51
|
Qi S, Al Mamun A, Ngwa C, Romana S, Ritzel R, Arnold AP, McCullough LD, Liu F. X chromosome escapee genes are involved in ischemic sexual dimorphism through epigenetic modification of inflammatory signals. J Neuroinflammation 2021; 18:70. [PMID: 33712031 PMCID: PMC7953638 DOI: 10.1186/s12974-021-02120-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/24/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Stroke is a sexually dimorphic disease. Previous studies have found that young females are protected against ischemia compared to males, partially due to the protective effect of ovarian hormones, particularly estrogen (E2). However, there are also genetic and epigenetic effects of X chromosome dosage that contribute to stroke sensitivity and neuroinflammation after injury, especially in the aged. Genes that escape from X chromosome inactivation (XCI) contribute to sex-specific phenotypes in many disorders. Kdm5c and kdm6a are X escapee genes that demethylate H3K4me3 and H3K27me3, respectively. We hypothesized that the two demethylases play critical roles in mediating the stroke sensitivity. METHODS To identify the X escapee genes involved in stroke, we performed RNA-seq in flow-sorted microglia from aged male and female wild type (WT) mice subjected to middle cerebral artery occlusion (MCAO). The expression of these genes (kdm5c/kdm6a) were confirmed in four core genotypes (FCG) mice and in post-mortem human stroke brains by immunohistochemistry (IHC), Western blot, and RT-PCR. Chromatin immunoprecipitation (ChIP) assays were conducted to detect DNA levels of inflammatory interferon regulatory factor (IRF) 4/5 precipitated by histone H3K4 and H3K27 antibodies. Manipulation of kdm5c/kdm6a expression with siRNA or lentivirus was performed in microglial culture, to determine downstream pathways and examine the regulatory roles in inflammatory cytokine production. RESULTS Kdm5c and kdm6a mRNA levels were significantly higher in aged WT female vs. male microglia, and the sex difference also existed in ischemic brains from FCG mice and human stroke patients. The ChIP assay showed the IRF 4/5 had higher binding levels to demethylated H3K4 or H3K27, respectively, in female vs. male ischemic microglia. Knockdown or over expression of kdm5c/kdm6a with siRNA or lentivirus altered the methylation of H3K4 or H3K27 at the IRF4/5 genes, which in turn, impacted the production of inflammatory cytokines. CONCLUSIONS The KDM-Histone-IRF pathways are suggested to mediate sex differences in cerebral ischemia. Epigenetic modification of stroke-related genes constitutes an important mechanism underlying the ischemic sexual dimorphism.
Collapse
Affiliation(s)
- Shaohua Qi
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Abdullah Al Mamun
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Conelius Ngwa
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Sharmeen Romana
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Rodney Ritzel
- Department of Anesthesiology, Center for Shock, Trauma and Anesthesiology Research (STAR) Center, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Arthur P Arnold
- Department of Integrative Biology and Physiology, UCLA, 610 Charles Young Drive South, Los Angeles, CA, 90095, USA
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Fudong Liu
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, 6431 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
52
|
Belalcazar HM, Hendricks EL, Zamurrad S, Liebl FLW, Secombe J. The histone demethylase KDM5 is required for synaptic structure and function at the Drosophila neuromuscular junction. Cell Rep 2021; 34:108753. [PMID: 33596422 PMCID: PMC7945993 DOI: 10.1016/j.celrep.2021.108753] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/14/2020] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
Mutations in the genes encoding the lysine demethylase 5 (KDM5) family of histone demethylases are observed in individuals with intellectual disability (ID). Despite clear evidence linking KDM5 function to neurodevelopmental pathways, how this family of proteins impacts transcriptional programs to mediate synaptic structure and activity remains unclear. Using the Drosophila larval neuromuscular junction (NMJ), we show that KDM5 is required presynaptically for neuroanatomical development and synaptic function. The Jumonji C (JmjC) domain-encoded histone demethylase activity of KDM5, which is expected to be diminished by many ID-associated alleles, is required for appropriate synaptic morphology and neurotransmission. The activity of the C5HC2 zinc finger is also required, as an ID-associated mutation in this motif reduces NMJ bouton number, increases bouton size, and alters microtubule dynamics. KDM5 therefore uses demethylase-dependent and independent mechanisms to regulate NMJ structure and activity, highlighting the complex nature by which this chromatin modifier carries out its neuronal gene-regulatory programs.
Collapse
Affiliation(s)
- Helen M Belalcazar
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Emily L Hendricks
- Department of Biological Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Edwardsville, IL 62026, USA
| | - Sumaira Zamurrad
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Faith L W Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Edwardsville, IL 62026, USA
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA.
| |
Collapse
|
53
|
Agarwal S, Bonefas KM, Garay PM, Brookes E, Murata-Nakamura Y, Porter RS, Macfarlan TS, Ren B, Iwase S. KDM1A maintains genome-wide homeostasis of transcriptional enhancers. Genome Res 2021; 31:186-197. [PMID: 33414108 PMCID: PMC7849409 DOI: 10.1101/gr.234559.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 12/07/2020] [Indexed: 12/27/2022]
Abstract
Transcriptional enhancers enable exquisite spatiotemporal control of gene expression in metazoans. Enrichment of monomethylation of histone H3 lysine 4 (H3K4me1) is a major chromatin signature of transcriptional enhancers. Lysine (K)-specific demethylase 1A (KDM1A, also known as LSD1), an H3K4me2/me1 demethylase, inactivates stem-cell enhancers during the differentiation of mouse embryonic stem cells (mESCs). However, its role in undifferentiated mESCs remains obscure. Here, we show that KDM1A actively maintains the optimal enhancer status in both undifferentiated and lineage-committed cells. KDM1A occupies a majority of enhancers in undifferentiated mESCs. KDM1A levels at enhancers exhibit clear positive correlations with its substrate H3K4me2, H3K27ac, and transcription at enhancers. In Kdm1a-deficient mESCs, a large fraction of these enhancers gains additional H3K4 methylation, which is accompanied by increases in H3K27 acetylation and increased expression of both enhancer RNAs (eRNAs) and target genes. In postmitotic neurons, loss of KDM1A leads to premature activation of neuronal activity-dependent enhancers and genes. Taken together, these results suggest that KDM1A is a versatile regulator of enhancers and acts as a rheostat to maintain optimal enhancer activity by counterbalancing H3K4 methylation at enhancers.
Collapse
Affiliation(s)
- Saurabh Agarwal
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California 92093-0653, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Katherine M Bonefas
- Neuroscience Graduate Program, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Patricia M Garay
- Neuroscience Graduate Program, The University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Emily Brookes
- Division of Newborn Medicine, Boston Children's Hospital, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yumie Murata-Nakamura
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Robert S Porter
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Todd S Macfarlan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Bing Ren
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California 92093-0653, USA
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
54
|
Roles of HIF and 2-Oxoglutarate-Dependent Dioxygenases in Controlling Gene Expression in Hypoxia. Cancers (Basel) 2021; 13:cancers13020350. [PMID: 33477877 PMCID: PMC7832865 DOI: 10.3390/cancers13020350] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that such dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. Abstract Hypoxia—reduction in oxygen availability—plays key roles in both physiological and pathological processes. Given the importance of oxygen for cell and organism viability, mechanisms to sense and respond to hypoxia are in place. A variety of enzymes utilise molecular oxygen, but of particular importance to oxygen sensing are the 2-oxoglutarate (2-OG) dependent dioxygenases (2-OGDs). Of these, Prolyl-hydroxylases have long been recognised to control the levels and function of Hypoxia Inducible Factor (HIF), a master transcriptional regulator in hypoxia, via their hydroxylase activity. However, recent studies are revealing that dioxygenases are involved in almost all aspects of gene regulation, including chromatin organisation, transcription and translation. We highlight the relevance of HIF and 2-OGDs in the control of gene expression in response to hypoxia and their relevance to human biology and health.
Collapse
|
55
|
Fallah MS, Szarics D, Robson CM, Eubanks JH. Impaired Regulation of Histone Methylation and Acetylation Underlies Specific Neurodevelopmental Disorders. Front Genet 2021; 11:613098. [PMID: 33488679 PMCID: PMC7820808 DOI: 10.3389/fgene.2020.613098] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Epigenetic processes are critical for governing the complex spatiotemporal patterns of gene expression in neurodevelopment. One such mechanism is the dynamic network of post-translational histone modifications that facilitate recruitment of transcription factors or even directly alter chromatin structure to modulate gene expression. This is a tightly regulated system, and mutations affecting the function of a single histone-modifying enzyme can shift the normal epigenetic balance and cause detrimental developmental consequences. In this review, we will examine select neurodevelopmental conditions that arise from mutations in genes encoding enzymes that regulate histone methylation and acetylation. The methylation-related conditions discussed include Wiedemann-Steiner, Kabuki, and Sotos syndromes, and the acetylation-related conditions include Rubinstein-Taybi, KAT6A, genitopatellar/Say-Barber-Biesecker-Young-Simpson, and brachydactyly mental retardation syndromes. In particular, we will discuss the clinical/phenotypic and genetic basis of these conditions and the model systems that have been developed to better elucidate cellular and systemic pathological mechanisms.
