51
|
Budayeva HG, Ma TP, Wang S, Choi M, Rose CM. Increasing the Throughput and Reproducibility of Activity-Based Proteome Profiling Studies with Hyperplexing and Intelligent Data Acquisition. J Proteome Res 2024; 23:2934-2947. [PMID: 38251652 PMCID: PMC11301772 DOI: 10.1021/acs.jproteome.3c00598] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/16/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Intelligent data acquisition (IDA) strategies, such as a real-time database search (RTS), have improved the depth of proteome coverage for experiments that utilize isobaric labels and gas phase purification techniques (i.e., SPS-MS3). In this work, we introduce inSeqAPI, an instrument application programing interface (iAPI) program that enables construction of novel data acquisition algorithms. First, we analyze biotinylated cysteine peptides from ABPP experiments to demonstrate that a real-time search method within inSeqAPI performs similarly to an equivalent vendor method. Then, we describe PairQuant, a method within inSeqAPI designed for the hyperplexing approach that utilizes protein-level isotopic labeling and peptide-level TMT labeling. PairQuant allows for TMT analysis of 36 conditions in a single sample and achieves ∼98% coverage of both peptide pair partners in a hyperplexed experiment as well as a 40% improvement in the number of quantified cysteine sites compared with non-RTS acquisition. We applied this method in the ABPP study of ligandable cysteine sites in the nucleus leading to an identification of additional druggable sites on protein- and DNA-interaction domains of transcription regulators and on nuclear ubiquitin ligases.
Collapse
Affiliation(s)
- Hanna G. Budayeva
- Department
of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South
San Francisco, California 94080, United States
| | - Taylur P. Ma
- Department
of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South
San Francisco, California 94080, United States
| | - Shuai Wang
- Department
of Metabolism and Pharmacokinetics, Genentech,
Inc., South San Francisco, California 94080, United States
| | - Meena Choi
- Department
of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South
San Francisco, California 94080, United States
| | - Christopher M. Rose
- Department
of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., South
San Francisco, California 94080, United States
| |
Collapse
|
52
|
Chang F, Gunderstofte C, Colussi N, Pitts M, Salvatore SR, Thielke AL, Turell L, Alvarez B, Goldbach-Mansky R, Villacorta L, Holm CK, Schopfer FJ, Hansen AL. Development of nitroalkene-based inhibitors to target STING-dependent inflammation. Redox Biol 2024; 74:103202. [PMID: 38865901 PMCID: PMC11215336 DOI: 10.1016/j.redox.2024.103202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024] Open
Abstract
Stimulator of Interferon Genes (STING) is essential for the inflammatory response to cytosolic DNA. Despite that aberrant activation of STING is linked to an increasing number of inflammatory diseases, the development of inhibitors has been challenging, with no compounds in the pipeline beyond the preclinical stage. We previously identified endogenous nitrated fatty acids as novel reversible STING inhibitors. With the aim of improving the specificity and efficacy of these compounds, we developed and tested a library of nitroalkene-based compounds for in vitro and in vivo STING inhibition. The structure-activity relationship study revealed a robustly improved electrophilicity and reduced degrees of freedom of nitroalkenes by conjugation with an aromatic moiety. The lead compounds CP-36 and CP-45, featuring a β-nitrostyrene moiety, potently inhibited STING activity in vitro and relieved STING-dependent inflammation in vivo. This validates the potential for nitroalkene compounds as drug candidates for STING modulation to treat STING-driven inflammatory diseases, providing new robust leads for preclinical development.
Collapse
Affiliation(s)
- Fei Chang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | | | - Nicole Colussi
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Mareena Pitts
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Sonia R Salvatore
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anne L Thielke
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark
| | - Lucia Turell
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800, Uruguay
| | - Beatriz Alvarez
- Laboratorio de Enzimología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay; Centro de Investigaciones Biomédicas (CEINBIO), Universidad de la República, Montevideo, 11800, Uruguay
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Disease Studies Unit, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20850, USA
| | - Luis Villacorta
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA.
| | - Christian K Holm
- Department of Biomedicine, Aarhus University, 8000, Aarhus C, Denmark.
| | - Francisco J Schopfer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Pittsburgh Heart, Lung, Blood, And Vascular Medicine Institute (VMI), Pittsburgh, PA, USA; Pittsburgh Liver Research Center (PLRC), Pittsburgh, PA, USA; Center for Metabolism and Mitochondrial Medicine (C3M), Pittsburgh, PA, USA.
| | | |
Collapse
|
53
|
Shan M, Zhao X, Sun P, Qu X, Cheng G, Qin LP. Revisiting Structure-activity Relationships: Unleashing the potential of selective Janus kinase 1 inhibitors. Bioorg Chem 2024; 149:107506. [PMID: 38833989 DOI: 10.1016/j.bioorg.2024.107506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/13/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
Janus kinases (JAKs), a kind of non-receptor tyrosine kinases, the function has been implicated in the regulation of cell proliferation, differentiation and apoptosis, immune, inflammatory response and malignancies. Among them, JAK1 represents an essential target for modulating cytokines involved in inflammation and immune function. Rheumatoid arthritis, atopic dermatitis, ulcerative colitis and psoriatic arthritis are areas where approved JAK1 drugs have been applied for the treatment. In the review, we provided a brief introduction to JAK1 inhibitors in market and clinical trials. The structures of high active JAK1 compounds (IC50 ≤ 0.1 nM) were highlighted, with primary focus on structure-activity relationship and selectivity. Moreover, the druggability processes of approved drugs and high active compounds were analyzed. In addition, the issues involved in JAK1 compounds clinical application as well as strategies to surmount these challenges, were discussed.
Collapse
Affiliation(s)
- Mengyi Shan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Xuan Zhao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Peng Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Xinhao Qu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China
| | - Gang Cheng
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China.
| | - Lu-Ping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, People's Republic of China.
| |
Collapse
|
54
|
Ren X, Li H, Peng H, Yang Y, Su H, Huang C, Wang X, Zhang J, Liu Z, Wei W, Cheng K, Zhu T, Lu Z, Li Z, Zhao Q, Tang BZ, Yao SQ, Song X, Sun H. Reactivity-Tunable Fluorescent Platform for Selective and Biocompatible Modification of Cysteine or Lysine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402838. [PMID: 38896788 PMCID: PMC11336953 DOI: 10.1002/advs.202402838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Chemoselective modification of specific residues within a given protein poses a significant challenge, as the microenvironment of amino acid residues in proteins is variable. Developing a universal molecular platform with tunable chemical warheads can provide powerful tools for precisely labeling specific amino acids in proteins. Cysteine and lysine are hot targets for chemoselective modification, but current cysteine/lysine-selective warheads face challenges due to cross-reactivity and unstable reaction products. In this study, a versatile fluorescent platform is developed for highly selective modification of cysteine/lysine under biocompatible conditions. Chloro- or phenoxy-substituted NBSe derivatives effectively labeled cysteine residues in the cellular proteome with high specificity. This finding also led to the development of phenoxy-NBSe phototheragnostic for the diagnosis and activatable photodynamic therapy of GSH-overexpressed cancer cells. Conversely, alkoxy-NBSe derivatives are engineered to selectively react with lysine residues in the cellular environment, exhibiting excellent anti-interfering ability against thiols. Leveraging a proximity-driven approach, alkoxy-NBSe probes are successfully designed to demonstrate their utility in bioimaging of lysine deacetylase activity. This study also achieves integrating a small photosensitizer into lysine residues of proteins in a regioselective manner, achieving photoablation of cancer cells activated by overexpressed proteins.
Collapse
Affiliation(s)
- Xiaojie Ren
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
- College of Chemistry & Chemical EngineeringCentral South UniversityChangshaHunan410083China
| | - Haokun Li
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Hui Peng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE)MOE Key Laboratory of Tumor Molecular BiologySchool of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Yang Yang
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong999077China
| | - Hang Su
- College of Chemistry & Chemical EngineeringCentral South UniversityChangshaHunan410083China
| | - Chen Huang
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Xuan Wang
- Department of ChemistryNational University of SingaporeSingapore117543Singapore
- School of Pharmaceutical Sciences (Shenzhen)Shenzhen Campus of Sun Yat‐sen UniversityShenzhen518107China
| | - Jie Zhang
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Zhiyang Liu
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Wenyu Wei
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Ke Cheng
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Tianyang Zhu
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong999077China
| | - Zhenpin Lu
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| | - Zhengqiu Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE)MOE Key Laboratory of Tumor Molecular BiologySchool of PharmacyJinan UniversityGuangzhouGuangdong510632China
| | - Qian Zhao
- Department of Applied Biology and Chemical TechnologyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong999077China
| | - Ben Zhong Tang
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water Bay, KowloonHong Kong999077China
| | - Shao Q. Yao
- Department of ChemistryNational University of SingaporeSingapore117543Singapore
| | - Xiangzhi Song
- College of Chemistry & Chemical EngineeringCentral South UniversityChangshaHunan410083China
| | - Hongyan Sun
- Department of Chemistry and Centre of Super‐Diamond and Advanced Films (COSDAF)City University of Hong Kong83 Tat Chee Avenue, KowloonHong Kong999077China
| |
Collapse
|
55
|
Lim M, Cong TD, Orr LM, Toriki ES, Kile AC, Papatzimas JW, Lee E, Lin Y, Nomura DK. DCAF16-Based Covalent Handle for the Rational Design of Monovalent Degraders. ACS CENTRAL SCIENCE 2024; 10:1318-1331. [PMID: 39071058 PMCID: PMC11273451 DOI: 10.1021/acscentsci.4c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 07/30/2024]
Abstract
Targeted protein degradation with monovalent molecular glue degraders is a powerful therapeutic modality for eliminating disease causing proteins. However, rational design of molecular glue degraders remains challenging. In this study, we sought to identify a transplantable and linker-less covalent handle that could be appended onto the exit vector of various protein-targeting ligands to induce the degradation of their respective targets. Using the BET family inhibitor JQ1 as a testbed, we synthesized and screened a series of covalent JQ1 analogs and identified a vinylsulfonyl piperazine handle that led to the potent and selective degradation of BRD4 in cells. Through chemoproteomic profiling, we identified DCAF16 as the E3 ligase responsible for BRD4 degradation-an E3 ligase substrate receptor that has been previously covalently targeted for molecular glue-based degradation of BRD4. Interestingly, we demonstrated that this covalent handle can be transplanted across a diverse array of protein-targeting ligands spanning many different protein classes to induce the degradation of CDK4, the androgen receptor, BTK, SMARCA2/4, and BCR-ABL/c-ABL. Our study reveals a DCAF16-based covalent degradative and linker-less chemical handle that can be attached to protein-targeting ligands to induce the degradation of several different classes of protein targets.
