51
|
Chandika P, Tennakoon P, Kim TH, Kim SC, Je JY, Kim JI, Lee B, Ryu B, Kang HW, Kim HW, Kim YM, Kim CS, Choi IW, Park WS, Yi M, Jung WK. Marine Biological Macromolecules and Chemically Modified Macromolecules; Potential Anticoagulants. Mar Drugs 2022; 20:md20100654. [PMID: 36286477 PMCID: PMC9604568 DOI: 10.3390/md20100654] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022] Open
Abstract
Coagulation is a potential defense mechanism that involves activating a series of zymogens to convert soluble fibrinogen to insoluble fibrin clots to prevent bleeding and hemorrhagic complications. To prevent the extra formation and diffusion of clots, the counterbalance inhibitory mechanism is activated at levels of the coagulation pathway. Contrariwise, this system can evade normal control due to either inherited or acquired defects or aging which leads to unusual clots formation. The abnormal formations and deposition of excess fibrin trigger serious arterial and cardiovascular diseases. Although heparin and heparin-based anticoagulants are a widely prescribed class of anticoagulants, the clinical use of heparin has limitations due to the unpredictable anticoagulation, risk of bleeding, and other complications. Hence, significant interest has been established over the years to investigate alternative therapeutic anticoagulants from natural sources, especially from marine sources with good safety and potency due to their unique chemical structure and biological activity. This review summarizes the coagulation cascade and potential macromolecular anticoagulants derived from marine flora and fauna.
Collapse
Affiliation(s)
- Pathum Chandika
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
| | - Pipuni Tennakoon
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Tae-Hee Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
| | - Se-Chang Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Jae-Young Je
- Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Korea
| | - Jae-Il Kim
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea
| | - Bonggi Lee
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea
| | - BoMi Ryu
- Major of Food Science and Nutrition, Pukyong National University, Busan 48513, Korea
| | - Hyun Wook Kang
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Hyun-Woo Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Department of Marine Biology, Pukyong National University, Busan 48513, Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Major of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Chang Su Kim
- Department of Orthopedic Surgery, Kosin University Gospel Hospital, Busan 49267, Korea
| | - Il-Whan Choi
- Department of Microbiology, College of Medicine, Inje University, Busan 47392, Korea
| | - Won Sun Park
- Department of Physiology, Institute of Medical Sciences, School of Medicine, Kangwon National University, Chuncheon 24341, Korea
| | - Myunggi Yi
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Korea
- Major of Biomedical Engineering, Division of Smart Healthcare and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan 48513, Korea
- Correspondence:
| |
Collapse
|
52
|
U A, Shetty S, Kulkarni SD, B HK, Pai KSR, A JM, Kumar R, Bharati S. Anticancer therapeutic potential of phosphorylated galactosylated chitosan against N-nitrosodiethyl amine-induced hepatocarcinogenesis. Arch Biochem Biophys 2022; 728:109375. [PMID: 35970414 DOI: 10.1016/j.abb.2022.109375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 12/29/2022]
Abstract
Chitosan is a natural polyfunctional polymer that can be modified to achieve compounds with tailored properties for targeting and treating different cancers. In this study, we report the development and anticancer potential of phosphorylated galactosylated chitosan (PGC). The synthesized compound was characterized by FT-IR, NMR, and mass spectroscopy. The interaction of PGC with asialoglycoprotein receptors (ASGPR) and cellular internalization in HepG2 cells was studied using in silico and uptake studies respectively. PGC was evaluated for its metal chelating, ferric ion reducing, superoxide, and lipid peroxide (LPO) inhibiting potential. Further, anticancer therapeutic potential of PGC was evaluated against N-nitrosodiethylamine (NDEA)-induced hepatocellular carcinoma in a mice model. After development of cancer, PGC was administered to the treatment group (0.5 mg/kg bw, intravenously), once a week for 4 weeks. Characterization studies of PGC revealed successful phosphorylation and galactosylation of chitosan. A strong interaction of PGC with ASGP-receptors was predicted by computational studies and cellular internalization studies demonstrated 98.76 ± 0.53% uptake of PGC in the HepG2 cells. A good metal chelating, ferric ion reducing, and free radical scavenging activity was demonstrated by PGC. The anticancer therapeutic potential of PGC was evident from the observation that PGC treatment increased number of tumor free animals (50%) (6/12) and significantly (p ≤ 0.05) lowered tumor multiplicity as compared to untreated tumor group.
Collapse
Affiliation(s)
- Anushree U
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sachin Shetty
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Suresh D Kulkarni
- Department of Atomic and Molecular Physics, Manipal Institute of Technology Campus, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Harish Kumar B
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - K Sreedhara R Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Jesil Mathew A
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rajesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Sanjay Bharati
- Department of Nuclear Medicine, Manipal College of Health Professions, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
53
|
Duceac IA, Coseri S. Biopolymers and their derivatives: Key components of advanced biomedical technologies. Biotechnol Adv 2022; 61:108056. [DOI: 10.1016/j.biotechadv.2022.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/26/2022] [Accepted: 10/23/2022] [Indexed: 11/02/2022]
|
54
|
Recent Advances of Chitosan Formulations in Biomedical Applications. Int J Mol Sci 2022; 23:ijms231810975. [PMID: 36142887 PMCID: PMC9504745 DOI: 10.3390/ijms231810975] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan, a naturally abundant cationic polymer, is chemically composed of cellulose-based biopolymers derived by deacetylating chitin. It offers several attractive characteristics such as renewability, hydrophilicity, biodegradability, biocompatibility, non-toxicity, and a broad spectrum of antimicrobial activity towards gram-positive and gram-negative bacteria as well as fungi, etc., because of which it is receiving immense attention as a biopolymer for a plethora of applications including drug delivery, protective coating materials, food packaging films, wastewater treatment, and so on. Additionally, its structure carries reactive functional groups that enable several reactions and electrochemical interactions at the biomolecular level and improves the chitosan’s physicochemical properties and functionality. This review article highlights the extensive research about the properties, extraction techniques, and recent developments of chitosan-based composites for drug, gene, protein, and vaccine delivery applications. Its versatile applications in tissue engineering and wound healing are also discussed. Finally, the challenges and future perspectives for chitosan in biomedical applications are elucidated.
Collapse
|
55
|
Bolshakov IN, Gornostaev LM, Fominykh OI, Svetlakov AV. Synthesis, Chemical and Biomedical Aspects of the Use of Sulfated Chitosan. Polymers (Basel) 2022; 14:polym14163431. [PMID: 36015688 PMCID: PMC9412326 DOI: 10.3390/polym14163431] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/07/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
This work is devoted to the chemical synthesis of sulfated chitosan and its experimental verification in an animal model of early atherosclerosis. The method of chitosan quaternization with sulfate-containing ingredients resulted in a product with a high content of sulfate groups. Implantation of this product into the fascial-muscular sheath of the main limb artery along the leg and thigh in rabbits led to the extraction of cholesterol from the subintimal region. Simplified methods for the chemical synthesis of quaternized sulfated chitosan and the use of these products in a model of experimental atherosclerosis made it possible to perform a comparative morphological analysis of the vascular walls of the experimental and control limbs under conditions of a long-term high-cholesterol diet. The sulfated chitosan samples after implantation were shown to change the morphological pattern of the intimal and middle membranes of the experimental limb artery. The implantation led to the degradation of soft plaques within 30 days after surgical intervention, which significantly increased collateral blood flow. The implantation of sulfated chitosan into the local area of the atherosclerotic lesions in the artery can regulate the cholesterol content in the vascular wall and destroy soft plaques in the subintimal region.
Collapse
Affiliation(s)
- I. N. Bolshakov
- Department of Operative Surgery and Topographic Anatomy, FSBE Higher Education Prof. V.F. Voyno-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
- Correspondence: ; Tel.: +7-8-913-511-0933
| | - L. M. Gornostaev
- Department of Operative Surgery and Topographic Anatomy, FSBE Higher Education Prof. V.F. Voyno-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
- Department of Biology, Chemistry and Ecology, Krasnoyarsk State Pedagogical University Named after V.P. Astafiev, Krasnoyarsk 660049, Russia
| | - O. I. Fominykh
- Department of Biology, Chemistry and Ecology, Krasnoyarsk State Pedagogical University Named after V.P. Astafiev, Krasnoyarsk 660049, Russia
| | - A. V. Svetlakov
- AlfaChem Limited Liability Company, Krasnoyarsk 660135, Russia
| |
Collapse
|
56
|
Chen Q, Qi Y, Jiang Y, Quan W, Luo H, Wu K, Li S, Ouyang Q. Progress in Research of Chitosan Chemical Modification Technologies and Their Applications. Mar Drugs 2022; 20:md20080536. [PMID: 36005539 PMCID: PMC9410415 DOI: 10.3390/md20080536] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 02/07/2023] Open
Abstract
Chitosan, which is derived from chitin, is the only known natural alkaline cationic polymer. Chitosan is a biological material that can significantly improve the living standard of the country. It has excellent properties such as good biodegradability, biocompatibility, and cell affinity, and has excellent biological activities such as antibacterial, antioxidant, and hemostasis. In recent years, the demand has increased significantly in many fields and has huge application potential. Due to the poor water solubility of chitosan, its wide application is limited. However, chemical modification of the chitosan matrix structure can improve its solubility and biological activity, thereby expanding its application range. The review covers the period from 1996 to 2022 and was elaborated by searching Google Scholar, PubMed, Elsevier, ACS publications, MDPI, Web of Science, Springer, and other databases. The various chemical modification methods of chitosan and its main activities and application research progress were reviewed. In general, the modification of chitosan and the application of its derivatives have had great progress, such as various reactions, optimization of conditions, new synthetic routes, and synthesis of various novel multifunctional chitosan derivatives. The chemical properties of modified chitosan are usually better than those of unmodified chitosan, so chitosan derivatives have been widely used and have more promising prospects. This paper aims to explore the latest progress in chitosan chemical modification technologies and analyze the application of chitosan and its derivatives in various fields, including pharmaceuticals and textiles, thus providing a basis for further development and utilization of chitosan.
