51
|
Chermside-Scabbo CJ, Harris TL, Brodt MD, Braenne I, Zhang B, Farber CR, Silva MJ. Old Mice Have Less Transcriptional Activation But Similar Periosteal Cell Proliferation Compared to Young-Adult Mice in Response to in vivo Mechanical Loading. J Bone Miner Res 2020; 35:1751-1764. [PMID: 32311160 PMCID: PMC7486279 DOI: 10.1002/jbmr.4031] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/27/2020] [Accepted: 04/08/2020] [Indexed: 12/12/2022]
Abstract
Mechanical loading is a potent strategy to induce bone formation, but with aging, the bone formation response to the same mechanical stimulus diminishes. Our main objectives were to (i) discover the potential transcriptional differences and (ii) compare the periosteal cell proliferation between tibias of young-adult and old mice in response to strain-matched mechanical loading. First, to discover potential age-related transcriptional differences, we performed RNA sequencing (RNA-seq) to compare the loading responses between tibias of young-adult (5-month) and old (22-month) C57BL/6N female mice following 1, 3, or 5 days of axial loading (loaded versus non-loaded). Compared to young-adult mice, old mice had less transcriptional activation following loading at each time point, as measured by the number of differentially expressed genes (DEGs) and the fold-changes of the DEGs. Old mice engaged fewer pathways and gene ontology (GO) processes, showing less activation of processes related to proliferation and differentiation. In tibias of young-adult mice, we observed prominent Wnt signaling, extracellular matrix (ECM), and neuronal responses, which were diminished with aging. Additionally, we identified several targets that may be effective in restoring the mechanoresponsiveness of aged bone, including nerve growth factor (NGF), Notum, prostaglandin signaling, Nell-1, and the AP-1 family. Second, to directly test the extent to which periosteal cell proliferation was diminished in old mice, we used bromodeoxyuridine (BrdU) in a separate cohort of mice to label cells that divided during the 5-day loading interval. Young-adult and old mice had an average of 15.5 and 16.7 BrdU+ surface cells/mm, respectively, suggesting that impaired proliferation in the first 5 days of loading does not explain the diminished bone formation response with aging. We conclude that old mice have diminished transcriptional activation following mechanical loading, but periosteal proliferation in the first 5 days of loading does not differ between tibias of young-adult and old mice. © 2020 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Christopher J Chermside-Scabbo
- Musculoskeletal Research Center Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Medical Scientist Training Program, Washington University School of Medicine, Washington University, St. Louis, MO, USA
| | - Taylor L Harris
- Musculoskeletal Research Center Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Michael D Brodt
- Musculoskeletal Research Center Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
| | - Ingrid Braenne
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Bo Zhang
- Center of Regenerative Medicine, Department of Developmental Biology, Washington University, St. Louis, MO, USA
| | - Charles R Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Matthew J Silva
- Musculoskeletal Research Center Department of Orthopaedic Surgery, Washington University, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| |
Collapse
|
52
|
Kelder C, Kleverlaan CJ, Gilijamse M, Bakker AD, de Vries TJ. Cells Derived from Human Long Bone Appear More Differentiated and More Actively Stimulate Osteoclastogenesis Compared to Alveolar Bone-Derived Cells. Int J Mol Sci 2020; 21:ijms21145072. [PMID: 32709153 PMCID: PMC7404058 DOI: 10.3390/ijms21145072] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/11/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Osteoblasts derived from mouse skulls have increased osteoclastogenic potential compared to long bone osteoblasts when stimulated with 1,25(OH)2 vitamin D3 (vitD3). This indicates that bone cells from specific sites can react differently to biochemical signals, e.g., during inflammation or as emitted by bioactive bone tissue-engineering constructs. Given the high turn-over of alveolar bone, we hypothesized that human alveolar bone-derived osteoblasts have an increased osteogenic and osteoclastogenic potential compared to the osteoblasts derived from long bone. The osteogenic and osteoclastogenic capacity of alveolar bone cells and long bone cells were assessed in the presence and absence of osteotropic agent vitD3. Both cell types were studied in osteogenesis experiments, using an osteogenic medium, and in osteoclastogenesis experiments by co-culturing osteoblasts with peripheral blood mononuclear cells (PBMCs). Both osteogenic and osteoclastic markers were measured. At day 0, long bones seem to have a more late-osteoblastic/preosteocyte-like phenotype compared to the alveolar bone cells as shown by slower proliferation, the higher expression of the matrix molecule Osteopontin (OPN) and the osteocyte-enriched cytoskeletal component Actin alpha 1 (ACTA1). This phenotype was maintained during the osteogenesis assays, where long bone-derived cells still expressed more OPN and ACTA1. Under co-culture conditions with PBMCs, long bone cells also had a higher Tumor necrose factor-alfa (TNF-α) expression and induced the formation of osteoclasts more than alveolar bone cells. Correspondingly, the expression of osteoclast genes dendritic cell specific transmembrane protein (DC-STAMP) and Receptor activator of nuclear factor kappa-Β ligand (RankL) was higher in long bone co-cultures. Together, our results indicate that long bone-derived osteoblasts are more active in bone-remodeling processes, especially in osteoclastogenesis, than alveolar bone-derived cells. This indicates that tissue-engineering solutions need to be specifically designed for the site of application, such as defects in long bones vs. the regeneration of alveolar bone after severe periodontitis.
Collapse
Affiliation(s)
- Cindy Kelder
- Department of Oral Implantology and Prosthodontics, Academic Centre For Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
- Department of Oral Cell Biology, Academic Centre For Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
- Correspondence: (C.K.); (T.J.d.V.)
| | - Cornelis J. Kleverlaan
- Department of Dental Material Sciences, Academic Centre For Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
| | - Marjolijn Gilijamse
- Department of Oral and Maxillofacial Surgery and Oral Pathology, Amsterdam UMC, Location VUmc, Vrije Universiteit, and ACTA, University of Amsterdam and Vrije Universiteit, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands; or
- Department of Oral and Maxillofacial Surgery, OLVG, 1081 LA Amsterdam, The Netherlands
| | - Astrid D. Bakker
- Department of Oral Cell Biology, Academic Centre For Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands;
| | - Teun J. de Vries
- Department of Periodontology, Academic Centre For Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Gustav Mahlerlaan 3004, 1081 LA Amsterdam, The Netherlands
- Correspondence: (C.K.); (T.J.d.V.)
| |
Collapse
|
53
|
The osteogenic commitment of CD271+CD56+ bone marrow stromal cells (BMSCs) in osteoarthritic femoral head bone. Sci Rep 2020; 10:11145. [PMID: 32636407 PMCID: PMC7341749 DOI: 10.1038/s41598-020-67998-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA), the most common joint disorder, is characterised by progressive structural changes in both the cartilage and the underlying subchondral bone. In late disease stages, subchondral bone sclerosis has been linked to heightened osteogenic commitment of bone marrow stromal cells (BMSCs). This study utilised cell sorting and immunohistochemistry to identify a phenotypically-distinct, osteogenically-committed BMSC subset in human OA trabecular bone. Femoral head trabecular bone tissue digests were sorted into CD45-CD271+CD56+CD146-, CD45-CD271+CD56-CD146+ and CD45-CD271+CD56-CD146-(termed double-negative, DN) subsets, and CD45+CD271-hematopoietic-lineage cells served as control. Compared to the CD146+ subset, the CD56+ subset possessed a lower-level expression of adipocyte-associated genes and significantly over 100-fold higher-level expression of many osteoblast-related genes including osteopontin and osteocalcin, whilst the DN subset presented a transcriptionally ‘intermediate’ BMSC population. All subsets were tri-potential following culture-expansion and were present in control non-OA trabecular bone. However, while in non-OA bone CD56+ cells only localised on the bone surface, in OA bone they were additionally present in the areas of new bone formation rich in osteoblasts and newly-embedded osteocytes. In summary, this study reveals a distinct osteogenically-committed CD271+CD56+ BMSC subset and implicates it in subchondral bone sclerosis in hip OA. CD271+CD56+ subset may represent a future therapeutic target for OA and other bone-associated pathologies.
Collapse
|
54
|
Behrmann A, Zhong D, Li L, Cheng SL, Mead M, Ramachandran B, Sabaeifard P, Goodarzi M, Lemoff A, Kronenberg HM, Towler DA. PTH/PTHrP Receptor Signaling Restricts Arterial Fibrosis in Diabetic LDLR -/- Mice by Inhibiting Myocardin-Related Transcription Factor Relays. Circ Res 2020; 126:1363-1378. [PMID: 32160132 PMCID: PMC7524585 DOI: 10.1161/circresaha.119.316141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 03/11/2020] [Indexed: 12/24/2022]
Abstract
RATIONALE The PTH1R (PTH [parathyroid hormone]/PTHrP [PTH-related protein] receptor) is expressed in vascular smooth muscle (VSM) and increased VSM PTH1R signaling mitigates diet-induced arteriosclerosis in LDLR-/- mice. OBJECTIVE To study the impact of VSM PTH1R deficiency, we generated mice SM22-Cre:PTH1R(fl/fl);LDLR-/- mice (PTH1R-VKO) and Cre-negative controls. METHODS AND RESULTS Immunofluorescence and Western blot confirmed PTH1R expression in arterial VSM that was reduced by Cre-mediated knockout. PTH1R-VKO cohorts exhibited increased aortic collagen accumulation in vivo, and VSM cultures from PTH1R-VKO mice elaborated more collagen (2.5-fold; P=0.01) with elevated Col3a1 and Col1a1 expression. To better understand these profibrotic responses, we performed mass spectrometry on nuclear proteins extracted from Cre-negative controls and PTH1R-VKO VSM. PTH1R deficiency reduced Gata6 but upregulated the MADS (MCM1, Agamous, Deficiens, and Srf DNA-binding domain)-box transcriptional co-regulator, Mkl-1 (megakaryoblastic leukemia [translocation] 1). Co-transfection assays (Col3a1 promoter-luciferase reporter) confirmed PTH1R-mediated inhibition and Mkl-1-mediated activation of Col3a1 transcription. Regulation mapped to a conserved hybrid CT(A/T)6GG MADS-box cognate in the Col3a1 promoter. Mutations of C/G in this motif markedly reduced Col3a1 transcriptional regulation by PTH1R and Mkl-1. Upregulation of Col3a1 and Col1a1 in PTH1R-VKO VSM was inhibited by small interfering RNA targeting Mkl1 and by treatment with the Mkl-1 antagonist CCG1423 or the Rock (Rho-associated coiled-coil containing protein kinase)-2 inhibitor KD025. Chromatin precipitation demonstrated that VSM PTH1R deficiency increased Mkl-1 binding to Col3a1 and Col1a1, but not TNF, promoters. Proteomic studies of plasma extracellular vesicles and VSM from PTH1R-VKO mice identified C1r (complement component 1, r) and C1s (complement component 1, s), complement proteins involved in vascular collagen metabolism, as potential biomarkers. VSM C1r protein and C1r message were increased with PTH1R deficiency, mediated by Mkl-1-dependent transcription and inhibited by CCG1423 or KD025. CONCLUSIONS PTH1R signaling restricts collagen production in the VSM lineage, in part, via Mkl-1 regulatory circuits that control collagen gene transcription. Strategies that maintain homeostatic VSM PTH1R signaling, as reflected in extracellular vesicle biomarkers of VSM PTH1R/Mkl-1 action, may help mitigate arteriosclerosis and vascular fibrosis.
