51
|
Maino E, Wojtal D, Evagelou SL, Farheen A, Wong TWY, Lindsay K, Scott O, Rizvi SZ, Hyatt E, Rok M, Visuvanathan S, Chiodo A, Schneeweiss M, Ivakine EA, Cohn RD. Targeted genome editing in vivo corrects a Dmd duplication restoring wild-type dystrophin expression. EMBO Mol Med 2021; 13:e13228. [PMID: 33724658 PMCID: PMC8103086 DOI: 10.15252/emmm.202013228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 12/26/2022] Open
Abstract
Tandem duplication mutations are increasingly found to be the direct cause of many rare heritable diseases, accounting for up to 10% of cases. Unfortunately, animal models recapitulating such mutations are scarce, limiting our ability to study them and develop genome editing therapies. Here, we describe the generation of a novel duplication mouse model, harboring a multi-exonic tandem duplication in the Dmd gene which recapitulates a human mutation. Duplication correction of this mouse was achieved by implementing a single-guide RNA (sgRNA) CRISPR/Cas9 approach. This strategy precisely removed a duplication mutation in vivo, restored full-length dystrophin expression, and was accompanied by improvements in both histopathological and clinical phenotypes. We conclude that CRISPR/Cas9 represents a powerful tool to accurately model and treat tandem duplication mutations. Our findings will open new avenues of research for exploring the study and therapeutics of duplication disorders.
Collapse
Affiliation(s)
- Eleonora Maino
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Daria Wojtal
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Sonia L Evagelou
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
| | - Aiman Farheen
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
| | - Tatianna W Y Wong
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Kyle Lindsay
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
| | - Ori Scott
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
- Institute of Medical ScienceUniversity of TorontoTorontoONCanada
- Department of Pediatricsthe Hospital for Sick ChildrenTorontoONCanada
| | - Samar Z Rizvi
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Elzbieta Hyatt
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
| | - Matthew Rok
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
| | - Shagana Visuvanathan
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
| | - Amanda Chiodo
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
| | - Michelle Schneeweiss
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
| | - Evgueni A Ivakine
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
- Department of PhysiologyUniversity of TorontoTorontoONCanada
| | - Ronald D Cohn
- Program in Genetics and Genome Biologythe Hospital for Sick Children Research InstituteTorontoONCanada
- Department of Molecular GeneticsUniversity of TorontoTorontoONCanada
- Institute of Medical ScienceUniversity of TorontoTorontoONCanada
- Department of Pediatricsthe Hospital for Sick ChildrenTorontoONCanada
| |
Collapse
|
52
|
Voisin N, Schnur RE, Douzgou S, Hiatt SM, Rustad CF, Brown NJ, Earl DL, Keren B, Levchenko O, Geuer S, Verheyen S, Johnson D, Zarate YA, Hančárová M, Amor DJ, Bebin EM, Blatterer J, Brusco A, Cappuccio G, Charrow J, Chatron N, Cooper GM, Courtin T, Dadali E, Delafontaine J, Del Giudice E, Doco M, Douglas G, Eisenkölbl A, Funari T, Giannuzzi G, Gruber-Sedlmayr U, Guex N, Heron D, Holla ØL, Hurst ACE, Juusola J, Kronn D, Lavrov A, Lee C, Lorrain S, Merckoll E, Mikhaleva A, Norman J, Pradervand S, Prchalová D, Rhodes L, Sanders VR, Sedláček Z, Seebacher HA, Sellars EA, Sirchia F, Takenouchi T, Tanaka AJ, Taska-Tench H, Tønne E, Tveten K, Vitiello G, Vlčková M, Uehara T, Nava C, Yalcin B, Kosaki K, Donnai D, Mundlos S, Brunetti-Pierri N, Chung WK, Reymond A. Variants in the degron of AFF3 are associated with intellectual disability, mesomelic dysplasia, horseshoe kidney, and epileptic encephalopathy. Am J Hum Genet 2021; 108:857-873. [PMID: 33961779 DOI: 10.1016/j.ajhg.2021.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/29/2021] [Indexed: 12/27/2022] Open
Abstract
The ALF transcription factor paralogs, AFF1, AFF2, AFF3, and AFF4, are components of the transcriptional super elongation complex that regulates expression of genes involved in neurogenesis and development. We describe an autosomal dominant disorder associated with de novo missense variants in the degron of AFF3, a nine amino acid sequence important for its binding to ubiquitin ligase, or with de novo deletions of this region. The sixteen affected individuals we identified, along with two previously reported individuals, present with a recognizable pattern of anomalies, which we named KINSSHIP syndrome (KI for horseshoe kidney, NS for Nievergelt/Savarirayan type of mesomelic dysplasia, S for seizures, H for hypertrichosis, I for intellectual disability, and P for pulmonary involvement), partially overlapping the AFF4-associated CHOPS syndrome. Whereas homozygous Aff3 knockout mice display skeletal anomalies, kidney defects, brain malformations, and neurological anomalies, knockin animals modeling one of the microdeletions and the most common of the missense variants identified in affected individuals presented with lower mesomelic limb deformities like KINSSHIP-affected individuals and early lethality, respectively. Overexpression of AFF3 in zebrafish resulted in body axis anomalies, providing some support for the pathological effect of increased amount of AFF3. The only partial phenotypic overlap of AFF3- and AFF4-associated syndromes and the previously published transcriptome analyses of ALF transcription factors suggest that these factors are not redundant and each contributes uniquely to proper development.
Collapse
Affiliation(s)
- Norine Voisin
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland
| | - Rhonda E Schnur
- GeneDx, Gaithersburg, MD 20877, USA; Cooper Medical School of Rowan University, Division of Genetics, Camden, NJ 08103, USA
| | - Sofia Douzgou
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK; Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Cecilie F Rustad
- Department of Medical Genetics, Oslo University Hospital, 0424 Oslo, Norway
| | - Natasha J Brown
- Victorian Clinical Genetics Services, Flemington Road, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | | | - Boris Keren
- Department of Genetics, Pitié-Salpêtrière Hospital, Assistance Publique - Hôpitaux de Paris, Groupe de Recherche Clinique Déficience Intellectuelle et Autisme UPMC, Paris 75013, France
| | - Olga Levchenko
- Research Centre for Medical Genetics, Moscow 115522, Russia
| | - Sinje Geuer
- Max Planck Institute for Molecular Genetics, Berlin 14195, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Sarah Verheyen
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria
| | - Diana Johnson
- Sheffield Clinical Genetics Service, Sheffield S10 2TQ, UK
| | - Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR 72701, USA
| | - Miroslava Hančárová
- Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | - David J Amor
- Murdoch Children's Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jasmin Blatterer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Torino 10126, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino 10126, Italy
| | - Gerarda Cappuccio
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples 80131, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Naples 80078, Italy
| | - Joel Charrow
- Division of Genetics, Birth Defects & Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Nicolas Chatron
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Genetics Department, Lyon University Hospital, Lyon 69007, France
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Thomas Courtin
- Department of Genetics, Pitié-Salpêtrière Hospital, Assistance Publique - Hôpitaux de Paris, Groupe de Recherche Clinique Déficience Intellectuelle et Autisme UPMC, Paris 75013, France
| | - Elena Dadali
- Research Centre for Medical Genetics, Moscow 115522, Russia
| | | | - Ennio Del Giudice
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples 80131, Italy
| | - Martine Doco
- Secteur Génétique, CHU Reims, EA3801, SFR CAPSANTE, 51092 Reims, France
| | | | - Astrid Eisenkölbl
- Department of Pediatrics and Adolescent Medicine, Johannes Kepler University, Kepler University Hospital Linz, Krankenhausstraße 26-30, 4020 Linz, Austria
| | | | - Giuliana Giannuzzi
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland
| | - Ursula Gruber-Sedlmayr
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Nicolas Guex
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Bioinformatics Competence Center, University of Lausanne, Lausanne 1015, Switzerland
| | - Delphine Heron
- Department of Genetics, Pitié-Salpêtrière Hospital, Assistance Publique - Hôpitaux de Paris, Groupe de Recherche Clinique Déficience Intellectuelle et Autisme UPMC, Paris 75013, France
| | - Øystein L Holla
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - David Kronn
- New York Medical College, Valhalla, NY 10595, USA
| | | | - Crystle Lee
- Victorian Clinical Genetics Services, Flemington Road, Parkville, VIC 3052, Australia
| | - Séverine Lorrain
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Protein Analysis Facility, University of Lausanne, Lausanne 1015, Switzerland
| | - Else Merckoll
- Department of Radiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Anna Mikhaleva
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland
| | | | - Sylvain Pradervand
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste 34100, Italy
| | - Darina Prchalová
- Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | | | - Victoria R Sanders
- Division of Genetics, Birth Defects & Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Zdeněk Sedláček
- Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | - Heidelis A Seebacher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria
| | - Elizabeth A Sellars
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR 72701, USA
| | - Fabio Sirchia
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste 34100, Italy
| | - Toshiki Takenouchi
- Center for Medical Genetics, Department of Pediatrics, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Akemi J Tanaka
- Department of Pediatrics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Heidi Taska-Tench
- Division of Genetics, Birth Defects & Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Elin Tønne
- Department of Medical Genetics, Oslo University Hospital, 0424 Oslo, Norway
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Giuseppina Vitiello
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples 80131, Italy
| | - Markéta Vlčková
- Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | - Tomoko Uehara
- Center for Medical Genetics, Department of Pediatrics, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Caroline Nava
- Department of Genetics, Pitié-Salpêtrière Hospital, Assistance Publique - Hôpitaux de Paris, Groupe de Recherche Clinique Déficience Intellectuelle et Autisme UPMC, Paris 75013, France
| | - Binnaz Yalcin
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
| | - Kenjiro Kosaki
- Center for Medical Genetics, Department of Pediatrics, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Dian Donnai
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK; Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Berlin 14195, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples 80131, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Naples 80078, Italy
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland.
| |
Collapse
|
53
|
Saito R, Miyoshi C, Koebis M, Kushima I, Nakao K, Mori D, Ozaki N, Funato H, Yanagisawa M, Aiba A. Two novel mouse models mimicking minor deletions in 22q11.2 deletion syndrome revealed the contribution of each deleted region to psychiatric disorders. Mol Brain 2021; 14:68. [PMID: 33845872 PMCID: PMC8042712 DOI: 10.1186/s13041-021-00778-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/03/2021] [Indexed: 12/02/2022] Open
Abstract
22q11.2 deletion syndrome (22q11.2DS) is a disorder caused by the segmental deletion of human chromosome 22. This chromosomal deletion is known as high genetic risk factors for various psychiatric disorders. The different deletion types are identified in 22q11.2DS patients, including the most common 3.0-Mb deletion, and the less-frequent 1.5-Mb and 1.4-Mb deletions. In previous animal studies of psychiatric disorders associated with 22q11.2DS mainly focused on the 1.5-Mb deletion and model mice mimicking the human 1.5-Mb deletion have been established with diverse genetic backgrounds, which resulted in the contradictory phenotypes. On the other hand, the contribution of the genes in 1.4-Mb region to psychiatric disorders is poorly understood. In this study, we generated two mouse lines that reproduced the 1.4-Mb and 1.5-Mb deletions of 22q11.2DS [Del(1.4 Mb)/+ and Del(1.5 Mb)/+] on the pure C57BL/6N genetic background. These mutant mice were analyzed comprehensively by behavioral tests, such as measurement of locomotor activity, sociability, prepulse inhibition and fear-conditioning memory. Del(1.4 Mb)/+ mice displayed decreased locomotor activity, but no abnormalities were observed in all other behavioral tests. Del(1.5 Mb)/+ mice showed reduction of prepulse inhibition and impairment of contextual- and cued-dependent fear memory, which is consistent with previous reports. Furthermore, apparently intact social recognition in Del(1.4 Mb)/+ and Del(1.5 Mb)/+ mice suggests that the impaired social recognition observed in Del(3.0 Mb)/+ mice mimicking the human 3.0-Mb deletion requires mutations both in 1.4-Mb and 1.5 Mb regions. Our previous study has shown that Del(3.0 Mb)/+ mice presented disturbance of behavioral circadian rhythm. Therefore, we further evaluated sleep/wakefulness cycles in Del(3.0 Mb)/+ mice by electroencephalogram (EEG) and electromyogram (EMG) recording. EEG/EMG analysis revealed the disturbed wakefulness and non-rapid eye moving sleep (NREMS) cycles in Del(3.0 Mb)/+ mice, suggesting that Del(3.0 Mb)/+ mice may be unable to maintain their wakefulness. Together, our mouse models deepen our understanding of genetic contributions to schizophrenic phenotypes related to 22q11.2DS.