Collapse
Affiliation(s)
- Qizhou Chen
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Yi Qi
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Yuwei Jiang
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
| | - Weiyan Quan
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Hui Luo
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- Correspondence: (H.L.); (Q.O.); Tel.: +86-137-0273-9877 (H.L.); +86-180-2842-0107 (Q.O.)
| | - Kefeng Wu
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Sidong Li
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
| | - Qianqian Ouyang
- The Public Service Platform of South China Sea for R&D Marine Biomedicine Resources, Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- Guangdong (Zhanjiang) Provincial Laboratory of Southern Marine Science and Engineering, Zhanjiang 524023, China
- Correspondence: (H.L.); (Q.O.); Tel.: +86-137-0273-9877 (H.L.); +86-180-2842-0107 (Q.O.)
| |
Collapse
|
57
|
Chitosan and its derivatives as polymeric anti-viral therapeutics and potential anti-SARS-CoV-2 nanomedicine. Carbohydr Polym 2022; 290:119500. [PMID: 35550778 PMCID: PMC9020865 DOI: 10.1016/j.carbpol.2022.119500] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 01/07/2023]
Abstract
The coronavirus pandemic, COVID-19 has a global impact on the lives and livelihoods of people. It is characterized by a widespread infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), where infected patients may develop serious medical complications or even face death. Development of therapeutic is essential to reduce the morbidity and mortality of infected patients. Chitosan is a versatile biomaterial in nanomedicine and exhibits anti-microbial, anti-cancer and immunomodulatory properties. This review highlights the progress in chitosan design and application pertaining to the anti-viral effects of chitosan and chitosan derivatives (hydroxypropyl trimethylammonium, sulfate, carboxymethyl, bromine, sialylglycopolymer, peptide and phosphonium conjugates) as a function of molecular weight, degree of deacetylation, type of substituents and their degree and site of substitution. The physicochemical attributes of these polymeric therapeutics are identified against the possibility of processing them into nanomedicine which can confer a higher level of anti-viral efficacy. The designs of chitosan for the purpose of targeting SARS-CoV-2, as well as the ever-evolving strains of viruses with a broad spectrum anti-viral activity to meet pandemic preparedness at the early stages of outbreak are discussed.
Collapse
|
58
|
Ji M, Li J, Wang Y, Li F, Man J, Li J, Zhang C, Peng S, Wang S. Advances in chitosan-based wound dressings: Modifications, fabrications, applications and prospects. Carbohydr Polym 2022; 297:120058. [DOI: 10.1016/j.carbpol.2022.120058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 12/15/2022]
|
59
|
Zou W, Gu J, Li J, Wang Y, Chen S. Tailorable antibacterial and cytotoxic chitosan derivatives by introducing quaternary ammonium salt and sulfobetaine. Int J Biol Macromol 2022; 218:992-1001. [PMID: 35878673 DOI: 10.1016/j.ijbiomac.2022.07.122] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/04/2022] [Accepted: 07/16/2022] [Indexed: 11/30/2022]
Abstract
Chitosan (CS) derivatives with improved water solubility, antibacterial activity and adequate biocompatibility are attracting increasingly interest in medical application. Herein, we have successfully synthesized isocyanate terminated quaternary ammonium salt (IQAS) and sulfopropylbetaine (ISB) to be readily covalently bounded to CS skeleton by selective reaction with amino and hydroxyl groups. And their molecular structures and crystallinity were confirmed by Fourier transform infrared spectroscopy, proton nuclear magnetic resonance, and X-ray diffraction. The effect of the substitution degree, carbon chain length, content ratio of IQAS/ISB on their water solubility, antibacterial activity and cytotoxicity were systematically investigated, which shows that those properties of the CS derivatives can be tailored by adjusting the grafted antibacterial agents and their additive amount. The structure-property relationship of these CS derivatives may provide a solid guidance on the development of CS derivatives for more efficient practical applications.
Collapse
Affiliation(s)
- Wanjing Zou
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Jingwei Gu
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China
| | - Jianna Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Health Sciences Center, Shenzhen 518060, China
| | - Yuanfang Wang
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China.
| | - Shiguo Chen
- Nanshan District Key Lab for Biopolymers and Safety Evaluation, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, PR China.
| |
Collapse
|
60
|
Mumtaz S, Ali S, Mumtaz S, Mughal TA, Tahir HM, Shakir HA. Chitosan conjugated silver nanoparticles: the versatile antibacterial agents. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04321-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
61
|
Lima R, Fernandes C, Pinto MMM. Molecular modifications, biological activities, and applications of chitosan and derivatives: A recent update. Chirality 2022; 34:1166-1190. [PMID: 35699356 DOI: 10.1002/chir.23477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 11/12/2022]
Abstract
Polysaccharides arouse great interest due to their structure and unique properties, such as biocompatibility, biodegradability, and absence of toxicity. Polysaccharides from marine sources are particularly useful due to the wide variety of applications and biological activities. Chitosan, a deacetylated derivative of chitin, is an example of an interesting bioactive marine-derived polysaccharide. Moreover, a wide variety of chemical modifications and conjugation of chitosan with other bioactive molecules are responsible for improvements in physicochemical properties and biological activities, expanding the range of applications. An overview of the synthetic approaches for preparing chitosan, chitosan derivatives, and conjugates is described and discussed. A recent update of the biological activities and applications in different research fields, mainly focused on the last 5 years, is presented, highlighting current trends.
Collapse
Affiliation(s)
- Rita Lima
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Centro interdisciplinar de Investigação marinha e Ambiental (CIIMAR), Universidade do Porto, Matosinhos, Portugal
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Centro interdisciplinar de Investigação marinha e Ambiental (CIIMAR), Universidade do Porto, Matosinhos, Portugal
| | - Madalena M M Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.,Centro interdisciplinar de Investigação marinha e Ambiental (CIIMAR), Universidade do Porto, Matosinhos, Portugal
| |
Collapse
|
62
|
Recent advances of chitosan-based polymers in biomedical applications and environmental protection. JOURNAL OF POLYMER RESEARCH 2022. [PMCID: PMC9167648 DOI: 10.1007/s10965-022-03121-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Interest in polymer-based biomaterials such as chitosan and its modifications and also the methods of their application in various fields of science is uninterruptedly growing. Owing to unique physicochemical, biological, ecological, physiological properties, such as biocompatibility, biodegradability, stability in the natural environment, non-toxicity, high biological activity, economic affordability, chelating of metal ions, high sorption properties, chitosan is used in various biomedical and industrial processes. The reactivity of the amino and hydroxyl groups in the structure makes it more interesting for diverse applications in drug delivery, tissue engineering, wound healing, regenerative medicine, blood anticoagulation and bone, tendon or blood vessel engineering, dentistry, biotechnology, biosensing, cosmetics, water treatment, agriculture. Taking into account the current situation in the world with COVID-19 and other viruses, chitosan is also active in the form of a vaccine system, it can deliver antibodies to the nasal mucosa and load gene drugs that prevent or disrupt the replication of viral DNA/RNA, and deliver them to infected cells. The presented article is an overview of the nowaday state of the application of chitosan, based on literature of recent years, showing importance of fundamental and applied studies aimed to expand application of chitosan-based polymers in many fields of science.
Collapse
|
63
|
Wei Q, Fu G, Wang K, Yang Q, Zhao J, Wang Y, Ji K, Song S. Advances in Research on Antiviral Activities of Sulfated Polysaccharides from Seaweeds. Pharmaceuticals (Basel) 2022; 15:ph15050581. [PMID: 35631407 PMCID: PMC9147703 DOI: 10.3390/ph15050581] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/21/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023] Open
Abstract
In recent years, various viral diseases have suddenly erupted, resulting in widespread infection and death. A variety of biological activities from marine natural products have gradually attracted the attention of people. Seaweeds have a wide range of sources, huge output, and high economic benefits. This is very promising in the pharmaceutical industry. In particular, sulfated polysaccharides derived from seaweeds, considered a potential source of bioactive compounds for drug development, have shown antiviral activity against a broad spectrum of viruses, mainly including common DNA viruses and RNA viruses. In addition, sulfated polysaccharides can also improve the body’s immunity. This review focuses on recent advances in antiviral research on the sulfated polysaccharides from seaweeds, including carrageenan, galactan, fucoidan, alginate, ulvan, p-KG03, naviculan, and calcium spirulan. We hope that this review will provide new ideas for the development of COVID-19 therapeutics and vaccines.