Collapse
Affiliation(s)
- Merrick S Fallah
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Dora Szarics
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Clara M Robson
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - James H Eubanks
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Surgery (Neurosurgery), University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
56
|
AlSiraj Y, Thatcher SE, Blalock E, Saintilnord WN, Daugherty A, Lu HS, Luo W, Shen YH, LeMaire SA, Arnold AP, Cassis LA. Monosomy X in Female Mice Influences the Regional Formation and Augments the Severity of Angiotensin II-Induced Aortopathies. Arterioscler Thromb Vasc Biol 2021; 41:269-283. [PMID: 33054396 PMCID: PMC8259710 DOI: 10.1161/atvbaha.120.314407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Turner syndrome women (monosomy X) have high risk of aortopathies consistent with a role for sex chromosomes in disease development. We demonstrated that sex chromosomes influence regional development of Ang II (angiotensin II)-induced aortopathies in mice. In this study, we determined if the number of X chromosomes regulates regional development of Ang II-induced aortopathies. Approach and Results: We used females with varying numbers of X chromosomes (XX female mice [XXF] or XO female mice [XOF]) on an C57BL/6J (ascending aortopathies) or low-density lipoprotein receptor deficient (Ldlr-/-) background (descending and abdominal aortopathies) compared with XY males (XYM). To induce aortopathies, mice were infused with Ang II. XOF (C57BL/6J) exhibited larger percent increases in ascending aortic lumen diameters than Ang II-infused XXF or XYM. Ang II-infused XOF (Ldlr-/-) exhibited similar incidences of thoracic (XOF, 50%; XYM, 71%) and abdominal aortopathies (XOF, 83%; XYM, 71%) as XYM, which were greater than XXF (XXF, 0%). Abdominal aortic lumen diameters and maximal external diameters were similar between XOF and XYM but greater than XXF, and these effects persisted with extended Ang II infusions. Larger aortic lumen diameters, abdominal aortopathy incidence (XXF, 20%; XOF, 75%), and maximal aneurysm diameters (XXF, 1.02±0.17; XOF, 1.96±0.32 mm; P=0.027) persisted in ovariectomized Ang II-infused XOF mice. Data from RNA-seq demonstrated that X chromosome genes that escape X-inactivation (histone lysine demethylases Kdm5c and Kdm6a) exhibited lower mRNA abundance in aortas of XOF than XXF (P=0.033 and 0.024, respectively). Conversely, DNA methylation was higher in aortas of XOF than XXF (P=0.038). CONCLUSIONS The absence of a second X chromosome promotes diffuse Ang II-induced aortopathies in females.
Collapse
MESH Headings
- Angiotensin II
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/genetics
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Thoracic/chemically induced
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- DNA Methylation
- Disease Models, Animal
- Female
- Histone Demethylases/genetics
- Histone Demethylases/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Ovariectomy
- Receptors, LDL/deficiency
- Receptors, LDL/genetics
- Severity of Illness Index
- Turner Syndrome/complications
- Turner Syndrome/genetics
- Mice
Collapse
Affiliation(s)
- Yasir AlSiraj
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington KY
| | - Sean E. Thatcher
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington KY
| | - Eric Blalock
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington KY
| | - Wesley N. Saintilnord
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY
| | - Alan Daugherty
- Department of Physiology, University of Kentucky, Lexington KY
- Saha Cardiovascular Research Center, University of Kentucky, Lexington KY
| | - Hong S. Lu
- Department of Physiology, University of Kentucky, Lexington KY
- Saha Cardiovascular Research Center, University of Kentucky, Lexington KY
| | - Wei Luo
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, and Department of Cardiovascular Surgery, Texas Heart Institute, Houston TX
| | - Ying H. Shen
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, and Department of Cardiovascular Surgery, Texas Heart Institute, Houston TX
| | - Scott A. LeMaire
- Division of Cardiothoracic Surgery, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, and Department of Cardiovascular Surgery, Texas Heart Institute, Houston TX
| | - Arthur P. Arnold
- Integrative Biology and Physiology, University of California, Los Angeles CA
| | - Lisa A. Cassis
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington KY
| |
Collapse
|
57
|
Raznahan A, Disteche CM. X-chromosome regulation and sex differences in brain anatomy. Neurosci Biobehav Rev 2021; 120:28-47. [PMID: 33171144 PMCID: PMC7855816 DOI: 10.1016/j.neubiorev.2020.10.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 01/08/2023]
Abstract
Humans show reproducible sex-differences in cognition and psychopathology that may be contributed to by influences of gonadal sex-steroids and/or sex-chromosomes on regional brain development. Gonadal sex-steroids are well known to play a major role in sexual differentiation of the vertebrate brain, but far less is known regarding the role of sex-chromosomes. Our review focuses on this latter issue by bridging together two literatures that have to date been largely disconnected. We first consider "bottom-up" genetic and molecular studies focused on sex-chromosome gene content and regulation. This literature nominates specific sex-chromosome genes that could drive developmental sex-differences by virtue of their sex-biased expression and their functions within the brain. We then consider the complementary "top down" view, from magnetic resonance imaging studies that map sex- and sex chromosome effects on regional brain anatomy, and link these maps to regional gene-expression within the brain. By connecting these top-down and bottom-up approaches, we emphasize the potential role of X-linked genes in driving sex-biased brain development and outline key goals for future work in this field.
Collapse
Affiliation(s)
- Armin Raznahan
- Section on Developmental Neurogenomics, Human Genetics Branch, National Institute of Mental Health, Bethesda, MD, 20892, USA.
| | - Christine M Disteche
- Department of Pathology and Medicine, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
58
|
El Hayek L, Tuncay IO, Nijem N, Russell J, Ludwig S, Kaur K, Li X, Anderton P, Tang M, Gerard A, Heinze A, Zacher P, Alsaif HS, Rad A, Hassanpour K, Abbaszadegan MR, Washington C, DuPont BR, Louie RJ, Couse M, Faden M, Rogers RC, Abou Jamra R, Elias ER, Maroofian R, Houlden H, Lehman A, Beutler B, Chahrour MH. KDM5A mutations identified in autism spectrum disorder using forward genetics. eLife 2020; 9:56883. [PMID: 33350388 PMCID: PMC7755391 DOI: 10.7554/elife.56883] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 12/06/2020] [Indexed: 12/29/2022] Open
Abstract
Autism spectrum disorder (ASD) is a constellation of neurodevelopmental disorders with high phenotypic and genetic heterogeneity, complicating the discovery of causative genes. Through a forward genetics approach selecting for defective vocalization in mice, we identified Kdm5a as a candidate ASD gene. To validate our discovery, we generated a Kdm5a knockout mouse model (Kdm5a-/-) and confirmed that inactivating Kdm5a disrupts vocalization. In addition, Kdm5a-/- mice displayed repetitive behaviors, sociability deficits, cognitive dysfunction, and abnormal dendritic morphogenesis. Loss of KDM5A also resulted in dysregulation of the hippocampal transcriptome. To determine if KDM5A mutations cause ASD in humans, we screened whole exome sequencing and microarray data from a clinical cohort. We identified pathogenic KDM5A variants in nine patients with ASD and lack of speech. Our findings illustrate the power and efficacy of forward genetics in identifying ASD genes and highlight the importance of KDM5A in normal brain development and function.
Collapse
Affiliation(s)
- Lauretta El Hayek
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, United States
| | - Islam Oguz Tuncay
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Nadine Nijem
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, United States
| | - Jamie Russell
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, United States
| | - Sara Ludwig
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, United States
| | - Kiran Kaur
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, United States
| | - Xiaohong Li
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, United States
| | - Priscilla Anderton
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, United States
| | - Miao Tang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, United States
| | - Amanda Gerard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Texas Children's Hospital, Houston, United States
| | - Anja Heinze
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Pia Zacher
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany.,The Saxon Epilepsy Center Kleinwachau, Radeberg, Germany
| | - Hessa S Alsaif
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Aboulfazl Rad
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Islamic Republic of Iran
| | - Kazem Hassanpour
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Islamic Republic of Iran
| | - Mohammad Reza Abbaszadegan
- Pardis Clinical and Genetics Laboratory, Mashhad, Islamic Republic of Iran.,Division of Human Genetics, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | | | | | | | -
- Department of Medical Genetics, University of British Columbia, British Columbia Children's and Women's Hospital Research Institute, Vancouver, Canada
| | - Madeline Couse
- Department of Medical Genetics, University of British Columbia, British Columbia Children's and Women's Hospital Research Institute, Vancouver, Canada
| | - Maha Faden
- Department of Genetics, King Saud Medical City, Riyadh, Saudi Arabia
| | | | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Ellen R Elias
- Department of Pediatrics and Genetics, University of Colorado School of Medicine, Aurora, United States
| | - Reza Maroofian
- Department of Neuromuscular Diseases, University College London, Queen Square Institute of Neurology, London, United Kingdom
| | - Henry Houlden
- Department of Neuromuscular Diseases, University College London, Queen Square Institute of Neurology, London, United Kingdom
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, British Columbia Children's and Women's Hospital Research Institute, Vancouver, Canada
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, United States
| | - Maria H Chahrour
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States.,Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, United States.,Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, United States.,Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
59
|
Loss of PHF6 leads to aberrant development of human neuron-like cells. Sci Rep 2020; 10:19030. [PMID: 33149206 PMCID: PMC7642390 DOI: 10.1038/s41598-020-75999-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/22/2020] [Indexed: 11/09/2022] Open
Abstract
Pathogenic variants in PHD finger protein 6 (PHF6) cause Borjeson-Forssman-Lehmann syndrome (BFLS), a rare X-linked neurodevelopmental disorder, which manifests variably in both males and females. To investigate the mechanisms behind overlapping but distinct clinical aspects between genders, we assessed the consequences of individual variants with structural modelling and molecular techniques. We found evidence that de novo variants occurring in females are more severe and result in loss of PHF6, while inherited variants identified in males might be hypomorph or have weaker effects on protein stability. This might contribute to the different phenotypes in male versus female individuals with BFLS. Furthermore, we used CRISPR/Cas9 to induce knockout of PHF6 in SK-N-BE (2) cells which were then differentiated to neuron-like cells in order to model nervous system related consequences of PHF6 loss. Transcriptome analysis revealed a broad deregulation of genes involved in chromatin and transcriptional regulation as well as in axon and neuron development. Subsequently, we could demonstrate that PHF6 is indeed required for proper neuron proliferation, neurite outgrowth and migration. Impairment of these processes might therefore contribute to the neurodevelopmental and cognitive dysfunction in BFLS.
Collapse
|
60
|
Link JC, Wiese CB, Chen X, Avetisyan R, Ronquillo E, Ma F, Guo X, Yao J, Allison M, Chen YDI, Rotter JI, El -Sayed Moustafa JS, Small KS, Iwase S, Pellegrini M, Vergnes L, Arnold AP, Reue K. X chromosome dosage of histone demethylase KDM5C determines sex differences in adiposity. J Clin Invest 2020; 130:5688-5702. [PMID: 32701509 PMCID: PMC7598065 DOI: 10.1172/jci140223] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/16/2020] [Indexed: 12/29/2022] Open
Abstract
Males and females differ in body composition and fat distribution. Using a mouse model that segregates gonadal sex (ovaries and testes) from chromosomal sex (XX and XY), we showed that XX chromosome complement in combination with a high-fat diet led to enhanced weight gain in the presence of male or female gonads. We identified the genomic dosage of Kdm5c, an X chromosome gene that escapes X chromosome inactivation, as a determinant of the X chromosome effect on adiposity. Modulating Kdm5c gene dosage in XX female mice to levels that are normally present in males resulted in reduced body weight, fat content, and food intake to a degree similar to that seen with altering the entire X chromosome dosage. In cultured preadipocytes, the levels of KDM5C histone demethylase influenced chromatin accessibility (ATAC-Seq), gene expression (RNA-Seq), and adipocyte differentiation. Both in vitro and in vivo, Kdm5c dosage influenced gene expression involved in extracellular matrix remodeling, which is critical for adipocyte differentiation and adipose tissue expansion. In humans, adipose tissue KDM5C mRNA levels and KDM5C genetic variants were associated with body mass. These studies demonstrate that the sex-dependent dosage of Kdm5c contributes to male/female differences in adipocyte biology and highlight X-escape genes as a critical component of female physiology.