Collapse
Affiliation(s)
- Melissa Lim
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Innovative
Genomics Institute, Berkeley, California 94720, United States
| | - Thang Do Cong
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Innovative
Genomics Institute, Berkeley, California 94720, United States
| | - Lauren M. Orr
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Innovative
Genomics Institute, Berkeley, California 94720, United States
| | - Ethan S. Toriki
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Innovative
Genomics Institute, Berkeley, California 94720, United States
| | - Andrew C. Kile
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Novartis
Biomedical Research, Emeryville, California 94608, United States
| | - James W. Papatzimas
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Novartis
Biomedical Research, Emeryville, California 94608, United States
| | - Elijah Lee
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Innovative
Genomics Institute, Berkeley, California 94720, United States
| | - Yihan Lin
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Innovative
Genomics Institute, Berkeley, California 94720, United States
| | - Daniel K. Nomura
- Department
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Novartis-Berkeley
Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Innovative
Genomics Institute, Berkeley, California 94720, United States
- Department
of Molecular and Cell Biology, University
of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
56
|
Yu X, Cai L, Yao J, Li C, Wang X. Agonists and Inhibitors of the cGAS-STING Pathway. Molecules 2024; 29:3121. [PMID: 38999073 PMCID: PMC11243509 DOI: 10.3390/molecules29133121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/14/2024] Open
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway is pivotal in immunotherapy. Several agonists and inhibitors of the cGAS-STING pathway have been developed and evaluated for the treatment of various diseases. The agonists aim to activate STING, with cyclic dinucleotides (CDNs) being the most common, while the inhibitors aim to block the enzymatic activity or DNA binding ability of cGAS. Meanwhile, non-CDN compounds and cGAS agonists are also gaining attention. The omnipresence of the cGAS-STING pathway in vivo indicates that its overactivation could lead to undesired inflammatory responses and autoimmune diseases, which underscores the necessity of developing both agonists and inhibitors of the cGAS-STING pathway. This review describes the molecular traits and roles of the cGAS-STING pathway and summarizes the development of cGAS-STING agonists and inhibitors. The information is supposed to be conducive to the design of novel drugs for targeting the cGAS-STING pathway.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Linxiang Cai
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jingyue Yao
- Department of Pharmacy, Fourth Military Medical University, Xi’an 710032, China;
| | - Cenming Li
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
57
|
Gowans FA, Forte N, Hatcher J, Huang OW, Wang Y, Altamirano Poblano BE, Wertz IE, Nomura DK. Covalent Degrader of the Oncogenic Transcription Factor β-Catenin. J Am Chem Soc 2024. [PMID: 38848252 DOI: 10.1021/jacs.4c05174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
β-catenin (CTNNB1) is an oncogenic transcription factor that is important in cell-cell adhesion and transcription of cell proliferation and survival genes that drive the pathogenesis of many different types of cancers. However, direct pharmacological targeting of CTNNB1 has remained challenging. Here, we have performed a screen with a library of cysteine-reactive covalent ligands to identify the monovalent degrader EN83 that depletes CTNNB1 in a ubiquitin-proteasome-dependent manner. We show that EN83 directly and covalently targets CTNNB1 three cysteines C466, C520, and C619, leading to destabilization and degradation of CTNNB1. Through structural optimization, we generate a highly potent and relatively selective destabilizing degrader that acts through the targeting of only C619 on CTNNB1. Our results show that chemoproteomic approaches can be used to covalently target and degrade challenging transcription factors like CTNNB1 through destabilization-mediated degradation.
Collapse
Affiliation(s)
- Flor A Gowans
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Innovative Genomics Institute, Berkeley, California 94720, United States
| | - Nafsika Forte
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Innovative Genomics Institute, Berkeley, California 94720, United States
| | - Justin Hatcher
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Innovative Genomics Institute, Berkeley, California 94720, United States
| | - Oscar W Huang
- Bristol Myers Squibb, San Francisco, California 94158, United States
| | - Yangzhi Wang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Innovative Genomics Institute, Berkeley, California 94720, United States
| | - Belen E Altamirano Poblano
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Innovative Genomics Institute, Berkeley, California 94720, United States
| | - Ingrid E Wertz
- Bristol Myers Squibb, San Francisco, California 94158, United States
| | - Daniel K Nomura
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Innovative Genomics Institute, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
| |
Collapse
|
58
|
McCarthy WJ, van der Zouwen AJ, Bush JT, Rittinger K. Covalent fragment-based drug discovery for target tractability. Curr Opin Struct Biol 2024; 86:102809. [PMID: 38554479 DOI: 10.1016/j.sbi.2024.102809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 04/01/2024]
Abstract
An important consideration in drug discovery is the prioritization of tractable protein targets that are not only amenable to binding small molecules, but also alter disease biology in response to small molecule binding. Covalent fragment-based drug discovery has emerged as a powerful approach to aid in the identification of such protein targets. The application of irreversible binding mechanisms enables the identification of fragment hits for challenging-to-target proteins, allows proteome-wide screening in a cellular context, and makes it possible to determine functional effects with modestly potent ligands without the requirement for extensive compound optimization. Here, we provide an overview of recent approaches to covalent fragment-based screening and discuss how these have been applied to establish the tractability of unexplored binding sites on protein targets.
Collapse
Affiliation(s)
- William J McCarthy
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Antonie J van der Zouwen
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jacob T Bush
- Crick-GSK Biomedical LinkLabs, GSK, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK. https://twitter.com/Jake_T_Bush
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
59
|
Tran N, Mills EL. Redox regulation of macrophages. Redox Biol 2024; 72:103123. [PMID: 38615489 PMCID: PMC11026845 DOI: 10.1016/j.redox.2024.103123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/16/2024] Open
Abstract
Redox signaling, a mode of signal transduction that involves the transfer of electrons from a nucleophilic to electrophilic molecule, has emerged as an essential regulator of inflammatory macrophages. Redox reactions are driven by reactive oxygen/nitrogen species (ROS and RNS) and redox-sensitive metabolites such as fumarate and itaconate, which can post-translationally modify specific cysteine residues in target proteins. In the past decade our understanding of how ROS, RNS, and redox-sensitive metabolites control macrophage function has expanded dramatically. In this review, we discuss the latest evidence of how ROS, RNS, and metabolites regulate macrophage function and how this is dysregulated with disease. We highlight the key tools to assess redox signaling and important questions that remain.
Collapse
Affiliation(s)
- Nhien Tran
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Evanna L Mills
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
60
|
Kim HR, Byun DP, Thakur K, Ritchie J, Xie Y, Holewinski R, Suazo KF, Stevens M, Liechty H, Tagirasa R, Jing Y, Andresson T, Johnson SM, Yoo E. Discovery of a Tunable Heterocyclic Electrophile 4-Chloro-pyrazolopyridine That Defines a Unique Subset of Ligandable Cysteines. ACS Chem Biol 2024; 19:1082-1092. [PMID: 38629450 PMCID: PMC11107811 DOI: 10.1021/acschembio.4c00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/01/2024] [Accepted: 04/01/2024] [Indexed: 05/18/2024]
Abstract
Electrophilic small molecules with novel reactivity are powerful tools that enable activity-based protein profiling and covalent inhibitor discovery. Here, we report a reactive heterocyclic scaffold, 4-chloro-pyrazolopyridine (CPzP) for selective modification of proteins via a nucleophilic aromatic substitution (SNAr) mechanism. Chemoproteomic profiling reveals that CPzPs engage cysteines within functionally diverse protein sites including ribosomal protein S5 (RPS5), inosine monophosphate dehydrogenase 2 (IMPDH2), and heat shock protein 60 (HSP60). Through the optimization of appended recognition elements, we demonstrate the utility of CPzP for covalent inhibition of prolyl endopeptidase (PREP) by targeting a noncatalytic active-site cysteine. This study suggests that the proteome reactivity of CPzPs can be modulated by both electronic and steric features of the ring system, providing a new tunable electrophile for applications in chemoproteomics and covalent inhibitor design.
Collapse
Affiliation(s)
- Hong-Rae Kim
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - David P. Byun
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Kalyani Thakur
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Jennifer Ritchie
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yixin Xie
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Ronald Holewinski
- Protein
Characterization Laboratory, Frederick National Laboratory for Cancer
Research, Leidos Biomedical Research, Frederick, Maryland 21702, United States
| | - Kiall F. Suazo
- Protein
Characterization Laboratory, Frederick National Laboratory for Cancer
Research, Leidos Biomedical Research, Frederick, Maryland 21702, United States
| | - Mckayla Stevens
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Hope Liechty
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Ravichandra Tagirasa
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Yihang Jing
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Thorkell Andresson
- Protein
Characterization Laboratory, Frederick National Laboratory for Cancer
Research, Leidos Biomedical Research, Frederick, Maryland 21702, United States
| | - Steven M. Johnson
- Department
of Biochemistry and Molecular Biology, Indiana
University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Euna Yoo
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
61
|
Takahashi M, Chong HB, Zhang S, Yang TY, Lazarov MJ, Harry S, Maynard M, Hilbert B, White RD, Murrey HE, Tsou CC, Vordermark K, Assaad J, Gohar M, Dürr BR, Richter M, Patel H, Kryukov G, Brooijmans N, Alghali ASO, Rubio K, Villanueva A, Zhang J, Ge M, Makram F, Griesshaber H, Harrison D, Koglin AS, Ojeda S, Karakyriakou B, Healy A, Popoola G, Rachmin I, Khandelwal N, Neil JR, Tien PC, Chen N, Hosp T, van den Ouweland S, Hara T, Bussema L, Dong R, Shi L, Rasmussen MQ, Domingues AC, Lawless A, Fang J, Yoda S, Nguyen LP, Reeves SM, Wakefield FN, Acker A, Clark SE, Dubash T, Kastanos J, Oh E, Fisher DE, Maheswaran S, Haber DA, Boland GM, Sade-Feldman M, Jenkins RW, Hata AN, Bardeesy NM, Suvà ML, Martin BR, Liau BB, Ott CJ, Rivera MN, Lawrence MS, Bar-Peled L. DrugMap: A quantitative pan-cancer analysis of cysteine ligandability. Cell 2024; 187:2536-2556.e30. [PMID: 38653237 PMCID: PMC11143475 DOI: 10.1016/j.cell.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/15/2024] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors for a wide range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed "DrugMap," an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NF-κB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NF-κB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription-factor activity.
Collapse
Affiliation(s)
- Mariko Takahashi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA.
| | - Harrison B Chong
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Siwen Zhang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Tzu-Yi Yang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Matthew J Lazarov
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Stefan Harry
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | - Kira Vordermark
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Jonathan Assaad
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Magdy Gohar
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Benedikt R Dürr
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Marianne Richter
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Himani Patel
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | | | | | | | - Karla Rubio
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Antonio Villanueva
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Junbing Zhang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Maolin Ge
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Farah Makram
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Hanna Griesshaber
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Drew Harrison
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Ann-Sophie Koglin
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Samuel Ojeda
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Barbara Karakyriakou
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Alexander Healy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - George Popoola
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Inbal Rachmin
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Neha Khandelwal
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | | | - Pei-Chieh Tien
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Nicholas Chen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Tobias Hosp
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Sanne van den Ouweland
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Toshiro Hara
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lillian Bussema
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rui Dong
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lei Shi
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Martin Q Rasmussen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Ana Carolina Domingues
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Aleigha Lawless
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jacy Fang
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Satoshi Yoda
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Linh Phuong Nguyen
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Sarah Marie Reeves
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Farrah Nicole Wakefield
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Adam Acker
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Sarah Elizabeth Clark
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Taronish Dubash
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - John Kastanos
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA
| | - Eugene Oh
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - David E Fisher
- Cutaneous Biology Research Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Shyamala Maheswaran
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Daniel A Haber
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Genevieve M Boland
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Surgery, Harvard Medical School, Boston, MA 02114, USA
| | - Moshe Sade-Feldman
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Russell W Jenkins
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Aaron N Hata
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Nabeel M Bardeesy
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Mario L Suvà
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | | | - Brian B Liau
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Christopher J Ott
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Miguel N Rivera
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA
| | - Michael S Lawrence
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Harvard Medical School, Boston, MA 02114, USA.
| | - Liron Bar-Peled
- Krantz Family Center for Cancer Research, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
62
|
Ma X, Niu M, Ni HM, Ding WX. Mitochondrial dynamics, quality control, and mtDNA in alcohol-associated liver disease and liver cancer. Hepatology 2024:01515467-990000000-00861. [PMID: 38683546 DOI: 10.1097/hep.0000000000000910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024]
Abstract
Mitochondria are intracellular organelles responsible for energy production, glucose and lipid metabolism, cell death, cell proliferation, and innate immune response. Mitochondria are highly dynamic organelles that constantly undergo fission, fusion, and intracellular trafficking, as well as degradation and biogenesis. Mitochondrial dysfunction has been implicated in a variety of chronic liver diseases including alcohol-associated liver disease, metabolic dysfunction-associated steatohepatitis, and HCC. In this review, we provide a detailed overview of mitochondrial dynamics, mitophagy, and mitochondrial DNA-mediated innate immune response, and how dysregulation of these mitochondrial processes affects the pathogenesis of alcohol-associated liver disease and HCC. Mitochondrial dynamics and mitochondrial DNA-mediated innate immune response may thereby represent an attractive therapeutic target for ameliorating alcohol-associated liver disease and alcohol-associated HCC.