Collapse
Affiliation(s)
- Qiang Wei
- Marine College, Shandong University, Weihai 264209, China; (Q.W.); (K.W.); (Q.Y.); (J.Z.); (Y.W.)
| | - Guoqiang Fu
- Weihaiwei People’s Hospital, Weihai 264200, China;
| | - Ke Wang
- Marine College, Shandong University, Weihai 264209, China; (Q.W.); (K.W.); (Q.Y.); (J.Z.); (Y.W.)
| | - Qiong Yang
- Marine College, Shandong University, Weihai 264209, China; (Q.W.); (K.W.); (Q.Y.); (J.Z.); (Y.W.)
| | - Jiarui Zhao
- Marine College, Shandong University, Weihai 264209, China; (Q.W.); (K.W.); (Q.Y.); (J.Z.); (Y.W.)
| | - Yuan Wang
- Marine College, Shandong University, Weihai 264209, China; (Q.W.); (K.W.); (Q.Y.); (J.Z.); (Y.W.)
| | - Kai Ji
- Department of Plastic Surgery, China-Japan Friendship Hospital, Beijing 100029, China
- Correspondence: (K.J.); (S.S.)
| | - Shuliang Song
- Marine College, Shandong University, Weihai 264209, China; (Q.W.); (K.W.); (Q.Y.); (J.Z.); (Y.W.)
- Correspondence: (K.J.); (S.S.)
| |
Collapse
|
64
|
Li X, Wang Y, Feng C, Chen H, Gao Y. Chemical Modification of Chitosan for Developing Cancer Nanotheranostics. Biomacromolecules 2022; 23:2197-2218. [PMID: 35522524 DOI: 10.1021/acs.biomac.2c00184] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer is a worldwide public health issue that has not been conquered. Theranostics, the combination of a therapeutic drug and imaging agent in one formulation using nanomaterials, has been developed to better cure cancer in recent years. Although diverse biomaterials have been applied in cancer theranostics, chitosan (CS), a natural polysaccharide bearing easy modification sites with excellent biocompatibility and biodegradability, shows great potential for developing cancer nanotheranostics. In this review, we seek to describe the chemical functionalities of CS used in cancer theranostics and their synthesis methods. We also present recent discoveries and research progresses on how the CS functionalization could improve the delivery efficiency of CS-based nanotheranostics. Finally, we report several case studies about the application of CS-based nanotheranostics. This paper focuses on the strategies to construct CS-based theranostics systems via chemical routes and highlights their applications in cancer treatment, which can provide useful references for further studies.
Collapse
Affiliation(s)
- Xudong Li
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Yuran Wang
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Chenyun Feng
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| | - Haijun Chen
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yu Gao
- Cancer Metastasis Alert and Prevention Center, College of Chemistry, and Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
65
|
Jiménez-Arriagada D, Hidalgo AA, Neira V, Neira-Carrillo A, Bucarey SA. Low molecular weight sulfated chitosan efficiently reduces infection capacity of porcine circovirus type 2 (PCV2) in PK15 cells. Virol J 2022; 19:52. [PMID: 35331290 PMCID: PMC8943519 DOI: 10.1186/s12985-022-01781-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
Background Porcine circovirus type 2 (PCV2)-associated diseases are a major problem for the swine industry worldwide. In addition to vaccines, the availability of antiviral polymers provides an efficient and safe option for reducing the impact of these diseases. By virtue of their molecular weight and repetitious structure, polymers possess properties not found in small-molecule drugs. In this perspective, we focus on chitosan, a ubiquitous biopolymer, that adjusts the molecular weight and sulfated-mediated functionality can act as an efficient antiviral polymer by mimicking PCV2-cell receptor interactions. Methods Sulfated chitosan (Chi-S) polymers of two molecular weights were synthesized and characterized by FTIR, SEM–EDS and elemental analysis. The Chi-S solutions were tested against PCV2 infection in PK15 cells in vitro and antiviral activity was evaluated by measuring the PCV2 DNA copy number, TCID50 and capsid protein expression, upon application of different molecular weights, sulfate functionalization, and concentrations of polymer. In addition, to explore the mode of action of the Chi-S against PCV2 infection, experiments were designed to elucidate whether the antiviral activity of the Chi-S would be influenced by when it was added to the cells, relative to the time and stage of viral infection. Results Chi-S significantly reduced genomic copies, TCID50 titers and capsid protein of PCV2, showing specific antiviral effects depending on its molecular weight, concentration, and chemical functionalization. Assays designed to explore the mode of action of the low molecular weight Chi-S revealed that it exerted antiviral activity through impeding viral attachment and penetration into cells. Conclusions These findings help better understanding the interactions of PCV2 and porcine cells and reinforce the idea that sulfated polymers, such as Chi-S, represent a promising candidates for use in antiviral therapies against PCV2-associated diseases. Further studies in swine are warranted.
Collapse
Affiliation(s)
- Daniela Jiménez-Arriagada
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Campus Sur Universidad de Chile, Santa Rosa 11315, La Pintana, CP: 8820808, Santiago, Chile
| | - Alejandro A Hidalgo
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Sazié 2320, Santiago, Chile
| | - Victor Neira
- Unidad de Virología, Departamento de Medicina Preventiva, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - Andrónico Neira-Carrillo
- Laboratorio Polyform, Departamento de Ciencias Biológicas, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Av. Sta. Rosa 11735, La Pintana, Santiago, Chile.
| | - Sergio A Bucarey
- Departamento de Ciencias Biológicas, Centro Biotecnológico Veterinario, Biovetec, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santa Rosa 11735, La Pintana, Santiago, Chile.
| |
Collapse
|
66
|
Rodríguez-Félix DE, Pérez-Caballero D, del Castillo-Castro T, Castillo-Ortega MM, Garmendía-Diago Y, Alvarado-Ibarra J, Plascencia-Jatomea M, Ledezma-Pérez AS, Burruel-Ibarra SE. Chitosan hydrogels chemically crosslinked with L-glutamic acid and their potential use in drug delivery. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04152-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
67
|
Liu S, Huang X, Fu C, Dou Q, Li J, Feng X, Mo Y, Meng X, Zeng C, Wu A, Li C. Is It an Outbreak of Health Care-Associated Infection? An Investigation of Binocular Conjunctival Congestion After Laparoscopic Cholecystectomy Was Traced to Chitosan Derivatives. Front Med (Lausanne) 2022; 9:759945. [PMID: 35321463 PMCID: PMC8936390 DOI: 10.3389/fmed.2022.759945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background From May 6 to May 23, 2019, 24 (80.00%) patients who underwent laparoscopic cholecystectomy (LC) developed binocular conjunctival congestion within 4–8 h after their operation in the day ward of a teaching hospital. Methods Nosocomial infection prevention and control staff undertook procedural and environmental investigations, performed a case-control retrospective study (including 24 cases and 48 controls), and reviewed all lot numbers of biological material products to investigate the suspected outbreak of health care-associated infection. Findings Initially, an outbreak of health care-associated infection caused by bacteria was hypothesized. We first suspected the membranes that covered patients' eyes were cut using non-sterile scissors and thus contaminated, but they failed to yield bacteria. In addition, both corneal and conjunctival fluorescein staining results were negative in case-patients and isolated bacteria were ubiquitous in the environment or common skin commensals or normal flora of conjunctiva from 218 samples from day surgery and the day ward. Hence, we considered a non-infectious factor as the most likely cause of the binocular conjunctival congestion. Then, we found that case-patients were more likely than LC surgery patients without binocular conjunctival congestion to be exposed to biological materials in a retrospective case-control study. When we reviewed lot numbers, duration of use, and the number of patients who received four biological material products during LC in the day ward, we found that the BLK1821 lot of a modified chitosan medical membrance (the main ingredient is chitosan, a linear cationic polysaccharide) was used concurrently to when the case aggregation appeared. Finally, we surmised there was a correlation between this product and the outbreak of binocular conjunctival congestion. Relapse of the pseudo-outbreak has not been observed since stopping usage of the product for 6 months. Conclusion A cluster of binocular non-infectious conjunctival congestion diagnosed after LC proved to be a pseudo-outbreak. We should pay more attention to adverse events caused by biomaterials in hospitals.