Collapse
MESH Headings
- Animals
- Aorta/metabolism
- Aorta/pathology
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cells, Cultured
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Collagen Type I, alpha 1 Chain
- Collagen Type III/genetics
- Collagen Type III/metabolism
- Diabetes Mellitus/genetics
- Diabetes Mellitus/metabolism
- Diabetes Mellitus/pathology
- Diet, High-Fat
- Disease Models, Animal
- Fibrosis
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Parathyroid Hormone/metabolism
- Rats
- Receptor, Parathyroid Hormone, Type 1/deficiency
- Receptor, Parathyroid Hormone, Type 1/genetics
- Receptor, Parathyroid Hormone, Type 1/metabolism
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription, Genetic
- Vascular Remodeling
Collapse
Affiliation(s)
- Abraham Behrmann
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Dalian Zhong
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Li Li
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Su-Li Cheng
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Megan Mead
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Bindu Ramachandran
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | - Parastoo Sabaeifard
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| | | | - Andrew Lemoff
- Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390
| | - Henry M. Kronenberg
- Endocrine Unit, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114
| | - Dwight A. Towler
- Internal Medicine – Endocrine Division, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
55
|
Role of UDP-Sugar Receptor P2Y 14 in Murine Osteoblasts. Int J Mol Sci 2020; 21:ijms21082747. [PMID: 32326617 PMCID: PMC7216066 DOI: 10.3390/ijms21082747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
The purinergic (P2) receptor P2Y14 is the only P2 receptor that is stimulated by uridine diphosphate (UDP)-sugars and its role in bone formation is unknown. We confirmed P2Y14 expression in primary murine osteoblasts (CB-Ob) and the C2C12-BMP2 osteoblastic cell line (C2-Ob). UDP-glucose (UDPG) had undiscernible effects on cAMP levels, however, induced dose-dependent elevations in the cytosolic free calcium concentration ([Ca2+]i) in CB-Ob, but not C2-Ob cells. To antagonize the P2Y14 function, we used the P2Y14 inhibitor PPTN or generated CRISPR-Cas9-mediated P2Y14 knockout C2-Ob clones (Y14KO). P2Y14 inhibition facilitated calcium signalling and altered basal cAMP levels in both models of osteoblasts. Importantly, P2Y14 inhibition augmented Ca2+ signalling in response to ATP, ADP and mechanical stimulation. P2Y14 knockout or inhibition reduced osteoblast proliferation and decreased ERK1/2 phosphorylation and increased AMPKα phosphorylation. During in vitro osteogenic differentiation, P2Y14 inhibition modulated the timing of osteogenic gene expression, collagen deposition, and mineralization, but did not significantly affect differentiation status by day 28. Of interest, while P2ry14-/- mice from the International Mouse Phenotyping Consortium were similar to wild-type controls in bone mineral density, their tibia length was significantly increased. We conclude that P2Y14 in osteoblasts reduces cell responsiveness to mechanical stimulation and mechanotransductive signalling and modulates osteoblast differentiation.
Collapse
|
56
|
Aziz AH, Wilmoth RL, Ferguson VL, Bryant SJ. IDG-SW3 Osteocyte Differentiation and Bone Extracellular Matrix Deposition Are Enhanced in a 3D Matrix Metalloproteinase-Sensitive Hydrogel. ACS APPLIED BIO MATERIALS 2020; 3:1666-1680. [PMID: 32719827 DOI: 10.1021/acsabm.9b01227] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Osteocytes reside within a heavily mineralized matrix making them difficult to study in vivo and to extract for studies in vitro. IDG-SW3 cells are capable of producing mineralized collagen matrix and transitioning from osteoblasts to mature osteocytes, thus offering an alternative to study osteoblast to late osteocyte differentiation in vitro. The goal for this work was to develop a 3D degradable hydrogel to support IDG-SW3 differentiation and deposition of bone ECM. In 2D, the genes Mmp2 and Mmp13 increased during IDG-SW3 differentiation and were used as targets to create a MMP-sensitive poly(ethylene glycol) hydrogel containing the peptide crosslink GCGPLG-LWARCG and RGD to promote cell attachment. IDG-SW3 differentiation in the MMP-sensitive hydrogels improved over non-degradable hydrogels and standard 2D culture. Alkaline phosphatase activity at day 14 was higher, Dmp1 and Phex were 8.1-fold and 3.8-fold higher, respectively, and DMP1 protein expression was more pronounced in the MMP-sensitive hydrogels compared to non-degradable hydrogels. Cell-encapsulation density (cells/ml precursor) influenced formation of dendrite-like cellular process and mineral and collagen deposition with 80×106 performing better than 2×106 or 20×106, while connexin 43 was not affected by cell density. The cell density effects were more pronounced in the MMP-sensitive hydrogels over non-degradable hydrogels. This study identified that high cell encapsulation density and a hydrogel susceptible to cell-mediated degradation enhanced mineralized collagen matrix and osteocyte differentiation. Overall, a promising hydrogel is presented that supports IDG-SW3 cell maturation from osteoblasts to osteocytes in 3D.
Collapse
Affiliation(s)
- Aaron H Aziz
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO USA.,BioFrontiers Institute, University of Colorado, Boulder, CO 80309 USA
| | - Rachel L Wilmoth
- Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309 USA
| | - Virginia L Ferguson
- BioFrontiers Institute, University of Colorado, Boulder, CO 80309 USA.,Department of Mechanical Engineering, University of Colorado, Boulder, CO 80309 USA.,Material Science and Engineering, University of Colorado, Boulder, CO 80309 USA
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO USA.,BioFrontiers Institute, University of Colorado, Boulder, CO 80309 USA.,Material Science and Engineering, University of Colorado, Boulder, CO 80309 USA
| |
Collapse
|
57
|
Wee NK, Madunic IV, Ivanisevic T, Sinder BP, Kalajzic I. Divergent effects of peripheral and global neuropeptide Y deletion. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2020; 20:579-590. [PMID: 33265087 PMCID: PMC7716695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
OBJECTIVES Neuropeptide Y (NPY) is involved in the coordination of bone mass and adiposity. However, multiple NPY sources exist and their individual contribution to the skeleton and adiposity not known. The objectives of our study were to evaluate the effects of peripheral mesenchymal derived NPY to the skeleton and adiposity and to compare them to the global NPYKO model. METHODS To study the role of mesenchymal-derived NPY, we crossed conditional NPY (NPYfl/fl) mice with Prx1cre to generate PrxNPYKO mice. The bone phenotype was assessed using micro-CT. The skeletal phenotype of PrxNPYKO mice was subsequently compared to global NPYKO model. We evaluated body weight, adiposity and functionally assessed the feeding response of NPY neurons to determine whether central NPY signaling was altered by Prx1cre. RESULTS We identified the increase in cortical parameters in PrxNPYKO mice with no changes to cancellous bone. This was the opposite phenotype to global NPYKO mice generated from the same conditional allele. Male NPYKOmice have increased adiposity, while PrxNPYKO mice showed no difference, demonstrating that local mesenchymal-derived NPY does not influence adiposity. CONCLUSION NPY mediates both positive and negative effects on bone mass via separate regulatory pathways. Deletion of mesenchymal-derived NPY had a positive effect on bone mass.
Collapse
Affiliation(s)
- Natalie K.Y. Wee
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, USA
| | - Ivana Vrhovac Madunic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, USA,Molecular Toxicology Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Tonci Ivanisevic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, USA,Department of Biochemistry, University of Oxford, Oxford, UK
| | - Benjamin P Sinder
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, USA,Corresponding author: Ivo Kalajzic, Department of Reconstructive Sciences, MC 3705, School of Dental Medicine, UConn Health, 263 Farmington Ave, Farmington, CT 06030, USA E-mail:
| |
Collapse
|
58
|
Tresguerres F, Torres J, López-Quiles J, Hernández G, Vega J, Tresguerres I. The osteocyte: A multifunctional cell within the bone. Ann Anat 2020; 227:151422. [DOI: 10.1016/j.aanat.2019.151422] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 01/09/2019] [Accepted: 09/16/2019] [Indexed: 12/31/2022]
|
59
|
Marahleh A, Kitaura H, Ohori F, Kishikawa A, Ogawa S, Shen WR, Qi J, Noguchi T, Nara Y, Mizoguchi I. TNF-α Directly Enhances Osteocyte RANKL Expression and Promotes Osteoclast Formation. Front Immunol 2019; 10:2925. [PMID: 31921183 PMCID: PMC6923682 DOI: 10.3389/fimmu.2019.02925] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/28/2019] [Indexed: 01/08/2023] Open
Abstract
Osteoimmunology peeks into the interaction of bone and the immune system, which has largely proved to be a multiplex reaction. Osteocytes have been shown to regulate bone resorption through the expression of RANKL in physiologic and pathologic conditions. TNF-α, a product of the immune system, is an important cytokine regulating bone resorption in inflammatory conditions either directly or by increasing RANKL and M-CSF expressions by osteoblasts and stromal cells. The effect of TNF-α on a wide range of cell types has been documented; however, the direct effect of TNF-α on osteocytes has not been established yet. In this study, primary osteocytes were isolated by cell sorting from neonatal calvaria of Dmp1-Topaz mice, which express the green fluorescent protein under the influence of dentin matrix protein 1 promoter. The results show that osteocytes have a significantly higher RANKL mRNA expression when cultured with TNF-α. A co-culture system of osteocytes and TNF receptors I and II deficient osteoclast precursors treated with TNF-α show a significant increase in TRAP-positive cells while cultures without TNF-α failed to show TRAP-positive cells. Additionally, in vivo experiments of TNF-α injected to mouse calvaria show an increase in TRAP-positive cell number in the suture mesenchyme and an increase in the percentage of RANKL-positive osteocytes compared to PBS-injected calvaria. Osteocytes cultured with TNF-α show up-regulation of MAPKs phosphorylation measured by western blot, and adding MAPKs inhibitors to osteocytes cultured with TNF-α significantly decreases RANKL mRNA expression compared to osteocytes cultured with TNF-α alone. We also found that TNF-α activates the NF-κB pathway in osteocytes measured as a function of p65 subunit nuclear translocation. TNF-α directly affects osteocyte RANKL expression and increases osteoclastogenesis; our results demonstrate that osteocytes guard an important role in inflammatory bone resorption mediated by TNF-α.
Collapse
Affiliation(s)
- Aseel Marahleh
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Hideki Kitaura
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Fumitoshi Ohori
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Akiko Kishikawa
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Saika Ogawa
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Wei-Ren Shen
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Jiawei Qi
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Takahiro Noguchi
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yasuhiko Nara
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Itaru Mizoguchi
- Division of Orthodontics and Dentofacial Orthopedics, Department of Translational Medicine, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
60
|
Bobek J, Oralova V, Lesot H, Kratochvilova A, Doubek J, Matalova E. Onset of calciotropic receptors during the initiation of mandibular/alveolar bone formation. Ann Anat 2019; 227:151427. [PMID: 31614180 DOI: 10.1016/j.aanat.2019.151427] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
Mandibular/alveolar (m/a) bone, as a component of the periodontal apparatus, allows for the proper tooth anchorage and function of dentition. Bone formation around the tooth germs starts prenatally and, in the mouse model, the mesenchymal condensation turns into a complex vascularized bone (containing osteo-blasts, -cytes, -clasts) within only two days. This very short but critical period is characterized by synchronized cellular and molecular events. The m/a bone, as others, is subjected to endocrine regulations. This not only requires vasculature to allow the circulation of active molecules (ligands), but also the expression of corresponding cell receptors to define target tissues. This contribution aimed at following the dynamics of calciotropic receptors´ expression during morphological transformation of a mesenchymal condensation into the initial m/a bone structure. Receptors for all three calciotropic systemic regulators: parathormone, calcitonin and activated vitamin D (calcitriol), were localized on serial histological sections using immunochemistry and their relative expression was quantified by q-PCR. The onset of calciotropic receptors was followed along with bone cell differentiation (as checked using osteocalcin, sclerostin, RANK and TRAP) and vascularization (CD31) during mouse prenatal/embryonic (E) days 13-15 and 18. Additionally, the timing of calciotropic receptor appearance was compared with that of estrogen receptors (ESR1, ESR2). PTH receptor (PTH1r) appeared in the bone already at E13, when the first osteocalcin-positive cells were detected within the mesenchymal condensation forming the bone anlage. At this stage, blood vessels were only lining the condensation. At E14, the osteoblasts started to express the receptor for activated vitamin D (VDR). At this stage, the vasculature just penetrated the forming bone. On the same day, the first TRAP-positive (but not yet multinucleated) osteoclastic cells were identified. However, calcitonin receptor was detected only one day later. The first Sost-positive osteocytes, present at E15, were PTH1r and VDR positive. ESR1 almost copied the expression pattern of PTH1r, and ESR2 appearance was similar with VDR with a significant increase between E15 and E18. This report focuses on the in vivo situation and links morphological transformation of the mesenchymal cell condensation into a bone structure with dynamics of cell differentiation/maturation, vascularization and onset of receptors for calciotropic endocrine signalling in developing m/a bone.