Collapse
Affiliation(s)
- Xiaowen Ma
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mengwei Niu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Mobility, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
63
|
Liu Z, Remsberg JR, Li H, Njomen E, DeMeester KE, Tao Y, Xia G, Hayward RE, Yoo M, Nguyen T, Simon GM, Schreiber SL, Melillo B, Cravatt BF. Proteomic Ligandability Maps of Spirocycle Acrylamide Stereoprobes Identify Covalent ERCC3 Degraders. J Am Chem Soc 2024; 146:10393-10406. [PMID: 38569115 PMCID: PMC11211653 DOI: 10.1021/jacs.3c13448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Covalent chemistry coupled with activity-based protein profiling (ABPP) offers a versatile way to discover ligands for proteins in native biological systems. Here, we describe a set of stereo- and regiochemically defined spirocycle acrylamides and the analysis of these electrophilic "stereoprobes" in human cancer cells by cysteine-directed ABPP. Despite showing attenuated reactivity compared to structurally related azetidine acrylamide stereoprobes, the spirocycle acrylamides preferentially liganded specific cysteines on diverse protein classes. One compound termed ZL-12A promoted the degradation of the TFIIH helicase ERCC3. Interestingly, ZL-12A reacts with the same cysteine (C342) in ERCC3 as the natural product triptolide, which did not lead to ERCC3 degradation but instead causes collateral loss of RNA polymerases. ZL-12A and triptolide cross-antagonized one another's protein degradation profiles. Finally, we provide evidence that the antihypertension drug spironolactone─previously found to promote ERCC3 degradation through an enigmatic mechanism─also reacts with ERCC3_C342. Our findings thus describe monofunctional degraders of ERCC3 and highlight how covalent ligands targeting the same cysteine can produce strikingly different functional outcomes.
Collapse
Affiliation(s)
- Zhonglin Liu
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | | | - Haoxin Li
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Evert Njomen
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | | | - Yongfeng Tao
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | - Guoqin Xia
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | | | - Minjin Yoo
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
| | | | | | - Stuart L. Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Bruno Melillo
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA 02142, USA
| | - Benjamin F. Cravatt
- Department of Chemistry, Scripps Research, La Jolla, CA 92037, USA
- Vividion Therapeutics, San Diego, CA 92121, USA
| |
Collapse
|
64
|
Burton NR, Backus KM. Functionalizing tandem mass tags for streamlining click-based quantitative chemoproteomics. Commun Chem 2024; 7:80. [PMID: 38600184 PMCID: PMC11006884 DOI: 10.1038/s42004-024-01162-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/27/2024] [Indexed: 04/12/2024] Open
Abstract
Mapping the ligandability or potential druggability of all proteins in the human proteome is a central goal of mass spectrometry-based covalent chemoproteomics. Achieving this ambitious objective requires high throughput and high coverage sample preparation and liquid chromatography-tandem mass spectrometry analysis for hundreds to thousands of reactive compounds and chemical probes. Conducting chemoproteomic screens at this scale benefits from technical innovations that achieve increased sample throughput. Here we realize this vision by establishing the silane-based cleavable linkers for isotopically-labeled proteomics-tandem mass tag (sCIP-TMT) proteomic platform, which is distinguished by early sample pooling that increases sample preparation throughput. sCIP-TMT pairs a custom click-compatible sCIP capture reagent that is readily functionalized in high yield with commercially available TMT reagents. Synthesis and benchmarking of a 10-plex set of sCIP-TMT reveal a substantial decrease in sample preparation time together with high coverage and high accuracy quantification. By screening a focused set of four cysteine-reactive electrophiles, we demonstrate the utility of sCIP-TMT for chemoproteomic target hunting, identifying 789 total liganded cysteines. Distinguished by its compatibility with established enrichment and quantification protocols, we expect sCIP-TMT will readily translate to a wide range of covalent chemoproteomic applications.
Collapse
Affiliation(s)
- Nikolas R Burton
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles CA, USA
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Keriann M Backus
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles CA, USA.
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA.
- Molecular Biology Institute, UCLA, Los Angeles, CA, USA.
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
65
|
Li Q, Wu P, Du Q, Hanif U, Hu H, Li K. cGAS-STING, an important signaling pathway in diseases and their therapy. MedComm (Beijing) 2024; 5:e511. [PMID: 38525112 PMCID: PMC10960729 DOI: 10.1002/mco2.511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Since cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway was discovered in 2013, great progress has been made to elucidate the origin, function, and regulating mechanism of cGAS-STING signaling pathway in the past decade. Meanwhile, the triggering and transduction mechanisms have been continuously illuminated. cGAS-STING plays a key role in human diseases, particularly DNA-triggered inflammatory diseases, making it a potentially effective therapeutic target for inflammation-related diseases. Here, we aim to summarize the ancient origin of the cGAS-STING defense mechanism, as well as the triggers, transduction, and regulating mechanisms of the cGAS-STING. We will also focus on the important roles of cGAS-STING signal under pathological conditions, such as infections, cancers, autoimmune diseases, neurological diseases, and visceral inflammations, and review the progress in drug development targeting cGAS-STING signaling pathway. The main directions and potential obstacles in the regulating mechanism research and therapeutic drug development of the cGAS-STING signaling pathway for inflammatory diseases and cancers will be discussed. These research advancements expand our understanding of cGAS-STING, provide a theoretical basis for further exploration of the roles of cGAS-STING in diseases, and open up new strategies for targeting cGAS-STING as a promising therapeutic intervention in multiple diseases.
Collapse
Affiliation(s)
- Qijie Li
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Ping Wu
- Department of Occupational DiseasesThe Second Affiliated Hospital of Chengdu Medical College (China National Nuclear Corporation 416 Hospital)ChengduSichuanChina
| | - Qiujing Du
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Ullah Hanif
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| | - Hongbo Hu
- Center for Immunology and HematologyState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ka Li
- Sichuan province Medical and Engineering Interdisciplinary Research Center of Nursing & Materials/Nursing Key Laboratory of Sichuan ProvinceWest China Hospital, Sichuan University/West China School of NursingSichuan UniversityChengduSichuanChina
| |
Collapse
|
66
|
Lucas SCC, Blackwell JH, Hewitt SH, Semple H, Whitehurst BC, Xu H. Covalent hits and where to find them. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100142. [PMID: 38278484 DOI: 10.1016/j.slasd.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Covalent hits for drug discovery campaigns are neither fantastic beasts nor mythical creatures, they can be routinely identified through electrophile-first screening campaigns using a suite of different techniques. These include biophysical and biochemical methods, cellular approaches, and DNA-encoded libraries. Employing best practice, however, is critical to success. The purpose of this review is to look at state of the art covalent hit identification, how to identify hits from a covalent library and how to select compounds for medicinal chemistry programmes.
Collapse
Affiliation(s)
- Simon C C Lucas
- Hit Discovery, Discovery Sciences, AstraZeneca R&D, Cambridge, UK.
| | | | - Sarah H Hewitt
- Mechanistic and Structural Biology, Discovery Sciences, AstraZeneca R&D, Cambridge, UK
| | - Hannah Semple
- Hit Discovery, Discovery Sciences, AstraZeneca R&D, Cambridge, UK
| | | | - Hua Xu
- Mechanistic and structural Biology, Discovery Sciences, AstraZeneca R&D, Waltham, USA
| |
Collapse
|
67
|
Burger N, Chouchani ET. A new era of cysteine proteomics - Technological advances in thiol biology. Curr Opin Chem Biol 2024; 79:102435. [PMID: 38382148 DOI: 10.1016/j.cbpa.2024.102435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/23/2024]
Abstract
Cysteines are amenable to a diverse set of modifications that exhibit critical regulatory functions over the proteome and thereby control a wide range of cellular processes. Proteomic technologies have emerged as a powerful strategy to interrogate cysteine modifications across the proteome. Recent advancements in enrichment strategies, multiplexing capabilities and increased analytical sensitivity have enabled deeper quantitative cysteine profiling, capturing a substantial proportion of the cysteine proteome. This is complemented by a rapidly growing repertoire of analytical strategies illuminating the diverse landscape of cysteine modifications. Cysteine chemoproteomics technologies have evolved into a powerful strategy to facilitate the development of covalent drugs, opening unprecedented opportunities to target the extensive undrugged proteome. Herein we review recent technological and scientific advances that shape the cysteine proteomics field.
Collapse
Affiliation(s)
- Nils Burger
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Cell Biology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
68
|
Won SJ, Zhang Y, Reinhardt CJ, MacRae NS, DeMeester KE, Njomen E, Hargis LM, Remsberg JR, Melillo B, Cravatt BF, Erb MA. Redirecting the pioneering function of FOXA1 with covalent small molecules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586158. [PMID: 38562719 PMCID: PMC10983899 DOI: 10.1101/2024.03.21.586158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Pioneer transcription factors (TFs) exhibit a specialized ability to bind to and open closed chromatin, facilitating engagement by other regulatory factors involved in gene activation or repression. Chemical probes are lacking for pioneer TFs, which has hindered their mechanistic investigation in cells. Here, we report the chemical proteomic discovery of electrophilic small molecules that stereoselectively and site-specifically bind the pioneer TF, FOXA1, at a cysteine (C258) within the forkhead DNA-binding domain. We show that these covalent ligands react with FOXA1 in a DNA-dependent manner and rapidly remodel its pioneer activity in prostate cancer cells reflected in redistribution of FOXA1 binding across the genome and directionally correlated changes in chromatin accessibility. Motif analysis supports a mechanism where the covalent ligands relax the canonical DNA binding preference of FOXA1 by strengthening interactions with suboptimal ancillary sequences in predicted proximity to C258. Our findings reveal a striking plasticity underpinning the pioneering function of FOXA1 that can be controlled by small molecules.
Collapse
|
69
|
Ali MY, Bar-Peled L. Chemical proteomics to study metabolism, a reductionist approach applied at the systems level. Cell Chem Biol 2024; 31:446-451. [PMID: 38518745 DOI: 10.1016/j.chembiol.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/02/2023] [Accepted: 02/28/2024] [Indexed: 03/24/2024]
Abstract
Cellular metabolism encompasses a complex array of interconnected biochemical pathways that are required for cellular homeostasis. When dysregulated, metabolism underlies multiple human pathologies. At the heart of metabolic networks are enzymes that have been historically studied through a reductionist lens, and more recently, using high throughput approaches including genomics and proteomics. Merging these two divergent viewpoints are chemical proteomic technologies, including activity-based protein profiling, which combines chemical probes specific to distinct enzyme families or amino acid residues with proteomic analysis. This enables the study of metabolism at the network level with the precision of powerful biochemical approaches. Herein, we provide a primer on how chemical proteomic technologies custom-built for studying metabolism have unearthed fundamental principles in metabolic control. In parallel, these technologies have leap-frogged drug discovery through identification of novel targets and drug specificity. Collectively, chemical proteomics technologies appear to do the impossible: uniting systematic analysis with a reductionist approach.