Collapse
Affiliation(s)
- Sidi Liu
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Xun Huang
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Chenchao Fu
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Qingya Dou
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Jie Li
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Xuelian Feng
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Operating Room Department, Xiangya Hospital of Central South University, Changsha, China
| | - Yang Mo
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Day Ward Unit, Xiangya Hospital of Central South University, Changsha, China
| | - Xiujuan Meng
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Cui Zeng
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
| | - Anhua Wu
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Anhua Wu
| | - Chunhui Li
- Infection Control Center, Xiangya Hospital of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- Chunhui Li
| |
Collapse
|
68
|
Application of Chitosan and Its Derivative Polymers in Clinical Medicine and Agriculture. Polymers (Basel) 2022; 14:polym14050958. [PMID: 35267781 PMCID: PMC8912330 DOI: 10.3390/polym14050958] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/21/2022] Open
Abstract
Chitosan is a biodegradable natural polymer derived from the exoskeleton of crustaceans. Because of its biocompatibility and non-biotoxicity, chitosan is widely used in the fields of medicine and agriculture. With the latest technology and technological progress, different active functional groups can be connected by modification, surface modification, or other configurations with various physical, chemical, and biological properties. These changes can significantly expand the application range and efficacy of chitosan polymers. This paper reviews the different uses of chitosan, such as catheter bridging to repair nerve broken ends, making wound auxiliaries, as tissue engineering repair materials for bone or cartilage, or as carriers for a variety of drugs to expand the volume or slow-release and even show potential in the fight against COVID-19. In addition, it is also discussed that chitosan in agriculture can improve the growth of crops and can be used as an antioxidant coating because its natural antibacterial properties are used alone or in conjunction with a variety of endophytic bacteria and metal ions. Generally speaking, chitosan is a kind of polymer material with excellent development prospects in medicine and agriculture.
Collapse
|
69
|
Guo S, Yu B, Ahmed A, Cong H, Shen Y. Synthesis of polyacrylonitrile/polytetrahydropyrimidine (PAN/PTHP) nanofibers with enhanced antibacterial and anti-viral activities for personal protective equipment. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127602. [PMID: 34749230 DOI: 10.1016/j.jhazmat.2021.127602] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/11/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Emerging infectious diseases caused by the spread of bacteria and viruses are a major burden on global economic development and public health. At present, most personal protective equipment has weak antibacterial and anti-viral properties. The PAN/PTHP nanofibers reported in this article provide a new method for the development of personal protective equipment. In this study, a mixture of PTHP and PAN was prepared into PAN/PTHP nanofibers with high-efficiency and long-lasting antibacterial effects (>99.999%) through the electrospinning process. Live/dead staining and cell proliferation experiments showed that the preparation of PAN/PTHP nanofibers has good cell compatibility. In addition, PAN/PTHP nanofibers show obvious destructive effects on lentiviruses. Based on these characteristics, PAN/PTHP nanofibers were applied to facial masks, which can be used as the inflatable biocidal layer of facial masks and have an excellent interception effect on particles in the air. The successful synthesis of these fascinating materials may provide new insights for the development of new protective materials.
Collapse
Affiliation(s)
- Shuaibing Guo
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Bing Yu
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Adeel Ahmed
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China
| | - Hailin Cong
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Youqing Shen
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266071, China; Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
70
|
Abstract
Air filtration has seen a sizable increase in the global market this past year due to the COVID-19 pandemic. Nanofiber nonwoven mats are able to reach certain efficiencies with a low-pressure drop, have a very high surface area to volume ratio, filter out submicron particulates, and can customize the fiber material to better suit its purpose. Although electrospinning nonwoven mats have been very well studied and documented there are not many papers that combine them. This review touches on the various ways to manufacture nonwoven mats for use as an air filter, with an emphasis on electrospinning, the mechanisms by which the fibrous nonwoven air filter stops particles passing through, and ways that the nonwoven mats can be altered by morphology, structure, and material parameters. Metallic, ceramic, and organic nanoparticle coatings, as well as electrospinning solutions with these same materials and their properties and effects of air filtration, are explored.
Collapse
|
71
|
Madruga LYC, Kipper MJ. Expanding the Repertoire of Electrospinning: New and Emerging Biopolymers, Techniques, and Applications. Adv Healthc Mater 2022; 11:e2101979. [PMID: 34788898 DOI: 10.1002/adhm.202101979] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/09/2021] [Indexed: 12/20/2022]
Abstract
Electrospinning has emerged as a versatile and accessible technology for fabricating polymer fibers, particularly for biological applications. Natural polymers or biopolymers (including synthetically derivatized natural polymers) represent a promising alternative to synthetic polymers, as materials for electrospinning. Many biopolymers are obtained from abundant renewable sources, are biodegradable, and possess inherent biological functions. This review surveys recent literature reporting new fibers produced from emerging biopolymers, highlighting recent developments in the use of sulfated polymers (including carrageenans and glycosaminoglycans), tannin derivatives (condensed and hydrolyzed tannins, tannic acid), modified collagen, and extracellular matrix extracts. The proposed advantages of these biopolymer-based fibers, focusing on their biomedical applications, are also discussed to highlight the use of new and emerging biopolymers (or new modifications to well-established ones) to enhance or achieve new properties for electrospun fiber materials.
Collapse
Affiliation(s)
- Liszt Y. C. Madruga
- Department of Chemical and Biological Engineering Colorado State University Fort Collins CO 80526 USA
| | - Matt J. Kipper
- Department of Chemical and Biological Engineering Colorado State University Fort Collins CO 80526 USA
- School of Advanced Materials Discovery Colorado State University Fort Collins CO 80526 USA
- School of Biomedical Engineering Colorado State University Fort Collins CO 80526 USA
| |
Collapse
|
72
|
Jaymand M. Sulfur functionality-modified starches: Review of synthesis strategies, properties, and applications. Int J Biol Macromol 2022; 197:111-120. [PMID: 34952096 DOI: 10.1016/j.ijbiomac.2021.12.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/10/2021] [Accepted: 12/16/2021] [Indexed: 01/19/2023]
Abstract
Starch is the second most abundant naturally-occurring polymer after cellulose that possess superior physicochemical and biological features with numerous practical applications ranging from industrial to biomedical. Despite, native starch suffer from some drawbacks, including difficult processability, low shear and thermal stability, weak mechanical properties, and tendency to easily retrograde and undergo syneresis. Therefore, modification of native starch is necessary for circumvent the above-mentioned problems and expanding application ranges. This natural polymer can be modified using chemical, physical, enzymatic, and genetic engineering strategies. Amongst, chemical approaches have received more attention owing to enhancing physicochemical and biological features that lead to higher performance than those of the other strategies. In this context, incorporation of sulfur functionality-containing groups (sulfonation and sulfation) can be considered as an efficient approach due to significant enhancement in physiochemical properties, including zeta potential (move to negative values), molecular weight, processiability (e.g., solubility and meltability), and rheology. Furthermore, this strategy can modified some biological features, such as hemocompatibility, protein sorption, biostability, adhesion and proliferation of numerous cells, antithrombogenicity, antiinflammatory, antiviral, antimicrobial, antioxidant, antifungal, anticoagulant and antifouling properties. Accordingly, this review highlight's the synthesis strategies, physiochemical and biological properties, as well as applications of sulfur functionality-modified starches in numerous practical fields.
Collapse
Affiliation(s)
- Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
73
|
Chen Y, Ling Z, Mamtimin T, Khan A, Peng L, Yang J, Ali G, Zhou T, Zhang Q, Zhang J, Li X. Chitooligosaccharides production from shrimp chaff in chitosanase cell surface display system. Carbohydr Polym 2022; 277:118894. [PMID: 34893296 DOI: 10.1016/j.carbpol.2021.118894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/07/2021] [Accepted: 11/11/2021] [Indexed: 12/21/2022]
Abstract
Chitin refers to a natural biopolymer, which is economically significant to next-generation biorefineries. In this study, a novel high-yield method with cell surface-display chitosanase (CHI-1) was built to produce chitooligosaccharides (COS) from shrimp chaff through the co-fermentation in the presence of Bacillus subtilis and Acetobacter sp. Under the optimized co-fermentation conditions (5 g/L yeast extracts, 10 g/L KH2PO4, 6% ethanol, 50 g/L glucose), the final deproteinization (DP) and demineralization (DM) efficiency and the chitin yield were achieved as 94, 92 and 18%, respectively. The engineered E. coli BL21-pET23b(+)-NICHI maintained 81% of the initial enzyme activity after 40 days at room temperature. The crude CHI-1 was inactivated after one-day interacting with prepared chitosan. Moreover, E. coli BL21-pET23b(+)-NICHI still maintained excellent hydrolysis ability in 7 days, and the COS yield reached 41%. Accordingly, the proposed method exhibited excellent stability and a high hydrolysis efficiency to produce COS with whole engineered cells.