Collapse
Affiliation(s)
- Jan Bobek
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic
| | - Veronika Oralova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic
| | - Herve Lesot
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic; Department of Biology, University of Ghent, Ghent, Belgium
| | - Adela Kratochvilova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic
| | - Jaroslav Doubek
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Eva Matalova
- Laboratory of Odontogenesis and Osteogenesis, Institute of Animal Physiology and Genetics, Academy of Sciences, Brno, Czech Republic; Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic.
| |
Collapse
|
61
|
Coates BA, McKenzie JA, Buettmann EG, Liu X, Gontarz PM, Zhang B, Silva MJ. Transcriptional profiling of intramembranous and endochondral ossification after fracture in mice. Bone 2019; 127:577-591. [PMID: 31369916 PMCID: PMC6708791 DOI: 10.1016/j.bone.2019.07.022] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/27/2019] [Accepted: 07/18/2019] [Indexed: 12/21/2022]
Abstract
Bone fracture repair represents an important clinical challenge with nearly 1 million non-union fractures occurring annually in the U.S. Gene expression differs between non-union and healthy repair, suggesting there is a pattern of gene expression that is indicative of optimal repair. Despite this, the gene expression profile of fracture repair remains incompletely understood. In this work, we used RNA-seq of two well-established murine fracture models to describe gene expression of intramembranous and endochondral bone formation. We used top differentially expressed genes, enriched gene ontology terms and pathways, callus cellular phenotyping, and histology to describe and contrast these bone formation processes across time. Intramembranous repair, as modeled by ulnar stress fracture, and endochondral repair, as modeled by femur full fracture, exhibited vastly different transcriptional profiles throughout repair. Stress fracture healing had enriched differentially expressed genes associated with bone repair and osteoblasts, highlighting the strong osteogenic repair process of this model. Interestingly, the PI3K-Akt signaling pathway was one of only a few pathways uniquely enriched in stress fracture repair. Full fracture repair involved a higher level of inflammatory and immune cell related genes than did stress fracture repair. Full fracture repair also differed from stress fracture in a robust downregulation of ion channel genes following injury, the role of which in fracture repair is unclear. This study offers a broad description of gene expression in intramembranous and endochondral ossification across several time points throughout repair and suggests several potentially intriguing genes, pathways, and cells whose role in fracture repair requires further study.
Collapse
Affiliation(s)
- Brandon A Coates
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States of America.
| | - Jennifer A McKenzie
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America
| | - Evan G Buettmann
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States of America
| | - Xiaochen Liu
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America
| | - Paul M Gontarz
- Department of Developmental Biology, Washington University in St. Louis, MO, United States of America
| | - Bo Zhang
- Department of Developmental Biology, Washington University in St. Louis, MO, United States of America
| | - Matthew J Silva
- Department of Orthopaedic Surgery, Washington University in St. Louis, MO, United States of America; Department of Biomedical Engineering, Washington University in St. Louis, MO, United States of America
| |
Collapse
|
62
|
Blank M, Sims NA. Cellular Processes by Which Osteoblasts and Osteocytes Control Bone Mineral Deposition and Maturation Revealed by Stage-Specific EphrinB2 Knockdown. Curr Osteoporos Rep 2019; 17:270-280. [PMID: 31401710 DOI: 10.1007/s11914-019-00524-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW We outline the diverse processes contributing to bone mineralization and bone matrix maturation by describing two mouse models with bone strength defects caused by restricted deletion of the receptor tyrosine kinase ligand EphrinB2. RECENT FINDINGS Stage-specific EphrinB2 deletion differs in its effects on skeletal strength. Early-stage deletion in osteoblasts leads to osteoblast apoptosis, delayed initiation of mineralization, and increased bone flexibility. Deletion later in the lineage targeted to osteocytes leads to a brittle bone phenotype and increased osteocyte autophagy. In these latter mice, although mineralization is initiated normally, all processes involved in matrix maturation, including mineral accrual, carbonate substitution, and collagen compaction, progress more rapidly. Osteoblasts and osteocytes control the many processes involved in bone mineralization; defining the contributing signaling activities may lead to new ways to understand and treat human skeletal fragilities.
Collapse
Affiliation(s)
- Martha Blank
- St. Vincent's Institute of Medical Research, and the Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, and the Department of Medicine at St. Vincent's Hospital, The University of Melbourne, Fitzroy, Melbourne, VIC, 3065, Australia.
| |
Collapse
|
63
|
Alternating Differentiation and Dedifferentiation between Mature Osteoblasts and Osteocytes. Sci Rep 2019; 9:13842. [PMID: 31554848 PMCID: PMC6761144 DOI: 10.1038/s41598-019-50236-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022] Open
Abstract
Osteocytes are terminally differentiated osteoblasts embedded in the bone matrix. Evidence indicates that cells in the mesenchymal lineage possess plasticity. However, whether or not osteocytes have the capacity to dedifferentiate back into osteoblasts is unclear. This study aimed to clarify the dedifferentiation potential of osteocytes. Mouse calvarial osteoblasts were isolated and maintained in normal two-dimensional (2D) or collagen gel three-dimensional (3D) cultures. In 2D cultures, osteoblasts exhibited a typical fibroblast-like shape with high Alpl and minimal Sost, Fgf23, and Dmp1 expression and osteoblasts formed mineralised nodules. When these osteoblasts were transferred into 3D cultures, they showed a stellate shape with diminished cytoplasm and numerous long processes and expression of Alpl decreased while Sost, Fgf23, and Dmp1 were significantly increased. These cells were in cell cycle arrest and showed suppressed mineralisation, indicating that they were osteocytes. When these osteocytes were recovered from 3D cultures and cultured two-dimensionally again, they regained adequate cytoplasm and lost the long processes, resulting in a fibroblast-like shape. These cells showed high Alpl and low Sost, Fgf23, and Dmp1 expression with a high mineralisation capability, indicating that they were osteoblasts. This report shows that osteocytes possess the capacity to dedifferentiate back into mature osteoblasts without gene manipulation.
Collapse
|
64
|
Lee BEJ, Shahin‐Shamsabadi A, Wong MK, Raha S, Selvaganapathy PR, Grandfield K. A Bioprinted In Vitro Model for Osteoblast to Osteocyte Transformation by Changing Mechanical Properties of the ECM. ACTA ACUST UNITED AC 2019; 3:e1900126. [PMID: 32648722 DOI: 10.1002/adbi.201900126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/09/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Bryan E. J. Lee
- School of Biomedical EngineeringMcMaster University 1280 Main Street West L8S 4L7 Hamilton Ontario Canada
| | - Alireza Shahin‐Shamsabadi
- School of Biomedical EngineeringMcMaster University 1280 Main Street West L8S 4L7 Hamilton Ontario Canada
| | - Michael K. Wong
- Graduate Program of Medical ScienceMcMaster University 1280 Main Street West L8S 4K1 Hamilton Ontario Canada
| | - Sandeep Raha
- Graduate Program of Medical ScienceMcMaster University 1280 Main Street West L8S 4K1 Hamilton Ontario Canada
- Department of PediatricsMcMaster University 1280 Main Street West L8S 4K1 Hamilton Ontario Canada
| | - Ponnambalam Ravi Selvaganapathy
- School of Biomedical EngineeringMcMaster University 1280 Main Street West L8S 4L7 Hamilton Ontario Canada
- Department of Mechanical EngineeringMcMaster University 1280 Main Street West L8S 4L7 Hamilton Ontario Canada
| | - Kathryn Grandfield
- School of Biomedical EngineeringMcMaster University 1280 Main Street West L8S 4L7 Hamilton Ontario Canada
- Department of Material Science and EngineeringMcMaster University 1280 Main Street West L8S 4L7 Hamilton Ontario Canada
| |
Collapse
|
65
|
Abstract
PURPOSE OF REVIEW This article reviews the past 2 years of research on Notch signaling as it relates to bone physiology, with the goal of reconciling seemingly discrepant findings and identifying fruitful areas of potential future research. RECENT FINDINGS Conditional animal models and high-throughput omics have contributed to a greater understanding of the context-dependent role of Notch signaling in bone. However, significant gaps remain in our understanding of how spatiotemporal context and epigenetic state dictate downstream Notch phenotypes. Biphasic activation of Notch signaling orchestrates progression of mesenchymal progenitor cells through the osteoblast lineage, but there is a limited understanding of ligand- and receptor-specific functions. Paracrine Notch signaling through non-osteoblastic cell types contributes additional layers of complexity, and we anticipate impactful future work related to the integration of these cell types and signaling mechanisms.
Collapse
Affiliation(s)
- Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Pl, Ann Arbor, MI, 48872, USA.
| | - Kurt D Hankenson
- Department of Orthopaedic Surgery, University of Michigan Medical School, 109 Zina Pitcher Pl, Ann Arbor, MI, 48872, USA
| |
Collapse
|
66
|
Werner SL, Sharma R, Woodruff K, Horn D, Harris SE, Gorin Y, Lee DY, Hua R, Gu S, Fajardo RJ, Habib SL, Jiang JX. CSF-1 in Osteocytes Inhibits Nox4-mediated Oxidative Stress and Promotes Normal Bone Homeostasis. JBMR Plus 2019; 4:e10080. [PMID: 32666016 DOI: 10.1002/jbm4.10080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022] Open
Abstract
CSF-1 is a key factor in regulating bone remodeling; osteocytes express CSF-1 and its receptor. Viable osteocytes are essential for bone remodeling through cell-cell contact and secretion of factors that regulate osteoblasts and osteoclasts. Increased oxidative stress contributes to osteocyte death and correlates with bone loss during aging. The NADPH oxidase Nox4 is a major source of ROS in bone. CSF-1 decreases Nox4, suggesting that CSF-1 protects against oxidative stress. Here, we show that osteocyte apoptosis previously reported in our global CSF-1KO mice is associated with increased Nox4, as well as 4-HNE expression in osteocytes. Osteocytes isolated from CSF-1KO mice were less viable and showed increased intracellular ROS, elevated NADPH oxidase activity/Nox4 protein, activation of mTOR/S6K, and downstream apoptosis signals compared with WT osteocytes. Nox4 expression was also increased in CSF-1KO osteocytes and colocalized with MitoTracker Red in mitochondria. Notably, CSF-1 inhibited Nox4 expression and apoptosis cascade signals. In additional studies, shNox4 decreased these signals in CSF-1KO osteocytes, whereas overexpression of Nox4 in WT osteocytes activated the apoptosis pathway. To determine the role of CSF-1 in osteocytes, DMP1Cre-CSF-1cKO (CSF-1cKO) mice that lack CSF-1 in osteocytes/late osteoblasts were developed. Osteocyte defects in CSF-1cKO mice overlapped with those in CSF-1KO mice, including increased apoptosis, Nox4, and 4-HNE-expressing osteocytes. CSF-1cKO mice showed unbalanced cancellous bone remodeling with decreased bone formation and resorption. Continued exposure to high Nox4/ROS levels may further compromise bone formation and predispose to bone loss and skeletal fragility. Taken together, our findings suggest a novel link between CSF-1, Nox4-derived ROS, and osteocyte survival/function that is crucial for osteocyte-mediated bone remodeling. Results reveal new mechanisms by which CSF-1/oxidative stress regulate osteocyte homeostasis, which may lead to therapeutic strategies to improve skeletal health in aging. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sherry L Werner
- Department of Pathology University of Texas Health Science Center at San Antonio TX USA
| | - Ramaswamy Sharma
- Department of Cell Systems and Anatomy University of Texas Health Science Center at San Antonio TX USA
| | - Kathleen Woodruff
- Department of Pathology University of Texas Health Science Center at San Antonio TX USA
| | - Diane Horn
- Department of Pathology University of Texas Health Science Center at San Antonio TX USA
| | - Stephen E Harris
- Department of Periodontics University of Texas Health Science Center at San Antonio TX USA
| | - Yves Gorin
- Department of Medicine/Nephrology University of Texas Health Science Center at San Antonio TX USA
| | - Doug-Yoon Lee
- Department of Medicine/Nephrology University of Texas Health Science Center at San Antonio TX USA
| | - Rui Hua
- Department of Biochemistry and Structural Biology University of Texas Health Science Center at San Antonio TX USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology University of Texas Health Science Center at San Antonio TX USA
| | - Roberto J Fajardo
- Department of Orthopedics University of Texas Health Science Center at San Antonio TX USA
| | - Samy L Habib
- South Texas Veterans Health Care and Department of Cell Systems and Anatomy University of Texas Health Science Center at San Antonio TX USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology University of Texas Health Science Center at San Antonio TX USA
| |
Collapse
|
67
|
Tiede-Lewis LM, Dallas SL. Changes in the osteocyte lacunocanalicular network with aging. Bone 2019; 122:101-113. [PMID: 30743014 PMCID: PMC6638547 DOI: 10.1016/j.bone.2019.01.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022]
Abstract
Osteoporosis is an aging-related disease of reduced bone mass that is particularly prevalent in post-menopausal women, but also affects the aged male population and is associated with increased fracture risk. Osteoporosis is the result of an imbalance whereby bone formation by osteoblasts no longer keeps pace with resorption of bone by osteoclasts. Osteocytes are the most abundant cells in bone and, although previously thought to be quiescent, they are now known to be active, multifunctional cells that play a key role in the maintenance of bone mass by regulating both osteoblast and osteoclast activity. They are also thought to regulate bone mass through their role as mechanoresponsive cells in bone that coordinate adaptive responses to mechanical loading. Osteocytes form an extensive interconnected network throughout the mineralized bone matrix and receive their nutrients as well as hormones and signaling factors through the lacunocanalicular system. Several studies have shown that the extent and connectivity of the lacunocanalicular system and osteocyte networks degenerates in aged humans as well as in animal models of aging. It is also known that the bone anabolic response to loading is decreased with aging. This review summarizes recent research on the degenerative changes that occur in osteocytes and their lacunocanalicular system as a result of aging and discusses the implications for skeletal health and homeostasis as well as potential mechanisms that may underlie these degenerative changes. Since osteocytes are such key regulators of skeletal homeostasis, maintaining the health of the osteocyte network would seem critical for maintenance of bone health. Therefore, a more complete understanding of the structure and function of the osteocyte network, its lacunocanalicular system, and the degenerative changes that occur with aging should lead to advances in our understanding of age related bone loss and potentially lead to improved therapies.