Collapse
Affiliation(s)
- Ryo Saito
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Chika Miyoshi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575 Japan
| | - Michinori Koebis
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550 Japan
- Medical Genomics Center, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550 Japan
| | - Kazuki Nakao
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550 Japan
- Brain and Mind Research Center, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550 Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550 Japan
| | - Hiromasa Funato
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575 Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575 Japan
| | - Atsu Aiba
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
54
|
Wu Q, Shou J. Toward precise CRISPR DNA fragment editing and predictable 3D genome engineering. J Mol Cell Biol 2021; 12:828-856. [PMID: 33125070 PMCID: PMC7883824 DOI: 10.1093/jmcb/mjaa060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Ever since gene targeting or specific modification of genome sequences in mice was achieved in the early 1980s, the reverse genetic approach of precise editing of any genomic locus has greatly accelerated biomedical research and biotechnology development. In particular, the recent development of the CRISPR/Cas9 system has greatly expedited genetic dissection of 3D genomes. CRISPR gene-editing outcomes result from targeted genome cleavage by ectopic bacterial Cas9 nuclease followed by presumed random ligations via the host double-strand break repair machineries. Recent studies revealed, however, that the CRISPR genome-editing system is precise and predictable because of cohesive Cas9 cleavage of targeting DNA. Here, we synthesize the current understanding of CRISPR DNA fragment-editing mechanisms and recent progress in predictable outcomes from precise genetic engineering of 3D genomes. Specifically, we first briefly describe historical genetic studies leading to CRISPR and 3D genome engineering. We then summarize different types of chromosomal rearrangements by DNA fragment editing. Finally, we review significant progress from precise 1D gene editing toward predictable 3D genome engineering and synthetic biology. The exciting and rapid advances in this emerging field provide new opportunities and challenges to understand or digest 3D genomes.
Collapse
Affiliation(s)
- Qiang Wu
- Center for Comparative Biomedicine, MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jia Shou
- Center for Comparative Biomedicine, MOE Key Lab of Systems Biomedicine, State Key Laboratory of Oncogenes and Related Genes, Institute of Systems Biomedicine, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
55
|
Allou L, Balzano S, Magg A, Quinodoz M, Royer-Bertrand B, Schöpflin R, Chan WL, Speck-Martins CE, Carvalho DR, Farage L, Lourenço CM, Albuquerque R, Rajagopal S, Nampoothiri S, Campos-Xavier B, Chiesa C, Niel-Bütschi F, Wittler L, Timmermann B, Spielmann M, Robson MI, Ringel A, Heinrich V, Cova G, Andrey G, Prada-Medina CA, Pescini-Gobert R, Unger S, Bonafé L, Grote P, Rivolta C, Mundlos S, Superti-Furga A. Non-coding deletions identify Maenli lncRNA as a limb-specific En1 regulator. Nature 2021; 592:93-98. [DOI: 10.1038/s41586-021-03208-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/07/2021] [Indexed: 11/09/2022]
|
56
|
Sharma G, Sharma AR, Bhattacharya M, Lee SS, Chakraborty C. CRISPR-Cas9: A Preclinical and Clinical Perspective for the Treatment of Human Diseases. Mol Ther 2021; 29:571-586. [PMID: 33238136 PMCID: PMC7854284 DOI: 10.1016/j.ymthe.2020.09.028] [Citation(s) in RCA: 140] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/12/2020] [Accepted: 09/16/2020] [Indexed: 12/21/2022] Open
Abstract
At present, the idea of genome modification has revolutionized the modern therapeutic research era. Genome modification studies have traveled a long way from gene modifications in primary cells to genetic modifications in animals. The targeted genetic modification may result in the modulation (i.e., either upregulation or downregulation) of the predefined gene expression. Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated nuclease 9 (Cas9) is a promising genome-editing tool that has therapeutic potential against incurable genetic disorders by modifying their DNA sequences. In comparison with other genome-editing techniques, CRISPR-Cas9 is simple, efficient, and very specific. This enabled CRISPR-Cas9 genome-editing technology to enter into clinical trials against cancer. Besides therapeutic potential, the CRISPR-Cas9 tool can also be applied to generate genetically inhibited animal models for drug discovery and development. This comprehensive review paper discusses the origin of CRISPR-Cas9 systems and their therapeutic potential against various genetic disorders, including cancer, allergy, immunological disorders, Duchenne muscular dystrophy, cardiovascular disorders, neurological disorders, liver-related disorders, cystic fibrosis, blood-related disorders, eye-related disorders, and viral infection. Finally, we discuss the different challenges, safety concerns, and strategies that can be applied to overcome the obstacles during CRISPR-Cas9-mediated therapeutic approaches.
Collapse
Affiliation(s)
- Garima Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Manojit Bhattacharya
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea.
| | - Chiranjib Chakraborty
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, Gangwon-Do 24252, Republic of Korea; Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Barasat-Barrackpore Road, Kolkata, West Bengal 700126, India.
| |
Collapse
|
57
|
Antao AM, Karapurkar JK, Lee DR, Kim KS, Ramakrishna S. Disease modeling and stem cell immunoengineering in regenerative medicine using CRISPR/Cas9 systems. Comput Struct Biotechnol J 2020; 18:3649-3665. [PMID: 33304462 PMCID: PMC7710510 DOI: 10.1016/j.csbj.2020.11.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
CRISPR/Cas systems are popular genome editing tools that belong to a class of programmable nucleases and have enabled tremendous progress in the field of regenerative medicine. We here outline the structural and molecular frameworks of the well-characterized type II CRISPR system and several computational tools intended to facilitate experimental designs. The use of CRISPR tools to generate disease models has advanced research into the molecular aspects of disease conditions, including unraveling the molecular basis of immune rejection. Advances in regenerative medicine have been hindered by major histocompatibility complex-human leukocyte antigen (HLA) genes, which pose a major barrier to cell- or tissue-based transplantation. Based on progress in CRISPR, including in recent clinical trials, we hypothesize that the generation of universal donor immune-engineered stem cells is now a realistic approach to tackling a multitude of disease conditions.
Collapse
Affiliation(s)
- Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
| | | | - Dong Ryul Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seoul, South Korea
- CHA Stem Cell Institute, CHA University, Seoul, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
- College of Medicine, Hanyang University, Seoul, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea
- College of Medicine, Hanyang University, Seoul, South Korea
| |
Collapse
|
58
|
Johnstone CP, Wang NB, Sevier SA, Galloway KE. Understanding and Engineering Chromatin as a Dynamical System across Length and Timescales. Cell Syst 2020; 11:424-448. [PMID: 33212016 DOI: 10.1016/j.cels.2020.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022]
Abstract
Connecting the molecular structure and function of chromatin across length and timescales remains a grand challenge to understanding and engineering cellular behaviors. Across five orders of magnitude, dynamic processes constantly reshape chromatin structures, driving spaciotemporal patterns of gene expression and cell fate. Through the interplay of structure and function, the genome operates as a highly dynamic feedback control system. Recent experimental techniques have provided increasingly detailed data that revise and augment the relatively static, hierarchical view of genomic architecture with an understanding of how dynamic processes drive organization. Here, we review how novel technologies from sequencing, imaging, and synthetic biology refine our understanding of chromatin structure and function and enable chromatin engineering. Finally, we discuss opportunities to use these tools to enhance understanding of the dynamic interrelationship of chromatin structure and function.
Collapse
Affiliation(s)
| | - Nathan B Wang
- Department of Chemical Engineering, MIT, 25 Ames St., Cambridge, MA 02139, USA
| | - Stuart A Sevier
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA; Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Kate E Galloway
- Department of Chemical Engineering, MIT, 25 Ames St., Cambridge, MA 02139, USA.
| |
Collapse
|
59
|
Ali T, Grote P. Beyond the RNA-dependent function of LncRNA genes. eLife 2020; 9:60583. [PMID: 33095159 PMCID: PMC7584451 DOI: 10.7554/elife.60583] [Citation(s) in RCA: 192] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/12/2020] [Indexed: 12/25/2022] Open
Abstract
While long non-coding RNA (lncRNA) genes have attracted a lot of attention in the last decade, the focus regarding their mechanisms of action has been primarily on the RNA product of these genes. Recent work on several lncRNAs genes demonstrates that not only is the produced RNA species important, but also that transcription of the lncRNA locus alone can have regulatory functions. Like the functions of lncRNA transcripts, the mechanisms that underlie these genome-based functions are varied. Here we highlight some of these examples and provide an outlook on how the functional mechanisms of a lncRNA gene can be determined.
Collapse
Affiliation(s)
- Tamer Ali
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany.,Faculty of Science, Benha University, Benha, Egypt
| | - Phillip Grote
- Institute of Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
60
|
Stange M, Barrett RDH, Hendry AP. The importance of genomic variation for biodiversity, ecosystems and people. Nat Rev Genet 2020; 22:89-105. [PMID: 33067582 DOI: 10.1038/s41576-020-00288-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 11/09/2022]
Abstract
The 2019 United Nations Global assessment report on biodiversity and ecosystem services estimated that approximately 1 million species are at risk of extinction. This primarily human-driven loss of biodiversity has unprecedented negative consequences for ecosystems and people. Classic and emerging approaches in genetics and genomics have the potential to dramatically improve these outcomes. In particular, the study of interactions among genetic loci within and between species will play a critical role in understanding the adaptive potential of species and communities, and hence their direct and indirect effects on biodiversity, ecosystems and people. We explore these population and community genomic contexts in the hope of finding solutions for maintaining and improving ecosystem services and nature's contributions to people.
Collapse
Affiliation(s)
- Madlen Stange
- Redpath Museum, McGill University, Montreal, QC, Canada
| | | | | |
Collapse
|
61
|
Koppes EA, Redel BK, Johnson MA, Skvorak KJ, Ghaloul-Gonzalez L, Yates ME, Lewis DW, Gollin SM, Wu YL, Christ SE, Yerle M, Leshinski A, Spate LD, Benne JA, Murphy SL, Samuel MS, Walters EM, Hansen SA, Wells KD, Lichter-Konecki U, Wagner RA, Newsome JT, Dobrowolski SF, Vockley J, Prather RS, Nicholls RD. A porcine model of phenylketonuria generated by CRISPR/Cas9 genome editing. JCI Insight 2020; 5:141523. [PMID: 33055427 PMCID: PMC7605535 DOI: 10.1172/jci.insight.141523] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Phenylalanine hydroxylase-deficient (PAH-deficient) phenylketonuria (PKU) results in systemic hyperphenylalaninemia, leading to neurotoxicity with severe developmental disabilities. Dietary phenylalanine (Phe) restriction prevents the most deleterious effects of hyperphenylalaninemia, but adherence to diet is poor in adult and adolescent patients, resulting in characteristic neurobehavioral phenotypes. Thus, an urgent need exists for new treatments. Additionally, rodent models of PKU do not adequately reflect neurocognitive phenotypes, and thus there is a need for improved animal models. To this end, we have developed PAH-null pigs. After selection of optimal CRISPR/Cas9 genome-editing reagents by using an in vitro cell model, zygote injection of 2 sgRNAs and Cas9 mRNA demonstrated deletions in preimplantation embryos, with embryo transfer to a surrogate leading to 2 founder animals. One pig was heterozygous for a PAH exon 6 deletion allele, while the other was compound heterozygous for deletions of exon 6 and of exons 6-7. The affected pig exhibited hyperphenylalaninemia (2000-5000 μM) that was treatable by dietary Phe restriction, consistent with classical PKU, along with juvenile growth retardation, hypopigmentation, ventriculomegaly, and decreased brain gray matter volume. In conclusion, we have established a large-animal preclinical model of PKU to investigate pathophysiology and to assess new therapeutic interventions.