Collapse
Affiliation(s)
- Md Yousuf Ali
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Liron Bar-Peled
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
70
|
Peng Q, Weerapana E. Profiling nuclear cysteine ligandability and effects on nuclear localization using proximity labeling-coupled chemoproteomics. Cell Chem Biol 2024; 31:550-564.e9. [PMID: 38086369 PMCID: PMC10960692 DOI: 10.1016/j.chembiol.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/11/2023] [Accepted: 11/17/2023] [Indexed: 03/24/2024]
Abstract
The nucleus controls cell growth and division through coordinated interactions between nuclear proteins and chromatin. Mutations that impair nuclear protein association with chromatin are implicated in numerous diseases. Covalent ligands are a promising strategy to pharmacologically target nuclear proteins, such as transcription factors, which lack ordered small-molecule binding pockets. To identify nuclear cysteines that are susceptible to covalent liganding, we couple proximity labeling (PL), using a histone H3.3-TurboID (His-TID) construct, with chemoproteomics. Using covalent scout fragments, KB02 and KB05, we identified ligandable cysteines on proteins involved in spindle assembly, DNA repair, and transcriptional regulation, such as Cys101 of histone acetyltransferase 1 (HAT1). Furthermore, we show that covalent fragments can affect the abundance, localization, and chromatin association of nuclear proteins. Notably, the Parkinson disease protein 7 (PARK7) showed increased nuclear localization and chromatin association upon KB02 modification at Cys106. Together, this platform provides insights into targeting nuclear cysteines with covalent ligands.
Collapse
Affiliation(s)
- Qianni Peng
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | | |
Collapse
|
71
|
Yang K, Whitehouse RL, Dawson SL, Zhang L, Martin JG, Johnson DS, Paulo JA, Gygi SP, Yu Q. Accelerating multiplexed profiling of protein-ligand interactions: High-throughput plate-based reactive cysteine profiling with minimal input. Cell Chem Biol 2024; 31:565-576.e4. [PMID: 38118439 PMCID: PMC10960705 DOI: 10.1016/j.chembiol.2023.11.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 12/22/2023]
Abstract
Chemoproteomics has made significant progress in investigating small-molecule-protein interactions. However, the proteome-wide profiling of cysteine ligandability remains challenging to adapt for high-throughput applications, primarily due to a lack of platforms capable of achieving the desired depth using low input in 96- or 384-well plates. Here, we introduce a revamped, plate-based platform which enables routine interrogation of either ∼18,000 or ∼24,000 reactive cysteines based on starting amounts of 10 or 20 μg, respectively. This represents a 5-10X reduction in input and 2-3X improved coverage. We applied the platform to screen 192 electrophiles in the native HEK293T proteome, mapping the ligandability of 38,450 reactive cysteines from 8,274 human proteins. We further applied the platform to characterize new cellular targets of established drugs, uncovering that ARS-1620, a KRASG12C inhibitor, binds to and inhibits an off-target adenosine kinase ADK. The platform represents a major step forward to high-throughput proteome-wide evaluation of reactive cysteines.
Collapse
Affiliation(s)
- Ka Yang
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Shane L Dawson
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Lu Zhang
- Biogen, Cambridge, MA 02142, USA
| | | | | | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Qing Yu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
72
|
Tang G, Wang W, Zhu C, Huang H, Chen P, Wang X, Xu M, Sun J, Zhang CJ, Xiao Q, Gao L, Zhang ZM, Yao SQ. Global Reactivity Profiling of the Catalytic Lysine in Human Kinome for Covalent Inhibitor Development. Angew Chem Int Ed Engl 2024; 63:e202316394. [PMID: 38248139 DOI: 10.1002/anie.202316394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/21/2024] [Accepted: 01/21/2024] [Indexed: 01/23/2024]
Abstract
Advances in targeted covalent inhibitors (TCIs) have been made by using lysine-reactive chemistries. Few aminophiles possessing balanced reactivity/stability for the development of cell-active TCIs are however available. We report herein lysine-reactive activity-based probes (ABPs; 2-14) based on the chemistry of aryl fluorosulfates (ArOSO2 F) capable of global reactivity profiling of the catalytic lysine in human kinome from mammalian cells. We concurrently developed reversible covalent ABPs (15/16) by installing salicylaldehydes (SA) onto a promiscuous kinase-binding scaffold. The stability and amine reactivity of these probes exhibited a broad range of tunability. X-ray crystallography and mass spectrometry (MS) confirmed the successful covalent engagement between ArOSO2 F on 9 and the catalytic lysine of SRC kinase. Chemoproteomic studies enabled the profiling of >300 endogenous kinases, thus providing a global landscape of ligandable catalytic lysines of the kinome. By further introducing these aminophiles into VX-680 (a noncovalent inhibitor of AURKA kinase), we generated novel lysine-reactive TCIs that exhibited excellent in vitro potency and reasonable cellular activities with prolonged residence time. Our work serves as a general guide for the development of lysine-reactive ArOSO2 F-based TCIs.
Collapse
Affiliation(s)
- Guanghui Tang
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chengjun Zhu
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Huisi Huang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Peng Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Manyi Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chi-nese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jie Sun
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chong-Jing Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chi-nese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Zhi-Min Zhang
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| |
Collapse
|
73
|
Ogasawara D, Konrad DB, Tan ZY, Carey KL, Luo J, Won SJ, Li H, Carter T, DeMeester KE, Njomen E, Schreiber SL, Xavier RJ, Melillo B, Cravatt BF. Chemical tools to expand the ligandable proteome: diversity-oriented synthesis-based photoreactive stereoprobes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.27.582206. [PMID: 38464067 PMCID: PMC10925180 DOI: 10.1101/2024.02.27.582206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Chemical proteomics enables the global assessment of small molecule-protein interactions in native biological systems and has emerged as a versatile approach for ligand discovery. The range of small molecules explored by chemical proteomics has, however, been limited. Here, we describe a diversity-oriented synthesis (DOS)-inspired library of stereochemically-defined compounds bearing diazirine and alkyne units for UV light-induced covalent modification and click chemistry enrichment of interacting proteins, respectively. We find that these 'photo-stereoprobes' interact in a stereoselective manner with hundreds of proteins from various structural and functional classes in human cells and demonstrate that these interactions can form the basis for high-throughput screening-compatible nanoBRET assays. Integrated phenotypic analysis and chemical proteomics identified photo-stereoprobes that modulate autophagy by engaging the mitochondrial serine protease CLPP. Our findings show the utility of photo-stereoprobes for expanding the ligandable proteome, furnishing target engagement assays, and discovering and characterizing bioactive small molecules by cell-based screening.
Collapse
|
74
|
Stanton C, Sun J, Nutsch K, Rosarda JD, Nguyen T, Li-Ma C, Njomen E, Kutseikin S, Saez E, Teijaro JR, Wiseman RL, Bollong MJ. Covalent Targeting As a Common Mechanism for Inhibiting NLRP3 Inflammasome Assembly. ACS Chem Biol 2024; 19:254-265. [PMID: 38198472 PMCID: PMC11131128 DOI: 10.1021/acschembio.3c00330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The NLRP3 inflammasome is a cytosolic protein complex important for the regulation and secretion of inflammatory cytokines, including IL-1β and IL-18. Aberrant overactivation of NLRP3 is implicated in numerous inflammatory disorders. However, the activation and regulation of NLRP3 inflammasome signaling remain poorly understood, limiting our ability to develop pharmacologic approaches to target this important inflammatory complex. Here, we developed and implemented a high-throughput screen to identify compounds that inhibit the inflammasome assembly and activity. From this screen, we identify and profile inflammasome inhibition of 20 new covalent compounds across nine different chemical scaffolds, as well as many known inflammasome covalent inhibitors. Intriguingly, our results indicate that NLRP3 possesses numerous reactive cysteines on multiple domains whose covalent targeting blocks the activation of this inflammatory complex. Specifically, focusing on compound VLX1570, which possesses multiple electrophilic moieties, we demonstrate that this compound allows covalent, intermolecular cross-linking of NLRP3 cysteines to inhibit inflammasome assembly. Our results, along with the recent identification of numerous covalent molecules that inhibit NLRP3 inflammasome activation, further support the continued development of electrophilic compounds that target reactive cysteine residues on NLRP3 to regulate its activation and activity.
Collapse
Affiliation(s)
- Caroline Stanton
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jie Sun
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Kayla Nutsch
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Jessica D. Rosarda
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Thu Nguyen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Chloris Li-Ma
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Evert Njomen
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Sergei Kutseikin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Enrique Saez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - John R. Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - R. Luke Wiseman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Michael J. Bollong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
75
|
Giltrap A, Yuan Y, Davis BG. Late-Stage Functionalization of Living Organisms: Rethinking Selectivity in Biology. Chem Rev 2024; 124:889-928. [PMID: 38231473 PMCID: PMC10870719 DOI: 10.1021/acs.chemrev.3c00579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 01/18/2024]
Abstract
With unlimited selectivity, full post-translational chemical control of biology would circumvent the dogma of genetic control. The resulting direct manipulation of organisms would enable atomic-level precision in "editing" of function. We argue that a key aspect that is still missing in our ability to do this (at least with a high degree of control) is the selectivity of a given chemical reaction in a living organism. In this Review, we systematize existing illustrative examples of chemical selectivity, as well as identify needed chemical selectivities set in a hierarchy of anatomical complexity: organismo- (selectivity for a given organism over another), tissuo- (selectivity for a given tissue type in a living organism), cellulo- (selectivity for a given cell type in an organism or tissue), and organelloselectivity (selectivity for a given organelle or discrete body within a cell). Finally, we analyze more traditional concepts such as regio-, chemo-, and stereoselective reactions where additionally appropriate. This survey of late-stage biomolecule methods emphasizes, where possible, functional consequences (i.e., biological function). In this way, we explore a concept of late-stage functionalization of living organisms (where "late" is taken to mean at a given state of an organism in time) in which programmed and selective chemical reactions take place in life. By building on precisely analyzed notions (e.g., mechanism and selectivity) we believe that the logic of chemical methodology might ultimately be applied to increasingly complex molecular constructs in biology. This could allow principles developed at the simple, small-molecule level to progress hierarchically even to manipulation of physiology.
Collapse
Affiliation(s)
- Andrew
M. Giltrap
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Yizhi Yuan
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| | - Benjamin G. Davis
- The
Rosalind Franklin Institute, Oxfordshire OX11 0FA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford OX1 3QT, U.K.
| |
Collapse
|
76
|
Bracken AK, Gekko CE, Suss NO, Lueders EE, Cui Q, Fu Q, Lui ACW, Anderson ET, Zhang S, Abbasov ME. Biomimetic Synthesis and Chemical Proteomics Reveal the Mechanism of Action and Functional Targets of Phloroglucinol Meroterpenoids. J Am Chem Soc 2024; 146:2524-2548. [PMID: 38230968 PMCID: PMC11000255 DOI: 10.1021/jacs.3c10741] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Natural products perennially serve as prolific sources of drug leads and chemical probes, fueling the development of numerous therapeutics. Despite their scarcity, natural products that modulate protein function through covalent interactions with lysine residues hold immense potential to unlock new therapeutic interventions and advance our understanding of the biological processes governed by these modifications. Phloroglucinol meroterpenoids constitute one of the most expansive classes of natural products, displaying a plethora of biological activities. However, their mechanism of action and cellular targets have, until now, remained elusive. In this study, we detail the concise biomimetic synthesis, computational mechanistic insights, physicochemical attributes, kinetic parameters, molecular mechanism of action, and functional cellular targets of several phloroglucinol meroterpenoids. We harness synthetic clickable analogues of natural products to probe their disparate proteome-wide reactivity and subcellular localization through in-gel fluorescence scanning and cell imaging. By implementing sample multiplexing and a redesigned lysine-targeting probe, we streamline a quantitative activity-based protein profiling, enabling the direct mapping of global reactivity and ligandability of proteinaceous lysines in human cells. Leveraging this framework, we identify numerous lysine-meroterpenoid interactions in breast cancer cells at tractable protein sites across diverse structural and functional classes, including those historically deemed undruggable. We validate that phloroglucinol meroterpenoids perturb biochemical functions through stereoselective and site-specific modification of lysines in proteins vital for breast cancer metabolism, including lipid signaling, mitochondrial respiration, and glycolysis. These findings underscore the broad potential of phloroglucinol meroterpenoids for targeting functional lysines in the human proteome.
