunotherapy. Considering the importance and significance of this topic, we initially discussed the integrated research progress of natural products and their derivatives, including target T cells, macrophages, B cells, NKs, regulatory T cells, myeloid‐derived suppressor cells, inflammatory cytokines and chemokines, immunogenic cell death, and immune checkpoints. Furthermore, these natural compounds inactivate several key pathways, including NF‐κB, PI3K/Akt, MAPK, and JAK/STAT pathways. Here, we performed a deep generalization, analysis, and summarization of the previous achievements, recent progress, and the bottlenecks in the development of natural products as tumor immunotherapy. We expect this review to provide some insight for guiding future research.
Collapse
Affiliation(s)
- Li-Juan Deng
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Ming Qi
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Nan Li
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yu-He Lei
- Department of Pharmacy, Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Dong-Mei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou, China
| | - Jia-Xu Chen
- Formula-Pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
98
|
Guo J, Feng Z, Liu X, Wang C, Huang P, Zhang J, Deng L, Wang W, Dong A. An injectable thermosensitive hydrogel self-supported by nanoparticles of PEGylated amino-modified PCL for enhanced local tumor chemotherapy. SOFT MATTER 2020; 16:5750-5758. [PMID: 32529197 DOI: 10.1039/d0sm00147c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We synthesized amino-modified poly(ε-caprolactone) PCN-b-PEG-b-PCN (PECN) triblock copolymers and studied the contribution of the introduced amino groups to the drug delivery efficiency of PECN nanoparticles (NPs) and their injectable thermosensitive hydrogels. PECN15 with an optimal amino group content was obtained. Firstly, the hydrophobic drug paclitaxel (PTX) was loaded into PECN15 up to 5.91% and formed PTX/PECN NPs 90 nm in size and with a slightly positive charge (7.3 mV). Furthermore, the injectable PTX/PECN NPs aqueous solution (25 wt%) at ambient temperature could undergo fast gelation at 37 °C and sustainedly release PTX/PECN NPs in 10 days. More importantly, compared with our previously reported PECT NPs, the PECN NPs without an increase in toxicity could improve the cell uptake and enhance intracellular drug release by responding to the acidic environment of the endosome. Thus, the PTX/PECN NPs presented a lower IC50 of 3.14 μg mL-1 than that of the PTX/PECT NPs (7.67 μg mL-1) and free PTX (4.65 μg mL-1). Moreover, through peritumoral injection, the PTX/PECNGel showed 94.27% inhibition rate of tumor growth on day 19, higher than PTX/PECTGel (72.28%) and Taxol® (47.03%). Therefore, the PECN NPs hydrogel provided a more effective injectable platform to enhance local cancer chemotherapy, and also provided the possibility of further functionalization by the reactive amino groups.
Collapse
Affiliation(s)
- Jinxuan Guo
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zujian Feng
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Xiang Liu
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Changrong Wang
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | - Jianhua Zhang
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Liandong Deng
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China.
| | - Anjie Dong
- Department of Polymer Science and Technology and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China. and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
99
|
Feng Z, Guo J, Liu X, Song H, Zhang C, Huang P, Dong A, Kong D, Wang W. Cascade of reactive oxygen species generation by polyprodrug for combinational photodynamic therapy. Biomaterials 2020; 255:120210. [PMID: 32592871 DOI: 10.1016/j.biomaterials.2020.120210] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 05/29/2020] [Accepted: 06/13/2020] [Indexed: 12/13/2022]
Abstract
The redox status of cancer cells is well regulated by the balance between the reactive oxygen species (ROS) generation and elimination. Thus, the overall elevation of ROS level above the cellular tolerability threshold would lead to apoptotic or necrotic cell death. Herein, cinnamaldehyde (CA), a kind of oxidative stress amplified agent, was combined with photosensitizer pheophorbide A (PA) to promote the generation of ROS though synergistically endogenous and exogenous pathways. Firstly, acid-responsive polygalactose-co-polycinnamaldehyde polyprodrug (termed as PGCA) was synthesized, which could self-assemble into stable nanoparticles for the delivery of PA (termed as PGCA@PA NPs). The abundant expression of galactose receptor on tumor cells facilitated the positive targeting and cellular uptake efficiency of PGCA@PA NPs, after which PA could be synchronously released in company with the intracellular disassembly of PGCA NPs, due to the detaching of CA moieties under acidic microenvironment in endo/lysosomal compartment. Significantly increased ROS level was induced by the combined action of CA and PA with light irradiation, resulting in dramatically enhanced apoptosis of cancer cells. Importantly, intravenous injection of PGCA@PA NPs potently inhibited the tumor growth in hepatocellular carcinoma with negligible adverse effects. Moreover, combined with anti-programmed cell death protein 1 (anti-PD-1) therapy, PGCA@PA NPs treatment elicited anti-melanoma T-cell immune response and significantly promoted T cells infiltration in tumors. Hence, this novel polyprodrug nano delivery system was able to target and modulate the unique redox regulatory mechanisms of cancer cells through endogenous and exogenous pathways, providing a feasible approach to achieve synergetic therapeutic activity and selectivity.
Collapse
Affiliation(s)
- Zujian Feng
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jinxuan Guo
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Xiang Liu
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Huijuan Song
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Chuangnian Zhang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Anjie Dong
- Department of Polymer Science and Engineering, Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
| | - Deling Kong
- The Key Laboratory of Bioactive Materials, Ministry of Education; College of Life Science, Nankai University, Tianjin, 300071, China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| |
Collapse
|
100
|
Saravanakumar K, Sathiyaseelan A, Mariadoss AVA, Jeevithan E, Hu X, Shin S, Wang MH. Dual stimuli-responsive release of aptamer AS1411 decorated erlotinib loaded chitosan nanoparticles for non-small-cell lung carcinoma therapy. Carbohydr Polym 2020; 245:116407. [PMID: 32718591 DOI: 10.1016/j.carbpol.2020.116407] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022]
Abstract
The present work was developed the pH dependent-aptamer AS1411 (APT) decorated and erlotinib (En) loaded chitosan nanoparticles (CSNPs) for promising non-small-cell lung carcinoma (NSCLC) treatment. The characterization studies revealed that formulated APT-En-CSNPs were spherical in shape with size of 165.95 d. nm and PDI of 0.212. FTIR spectrum recorded molecular chemical interactions with composition of En or En-CSNPs. Cell viability assay, flow cytometry and fluorescent microscopy results revealed that APT-En-CSNPs triggered cancer cell death through pH-sensitive and nucleolin receptor-targeted release of En. The decoration of the APT improved the cellular uptake of En as evidenced by cellular sensing fluorescence and BioTEM assay. The APT-En-CSNPs induced the apoptosis through excessive ROS generation, nucleus damage and Δψm loss in the A549 cells. Hence, the present study revealed that the APT-En-CSNPs improved the therapeutic efficiency of En in NSCLC through the nucleolin targeted drug release.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Anbazhagan Sathiyaseelan
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Arokia Vijaya Anand Mariadoss
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Elango Jeevithan
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaowen Hu
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Sukjin Shin
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, South Korea
| | - Myeong-Hyeon Wang
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, South Korea.
| |
Collapse
|