Collapse
Affiliation(s)
- Erik A. Koppes
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bethany K. Redel
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Marie A. Johnson
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kristen J. Skvorak
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lina Ghaloul-Gonzalez
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Megan E. Yates
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dale W. Lewis
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Susanne M. Gollin
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Yijen L. Wu
- Department of Developmental Biology, University of Pittsburgh, and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shawn E. Christ
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Martine Yerle
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Angela Leshinski
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lee D. Spate
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Joshua A. Benne
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Stephanie L. Murphy
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Melissa S. Samuel
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Eric M. Walters
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Sarah A. Hansen
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Kevin D. Wells
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Uta Lichter-Konecki
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert A. Wagner
- Division of Laboratory Animal Resources, Office of Research, Health Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph T. Newsome
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Division of Laboratory Animal Resources, Office of Research, Health Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven F. Dobrowolski
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jerry Vockley
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Randall S. Prather
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Robert D. Nicholls
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
62
|
M Real F, Haas SA, Franchini P, Xiong P, Simakov O, Kuhl H, Schöpflin R, Heller D, Moeinzadeh MH, Heinrich V, Krannich T, Bressin A, Hartmann MF, Wudy SA, Dechmann DKN, Hurtado A, Barrionuevo FJ, Schindler M, Harabula I, Osterwalder M, Hiller M, Wittler L, Visel A, Timmermann B, Meyer A, Vingron M, Jiménez R, Mundlos S, Lupiáñez DG. The mole genome reveals regulatory rearrangements associated with adaptive intersexuality. Science 2020; 370:208-214. [PMID: 33033216 PMCID: PMC8243244 DOI: 10.1126/science.aaz2582] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 04/19/2020] [Accepted: 08/17/2020] [Indexed: 01/01/2023]
Abstract
Linking genomic variation to phenotypical traits remains a major challenge in evolutionary genetics. In this study, we use phylogenomic strategies to investigate a distinctive trait among mammals: the development of masculinizing ovotestes in female moles. By combining a chromosome-scale genome assembly of the Iberian mole, Talpa occidentalis, with transcriptomic, epigenetic, and chromatin interaction datasets, we identify rearrangements altering the regulatory landscape of genes with distinct gonadal expression patterns. These include a tandem triplication involving CYP17A1, a gene controlling androgen synthesis, and an intrachromosomal inversion involving the pro-testicular growth factor gene FGF9, which is heterochronically expressed in mole ovotestes. Transgenic mice with a knock-in mole CYP17A1 enhancer or overexpressing FGF9 showed phenotypes recapitulating mole sexual features. Our results highlight how integrative genomic approaches can reveal the phenotypic impact of noncoding sequence changes.
Collapse
Affiliation(s)
- Francisca M Real
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan A Haas
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Paolo Franchini
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Peiwen Xiong
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Oleg Simakov
- Department of Molecular Evolution and Development, University of Vienna, 1090 Vienna, Austria
| | - Heiner Kuhl
- Department of Ecophysiology and Aquaculture, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Robert Schöpflin
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - David Heller
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - M-Hossein Moeinzadeh
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Verena Heinrich
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Thomas Krannich
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Annkatrin Bressin
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Michaela F Hartmann
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics in Paediatric Endocrinology, Division of Paediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Stefan A Wudy
- Steroid Research & Mass Spectrometry Unit, Laboratory for Translational Hormone Analytics in Paediatric Endocrinology, Division of Paediatric Endocrinology & Diabetology, Center of Child and Adolescent Medicine, Justus Liebig University, Giessen, Germany
| | - Dina K N Dechmann
- Department of Migration and Immuno-Ecology, Max Planck Institute for Animal Behavior, Radolfzell, Germany
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alicia Hurtado
- Departamento de Genética, Universidad de Granada, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain
| | - Francisco J Barrionuevo
- Departamento de Genética, Universidad de Granada, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain
| | - Magdalena Schindler
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Izabela Harabula
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Marco Osterwalder
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Lars Wittler
- Department of Developmental Genetics, Transgenic Unit, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- U.S. Department of Energy Joint Genome Institute, Berkeley, CA 94720, USA
- School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Bernd Timmermann
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Axel Meyer
- Chair in Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Rafael Jiménez
- Departamento de Genética, Universidad de Granada, Granada, Spain
- Instituto de Biotecnología, Centro de Investigación Biomédica, Universidad de Granada, Armilla, Granada, Spain
| | - Stefan Mundlos
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- Institute for Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Darío G Lupiáñez
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany.
- Institute for Medical and Human Genetics, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
63
|
Abstract
The mouse is one of the most widely used model organisms for genetic study. The tools available to alter the mouse genome have developed over the preceding decades from forward screens to gene targeting in stem cells to the recent influx of CRISPR approaches. In this review, we first consider the history of mice in genetic study, the development of classic approaches to genome modification, and how such approaches have been used and improved in recent years. We then turn to the recent surge of nuclease-mediated techniques and how they are changing the field of mouse genetics. Finally, we survey common classes of alleles used in mice and discuss how they might be engineered using different methods.
Collapse
Affiliation(s)
- James F Clark
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Colin J Dinsmore
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mt. Sinai, New York, New York 10029, USA
| |
Collapse
|
64
|
Newman A, Starrs L, Burgio G. Cas9 Cuts and Consequences; Detecting, Predicting, and Mitigating CRISPR/Cas9 On- and Off-Target Damage: Techniques for Detecting, Predicting, and Mitigating the On- and off-target Effects of Cas9 Editing. Bioessays 2020; 42:e2000047. [PMID: 32643177 DOI: 10.1002/bies.202000047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/12/2020] [Indexed: 12/12/2022]
Abstract
Large deletions and genomic re-arrangements are increasingly recognized as common products of double-strand break repair at Clustered Regularly Interspaced, Short Palindromic Repeats - CRISPR associated protein 9 (CRISPR/Cas9) on-target sites. Together with well-known off-target editing products from Cas9 target misrecognition, these are important limitations, that need to be addressed. Rigorous assessment of Cas9-editing is necessary to ensure validity of observed phenotypes in Cas9-edited cell-lines and model organisms. Here the mechanisms of Cas9 specificity, and strategies to assess and mitigate unwanted effects of Cas9 editing are reviewed; covering guide-RNA design, RNA modifications, Cas9 modifications, control of Cas9 activity; computational prediction for off-targets, and experimental methods for detecting Cas9 cleavage. Although recognition of the prevalence of on- and off-target effects of Cas9 editing has increased in recent years, broader uptake across the gene editing community will be important in determining the specificity of Cas9 across diverse applications and organisms.
Collapse
Affiliation(s)
- Anthony Newman
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra, ACT, 2601, Australia
| | - Lora Starrs
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra, ACT, 2601, Australia
| | - Gaetan Burgio
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, 131 Garran Road, Canberra, ACT, 2601, Australia
| |
Collapse
|
65
|
Noorani I, Bradley A, de la Rosa J. CRISPR and transposon in vivo screens for cancer drivers and therapeutic targets. Genome Biol 2020; 21:204. [PMID: 32811551 PMCID: PMC7437018 DOI: 10.1186/s13059-020-02118-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/23/2020] [Indexed: 02/07/2023] Open
Abstract
Human cancers harbor substantial genetic, epigenetic, and transcriptional changes, only some of which drive oncogenesis at certain times during cancer evolution. Identifying the cancer-driver alterations amongst the vast swathes of "passenger" changes still remains a major challenge. Transposon and CRISPR screens in vivo provide complementary methods for achieving this, and each platform has its own advantages. Here, we review recent major technological breakthroughs made with these two approaches and highlight future directions. We discuss how each genetic screening platform can provide unique insight into cancer evolution, including intra-tumoral heterogeneity, metastasis, and immune evasion, presenting transformative opportunities for targeted therapeutic intervention.
Collapse
Affiliation(s)
- Imran Noorani
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
- Department of Neurosurgery, University of Cambridge, Cambridge, CB2 0QQ, UK.
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK.
| | - Allan Bradley
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Jorge de la Rosa
- Department of Medicine, University of Cambridge School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK.
| |
Collapse
|
66
|
Eghbalsaied S, Hyder I, Kues WA. A versatile bulk electrotransfection protocol for murine embryonic fibroblasts and iPS cells. Sci Rep 2020; 10:13332. [PMID: 32770110 PMCID: PMC7414887 DOI: 10.1038/s41598-020-70258-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 07/24/2020] [Indexed: 11/08/2022] Open
Abstract
Although electroporation has been widely accepted as the main gene transfer tool, there is still considerable scope to improve the electroporation efficiency of exogenous DNAs into primary cells. Here, we developed a square-wave pulsing protocol using OptiMEM-GlutaMAX for highly efficient transfection of murine embryonic fibroblasts (MEF) and induced pluripotency stem (iPS) cells using reporter genes as well as gRNA/Cas9-encoding plasmids. An electrotransfection efficiency of > 95% was achieved for both MEF and iPS cells using reporter-encoding plasmids. The protocol was efficient for plasmid sizes ranging from 6.2 to 13.5 kb. Inducing the error prone non-homologous end joining repair by gRNA/Cas9 plasmid transfection, a high rate of targeted gene knockouts of up to 98% was produced in transgenic cells carrying a single-copy of Venus reporter. Targeted deletions in the Venus transgene were efficiently (up to 67% deletion rate) performed by co-electroporation of two gRNA-encoding plasmids. We introduced a plasmid electrotransfection protocol which is straight-forward, cost-effective, and efficient for CRISPRing murine primary cells. This protocol is promising to make targeted genetic engineering using the CRISPR/Cas9 plasmid system.
Collapse
Affiliation(s)
- Shahin Eghbalsaied
- Department of Biotechnology, Friedrich-Loeffler-Institut (FLI), Höltystr. 10, 31535, Neustadt, Germany
- Department of Animal Science, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Iqbal Hyder
- Department of Biotechnology, Friedrich-Loeffler-Institut (FLI), Höltystr. 10, 31535, Neustadt, Germany
| | - Wilfried A Kues
- Department of Biotechnology, Friedrich-Loeffler-Institut (FLI), Höltystr. 10, 31535, Neustadt, Germany.
| |
Collapse
|
67
|
Teboul L, Herault Y, Wells S, Qasim W, Pavlovic G. Variability in Genome Editing Outcomes: Challenges for Research Reproducibility and Clinical Safety. Mol Ther 2020; 28:1422-1431. [PMID: 32243835 PMCID: PMC7264426 DOI: 10.1016/j.ymthe.2020.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Genome editing tools have already revolutionized biomedical research and are also expected to have an important impact in the clinic. However, their extensive use in research has revealed much unpredictability, both off and on target, in the outcome of their application. We discuss the challenges associated with this unpredictability, both for research and in the clinic. For the former, an extensive validation of the model is essential. For the latter, potential unpredicted activity does not preclude the use of these tools but requires that molecular evidence to underpin the relevant risk:benefit evaluation is available. Safe and successful clinical application will also depend on the mode of delivery and the cellular context.
Collapse
Affiliation(s)
- Lydia Teboul
- The Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell Campus, Didcot OX11 0RD, Oxon, UK.