Collapse
Affiliation(s)
- Amy K Bracken
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Colby E Gekko
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Nina O Suss
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Emma E Lueders
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Qi Cui
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Qin Fu
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | - Andy C W Lui
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | - Elizabeth T Anderson
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Cornell University, Ithaca, New York 14853, United States
| | | |
Collapse
|
77
|
Meyers M, Cismoski S, Panidapu A, Chie-Leon B, Nomura DK. Targeted Protein Degradation through Recruitment of the CUL4 Complex Adaptor Protein DDB1. ACS Chem Biol 2024; 19:58-68. [PMID: 38192078 PMCID: PMC11003717 DOI: 10.1021/acschembio.3c00487] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Targeted protein degradation has arisen as a powerful therapeutic modality for eliminating proteins. Thus far, most heterobifunctional proteolysis targeting chimeras (PROTACs) have utilized recruiters against substrate receptors of Cullin RING E3 ubiquitin ligases, such as cereblon and VHL. However, previous studies have surprisingly uncovered molecular glue degraders that exploit a CUL4 adaptor protein DDB1 to degrade neosubstrate proteins. Here, we sought to investigate whether DDB1 recruiters can be discovered that can be exploited for PROTAC applications. We utilized activity-based protein profiling and cysteine chemoproteomic screening to identify a covalent recruiter that targets C173 on DDB1 and exploited this recruiter to develop PROTACs against BRD4 and androgen receptor (AR). We demonstrated that the BRD4 PROTAC results in selective degradation of the short BRD4 isoform over the long isoform in a proteasome, NEDDylation, and DDB1-dependent manner. We also demonstrated degradation of AR with the AR PROTAC in prostate cancer cells. Our study demonstrated that covalent chemoproteomic approaches can be used to discover recruiters against Cullin RING adapter proteins and that these recruiters can be used for PROTAC applications to degrade neo-substrates.
Collapse
Affiliation(s)
- Margot Meyers
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94720 USA
| | - Sabine Cismoski
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94720 USA
| | - Anoohya Panidapu
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94720 USA
| | - Barbara Chie-Leon
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Novartis Institutes for BioMedical Research, Emeryville, CA 94608 USA
| | - Daniel K. Nomura
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94720 USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
78
|
Zhang Y, Liu Z, Hirschi M, Brodsky O, Johnson E, Won SJ, Nagata A, Petroski MD, Majmudar JD, Niessen S, VanArsdale T, Gilbert AM, Hayward MM, Stewart AE, Nager AR, Melillo B, Cravatt B. Expanding the ligandable proteome by paralog hopping with covalent probes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576274. [PMID: 38293178 PMCID: PMC10827202 DOI: 10.1101/2024.01.18.576274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
More than half of the ~20,000 protein-encoding human genes have at least one paralog. Chemical proteomics has uncovered many electrophile-sensitive cysteines that are exclusive to a subset of paralogous proteins. Here, we explore whether such covalent compound-cysteine interactions can be used to discover ligandable pockets in paralogs that lack the cysteine. Leveraging the covalent ligandability of C109 in the cyclin CCNE2, we mutated the corresponding residue in paralog CCNE1 to cysteine (N112C) and found through activity-based protein profiling (ABPP) that this mutant reacts stereoselectively and site-specifically with tryptoline acrylamides. We then converted the tryptoline acrylamide-N112C-CCNE1 interaction into a NanoBRET-ABPP assay capable of identifying compounds that reversibly inhibit both N112C- and WT-CCNE1:CDK2 complexes. X-ray crystallography revealed a cryptic allosteric pocket at the CCNE1:CDK2 interface adjacent to N112 that binds the reversible inhibitors. Our findings thus provide a roadmap for leveraging electrophile-cysteine interactions to extend the ligandability of the proteome beyond covalent chemistry.
Collapse
Affiliation(s)
- Yuanjin Zhang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Zhonglin Liu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Marsha Hirschi
- Medicine Design, Pfizer Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
| | - Oleg Brodsky
- Medicine Design, Pfizer Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
| | - Eric Johnson
- Medicine Design, Pfizer Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
| | - Sang Joon Won
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Asako Nagata
- Medicine Design, Pfizer Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
| | | | - Jaimeen D. Majmudar
- Discovery Sciences, Pfizer Research and Development, Pfizer Inc., Cambridge, MA 02139, USA
| | - Sherry Niessen
- Oncology Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
- Current address: Belharra Therapeutics, 3985 Sorrento Valley Blvd suite c, San Diego, CA 92121
| | - Todd VanArsdale
- Oncology Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
| | - Adam M. Gilbert
- Discovery Sciences, Pfizer Research and Development, Pfizer Inc., Groton, CT 06340, USA
| | - Matthew M. Hayward
- Discovery Sciences, Pfizer Research and Development, Pfizer Inc., Groton, CT 06340, USA
- Current address: Magnet Biomedicine, 321 Harrison Ave., Suite 600, Boston, MA 02118, USA
| | - Al E. Stewart
- Medicine Design, Pfizer Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
| | - Andrew R. Nager
- Oncology Research and Development, Pfizer Inc., La Jolla, CA 92121, USA
| | - Bruno Melillo
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037 USA
| | - Benjamin Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037 USA
| |
Collapse
|
79
|
Basu AA, Zhang X. Quantitative proteomics and applications in covalent ligand discovery. FRONTIERS IN CHEMICAL BIOLOGY 2024; 3:1352676. [PMID: 40109579 PMCID: PMC11922544 DOI: 10.3389/fchbi.2024.1352676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The development of multiplexing technologies for proteomics has enabled the quantification of proteins on a global scale across samples with high confidence. In the covalent ligand discovery pipeline, quantitative proteomics can be used to establish selectivity profiles and provide critical mechanistic insight into the action of lead compounds. Current multiplexing systems allow for the analysis of up to eighteen samples in a single run, allowing proteomic analyses to match the pace of high-throughput covalent ligand discovery workflows. This review discusses several quantitative proteomic techniques and their applications in the field of covalent ligand discovery.
Collapse
Affiliation(s)
- Ananya A Basu
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208
| | - Xiaoyu Zhang
- Department of Chemistry, Northwestern University, Evanston, IL 60208
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611
- Center for Human Immunobiology, Northwestern University, Chicago, IL 60611
- International Institute for Nanotechnology, Northwestern University, Evanston, IL 60208
| |
Collapse
|
80
|
Ramsey JR, Shelton PM, Heiss TK, Olinares PDB, Vostal LE, Soileau H, Grasso M, Casebeer SW, Adaniya S, Miller M, Sun S, Huggins DJ, Myers RW, Chait BT, Vinogradova EV, Kapoor TM. Using a Function-First "Scout Fragment"-Based Approach to Develop Allosteric Covalent Inhibitors of Conformationally Dynamic Helicase Mechanoenzymes. J Am Chem Soc 2024; 146:62-67. [PMID: 38134034 PMCID: PMC10958666 DOI: 10.1021/jacs.3c10581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Helicases, classified into six superfamilies, are mechanoenzymes that utilize energy derived from ATP hydrolysis to remodel DNA and RNA substrates. These enzymes have key roles in diverse cellular processes, such as translation, ribosome assembly, and genome maintenance. Helicases with essential functions in certain cancer cells have been identified, and helicases expressed by many viruses are required for their pathogenicity. Therefore, helicases are important targets for chemical probes and therapeutics. However, it has been very challenging to develop chemical inhibitors for helicases, enzymes with high conformational dynamics. We envisioned that electrophilic "scout fragments", which have been used in chemical proteomic studies, could be leveraged to develop covalent inhibitors of helicases. We adopted a function-first approach, combining enzymatic assays with enantiomeric probe pairs and mass spectrometry, to develop a covalent inhibitor that selectively targets an allosteric site in SARS-CoV-2 nsp13, a superfamily-1 helicase. Further, we demonstrate that scout fragments inhibit the activity of two human superfamily-2 helicases, BLM and WRN, involved in genome maintenance. Together, our findings suggest an approach to discover covalent inhibitor starting points and druggable allosteric sites in conformationally dynamic mechanoenzymes.
Collapse
Affiliation(s)
- Jared R. Ramsey
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10021, United States
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Patrick M.M Shelton
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Tyler K. Heiss
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Paul Dominic B. Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, United States
| | - Lauren E. Vostal
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10021, United States
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Heather Soileau
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10021, United States
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Michael Grasso
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Sara W. Casebeer
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| | - Stephanie Adaniya
- Laboratory of Chemical Immunology and Proteomics, The Rockefeller University, New York, NY 10065, United States
| | - Michael Miller
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, NY 10065, United States
| | - Shan Sun
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, NY 10065, United States
| | - David J. Huggins
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, NY 10065, United States
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10021, United States
| | - Robert W. Myers
- Sanders Tri-Institutional Therapeutics Discovery Institute, New York, NY 10065, United States
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, United States
| | - Ekaterina V. Vinogradova
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10021, United States
- Laboratory of Chemical Immunology and Proteomics, The Rockefeller University, New York, NY 10065, United States
| | - Tarun M. Kapoor
- Tri-Institutional PhD Program in Chemical Biology, New York, NY 10021, United States
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, United States
| |
Collapse
|
81
|
Liu R, Clayton J, Shen M, Bhatnagar S, Shen J. Machine Learning Models to Interrogate Proteomewide Covalent Ligandabilities Directed at Cysteines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.17.553742. [PMID: 37662346 PMCID: PMC10473668 DOI: 10.1101/2023.08.17.553742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Machine learning (ML) identification of covalently ligandable sites may accelerate targeted covalent inhibitor design and help expand the druggable proteome space. Here we report the rigorous development and validation of the tree-based models and convolutional neural networks (CNNs) trained on a newly curated database (LigCys3D) of over 1,000 liganded cysteines in nearly 800 proteins represented by over 10,000 three-dimensional structures in the protein data bank. The unseen tests yielded 94% and 93% AUCs (area under the receiver operating characteristic curve) for the tree models and CNNs, respectively. Based on the AlphaFold2 predicted structures, the ML models recapitulated the newly liganded cysteines in the PDB with over 90% recall values. To assist the community of covalent drug discoveries, we report the predicted ligandable cysteines in 392 human kinases and their locations in the sequence-aligned kinase structure including the PH and SH2 domains. Furthermore, we disseminate a searchable online database LigCys3D (https://ligcys.computchem.org/) and a web prediction server DeepCys (https://deepcys.computchem.org/), both of which will be continuously updated and improved by including newly published experimental data. The present work represents a first step towards the ML-led integration of big genome data and structure models to annotate the human proteome space for the next-generation covalent drug discoveries.
Collapse
Affiliation(s)
- Ruibin Liu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Joseph Clayton
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
- Division of Applied Regulatory Science, Office of Clinical Pharmacology, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Mingzhe Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| | - Shubham Bhatnagar
- Department of Computer Science, University of Maryland at College Park, College Park, MD 20742, USA
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| |
Collapse
|
82
|
Punzalan C, Wang L, Bajrami B, Yao X. Measurement and utilization of the proteomic reactivity by mass spectrometry. MASS SPECTROMETRY REVIEWS 2024; 43:166-192. [PMID: 36924435 DOI: 10.1002/mas.21837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 02/17/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Chemical proteomics, which involves studying the covalent modifications of proteins by small molecules, has significantly contributed to our understanding of protein function and has become an essential tool in drug discovery. Mass spectrometry (MS) is the primary method for identifying and quantifying protein-small molecule adducts. In this review, we discuss various methods for measuring proteomic reactivity using MS and covalent proteomics probes that engage through reactivity-driven and proximity-driven mechanisms. We highlight the applications of these methods and probes in live-cell measurements, drug target identification and validation, and characterizing protein-small molecule interactions. We conclude the review with current developments and future opportunities in the field, providing our perspectives on analytical considerations for MS-based analysis of the proteomic reactivity landscape.