Collapse
Affiliation(s)
- Yanli Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Zhenmin Ling
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Tursunay Mamtimin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Aman Khan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Liang Peng
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Jinfeng Yang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Gohar Ali
- Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou 730020, Gansu, PR China
| | - Tuoyu Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Qing Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Jing Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou 730000, Gansu, PR China; Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Lanzhou 730020, Gansu, PR China.
| |
Collapse
|
74
|
Alkabli J. Progress in preparation of thiolated, crosslinked, and imino-chitosan derivatives targeting specific applications. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.110998] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
75
|
Jaber N, Al‐Remawi M, Al‐Akayleh F, Al‐Muhtaseb N, Al‐Adham ISI, Collier PJ. A review of the antiviral activity of Chitosan, including patented applications and its potential use against COVID-19. J Appl Microbiol 2022; 132:41-58. [PMID: 34218488 PMCID: PMC8447037 DOI: 10.1111/jam.15202] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/29/2021] [Indexed: 12/13/2022]
Abstract
Chitosan is an abundant organic polysaccharide, which can be relatively easily obtained by chemical modification of animal or fungal source materials. Chitosan and its derivatives have been shown to exhibit direct antiviral activity, to be useful vaccine adjuvants and to have potential anti-SARS-CoV-2 activity. This thorough and timely review looks at the recent history of investigations into the role of chitosan and its derivatives as an antiviral agent and proposes a future application in the treatment of endemic SARS-CoV-2.
Collapse
Affiliation(s)
- Nisrein Jaber
- Faculty of PharmacyAl‐Ahliyya Amman UniversityAmmanJordan
| | - Mayyas Al‐Remawi
- Faculty of Pharmacy & Medical SciencesUniversity of PetraAmmanJordan
| | - Faisal Al‐Akayleh
- Faculty of Pharmacy & Medical SciencesUniversity of PetraAmmanJordan
| | - Najah Al‐Muhtaseb
- Faculty of Pharmacy & Medical SciencesUniversity of PetraAmmanJordan
| | | | | |
Collapse
|
76
|
Andreica BI, Ailincai D, Sandu AI, Marin L. Amphiphilic chitosan-g-poly(trimethylene carbonate) - A new approach for biomaterials design. Int J Biol Macromol 2021; 193:414-424. [PMID: 34715200 DOI: 10.1016/j.ijbiomac.2021.10.174] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 01/14/2023]
Abstract
The paper presents the synthesis and characterization of poly(trimethylene carbonate) grafted chitosan as a new water soluble biopolymer suitable for in vivo applications. The synthesis was performed via ring-opening polymerization of 1,3-dioxan-2-one (trimethylene carbonate) (TMC) monomer, initiated by the functional groups of chitosan in the presence of toluene as solvent/swelling agent. By varying the molar ratio between the glucosamine units of chitosan and TMC, a series of chitosan derivatives with different content of poly(trimethylene carbonate) chains was synthetized. The structural characterization of the polymers was realized by FTIR and 1H NMR spectroscopy and their solubility was assessed in water and in organic solvents as well. The biocompatibility was investigated by MTS assay on Normal Human Dermal Fibroblasts, and the biodegradability was evaluated in lysozyme buffer solution. Further, the surface properties of the polymer films were analyzed by polarized optical microscopy, atomic force microscopy and water-to-air contact angle measurements. It was established that, by 5% substitution of chitosan with poly(trimethylene carbonate) chains having an average polymerization degree of 7, a water soluble polymer can be attained. Compared to the pristine chitosan, it has improved biocompatibility in solution and moderate wettability and higher biodegradability rate in solid state, pointing its suitability for in vivo applications.
Collapse
Affiliation(s)
| | - Daniela Ailincai
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Andreea-Isabela Sandu
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania.
| |
Collapse
|
77
|
Amphiphilic chitosan-polyaminoxyls loaded with daunorubicin: Synthesis, antioxidant activity, and drug delivery capacity. Int J Biol Macromol 2021; 193:965-979. [PMID: 34751143 DOI: 10.1016/j.ijbiomac.2021.10.170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/24/2022]
Abstract
The binding of aminoxyls to polymers extends their potential use as antioxidants and EPR-reporting groups and opens up new horizons for tailoring new smart materials. In this work, we synthesized and characterized non-sulfated and N-sulfated water-soluble amphiphilic chitosans with a critical micelle concentration of 0.02-0.05 mg/mL that contain 13-18% of aminoglycosides bound with various aminoxyls. Chitosan-polyaminoxyls (CPAs) formed micelles with hydrodynamic radii Rh of ca. 100 nm. The EPR spectra of CPAs were found to depend on the rigidity of the aminoxyl-polymer bond and structural changes caused by sulfation. CPAs demonstrated antioxidant capacity/activity in three tests against reactive oxygen species (ROS) of various nature. The charge of micelles and structure of aminoxyls significantly affected their antioxidant properties. CPAs were low toxic against tumor (HepG2, HeLa, A-172) and non-cancerous (Vero) cells (IC50 > 0.8 mM of aminoglycosides). Sulfated CPAs showed better water solubility and the ability of binding and retaining the anti-tumor antibiotic daunorubicin (DAU). DAU-loaded micelles of CPAs (CPAs-DAU) demonstrated a 1.5-4-fold potentiation of DAU cytotoxicity against several cell lines. CPAs-DAU micelles were found to affect the cell cycle in a manner markedly different from that of free DAU. Our results demonstrated the ability of CPAs to act as bioactive drug delivery vehicles.
Collapse
|
78
|
Kazachenko AS, Akman F, Malyar YN, ISSAOUI N, Vasilieva NY, Karacharov AA. Synthesis optimization, DFT and physicochemical study of chitosan sulfates. J Mol Struct 2021; 1245:131083. [DOI: 10.1016/j.molstruc.2021.131083] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
79
|
Lu W, Yang Z, Chen J, Wang D, Zhang Y. Recent advances in antiviral activities and potential mechanisms of sulfated polysaccharides. Carbohydr Polym 2021; 272:118526. [PMID: 34420760 DOI: 10.1016/j.carbpol.2021.118526] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/31/2021] [Accepted: 08/01/2021] [Indexed: 11/24/2022]
Abstract
Natural polysaccharides derived from plants, fungi and animals are well known as ideal functional products with multiple biological activities and few side effects. Among them, natural occurring sulfated polysaccharides and those from synthetic origin are increasingly causing more attention worldwide, as they have been proved to possess broad-spectrum antiviral activities. The focus of this review is on analyzing the current state of knowledge about the origin of sulfated polysaccharides, more importantly, the potential connection between the structure and their antiviral mechanisms. Sulfated polysaccharide may interfere with a few steps in the virus life cycle (i.e. adsorption, invasion, transcription and replication) and/or improve the host antiviral immune response. Moreover, their antiviral activity was affected by degree of substitution, substitution position, molecular weight, and spatial conformation. This review may provide approach for the development of novel and potent therapeutic agents.
Collapse
Affiliation(s)
- Wenjing Lu
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China.
| | - Zhifeng Yang
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Juan Chen
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Di Wang
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Yu Zhang
- Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| |
Collapse
|
80
|
Revuelta J, Fraile I, Monterrey DT, Peña N, Benito-Arenas R, Bastida A, Fernández-Mayoralas A, García-Junceda E. Heparanized chitosans: towards the third generation of chitinous biomaterials. MATERIALS HORIZONS 2021; 8:2596-2614. [PMID: 34617543 DOI: 10.1039/d1mh00728a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The functionalization of chitosans is an emerging research area in the design of solutions for a wide range of biomedical applications. In particular, the modification of chitosans to incorporate sulfate groups has generated great interest since they show structural similarity to heparin and heparan sulfates. Most of the biomedical applications of heparan sulfates are derived from their ability to bind different growth factors and other proteins, as through these interactions they can modulate the cellular response. This review aims to summarize the most recent advances in the synthesis, and structural and physicochemical characterization of heparanized chitosan, a remarkably interesting family of polysaccharides that have demonstrated the ability to mimic heparan sulfates as ligands for different proteins, thereby exerting their biological activity by mimicking the function of these glycosaminoglycans.
Collapse
Affiliation(s)
- Julia Revuelta
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Isabel Fraile
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Dianelis T Monterrey
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Nerea Peña
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Raúl Benito-Arenas
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Agatha Bastida
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Alfonso Fernández-Mayoralas
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Eduardo García-Junceda
- BioGlycoChem Group, Departamento de Química Bio-Orgánica, Instituto de Química Orgánica General, CSIC (IQOG-CSIC), Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
81
|
Stala Ł, Ulatowska J, Polowczyk I. A review of polyampholytic ion scavengers for toxic metal ion removal from aqueous systems. WATER RESEARCH 2021; 203:117523. [PMID: 34388492 DOI: 10.1016/j.watres.2021.117523] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/31/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Pollution by heavy metal ions in aqueous systems gained researchers attention gradually. Toxic metal ions were always present in the environment and the living organisms could get used to specific concentrations of contaminants with given time, however, sudden concentration rise we are observing can make it impossible for the living organisms to adapt. Many ion removal technologies were developed and optimised over the years to cope with this problem, including chemical precipitation, adsorption, membrane filtration and ion-exchange. Adsorption and ion exchange are processes that employ certain materials, that can be collectively named ion scavengers, to remove ions from aqueous solutions. Some of the scavenger materials are still barely studied, in particular polyampholytes - polymeric zwitterionic materials. This review showcases papers published on toxic metal ion removal by polyampholytes, both commercial and experimental, over last two decades. Many recent publications show promising properties of experimental materials that match or even outperform commercial scavengers. This review was prepared to encourage other researchers to investigate this broad and still not well-studied class of materials especially in context of their ion-scavenging properties. Polyamphytes which may be especially worth the attention and further research have been highlighted as literature studies show that the most unexplored materials in the class of polyamphytes are those containing aminomethylphosphonate, aminomethylsulfonate or hypophosphorous acid group.