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, IGBMC, PHENOMIN-Institut Clinique de la Souris, Celphedia, Strasbourg 67404, France
| | - Sara Wells
- The Mary Lyon Centre, Medical Research Council Harwell Institute, Harwell Campus, Didcot OX11 0RD, Oxon, UK
| | - Waseem Qasim
- Great Ormond Street Institute of Child Health, NIHR Biomedical Research Centre, London WC1N 1EH, UK.
| | - Guillaume Pavlovic
- Université de Strasbourg, CNRS, INSERM, IGBMC, PHENOMIN-Institut Clinique de la Souris, Celphedia, Strasbourg 67404, France.
| |
Collapse
|
68
|
Levings D, Shaw KE, Lacher SE. Genomic resources for dissecting the role of non-protein coding variation in gene-environment interactions. Toxicology 2020; 441:152505. [PMID: 32450112 DOI: 10.1016/j.tox.2020.152505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 12/27/2022]
Abstract
The majority of single nucleotide variants (SNVs) identified in Genome Wide Association Studies (GWAS) fall within non-protein coding DNA and have the potential to alter gene expression. Non-protein coding DNA can control gene expression by acting as transcription factor (TF) binding sites or by regulating the organization of DNA into chromatin. SNVs in non-coding DNA sequences can disrupt TF binding and chromatin structure and this can result in pathology. Further, environmental health studies have shown that exposure to xenobiotics can disrupt the ability of TFs to regulate entire gene networks and result in pathology. However, there is a large amount of interindividual variability in exposure-linked health outcomes. One explanation for this heterogeneity is that genetic variation and exposure combine to disrupt gene regulation, and this eventually manifests in disease. Many resources exist that annotate common variants from GWAS and combine them with conservation, functional genomics, and TF binding data. These annotation tools provide clues regarding the biological implications of an SNV, as well as lead to the generation of hypotheses regarding potentially disrupted target genes, epigenetic markers, pathways, and cell types. Collectively this information can be used to predict how SNVs can alter an individual's response to exposure and disease risk. A basic understanding of the regulatory information contained within non-protein coding DNA is needed to predict the biological consequences of SNVs, and to determine how these SNVs impact exposure-related disease. We hope that this review will aid in the characterization of disease-associated genetic variation in the non-protein coding genome.
Collapse
Affiliation(s)
- Daniel Levings
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, 1035 University Drive, Duluth, MN, 55812, USA
| | - Kirsten E Shaw
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, 1035 University Drive, Duluth, MN, 55812, USA
| | - Sarah E Lacher
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth Campus, 1035 University Drive, Duluth, MN, 55812, USA.
| |
Collapse
|
69
|
On-Target CRISPR/Cas9 Activity Can Cause Undesigned Large Deletion in Mouse Zygotes. Int J Mol Sci 2020; 21:ijms21103604. [PMID: 32443745 PMCID: PMC7279260 DOI: 10.3390/ijms21103604] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
Genome engineering has been tremendously affected by the appearance of the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9)-based approach. Initially discovered as an adaptive immune system for prokaryotes, the method has rapidly evolved over the last decade, overtaking multiple technical challenges and scientific tasks and becoming one of the most effective, reliable, and easy-to-use technologies for precise genomic manipulations. Despite its undoubtable advantages, CRISPR/Cas9 technology cannot ensure absolute accuracy and predictability of genomic editing results. One of the major concerns, especially for clinical applications, is mutations resulting from error-prone repairs of CRISPR/Cas9-induced double-strand DNA breaks. In some cases, such error-prone repairs can cause unpredicted and unplanned large genomic modifications within the CRISPR/Cas9 on-target site. Here we describe the largest, to the best of our knowledge, undesigned on-target deletion with a size of ~293 kb that occurred after the cytoplasmic injection of CRISPR/Cas9 system components into mouse zygotes and speculate about its origin. We suppose that deletion occurred as a result of the truncation of one of the ends of a double-strand break during the repair.
Collapse
|
70
|
Dang L, Li G, Wang X, Huang S, Zhang Y, Miao Y, Zeng L, Cui S, Huang X. Comparison of gene disruption induced by cytosine base editing-mediated iSTOP with CRISPR/Cas9-mediated frameshift. Cell Prolif 2020; 53:e12820. [PMID: 32350961 PMCID: PMC7260061 DOI: 10.1111/cpr.12820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/16/2020] [Accepted: 04/11/2020] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVES Recently developed CRISPR-dependent cytosine base editor (CBE), converting four codons (CAA, CAG, CGA and TGG) into stop codons without DNA double-strand breaks (DSB), serves as an efficient gene disruption strategy besides uncontrollable CRISPR-mediated frameshift. However, the detailed difference of gene knockout between the two systems has not been clarified. MATERIALS AND METHODS Here, we selected some sgRNAs with different position background, then HEK293T cells were transfected with CBE/Cas9 plasmids together with sgRNAs. GFP-positive cells were harvested by fluorescence-activated cell sorting (FACS) 48 hours after transfection. Genomic DNA was collected for deep sequencing to analyse editing efficiency and genotype. RNA and protein were extracted to analyse gene mRNA level using qPCR analysis and Western blot. RESULTS Here, we compared the gene disruption by CBE-mediated iSTOP with CRISPR/Cas9-mediated frameshift. We found BE-mediated gene knockout yielded fewer genotypes. BE-mediated gene editing precisely achieved silencing of two neighbouring genes, while CRISPR/Cas9 may delete the large fragment between two target sites. All of three stop codons could efficiently disrupt the target genes. It is worth notifying, Cas9-mediated gene knockout showed a more impact on neighbouring genes mRNA level than the BE editor. CONCLUSIONS Our results reveal the differences between the two gene knockout strategies and provide useful information for choosing the appropriate gene disruption strategy.
Collapse
Affiliation(s)
- Lu Dang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Guanglei Li
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Xinjie Wang
- Shanghai Institute for Advanced Immunochemical StudiesShanghaiTech UniversityShanghaiChina
| | - Shisheng Huang
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Yu Zhang
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | | | - Lisi Zeng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Shuzhong Cui
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouChina
| | - Xingxu Huang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhouChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
- CAS Center for Excellence in Molecular Cell ScienceShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghaiChina
| |
Collapse
|
71
|
Balachandran P, Beck CR. Structural variant identification and characterization. Chromosome Res 2020; 28:31-47. [PMID: 31907725 PMCID: PMC7131885 DOI: 10.1007/s10577-019-09623-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/15/2019] [Accepted: 11/24/2019] [Indexed: 01/06/2023]
Abstract
Structural variant (SV) differences between human genomes can cause germline and mosaic disease as well as inter-individual variation. De-regulation of accurate DNA repair and genomic surveillance mechanisms results in a large number of SVs in cancer. Analysis of the DNA sequences at SV breakpoints can help identify pathways of mutagenesis and regions of the genome that are more susceptible to rearrangement. Large-scale SV analyses have been enabled by high-throughput genome-level sequencing on humans in the past decade. These studies have shed light on the mechanisms and prevalence of complex genomic rearrangements. Recent advancements in both sequencing and other mapping technologies as well as calling algorithms for detection of genomic rearrangements have helped propel SV detection into population-scale studies, and have begun to elucidate previously inaccessible regions of the genome. Here, we discuss the genomic organization of simple and complex SVs, the molecular mechanisms of their formation, and various ways to detect them. We also introduce methods for characterizing SVs and their consequences on human genomes.
Collapse
Affiliation(s)
| | - Christine R Beck
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
- Department of Genetics and Genome Sciences, Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, 06030, USA.
| |
Collapse
|
72
|
Bishop TF, Van Eenennaam AL. Genome editing approaches to augment livestock breeding programs. ACTA ACUST UNITED AC 2020; 223:223/Suppl_1/jeb207159. [PMID: 32034040 DOI: 10.1242/jeb.207159] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The prospect of genome editing offers a number of promising opportunities for livestock breeders. Firstly, these tools can be used in functional genomics to elucidate gene function, and identify causal variants underlying monogenic traits. Secondly, they can be used to precisely introduce useful genetic variation into structured livestock breeding programs. Such variation may include repair of genetic defects, the inactivation of undesired genes, and the moving of useful alleles and haplotypes between breeds in the absence of linkage drag. Editing could also be used to accelerate the rate of genetic progress by enabling the replacement of the germ cell lineage of commercial breeding animals with cells derived from genetically elite lines. In the future, editing may also provide a useful complement to evolving approaches to decrease the length of the generation interval through in vitro generation of gametes. For editing to be adopted, it will need to seamlessly integrate with livestock breeding schemes. This will likely involve introducing edits into multiple elite animals to avoid genetic bottlenecks. It will also require editing of different breeds and lines to maintain genetic diversity, and enable structured cross-breeding. This requirement is at odds with the process-based trigger and event-based regulatory approach that has been proposed for the products of genome editing by several countries. In the absence of regulatory harmony, researchers in some countries will have the ability to use genome editing in food animals, while others will not, resulting in disparate access to these tools, and ultimately the potential for global trade disruptions.
Collapse
|
73
|
Farooq R, Hussain K, Tariq M, Farooq A, Mustafa M. CRISPR/Cas9: targeted genome editing for the treatment of hereditary hearing loss. J Appl Genet 2020; 61:51-65. [PMID: 31912450 DOI: 10.1007/s13353-019-00535-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/17/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023]
Abstract
Hereditary hearing loss (HHL) is a neurosensory disorder that affects every 1/500 newborns worldwide and nearly 1/3 people over the age of 65. Congenital deafness is inherited as monogenetic or polygenic disorder. The delicacy, tissue heterogeneity, deep location of the inner ear down the brainstem, and minute quantity of cells present in cochlea are the major challenges for current therapeutic approaches to cure deafness. Targeted genome editing is considered a suitable approach to treat HHL since it can target defective molecular components of auditory transduction to restore normal cochlear function. With the advent of CRISPR/Cas9 technique, targeted genome editing and biomedical research have been revolutionized. The robustness and simplicity of this technology lie in its design and delivery methods. It can directly deliver a complex of Cas9 endonuclease and single guide RNA (sgRNA) into zygote using either vector-mediated stable transfection or transient delivery of ribonucleoproteins complexes. This strategy induces DNA double strand breaks (DSBs) at target site followed by endogenous DNA repairing mechanisms of the cell. CRISPR/Cas9 has been successfully used in model animals to edit hearing genes like calcium and integrin-binding protein 2, myosin VIIA, Xin-actin binding repeat containing 2, leucine-zipper and sterile-alpha motif kinase Zak, epiphycan, transmembrane channel-like protein 1, and cadherin 23. This review discusses the utility of lipid-mediated transient delivery of Cas9/sgRNA complexes, an efficient way to restore hearing in humans, suffering from HHL. Notwithstanding, challenges like PAM requirement, HDR efficiency, off-target activity, and optimized delivery systems need to be addressed.