Collapse
Affiliation(s)
- Clodette Punzalan
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Lei Wang
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
- AD Bio US, Takeda, Lexington, Massachusetts, 02421, USA
| | - Bekim Bajrami
- Chemical Biology & Proteomics, Biogen, Cambridge, Massachusetts, USA
| | - Xudong Yao
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Biology, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
83
|
Yan T, Boatner LM, Cui L, Tontonoz PJ, Backus KM. Defining the Cell Surface Cysteinome Using Two-Step Enrichment Proteomics. JACS AU 2023; 3:3506-3523. [PMID: 38155636 PMCID: PMC10751780 DOI: 10.1021/jacsau.3c00707] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023]
Abstract
The plasma membrane proteome is a rich resource of functionally important and therapeutically relevant protein targets. Distinguished by high hydrophobicity, heavy glycosylation, disulfide-rich sequences, and low overall abundance, the cell surface proteome remains undersampled in established proteomic pipelines, including our own cysteine chemoproteomics platforms. Here, we paired cell surface glycoprotein capture with cysteine chemoproteomics to establish a two-stage enrichment method that enables chemoproteomic profiling of cell Surface Cysteinome. Our "Cys-Surf" platform captures >2,800 total membrane protein cysteines in 1,046 proteins, including 1,907 residues not previously captured by bulk proteomic analysis. By pairing Cys-Surf with an isotopic chemoproteomic readout, we uncovered 821 total ligandable cysteines, including known and novel sites. Cys-Surf also robustly delineates redox-sensitive cysteines, including cysteines prone to activation-dependent changes to cysteine oxidation state and residues sensitive to addition of exogenous reductants. Exemplifying the capacity of Cys-Surf to delineate functionally important cysteines, we identified a redox sensitive cysteine in the low-density lipoprotein receptor (LDLR) that impacts both the protein localization and uptake of low-density lipoprotein (LDL) particles. Taken together, the Cys-Surf platform, distinguished by its two-stage enrichment paradigm, represents a tailored approach to delineate the functional and therapeutic potential of the plasma membrane cysteinome.
Collapse
Affiliation(s)
- Tianyang Yan
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Lisa M. Boatner
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
| | - Liujuan Cui
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, Los Angeles, California 90095, United States
| | - Peter J. Tontonoz
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles, Los Angeles, California 90095, United States
| | - Keriann M. Backus
- Department
of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, California 90095, United States
- Department
of Chemistry and Biochemistry, UCLA, Los Angeles, California 90095, United States
- DOE
Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095, United States
- Jonsson
Comprehensive Cancer Center, UCLA, Los Angeles, California 90095, United States
- Eli
and Edythe
Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, California 90095, United States
| |
Collapse
|
84
|
Scott KA, Kojima H, Ropek N, Warren CD, Zhang TL, Hogg SJ, Webster C, Zhang X, Rahman J, Melillo B, Cravatt BF, Lyu J, Abdel-Wahab O, Vinogradova EV. Covalent Targeting of Splicing in T Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.18.572199. [PMID: 38187674 PMCID: PMC10769204 DOI: 10.1101/2023.12.18.572199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Despite significant interest in therapeutic targeting of splicing, few chemical probes are available for the proteins involved in splicing. Here, we show that elaborated stereoisomeric acrylamide chemical probe EV96 and its analogues lead to a selective T cell state-dependent loss of interleukin 2-inducible T cell kinase (ITK) by targeting one of the core splicing factors SF3B1. Mechanistic investigations suggest that the state-dependency stems from a combination of differential protein turnover rates and availability of functional mRNA pools that can be depleted due to extensive alternative splicing. We further introduce a comprehensive list of proteins involved in splicing and leverage both cysteine- and protein-directed activity-based protein profiling (ABPP) data with electrophilic scout fragments to demonstrate covalent ligandability for many classes of splicing factors and splicing regulators in primary human T cells. Taken together, our findings show how chemical perturbation of splicing can lead to immune state-dependent changes in protein expression and provide evidence for the broad potential to target splicing factors with covalent chemistry.
Collapse
|
85
|
Tao Y, Felber JG, Zou Z, Njomen E, Remsberg J, Ogasawara D, Ye C, Melillo B, Schreiber SL, He C, Remillard D, Cravatt BF. Chemical Proteomic Discovery of Isotype-Selective Covalent Inhibitors of the RNA Methyltransferase NSUN2. Angew Chem Int Ed Engl 2023; 62:e202311924. [PMID: 37909922 PMCID: PMC10999112 DOI: 10.1002/anie.202311924] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
5-Methylcytosine (m5 C) is an RNA modification prevalent on tRNAs, where it can protect tRNAs from endonucleolytic cleavage to maintain protein synthesis. The NSUN family (NSUN1-7 in humans) of RNA methyltransferases are capable of installing the methyl group onto the C5 position of cytosines in RNA. NSUNs are implicated in a wide range of (patho)physiological processes, but selective and cell-active inhibitors of these enzymes are lacking. Here, we use cysteine-directed activity-based protein profiling (ABPP) to discover azetidine acrylamides that act as stereoselective covalent inhibitors of human NSUN2. Despite targeting a conserved catalytic cysteine in the NSUN family, the NSUN2 inhibitors show negligible cross-reactivity with other human NSUNs and exhibit good proteome-wide selectivity. We verify that the azetidine acrylamides inhibit the catalytic activity of recombinant NSUN2, but not NSUN6, and demonstrate that these compounds stereoselectively disrupt NSUN2-tRNA interactions in cancer cells, leading to a global reduction in tRNA m5 C content. Our findings thus highlight the potential to create isotype-selective and cell-active inhibitors of NSUN2 with covalent chemistry targeting a conserved catalytic cysteine.
Collapse
Affiliation(s)
- Yongfeng Tao
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307, USA
| | - Jan G. Felber
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307, USA
- LMU Munich, Department of Pharmacy, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Zhongyu Zou
- Department of Chemistry, The University of Chicago, 929 East 57th Street, GCIS E319B, Chicago, Illinois 60637, USA
| | - Evert Njomen
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307, USA
| | - Jarrett Remsberg
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307, USA
- Current address: Belharra Therapeutics, 3985 Sorrento Valley Blvd suite c, San Diego, CA 92121, USA
| | - Daisuke Ogasawara
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307, USA
| | - Chang Ye
- Department of Chemistry, The University of Chicago, 929 East 57th Street, GCIS E319B, Chicago, Illinois 60637, USA
| | - Bruno Melillo
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307, USA
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, 02142, Massachusetts, USA
| | - Stuart L. Schreiber
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, 02142, Massachusetts, USA
| | - Chuan He
- Department of Chemistry, The University of Chicago, 929 East 57th Street, GCIS E319B, Chicago, Illinois 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, GCIS E319B, Chicago, Illinois 60637, USA
| | - David Remillard
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307, USA
- Current address: Novartis, 10675 John Jay Hopkins Dr, San Diego, CA 92121, USA
| | - Benjamin F. Cravatt
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92307, USA
| |
Collapse
|
86
|
Korneenko TV, Pestov NB, Nevzorov IA, Daks AA, Trachuk KN, Solopova ON, Barlev NA. At the Crossroads of the cGAS-cGAMP-STING Pathway and the DNA Damage Response: Implications for Cancer Progression and Treatment. Pharmaceuticals (Basel) 2023; 16:1675. [PMID: 38139802 PMCID: PMC10747911 DOI: 10.3390/ph16121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
The evolutionary conserved DNA-sensing cGAS-STING innate immunity pathway represents one of the most important cytosolic DNA-sensing systems that is activated in response to viral invasion and/or damage to the integrity of the nuclear envelope. The key outcome of this pathway is the production of interferon, which subsequently stimulates the transcription of hundreds of genes. In oncology, the situation is complex because this pathway may serve either anti- or pro-oncogenic roles, depending on context. The prevailing understanding is that when the innate immune response is activated by sensing cytosolic DNA, such as DNA released from ruptured micronuclei, it results in the production of interferon, which attracts cytotoxic cells to destroy tumors. However, in tumor cells that have adjusted to significant chromosomal instability, particularly in relapsed, treatment-resistant cancers, the cGAS-STING pathway often supports cancer progression, fostering the epithelial-to-mesenchymal transition (EMT). Here, we review this intricate pathway in terms of its association with cancer progression, giving special attention to pancreatic ductal adenocarcinoma and gliomas. As the development of new cGAS-STING-modulating small molecules and immunotherapies such as oncolytic viruses involves serious challenges, we highlight several recent fundamental discoveries, such as the proton-channeling function of STING. These discoveries may serve as guiding lights for potential pharmacological advancements.
Collapse
Affiliation(s)
- Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikolay B. Pestov
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| | - Ivan A. Nevzorov
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
| | - Alexandra A. Daks
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
| | - Kirill N. Trachuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| | - Olga N. Solopova
- Research Institute of Experimental Diagnostics and Tumor Therapy, Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia
| | - Nickolai A. Barlev
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
87
|
Stair ER, Hicks LM. Recent advances in mass spectrometry-based methods to investigate reversible cysteine oxidation. Curr Opin Chem Biol 2023; 77:102389. [PMID: 37776664 DOI: 10.1016/j.cbpa.2023.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/10/2023] [Accepted: 08/31/2023] [Indexed: 10/02/2023]
Abstract
The post-translational modification of cysteine to diverse oxidative states is understood as a critical cellular mechanism to combat oxidative stress. To study the role of cysteine oxidation, cysteine enrichments and subsequent analysis via mass spectrometry are necessary. As such, technologies and methods are rapidly developing for sensitive and efficient enrichments of cysteines to further explore its role in signaling pathways. In this review, we analyze recent developments in methods to miniaturize cysteine enrichments, analyze the underexplored disulfide bound redoxome, and quantify site-specific cysteine oxidation. We predict that further development of these methods will improve cysteine coverage across more diverse organisms than those previously studied and elicit novel roles cysteines play in stress response.
Collapse
Affiliation(s)
- Evan R Stair
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leslie M Hicks
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
88
|
Tsukidate T, Hespen CW, Hang HC. Small molecule modulators of immune pattern recognition receptors. RSC Chem Biol 2023; 4:1014-1036. [PMID: 38033733 PMCID: PMC10685800 DOI: 10.1039/d3cb00096f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/03/2023] [Indexed: 12/02/2023] Open
Abstract
Pattern recognition receptors (PRRs) represent a re-emerging class of therapeutic targets for vaccine adjuvants, inflammatory diseases and cancer. In this review article, we summarize exciting developments in discovery and characterization of small molecule PRR modulators, focusing on Toll-like receptors (TLRs), NOD-like receptors (NLRs) and the cGAS-STING pathway. We also highlight PRRs that are currently lacking small molecule modulators and opportunities for chemical biology and therapeutic discovery.