Collapse
Affiliation(s)
- LeAnn M Tiede-Lewis
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, United States of America
| | - Sarah L Dallas
- Department of Oral and Craniofacial Sciences, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, United States of America.
| |
Collapse
|
68
|
Shahba S, Jafari Shakib R, Jamshidi A, Vojdanian M, Akhtari M, Aslani S, Poursani S, Nikokar I, Mahmoudi M. Association study of copy number variation in BMP8A gene with the risk of ankylosing spondylitis in Iranian population. J Cell Biochem 2019; 120:8359-8365. [PMID: 30485530 DOI: 10.1002/jcb.28120] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 10/31/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Copy number variation (CNV) of DNA segments has been considered as an important component of genetic variation, affecting the quality and quantity of gene expression. Bone morphogenic protein 8A (BMP8A) has been reported to function in bone formation. With respect to the bone and joint complications in ankylosing spondylitis (AS), this investigation aimed to study the role of BMP8A gene CNV in impressing the gene expression as well as the disease risk. METHODS A total of 900 individuals, including 450 patients with AS and 450 healthy controls were enrolled. The copy numbers of BMP8A gene were detected by TaqMan real-time polymerase chain reaction (PCR) method. BMP8A messenger RNA (mRNA) transcript level in peripheral blood mononuclear cells (PBMCs) was also measured by SYBR Green real-time gene expression PCR method. RESULTS No significant association of BMP8A copy number was detected with the risk of AS. BMP8A mRNA expression level was significantly downregulated in patients compared with controls. mRNA expression level of BMP8A in both AS patients with and without syndesmophyte was significantly lower than the healthy control group. There was no correlation between the mRNA expression level of BMP8A and both demographic and clinical data of the patients. CONCLUSIONS Although BMP8A gene expression was downregulated in patients with AS, its copy number could not affect the transcript level of BMP8A gene in PBMCs and was not associated with susceptibility to AS in Iranian population. BMP8a may take into account as an indicator of bone formation process in AS, but it seems that mechanisms other than CNV may regulate this protein.
Collapse
Affiliation(s)
- Sara Shahba
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran.,Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Jafari Shakib
- Department of Immunology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ahmadreza Jamshidi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Vojdanian
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Akhtari
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Aslani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Poursani
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Nikokar
- Laboratory of Microbiology and Immunology of Infectious Diseases, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mahdi Mahmoudi
- Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
69
|
Clearfield DS, Xin X, Yadav S, Rowe DW, Wei M. Osteochondral Differentiation of Fluorescent Multireporter Cells on Zonally-Organized Biomaterials. Tissue Eng Part A 2019; 25:468-486. [DOI: 10.1089/ten.tea.2018.0135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Drew S. Clearfield
- Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut
- Center for Regenerative Medicine and Skeletal Development and School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - Xiaonan Xin
- Center for Regenerative Medicine and Skeletal Development and School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - Sumit Yadav
- Department of Orthodontics, School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - David W. Rowe
- Center for Regenerative Medicine and Skeletal Development and School of Dental Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - Mei Wei
- Department of Materials Science and Engineering, Institute of Materials Science, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
70
|
Zimmerman SM, Dimori M, Heard-Lipsmeyer ME, Morello R. The Osteocyte Transcriptome Is Extensively Dysregulated in Mouse Models of Osteogenesis Imperfecta. JBMR Plus 2019; 3:e10171. [PMID: 31372585 PMCID: PMC6659450 DOI: 10.1002/jbm4.10171] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/19/2018] [Accepted: 01/13/2019] [Indexed: 12/14/2022] Open
Abstract
Osteocytes are long‐lived, highly interconnected, terminally differentiated osteoblasts that reside within mineralized bone matrix. They constitute about 95% of adult bone cells and play important functions including in the regulation of bone remodeling, phosphate homeostasis, and mechanical stimuli sensing and response. However, the role of osteocytes in the pathogenesis of congenital diseases of abnormal bone matrix is poorly understood. This study characterized in vivo transcriptional changes in osteocytes from CrtapKO and oim/oim mouse models of osteogenesis imperfecta (OI) compared with wild‐type (WT) control mice. To do this, RNA was extracted from osteocyte‐enriched cortical femurs and tibias, sequenced and subsequently analyzed to identify differentially expressed transcripts. These models were chosen because they mimic two types of OI with different genetic mutations that result in distinct type I collagen defects. A large number of transcripts were dysregulated in either model of OI, but 281 of them were similarly up‐ or downregulated in both compared with WT controls. Conversely, very few transcripts were differentially expressed between the CrtapKO and oim/oim mice, indicating that distinct alterations in type I collagen can lead to shared pathogenic processes and similar phenotypic outcomes. Bioinformatics analyses identified several critical hubs of dysregulation that were enriched in annotation terms such as development and differentiation, ECM and collagen fibril organization, cell adhesion, signaling, regulatory processes, pattern binding, chemotaxis, and cell projections. The data further indicated alterations in important signaling pathways such as WNT and TGF‐β but also highlighted new candidate genes to pursue in future studies. Overall, our study suggested that the osteocyte transcriptome is broadly dysregulated in OI with potential long‐term consequences at the cellular level, which deserve further investigations. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sarah M Zimmerman
- Department of Physiology and Biophysics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Milena Dimori
- Department of Physiology and Biophysics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Melissa E Heard-Lipsmeyer
- Department of Physiology and Biophysics University of Arkansas for Medical Sciences Little Rock AR USA
| | - Roy Morello
- Department of Physiology and Biophysics University of Arkansas for Medical Sciences Little Rock AR USA.,Department of Orthopaedic Surgery University of Arkansas for Medical Sciences Little Rock AR USA.,Division of Genetics University of Arkansas for Medical Sciences Little Rock AR USA
| |
Collapse
|
71
|
Wee NKY, Sinder BP, Novak S, Wang X, Stoddard C, Matthews BG, Kalajzic I. Skeletal phenotype of the neuropeptide Y knockout mouse. Neuropeptides 2019; 73:78-88. [PMID: 30522780 PMCID: PMC6326877 DOI: 10.1016/j.npep.2018.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/04/2018] [Accepted: 11/28/2018] [Indexed: 10/27/2022]
Abstract
Neuropeptide Y (NPY) is involved in multiple processes such as behavior, energy and bone metabolism. Previous studies have relied on global NPY depletion to examine its effects on bone. However, this approach is unable to distinguish the central or local source of NPY influencing bone. Our aim was to identify which cells within the skeleton express Npy and establish a model that will enable us to differentiate effects of NPY derived from different cell types. We have generated the NPY floxed (NPYflox) mice using CRISPR technology. By crossing the NPYflox mice with Hypoxanthine Phosphoribosyltransferase 1 (Hprt)-cre to generate a global knockout, we were able to validate and confirm loss of Npy transcript and protein in our global NPYKO. Global deletion of NPY results in a smaller femoral cortical cross-sectional area (-12%) and reduced bone strength (-18%) in male mice. In vitro, NPY-deficient bone marrow stromal cells (BMSCs) showed increase in osteogenic differentiation detected by increases in alkaline phosphatase staining and bone sialoprotein and osteocalcin expression. Despite both sexes presenting with increased adiposity, female mice had no alterations in bone mass, suggesting that NPY may have sex-specific effects on bone. In this study we identified Npy expression in the skeleton and examined the effect of global NPY depletion to bone mass. The differential impact of NPY deletion in cortical and cancellous compartments along with differences in phenotypes between in vitro and in vivo, highlights the complex nature of NPY signaling, indicative of distinct sources that can be dissected in the future using this NPYflox model.
Collapse
Affiliation(s)
- Natalie K Y Wee
- Department of Reconstructive Sciences, Farmington, CT 06030, USA
| | | | - Sanja Novak
- Department of Reconstructive Sciences, Farmington, CT 06030, USA
| | - Xi Wang
- Department of Reconstructive Sciences, Farmington, CT 06030, USA
| | - Chris Stoddard
- Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA
| | - Brya G Matthews
- Department of Reconstructive Sciences, Farmington, CT 06030, USA; Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1023, New Zealand
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, Farmington, CT 06030, USA.
| |
Collapse
|
72
|
Abstract
Bone tissue is comprised of a collagen-rich matrix containing non-collagenous organic compounds, strengthened by mineral crystals. Bone strength reflects the amount and structure of bone, as well as its quality. These qualities are determined and maintained by osteoblasts (bone-forming cells) and osteoclasts (bone-resorbing cells) on the surface of the bone and osteocytes embedded within the bone matrix. Bone development and growth also involves cartilage cells (chondrocytes). These cells do not act in isolation, but function in a coordinated manner, including co-ordination within each lineage, between the cells of bone, and between these cells and other cell types within the bone microenvironment. This chapter will briefly outline the cells of bone, their major functions, and some communication pathways responsible for controlling bone development and remodeling.
Collapse
Affiliation(s)
- Niloufar Ansari
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Natalie A Sims
- Bone Biology and Disease Unit, St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia.
- Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, VIC, Australia.
| |
Collapse
|
73
|
Gooi JH, Chia LY, Vrahnas C, Sims NA. Isolation, Purification, Generation, and Culture of Osteocytes. Methods Mol Biol 2019; 1914:39-51. [PMID: 30729459 DOI: 10.1007/978-1-4939-8997-3_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Osteocytes reside within bone matrix and produce both paracrine and endocrine factors that influence the skeleton and other tissues. Despite their abundance and physiological importance, osteocytes have been difficult to study in vitro because they are difficult to extract and purify, and do not retain their phenotype in standard culture conditions. However, new techniques for this purpose are emerging. This chapter will describe three methods we use to study osteocytes: (1) isolating and purifying primary osteocytes from murine bone, with and without hematopoietic-lineage depletion, (2) differentiating cultured osteoblasts (or osteoblast cell lines) until they reach a stage of osteocytic gene expression, and (3) using the Ocy454 osteocyte-like cell line.
Collapse
Affiliation(s)
- Jonathan H Gooi
- Department of Medicine, St. Vincent's Hospital Melbourne, The University of Melbourne, Melbourne, VIC, Australia
| | - Ling Yeong Chia
- Department of Medicine, St. Vincent's Hospital Melbourne, The University of Melbourne, Melbourne, VIC, Australia
- St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Clayton, VIC, Australia
| | - Christina Vrahnas
- Department of Medicine, St. Vincent's Hospital Melbourne, The University of Melbourne, Melbourne, VIC, Australia
- St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia
- MRC Protein Phosphorylation & Ubiquitylation Unit, University of Dundee, Sir James Black Centre, Dundee, UK
| | - Natalie A Sims
- Department of Medicine, St. Vincent's Hospital Melbourne, The University of Melbourne, Melbourne, VIC, Australia.
- St. Vincent's Institute of Medical Research, Melbourne, VIC, Australia.
| |
Collapse
|
74
|
Maynard RD, Ackert-Bicknell CL. Mouse Models and Online Resources for Functional Analysis of Osteoporosis Genome-Wide Association Studies. Front Endocrinol (Lausanne) 2019; 10:277. [PMID: 31133984 PMCID: PMC6515928 DOI: 10.3389/fendo.2019.00277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Osteoporosis is a complex genetic disease in which the number of loci associated with the bone mineral density, a clinical risk factor for fracture, has increased at an exponential rate in the last decade. The identification of the causative variants and candidate genes underlying these loci has not been able to keep pace with the rate of locus discovery. A large number of tools and data resources have been built around the use of the mouse as model of human genetic disease. Herein, we describe resources available for functional validation of human Genome Wide Association Study (GWAS) loci using mouse models. We specifically focus on large-scale phenotyping efforts focused on bone relevant phenotypes and repositories of genotype-phenotype data that exist for transgenic and mutant mice, which can be readily mined as a first step toward more targeted efforts designed to deeply characterize the role of a gene in bone biology.