Collapse
Affiliation(s)
- Rimsha Farooq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.,Department of Biological Sciences, Forman Christian College University Lahore, Lahore, Pakistan
| | - Khadim Hussain
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Muhammad Tariq
- National Institute for Biotechnology and Genetic Engineering (NIBGE) College Faisalabad, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Ali Farooq
- Primary and Secondary Healthcare Department, Lahore, Government of Punjab, Pakistan
| | - Muhammad Mustafa
- Department of Biological Sciences, Forman Christian College University Lahore, Lahore, Pakistan
| |
Collapse
|
74
|
Skuplik I, Cobb J. Animal Models for Understanding Human Skeletal Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:157-188. [DOI: 10.1007/978-981-15-2389-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
75
|
BeltCappellino A, Majerciak V, Lobanov A, Lack J, Cam M, Zheng ZM. CRISPR/Cas9-Mediated Knockout and In Situ Inversion of the ORF57 Gene from All Copies of the Kaposi's Sarcoma-Associated Herpesvirus Genome in BCBL-1 Cells. J Virol 2019; 93:e00628-19. [PMID: 31413125 PMCID: PMC6803266 DOI: 10.1128/jvi.00628-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV)-transformed primary effusion lymphoma cell lines contain ∼70 to 150 copies of episomal KSHV genomes per cell and have been widely used for studying the mechanisms of KSHV latency and lytic reactivation. Here, we report the first complete knockout (KO) of viral ORF57 gene from all ∼100 copies of KSHV genome per cell in BCBL-1 cells. This was achieved by a modified CRISPR/Cas9 technology to simultaneously express two guide RNAs (gRNAs) and Cas9 from a single expression vector in transfected cells in combination with multiple rounds of cell selection and single-cell cloning. CRISPR/Cas9-mediated genome engineering induces the targeted gene deletion and inversion in situ We found the inverted ORF57 gene in the targeted site in the KSHV genome in one of two characterized single cell clones. Knockout of ORF57 from the KSHV genome led to viral genome instability, thereby reducing viral genome copies and expression of viral lytic genes in BCBL-1-derived single-cell clones. The modified CRISPR/Cas9 technology was very efficient in knocking out the ORF57 gene in iSLK/Bac16 and HEK293/Bac36 cells, where each cell contains only a few copies of the KSHV genome. The ORF57 KO genome was stable in iSLK/Bac16 cells, and, upon lytic induction, was partially rescued by ectopic ORF57 to express viral lytic gene ORF59 and produce infectious virions. Together, the technology developed in this study has paved the way to express two separate gRNAs and the Cas9 enzyme simultaneously in the same cell and could be efficiently applied to any genetic alterations from various genomes, including those in extreme high copy numbers.IMPORTANCE This study provides the first evidence that CRISPR/Cas9 technology can be applied to knock out the ORF57 gene from all ∼100 copies of the KSHV genome in primary effusion lymphoma (PEL) cells by coexpressing two guide RNAs (gRNAs) and Cas9 from a single expression vector in combination with single-cell cloning. The gene knockout efficiency in this system was evaluated rapidly using a direct cell PCR screening. The current CRISPR/Cas9 technology also mediated ORF57 inversion in situ in the targeted site of the KSHV genome. The successful rescue of viral lytic gene expression and infectious virion production from the ORF57 knockout (KO) genome further reiterates the essential role of ORF57 in KSHV infection and multiplication. This modified technology should be useful for knocking out any viral genes from a genome to dissect functions of individual viral genes in the context of the virus genome and to understand their contributions to viral genetics and the virus life cycle.
Collapse
Affiliation(s)
- Andrew BeltCappellino
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Vladimir Majerciak
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | - Alexei Lobanov
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Justin Lack
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- NIAID Collaborative Bioinformatics Resource (NCBR), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource (CCBR), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Zhi-Ming Zheng
- Tumor Virus RNA Biology Section, RNA Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| |
Collapse
|
76
|
Yu YE, Xing Z, Do C, Pao A, Lee EJ, Krinsky-McHale S, Silverman W, Schupf N, Tycko B. Genetic and epigenetic pathways in Down syndrome: Insights to the brain and immune system from humans and mouse models. PROGRESS IN BRAIN RESEARCH 2019; 251:1-28. [PMID: 32057305 PMCID: PMC7286740 DOI: 10.1016/bs.pbr.2019.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The presence of an extra copy of human chromosome 21 (Hsa21) leads to a constellation of phenotypic manifestations in Down syndrome (DS), including prominent effects on the brain and immune system. Intensive efforts to unravel the molecular mechanisms underlying these phenotypes may help developing effective therapies, both in DS and in the general population. Here we review recent progress in genetic and epigenetic analysis of trisomy 21 (Ts21). New mouse models of DS based on syntenic conservation of segments of the mouse and human chromosomes are starting to clarify the contributions of chromosomal subregions and orthologous genes to specific phenotypes in DS. The expression of genes on Hsa21 is regulated by epigenetic mechanisms, and with recent findings of highly recurrent gene-specific changes in DNA methylation patterns in brain and immune system cells with Ts21, the epigenomics of DS has become an active research area. Here we highlight the value of combining human studies with mouse models for defining DS critical genes and understanding the trans-acting effects of a simple chromosomal aneuploidy on genome-wide epigenetic patterning. These genetic and epigenetic studies are starting to uncover fundamental biological mechanisms, leading to insights that may soon become therapeutically relevant.
Collapse
Affiliation(s)
- Y Eugene Yu
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States; Genetics, Genomics and Bioinformatics Program, State University of New York at Buffalo, Buffalo, NY, United States.
| | - Zhuo Xing
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Catherine Do
- Department of Biomedical Research, Division of Genetics & Epigenetics, Hackensack-Meridian Health Center for Discovery and Innovation and Hackensack-Meridian Health School of Medicine at Seton Hall University, Nutley, NJ, United States
| | - Annie Pao
- The Children's Guild Foundation Down Syndrome Research Program, Genetics and Genomics Program and Department of Cancer Genetics and Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Eun Joon Lee
- Department of Biomedical Research, Division of Genetics & Epigenetics, Hackensack-Meridian Health Center for Discovery and Innovation and Hackensack-Meridian Health School of Medicine at Seton Hall University, Nutley, NJ, United States
| | - Sharon Krinsky-McHale
- New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY, United States
| | - Wayne Silverman
- Kennedy Krieger Institute and Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Pediatrics, University of California at Irvine, Irvine, CA, United States
| | - Nicole Schupf
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, United States
| | - Benjamin Tycko
- Department of Biomedical Research, Division of Genetics & Epigenetics, Hackensack-Meridian Health Center for Discovery and Innovation and Hackensack-Meridian Health School of Medicine at Seton Hall University, Nutley, NJ, United States.
| |
Collapse
|
77
|
Time origin and structural analysis of the induced CRISPR/cas9 megabase-sized deletions and duplications involving the Cntn6 gene in mice. Sci Rep 2019; 9:14161. [PMID: 31578377 PMCID: PMC6775113 DOI: 10.1038/s41598-019-50649-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 09/13/2019] [Indexed: 01/23/2023] Open
Abstract
In a previous study using one-step CRISPR/Cas9 genome editing in mouse zygotes, we created five founders carrying a 1,137 kb deletion and two founders carrying the same deletion, plus a 2,274 kb duplication involving the Cntn6 gene (encoding contactin-6). Using these mice, the present study had the following aims: (i) to establish stage of origin of these rearrangements; (ii) to determine the fate of the deleted DNA fragments; and (iii) to estimate the scale of unpredicted DNA changes accompanying the rearrangements. The present study demonstrated that all targeted deletions and duplications occurred at the one-cell stage and more often in one pronucleus only. FISH analysis revealed that there were no traces of the deleted DNA fragments either within chromosome 6 or on other chromosomes. These data were consistent with the Southern blot analysis showing that chromosomes with deletion often had close to expected sizes of removed DNA fragments. High-throughput DNA sequencing of two homozygotes for duplication demonstrated that there were no unexpected significant or scale DNA changes either at the gRNA and joint sites or other genome sites. Thus, our data suggested that CRISPR/Cas9 technology could generate megabase-sized deletions and duplications in mouse gametes at a reasonably specific level.
Collapse
|
78
|
Shimizu D, Sakamoto R, Yamoto K, Saitsu H, Fukami M, Nishimura G, Ogata T. De novo AFF3 variant in a patient with mesomelic dysplasia with foot malformation. J Hum Genet 2019; 64:1041-1044. [PMID: 31388108 DOI: 10.1038/s10038-019-0650-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 11/09/2022]
Abstract
Mesomelic dysplasia (MD) encompasses a heterogeneous group of disorders characterized by shortening of the middle segments of the limbs. Previous studies have revealed the development of Nievergelt type-like MD accompanied by postaxial toe reduction in a patient with a ~500 kb microdeletion at 2q11.2 involving AFF3 alone, and the occurrence of Nievergelt type-like MD in mice with a ~353 kb deletion involving Aff3, together with strong expression of mouse Aff3 in the developing limbs and zeugopod. We encountered a 2 6/12-year-old Japanese girl with an unclassifiable MD associated with hypoplasia of postaxial toes, and identified a de novo likely pathogenic variant of AFF3 (NM_002285.2:c.697 G > A, p.(Ala233Thr)) by whole exome sequencing. The results provide further evidence for AFF3 being the causative gene for MD with foot malformation which may be termed "AFF3-related MD" or "Steichen-Gersdorf type MD".
Collapse
Affiliation(s)
- Daisuke Shimizu
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Rieko Sakamoto
- Department of Pediatrics, Kumamoto University, Graduate School of Medical Sciences, Kumamoto, Japan
| | - Kaori Yamoto
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Gen Nishimura
- Center for Intractable Diseases, Saitama Medical University Hospital, Moroyama, Japan
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan.
| |
Collapse
|
79
|
Abstract
The prokaryote-derived CRISPR-Cas genome editing systems have transformed our ability to manipulate, detect, image and annotate specific DNA and RNA sequences in living cells of diverse species. The ease of use and robustness of this technology have revolutionized genome editing for research ranging from fundamental science to translational medicine. Initial successes have inspired efforts to discover new systems for targeting and manipulating nucleic acids, including those from Cas9, Cas12, Cascade and Cas13 orthologues. Genome editing by CRISPR-Cas can utilize non-homologous end joining and homology-directed repair for DNA repair, as well as single-base editing enzymes. In addition to targeting DNA, CRISPR-Cas-based RNA-targeting tools are being developed for research, medicine and diagnostics. Nuclease-inactive and RNA-targeting Cas proteins have been fused to a plethora of effector proteins to regulate gene expression, epigenetic modifications and chromatin interactions. Collectively, the new advances are considerably improving our understanding of biological processes and are propelling CRISPR-Cas-based tools towards clinical use in gene and cell therapies.
Collapse
Affiliation(s)
- Adrian Pickar-Oliver
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Charles A Gersbach
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.
- Department of Surgery, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
80
|
Bressan RB, Pollard SM. Genome Editing in Human Neural Stem and Progenitor Cells. Results Probl Cell Differ 2019; 66:163-182. [PMID: 30209659 DOI: 10.1007/978-3-319-93485-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024]
Abstract
Experimental tools for precise manipulation of mammalian genomes enable reverse genetic approaches to explore biology and disease. Powerful genome editing technologies built upon designer nucleases, such as CRISPR/Cas9, have recently emerged. Parallel progress has been made in methodologies for the expansion and differentiation of human pluripotent and tissue stem cells. Together these innovations provide a remarkable new toolbox for human cellular genetics and are opening up vast opportunities for discoveries and applications across the breadth of life sciences research. In this chapter, we review the emergence of genome editing technologies and how these are being deployed in studies of human neurobiology, neurological disease, and neuro-oncology. We focus our discussion on CRISPR/Cas9 and its application in studies of human neural stem and progenitor cells.
Collapse
Affiliation(s)
- Raul Bardini Bressan
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh, UK
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
81
|
Paliou C, Guckelberger P, Schöpflin R, Heinrich V, Esposito A, Chiariello AM, Bianco S, Annunziatella C, Helmuth J, Haas S, Jerković I, Brieske N, Wittler L, Timmermann B, Nicodemi M, Vingron M, Mundlos S, Andrey G. Preformed chromatin topology assists transcriptional robustness of Shh during limb development. Proc Natl Acad Sci U S A 2019; 116:12390-12399. [PMID: 31147463 PMCID: PMC6589666 DOI: 10.1073/pnas.1900672116] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long-range gene regulation involves physical proximity between enhancers and promoters to generate precise patterns of gene expression in space and time. However, in some cases, proximity coincides with gene activation, whereas, in others, preformed topologies already exist before activation. In this study, we investigate the preformed configuration underlying the regulation of the Shh gene by its unique limb enhancer, the ZRS, in vivo during mouse development. Abrogating the constitutive transcription covering the ZRS region led to a shift within the Shh-ZRS contacts and a moderate reduction in Shh transcription. Deletion of the CTCF binding sites around the ZRS resulted in the loss of the Shh-ZRS preformed interaction and a 50% decrease in Shh expression but no phenotype, suggesting an additional, CTCF-independent mechanism of promoter-enhancer communication. This residual activity, however, was diminished by combining the loss of CTCF binding with a hypomorphic ZRS allele, resulting in severe Shh loss of function and digit agenesis. Our results indicate that the preformed chromatin structure of the Shh locus is sustained by multiple components and acts to reinforce enhancer-promoter communication for robust transcription.