Collapse
Affiliation(s)
| | | | - Xuqi Chen
- Integrative Biology and Physiology, and
| | | | | | - Feiyang Ma
- Molecular, Cellular and Developmental Biology, UCLA, Los Angeles, California, USA
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Matthew Allison
- Division of Preventive Medicine, School of Medicine, UCSD, San Diego, California, USA
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | | | - Kerrin S. Small
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Shigeki Iwase
- Human Genetics, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Matteo Pellegrini
- Molecular, Cellular and Developmental Biology, UCLA, Los Angeles, California, USA
| | | | | | - Karen Reue
- Molecular Biology Institute
- Human Genetics, David Geffen School of Medicine
| |
Collapse
|
61
|
Mu MD, Qian ZM, Yang SX, Rong KL, Yung WH, Ke Y. Therapeutic effect of a histone demethylase inhibitor in Parkinson's disease. Cell Death Dis 2020; 11:927. [PMID: 33116116 PMCID: PMC7595123 DOI: 10.1038/s41419-020-03105-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 08/11/2020] [Accepted: 08/15/2020] [Indexed: 12/30/2022]
Abstract
Iron accumulation in the substantia nigra is recognized as a hallmark of Parkinson's disease (PD). Therefore, reducing accumulated iron and associated oxidative stress is considered a promising therapeutic strategy for PD. However, current iron chelators have poor membrane permeability and lack cell-type specificity. Here we identified GSK-J4, a histone demethylase inhibitor with the ability to cross blood brain barrier, as a potent iron suppressor. Only a trace amount of GSK-J4 significantly and selectively reduced intracellular labile iron in dopaminergic neurons, and suppressed H2O2 and 6-OHDA-induced cell death in vitro. The iron-suppressive effect was mainly mediated by inducing an increase in the expression of the iron exporter ferroportin-1. In parallel, GSK-J4 rescued dopaminergic neuron loss and motor defects in 6-OHDA-induced PD rats, which was accompanied by reduction of oxidative stress. Importantly, GSK-J4 rescued the abnormal changes of histone methylation, H3K4me3 and H3K27me3 during 6-OHDA treatment although the iron-suppressive and neuroprotective effects were sensitive to H3K4me3 inhibition only. Also, upregulating H3K4me3 increased ferroportin-1 expression and neuroprotection. Taken together, we demonstrate a previously unappreciated action of GSK-J4 on cell-specific iron suppression and neuroprotection via epigenetic mechanism. Compared with conventional iron chelators, this compound has a stronger therapeutic potential for PD.
Collapse
Affiliation(s)
- Ming-Dao Mu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Zhong-Ming Qian
- Institute of Translational and Precision Medicine, Nantong University, Nantong 226001, China
| | - Sheng-Xi Yang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Kang-Lin Rong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| |
Collapse
|
62
|
Poeta L, Padula A, Attianese B, Valentino M, Verrillo L, Filosa S, Shoubridge C, Barra A, Schwartz CE, Christensen J, van Bokhoven H, Helin K, Lioi MB, Collombat P, Gecz J, Altucci L, Di Schiavi E, Miano MG. Histone demethylase KDM5C is a SAHA-sensitive central hub at the crossroads of transcriptional axes involved in multiple neurodevelopmental disorders. Hum Mol Genet 2020; 28:4089-4102. [PMID: 31691806 DOI: 10.1093/hmg/ddz254] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/17/2019] [Accepted: 10/21/2019] [Indexed: 12/26/2022] Open
Abstract
A disproportional large number of neurodevelopmental disorders (NDDs) is caused by variants in genes encoding transcription factors and chromatin modifiers. However, the functional interactions between the corresponding proteins are only partly known. Here, we show that KDM5C, encoding a H3K4 demethylase, is at the intersection of transcriptional axes under the control of three regulatory proteins ARX, ZNF711 and PHF8. Interestingly, mutations in all four genes (KDM5C, ARX, ZNF711 and PHF8) are associated with X-linked NDDs comprising intellectual disability as a core feature. in vitro analysis of the KDM5C promoter revealed that ARX and ZNF711 function as antagonist transcription factors that activate KDM5C expression and compete for the recruitment of PHF8. Functional analysis of mutations in these genes showed a correlation between phenotype severity and the reduction in KDM5C transcriptional activity. The KDM5C decrease was associated with a lack of repression of downstream target genes Scn2a, Syn1 and Bdnf in the embryonic brain of Arx-null mice. Aiming to correct the faulty expression of KDM5C, we studied the effect of the FDA-approved histone deacetylase inhibitor suberanilohydroxamic acid (SAHA). In Arx-KO murine ES-derived neurons, SAHA was able to rescue KDM5C depletion, recover H3K4me3 signalling and improve neuronal differentiation. Indeed, in ARX/alr-1-deficient Caenorhabditis elegans animals, SAHA was shown to counteract the defective KDM5C/rbr-2-H3K4me3 signalling, recover abnormal behavioural phenotype and ameliorate neuronal maturation. Overall, our studies indicate that KDM5C is a conserved and druggable effector molecule across a number of NDDs for whom the use of SAHA may be considered a potential therapeutic strategy.
Collapse
Affiliation(s)
- Loredana Poeta
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy
| | - Agnese Padula
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy.,University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Benedetta Attianese
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy
| | - Mariaelena Valentino
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy
| | - Lucia Verrillo
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy.,University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Stefania Filosa
- Institute of Biosciences and BioResources, National Research Council (CNR), Naples, Italy.,Istituto Neurologico Mediterraneo (Neuromed), Pozzilli, Isernia, Italy
| | - Cheryl Shoubridge
- Intellectual Disability Research, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Robinson Research Institute, Department of Paediatrics, University of Adelaide, Adelaide, South Australia, Australia
| | - Adriano Barra
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy
| | | | - Jesper Christensen
- University of Copenhagen, Biotech Research and Innovation Centre (BRIC), Copenhagen, Denmark.,University of Copenhagen, The Novo Nordisk Foundation Center for Stem Cell Biology (Danstem), Copenhagen, Denmark
| | - Hans van Bokhoven
- Department of Human Genetics, Donders Institute for Brain, Behaviour and Cognition, Radboudumc, Nijmegen, The Netherlands
| | - Kristian Helin
- University of Copenhagen, Biotech Research and Innovation Centre (BRIC), Copenhagen, Denmark.,University of Copenhagen, The Novo Nordisk Foundation Center for Stem Cell Biology (Danstem), Copenhagen, Denmark
| | | | | | - Jozef Gecz
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, Australia
| | - Lucia Altucci
- University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, National Research Council (CNR), Naples, Italy
| | - Maria Giuseppina Miano
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso", National Research Council (CNR), Naples, Italy
| |
Collapse
|
63
|
Vallianatos CN, Raines B, Porter RS, Bonefas KM, Wu MC, Garay PM, Collette KM, Seo YA, Dou Y, Keegan CE, Tronson NC, Iwase S. Mutually suppressive roles of KMT2A and KDM5C in behaviour, neuronal structure, and histone H3K4 methylation. Commun Biol 2020; 3:278. [PMID: 32483278 PMCID: PMC7264178 DOI: 10.1038/s42003-020-1001-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/09/2020] [Indexed: 12/17/2022] Open
Abstract
Histone H3 lysine 4 methylation (H3K4me) is extensively regulated by numerous writer and eraser enzymes in mammals. Nine H3K4me enzymes are associated with neurodevelopmental disorders to date, indicating their important roles in the brain. However, interplay among H3K4me enzymes during brain development remains largely unknown. Here, we show functional interactions of a writer-eraser duo, KMT2A and KDM5C, which are responsible for Wiedemann-Steiner Syndrome (WDSTS), and mental retardation X-linked syndromic Claes-Jensen type (MRXSCJ), respectively. Despite opposite enzymatic activities, the two mouse models deficient for either Kmt2a or Kdm5c shared reduced dendritic spines and increased aggression. Double mutation of Kmt2a and Kdm5c clearly reversed dendritic morphology, key behavioral traits including aggression, and partially corrected altered transcriptomes and H3K4me landscapes. Thus, our study uncovers common yet mutually suppressive aspects of the WDSTS and MRXSCJ models and provides a proof of principle for balancing a single writer-eraser pair to ameliorate their associated disorders.