Collapse
Affiliation(s)
- Robert D. Maynard
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY, United States
| | - Cheryl L. Ackert-Bicknell
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester, Rochester, NY, United States
- *Correspondence: Cheryl L. Ackert-Bicknell
| |
Collapse
|
75
|
Abstract
It is from the discovery of leptin and the central nervous system as a regulator of bone remodeling that the presence of autonomic nerves within the skeleton transitioned from a mere histological observation to the mechanism whereby neurons of the central nervous system communicate with cells of the bone microenvironment and regulate bone homeostasis. This shift in paradigm sparked new preclinical and clinical investigations aimed at defining the contribution of sympathetic, parasympathetic, and sensory nerves to the process of bone development, bone mass accrual, bone remodeling, and cancer metastasis. The aim of this article is to review the data that led to the current understanding of the interactions between the autonomic and skeletal systems and to present a critical appraisal of the literature, bringing forth a schema that can put into physiological and clinical context the main genetic and pharmacological observations pointing to the existence of an autonomic control of skeletal homeostasis. The different types of nerves found in the skeleton, their functional interactions with bone cells, their impact on bone development, bone mass accrual and remodeling, and the possible clinical or pathophysiological relevance of these findings are discussed.
Collapse
Affiliation(s)
- Florent Elefteriou
- Department of Molecular and Human Genetics and Orthopedic Surgery, Center for Skeletal Medicine and Biology, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
76
|
Fornetti J, Welm AL, Stewart SA. Understanding the Bone in Cancer Metastasis. J Bone Miner Res 2018; 33:2099-2113. [PMID: 30476357 DOI: 10.1002/jbmr.3618] [Citation(s) in RCA: 303] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
Abstract
The bone is the third most common site of metastasis for a wide range of solid tumors including lung, breast, prostate, colorectal, thyroid, gynecologic, and melanoma, with 70% of metastatic prostate and breast cancer patients harboring bone metastasis.1 Unfortunately, once cancer spreads to the bone, it is rarely cured and is associated with a wide range of morbidities including pain, increased risk of fracture, and hypercalcemia. This fact has driven experts in the fields of bone and cancer biology to study the bone, and has revealed that there is a great deal that each can teach the other. The complexity of the bone was first described in 1889 when Stephen Paget proposed that tumor cells have a proclivity for certain organs, where they "seed" into a friendly "soil" and eventually grow into metastatic lesions. Dr. Paget went on to argue that although many study the "seed" it would be paramount to understand the "soil." Since this original work, significant advances have been made not only in understanding the cell-autonomous mechanisms that drive metastasis, but also alterations which drive changes to the "soil" that allow a tumor cell to thrive. Indeed, it is now clear that the "soil" in different metastatic sites is unique, and thus the mechanisms that allow tumor cells to remain in a dormant or growing state are specific to the organ in question. In the bone, our knowledge of the components that contribute to this fertile "soil" continues to expand, but our understanding of how they impact tumor growth in the bone remains in its infancy. Indeed, we now appreciate that the endosteal niche likely contributes to tumor cell dormancy, and that osteoclasts, osteocytes, and adipocytes can impact tumor cell growth. Here, we discuss the bone microenvironment and how it impacts cancer cell seeding, dormancy, and growth. © 2018 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Jaime Fornetti
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Alana L Welm
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Sheila A Stewart
- Departments of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.,Integrating Communication within the Cancer Environment (ICCE) Institute, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
77
|
Global gene expression analysis identifies Mef2c as a potential player in Wnt16-mediated transcriptional regulation. Gene 2018; 675:312-321. [PMID: 29981832 DOI: 10.1016/j.gene.2018.06.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/24/2018] [Indexed: 01/09/2023]
Abstract
Wnt16 is a major Wnt ligand involved in the regulation of postnatal bone homeostasis. Previous studies have shown that Wnt16 promotes bone formation and inhibits bone resorption, suggesting that this molecule could be targeted for therapeutic interventions to treat bone thinning disorders such as osteoporosis. However, the molecular mechanisms by which Wnt16 regulates bone metabolism is not yet fully understood. To better understand the molecular mechanisms by which Wnt16 promotes bone formation and to identify the target genes regulated by Wnt16 in osteoblasts, we treated calvarial osteoblasts purified from C57Bl/6 mice with recombinant Wnt16 and profiled the gene expression changes by RNA-seq at 24 h post-treatment. We also compared gene expression profiles of Wnt16-treated osteoblasts to canonical Wnt3a- and non-canonical Wnt5a-treated osteoblasts. This study identified 576 genes differentially expressed in Wnt16-treated osteoblasts compared to sham-treated controls; these included several members of Wnt pathway (Wnt2b, Wnt7b, Wnt11, Axin2, Sfrp2, Sfrp4, Fzd5 etc.) and TGF-β/BMP signaling pathway (Bmp7, Inhba, Inhbb, Tgfb2 etc.). Wnt16 also regulated a large number of genes with known bone phenotypes. We also found that about 37% (215/576) of the Wnt16 targets overlapped with Wnt3a targets and ~15% (86/576) overlapped with Wnt5a targets, suggesting that Wnt16 activates both canonical and non-canonical Wnt signaling targets in osteoblasts. Transcription factor binding motif enrichment analysis in the promoter regions of Wnt16 targets identified noncanonical Wnt/JNK pathway activated transcription factors Fosl2 and Fosl1 as two of the most significantly enriched transcription factors associated with genes activated by Wnt16 while Mef2c was the most significantly enriched transcription factor associated with genes repressed by Wnt16. We also found that a large number of Mef2c targets overlapped with genes down-regulated by Wnt16 and Mef2c itself was transcriptionally repressed by Wnt16 suggesting that Mef2c plays a role in Wnt16-mediated transcriptional regulation.
Collapse
|
78
|
Loss of murine Gfi1 causes neutropenia and induces osteoporosis depending on the pathogen load and systemic inflammation. PLoS One 2018; 13:e0198510. [PMID: 29879182 PMCID: PMC5991660 DOI: 10.1371/journal.pone.0198510] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/21/2018] [Indexed: 01/02/2023] Open
Abstract
Gfi1 is a key molecule in hematopoietic lineage development and mutations in GFI1 cause severe congenital neutropenia (SCN). Neutropenia is associated with low bone mass, but the underlying mechanisms are poorly characterized. Using Gfi1 knock-out mice (Gfi1-ko/ko) as SCN model, we studied the relationship between neutropenia and bone mass upon different pathogen load conditions. Our analysis reveals that Gfi1-ko/ko mice kept under strict specific pathogen free (SPF) conditions demonstrate normal bone mass and survival. However, Gfi1-ko/ko mice with early (nonSPF) or late (SPF+nonSPF) pathogen exposure develop low bone mass. Gfi1-ko/ko mice demonstrate a striking rise of systemic inflammatory markers according to elevated pathogen exposure and reduced bone mass. Elevated inflammatory cytokines include for instance Il-1b, Il-6, and Tnf-alpha that regulate osteoclast development. We conclude that low bone mass, due to low neutrophil counts, is caused by the degree of systemic inflammation promoting osteoclastogenesis.
Collapse
|
79
|
Witcher PC, Miner SE, Horan DJ, Bullock WA, Lim KE, Kang KS, Adaniya AL, Ross RD, Loots GG, Robling AG. Sclerostin neutralization unleashes the osteoanabolic effects of Dkk1 inhibition. JCI Insight 2018; 3:98673. [PMID: 29875318 DOI: 10.1172/jci.insight.98673] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 04/26/2018] [Indexed: 12/12/2022] Open
Abstract
The WNT pathway has become an attractive target for skeletal therapies. High-bone-mass phenotypes in patients with loss-of-function mutations in the LRP5/6 inhibitor Sost (sclerosteosis), or in its downstream enhancer region (van Buchem disease), highlight the utility of targeting Sost/sclerostin to improve bone properties. Sclerostin-neutralizing antibody is highly osteoanabolic in animal models and in human clinical trials, but antibody-based inhibition of another potent LRP5/6 antagonist, Dkk1, is largely inefficacious for building bone in the unperturbed adult skeleton. Here, we show that conditional deletion of Dkk1 from bone also has negligible effects on bone mass. Dkk1 inhibition increases Sost expression, suggesting a potential compensatory mechanism that might explain why Dkk1 suppression lacks anabolic action. To test this concept, we deleted Sost from osteocytes in, or administered sclerostin neutralizing antibody to, mice with a Dkk1-deficient skeleton. A robust anabolic response to Dkk1 deletion was manifest only when Sost/sclerostin was impaired. Whole-body DXA scans, μCT measurements of the femur and spine, histomorphometric measures of femoral bone formation rates, and biomechanical properties of whole bones confirmed the anabolic potential of Dkk1 inhibition in the absence of sclerostin. Further, combined administration of sclerostin and Dkk1 antibody in WT mice produced a synergistic effect on bone gain that greatly exceeded individual or additive effects of the therapies, confirming the therapeutic potential of inhibiting multiple WNT antagonists for skeletal health. In conclusion, the osteoanabolic effects of Dkk1 inhibition can be realized if sclerostin upregulation is prevented. Anabolic therapies for patients with low bone mass might benefit from a strategy that accounts for the compensatory milieu of WNT inhibitors in bone tissue.
Collapse
Affiliation(s)
- Phillip C Witcher
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Sara E Miner
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Daniel J Horan
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Whitney A Bullock
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kyung-Eun Lim
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Kyung Shin Kang
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Department of Physical Sciences & Engineering, Anderson University, Anderson, Indiana, USA
| | - Alison L Adaniya
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ryan D Ross
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Gabriela G Loots
- Biology and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, California, USA.,School of Natural Sciences, University of California, Merced, California, USA
| | - Alexander G Robling
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana, USA.,Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, Indiana, USA.,Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, USA.,Indiana Center for Musculoskeletal Health, Indianapolis, Indiana, USA
| |
Collapse
|
80
|
Zavodovskaya R, Stover SM, Murphy BG, Katzman S, Durbin-Johnson B, Britton M, Finno CJ. Bone formation transcripts dominate the differential gene expression profile in an equine osteoporotic condition associated with pulmonary silicosis. PLoS One 2018; 13:e0197459. [PMID: 29856822 PMCID: PMC5983561 DOI: 10.1371/journal.pone.0197459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis has been associated with pulmonary silicosis in California horses exposed to soils rich in cytotoxic silica dioxide crystals, a syndrome termed silicate associated osteoporosis (SAO). The causal mechanism for the development of osteoporosis is unknown. Osteoporotic lesions are primarily located in bone marrow-rich sites such as ribs, scapula and pelvis. Gene transcription patterns within bone marrow and pulmonary lymph nodes of affected horses may offer clues to disease pathobiology. Bone marrow core and tracheobronchial lymph node tissue samples harvested postmortem from affected and unaffected horses were examined histologically and subjected to RNA sequencing (RNA-seq). Sequenced data were analyzed for differential gene expression and gene ontology. Metatranscriptomic and metagenomic assays evaluated samples for infectious agents. Thirteen of 17 differentially expressed transcripts in bone marrow were linked to bone and cartilage formation such as integrin binding bone sialoprotein (log2FC = 3.39, PFDR = 0.013) and chondroadherin (log2FC = 4.48, PFDR = 0.031). Equus caballus solute carrier family 9, subfamily A2 (log2FC = 3.77, PFDR = 0.0034) was one of the four differentially expressed transcripts linked to osteoclast activity. Osteoblasts were hyperplastic and hypertrophic in bone marrow from affected horses. Biological pathways associated with skeletal morphogenesis were significantly enriched in affected horses. The 30 differentially expressed genes in affected lymph nodes were associated with inflammatory responses. Evidence of infectious agents was not found. The SAO affected bone marrow molecular signature demonstrated increased transcription and heightened activation of osteoblasts. Increased osteoblastic activity could be part of the pathological mechanism for osteoporosis or a compensatory response to the accelerated osteolysis. Transcriptome data offer gene targets for inquiries into the role of osteocytes and osteoblasts in SAO pathogenesis. Viral or bacterial infectious etiology in SAO is less likely based on metatranscriptomic and metagenomic data but cannot be completely ruled out.