Collapse
Affiliation(s)
- Łukasz Stala
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wrocław, Poland.
| | - Justyna Ulatowska
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wrocław, Poland
| | - Izabela Polowczyk
- Department of Process Engineering and Technology of Polymer and Carbon Materials, Wroclaw University of Science and Technology, Norwida 4/6, 50-373 Wrocław, Poland
| |
Collapse
|
82
|
Mikušová V, Mikuš P. Advances in Chitosan-Based Nanoparticles for Drug Delivery. Int J Mol Sci 2021; 22:9652. [PMID: 34502560 PMCID: PMC8431817 DOI: 10.3390/ijms22179652] [Citation(s) in RCA: 217] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 12/17/2022] Open
Abstract
Nanoparticles (NPs) have an outstanding position in pharmaceutical, biological, and medical disciplines. Polymeric NPs based on chitosan (CS) can act as excellent drug carriers because of some intrinsic beneficial properties including biocompatibility, biodegradability, non-toxicity, bioactivity, easy preparation, and targeting specificity. Drug transport and release from CS-based particulate systems depend on the extent of cross-linking, morphology, size, and density of the particulate system, as well as physicochemical properties of the drug. All these aspects have to be considered when developing new CS-based NPs as potential drug delivery systems. This comprehensive review is summarizing and discussing recent advances in CS-based NPs being developed and examined for drug delivery. From this point of view, an enhancement of CS properties by its modification is presented. An enhancement in drug delivery by CS NPs is discussed in detail focusing on (i) a brief summarization of basic characteristics of CS NPs, (ii) a categorization of preparation procedures used for CS NPs involving also recent improvements in production schemes of conventional as well as novel CS NPs, (iii) a categorization and evaluation of CS-based-nanocomposites involving their production schemes with organic polymers and inorganic material, and (iv) very recent implementations of CS NPs and nanocomposites in drug delivery.
Collapse
Affiliation(s)
- Veronika Mikušová
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia;
| | - Peter Mikuš
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, 832 32 Bratislava, Slovakia
| |
Collapse
|
83
|
Demina TS, Akopova TA, Zelenetsky AN. Materials Based on Chitosan and Polylactide: From Biodegradable Plastics to Tissue Engineering Constructions. POLYMER SCIENCE SERIES C 2021. [DOI: 10.1134/s1811238221020028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
The transition to green chemistry and biodegradable polymers is a logical stage in the development of modern chemical science and technology. In the framework of this review, the advantages, disadvantages, and potential of biodegradable polymers of synthetic and natural origin are compared using the example of polylactide and chitosan as traditional representatives of these classes of polymers, and the possibilities of their combination via obtaining composite materials or copolymers are assessed. The mechanochemical approach to the synthesis of graft copolymers of chitosan with oligolactides/polylactides is considered in more detail.
Collapse
|
84
|
|
85
|
Popyrina TN, Svidchenko EA, Demina TS, Akopova TA, Zelenetsky AN. Effect of the Chemical Structure of Chitosan Copolymers with Oligolactides on the Morphology and Properties of Macroporous Hydrogels Based on Them. POLYMER SCIENCE SERIES B 2021. [DOI: 10.1134/s1560090421050109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
86
|
Dai Y, Row KH. Imidazole-modified C 6 -chitosan derivatives used to extract β-sitosterol from edible oil samples with a microwave-assisted solid phase extraction method. J Sep Sci 2021; 44:3924-3932. [PMID: 34459118 DOI: 10.1002/jssc.202100503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023]
Abstract
β-Sitosterol is a major bioactive constituent in plants with potent anticancer effects against many human cancer cells, but its bioavailability and therapeutic efficacy are limited by its poor solubility in water. In this study, C6 -imidazole chitosan, C6 -1-methylimidazole chitosan, C6 -1-ethylimidazole chitosan, C6 -1-vinylimidazole chitosan, C6 -1-allylimidazole chitosan, and C6 -1-butylimidazole chitosan were prepared to extract β-sitosterol from edible oil samples via ultrasonic-assisted solid liquid extraction. The structures and properties of the newly synthesized products were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and elemental analysis. The extraction abilities of the derivatives were tested in the experiment with high-performance liquid chromatography (limit of detection 0.21 μg/g and limit of quantification 0.67 μg/g), and the % relative standard deviation (<3.25%) and recovery values of the prepared chitosan derivatives toward β-sitosterol (average: 100.20%) were acceptable. The spiked interday and intraday recoveries of β-sitosterol were 102.60 ± 2.78 and 103.90 ± 3.04%, respectively. The actual amounts of β-sitosterol extracted from three real samples using C6 -imidazole chitosan according to the solid phase extraction method were 3302.40, 901.70, and 2045.60 mg/kg for corn oil, olive oil, and pea oil, respectively.
Collapse
Affiliation(s)
- Yunliang Dai
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon, 402-701, Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon, 402-701, Korea
| |
Collapse
|
87
|
Tao Y, Qu D, Tian C, Huang Y, Xue L, Ju C, Hao M, Zhang C. Modular synthesis of amphiphilic chitosan derivatives based on copper-free click reaction for drug delivery. Int J Pharm 2021; 605:120798. [PMID: 34126177 DOI: 10.1016/j.ijpharm.2021.120798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022]
Abstract
Amphiphilic chitosan derivatives have attracted wide attention as drug carriers due to their physicochemical properties. However, obtaining a desired amphiphilic chitosan derivative by tuning the various functional groups was complex and time-consuming. Therefore, a facile and common synthesis strategy would be promising. In this study, a modular strategy based on strain-promoted azide-alkyne cycloaddition (SPAAC) click reaction was designed and applied in synthesizing deoxycholic acid- or octanoic acid-modified N-azido propionyl-N,O-sulfate chitosan through tuning the hydrophobic groups. Additionally, chitosan derivatives with the same substitute groups were prepared via amide coupling as controls. We demonstrated that these derivates via the two strategies showed no obvious difference in physicochemical properties, drug loading ability and biosafety, indicating the feasibility of modular strategy. Notably, the modular strategy exhibited advantages including high reactivity, flexibility and reproducibility. We believe that this modular strategy could provide varied chitosan derivatives in an easy and high-efficiency way for improving multifunctional drug carriers.
Collapse
Affiliation(s)
- Yu Tao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China
| | - Ding Qu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, PR China
| | - Chunli Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China
| | - Yingshuang Huang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China
| | - Lingjing Xue
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China
| | - Caoyun Ju
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China
| | - Meixi Hao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Can Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 210009, PR China.
| |
Collapse
|
88
|
Murugesan S, Scheibel T. Chitosan‐based
nanocomposites for medical applications. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210251] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Selvakumar Murugesan
- Lehrstuhl Biomaterialien Universität Bayreuth Bayreuth Germany
- Department of Metallurgical and Materials Engineering National Institute of Technology Karnataka Mangalore India
| | - Thomas Scheibel
- Lehrstuhl Biomaterialien Universität Bayreuth Bayreuth Germany
- Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Bayerisches Polymerinstitut (BPI) University Bayreuth Bayreuth Germany
| |
Collapse
|
89
|
Ribeiro ES, de Farias BS, Sant'Anna Cadaval Junior TR, de Almeida Pinto LA, Diaz PS. Chitosan-based nanofibers for enzyme immobilization. Int J Biol Macromol 2021; 183:1959-1970. [PMID: 34090851 DOI: 10.1016/j.ijbiomac.2021.05.214] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022]
Abstract
The widespread application of soluble enzymes in industrial processes is considered restrict due to instability of enzymes outside optimum operating conditions. For instance, enzyme immobilization can overcome this issue. In fact, chitosan-based nanofibers have outstanding properties, which can improve the efficiency in enzyme immobilization and the stability of enzymes over a wide range of operating conditions. These properties include biodegradability, antimicrobial activity, non-toxicity, presence of functional groups (amino and hydroxyl), large surface area to volume ratio, enhanced porosity and mechanical properties, easy separations and reusability. Therefore, the present review explores the advantages and drawbacks concerning the different methods of enzyme immobilization, including adsorption, cross-linking and entrapment. All these strategies have questions that still need to be addressed, such as elucidation of adsorption mechanism (physisorption or chemisorption); effect of cross-linking reaction on intramolecular and intermolecular interactions and the effect of internal and external diffusional limitations on entrapment of enzymes. Moreover, the current review discusses the challenges and prospects regarding the application of chitosan-based nanofibers in enzyme immobilization, towards maximizing catalytic activity and lifetime.