Collapse
Affiliation(s)
- Christina N Vallianatos
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Genetics and Genomics Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Brynne Raines
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Robert S Porter
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Genetics and Genomics Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Katherine M Bonefas
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.,The University of Michigan Neuroscience Graduate Program, Ann Arbor, MI, USA
| | | | - Patricia M Garay
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.,The University of Michigan Neuroscience Graduate Program, Ann Arbor, MI, USA
| | - Katie M Collette
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Young Ah Seo
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Yali Dou
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Catherine E Keegan
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Pediatrics, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Natalie C Tronson
- Department of Psychology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Shigeki Iwase
- Department of Human Genetics, Michigan Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
64
|
Carmignac V, Nambot S, Lehalle D, Callier P, Moortgat S, Benoit V, Ghoumid J, Delobel B, Smol T, Thuillier C, Zordan C, Naudion S, Bienvenu T, Touraine R, Ramond F, Zweier C, Reis A, Kraus C, Nizon M, Cogné B, Verloes A, Tran Mau‐Them F, Sorlin A, Jouan T, Duffourd Y, Tisserant E, Philippe C, Vitobello A, Thevenon J, Faivre L, Thauvin‐Robinet C. Further delineation of the female phenotype with
KDM5C
disease causing variants: 19 new individuals and review of the literature. Clin Genet 2020; 98:43-55. [DOI: 10.1111/cge.13755] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Virginie Carmignac
- INSERM UMR1231, Equipe Génétique des Anomalies du Développement Université de Bourgogne Dijon France
- Centre de Référence Maladies Génétique à Expression Cutanée Centre Hospitalier Universitaire Dijon Bourgogne Dijon France
| | - Sophie Nambot
- INSERM UMR1231, Equipe Génétique des Anomalies du Développement Université de Bourgogne Dijon France
- Centre de Génétique et Centre de référence « Anomalies du Développement et Syndromes Malformatifs », Hôpital d'Enfants Centre Hospitalier Universitaire Dijon Bourgogne Dijon France
- Unité Fonctionnelle « Diagnostic en innovation génomique des maladies rares » Laboratoire de Génétique Chromosomique et Moléculaire, Plateau Technique de Biologie Centre Hospitalier Universitaire Dijon Bourgogne Dijon France
- Fédération Hospitalo‐Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD) Centre Hospitalier Universitaire de Dijon et Université de Bourgogne‐Franche Comté Dijon France
| | - Daphné Lehalle
- Centre de Génétique et Centre de référence « Anomalies du Développement et Syndromes Malformatifs », Hôpital d'Enfants Centre Hospitalier Universitaire Dijon Bourgogne Dijon France
| | - Patrick Callier
- INSERM UMR1231, Equipe Génétique des Anomalies du Développement Université de Bourgogne Dijon France
- Unité Fonctionnelle « Diagnostic en innovation génomique des maladies rares » Laboratoire de Génétique Chromosomique et Moléculaire, Plateau Technique de Biologie Centre Hospitalier Universitaire Dijon Bourgogne Dijon France
- Fédération Hospitalo‐Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD) Centre Hospitalier Universitaire de Dijon et Université de Bourgogne‐Franche Comté Dijon France
| | - Stephanie Moortgat
- Centre de Génétique Humaine Institut de Pathologie et de Génétique Charleroi Belgium
| | - Valérie Benoit
- Centre de Génétique Humaine Institut de Pathologie et de Génétique Charleroi Belgium
| | - Jamal Ghoumid
- CHU Lille, Clinique de Génétique – Guy Fontaine Lille France
- Université Lille EA 7364 – RADEME ‐ Maladies RAres du DEveloppement embryonnaire et du MEtabolisme Lille France
| | - Bruno Delobel
- Centre de Génétique Chromosomique GHICL, Hôpital Saint Vincent de Paul Lille France
| | - Thomas Smol
- Université Lille EA 7364 – RADEME ‐ Maladies RAres du DEveloppement embryonnaire et du MEtabolisme Lille France
- CHU Lille Institut de Génétique Médicale Lille France
| | | | - Cécile Zordan
- Service de Génétique clinique Centre Hospitalier Universitaire de Bordeaux Bordeaux France
| | - Sophie Naudion
- Service de Génétique clinique Centre Hospitalier Universitaire de Bordeaux Bordeaux France
| | - Thierry Bienvenu
- Institut de Psychiatrie et de Neurosciences de Paris Inserm U1266 Paris France
- Université de Paris Paris France
- Assistance Publique‐Hôpitaux de Paris, Groupe Universitaire Paris Centre, Site Cochin Laboratoire de Biochimie et Génétique Moléculaires Paris France
| | - Renaud Touraine
- Service de Génétique Clinique, Chromosomique et Moléculaire Centre de Référence des Anomalies du Développement, CHU de Saint‐Etienne Saint‐Priest‐en‐Jarez France
| | - Francis Ramond
- Service de Génétique Clinique, Chromosomique et Moléculaire Centre de Référence des Anomalies du Développement, CHU de Saint‐Etienne Saint‐Priest‐en‐Jarez France
| | - Christiane Zweier
- Institute of Human Genetics Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | - André Reis
- Institute of Human Genetics Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | - Cornelia Kraus
- Institute of Human Genetics Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | | | | | - Alain Verloes
- Département de Génétique Hôpital Robert Debré Paris France
| | - Frédéric Tran Mau‐Them
- INSERM UMR1231, Equipe Génétique des Anomalies du Développement Université de Bourgogne Dijon France
- Unité Fonctionnelle « Diagnostic en innovation génomique des maladies rares » Laboratoire de Génétique Chromosomique et Moléculaire, Plateau Technique de Biologie Centre Hospitalier Universitaire Dijon Bourgogne Dijon France
| | - Arthur Sorlin
- INSERM UMR1231, Equipe Génétique des Anomalies du Développement Université de Bourgogne Dijon France
- Centre de Génétique et Centre de référence « Anomalies du Développement et Syndromes Malformatifs », Hôpital d'Enfants Centre Hospitalier Universitaire Dijon Bourgogne Dijon France
- Unité Fonctionnelle « Diagnostic en innovation génomique des maladies rares » Laboratoire de Génétique Chromosomique et Moléculaire, Plateau Technique de Biologie Centre Hospitalier Universitaire Dijon Bourgogne Dijon France
| | - Thibaud Jouan
- INSERM UMR1231, Equipe Génétique des Anomalies du Développement Université de Bourgogne Dijon France
| | - Yannis Duffourd
- INSERM UMR1231, Equipe Génétique des Anomalies du Développement Université de Bourgogne Dijon France
- Fédération Hospitalo‐Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD) Centre Hospitalier Universitaire de Dijon et Université de Bourgogne‐Franche Comté Dijon France
| | - Emilie Tisserant
- INSERM UMR1231, Equipe Génétique des Anomalies du Développement Université de Bourgogne Dijon France
- Fédération Hospitalo‐Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD) Centre Hospitalier Universitaire de Dijon et Université de Bourgogne‐Franche Comté Dijon France
| | - Christophe Philippe
- INSERM UMR1231, Equipe Génétique des Anomalies du Développement Université de Bourgogne Dijon France
- Unité Fonctionnelle « Diagnostic en innovation génomique des maladies rares » Laboratoire de Génétique Chromosomique et Moléculaire, Plateau Technique de Biologie Centre Hospitalier Universitaire Dijon Bourgogne Dijon France
| | - Antonio Vitobello
- INSERM UMR1231, Equipe Génétique des Anomalies du Développement Université de Bourgogne Dijon France
- Unité Fonctionnelle « Diagnostic en innovation génomique des maladies rares » Laboratoire de Génétique Chromosomique et Moléculaire, Plateau Technique de Biologie Centre Hospitalier Universitaire Dijon Bourgogne Dijon France
| | - Julien Thevenon
- INSERM UMR1231, Equipe Génétique des Anomalies du Développement Université de Bourgogne Dijon France
- Centre de Génétique et Centre de référence « Anomalies du Développement et Syndromes Malformatifs », Hôpital d'Enfants Centre Hospitalier Universitaire Dijon Bourgogne Dijon France
- Fédération Hospitalo‐Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD) Centre Hospitalier Universitaire de Dijon et Université de Bourgogne‐Franche Comté Dijon France
| | - Laurence Faivre
- INSERM UMR1231, Equipe Génétique des Anomalies du Développement Université de Bourgogne Dijon France
- Centre de Génétique et Centre de référence « Anomalies du Développement et Syndromes Malformatifs », Hôpital d'Enfants Centre Hospitalier Universitaire Dijon Bourgogne Dijon France
- Unité Fonctionnelle « Diagnostic en innovation génomique des maladies rares » Laboratoire de Génétique Chromosomique et Moléculaire, Plateau Technique de Biologie Centre Hospitalier Universitaire Dijon Bourgogne Dijon France
- Fédération Hospitalo‐Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD) Centre Hospitalier Universitaire de Dijon et Université de Bourgogne‐Franche Comté Dijon France
| | - Christel Thauvin‐Robinet
- INSERM UMR1231, Equipe Génétique des Anomalies du Développement Université de Bourgogne Dijon France
- Unité Fonctionnelle « Diagnostic en innovation génomique des maladies rares » Laboratoire de Génétique Chromosomique et Moléculaire, Plateau Technique de Biologie Centre Hospitalier Universitaire Dijon Bourgogne Dijon France
- Fédération Hospitalo‐Universitaire Médecine Translationnelle et Anomalies du Développement (FHU TRANSLAD) Centre Hospitalier Universitaire de Dijon et Université de Bourgogne‐Franche Comté Dijon France
- Centre de référence maladies rares « déficience intellectuelle de causes rares », Hôpital d'enfants Centre Hospitalier Universitaire Dijon Bourgogne Dijon France
| |
Collapse
|
65
|
Kosugi M, Otani M, Kikkawa Y, Itakura Y, Sakai K, Ito T, Toyoda M, Sekita Y, Kimura T. Mutations of histone demethylase genes encoded by X and Y chromosomes, Kdm5c and Kdm5d, lead to noncompaction cardiomyopathy in mice. Biochem Biophys Res Commun 2020; 525:S0006-291X(20)30311-9. [PMID: 32081420 DOI: 10.1016/j.bbrc.2020.02.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 02/07/2020] [Indexed: 12/11/2022]
Abstract
Mammalian X and Y chromosomes evolved from a pair of autosomes. Although most ancestral genes have been lost from the Y chromosome, a small number of ancestral X-Y gene pairs are still present on the sex chromosomes. The KDM5C and KDM5D genes, which encode H3K4 histone demethylases, are a surviving ancestral gene pair located on the X and Y chromosomes, respectively. Mutations in KDM5C cause X-linked intellectual disability in human males, suggesting functional divergence between KDM5C and KDM5D in the nervous system. In this study, to explore the functional conservation and divergence between these two genes in other organs, we generated female mice lacking Kdm5c (homozygous X5c- X5c- females) and male mice lacking both Kdm5c and Kdm5d (compound hemizygous X5c- Y5d- males). Both X5c- X5c- females and X5c- Y5d- males showed lower body weights and postnatal lethality. Histological examination of the hearts showed prominent trabecular extension and a thin layer of compacted myocardium in the left and right ventricles, indicating noncompaction cardiomyopathy. However, hemizygous males lacking either Kdm5c or Kdm5d showed no signs of noncompaction cardiomyopathy. These results clearly demonstrate that the function of Kdm5c and Kdm5d in heart development is conserved.