Collapse
Affiliation(s)
- Regina Zavodovskaya
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Susan M. Stover
- Department of Anatomy, Physiology and Cell Biology, UC Davis School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Brian G. Murphy
- Department of Pathology, Microbiology and Immunology, UC Davis School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Scott Katzman
- Department of Surgical & Radiological Sciences, UC Davis School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Blythe Durbin-Johnson
- Department of Public Health Sciences, UC Davis School of Medicine, University of California, Davis, Davis, California, United States of America
| | - Monica Britton
- UC Davis Genome Center, Bioinformatics Core Facility, University of California, Davis, Davis, California, United States of America
| | - Carrie J. Finno
- Department of Population Health & Reproduction, UC Davis School of Veterinary Medicine, University of California, Davis, California, United States of America
| |
Collapse
|
81
|
Lee NJ, Ali N, Zhang L, Qi Y, Clarke I, Enriquez RF, Brzozowska M, Lee IC, Rogers MJ, Laybutt DR, Center JR, Baldock PA, Herzog H. Osteoglycin, a novel coordinator of bone and glucose homeostasis. Mol Metab 2018; 13:30-44. [PMID: 29799418 PMCID: PMC6026319 DOI: 10.1016/j.molmet.2018.05.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/02/2018] [Accepted: 05/04/2018] [Indexed: 01/09/2023] Open
Abstract
Objective The skeleton, which is strongly controlled by endocrine factors, has recently been shown to also play an active endocrine role itself, specifically influencing energy metabolism. However, much less is known about this role. Therefore, we sought to identify novel endocrine factors involved in the regulation of both bone mass and whole-body glucose homeostasis. Methods We used transcriptomic and proteomic analysis of Y1 receptor deficient osteoblasts combined with the generation of a novel osteoglycin deficient mouse model and performed comprehensive in vivo phenotype profiling, combined with osteoglycin administration in wildtype mice and human studies. Results Here we identify a novel role for osteoglycin, a secreted proteoglycan, in coordinating bone accretion with changes in energy balance. Using an osteoglycin knockout mouse model, we show that at a whole body level, osteoglycin acts to suppress bone formation and modulate whole body energy supplies by altering glucose uptake through changes in insulin secretion and sensitivity, as well as by altering food intake through central signaling. Examining humans following gastric surgery as a model of negative energy balance, we show that osteoglycin is associated with BMI and lean mass as well as changes in weight, BMI, and glucose levels. Conclusions Thus, we identify osteoglycin as a novel factor involved in the regulation of energy homeostasis and identify a role for it in facilitating the matching of bone acquisition to alterations in energy status. Osteoglycin regulates insulin action, bone mass and food intake in mice. Osteoglycin is associated with changes in weight, BMI and glucose in obese humans. Osteoglycin is a downstream mediator of NPY signaling via osteoblastic Y1 receptors.
Collapse
Affiliation(s)
- N J Lee
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincents Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - N Ali
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - L Zhang
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincents Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - Y Qi
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - I Clarke
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - R F Enriquez
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - M Brzozowska
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincents Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - I C Lee
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - M J Rogers
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincents Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - D R Laybutt
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - J R Center
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincents Clinical School, UNSW Sydney, Sydney, NSW, Australia
| | - P A Baldock
- Bone Biology Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincents Clinical School, UNSW Sydney, Sydney, NSW, Australia; Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - H Herzog
- Neuroscience Division, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia; St Vincents Clinical School, UNSW Sydney, Sydney, NSW, Australia; Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
82
|
Morrell AE, Brown GN, Robinson ST, Sattler RL, Baik AD, Zhen G, Cao X, Bonewald LF, Jin W, Kam LC, Guo XE. Mechanically induced Ca 2+ oscillations in osteocytes release extracellular vesicles and enhance bone formation. Bone Res 2018; 6:6. [PMID: 29581909 PMCID: PMC5859015 DOI: 10.1038/s41413-018-0007-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/23/2017] [Indexed: 02/01/2023] Open
Abstract
The vast osteocytic network is believed to orchestrate bone metabolic activity in response to mechanical stimuli through production of sclerostin, RANKL, and osteoprotegerin (OPG). However, the mechanisms of osteocyte mechanotransduction remain poorly understood. We've previously shown that osteocyte mechanosensitivity is encoded through unique intracellular calcium (Ca2+) dynamics. Here, by simultaneously monitoring Ca2+ and actin dynamics in single cells exposed to fluid shear flow, we detected actin network contractions immediately upon onset of flow-induced Ca2+ transients, which were facilitated by smooth muscle myosin and further confirmed in native osteocytes ex vivo. Actomyosin contractions have been linked to the secretion of extracellular vesicles (EVs), and our studies demonstrate that mechanical stimulation upregulates EV production in osteocytes through immunostaining for the secretory vesicle marker Lysosomal-associated membrane protein 1 (LAMP1) and quantifying EV release in conditioned medium, both of which are blunted when Ca2+ signaling was inhibited by neomycin. Axial tibia compression was used to induce anabolic bone formation responses in mice, revealing upregulated LAMP1 and expected downregulation of sclerostin in vivo. This load-related increase in LAMP1 expression was inhibited in neomycin-injected mice compared to vehicle. Micro-computed tomography revealed significant load-related increases in both trabecular bone volume fraction and cortical thickness after two weeks of loading, which were blunted by neomycin treatment. In summary, we found mechanical stimulation of osteocytes activates Ca2+-dependent contractions and enhances the production and release of EVs containing bone regulatory proteins. Further, blocking Ca2+ signaling significantly attenuates adaptation to mechanical loading in vivo, suggesting a critical role for Ca2+-mediated signaling in bone adaptation.
Collapse
Affiliation(s)
- Andrea E. Morrell
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Genevieve N. Brown
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Samuel T. Robinson
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Rachel L. Sattler
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Andrew D. Baik
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Gehua Zhen
- Center for Musculoskeletal Research, Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD USA
| | - Xu Cao
- Center for Musculoskeletal Research, Department of Orthopaedic Surgery, Johns Hopkins University, Baltimore, MD USA
| | - Lynda F. Bonewald
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN USA
| | - Weiyang Jin
- Microscale Biocomplexity Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - Lance C. Kam
- Microscale Biocomplexity Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY USA
| | - X. Edward Guo
- Bone Bioengineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, NY USA
| |
Collapse
|
83
|
Petry B, Savoldi IR, Ibelli AMG, Paludo E, de Oliveira Peixoto J, Jaenisch FRF, de Córdova Cucco D, Ledur MC. New genes involved in the Bacterial Chondronecrosis with Osteomyelitis in commercial broilers. Livest Sci 2018. [DOI: 10.1016/j.livsci.2017.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
84
|
Hadjiargyrou M. Mustn1: A Developmentally Regulated Pan-Musculoskeletal Cell Marker and Regulatory Gene. Int J Mol Sci 2018; 19:ijms19010206. [PMID: 29329193 PMCID: PMC5796155 DOI: 10.3390/ijms19010206] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/26/2017] [Accepted: 01/06/2018] [Indexed: 02/07/2023] Open
Abstract
The Mustn1 gene encodes a small nuclear protein (~9.6 kDa) that does not belong to any known family. Its genomic organization consists of three exons interspersed by two introns and it is highly homologous across vertebrate species. Promoter analyses revealed that its expression is regulated by the AP family of transcription factors, especially c-Fos, Fra-2 and JunD. Mustn1 is predominantly expressed in the major tissues of the musculoskeletal system: bone, cartilage, skeletal muscle and tendon. Its expression has been associated with normal embryonic development, postnatal growth, exercise, and regeneration of bone and skeletal muscle. Moreover, its expression has also been detected in various musculoskeletal pathologies, including arthritis, Duchenne muscular dystrophy, other skeletal muscle myopathies, clubfoot and diabetes associated muscle pathology. In vitro and in vivo functional perturbation revealed that Mustn1 is a key regulatory molecule in myogenic and chondrogenic lineages. This comprehensive review summarizes our current knowledge of Mustn1 and proposes that it is a new developmentally regulated pan-musculoskeletal marker as well as a key regulatory protein for cell differentiation and tissue growth.
Collapse
Affiliation(s)
- Michael Hadjiargyrou
- Department of Life Sciences, New York Institute of Technology, Old Westbury, NY 11568-8000, USA.
| |
Collapse
|
85
|
Chen X, Wang L, Zhao K, Wang H. Osteocytogenesis: Roles of Physicochemical Factors, Collagen Cleavage, and Exogenous Molecules. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:215-225. [PMID: 29304315 DOI: 10.1089/ten.teb.2017.0378] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Osteocytes, the most abundant cell type in mammalian bone, are generally considered as the terminally differentiated cells of osteoblasts that are progressively self-buried or passively embedded in bone matrix. Emerging evidence reveals the essential functions of osteocytes in bone homeostasis and mechanotransduction. However, our knowledge on osteocytes, especially their formation, remains scarce. In this regard, the current review mainly focuses on several key factors that drive the osteocytic differentiation of osteoblasts, that is, osteocytogenesis. Available literature has demonstrated the involvement of physicochemical factors such as matrix composition, oxygen tension, and mechanical stress in the osteoblast-to-osteocyte transition. During cell migration and matrix remodeling, the matrix metalloproteinase-dependent collagen cleavage would play an "active" role in maturation and maintenance of the osteocytes. Besides, some in vitro methodologies are also established to induce the transformation of osteoblastic cell lines and primary mesenchymal cells to preosteocytes through cell transfection or addition of exogenous molecules (e.g., fibroblast growth factor-2, retinoic acid), which could potentiate the effort to form functional bone substitutes through elevated osteocytogenesis. Thus, advances of new technologies would enable comprehensive and in-depth understanding of osteocytes and their development, which in turn help promote the research on osteocyte biology and osteopathology.
Collapse
Affiliation(s)
- Xuening Chen
- 1 National Engineering Research Center for Biomaterials, Sichuan University , Chengdu, China
| | - Lichen Wang
- 2 Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology , Hoboken, New Jersey
| | - Kaitao Zhao
- 2 Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology , Hoboken, New Jersey
| | - Hongjun Wang
- 2 Department of Biomedical Engineering, Chemistry and Biological Sciences, Stevens Institute of Technology , Hoboken, New Jersey
| |
Collapse
|
86
|
Duarte D, Hawkins ED, Akinduro O, Ang H, De Filippo K, Kong IY, Haltalli M, Ruivo N, Straszkowski L, Vervoort SJ, McLean C, Weber TS, Khorshed R, Pirillo C, Wei A, Ramasamy SK, Kusumbe AP, Duffy K, Adams RH, Purton LE, Carlin LM, Lo Celso C. Inhibition of Endosteal Vascular Niche Remodeling Rescues Hematopoietic Stem Cell Loss in AML. Cell Stem Cell 2018; 22:64-77.e6. [PMID: 29276143 PMCID: PMC5766835 DOI: 10.1016/j.stem.2017.11.006] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 09/15/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
Bone marrow vascular niches sustain hematopoietic stem cells (HSCs) and are drastically remodeled in leukemia to support pathological functions. Acute myeloid leukemia (AML) cells produce angiogenic factors, which likely contribute to this remodeling, but anti-angiogenic therapies do not improve AML patient outcomes. Using intravital microscopy, we found that AML progression leads to differential remodeling of vasculature in central and endosteal bone marrow regions. Endosteal AML cells produce pro-inflammatory and anti-angiogenic cytokines and gradually degrade endosteal endothelium, stromal cells, and osteoblastic cells, whereas central marrow remains vascularized and splenic vascular niches expand. Remodeled endosteal regions have reduced capacity to support non-leukemic HSCs, correlating with loss of normal hematopoiesis. Preserving endosteal endothelium with the small molecule deferoxamine or a genetic approach rescues HSCs loss, promotes chemotherapeutic efficacy, and enhances survival. These findings suggest that preventing degradation of the endosteal vasculature may improve current paradigms for treating AML.
Collapse
Affiliation(s)
- Delfim Duarte
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ London, UK; The Francis Crick Institute, WC2A 3LY London, UK.
| | - Edwin D Hawkins
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ London, UK; The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Olufolake Akinduro
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ London, UK
| | - Heather Ang
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ London, UK
| | - Katia De Filippo
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, SW7 2AZ London, UK
| | - Isabella Y Kong
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Myriam Haltalli
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ London, UK
| | - Nicola Ruivo
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ London, UK
| | - Lenny Straszkowski
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia
| | - Stephin J Vervoort
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3052, Australia; Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Catriona McLean
- Department of Haematology, Alfred Hospital, Melbourne, VIC 3004, Australia
| | - Tom S Weber
- Hamilton Institute, Maynooth University, Maynooth, Ireland
| | - Reema Khorshed
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ London, UK
| | - Chiara Pirillo
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ London, UK
| | - Andrew Wei
- Department of Haematology, Alfred Hospital, Melbourne, VIC 3004, Australia
| | | | - Anjali P Kusumbe
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Headington, Oxford OX3 7FY, UK
| | - Ken Duffy
- Hamilton Institute, Maynooth University, Maynooth, Ireland
| | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, 48149 Munster, Germany; University of Münster, Faculty of Medicine, 48149 Munster, Germany
| | - Louise E Purton
- Stem Cell Regulation Unit, St. Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia; Department of Medicine, The University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Leo M Carlin
- Inflammation, Repair and Development, National Heart and Lung Institute, Imperial College London, SW7 2AZ London, UK; Cancer Research UK Beatson Institute, Glasgow G61 1BD, UK
| | - Cristina Lo Celso
- Department of Life Sciences, Sir Alexander Fleming Building, Imperial College London, SW7 2AZ London, UK; The Francis Crick Institute, WC2A 3LY London, UK.