Collapse
Affiliation(s)
- Christina Paliou
- Research Group Development & Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Philine Guckelberger
- Research Group Development & Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Robert Schöpflin
- Research Group Development & Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Verena Heinrich
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, 80126 Naples, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Berlin Institute of Health (BIH), Max Delbrück Center-Berlin, 13125 Berlin, Germany
| | - Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, 80126 Naples, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II, 80126 Naples, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Carlo Annunziatella
- Dipartimento di Fisica, Università di Napoli Federico II, 80126 Naples, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Johannes Helmuth
- Otto-Warburg-Laboratory: Epigenomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Stefan Haas
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Ivana Jerković
- Research Group Development & Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Norbert Brieske
- Research Group Development & Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Lars Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, 80126 Naples, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Berlin Institute of Health (BIH), Max Delbrück Center-Berlin, 13125 Berlin, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Stefan Mundlos
- Research Group Development & Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany;
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Guillaume Andrey
- Research Group Development & Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany;
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
82
|
Weber J, Rad R. Engineering CRISPR mouse models of cancer. Curr Opin Genet Dev 2019; 54:88-96. [PMID: 31078083 DOI: 10.1016/j.gde.2019.04.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 04/01/2019] [Indexed: 12/11/2022]
Abstract
Gene targeting in mammals has revolutionized the study of complex diseases, involving the interaction of multiple genes, cells, and organ systems. In cancer, genetically engineered mouse models deciphered biological principles by integrating molecular mechanisms, cellular processes, and environmental signals. Major advances in manipulative mouse genetics are currently emerging from breakthroughs in gene editing, which open new avenues for rapid model generation. Here, we review recent developments in engineering CRISPR mouse models of cancer. We describe engineering strategies, including germline manipulation of zygotes or embryonic stem cells, direct in vivo somatic gene editing, and ex vivo targeting of cellular transplant models. We also discuss promises and limitations of the expanding spectrum of CRISPR applications, ranging from engineering of simple mutations over complex genomic rearrangements to gene and epigenome regulation. Fast and scalable in vivo CRISPR methodologies pave the way for a new phase of functional cancer genomics.
Collapse
Affiliation(s)
- Julia Weber
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Germany; Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, TUM School of Medicine, Technische Universität München, Germany; Center for Translational Cancer Research (TranslaTUM), TUM School of Medicine, Technische Universität München, Germany; Department of Medicine II, TUM School of Medicine, Technische Universität München, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
83
|
Qin K, Liang X, Sun G, Shi X, Wang M, Liu H, Chen Y, Liu X, He Z. Highly efficient correction of structural mutations of 450 kb KIT locus in kidney cells of Yorkshire pig by CRISPR/Cas9. BMC Mol Cell Biol 2019; 20:4. [PMID: 31041890 PMCID: PMC6446502 DOI: 10.1186/s12860-019-0184-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 03/11/2019] [Indexed: 11/23/2022] Open
Abstract
The white coat colour of Yorkshire and Landrace pig breeds is caused by the dominant white I allele of KIT, associated with 450-kb duplications and a splice mutation (G > A) at the first base in intron 17. To test whether genome editing can be employed to correct this structural mutation, and to investigate the role of KIT in the control of porcine coat colour, we designed sgRNAs targeting either intron 16 or intron 17 of KIT, and transfected Cas9/sgRNA co-expression plasmids into the kidney cells of Yorkshire pigs. The copy number of KIT was reduced by about 13%, suggesting the possibility of obtaining cells with corrected structural mutations of the KIT locus. Using single cell cloning, from 24 successfully expanded single cell clones derived from cells transfected with sgRNA targeting at intron 17, we obtained 3 clones with a single copy of KIT without the splice mutation. Taken together, the 12.5% (3/24) efficiency of correction of structural mutations of 450 kb fragments is highly efficient, providing a solid basis for the generation of genome edited Yorkshire pigs with a normal KIT locus. This provides an insight into the underlying genetic mechanisms of porcine coat colour.
Collapse
Affiliation(s)
- Ke Qin
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Xinyu Liang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Guanjie Sun
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Xuan Shi
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Min Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Hongbo Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Xiaohong Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zuyong He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
84
|
Yuan J, Tickner J, Mullin BH, Zhao J, Zeng Z, Morahan G, Xu J. Advanced Genetic Approaches in Discovery and Characterization of Genes Involved With Osteoporosis in Mouse and Human. Front Genet 2019; 10:288. [PMID: 31001327 PMCID: PMC6455049 DOI: 10.3389/fgene.2019.00288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/18/2019] [Indexed: 12/14/2022] Open
Abstract
Osteoporosis is a complex condition with contributions from, and interactions between, multiple genetic loci and environmental factors. This review summarizes key advances in the application of genetic approaches for the identification of osteoporosis susceptibility genes. Genome-wide linkage analysis (GWLA) is the classical approach for identification of genes that cause monogenic diseases; however, it has shown limited success for complex diseases like osteoporosis. In contrast, genome-wide association studies (GWAS) have successfully identified over 200 osteoporosis susceptibility loci with genome-wide significance, and have provided most of the candidate genes identified to date. Phenome-wide association studies (PheWAS) apply a phenotype-to-genotype approach which can be used to complement GWAS. PheWAS is capable of characterizing the association between osteoporosis and uncommon and rare genetic variants. Another alternative approach, whole genome sequencing (WGS), will enable the discovery of uncommon and rare genetic variants in osteoporosis. Meta-analysis with increasing statistical power can offer greater confidence in gene searching through the analysis of combined results across genetic studies. Recently, new approaches to gene discovery include animal phenotype based models such as the Collaborative Cross and ENU mutagenesis. Site-directed mutagenesis and genome editing tools such as CRISPR/Cas9, TALENs and ZNFs have been used in functional analysis of candidate genes in vitro and in vivo. These resources are revolutionizing the identification of osteoporosis susceptibility genes through the use of genetically defined inbred mouse libraries, which are screened for bone phenotypes that are then correlated with known genetic variation. Identification of osteoporosis-related susceptibility genes by genetic approaches enables further characterization of gene function in animal models, with the ultimate aim being the identification of novel therapeutic targets for osteoporosis.
Collapse
Affiliation(s)
- Jinbo Yuan
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jennifer Tickner
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Benjamin H Mullin
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia.,Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Jinmin Zhao
- Research Centre for Regenerative Medicine, Guangxi Medical University, Nanning, China
| | - Zhiyu Zeng
- The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Grant Morahan
- Centre for Diabetes Research, Harry Perkins Institute of Medical Research, The University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
85
|
Yuan T, Zhong Y, Wang Y, Zhang T, Lu R, Zhou M, Lu Y, Yan K, Chen Y, Hu Z, Liang J, Fan J, Cheng Y. Generation of hyperlipidemic rabbit models using multiple sgRNAs targeted CRISPR/Cas9 gene editing system. Lipids Health Dis 2019; 18:69. [PMID: 30885208 PMCID: PMC6421715 DOI: 10.1186/s12944-019-1013-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/08/2019] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE To generate novel rabbit models with a large-fragment deletion of either LDL receptor (LDLR) and/or apolipoprotein (apoE) genes for the study of hyperlipidemic and atherosclerosis. METHODS CRISPR/Cas9 system directed by a multiple sgRNAs system was used in rabbit embryos to edit their LDLR and apoE genes. The LDLR and apoE genes of founder rabbits were sequenced, and their plasma lipids and lipoprotein profiles on a normal chow diet were analyzed, western blotting was also performed to evaluate the expression of apolipoprotein. Sudan IV and HE staining of aortic were performed to confirm the formation of atherosclerosis. RESULTS Six knockout (KO) rabbits by injection of both LDLR and apoE sgRNAs were obtained, including four LDLR KO rabbits and two LDLR/apoE double- KO rabbits. Sequence analysis of these KO rabbits revealed that they contained multiple mutations including indels, deletions, and substitutions, as well as two rabbit lines containing biallelic large fragment deletion in the LDLR region. Analysis of their plasma lipids and lipoprotein profiles of these rabbits fed on a normal chow diet revealed that all of these KO rabbits exhibited remarkable hyperlipidemia with total cholesterol levels increased by up to 10-fold over those of wild-type rabbits. Pathological examinations of two founder rabbits showed that KO rabbits developed prominent aortic and coronary atherosclerosis. CONCLUSION Large fragment deletions can be achieved in rabbits using Cas9 mRNA and multiple sgRNAs. LDLR KO along with LDLR/apoE double KO rabbits should provide a novel means for translational investigations of human hyperlipidemia and atherosclerosis.
Collapse
Affiliation(s)
- Tingting Yuan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yi Zhong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yingge Wang
- Affiliated Hospital of Yangzhou University, Yangzhou, 225001, China
| | - Ting Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Rui Lu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China
| | - Minya Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
| | - Yaoyao Lu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Kunning Yan
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Yajie Chen
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, 409-3898, Japan
| | - Zhehui Hu
- Beijing hospital, Beijing, 100730, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, China.
- Jiangsu Key laboratory of integrated traditional Chinese and Western Medicine for prevention and treatment of Senile Diseases, Yangzhou University, Yangzhou, 225001, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China.
| | - Jianglin Fan
- Department of Molecular Pathology, Faculty of Medicine, Graduate School of Medical Sciences, University of Yamanashi, Yamanashi, 409-3898, Japan.
| | - Yong Cheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
86
|
Unexpected genomic rearrangements at targeted loci associated with CRISPR/Cas9-mediated knock-in. Sci Rep 2019; 9:3486. [PMID: 30837594 PMCID: PMC6401152 DOI: 10.1038/s41598-019-40181-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/20/2018] [Indexed: 12/26/2022] Open
Abstract
The CRISPR/Cas9 gene editing tool enables accessible and efficient modifications which (re)ignited molecular research in certain species. However, targeted integration of large DNA fragments using CRISPR/Cas9 can still be challenging in numerous models. To systematically compare CRISPR/Cas9’s efficiency to classical homologous recombination (cHR) for insertion of large DNA fragments, we thoroughly performed and analyzed 221 experiments targeting 128 loci in mouse ES cells. Although both technologies proved efficient, CRISPR/Cas9 yielded significantly more positive clones as detected by overlapping PCRs. It also induced unexpected rearrangements around the targeted site, ultimately rendering CRISPR/Cas9 less efficient than cHR for the production of fully validated clones. These data show that CRISPR/Cas9-mediated recombination can induce complex long-range modifications at targeted loci, thus emphasizing the need for thorough characterization of any genetically modified material obtained through CRISPR-mediated gene editing before further functional studies or therapeutic use.