Collapse
Affiliation(s)
- Mayuko Kosugi
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Mai Otani
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Yurika Kikkawa
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Yoko Itakura
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kohei Sakai
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Toshiaki Ito
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Masashi Toyoda
- Research Team for Geriatric Medicine (Vascular Medicine), Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Yoichi Sekita
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Tohru Kimura
- Laboratory of Stem Cell Biology, Department of Biosciences, Kitasato University School of Science, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan.
| |
Collapse
|
66
|
Drelon C, Rogers MF, Belalcazar HM, Secombe J. The histone demethylase KDM5 controls developmental timing in Drosophila by promoting prothoracic gland endocycles. Development 2019; 146:dev.182568. [PMID: 31862793 PMCID: PMC6955219 DOI: 10.1242/dev.182568] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
Abstract
In Drosophila, the larval prothoracic gland integrates nutritional status with developmental signals to regulate growth and maturation through the secretion of the steroid hormone ecdysone. While the nutritional signals and cellular pathways that regulate prothoracic gland function are relatively well studied, the transcriptional regulators that orchestrate the activity of this tissue remain less characterized. Here, we show that lysine demethylase 5 (KDM5) is essential for prothoracic gland function. Indeed, restoring kdm5 expression only in the prothoracic gland in an otherwise kdm5 null mutant animal is sufficient to rescue both the larval developmental delay and the pupal lethality caused by loss of KDM5. Our studies show that KDM5 functions by promoting the endoreplication of prothoracic gland cells, a process that increases ploidy and is rate limiting for the expression of ecdysone biosynthetic genes. Molecularly, we show that KDM5 activates the expression of the receptor tyrosine kinase torso, which then promotes polyploidization and growth through activation of the MAPK signaling pathway. Taken together, our studies provide key insights into the biological processes regulated by KDM5 and expand our understanding of the transcriptional regulators that coordinate animal development. Summary: Identification of KDM5 as a new transcriptional regulator of the MAPK signaling cascade provides insights into the molecular mechanisms governing the regulation of ecdysone production and developmental growth control.
Collapse
Affiliation(s)
- Coralie Drelon
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Michael F Rogers
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Helen M Belalcazar
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA .,Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| |
Collapse
|
67
|
Fang H, Disteche CM, Berletch JB. X Inactivation and Escape: Epigenetic and Structural Features. Front Cell Dev Biol 2019; 7:219. [PMID: 31632970 PMCID: PMC6779695 DOI: 10.3389/fcell.2019.00219] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/18/2019] [Indexed: 12/27/2022] Open
Abstract
X inactivation represents a complex multi-layer epigenetic mechanism that profoundly modifies chromatin composition and structure of one X chromosome in females. The heterochromatic inactive X chromosome adopts a unique 3D bipartite structure and a location close to the nuclear periphery or the nucleolus. X-linked lncRNA loci and their transcripts play important roles in the recruitment of proteins that catalyze chromatin and DNA modifications for silencing, as well as in the control of chromatin condensation and location of the inactive X chromosome. A subset of genes escapes X inactivation, raising questions about mechanisms that preserve their expression despite being embedded within heterochromatin. Escape gene expression differs between males and females, which can lead to physiological sex differences. We review recent studies that emphasize challenges in understanding the role of lncRNAs in the control of epigenetic modifications, structural features and nuclear positioning of the inactive X chromosome. Second, we highlight new findings about the distribution of genes that escape X inactivation based on single cell studies, and discuss the roles of escape genes in eliciting sex differences in health and disease.
Collapse
Affiliation(s)
- He Fang
- Department of Pathology, University of Washington, Seattle, WA, United States
| | - Christine M. Disteche
- Department of Pathology, University of Washington, Seattle, WA, United States
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - Joel B. Berletch
- Department of Pathology, University of Washington, Seattle, WA, United States
| |
Collapse
|
68
|
Keiser AA, Wood MA. Examining the contribution of histone modification to sex differences in learning and memory. Learn Mem 2019; 26:318-331. [PMID: 31416905 PMCID: PMC6699407 DOI: 10.1101/lm.048850.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/08/2019] [Indexed: 01/04/2023]
Abstract
The epigenome serves as a signal integration platform that encodes information from experience and environment that adds tremendous complexity to the regulation of transcription required for memory, beyond the directions encoded in the genome. To date, our understanding of how epigenetic mechanisms integrate information to regulate gene expression required for memory is primarily obtained from male derived data despite sex-specific life experiences and sex differences in consolidation and retrieval of memory, and in the molecular mechanisms that mediate these processes. In this review, we examine the contribution of chromatin modification to learning and memory in both sexes. We provide examples of how exposure to a number of internal and external factors influence the epigenome in sex-similar and sex-specific ways that may ultimately impact transcription required for memory processes. We also pose a number of key open questions and identify areas requiring further investigation as we seek to understand how histone modifying mechanisms shape memory in females.
Collapse
Affiliation(s)
- Ashley A Keiser
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
69
|
DNA methylation fingerprint of monozygotic twins and their singleton sibling with intellectual disability carrying a novel KDM5C mutation. Eur J Med Genet 2019; 63:103737. [PMID: 31419599 DOI: 10.1016/j.ejmg.2019.103737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 06/25/2019] [Accepted: 08/11/2019] [Indexed: 01/12/2023]
Abstract
Mutations in KDM5C (lysine (K)-specific demethylase 5C) were causally associated with up to 3% of X-linked intellectual disability (ID) in males. By exome and Sanger sequencing, a novel frameshift KDM5C variant, predicted to eliminate the JmjC catalytic domain from the protein, was identified in two monozygotic twins and their older brother, which was inherited from their clinically normal mother, who had completely skewed X-inactivation. DNA methylation (DNAm) data were evaluated using the Illumina 450 K Methylation Beadchip arrays. Comparison of methylation levels between the three patients and male controls identified 399 differentially methylated CpG sites, which were enriched among those CpG sites modulated during brain development. Most of them were hypomethylated (72%), and located mainly in shores, whereas the hypermethylated CpGs were more represented in open sea regions. The DNAm changes did not differ between the monozygotic twins nor between them and their older sibling, all presenting a global hypomethylation, similar to other studies that associated DNA methylation changes to different KDM5C mutations. The 38 differentially methylated regions (DMRs) were enriched for H3K4me3 marks identified in developing brains. The remarkable similarity between the methylation changes in the monozygotic twins and their older brother is indicative that these epigenetic changes were mostly driven by the KDM5C mutation.
Collapse
|
70
|
Post-translational histone modifications and their interaction with sex influence normal brain development and elaboration of neuropsychiatric disorders. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1968-1981. [DOI: 10.1016/j.bbadis.2018.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 02/06/2023]
|
71
|
Lamonica JM, Zhou Z. Disentangling chromatin architecture to gain insights into the etiology of brain disorders. Curr Opin Genet Dev 2019; 55:76-81. [PMID: 31323465 DOI: 10.1016/j.gde.2019.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/09/2019] [Accepted: 06/15/2019] [Indexed: 11/25/2022]
Abstract
Chromatin organization, together with DNA and histone modifications, is directly linked to the spatiotemporal control of gene expression that specifies and maintains cell type-specific functions. This is particularly important in the brain where hundreds of cell types with distinct functions reside. Recent advances in molecular and computational technologies have enabled the query of chromatin architecture at unprecedented resolution and detail. Here, we review recent studies on the emerging importance of chromatin architecture in the pathogenesis of brain disorders, with emphasis on schizophrenia, autism spectrum disorders (ASD), and unstable repeat expansion disorders. These studies provide molecular insights into how these brain disorders arise at the level of chromatin architecture and implicate new therapeutic directions.
Collapse
Affiliation(s)
- Janine M Lamonica
- Department of Genetics and Epigenetics Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Zhaolan Zhou
- Department of Genetics and Epigenetics Institute, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
72
|
Roles and regulation of histone methylation in animal development. Nat Rev Mol Cell Biol 2019; 20:625-641. [PMID: 31267065 DOI: 10.1038/s41580-019-0151-1] [Citation(s) in RCA: 361] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2019] [Indexed: 12/26/2022]
Abstract
Histone methylation can occur at various sites in histone proteins, primarily on lysine and arginine residues, and it can be governed by multiple positive and negative regulators, even at a single site, to either activate or repress transcription. It is now apparent that histone methylation is critical for almost all stages of development, and its proper regulation is essential for ensuring the coordinated expression of gene networks that govern pluripotency, body patterning and differentiation along appropriate lineages and organogenesis. Notably, developmental histone methylation is highly dynamic. Early embryonic systems display unique histone methylation patterns, prominently including the presence of bivalent (both gene-activating and gene-repressive) marks at lineage-specific genes that resolve to monovalent marks during differentiation, which ensures that appropriate genes are expressed in each tissue type. Studies of the effects of methylation on embryonic stem cell pluripotency and differentiation have helped to elucidate the developmental roles of histone methylation. It has been revealed that methylation and demethylation of both activating and repressive marks are essential for establishing embryonic and extra-embryonic lineages, for ensuring gene dosage compensation via genomic imprinting and for establishing body patterning via HOX gene regulation. Not surprisingly, aberrant methylation during embryogenesis can lead to defects in body patterning and in the development of specific organs. Human genetic disorders arising from mutations in histone methylation regulators have revealed their important roles in the developing skeletal and nervous systems, and they highlight the overlapping and unique roles of different patterns of methylation in ensuring proper development.
Collapse
|
73
|
Zamurrad S, Hatch HAM, Drelon C, Belalcazar HM, Secombe J. A Drosophila Model of Intellectual Disability Caused by Mutations in the Histone Demethylase KDM5. Cell Rep 2019; 22:2359-2369. [PMID: 29490272 DOI: 10.1016/j.celrep.2018.02.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/08/2017] [Accepted: 02/05/2018] [Indexed: 10/17/2022] Open
Abstract
Mutations in KDM5 family histone demethylases cause intellectual disability in humans. However, the molecular mechanisms linking KDM5-regulated transcription and cognition remain unknown. Here, we establish Drosophila as a model to understand this connection by generating a fly strain harboring an allele analogous to a disease-causing missense mutation in human KDM5C (kdm5A512P). Transcriptome analysis of kdm5A512P flies revealed a striking downregulation of genes required for ribosomal assembly and function and a concomitant reduction in translation. kdm5A512P flies also showed impaired learning and/or memory. Significantly, the behavioral and transcriptional changes in kdm5A512P flies were similar to those specifically lacking demethylase activity. These data suggest that the primary defect of the KDM5A512P mutation is a loss of histone demethylase activity and reveal an unexpected role for this enzymatic function in gene activation. Because translation is critical for neuronal function, we propose that this defect contributes to the cognitive defects of kdm5A512P flies.