| |
Collapse
|
87
|
Ansari N, Ho PW, Crimeen-Irwin B, Poulton IJ, Brunt AR, Forwood MR, Divieti Pajevic P, Gooi JH, Martin TJ, Sims NA. Autocrine and Paracrine Regulation of the Murine Skeleton by Osteocyte-Derived Parathyroid Hormone-Related Protein. J Bone Miner Res 2018; 33:137-153. [PMID: 28914969 DOI: 10.1002/jbmr.3291] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/28/2017] [Accepted: 09/06/2017] [Indexed: 12/14/2022]
Abstract
Parathyroid hormone-related protein (PTHrP) and parathyroid hormone (PTH) have N-terminal domains that bind a common receptor, PTHR1. N-terminal PTH (teriparatide) and now a modified N-terminal PTHrP (abaloparatide) are US Food and Drug Administration (FDA)-approved therapies for osteoporosis. In physiology, PTHrP does not normally circulate at significant levels, but acts locally, and osteocytes, cells residing within the bone matrix, express both PTHrP and the PTHR1. Because PTHR1 in osteocytes is required for normal bone resorption, we determined how osteocyte-derived PTHrP influences the skeleton. We observed that adult mice with low PTHrP in osteocytes (targeted with the Dmp1(10kb)-Cre) have low trabecular bone volume and osteoblast numbers, but osteoclast numbers were unaffected. In addition, bone size was normal, but cortical bone strength was impaired. Osteocyte-derived PTHrP therefore stimulates bone formation and bone matrix strength, but is not required for normal osteoclastogenesis. PTHrP knockdown and overexpression studies in cultured osteocytes indicate that osteocyte-secreted PTHrP regulates their expression of genes involved in matrix mineralization. We determined that osteocytes secrete full-length PTHrP with no evidence for secretion of lower molecular weight forms containing the N-terminus. We conclude that osteocyte-derived full-length PTHrP acts through both PTHR1 receptor-mediated and receptor-independent actions in a paracrine/autocrine manner to stimulate bone formation and to modify adult cortical bone strength. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Niloufar Ansari
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Patricia Wm Ho
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | - Ingrid J Poulton
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Athena R Brunt
- School of Medical Science and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Mark R Forwood
- School of Medical Science and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, Australia
| | - Paola Divieti Pajevic
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, MA, USA
| | - Jonathan H Gooi
- The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - T John Martin
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Natalie A Sims
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.,The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| |
Collapse
|
88
|
Abstract
Connexons form the basis of hemichannels and gap junctions. They are composed of six tetraspan proteins called connexins. Connexons can function as individual hemichannels, releasing cytosolic factors (such as ATP) into the pericellular environment. Alternatively, two hemichannel connexons from neighbouring cells can come together to form gap junctions, membrane-spanning channels that facilitate cell-cell communication by enabling signalling molecules of approximately 1 kDa to pass from one cell to an adjacent cell. Connexins are expressed in joint tissues including bone, cartilage, skeletal muscle and the synovium. Indicative of their importance as gap junction components, connexins are also known as gap junction proteins, but individual connexin proteins are gaining recognition for their channel-independent roles, which include scaffolding and signalling functions. Considerable evidence indicates that connexons contribute to the function of bone and muscle, but less is known about the function of connexons in other joint tissues. However, the implication that connexins and gap junctional channels might be involved in joint disease, including age-related bone loss, osteoarthritis and rheumatoid arthritis, emphasizes the need for further research into these areas and highlights the therapeutic potential of connexins.
Collapse
Affiliation(s)
- Henry J Donahue
- Department of Biomedical Engineering, Virginia Commonwealth University, 601 West Main Street, Richmond, Virginia 23284, USA
| | - Roy W Qu
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| | - Damian C Genetos
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California at Davis, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|
89
|
Vinik Y, Shatz-Azoulay H, Hiram-Bab S, Kandel L, Gabet Y, Rivkin G, Zick Y. Ablation of the mammalian lectin galectin-8 induces bone defects in mice. FASEB J 2017; 32:2366-2380. [PMID: 29259034 DOI: 10.1096/fj.201700716r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mice overexpressing galectin-8 [gal-8 transgenic (Tg)], a secreted mammalian lectin, exhibit enhanced bone turnover and reduced bone mass, similar to cases of postmenopausal osteoporosis. Here, we show that gal-8 knockout (KO) mice have increased bone mass accrual at a young age but exhibit accelerated bone loss during adulthood. These phenotypes can be attributed to a gal-8-mediated increase in receptor activator of NF-κB ligand (RANKL) expression that promotes osteoclastogenesis, combined with direct inhibition of osteoblast differentiation, evident by reduced bone morphogenetic protein (BMP) signaling, reduced phosphorylation of receptor regulated mothers against decapentaplegic homolog (R-SMAD) and reduced expression of osteoblast differentiation markers osterix, osteocalcin, runt-related transcription factor 2 (RUNX2), dentin matrix acidic phosphoprotein-1 (DMP1), and alkaline phosphatase. At the same time, gal-8 promotes expression of estrogen receptor α (ESR1). Accordingly, the rate of bone loss is accelerated in ovariectomized, estrogen-deficient gal-8 Tg mice, whereas gal-8 KO mice, having low levels of ESR1, are refractory to ovariectomy. Finally, gal-8 mRNA positively correlates with the mRNA levels of osteoclastogenic markers RANKL, tartrate-resistant acid phosphatase, and cathepsin K in human femurs. Collectively, these findings identify gal-8 as a new physiologic player in the regulation of bone mass.-Vinik, Y., Shatz-Azoulay, H., Hiram-Bab, S., Kandel, L., Gabet, Y., Rivkin, G., Zick, Y. Ablation of the mammalian lectin galectin-8 induces bone defects in mice.
Collapse
Affiliation(s)
- Yaron Vinik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Shatz-Azoulay
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Sahar Hiram-Bab
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; and
| | - Leonid Kandel
- Department of Orthopedic Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; and
| | - Gurion Rivkin
- Department of Orthopedic Surgery, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Yehiel Zick
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
90
|
Willebrords J, Maes M, Crespo Yanguas S, Vinken M. Inhibitors of connexin and pannexin channels as potential therapeutics. Pharmacol Ther 2017; 180:144-160. [PMID: 28720428 PMCID: PMC5802387 DOI: 10.1016/j.pharmthera.2017.07.001] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
While gap junctions support the exchange of a number of molecules between neighboring cells, connexin hemichannels provide communication between the cytosol and the extracellular environment of an individual cell. The latter equally holds true for channels composed of pannexin proteins, which display an architecture reminiscent of connexin hemichannels. In physiological conditions, gap junctions are usually open, while connexin hemichannels and, to a lesser extent, pannexin channels are typically closed, yet they can be activated by a number of pathological triggers. Several agents are available to inhibit channels built up by connexin and pannexin proteins, including alcoholic substances, glycyrrhetinic acid, anesthetics and fatty acids. These compounds not always strictly distinguish between gap junctions, connexin hemichannels and pannexin channels, and may have effects on other targets as well. An exception lies with mimetic peptides, which reproduce specific amino acid sequences in connexin or pannexin primary protein structure. In this paper, a state-of-the-art overview is provided on inhibitors of cellular channels consisting of connexins and pannexins with specific focus on their mode-of-action and therapeutic potential.
Collapse
Affiliation(s)
- Joost Willebrords
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Michaël Maes
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, Belgium.
| |
Collapse
|
91
|
Identification of risk genes associated with myocardial infarction based on the recursive feature elimination algorithm and support vector machine classifier. Mol Med Rep 2017; 17:1555-1560. [PMID: 29138828 PMCID: PMC5780094 DOI: 10.3892/mmr.2017.8044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/02/2017] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to identify risk genes in myocardial infarction. Microarray data GSE34198, containing data from the peripheral blood of 49 myocardial infarction samples and 48 corresponding control samples, were downloaded from the Gene Expression Omnibus database to screen the differentially expressed genes (DEGs). The DEGs were used to construct a protein-protein interaction (PPI) network of patient samples, from which the feature genes were identified using the neighboring score method. The recursive feature elimination (RFE) algorithm was employed to select the risk genes among feature genes, which were subsequently applied to perform a support vector machine (SVM) classifier to identify the specific signature in myocardial infarction samples. Another dataset, GSE61144, was also downloaded to verify the efficacy of the classifier. A total of 724 downregulated and 483 upregulated DEGs were screened in patient samples compared with control samples in the GSE34198 dataset. The PPI network of myocardial infarction was comprised of 1,083 nodes (genes) and 46,363 lines (connections). Using the neighborhood scoring method, the top 100 feature genes in myocardial infarction samples were identified as the disease feature genes, which distinguish the myocardial infarction samples from the control samples. The RFE algorithm screened 15 risk genes, which were employed to construct a SVM classifier with an average precision of 88% to the patient sample following visualization by a confusion matrix. The predictive precision of the classifier on another microarray dataset, GSE61144, was 0.92, with an average true positive of 0.9278 and an average false positive of 0.2361. A-kinase-anchoring protein 12 (AKAP12) and glycine receptor α2 (GLRA2) were two risk genes in the SVM classifier. Therefore, AKAP12 and GLRA2 exert potential roles in the development of myocardial infarction, potentially by influencing cardiac contractility and protecting against ischemia-reperfusion injury, which may provide clues in developing potential diagnostic biomarkers or therapeutic targets for myocardial infarction.
Collapse
|
92
|
Okamoto K, Nakashima T, Shinohara M, Negishi-Koga T, Komatsu N, Terashima A, Sawa S, Nitta T, Takayanagi H. Osteoimmunology: The Conceptual Framework Unifying the Immune and Skeletal Systems. Physiol Rev 2017; 97:1295-1349. [DOI: 10.1152/physrev.00036.2016] [Citation(s) in RCA: 369] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 12/13/2022] Open
Abstract
The immune and skeletal systems share a variety of molecules, including cytokines, chemokines, hormones, receptors, and transcription factors. Bone cells interact with immune cells under physiological and pathological conditions. Osteoimmunology was created as a new interdisciplinary field in large part to highlight the shared molecules and reciprocal interactions between the two systems in both heath and disease. Receptor activator of NF-κB ligand (RANKL) plays an essential role not only in the development of immune organs and bones, but also in autoimmune diseases affecting bone, thus effectively comprising the molecule that links the two systems. Here we review the function, gene regulation, and signal transduction of osteoimmune molecules, including RANKL, in the context of osteoclastogenesis as well as multiple other regulatory functions. Osteoimmunology has become indispensable for understanding the pathogenesis of a number of diseases such as rheumatoid arthritis (RA). We review the various osteoimmune pathologies, including the bone destruction in RA, in which pathogenic helper T cell subsets [such as IL-17-expressing helper T (Th17) cells] induce bone erosion through aberrant RANKL expression. We also focus on cellular interactions and the identification of the communication factors in the bone marrow, discussing the contribution of bone cells to the maintenance and regulation of hematopoietic stem and progenitors cells. Thus the time has come for a basic reappraisal of the framework for understanding both the immune and bone systems. The concept of a unified osteoimmune system will be absolutely indispensable for basic and translational approaches to diseases related to bone and/or the immune system.
Collapse
Affiliation(s)
- Kazuo Okamoto
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Tomoki Nakashima
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Masahiro Shinohara
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Takako Negishi-Koga
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Noriko Komatsu
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Asuka Terashima
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Shinichiro Sawa
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Takeshi Nitta
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| | - Hiroshi Takayanagi
- Department of Osteoimmunology, Graduate School of Medicine and Faculty of Medicine, The University of Tokyo, Tokyo, Japan; Department of Cell Signaling, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Tokyo, Japan; Japan Agency for Medical Research and Development, Core Research for Evolutional Science and Technology (AMED-CREST), Tokyo, Japan
| |
Collapse
|
93
|
Shi C, Uda Y, Dedic C, Azab E, Sun N, Hussein AI, Petty CA, Fulzele K, Mitterberger-Vogt MC, Zwerschke W, Pereira R, Wang K, Pajevic PD. Carbonic anhydrase III protects osteocytes from oxidative stress. FASEB J 2017; 32:440-452. [PMID: 28928248 DOI: 10.1096/fj.201700485rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 09/05/2017] [Indexed: 12/26/2022]
Abstract
Osteocytes are master orchestrators of bone remodeling; they control osteoblast and osteoclast activities both directly via cell-to-cell communication and indirectly via secreted factors, and they are the main postnatal source of sclerostin and RANKL (receptor activator of NF-kB ligand), two regulators of osteoblast and osteoclast function. Despite progress in understanding osteocyte biology and function, much remains to be elucidated. Recently developed osteocytic cell lines-together with new genome editing tools-has allowed a closer look at the biology and molecular makeup of these cells. By using single-cell cloning, we identified genes that are associated with high Sost/sclerostin expression and analyzed their regulation and function. Unbiased transcriptome analysis of high- vs. low-Sost/sclerostin-expressing cells identified known and novel genes. Dmp1 (dentin matrix protein 1), Dkk1 (Dickkopf WNT signaling pathway inhibitor 1), and Phex were among the most up-regulated known genes, whereas Srpx2, Cd200, and carbonic anhydrase III (CAIII) were identified as novel markers of differentiated osteocytes. Aspn, Enpp2, Robo2, Nov, and Serpina3g were among the transcripts that were most significantly suppressed in high-Sost cells. Considering that CAII was recently identified as being regulated by Sost/sclerostin and capable of controlling mineral homeostasis, we focused our attention on CAIII. Here, we report that CAIII is highly expressed in osteocytes, is regulated by parathyroid hormone both in vitro and in vivo, and protects osteocytes from oxidative stress.-Shi, C., Uda, Y., Dedic, C., Azab, E., Sun, N., Hussein, A. I., Petty, C. A., Fulzele, K., Mitterberger-Vogt, M. C., Zwerschke, W., Pereira, R., Wang, K., Divieti Pajevic, P. Carbonic anhydrase III protects osteocytes from oxidative stress.