Collapse
|
87
|
Serial genomic inversions induce tissue-specific architectural stripes, gene misexpression and congenital malformations. Nat Cell Biol 2019; 21:305-310. [PMID: 30742094 DOI: 10.1038/s41556-019-0273-x] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/02/2019] [Indexed: 12/20/2022]
Abstract
Balanced chromosomal rearrangements such as inversions and translocations can cause congenital disease or cancer by inappropriately rewiring promoter-enhancer contacts1,2. To study the potentially pathogenic consequences of balanced chromosomal rearrangements, we generated a series of genomic inversions by placing an active limb enhancer cluster from the Epha4 regulatory domain at different positions within a neighbouring gene-dense region and investigated their effects on gene regulation in vivo in mice. Expression studies and high-throughput chromosome conformation capture from embryonic limb buds showed that the enhancer cluster activated several genes downstream that are located within asymmetric regions of contact, the so-called architectural stripes3. The ectopic activation of genes led to a limb phenotype that could be rescued by deleting the CCCTC-binding factor (CTCF) anchor of the stripe. Architectural stripes appear to be driven by enhancer activity, because they do not form in mouse embryonic stem cells. Furthermore, we show that architectural stripes are a frequent feature of developmental three-dimensional genome architecture often associated with active enhancers. Therefore, balanced chromosomal rearrangements can induce ectopic gene expression and the formation of asymmetric chromatin contact patterns that are dependent on CTCF anchors and enhancer activity.
Collapse
|
88
|
Humanized UGT2 and CYP3A transchromosomic rats for improved prediction of human drug metabolism. Proc Natl Acad Sci U S A 2019; 116:3072-3081. [PMID: 30718425 PMCID: PMC6386724 DOI: 10.1073/pnas.1808255116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genomically humanized animals overcoming species differences are invaluable for biomedical research. Although rats would be preferred over mice for several applications, generation of a humanized model is restricted to mice due to the difficulty of complex genetic manipulations in rats. In this study, we successfully generated humanized rats with megabase-sized gene clusters via combination of chromosome transfer using mouse artificial chromosome vector and genome editing technologies. In the humanized UGT2 and CYP3A transchromosomic rats described in this paper, the expression of the human genes, as well as the pharmacokinetics and metabolism of relevant probe substrates, accurately mimic the situation in humans. Thus, the advanced technologies can be used to generate fully humanized rats useful for biomedical research. Although “genomically” humanized animals are invaluable tools for generating human disease models as well as for biomedical research, their development has been mainly restricted to mice via established transgenic-based and embryonic stem cell-based technologies. Since rats are widely used for studying human disease and for drug efficacy and toxicity testing, humanized rat models would be preferred over mice for several applications. However, the development of sophisticated humanized rat models has been hampered by the difficulty of complex genetic manipulations in rats. Additionally, several genes and gene clusters, which are megabase range in size, were difficult to introduce into rats with conventional technologies. As a proof of concept, we herein report the generation of genomically humanized rats expressing key human drug-metabolizing enzymes in the absence of their orthologous rat counterparts via the combination of chromosome transfer using mouse artificial chromosome (MAC) and genome editing technologies. About 1.5 Mb and 700 kb of the entire UDP glucuronosyltransferase family 2 and cytochrome P450 family 3 subfamily A genomic regions, respectively, were successfully introduced via the MACs into rats. The transchromosomic rats were combined with rats carrying deletions of the endogenous orthologous genes, achieved by genome editing. In the “transchromosomic humanized” rat strains, the gene expression, pharmacokinetics, and metabolism observed in humans were well reproduced. Thus, the combination of chromosome transfer and genome editing technologies can be used to generate fully humanized rats for improved prediction of the pharmacokinetics and drug–drug interactions in humans, and for basic research, drug discovery, and development.
Collapse
|
89
|
Kragesteen BK, Brancati F, Digilio MC, Mundlos S, Spielmann M. H2AFY promoter deletion causes PITX1 endoactivation and Liebenberg syndrome. J Med Genet 2019; 56:246-251. [PMID: 30711920 DOI: 10.1136/jmedgenet-2018-105793] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/14/2018] [Accepted: 01/07/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND Structural variants (SVs) affecting non-coding cis-regulatory elements are a common cause of congenital limb malformation. Yet, the functional interpretation of these non-coding variants remains challenging. The human Liebenberg syndrome is characterised by a partial transformation of the arms into legs and has been shown to be caused by SVs at the PITX1 locus leading to its misregulation in the forelimb by its native enhancer element Pen. This study aims to elucidate the genetic cause of an unsolved family with a mild form of Liebenberg syndrome and investigate the role of promoters in long-range gene regulation. METHODS Here, we identify SVs by whole genome sequencing (WGS) and use CRISPR-Cas9 genome editing in transgenic mice to assign pathogenicity to the SVs. RESULTS In this study, we used WGS in a family with three mildly affected individuals with Liebenberg syndrome and identified the smallest deletion described so far including the first non-coding exon of H2AFY. To functionally characterise the variant, we re-engineered the 8.5 kb deletion using CRISPR-Cas9 technology in the mouse and showed that the promoter of the housekeeping gene H2afy insulates the Pen enhancer from Pitx1 in forelimbs; its loss leads to misexpression of Pitx1 by the pan-limb activity of the Pen enhancer causing Liebenberg syndrome. CONCLUSION Our data indicate that housekeeping promoters may titrate promiscuous enhancer activity to ensure normal morphogenesis. The deletion of the H2AFY promoter as a cause of Liebenberg syndrome highlights this new mutational mechanism and its role in congenital disease.
Collapse
Affiliation(s)
- Bjørt K Kragesteen
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Francesco Brancati
- Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy.,Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Maria Cristina Digilio
- Medical Genetics, Department of Pediatrics, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Stefan Mundlos
- Institute for Medical and Human Genetics, University Medicine Berlin, Berlin, Germany.,Development and Disease Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Malte Spielmann
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, Berlin, Germany.,Institute for Medical and Human Genetics, University Medicine Berlin, Berlin, Germany
| |
Collapse
|
90
|
A bipartite boundary element restricts UBE3A imprinting to mature neurons. Proc Natl Acad Sci U S A 2019; 116:2181-2186. [PMID: 30674673 DOI: 10.1073/pnas.1815279116] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of function from the maternal allele of UBE3A, a gene encoding an E3 ubiquitin ligase. UBE3A is only expressed from the maternally inherited allele in mature human neurons due to tissue-specific genomic imprinting. Imprinted expression of UBE3A is restricted to neurons by expression of UBE3A antisense transcript (UBE3A-ATS) from the paternally inherited allele, which silences the paternal allele of UBE3A in cis However, the mechanism restricting UBE3A-ATS expression and UBE3A imprinting to neurons is not understood. We used CRISPR/Cas9-mediated genome editing to functionally define a bipartite boundary element critical for neuron-specific expression of UBE3A-ATS in humans. Removal of this element led to up-regulation of UBE3A-ATS without repressing paternal UBE3A However, increasing expression of UBE3A-ATS in the absence of the boundary element resulted in full repression of paternal UBE3A, demonstrating that UBE3A imprinting requires both the loss of function from the boundary element as well as the up-regulation of UBE3A-ATS These results suggest that manipulation of the competition between UBE3A-ATS and UBE3A may provide a potential therapeutic approach for AS.
Collapse
|
91
|
Abstract
Noncoding DNA sequences play crucial roles in gene regulation, including via three-dimensional genome organization where they define chromatin boundaries and segment the genome into a sequence of insulated neighborhoods. However, the relative importance of noncoding DNA elements, particularly in comparison with protein-coding DNA sequences, remains more poorly characterized. Here, we systematically test if chromatin boundary disruptions are under purifying selection. Our analyses uncover a genomewide depletion of structural variants that would have the potential to alter chromatin structure. This in turn has implications for predicting not only which variants are likely pathogenic in clinical genetics settings, but also which are likely key innovations in primate evolution, and argues for expanding the current gene-centric paradigm for interpreting structural variants. The potential impact of structural variants includes not only the duplication or deletion of coding sequences, but also the perturbation of noncoding DNA regulatory elements and structural chromatin features, including topological domains (TADs). Structural variants disrupting TAD boundaries have been implicated both in cancer and developmental disease; this likely occurs via “enhancer hijacking,” whereby removal of the TAD boundary exposes enhancers to new target transcription start sites (TSSs). With this functional role, we hypothesized that boundaries would display evidence for negative selection. Here we demonstrate that the chromatin landscape constrains structural variation both within healthy humans and across primate evolution. In contrast, in patients with developmental delay, variants occur remarkably uniformly across genomic features, suggesting a potentially broad role for enhancer hijacking in human disease.
Collapse
|
92
|
Cai Y, Chen L, Sun S, Wu C, Yao W, Jiang B, Han T, Hou W. CRISPR/Cas9-Mediated Deletion of Large Genomic Fragments in Soybean. Int J Mol Sci 2018; 19:E3835. [PMID: 30513774 PMCID: PMC6321276 DOI: 10.3390/ijms19123835] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/23/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
At present, the application of CRISPR/Cas9 in soybean (Glycine max (L.) Merr.) has been mainly focused on knocking out target genes, and most site-directed mutagenesis has occurred at single cleavage sites and resulted in short deletions and/or insertions. However, the use of multiple guide RNAs for complex genome editing, especially the deletion of large DNA fragments in soybean, has not been systematically explored. In this study, we employed CRISPR/Cas9 technology to specifically induce targeted deletions of DNA fragments in GmFT2a (Glyma16g26660) and GmFT5a (Glyma16g04830) in soybean using a dual-sgRNA/Cas9 design. We achieved a deletion frequency of 15.6% for target fragments ranging from 599 to 1618 bp in GmFT2a. We also achieved deletion frequencies of 12.1% for target fragments exceeding 4.5 kb in GmFT2a and 15.8% for target fragments ranging from 1069 to 1161 bp in GmFT5a. In addition, we demonstrated that these CRISPR/Cas9-induced large fragment deletions can be inherited. The T2 'transgene-free' homozygous ft2a mutants with a 1618 bp deletion exhibited the late-flowering phenotype. In this study, we developed an efficient system for deleting large fragments in soybean using CRISPR/Cas9; this system could benefit future research on gene function and improve agriculture via chromosome engineering or customized genetic breeding in soybean.
Collapse
Affiliation(s)
- Yupeng Cai
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Li Chen
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Shi Sun
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Cunxiang Wu
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Weiwei Yao
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Bingjun Jiang
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Tianfu Han
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Wensheng Hou
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
93
|
Cheong TC, Blasco RB, Chiarle R. The CRISPR/Cas9 System as a Tool to Engineer Chromosomal Translocation In Vivo. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1044:39-48. [PMID: 29956290 DOI: 10.1007/978-981-13-0593-1_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The CRISPR/Cas9 system has emerged as a powerful tool to edit the genome. Among many applications, the system generates the exciting possibility of engineering small and large portions of chromosomes to induce a variety of structural alterations such as deletions, inversions, insertions and inter-chromosomal translocations. Furthermore, the availability of viral vectors that express Cas9 has been critical to deliver the CRISPR/Cas9 system directly in vivo to induce chromosomal rearrangements. This review provides an overview of the state-of-the-art CRISPR/Cas9 technology to model a variety of rearrangements in vivo in animal models.
Collapse
Affiliation(s)
- Taek-Chin Cheong
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Rafael B Blasco
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Roberto Chiarle
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
94
|
Dynamic 3D chromatin architecture contributes to enhancer specificity and limb morphogenesis. Nat Genet 2018; 50:1463-1473. [PMID: 30262816 PMCID: PMC10154999 DOI: 10.1038/s41588-018-0221-x] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 08/02/2018] [Indexed: 12/20/2022]
Abstract
The regulatory specificity of enhancers and their interaction with gene promoters is thought to be controlled by their sequence and the binding of transcription factors. By studying Pitx1, a regulator of hindlimb development, we show that dynamic changes in chromatin conformation can restrict the activity of enhancers. Inconsistent with its hindlimb-restricted expression, Pitx1 is controlled by an enhancer (Pen) that shows activity in forelimbs and hindlimbs. By Capture Hi-C and three-dimensional modeling of the locus, we demonstrate that forelimbs and hindlimbs have fundamentally different chromatin configurations, whereby Pen and Pitx1 interact in hindlimbs and are physically separated in forelimbs. Structural variants can convert the inactive into the active conformation, thereby inducing Pitx1 misexpression in forelimbs, causing partial arm-to-leg transformation in mice and humans. Thus, tissue-specific three-dimensional chromatin conformation can contribute to enhancer activity and specificity in vivo and its disturbance can result in gene misexpression and disease.