Collapse
Affiliation(s)
- Sumaira Zamurrad
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Hayden A M Hatch
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA
| | - Coralie Drelon
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Helen M Belalcazar
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA.
| |
Collapse
|
74
|
Bludau A, Royer M, Meister G, Neumann ID, Menon R. Epigenetic Regulation of the Social Brain. Trends Neurosci 2019; 42:471-484. [PMID: 31103351 DOI: 10.1016/j.tins.2019.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/17/2022]
Abstract
Social behavior, a highly adaptive and crucial component of mammalian life, is regulated by particularly sensitive regulatory brain mechanisms. Substantial evidence implicates classical epigenetic mechanisms including histone modifications, DNA methylation, and nucleosome remodeling as well as nonclassical mechanisms mediated by noncoding RNA in the regulation of social behavior. These mechanisms collectively form the 'epigenetic network' that orchestrates genomic integration of salient and transient social experiences. Consequently, its dysregulation has been linked to behavioral deficits and psychopathologies. This review focuses on the role of the epigenetic network in regulating the enduring effects of social experiences during early-life, adolescence, and adulthood. We discuss research in animal models, primarily rodents, and associations between dysregulation of epigenetic mechanisms and human psychopathologies, specifically autism spectrum disorder (ASD) and schizophrenia.
Collapse
Affiliation(s)
- Anna Bludau
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Melanie Royer
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany; Biochemistry Center Regensburg (BZR), Laboratory of RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory of RNA Biology, University of Regensburg, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Rohit Menon
- Department of Behavioral and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
75
|
Talebizadeh Z, Shah A, DiTacchio L. The potential role of a retrotransposed gene and a long noncoding RNA in regulating an X-linked chromatin gene (KDM5C): Novel epigenetic mechanism in autism. Autism Res 2019; 12:1007-1021. [PMID: 31087518 DOI: 10.1002/aur.2116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/11/2019] [Accepted: 03/25/2019] [Indexed: 12/22/2022]
Abstract
A growing body of evidence supports the potential role of the circadian system and chromatin remodeling genes in autism. Considering the heterogeneity and gender discrepancy in autism, and the complex nature of the epigenetic landscape, identification of biologically relevant epigenetic factors requires reducing heterogeneity using proper subtyping. For this study, we used X chromosome inactivation (XCI) status in females with autism as an epigenetic marker for subtyping and examined the expression level of members of KDM5, a chromatin remodeling gene family. KDM5 are histone demethylases involved in the circadian molecular machinery. We used human blood samples to characterize alternatively spliced KDM5 isoforms and noticed that KDM5C undergoes a complex splicing process. We also identified a KDM5C isoform (KDM5C-3'UTR-lncRNA) containing a novel 3'UTR originated from a retrotransposed gene (retro-SUV39H2) of an autosomal methyltransferase (SUV39H2). This 3'UTR shows 84% sequence homology with long ncRNAs (lncRNAs) and is located 32 kb downstream of KDM5C. The KDM5C-3'UTR-lncRNA isoform was differentially expressed in autistic females with XCI skewness compared with controls. KDM5C plays a crucial role in balancing histone H3K4 methylation states. The identified retro-SUV39H2 originated lncRNA also shows H3K4 marks. By assessing the expression level of alternatively spliced Kdm5 isoforms at different circadian time-points, we showed that some isoforms follow a circadian oscillation pattern in wild type mouse brain.This study provides the first evidence and a suggestive model for the potential role of retrotransposed elements in autism through linking methylases and demethylases, two functionally complementary components of chromatin remodeling, which may collectively contribute to disease etiology through lncRNAs. Autism Res 2019, 12: 1007-1021. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Genes do not function in isolated conditions and their proper expression level also depends on a mechanism called gene regulation. An example of gene regulation is when changes outside DNA sequences influence the function of autism susceptibility genes. Alternative splicing is one type of gene regulation, which produces several versions of a gene (called variants) that may slightly differ from each other and be expressed at different levels in response to environmental changes. The circadian clock is an essential timing mechanism that enables organisms to maintain internal processes in sync with the dynamic environment brought about by the day-night cycle. The goal of this study was to assess if a subset of females with autism with certain genetic marker had a unique pattern of alternative splicing of three circadian genes. We identified a novel variant that is differentially expressed in this subset. Our study provides a novel subject stratification strategy, and a suggestive model of how biologically relevant components of a gene regulatory process may be linked and, possibly, collectively contribute to the etiology of autism.
Collapse
Affiliation(s)
- Zohreh Talebizadeh
- Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Ayten Shah
- Children's Mercy Hospital and University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | | |
Collapse
|
76
|
Chen K, Luan X, Liu Q, Wang J, Chang X, Snijders AM, Mao JH, Secombe J, Dan Z, Chen JH, Wang Z, Dong X, Qiu C, Chang X, Zhang D, Celniker SE, Liu X. Drosophila Histone Demethylase KDM5 Regulates Social Behavior through Immune Control and Gut Microbiota Maintenance. Cell Host Microbe 2019; 25:537-552.e8. [PMID: 30902578 PMCID: PMC6749836 DOI: 10.1016/j.chom.2019.02.003] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 12/05/2018] [Accepted: 02/15/2019] [Indexed: 12/20/2022]
Abstract
Loss-of-function mutations in the histone demethylases KDM5A, KDM5B, or KDM5C are found in intellectual disability (ID) and autism spectrum disorders (ASD) patients. Here, we use the model organism Drosophila melanogaster to delineate how KDM5 contributes to ID and ASD. We show that reducing KDM5 causes intestinal barrier dysfunction and changes in social behavior that correlates with compositional changes in the gut microbiota. Therapeutic alteration of the dysbiotic microbiota through antibiotic administration or feeding with a probiotic Lactobacillus strain partially rescues the behavioral, lifespan, and cellular phenotypes observed in kdm5-deficient flies. Mechanistically, KDM5 was found to transcriptionally regulate component genes of the immune deficiency (IMD) signaling pathway and subsequent maintenance of host-commensal bacteria homeostasis in a demethylase-dependent manner. Together, our study uses a genetic approach to dissect the role of KDM5 in the gut-microbiome-brain axis and suggests that modifying the gut microbiome may provide therapeutic benefits for ID and ASD patients.
Collapse
Affiliation(s)
- Kun Chen
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Xiaoting Luan
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Qisha Liu
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Jianwei Wang
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Xinxia Chang
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Julie Secombe
- Departments of Genetics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Zhou Dan
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Jian-Huan Chen
- Genomic and Precision Medicine Laboratory, Department of Public Health, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Zibin Wang
- Center for Analysis and Testing, Nanjing Medical University, Nanjing 211166, China
| | - Xiao Dong
- Departments of Genetics and Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY 10461, USA
| | - Chen Qiu
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Xiaoai Chang
- Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China
| | - Dong Zhang
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Susan E Celniker
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Xingyin Liu
- Department of Pathogen Biology-Microbiology Division, State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Pathogen of Jiangsu Province, Center of Global Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Holistic Integrative Enterology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China.
| |
Collapse
|
77
|
Swahari V, West AE. Histone demethylases in neuronal differentiation, plasticity, and disease. Curr Opin Neurobiol 2019; 59:9-15. [PMID: 30878844 DOI: 10.1016/j.conb.2019.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/14/2019] [Indexed: 12/29/2022]
Abstract
For more than 40 years after its discovery, histone methylation was thought to be largely irreversible. However, the first histone demethylase (HDM) was identified in 2004, challenging this notion. Since that time, more than 20 HDMs have been identified and characterized, and many have been shown to have critical roles in organismal development, cell fate, and disease. Here, we highlight some of the recent advances in our understanding of the function of HDMs in the context of neuronal development, plasticity, and disease. We focus, in particular, on molecular genetic studies of LSD1, Kdm6b, and Kdm5c that have elucidated both enzymatic and non-enzymatic gene regulatory functions of these HDMs in neurons.
Collapse
Affiliation(s)
- Vijay Swahari
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Anne E West
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
78
|
Scandaglia M, Barco A. Contribution of spurious transcription to intellectual disability disorders. J Med Genet 2019; 56:491-498. [PMID: 30745423 DOI: 10.1136/jmedgenet-2018-105668] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/17/2018] [Accepted: 01/18/2019] [Indexed: 12/31/2022]
Abstract
During the development of multicellular organisms, chromatin-modifying enzymes orchestrate the establishment of gene expression programmes that characterise each differentiated cell type. These enzymes also contribute to the maintenance of cell type-specific transcription profiles throughout life. But what happens when epigenomic regulation goes awry? Genomic screens in experimental models of intellectual disability disorders (IDDs) caused by mutations in epigenetic machinery-encoding genes have shown that transcriptional dysregulation constitutes a hallmark of these conditions. Here, we underscore the connections between a subset of chromatin-linked IDDs and spurious transcription in brain cells. We also propose that aberrant gene expression in neurons, including both the ectopic transcription of non-neuronal genes and the activation of cryptic promoters, may importantly contribute to the pathoaetiology of these disorders.
Collapse
Affiliation(s)
- Marilyn Scandaglia
- Molecular Neurobiology and Neuropathology Unit, Instituto de Neurociencias (UMH-CSIC), San Juan de Alicante, Alicante, Spain
| | - Angel Barco
- Molecular Neurobiology and Neuropathology Unit, Instituto de Neurociencias (UMH-CSIC), San Juan de Alicante, Alicante, Spain
| |
Collapse
|
79
|
Kato H, Ozaki N. [The considerations for diagnosis of autism spectrum disorders and its pathogenic mechanisms]. Rinsho Shinkeigaku 2019; 59:13-20. [PMID: 30606997 DOI: 10.5692/clinicalneurol.cn-001240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Autism spectrum disorder (ASD) is characterized by deficits in social interaction and social communication, along with restricted and repetitive sensory-motor behaviors. The diagnosis of ASD includes various phenotypes outlined in the American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders (DSM)-5. The comprehensive evaluation of each individual case with ASD is needed because many of them have comorbidity with number of neuropsychiatric disorders or somatic conditions. The growing number of genetic studies detected multiple rare variants with relatively large effect sizes. The results have revealed their common potential pathology including abnormal chromatin regulation, which induces epigenetic changes. More researches are expected to elucidate the pathogenesis of ASD and to develop therapeutic approaches.