Collapse
Affiliation(s)
- Taku Tsukidate
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
| | - Charles W Hespen
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
| | - Howard C Hang
- Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York New York 10065 USA
- Department of Immunology and Microbiology and Department of Chemistry, Scripps Research, La Jolla California 92037 USA
| |
Collapse
|
89
|
Conole D, Cao F, Am Ende CW, Xue L, Kantesaria S, Kang D, Jin J, Owen D, Lohr L, Schenone M, Majmudar JD, Tate EW. Discovery of a Potent Deubiquitinase (DUB) Small-Molecule Activity-Based Probe Enables Broad Spectrum DUB Activity Profiling in Living Cells. Angew Chem Int Ed Engl 2023; 62:e202311190. [PMID: 37779326 DOI: 10.1002/anie.202311190] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Deubiquitinases (DUBs) are a family of >100 proteases that hydrolyze isopeptide bonds linking ubiquitin to protein substrates, often leading to reduced substrate degradation through the ubiquitin proteasome system. Deregulation of DUB activity has been implicated in many diseases, including cancer, neurodegeneration and auto-inflammation, and several have been recognized as attractive targets for therapeutic intervention. Ubiquitin-derived covalent activity-based probes (ABPs) provide a powerful tool for DUB activity profiling, but their large recognition element impedes cellular permeability and presents an unmet need for small molecule ABPs which can account for regulation of DUB activity in intact cells or organisms. Here, through comprehensive chemoproteomic warhead profiling, we identify cyanopyrrolidine (CNPy) probe IMP-2373 (12) as a small molecule pan-DUB ABP to monitor DUB activity in physiologically relevant live cells. Through proteomics and targeted assays, we demonstrate that IMP-2373 quantitatively engages more than 35 DUBs across a range of non-toxic concentrations in diverse cell lines. We further demonstrate its application to quantification of changes in intracellular DUB activity during pharmacological inhibition and during MYC deregulation in a model of B cell lymphoma. IMP-2373 thus offers a complementary tool to ubiquitin ABPs to monitor dynamic DUB activity in the context of disease-relevant phenotypes.
Collapse
Affiliation(s)
- Daniel Conole
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London, W12 0BZ, United Kingdom
- Present address: Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Fangyuan Cao
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London, W12 0BZ, United Kingdom
| | - Christopher W Am Ende
- Pfizer Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, Connecticut, 06340, USA
| | - Liang Xue
- Pfizer Worldwide Research and Development, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts, 2139, USA
| | - Sheila Kantesaria
- Pfizer Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, Connecticut, 06340, USA
| | - Dahye Kang
- Pfizer Worldwide Research and Development, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts, 2139, USA
| | - Jun Jin
- BioDuro, No.233 North FuTe Rd., WaiGaoQiao Free Trade Zone, Shanghai, 200131, P.R. China
| | - Dafydd Owen
- Pfizer Worldwide Research and Development, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts, 2139, USA
| | - Linda Lohr
- Pfizer Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, Connecticut, 06340, USA
| | - Monica Schenone
- Pfizer Worldwide Research and Development, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts, 2139, USA
| | - Jaimeen D Majmudar
- Pfizer Worldwide Research and Development, Pfizer Inc., 1 Portland Street, Cambridge, Massachusetts, 2139, USA
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, London, W12 0BZ, United Kingdom
| |
Collapse
|
90
|
Julio AR, Shikwana F, Truong C, Burton NR, Dominguez E, Turmon AC, Cao J, Backus K. Pervasive aggregation and depletion of host and viral proteins in response to cysteine-reactive electrophilic compounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.30.564067. [PMID: 38014036 PMCID: PMC10680658 DOI: 10.1101/2023.10.30.564067] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Protein homeostasis is tightly regulated, with damaged or misfolded proteins quickly eliminated by the proteasome and autophagosome pathways. By co-opting these processes, targeted protein degradation technologies enable pharmacological manipulation of protein abundance. Recently, cysteine-reactive molecules have been added to the degrader toolbox, which offer the benefit of unlocking the therapeutic potential of 'undruggable' protein targets. The proteome-wide impact of these molecules remains to be fully understood and given the general reactivity of many classes of cysteine-reactive electrophiles, on- and off-target effects are likely. Using chemical proteomics, we identified a cysteine-reactive small molecule degrader of the SARS-CoV-2 nonstructural protein 14 (nsp14), which effects degradation through direct modification of cysteines in both nsp14 and in host chaperones together with activation of global cell stress response pathways. We find that cysteine-reactive electrophiles increase global protein ubiquitylation, trigger proteasome activation, and result in widespread aggregation and depletion of host proteins, including components of the nuclear pore complex. Formation of stress granules was also found to be a remarkably ubiquitous cellular response to nearly all cysteine-reactive compounds and degraders. Collectively, our study sheds light on complexities of covalent target protein degradation and highlights untapped opportunities in manipulating and characterizing proteostasis processes via deciphering the cysteine-centric regulation of stress response pathways.
Collapse
Affiliation(s)
- Ashley R Julio
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Flowreen Shikwana
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Cindy Truong
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
| | - Nikolas R Burton
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Emil Dominguez
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
| | - Alexandra C Turmon
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Jian Cao
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Keriann Backus
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095 (USA)
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095 (USA)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095 (USA)
| |
Collapse
|
91
|
Huang Y, Liu B, Sinha SC, Amin S, Gan L. Mechanism and therapeutic potential of targeting cGAS-STING signaling in neurological disorders. Mol Neurodegener 2023; 18:79. [PMID: 37941028 PMCID: PMC10634099 DOI: 10.1186/s13024-023-00672-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/25/2023] [Indexed: 11/10/2023] Open
Abstract
DNA sensing is a pivotal component of the innate immune system that is responsible for detecting mislocalized DNA and triggering downstream inflammatory pathways. Among the DNA sensors, cyclic GMP-AMP synthase (cGAS) is a primary player in detecting cytosolic DNA, including foreign DNA from pathogens and self-DNA released during cellular damage, culminating in a type I interferon (IFN-I) response through stimulator of interferon genes (STING) activation. IFN-I cytokines are essential in mediating neuroinflammation, which is widely observed in CNS injury, neurodegeneration, and aging, suggesting an upstream role for the cGAS DNA sensing pathway. In this review, we summarize the latest developments on the cGAS-STING DNA-driven immune response in various neurological diseases and conditions. Our review covers the current understanding of the molecular mechanisms of cGAS activation and highlights cGAS-STING signaling in various cell types of central and peripheral nervous systems, such as resident brain immune cells, neurons, and glial cells. We then discuss the role of cGAS-STING signaling in different neurodegenerative conditions, including tauopathies, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as aging and senescence. Finally, we lay out the current advancements in research and development of cGAS inhibitors and assess the prospects of targeting cGAS and STING as therapeutic strategies for a wide spectrum of neurological diseases.
Collapse
Affiliation(s)
- Yige Huang
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Bangyan Liu
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Subhash C Sinha
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Sadaf Amin
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA.
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
92
|
Li H, Ma T, Remsberg JR, Won SJ, DeMeester KE, Njomen E, Ogasawara D, Zhao KT, Huang TP, Lu B, Simon GM, Melillo B, Schreiber SL, Lykke-Andersen J, Liu DR, Cravatt BF. Assigning functionality to cysteines by base editing of cancer dependency genes. Nat Chem Biol 2023; 19:1320-1330. [PMID: 37783940 PMCID: PMC10698195 DOI: 10.1038/s41589-023-01428-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023]
Abstract
Covalent chemistry represents an attractive strategy for expanding the ligandability of the proteome, and chemical proteomics has revealed numerous electrophile-reactive cysteines on diverse human proteins. Determining which of these covalent binding events affect protein function, however, remains challenging. Here we describe a base-editing strategy to infer the functionality of cysteines by quantifying the impact of their missense mutation on cancer cell proliferation. The resulting atlas, which covers more than 13,800 cysteines on more than 1,750 cancer dependency proteins, confirms the essentiality of cysteines targeted by covalent drugs and, when integrated with chemical proteomic data, identifies essential, ligandable cysteines in more than 160 cancer dependency proteins. We further show that a stereoselective and site-specific ligand targeting an essential cysteine in TOE1 inhibits the nuclease activity of this protein through an apparent allosteric mechanism. Our findings thus describe a versatile method and valuable resource to prioritize the pursuit of small-molecule probes with high function-perturbing potential.
Collapse
Affiliation(s)
- Haoxin Li
- Department of Chemistry, Scripps Research, La Jolla, CA, USA.
| | - Tiantai Ma
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | | | - Sang Joon Won
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | | | - Evert Njomen
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | | | - Kevin T Zhao
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Tony P Huang
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Bingwen Lu
- Vividion Therapeutics, San Diego, CA, USA
| | | | - Bruno Melillo
- Department of Chemistry, Scripps Research, La Jolla, CA, USA
| | - Stuart L Schreiber
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jens Lykke-Andersen
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | | |
Collapse
|
93
|
Sathe G, Sapkota GP. Proteomic approaches advancing targeted protein degradation. Trends Pharmacol Sci 2023; 44:786-801. [PMID: 37778939 DOI: 10.1016/j.tips.2023.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/18/2023] [Accepted: 08/25/2023] [Indexed: 10/03/2023]
Abstract
Targeted protein degradation (TPD) is an emerging modality for research and therapeutics. Most TPD approaches harness cellular ubiquitin-dependent proteolytic pathways. Proteolysis-targeting chimeras (PROTACs) and molecular glue (MG) degraders (MGDs) represent the most advanced TPD approaches, with some already used in clinical settings. Despite these advances, TPD still faces many challenges, pertaining to both the development of effective, selective, and tissue-penetrant degraders and understanding their mode of action. In this review, we focus on progress made in addressing these challenges. In particular, we discuss the utility and application of recent proteomic approaches as indispensable tools to enable insights into degrader development, including target engagement, degradation selectivity, efficacy, safety, and mode of action.
Collapse
Affiliation(s)
- Gajanan Sathe
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | - Gopal P Sapkota
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
94
|
Chen Y, Craven GB, Kamber RA, Cuesta A, Zhersh S, Moroz YS, Bassik MC, Taunton J. Direct mapping of ligandable tyrosines and lysines in cells with chiral sulfonyl fluoride probes. Nat Chem 2023; 15:1616-1625. [PMID: 37460812 DOI: 10.1038/s41557-023-01281-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/23/2023] [Indexed: 11/05/2023]
Abstract
Advances in chemoproteomic technology have revealed covalent interactions between small molecules and protein nucleophiles, primarily cysteine, on a proteome-wide scale. Most chemoproteomic screening approaches are indirect, relying on competition between electrophilic fragments and a minimalist electrophilic probe with inherently limited proteome coverage. Here we develop a chemoproteomic platform for direct electrophile-site identification based on enantiomeric pairs of clickable arylsulfonyl fluoride probes. Using stereoselective site modification as a proxy for ligandability in intact cells, we identify 634 tyrosines and lysines within functionally diverse protein sites, liganded by structurally diverse probes. Among multiple validated sites, we discover a chiral probe that modifies Y228 in the MYC binding site of the epigenetic regulator WDR5, as revealed by a high-resolution crystal structure. A distinct chiral probe stimulates tumour cell phagocytosis by covalently modifying Y387 in the recently discovered immuno-oncology target APMAP. Our work provides a deep resource of ligandable tyrosines and lysines for the development of covalent chemical probes.