Collapse
|
95
|
Yang Z, Chen S, Xue S, Li X, Sun Z, Yang Y, Hu X, Geng T, Cui H. Generation of Cas9 transgenic zebrafish and their application in establishing an ERV-deficient animal model. Biotechnol Lett 2018; 40:1507-1518. [PMID: 30244429 PMCID: PMC6223727 DOI: 10.1007/s10529-018-2605-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 09/11/2018] [Indexed: 02/02/2023]
Abstract
Objectives To investigate the effect of endogenous Cas9 on genome editing efficiency in transgenic zebrafish. Results Here we have constructed a transgenic zebrafish strain that can be screened by pigment deficiency. Compared with the traditional CRISPR injection method, the transgenic zebrafish can improve the efficiency of genome editing significantly. At the same time, we first observed that the phenotype of vertebral malformation in early embryonic development of zebrafish after ZFERV knockout. Conclusions The transgenic zebrafish with expressed Cas9, is more efficient in genome editing. And the results of ZFERV knockout indicated that ERV may affect the vertebral development by Notch1/Delta D signal pathway. Electronic supplementary material The online version of this article (10.1007/s10529-018-2605-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhe Yang
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Shihao Chen
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Songlei Xue
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xinxiu Li
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhen Sun
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yu Yang
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Xuming Hu
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Tuoyu Geng
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Hengmi Cui
- Institute of Epigenetics and Epigenomics, Yangzhou University, Yangzhou, Jiangsu, 225009, China. .,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225009, China. .,Institute of Comparative Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, 225009, China. .,Joint International Research Laboratory of Agricultural & Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
96
|
Tsujimura T, Takase O, Yoshikawa M, Sano E, Hayashi M, Takato T, Toyoda A, Okano H, Hishikawa K. Control of directionality of chromatin folding for the inter- and intra-domain contacts at the Tfap2c-Bmp7 locus. Epigenetics Chromatin 2018; 11:51. [PMID: 30213272 PMCID: PMC6137755 DOI: 10.1186/s13072-018-0221-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 08/27/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Contact domains of chromatin serve as a fundamental unit to regulate action of enhancers for target genes. Looping between a pair of CCCTC-binding factor (CTCF)-binding sites in convergent orientations underlies the formation of contact domains, while those in divergent orientations establish domain boundaries. However, every CTCF site is not necessarily engaged in loop or boundary structures, leaving functions of CTCF in varied genomic contexts still elusive. The locus containing Tfap2c and Bmp7 encompasses two contact domains separated by a region between the two genes, termed transition zone (TZ), characterized by two arrays of CTCF sites in divergent configuration. In this study, we created deletion and inversion alleles of these and other regions across the locus and investigated how they impinge on the conformation. RESULTS Deletion of the whole two CTCF arrays with the CRISPR/Cas9 system resulted in impairment of blocking of chromatin contacts by the TZ, as assessed by the circular chromatin conformation capture assay (4C-seq). Deletion and inversion of either of the two arrays similarly, but less pronouncedly, led to reduction in the blocking activity. Thus, the divergent configuration provides the TZ with the strong boundary activity. Uniquely, we show the TZ harbors a 50-kb region within one of the two arrays that contacts broadly with the both flanking intervals, regardless of the presence or orientation of the other CTCF array. Further, we show the boundary CTCF array has little impact on intra-domain folding; instead, locally associating CTCF sites greatly affect it. CONCLUSIONS Our results show that the TZ not only separates the two domains, but also bears a wide interval that shows isotropic behavior of chromatin folding, indicating a potentially complex nature of actual boundaries in the genome. We also show that CTCF-binding sites inside a domain greatly contribute to the intra-domain folding of chromatin. Thus, the study reveals diverse and context-dependent roles of CTCF in organizing chromatin conformation at different levels.
Collapse
Affiliation(s)
- Taro Tsujimura
- Department of iPS Cell Research and Epigenetic Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 Japan
| | - Osamu Takase
- Department of iPS Cell Research and Epigenetic Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 Japan
| | - Masahiro Yoshikawa
- Department of iPS Cell Research and Epigenetic Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 Japan
| | - Etsuko Sano
- Department of iPS Cell Research and Epigenetic Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 Japan
| | - Matsuhiko Hayashi
- Apheresis and Dialysis Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 Japan
| | - Tsuyoshi Takato
- Department of Tissue Engineering, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
- Department of Oral-Maxillofacial Surgery and Orthodontics, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 Japan
| | - Atsushi Toyoda
- Center for Information Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540 Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 Japan
| | - Keiichi Hishikawa
- Department of iPS Cell Research and Epigenetic Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 Japan
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582 Japan
| |
Collapse
|
97
|
Ho BX, Loh SJH, Chan WK, Soh BS. In Vivo Genome Editing as a Therapeutic Approach. Int J Mol Sci 2018; 19:2721. [PMID: 30213032 PMCID: PMC6163904 DOI: 10.3390/ijms19092721] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/08/2018] [Accepted: 09/10/2018] [Indexed: 12/13/2022] Open
Abstract
Genome editing has been well established as a genome engineering tool that enables researchers to establish causal linkages between genetic mutation and biological phenotypes, providing further understanding of the genetic manifestation of many debilitating diseases. More recently, the paradigm of genome editing technologies has evolved to include the correction of mutations that cause diseases via the use of nucleases such as zinc-finger nucleases (ZFN), transcription activator-like effector nucleases (TALENs), and more recently, Cas9 nuclease. With the aim of reversing disease phenotypes, which arise from somatic gene mutations, current research focuses on the clinical translatability of correcting human genetic diseases in vivo, to provide long-term therapeutic benefits and potentially circumvent the limitations of in vivo cell replacement therapy. In this review, in addition to providing an overview of the various genome editing techniques available, we have also summarized several in vivo genome engineering strategies that have successfully demonstrated disease correction via in vivo genome editing. The various benefits and challenges faced in applying in vivo genome editing in humans will also be discussed.
Collapse
Affiliation(s)
- Beatrice Xuan Ho
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Sharon Jia Hui Loh
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore.
| | - Woon Khiong Chan
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| | - Boon Seng Soh
- Disease Modeling and Therapeutics Laboratory, A*STAR Institute of Molecular and Cell Biology, 61 Biopolis Drive Proteos, Singapore 138673, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore.
| |
Collapse
|
98
|
Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 2018; 36:765-771. [PMID: 30010673 PMCID: PMC6390938 DOI: 10.1038/nbt.4192] [Citation(s) in RCA: 1152] [Impact Index Per Article: 164.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/19/2018] [Indexed: 12/18/2022]
Abstract
CRISPR-Cas9 is poised to become the gene editing tool of choice in clinical contexts. Thus far, exploration of Cas9-induced genetic alterations has been limited to the immediate vicinity of the target site and distal off-target sequences, leading to the conclusion that CRISPR-Cas9 was reasonably specific. Here we report significant on-target mutagenesis, such as large deletions and more complex genomic rearrangements at the targeted sites in mouse embryonic stem cells, mouse hematopoietic progenitors and a human differentiated cell line. Using long-read sequencing and long-range PCR genotyping, we show that DNA breaks introduced by single-guide RNA/Cas9 frequently resolved into deletions extending over many kilobases. Furthermore, lesions distal to the cut site and crossover events were identified. The observed genomic damage in mitotically active cells caused by CRISPR-Cas9 editing may have pathogenic consequences.
Collapse
Affiliation(s)
| | - Kärt Tomberg
- Wellcome Sanger Institute, Hinxton, United Kingdom
| | | |
Collapse
|
99
|
Shou J, Li J, Liu Y, Wu Q. Precise and Predictable CRISPR Chromosomal Rearrangements Reveal Principles of Cas9-Mediated Nucleotide Insertion. Mol Cell 2018; 71:498-509.e4. [PMID: 30033371 DOI: 10.1016/j.molcel.2018.06.021] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 04/22/2018] [Accepted: 06/13/2018] [Indexed: 01/21/2023]
Abstract
Chromosomal rearrangements including large DNA-fragment inversions, deletions, and duplications by Cas9 with paired sgRNAs are important to investigate genome structural variations and developmental gene regulation, but little is known about the underlying mechanisms. Here, we report that disrupting CtIP or FANCD2, which have roles in alternative non-homologous end joining, enhances precise DNA-fragment deletion. By analyzing the inserted nucleotides at the junctions of DNA-fragment editing of deletions, inversions, and duplications and characterizing the cleaved products, we find that Cas9 endonucleolytically cleaves the noncomplementary strand with a flexible scissile profile upstream of the -3 position of the PAM site in vivo and in vitro, generating double-strand break ends with 5' overhangs of 1-3 nucleotides. Moreover, we find that engineered Cas9 nucleases have distinct cleavage profiles. Finally, Cas9-mediated nucleotide insertions are nonrandom and are equal to the combined sequences upstream of both PAM sites with predicted frequencies. Thus, precise and predictable DNA-fragment editing could be achieved by perturbing DNA repair genes and using appropriate PAM configurations.
Collapse
Affiliation(s)
- Jia Shou
- Key Lab of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, SCSB, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China; State Key Lab of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, SJTU Medical School, Shanghai 200240, China; Shanghai Key Lab of Biliary Tract Research, Xinhua Hospital, SJTU Medical School, Shanghai 200240, China
| | - Jinhuan Li
- Key Lab of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, SCSB, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China; State Key Lab of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, SJTU Medical School, Shanghai 200240, China; Shanghai Key Lab of Biliary Tract Research, Xinhua Hospital, SJTU Medical School, Shanghai 200240, China
| | - Yingbin Liu
- Shanghai Key Lab of Biliary Tract Research, Xinhua Hospital, SJTU Medical School, Shanghai 200240, China
| | - Qiang Wu
- Key Lab of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, SCSB, Shanghai Jiao Tong University (SJTU), Shanghai 200240, China; State Key Lab of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, SJTU Medical School, Shanghai 200240, China; Shanghai Key Lab of Biliary Tract Research, Xinhua Hospital, SJTU Medical School, Shanghai 200240, China.
| |
Collapse
|
100
|
Chandrasekaran AP, Song M, Kim KS, Ramakrishna S. Different Methods of Delivering CRISPR/Cas9 Into Cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:157-176. [PMID: 30340786 DOI: 10.1016/bs.pmbts.2018.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated system (Cas) is comprised of repetitive bases followed by short fragments of DNA from a previously invading organism that provide immunity to the most prokaryotic organisms. An RNA-dependent spacer is required for CRISPR/Cas9 to recognize the target DNA. Delivery of the CRISPR/Cas9-guide RNA (gRNA) complex to any cell results in modification of the target sequence. The CRISPR/Cas9-mediated genome editing technique is currently in the spotlight and has several research interests, including molecular medicine and agriculture. There are several factors that hinder the delivery of this complex, such as the large size of the plasmid or high dosage of the chemical agent. There are several methods available to deliver CRISPR/Cas9 and its components to the target cells. It includes viral, non-viral and physical methods to deliver plasmid or ribonucleoprotein (RNP) of CRISPR components. But in vivo CRISPR/Cas9 delivery remains challenging to the researchers due to insertional mutagenesis, targeted delivery, immunogenicity, and off-targets. However, studies suggesting that the CRISPR/Cas9-RNP delivery can overcome these hurdles. Here, we review the various methods for delivery of CRISPR/Cas9 and gRNA to several cell lines, highlighting the limitations of each approach, and suggest possible alternative methods.
Collapse
Affiliation(s)
| | - Minjung Song
- Department of Food Biotechnology, College of Medical and Life Science, Silla University, Seoul, South Korea
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea.
| |
Collapse
|