Collapse
Affiliation(s)
- Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine
| |
Collapse
|
80
|
Physiological effects of KDM5C on neural crest migration and eye formation during vertebrate development. Epigenetics Chromatin 2018; 11:72. [PMID: 30522514 PMCID: PMC6282277 DOI: 10.1186/s13072-018-0241-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/22/2018] [Indexed: 02/07/2023] Open
Abstract
Background Lysine-specific histone demethylase 5C (KDM5C) belongs to the jumonji family of demethylases and is specific for the di- and tri-demethylation of lysine 4 residues on histone 3 (H3K4 me2/3). KDM5C is expressed in the brain and skeletal muscles of humans and is associated with various biologically significant processes. KDM5C is known to be associated with X-linked mental retardation and is also involved in the development of cancer. However, the developmental significance of KDM5C has not been explored yet. In the present study, we investigated the physiological roles of KDM5C during Xenopus laevis embryonic development. Results Loss-of-function analysis using kdm5c antisense morpholino oligonucleotides indicated that kdm5c knockdown led to small-sized heads, reduced cartilage size, and malformed eyes (i.e., small-sized and deformed eyes). Molecular analyses of KDM5C functional roles using whole-mount in situ hybridization, β-galactosidase staining, and reverse transcription-polymerase chain reaction revealed that loss of kdm5c resulted in reduced expression levels of neural crest specifiers and genes involved in eye development. Furthermore, transcriptome analysis indicated the significance of KDM5C in morphogenesis and organogenesis. Conclusion Our findings indicated that KDM5C is associated with embryonic development and provided additional information regarding the complex and dynamic gene network that regulates neural crest formation and eye development. This study emphasizes the functional significance of KDM5C in Xenopus embryogenesis; however, further analysis is needed to explore the interactions of KDM5C with specific developmental genes. Electronic supplementary material The online version of this article (10.1186/s13072-018-0241-x) contains supplementary material, which is available to authorized users.
Collapse
|
81
|
Cheng C, Deng PY, Ikeuchi Y, Yuede C, Li D, Rensing N, Huang J, Baldridge D, Maloney SE, Dougherty JD, Constantino J, Jahani-Asl A, Wong M, Wozniak DF, Wang T, Klyachko VA, Bonni A. Characterization of a Mouse Model of Börjeson-Forssman-Lehmann Syndrome. Cell Rep 2018; 25:1404-1414.e6. [PMID: 30403997 PMCID: PMC6261530 DOI: 10.1016/j.celrep.2018.10.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/18/2018] [Accepted: 10/11/2018] [Indexed: 01/10/2023] Open
Abstract
Mutations of the transcriptional regulator PHF6 cause the X-linked intellectual disability disorder Börjeson-Forssman-Lehmann syndrome (BFLS), but the pathogenesis of BFLS remains poorly understood. Here, we report a mouse model of BFLS, generated using a CRISPR-Cas9 approach, in which cysteine 99 within the PHD domain of PHF6 is replaced with phenylalanine (C99F). Mice harboring the patient-specific C99F mutation display deficits in cognitive functions, emotionality, and social behavior, as well as reduced threshold to seizures. Electrophysiological studies reveal that the intrinsic excitability of entorhinal cortical stellate neurons is increased in PHF6 C99F mice. Transcriptomic analysis of the cerebral cortex in C99F knockin mice and PHF6 knockout mice show that PHF6 promotes the expression of neurogenic genes and represses synaptic genes. PHF6-regulated genes are also overrepresented in gene signatures and modules that are deregulated in neurodevelopmental disorders of cognition. Our findings advance our understanding of the mechanisms underlying BFLS pathogenesis.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pan-Yue Deng
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110, USA
| | - Yoshiho Ikeuchi
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carla Yuede
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daofeng Li
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Genetics, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO 63108, USA
| | - Nicholas Rensing
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ju Huang
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dustin Baldridge
- Department of Pediatrics, Division of Newborn Medicine, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Susan E Maloney
- Department of Genetics, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO 63108, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO 63108, USA; Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - John Constantino
- Department of Psychiatry, Division of Child Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Arezu Jahani-Asl
- Department of Oncology, Faculty of Medicine, McGill University, Montreal, QC H3T 1E2, Canada; Lady Davis Research Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Michael Wong
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David F Wozniak
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63108, USA
| | - Ting Wang
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63108, USA; Department of Genetics, Washington University School of Medicine, 4515 McKinley Ave., St. Louis, MO 63108, USA
| | - Vitaly A Klyachko
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA; Department of Cell Biology and Physiology, Washington University, St. Louis, MO 63110, USA
| | - Azad Bonni
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
82
|
Wu L, Cao J, Cai WL, Lang SM, Horton JR, Jansen DJ, Liu ZZ, Chen JF, Zhang M, Mott BT, Pohida K, Rai G, Kales SC, Henderson MJ, Hu X, Jadhav A, Maloney DJ, Simeonov A, Zhu S, Iwasaki A, Hall MD, Cheng X, Shadel GS, Yan Q. KDM5 histone demethylases repress immune response via suppression of STING. PLoS Biol 2018; 16:e2006134. [PMID: 30080846 PMCID: PMC6095604 DOI: 10.1371/journal.pbio.2006134] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/16/2018] [Accepted: 07/19/2018] [Indexed: 12/15/2022] Open
Abstract
Cyclic GMP-AMP (cGAMP) synthase (cGAS) stimulator of interferon genes (STING) senses pathogen-derived or abnormal self-DNA in the cytosol and triggers an innate immune defense against microbial infection and cancer. STING agonists induce both innate and adaptive immune responses and are a new class of cancer immunotherapy agents tested in multiple clinical trials. However, STING is commonly silenced in cancer cells via unclear mechanisms, limiting the application of these agonists. Here, we report that the expression of STING is epigenetically suppressed by the histone H3K4 lysine demethylases KDM5B and KDM5C and is activated by the opposing H3K4 methyltransferases. The induction of STING expression by KDM5 blockade triggered a robust interferon response in a cytosolic DNA-dependent manner in breast cancer cells. This response resulted in resistance to infection by DNA and RNA viruses. In human tumors, KDM5B expression is inversely associated with STING expression in multiple cancer types, with the level of intratumoral CD8+ T cells, and with patient survival in cancers with a high level of cytosolic DNA, such as human papilloma virus (HPV)-positive head and neck cancer. These results demonstrate a novel epigenetic regulatory pathway of immune response and suggest that KDM5 demethylases are potential targets for antipathogen treatment and anticancer immunotherapy.
Collapse
Affiliation(s)
- Lizhen Wu
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Jian Cao
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Wesley L. Cai
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Sabine M. Lang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - John R. Horton
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Daniel J. Jansen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Zongzhi Z. Liu
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Jocelyn F. Chen
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Meiling Zhang
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Bryan T. Mott
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Katherine Pohida
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Stephen C. Kales
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Mark J. Henderson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Xin Hu
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Ajit Jadhav
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - David J. Maloney
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Shu Zhu
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Akiko Iwasaki
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Matthew D. Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, United States of America
| | - Xiaodong Cheng
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Gerald S. Shadel
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America
- Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Qin Yan
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
83
|
Zhao YT, Kwon DY, Johnson BS, Fasolino M, Lamonica JM, Kim YJ, Zhao BS, He C, Vahedi G, Kim TH, Zhou Z. Long genes linked to autism spectrum disorders harbor broad enhancer-like chromatin domains. Genome Res 2018; 28:933-942. [PMID: 29848492 PMCID: PMC6028126 DOI: 10.1101/gr.233775.117] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/29/2018] [Indexed: 12/17/2022]
Abstract
Genetic variants associated with autism spectrum disorders (ASDs) are enriched in genes encoding synaptic proteins and chromatin regulators. Although the role of synaptic proteins in ASDs is widely studied, the mechanism by which chromatin regulators contribute to ASD risk remains poorly understood. Upon profiling and analyzing the transcriptional and epigenomic features of genes expressed in the cortex, we uncovered a unique set of long genes that contain broad enhancer-like chromatin domains (BELDs) spanning across their entire gene bodies. Analyses of these BELD genes show that they are highly transcribed with frequent RNA polymerase II (Pol II) initiation and low Pol II pausing, and they exhibit frequent chromatin-chromatin interactions within their gene bodies. These BELD features are conserved from rodents to humans, are enriched in genes involved in synaptic function, and appear post-natally concomitant with synapse development. Importantly, we find that BELD genes are highly implicated in neurodevelopmental disorders, particularly ASDs, and that their expression is preferentially down-regulated in individuals with idiopathic autism. Finally, we find that the transcription of BELD genes is particularly sensitive to alternations in ASD-associated chromatin regulators. These findings suggest that the epigenomic regulation of BELD genes is important for post-natal cortical development and lend support to a model by which mutations in chromatin regulators causally contribute to ASDs by preferentially impairing BELD gene transcription.
Collapse
Affiliation(s)
- Ying-Tao Zhao
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Deborah Y Kwon
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Brian S Johnson
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Maria Fasolino
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Janine M Lamonica
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Yoon Jung Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Boxuan Simen Zhao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
- Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637, USA
| | - Golnaz Vahedi
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
- Institute for Immunology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Tae Hoon Kim
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Zhaolan Zhou
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
84
|
Nguyen T, Li GE, Chen H, Cranfield CG, McGrath KC, Gorrie CA. Maternal E-Cigarette Exposure Results in Cognitive and Epigenetic Alterations in Offspring in a Mouse Model. Chem Res Toxicol 2018; 31:601-611. [PMID: 29863869 DOI: 10.1021/acs.chemrestox.8b00084] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electronic cigarette (e-cigarette) use is on the rise worldwide and is particularly attractive to young people and as a smoking substitute by pregnant woman. There is a perception in pregnant women and women of child-bearing age that the use of e-cigarettes (vaping) is safer than smoking tobacco cigarettes during pregnancy. However, there is little evidence to support this perception. Here, we examined the offspring from mouse dams that had been exposed during and after pregnancy to ambient air (sham) ( n = 8), e-cigarette aerosols with nicotine ( n = 8), or e-cigarette aerosols without nicotine ( n = 8). Offspring underwent cognitive testing at 12 weeks of age and epigenetic testing of brain tissues at 1 day, 20 days, and 13 weeks after birth. The findings showed deficits in short-term memory, reduced anxiety, and hyperactivity in offspring following maternal e-cigarette exposure using the novel object recognition and elevated plus maze tests. In addition, global DNA methylation was increased in the brains of offspring soon after birth. Using a quantitative-PCR array specific to chromatin modification enzymes on genomic DNA and histones,13 key genes were identified to be significantly altered in the offspring brains from the e-cigarette groups compared to the nonexposed groups. The changes to genes Aurka, Aurkb, Aurkc, Kdm5c, Kdm6b, Dnmt3a, Dnmt3b, and Atf2, all associated with modulating neurological activity, were validated using RT-qPCR. In conclusion, in a mouse model, maternal exposure to e-cigarette aerosols resulted in both cognitive and epigenetic changes in offspring. This suggests that the use of e-cigarettes during pregnancy may have hitherto undetected neurological consequences on newborns.