Collapse
Affiliation(s)
- Chao Shi
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA
| | - Yuhei Uda
- Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA
| | - Christopher Dedic
- Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA
| | - Ehab Azab
- Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA
| | - Ningyuan Sun
- Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA
| | - Amira I Hussein
- Department of Orthopedics, School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Christopher A Petty
- Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA
| | - Keertik Fulzele
- Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA
| | | | - Werner Zwerschke
- Cell Metabolism and Differentiation Research Group, University of Innsbruck, Innsbruck, Austria
| | - Renata Pereira
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Kunzheng Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China;
| | - Paola Divieti Pajevic
- Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, Massachusetts, USA;
| |
Collapse
|
94
|
Abstract
PURPOSE OF REVIEW To discuss current knowledge on the role of connexins and pannexins in the musculoskeletal system. RECENT FINDINGS Connexins and pannexins are crucial for the development and maintenance of both bone and skeletal muscle. In bone, the presence of connexin and more recently of pannexin channels in osteoblasts, osteoclasts, and osteocytes has been described and shown to be essential for normal skeletal development and bone adaptation. In skeletal muscles, connexins and pannexins play important roles during development and regeneration through coordinated regulation of metabolic functions via cell-to-cell communication. Further, under pathological conditions, altered expression of these proteins can promote muscle atrophy and degeneration by stimulating inflammasome activity. In this review, we highlight the important roles of connexins and pannexins in the development, maintenance, and regeneration of musculoskeletal tissues, with emphasis on the mechanisms by which these molecules mediate chemical (e.g., ATP and prostaglandin E2) and physical (e.g., mechanical stimulation) stimuli that target the musculoskeletal system and their involvement in the pathophysiological changes in both genetic and acquired diseases.
Collapse
Affiliation(s)
- Lilian I Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS5045, Indianapolis, IN, 46202, USA.
- Roudebush Veterans Administration Medical Center, Indianapolis, Indiana, USA.
- Indiana Center for Musculoskeletal Health, Indianapolis, Indiana, USA.
| | - Hannah M Davis
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, 635 Barnhill Drive, MS5045, Indianapolis, IN, 46202, USA
| | - Bruno A Cisterna
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Av. Alameda 340, Santiago, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Av. Alameda 340, Santiago, Chile.
- Centro Interdisciplinario de Neurociencias de Valparaíso, Valparaíso, Chile.
| |
Collapse
|
95
|
Scheuren A, Wehrle E, Flohr F, Müller R. Bone mechanobiology in mice: toward single-cell in vivo mechanomics. Biomech Model Mechanobiol 2017; 16:2017-2034. [PMID: 28735414 DOI: 10.1007/s10237-017-0935-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 07/11/2017] [Indexed: 01/27/2023]
Abstract
Mechanically driven bone (re)modeling is a multiscale process mediated through complex interactions between multiple cell types and their microenvironments. However, the underlying mechanisms of how cells respond to mechanical signals are still unclear and are at the focus of the field of bone mechanobiology. Traditionally, this complex process has been addressed by reducing the system to single scales and cell types. It is only recently that more integrative approaches have been established to study bone mechanobiology across multiple scales in which mechanical load at the organ level is related to molecular responses at the cellular level. The availability of mouse loading models and imaging techniques with improved spatial and temporal resolution has made it possible to track dynamic bone (re)modeling at the tissue and cellular level in vivo. Coupled with advanced computational models, the (re)modeling activities at the tissue scale can be associated with the mechanical microenvironment. However, methods are lacking to link the molecular responses of different cell types to their local mechanical microenvironment and bone (re)modeling activities occurring at the tissue scale. With recent improvements in "omics" technologies and single-cell molecular biology, it is now possible to sequence the complete genome and transcriptome of single cells. These technologies offer unique opportunities to comprehensively investigate the cellular transcriptional profiles within their specific microenvironment. By combining single-cell "omics" technologies with well-established tissue-scale models of bone mechanobiology, we propose a mechanomics approach to locally analyze the transcriptome of single cells with respect to their local 3D mechanical in vivo environment.
Collapse
Affiliation(s)
- Ariane Scheuren
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Esther Wehrle
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Felicitas Flohr
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Leopold-Ruzicka-Weg 4, 8093, Zurich, Switzerland.
| |
Collapse
|
96
|
Streicher C, Heyny A, Andrukhova O, Haigl B, Slavic S, Schüler C, Kollmann K, Kantner I, Sexl V, Kleiter M, Hofbauer LC, Kostenuik PJ, Erben RG. Estrogen Regulates Bone Turnover by Targeting RANKL Expression in Bone Lining Cells. Sci Rep 2017; 7:6460. [PMID: 28744019 PMCID: PMC5527119 DOI: 10.1038/s41598-017-06614-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/14/2017] [Indexed: 12/21/2022] Open
Abstract
Estrogen is critical for skeletal homeostasis and regulates bone remodeling, in part, by modulating the expression of receptor activator of NF-κB ligand (RANKL), an essential cytokine for bone resorption by osteoclasts. RANKL can be produced by a variety of hematopoietic (e.g. T and B-cell) and mesenchymal (osteoblast lineage, chondrocyte) cell types. The cellular mechanisms by which estrogen acts on bone are still a matter of controversy. By using murine reconstitution models that allow for selective deletion of estrogen receptor-alpha (ERα) or selective inhibition of RANKL in hematopoietic vs. mesenchymal cells, in conjunction with in situ expression profiling in bone cells, we identified bone lining cells as important gatekeepers of estrogen-controlled bone resorption. Our data indicate that the increase in bone resorption observed in states of estrogen deficiency in mice is mainly caused by lack of ERα-mediated suppression of RANKL expression in bone lining cells.
Collapse
Affiliation(s)
- Carmen Streicher
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Alexandra Heyny
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Olena Andrukhova
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Barbara Haigl
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Svetlana Slavic
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Christiane Schüler
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Karoline Kollmann
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ingrid Kantner
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
- UCB Pharma GmbH, Vienna, Austria
| | - Veronika Sexl
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Miriam Kleiter
- Department for Companion Animals and Horses, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Lorenz C Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Paul J Kostenuik
- Amgen Inc., Thousand Oaks, CA, USA
- Phylon Pharma Services, Newbury Park, CA, USA
| | - Reinhold G Erben
- Department of Biomedical Research, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
97
|
Hughes A, Oxford AE, Tawara K, Jorcyk CL, Oxford JT. Endoplasmic Reticulum Stress and Unfolded Protein Response in Cartilage Pathophysiology; Contributing Factors to Apoptosis and Osteoarthritis. Int J Mol Sci 2017; 18:ijms18030665. [PMID: 28335520 PMCID: PMC5372677 DOI: 10.3390/ijms18030665] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 12/11/2022] Open
Abstract
Chondrocytes of the growth plate undergo apoptosis during the process of endochondral ossification, as well as during the progression of osteoarthritis. Although the regulation of this process is not completely understood, alterations in the precisely orchestrated programmed cell death during development can have catastrophic results, as exemplified by several chondrodystrophies which are frequently accompanied by early onset osteoarthritis. Understanding the mechanisms that underlie chondrocyte apoptosis during endochondral ossification in the growth plate has the potential to impact the development of therapeutic applications for chondrodystrophies and associated early onset osteoarthritis. In recent years, several chondrodysplasias and collagenopathies have been recognized as protein-folding diseases that lead to endoplasmic reticulum stress, endoplasmic reticulum associated degradation, and the unfolded protein response. Under conditions of prolonged endoplasmic reticulum stress in which the protein folding load outweighs the folding capacity of the endoplasmic reticulum, cellular dysfunction and death often occur. However, unfolded protein response (UPR) signaling is also required for the normal maturation of chondrocytes and osteoblasts. Understanding how UPR signaling may contribute to cartilage pathophysiology is an essential step toward therapeutic modulation of skeletal disorders that lead to osteoarthritis.
Collapse
Affiliation(s)
- Alexandria Hughes
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA.
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA.
| | - Alexandra E Oxford
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA.
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA.
| | - Ken Tawara
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA.
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA.
| | - Cheryl L Jorcyk
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA.
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA.
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA.
| | - Julia Thom Oxford
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA.
- Biomolecular Sciences Graduate Program, Boise State University, Boise, ID 83725, USA.
- Biomolecular Research Center, Boise State University, Boise, ID 83725, USA.
| |
Collapse
|
98
|
Siddiqui JA, Partridge NC. Physiological Bone Remodeling: Systemic Regulation and Growth Factor Involvement. Physiology (Bethesda) 2017; 31:233-45. [PMID: 27053737 DOI: 10.1152/physiol.00061.2014] [Citation(s) in RCA: 278] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Bone remodeling is essential for adult bone homeostasis. It comprises two phases: bone formation and resorption. The balance between the two phases is crucial for sustaining bone mass and systemic mineral homeostasis. This review highlights recent work on physiological bone remodeling and discusses our knowledge of how systemic and growth factors regulate this process.
Collapse
Affiliation(s)
- Jawed A Siddiqui
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| | - Nicola C Partridge
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York
| |
Collapse
|
99
|
Khialeeva E, Carpenter EM. Nonneuronal roles for the reelin signaling pathway. Dev Dyn 2016; 246:217-226. [PMID: 27739126 DOI: 10.1002/dvdy.24462] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/09/2016] [Accepted: 10/10/2016] [Indexed: 12/21/2022] Open
Abstract
The reelin signaling pathway has been established as an important regulator of cell migration during development of the central nervous system, and disruptions in reelin signaling alter the positioning of many types of neurons. Reelin is a large extracellular matrix glycoprotein and governs cell migration through activation of multiple intracellular signaling events by means of the receptors ApoE receptor 2 (ApoER2) and very low density lipoprotein receptor (VLDLR), and the intracellular adaptor protein Disabled-1 (Dab1). Earlier studies reported expression of reelin in nonneuronal tissues, but the functions of this signaling pathway outside of the nervous system have not been studied until recently. A large body of evidence now suggests that reelin functions during development and disease of multiple nonneuronal tissues. This review addresses recent advances in the field of nonneuronal reelin signaling. Developmental Dynamics 246:217-226, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Elvira Khialeeva
- Molecular Biology Interdepartmental Program, University of California Los Angeles, Los Angeles, California
| | - Ellen M Carpenter
- Department of Psychiatry and Biobehavioral Science, University of California Los Angeles School of Medicine, Los Angeles, California
| |
Collapse
|
100
|
Roeder E, Matthews BG, Kalajzic I. Visual reporters for study of the osteoblast lineage. Bone 2016; 92:189-195. [PMID: 27616604 PMCID: PMC5056847 DOI: 10.1016/j.bone.2016.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 12/24/2022]
Abstract
Advancing our understanding of osteoblast biology and differentiation is critical to elucidate the pathological mechanisms responsible for skeletal diseases such as osteoporosis. Histology and histomorphometry, the classical methods to study osteoblast biology, identify osteoblasts based on their location and morphology and ability to mineralize matrix, but do not clearly define their stage of differentiation. Introduction of visual transgenes into the cells of osteoblast lineage has revolutionized the field and resulted in a paradigm shift that allowed for specific identification and isolation of subpopulations within the osteoblast lineage. Knowledge acquired from the studies based on GFP transgenes has allowed for more precise interpretation of studies analyzing targeted overexpression or deletion of genes in the osteoblast lineage. Here, we provide a condensed overview of the currently available promoter-fluorescent reporter transgenic mice that have been generated and evaluated to varying extents. We cover different stages of the lineage as transgenes have been utilized to identify osteoprogenitors, pre-osteoblasts, osteoblasts, or osteocytes. We show that each of these promoters present with advantages and disadvantages. The studies based on the use of these reporter mice have improved our understanding of bone biology. They constitute attractive models to target osteoblasts and help to understand their cell biology.
Collapse
Affiliation(s)
- Emilie Roeder
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Brya G Matthews
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Ivo Kalajzic
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; Department of Pathophysiology, University of Osijek, Osijek, Croatia.
| |
Collapse
|