Collapse
Affiliation(s)
- Eduardo Silveira Ribeiro
- Biotechnology Unit, Technology Development Center, Federal University of Pelotas, Campus Capão do Leão, Capão do Leão, Brazil
| | - Bruna Silva de Farias
- School of Chemistry and Food, Federal University of Rio Grande (FURG), km 8 - Itália Avenue, 96203-900 Rio Grande, Brazil.
| | | | - Luiz Antonio de Almeida Pinto
- School of Chemistry and Food, Federal University of Rio Grande (FURG), km 8 - Itália Avenue, 96203-900 Rio Grande, Brazil.
| | - Patrícia Silva Diaz
- Biotechnology Unit, Technology Development Center, Federal University of Pelotas, Campus Capão do Leão, Capão do Leão, Brazil
| |
Collapse
|
90
|
Liu W, Qin Y, Li P. Design of Chitosan Sterilization Agents by a Structure Combination Strategy and Their Potential Application in Crop Protection. Molecules 2021; 26:3250. [PMID: 34071327 PMCID: PMC8198111 DOI: 10.3390/molecules26113250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 01/02/2023] Open
Abstract
Chitosan is the only cationic polysaccharide in nature. It is a type of renewable resource and is abundant. It has good biocompatibility, biodegradability and biological activity. The amino and hydroxyl groups in its molecules can be modified, which enables chitosan to contain a variety of functional groups, giving it a variety of properties. In recent years, researchers have used different strategies to synthesize a variety of chitosan derivatives with novel structure and unique activity. Structure combination is one of the main strategies. Therefore, we will evaluate the synthesis and agricultural antimicrobial applications of the active chitosan derivatives structure combinations, which have not been well-summarized. In addition, the advantages, challenges and developmental prospects of agricultural antimicrobial chitosan derivatives will be discussed.
Collapse
Affiliation(s)
- Weixiang Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China;
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao 266237, China
| |
Collapse
|
91
|
Sharma N, Modak C, Singh PK, Kumar R, Khatri D, Singh SB. Underscoring the immense potential of chitosan in fighting a wide spectrum of viruses: A plausible molecule against SARS-CoV-2? Int J Biol Macromol 2021; 179:33-44. [PMID: 33607132 PMCID: PMC7885638 DOI: 10.1016/j.ijbiomac.2021.02.090] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 02/01/2021] [Accepted: 02/12/2021] [Indexed: 12/19/2022]
Abstract
Chitosan is a deacetylated polycationic polysaccharide derived from chitin. It is structurally constituted of N-acetyl-D-glucosamine and β-(1-4)-linked D-glucosamine where acetyl groups are randomly distributed across the polymer. The parameters of deacetylation and depolymerization process greatly influence various physico-chemical properties of chitosan and thus, offer a great degree of manipulation to synthesize chitosan of interest for various industrial and biomedical applications. Chitosan and its various derivatives have been a potential molecule of investigation in the area of anti-microbials especially anti-fungal, anti-bacterial and antiviral. The current review predominantly highlights and discusses about the antiviral activities of chitosan and its various substituted derivatives against a wide spectrum of human, animal, plants and bacteriophage viruses. The extrinsic and intrinsic factors that affect antiviral efficacy of chitosan have also been talked about. With the rapid unfolding of COVID-19 pandemic across the globe, we look for chitosan as a plausible potent antiviral molecule for fighting this disease. Through this review, we present enough literature data supporting role of chitosan against different strains of SARS viruses and also chitosan targeting CD147 receptors, a novel route for invasion of SARS-CoV-2 into host cells. We speculate the possibility of using chitosan as potential molecule against SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Nivya Sharma
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Chandrima Modak
- Birla Institute of Technology and Sciences (BITS), PILANI, Pilani campus, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rahul Kumar
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmender Khatri
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Pharmacology & Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
92
|
Nunes YL, de Menezes FL, de Sousa IG, Cavalcante ALG, Cavalcante FTT, da Silva Moreira K, de Oliveira ALB, Mota GF, da Silva Souza JE, de Aguiar Falcão IR, Rocha TG, Valério RBR, Fechine PBA, de Souza MCM, Dos Santos JCS. Chemical and physical Chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy? Int J Biol Macromol 2021; 181:1124-1170. [PMID: 33864867 DOI: 10.1016/j.ijbiomac.2021.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 12/16/2022]
Abstract
Chitosan is one of the most abundant natural polymer worldwide, and due to its inherent characteristics, its use in industrial processes has been extensively explored. Because it is biodegradable, biocompatible, non-toxic, hydrophilic, cheap, and has good physical-chemical stability, it is seen as an excellent alternative for the replacement of synthetic materials in the search for more sustainable production methodologies. Thus being, a possible biotechnological application of Chitosan is as a direct support for enzyme immobilization. However, its applicability is quite specific, and to overcome this issue, alternative pretreatments are required, such as chemical and physical modifications to its structure, enabling its use in a wider array of applications. This review aims to present the topic in detail, by exploring and discussing methods of employment of Chitosan in enzymatic immobilization processes with various enzymes, presenting its advantages and disadvantages, as well as listing possible chemical modifications and combinations with other compounds for formulating an ideal support for this purpose. First, we will present Chitosan emphasizing its characteristics that allow its use as enzyme support. Furthermore, we will discuss possible physicochemical modifications that can be made to Chitosan, mentioning the improvements obtained in each process. These discussions will enable a comprehensive comparison between, and an informed choice of, the best technologies concerning enzyme immobilization and the application conditions of the biocatalyst.
Collapse
Affiliation(s)
- Yale Luck Nunes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Fernando Lima de Menezes
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Isamayra Germano de Sousa
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Antônio Luthierre Gama Cavalcante
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | | | - Katerine da Silva Moreira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - André Luiz Barros de Oliveira
- Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil
| | - Gabrielly Ferreira Mota
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José Erick da Silva Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Italo Rafael de Aguiar Falcão
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Thales Guimaraes Rocha
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - Roberta Bussons Rodrigues Valério
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Pierre Basílio Almeida Fechine
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará, Campus do Pici, Bloco 940, CEP 60455760 Fortaleza, CE, Brazil
| | - Maria Cristiane Martins de Souza
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil
| | - José C S Dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável, Universidade da Integração Internacional da Lusofonia Afro-Brasileira, Campus das Auroras, Redenção CEP 62790970, CE, Brazil; Departamento de Engenharia Química, Universidade Federal do Ceará, Campus do Pici, Bloco 709, Fortaleza CEP 60455760, CE, Brazil.
| |
Collapse
|
93
|
A versatile chitosan nanogel capable of generating AgNPs in-situ and long-acting slow-release of Ag + for highly efficient antibacterial. Carbohydr Polym 2021; 257:117636. [PMID: 33541661 DOI: 10.1016/j.carbpol.2021.117636] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/01/2020] [Accepted: 01/09/2021] [Indexed: 11/20/2022]
Abstract
Development of multifunctional antibacterial agent with long-lasting antibacterial activity and biofilm ablation performance is significant for the effective treatment of bacterial infections. Here, by utilizing the electrostatic interaction between sulfonated chitosan (SCS) and Ag+ and chitosan (CS), and the sodium borohydride reduction method, a versatile antibacterial agent (AgNPs@CS/SCS) capable of generating silver nanoparticles (AgNPs) in-situ and long-acting slow-release Ag+ was developed. AgNPs@CS/SCS has a good physiological stability and can long-acting slow-release of Ag+ due to the pH-dependent Ag+ release behavior of AgNPs. Noteworthy, AgNPs@CS/SCS can exert both excellent short- and long-term antibacterial and biofilm ablation activity. Importantly, it also exhibits superior antibacterial activity in the treatment of implant infections, accompanied by good biocompatibility. Together, this study suggest that AgNPs@CS/CSC is indeed a versatile antibacterial agent, and is expected to provide an effective treatment modality for implant infections in the clinic settings.
Collapse
|
94
|
Modification of chitosan using amino acids for wound healing purposes: A review. Carbohydr Polym 2021; 258:117675. [DOI: 10.1016/j.carbpol.2021.117675] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/01/2021] [Accepted: 01/14/2021] [Indexed: 11/17/2022]
|
95
|
Heydari A, Darroudi M, Lacík I. Efficient N-sulfopropylation of chitosan with 1,3-propane sultone in aqueous solutions: neutral pH as the key condition. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00089f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Conjugation of strong anionic sulfonate groups to chitosan (CS) is typically used for converting the weak cationic CS to its polyampholyte derivatives, which are of interest to different areas benefiting from both cationic and anionic groups.