Collapse
Affiliation(s)
- Ying Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Gregory B Craven
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Roarke A Kamber
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Adolfo Cuesta
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Yurii S Moroz
- National Taras Shevchenko University of Kyiv, Kyiv, Ukraine
- Chemspace LLC, Kyiv, Ukraine
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Program in Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
95
|
Zhang J, Zhang L, Chen Y, Fang X, Li B, Mo C. The role of cGAS-STING signaling in pulmonary fibrosis and its therapeutic potential. Front Immunol 2023; 14:1273248. [PMID: 37965345 PMCID: PMC10642193 DOI: 10.3389/fimmu.2023.1273248] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
Pulmonary fibrosis is a progressive and ultimately fatal lung disease, exhibiting the excessive production of extracellular matrix and aberrant activation of fibroblast. While Pirfenidone and Nintedanib are FDA-approved drugs that can slow down the progression of pulmonary fibrosis, they are unable to reverse the disease. Therefore, there is an urgent demand to develop more efficient therapeutic approaches for pulmonary fibrosis. The intracellular DNA sensor called cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) plays a crucial role in detecting DNA and generating cGAMP, a second messenger. Subsequently, cGAMP triggers the activation of stimulator of interferon genes (STING), initiating a signaling cascade that leads to the stimulation of type I interferons and other signaling molecules involved in immune responses. Recent studies have highlighted the involvement of aberrant activation of cGAS-STING contributes to fibrotic lung diseases. This review aims to provide a comprehensive summary of the current knowledge regarding the role of cGAS-STING pathway in pulmonary fibrosis. Moreover, we discuss the potential therapeutic implications of targeting the cGAS-STING pathway, including the utilization of inhibitors of cGAS and STING.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
- School of Basic Medicine, Jining Medical University, Jining, Shandong, China
| | - Lanlan Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaobin Fang
- Fujian Provincial Key Laboratory of Critical Care Medicine, Department of Anesthesiology/Critical Care Medicine, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Bo Li
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
96
|
Takahashi M, Chong HB, Zhang S, Lazarov MJ, Harry S, Maynard M, White R, Murrey HE, Hilbert B, Neil JR, Gohar M, Ge M, Zhang J, Durr BR, Kryukov G, Tsou CC, Brooijmans N, Alghali ASO, Rubio K, Vilanueva A, Harrison D, Koglin AS, Ojeda S, Karakyriakou B, Healy A, Assaad J, Makram F, Rachman I, Khandelwal N, Tien PC, Popoola G, Chen N, Vordermark K, Richter M, Patel H, Yang TY, Griesshaber H, Hosp T, van den Ouweland S, Hara T, Bussema L, Dong R, Shi L, Rasmussen MQ, Domingues AC, Lawless A, Fang J, Yoda S, Nguyen LP, Reeves SM, Wakefield FN, Acker A, Clark SE, Dubash T, Fisher DE, Maheswaran S, Haber DA, Boland G, Sade-Feldman M, Jenkins R, Hata A, Bardeesy N, Suva ML, Martin B, Liau B, Ott C, Rivera MN, Lawrence MS, Bar-Peled L. DrugMap: A quantitative pan-cancer analysis of cysteine ligandability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.20.563287. [PMID: 37961514 PMCID: PMC10634688 DOI: 10.1101/2023.10.20.563287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors of a wide-range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed DrugMap , an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NFκB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NFκB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription factor activity.
Collapse
|
97
|
Yan T, Boatner LM, Cui L, Tontonoz P, Backus KM. Defining the Cell Surface Cysteinome using Two-step Enrichment Proteomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.17.562832. [PMID: 37904933 PMCID: PMC10614875 DOI: 10.1101/2023.10.17.562832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The plasma membrane proteome is a rich resource of functional and therapeutically relevant protein targets. Distinguished by high hydrophobicity, heavy glycosylation, disulfide-rich sequences, and low overall abundance, the cell surface proteome remains undersampled in established proteomic pipelines, including our own cysteine chemoproteomics platforms. Here we paired cell surface glycoprotein capture with cysteine chemoproteomics to establish a two-stage enrichment method that enables chemoproteomic profiling of cell Surface Cysteinome. Our "Cys-Surf" platform captures >2,800 total membrane protein cysteines in 1,046 proteins, including 1,907 residues not previously captured by bulk proteomic analysis. By pairing Cys-Surf with an isotopic chemoproteomic readout, we uncovered 821 total ligandable cysteines, including known and novel sites. Cys-Surf also robustly delineates redox-sensitive cysteines, including cysteines prone to activation-dependent changes to cysteine oxidation state and residues sensitive to addition of exogenous reductants. Exemplifying the capacity of Cys-Surf to delineate functionally important cysteines, we identified a redox sensitive cysteine in the low-density lipoprotein receptor (LDLR) that impacts both the protein localization and uptake of LDL particles. Taken together, the Cys-Surf platform, distinguished by its two-stage enrichment paradigm, represents a tailored approach to delineate the functional and therapeutic potential of the plasma membrane cysteinome.
Collapse
Affiliation(s)
- Tianyang Yan
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Lisa M. Boatner
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
| | - Liujuan Cui
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles; Los Angeles, CA 90095, USA
| | - Peter Tontonoz
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, UCLA, Los Angeles; Los Angeles, CA 90095, USA
| | - Keriann M. Backus
- Department of Biological Chemistry, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095 (USA)
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095 (USA)
- DOE Institute for Genomics and Proteomics, UCLA, Los Angeles, CA 90095 (USA)
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095 (USA)
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, UCLA, Los Angeles, CA 90095 (USA)
| |
Collapse
|
98
|
Sarott RC, You I, Li YD, Toenjes ST, Donovan KA, Seo P, Ordonez M, Byun WS, Hassan MM, Wachter F, Chouchani ET, Słabicki M, Fischer ES, Ebert BL, Hinshaw SM, Gray NS. Chemical Specification of E3 Ubiquitin Ligase Engagement by Cysteine-Reactive Chemistry. J Am Chem Soc 2023; 145:21937-21944. [PMID: 37767920 DOI: 10.1021/jacs.3c06622] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Targeted protein degradation relies on small molecules that induce new protein-protein interactions between targets and the cellular protein degradation machinery. Most of these small molecules feature specific ligands for ubiquitin ligases. Recently, the attachment of cysteine-reactive chemical groups to pre-existing small molecule inhibitors has been shown to drive specific target degradation. We demonstrate here that different cysteine-reactive groups can specify target degradation via distinct ubiquitin ligases. By focusing on the bromodomain ligand JQ1, we identify cysteine-reactive functional groups that drive BRD4 degradation by either DCAF16 or DCAF11. Unlike proteolysis-targeting chimeric molecules (PROTACs), the new compounds use a single small molecule ligand with a well-positioned cysteine-reactive group to induce protein degradation. The finding that nearly identical compounds can engage multiple ubiquitination pathways suggests that targeting cellular pathways that search for and eliminate chemically reactive proteins is a feasible avenue for converting existing small molecule drugs into protein degrader molecules.
Collapse
Affiliation(s)
- Roman C Sarott
- Department of Chemical and Systems Biology, ChEM-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Inchul You
- Department of Chemical and Systems Biology, ChEM-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Yen-Der Li
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, United States
| | - Sean T Toenjes
- Department of Chemical and Systems Biology, ChEM-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Katherine A Donovan
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Pooreum Seo
- Department of Chemical and Systems Biology, ChEM-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Martha Ordonez
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Pediatrics, Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Harvard University, Boston, Massachusetts 02215, United States
| | - Woong Sub Byun
- Department of Chemical and Systems Biology, ChEM-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Muhammad Murtaza Hassan
- Department of Chemical and Systems Biology, ChEM-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Franziska Wachter
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Department of Pediatrics, Dana-Farber/Boston Children's Cancer and Blood Disorders Center and Harvard Medical School, Harvard University, Boston, Massachusetts 02215, United States
| | - Edward T Chouchani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Mikołaj Słabicki
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, United States
| | - Eric S Fischer
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Benjamin L Ebert
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, United States
- Cancer Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, United States
- Howard Hughes Medical Institute, Boston, Massachusetts 02115, United States
| | - Stephen M Hinshaw
- Department of Chemical and Systems Biology, ChEM-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Nathanael S Gray
- Department of Chemical and Systems Biology, ChEM-H, and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
99
|
Ramachandran S, Makukhin N, Haubrich K, Nagala M, Forrester B, Lynch DM, Casement R, Testa A, Bruno E, Gitto R, Ciulli A. Structure-based design of a phosphotyrosine-masked covalent ligand targeting the E3 ligase SOCS2. Nat Commun 2023; 14:6345. [PMID: 37816714 PMCID: PMC10564737 DOI: 10.1038/s41467-023-41894-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 09/14/2023] [Indexed: 10/12/2023] Open
Abstract
The Src homology 2 (SH2) domain recognizes phosphotyrosine (pY) post translational modifications in partner proteins to trigger downstream signaling. Drug discovery efforts targeting the SH2 domains have long been stymied by the poor drug-like properties of phosphate and its mimetics. Here, we use structure-based design to target the SH2 domain of the E3 ligase suppressor of cytokine signaling 2 (SOCS2). Starting from the highly ligand-efficient pY amino acid, a fragment growing approach reveals covalent modification of Cys111 in a co-crystal structure, which we leverage to rationally design a cysteine-directed electrophilic covalent inhibitor MN551. We report the prodrug MN714 containing a pivaloyloxymethyl (POM) protecting group and evidence its cell permeability and capping group unmasking using cellular target engagement and in-cell 19F NMR spectroscopy. Covalent engagement at Cys111 competitively blocks recruitment of cellular SOCS2 protein to its native substrate. The qualified inhibitors of SOCS2 could find attractive applications as chemical probes to understand the biology of SOCS2 and its CRL5 complex, and as E3 ligase handles in proteolysis targeting chimera (PROTACs) to induce targeted protein degradation.
Collapse
Affiliation(s)
- Sarath Ramachandran
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
| | - Nikolai Makukhin
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
- Amphista Therapeutics Ltd, Cory Building, Granta Park, Great Abington, Cambridge, CB21 6GQ, United Kingdom
| | - Kevin Haubrich
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
| | - Manjula Nagala
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
| | - Beth Forrester
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
| | - Dylan M Lynch
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
| | - Ryan Casement
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
| | - Andrea Testa
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
- Amphista Therapeutics Ltd, Cory Building, Granta Park, Great Abington, Cambridge, CB21 6GQ, United Kingdom
| | - Elvira Bruno
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom
| | - Rosaria Gitto
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Viale Stagno D'Alcontres 31, Pole Papardo, 98166, Messina, Italy
| | - Alessio Ciulli
- Centre for Targeted Protein Degradation, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, 1 James Lindsay Place, Dundee, DD1 5JJ, United Kingdom.
| |
Collapse
|
100
|
Burton NR, Polasky DA, Shikwana F, Ofori S, Yan T, Geiszler DJ, Veiga Leprevost FD, Nesvizhskii AI, Backus KM. Solid-Phase Compatible Silane-Based Cleavable Linker Enables Custom Isobaric Quantitative Chemoproteomics. J Am Chem Soc 2023; 145:21303-21318. [PMID: 37738129 PMCID: PMC11895830 DOI: 10.1021/jacs.3c05797] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Mass spectrometry-based chemoproteomics has emerged as an enabling technology for functional biology and drug discovery. To address limitations of established chemoproteomics workflows, including cumbersome reagent synthesis and low throughput sample preparation, here, we established the silane-based cleavable isotopically labeled proteomics (sCIP) method. The sCIP method is enabled by a high yielding and scalable route to dialkoxydiphenylsilane fluorenylmethyloxycarbonyl (DADPS-Fmoc)-protected amino acid building blocks, which enable the facile synthesis of customizable, isotopically labeled, and chemically cleavable biotin capture reagents. sCIP is compatible with both MS1- and MS2-based quantitation, and the sCIP-MS2 method is distinguished by its click-assembled isobaric tags in which the reporter group is encoded in the sCIP capture reagent and balancer in the pan cysteine-reactive probe. The sCIP-MS2 workflow streamlines sample preparation with early stage isobaric labeling and sample pooling, allowing for high coverage and increased sample throughput via customized low cost six-plex sample multiplexing. When paired with a custom FragPipe data analysis workflow and applied to cysteine-reactive fragment screens, sCIP proteomics revealed established and unprecedented cysteine-ligand pairs, including the discovery that mitochondrial uncoupling agent FCCP acts as a covalent-reversible cysteine-reactive electrophile.
Collapse
Affiliation(s)
- Nikolas R Burton
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Daniel A Polasky
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Flowreen Shikwana
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Samuel Ofori
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tianyang Yan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Daniel J Geiszler
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Alexey I Nesvizhskii
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Pathology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Keriann M Backus
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095, United States
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
- DOE Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California 90095, United States
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|