Collapse
Affiliation(s)
- Abolfazl Heydari
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
| | - Mahdieh Darroudi
- Department of Energy Science and Technology, Faculty of Science, Turkish-German University, 106 34820 Istanbul, Turkey
| | - Igor Lacík
- Polymer Institute of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 41 Bratislava, Slovakia
- Centre for Advanced Materials Application of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 11 Bratislava, Slovakia
| |
Collapse
|
96
|
Chitooligosaccharides for wound healing biomaterials engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111266. [DOI: 10.1016/j.msec.2020.111266] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/03/2020] [Accepted: 07/03/2020] [Indexed: 01/04/2023]
|
97
|
Cele Z, Somboro AM, Amoako DG, Ndlandla LF, Balogun MO. Fluorinated Quaternary Chitosan Derivatives: Synthesis, Characterization, Antibacterial Activity, and Killing Kinetics. ACS OMEGA 2020; 5:29657-29666. [PMID: 33251401 PMCID: PMC7689678 DOI: 10.1021/acsomega.0c01355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
Chitosan has become an established platform biopolymer with applications in biomedical engineering, nanomedicine, and the development of new materials with improved solubility, antimicrobial activity, and low toxicity. In this study, a series of chitosan derivatives were synthesized by conjugating various perfluorocarbon chains to chitosan via Schiff base formation or nucleophilic substitution, followed by quaternization with glycidyl trimethylammonium chloride to confer non-pH-dependent permanent positive charges. Synthesized fluorinated N-(2-hydroxypropyl)-3-trimethylammonium chitosan chloride polymers were characterized and investigated for their antibacterial efficacies against multidrug-resistant bacteria including clinical isolates. The polymers showed activity against both Gram-positive and Gram-negative bacteria (MIC = 64-512 μg/mL) but with greater potency against the former. They displayed rapid bactericidal properties, based on the MBC/MIC ratio, which were further confirmed by the time-kill kinetic assays. Given the properties presented here, fluorinated quaternary chitosan derivatives can serve as great candidates to be investigated as environmentally more benign, nontherapeutic antimicrobial agents that could serve as alternatives to the heavy reliance on antibiotics, which are currently in a very precarious state due to increasing occurrence of drug resistance.
Collapse
Affiliation(s)
- Zamani
E.D. Cele
- Biopolymer
Modification & Therapeutics Laboratory, Chemicals Cluster, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria 0001, South Africa
| | - Anou M. Somboro
- Biomedical
Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Daniel G. Amoako
- Biomedical
Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Lindokuhle F. Ndlandla
- Biopolymer
Modification & Therapeutics Laboratory, Chemicals Cluster, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria 0001, South Africa
| | - Mohammed O. Balogun
- Biopolymer
Modification & Therapeutics Laboratory, Chemicals Cluster, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria 0001, South Africa
| |
Collapse
|
98
|
Ran Y, Su W, Ma L, Wang X, Li X. Insight into the effect of sulfonated chitosan on the structure, rheology and fibrillogenesis of collagen. Int J Biol Macromol 2020; 166:1480-1490. [PMID: 33166556 DOI: 10.1016/j.ijbiomac.2020.11.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022]
Abstract
As a heparin analogue, sulfonated chitosan (SCS) has been confirmed to have similar structure and properties to heparin which is shown to be a linker molecule having specific binding sites with collagen fibrils. In this study, the effects of a varying concentration of SCS on the self-assembly process of type I collagen were investigated. The study on intermolecular interaction between collagen and SCS was carried out via using ultraviolet-visible (UV-vis) spectrophotometry and circular dichroism (CD) spectroscopy. The addition of SCS did not disrupt the triple helix conformation of collagen. However, the decreased value of Rpn showed that the SCS, to some extent, influenced the percentage of triple helix conformation. The turbidity measurements revealed that the self-assembly rate was increased in the presence of a low concentration of SCS whereas decreased with further increasing the SCS concentration. The observation of microstructure via scanning electron microscopy (SEM) and atomic force microscopy (AFM) exhibited the characteristic D-periodicity, indicating that the presence of SCS did not disrupt the self-assembly nature of collagen. Moreover, the addition of SCS facilitated the lateral aggregation of fibrils, leading to the formation of larger fibrils. The rheological analysis showed that the gelation time of collagen was prolonged with increasing the concentration of SCS, in support of a longer lag-phase duration detected in turbidimetric measurements. We expect that valuable data would be provided in this study for further developing of ECM analogues, and propitious performances could be endowed to these biomimetic materials after SCS incorporation.
Collapse
Affiliation(s)
- Yaqin Ran
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Wen Su
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Lei Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China
| | - Xiaoliang Wang
- Sichuan Testing Center of Medical Devices, Sichuan Institute for Food and Drug Control, Chengdu 611731, PR China.
| | - Xudong Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, PR China.
| |
Collapse
|
99
|
Jin W, Jiang D, Zhang W, Wang C, Xia K, Zhang F, Linhardt RJ. Interactions of fibroblast growth factors with sulfated galactofucan from Saccharina japonica. Int J Biol Macromol 2020; 160:26-34. [PMID: 32464202 PMCID: PMC10466213 DOI: 10.1016/j.ijbiomac.2020.05.183] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/14/2020] [Accepted: 05/22/2020] [Indexed: 01/09/2023]
Abstract
A total 68 types of marine algae oligosaccharides and polysaccharides were prepared and used to study the structure-activity relationship of oligosaccharides and polysaccharides in their interactions with fibroblast growth factors (FGF) 1 and 2. Factors considered include different types of algae, extraction methods, molecular weight, sulfate content and fractions. In the case of low molecular weight polysaccharide (SJ-D) from Saccharina japonica and its fractions eluting from anion exchange column, both 1.0 M NaCl fraction (SJ-D-I) and 2.0 M NaCl fraction (SJ-D-S) had stronger binding affinity than the parent SJ-D, suggesting that sulfated galactofucans represented the major tight binding component. Nuclear magnetic resonance showed that SJ-D-I was a typical sulfated galactofucan, composed of four units: 1, 3-linked 4-sulfated α-L-fucose (Fuc); 1, 3-linked 2, 4-disulfated α-L-Fuc; 1, 6-linked 4-sulfated β-D-Gal and/or 1, 6-linked 3, 4-sulfated β-D-Gal. Modification by autohydrolysis to oligosaccharides and desulfation decreased the FGF binding affinity while oversulfation increased the affinity. The solution-based affinities of SJ-D-I to FGF1 and FGF2 were 69 nM and 3.9 nM, suggesting that SJ-D-I showed better preferentially binding to FGF1 than a natural ligand, heparin, suggesting that sulfated galactofucan might represent a good regulator of FGF1.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Di Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wenjing Zhang
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China
| | - Chunyu Wang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Biological Science, Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Ke Xia
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Biological Science, Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
100
|
Xu C, Xing R, Liu S, Qin Y, Li K, Yu H, Li P. Immunostimulatory effect of N-2-hydroxypropyltrimethyl ammonium chloride chitosan-sulfate chitosan complex nanoparticles on dendritic cells. Carbohydr Polym 2020; 251:117098. [PMID: 33142636 DOI: 10.1016/j.carbpol.2020.117098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/05/2020] [Accepted: 09/10/2020] [Indexed: 12/17/2022]
Abstract
In this study, we synthesized negatively charged chitosan sulfate and positively charged hydroxypropyltrimethyl ammonium chloride chitosan (HACC), and then prepared chitosan derivatives with positive and negative ions as nanoparticles (NPs) by ovalbumin encapsulation using the polyelectrolyte method. NPs with different substitution sites and molecular weights (MW) were prepared by varying conditions. We then determined the zeta potential average, diameter, encapsulation effect, and their immunostimulatory effects on dendritic cells (DCs). The results showed that chitosan-derivative NPs ranged in size from 153.33 to 320.90 nm; all NPs were positive, with charges ranging from 17.10 to 39.30 mV and the encapsulation rates of 65 %-75 %. Three NPs greatly promoted the expression and secretion of interleukin-6 (IL-6), tumor necrosis factor (TNF-α), and interleukin-1β (IL-1β) in DC cells: C2,3,6 chitosan sulfate-HACC (C2,3,6-HACC; 200 kDa), C3,6 chitosan sulfate-HACC (C3,6-HACC; 200 kDa) and C6 chitosan sulfate-HACC (C6-HACC; 50 kDa). We also found that 200-kDa C2,3,6-HACC and 50-kDa C6-HACC NPs greatly increased secretion of the major histocompatibility complex-II (MHC-II), CD40, CD80, and CD86, indicating that these NPs promote effective antigen presentation, further increasing immunity effects. Finally, we applied laser confocal photography and determined that NPs entered the cell to promote the regulation of cellular immune activity; this discovery lays a foundation for further research on their mechanism of their action. Therefore, C2,3,6-HACC and C6-HACC NPs have the potential as immunological adjuvants.
Collapse
Affiliation(s)
- Chaojie Xu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology(Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology(Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China.
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology(Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China
| | - Yukun Qin
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology(Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China
| | - Kecheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology(Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology(Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology(Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China.
| |
Collapse
|