Collapse
Affiliation(s)
- Tara Nguyen
- School of Life Sciences, Faculty of Science , University of Technology Sydney , Sydney , New South Wales , Australia
| | - Gerard E Li
- School of Life Sciences, Faculty of Science , University of Technology Sydney , Sydney , New South Wales , Australia
| | - Hui Chen
- School of Life Sciences, Faculty of Science , University of Technology Sydney , Sydney , New South Wales , Australia
| | - Charles G Cranfield
- School of Life Sciences, Faculty of Science , University of Technology Sydney , Sydney , New South Wales , Australia
| | - Kristine C McGrath
- School of Life Sciences, Faculty of Science , University of Technology Sydney , Sydney , New South Wales , Australia
| | - Catherine A Gorrie
- School of Life Sciences, Faculty of Science , University of Technology Sydney , Sydney , New South Wales , Australia
| |
Collapse
|
85
|
The Histone Demethylase KDM5 Is Essential for Larval Growth in Drosophila. Genetics 2018; 209:773-787. [PMID: 29764901 PMCID: PMC6028249 DOI: 10.1534/genetics.118.301004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/11/2018] [Indexed: 02/07/2023] Open
Abstract
Regulated gene expression is necessary for developmental and homeostatic processes. The KDM5 family of transcriptional regulators are histone H3 lysine 4 demethylases that can function through both demethylase-dependent and -independent mechanisms. While loss and overexpression of KDM5 proteins are linked to intellectual disability and cancer, respectively, their normal developmental functions remain less characterized. Drosophila melanogaster provides an ideal system to investigate KDM5 function, as it encodes a single ortholog in contrast to the four paralogs found in mammalian cells. To examine the consequences of complete loss of KDM5, we generated a null allele of Drosophila kdm5, also known as little imaginal discs (lid), and show that it is essential for viability. Animals lacking KDM5 show a dramatically delayed larval development that coincides with decreased proliferation and increased cell death in wing imaginal discs. Interestingly, this developmental delay is independent of the well-characterized Jumonji C (JmjC) domain-encoded histone demethylase activity of KDM5, suggesting key functions for less characterized domains. Consistent with the phenotypes observed, transcriptome analyses of kdm5 null mutant wing imaginal discs revealed the dysregulation of genes involved in several cellular processes, including cell cycle progression and DNA repair. Together, our analyses reveal KDM5 as a key regulator of larval growth and offer an invaluable tool for defining the biological activities of KDM5 family proteins.
Collapse
|
86
|
Bustos F, Segarra-Fas A, Chaugule VK, Brandenburg L, Branigan E, Toth R, Macartney T, Knebel A, Hay RT, Walden H, Findlay GM. RNF12 X-Linked Intellectual Disability Mutations Disrupt E3 Ligase Activity and Neural Differentiation. Cell Rep 2018; 23:1599-1611. [PMID: 29742418 PMCID: PMC5976579 DOI: 10.1016/j.celrep.2018.04.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 03/13/2018] [Accepted: 04/03/2018] [Indexed: 11/29/2022] Open
Abstract
X-linked intellectual disability (XLID) is a heterogeneous syndrome affecting mainly males. Human genetics has identified >100 XLID genes, although the molecular and developmental mechanisms underpinning this disorder remain unclear. Here, we employ an embryonic stem cell model to explore developmental functions of a recently identified XLID gene, the RNF12/RLIM E3 ubiquitin ligase. We show that RNF12 catalytic activity is required for proper stem cell maintenance and neural differentiation, and this is disrupted by patient-associated XLID mutation. We further demonstrate that RNF12 XLID mutations specifically impair ubiquitylation of developmentally relevant substrates. XLID mutants disrupt distinct RNF12 functional modules by either inactivating the catalytic RING domain or interfering with a distal regulatory region required for efficient ubiquitin transfer. Our data thereby uncover a key function for RNF12 E3 ubiquitin ligase activity in stem cell and neural development and identify mechanisms by which this is disrupted in intellectual disability.
Collapse
Affiliation(s)
- Francisco Bustos
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, The University of Dundee, Dundee DD1 5EH, UK
| | - Anna Segarra-Fas
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, The University of Dundee, Dundee DD1 5EH, UK
| | - Viduth K Chaugule
- Institute of Molecular Cell and Systems Biology, The University of Glasgow, Glasgow G12 8QQ, UK
| | - Lennart Brandenburg
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, The University of Dundee, Dundee DD1 5EH, UK
| | - Emma Branigan
- Centre for Gene Regulation and Expression, School of Life Sciences, The University of Dundee, Dundee DD1 5EH, UK
| | - Rachel Toth
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, The University of Dundee, Dundee DD1 5EH, UK
| | - Thomas Macartney
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, The University of Dundee, Dundee DD1 5EH, UK
| | - Axel Knebel
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, The University of Dundee, Dundee DD1 5EH, UK
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, School of Life Sciences, The University of Dundee, Dundee DD1 5EH, UK
| | - Helen Walden
- Institute of Molecular Cell and Systems Biology, The University of Glasgow, Glasgow G12 8QQ, UK
| | - Greg M Findlay
- The MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, The University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|
87
|
Manoli DS, Tollkuhn J. Gene regulatory mechanisms underlying sex differences in brain development and psychiatric disease. Ann N Y Acad Sci 2018; 1420:26-45. [PMID: 29363776 PMCID: PMC5991992 DOI: 10.1111/nyas.13564] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 10/26/2017] [Accepted: 11/01/2017] [Indexed: 12/12/2022]
Abstract
The sexual differentiation of the mammalian nervous system requires the precise coordination of the temporal and spatial regulation of gene expression in diverse cell types. Sex hormones act at multiple developmental time points to specify sex-typical differentiation during embryonic and early development and to coordinate subsequent responses to gonadal hormones later in life by establishing sex-typical patterns of epigenetic modifications across the genome. Thus, mutations associated with neuropsychiatric conditions may result in sexually dimorphic symptoms by acting on different neural substrates or chromatin landscapes in males and females. Finally, as stress hormone signaling may directly alter the molecular machinery that interacts with sex hormone receptors to regulate gene expression, the contribution of chronic stress to the pathogenesis or presentation of mental illness may be additionally different between the sexes. Here, we review the mechanisms that contribute to sexual differentiation in the mammalian nervous system and consider some of the implications of these processes for sex differences in neuropsychiatric conditions.
Collapse
Affiliation(s)
- Devanand S. Manoli
- Department of Psychiatry and Weill Institute for Neuroscience, University of California, San Francisco, San Francisco, California
| | | |
Collapse
|
88
|
Vallianatos CN, Farrehi C, Friez MJ, Burmeister M, Keegan CE, Iwase S. Altered Gene-Regulatory Function of KDM5C by a Novel Mutation Associated With Autism and Intellectual Disability. Front Mol Neurosci 2018; 11:104. [PMID: 29670509 PMCID: PMC5893713 DOI: 10.3389/fnmol.2018.00104] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 03/15/2018] [Indexed: 01/03/2023] Open
Abstract
Intellectual disability (ID) affects up to 2% of the population world-wide and often coincides with other neurological conditions such as autism spectrum disorders. Mutations in KDM5C cause Mental Retardation, X-linked, Syndromic, Claes-Jensen type (MRXSCJ, OMIM #300534) and are one of the most common causes of X-linked ID. KDM5C encodes a histone demethylase for di- and tri-methylated histone H3 lysine 4 (H3K4me2/3), which are enriched in transcriptionally engaged promoter regions. KDM5C regulates gene transcription; however, it remains unknown whether removal of H3K4me is fully responsible for KDM5C-mediated gene regulation. Most mutations functionally tested to date result in reduced enzymatic activity of KDM5C, indicating loss of demethylase function as the primary mechanism underlying MRXSCJ. Here, we report a novel KDM5C mutation, R1115H, identified in an individual displaying MRXSCJ-like symptoms. The carrier mother's cells exhibited a highly skewed X-inactivation pattern. The KDM5C-R1115H substitution does not have an impact on enzymatic activity nor protein stability. However, when overexpressed in post-mitotic neurons, KDM5C-R1115H failed to fully suppress expression of target genes, while the mutant also affected expression of a distinct set of genes compared to KDM5C-wildtype. These results suggest that KDM5C may have non-enzymatic roles in gene regulation, and alteration of these roles contributes to MRXSCJ in this patient.
Collapse
Affiliation(s)
| | - Clara Farrehi
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| | - Michael J. Friez
- Diagnostic Laboratory, Greenwood Genetic Center, Greenwood, SC, United States
| | - Margit Burmeister
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
- Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, United States
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Catherine E. Keegan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
- Division of Genetics, Department of Pediatrics, University of Michigan, Ann Arbor, MI, United States
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
89
|
Singh G, Singh V, Sobolewski M, Cory-Slechta DA, Schneider JS. Sex-Dependent Effects of Developmental Lead Exposure on the Brain. Front Genet 2018; 9:89. [PMID: 29662502 PMCID: PMC5890196 DOI: 10.3389/fgene.2018.00089] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/02/2018] [Indexed: 11/23/2022] Open
Abstract
The role of sex as an effect modifier of developmental lead (Pb) exposure has until recently received little attention. Lead exposure in early life can affect brain development with persisting influences on cognitive and behavioral functioning, as well as, elevated risks for developing a variety of diseases and disorders in later life. Although both sexes are affected by Pb exposure, the incidence, manifestation, and severity of outcomes appears to differ in males and females. Results from epidemiologic and animal studies indicate significant effect modification by sex, however, the results are not consistent across studies. Unfortunately, only a limited number of human epidemiological studies have included both sexes in independent outcome analyses limiting our ability to draw definitive conclusions regarding sex-differentiated outcomes. Additionally, due to various methodological differences across studies, there is still not a good mechanistic understanding of the molecular effects of lead on the brain and the factors that influence differential responses to Pb based on sex. In this review, focused on prenatal and postnatal Pb exposures in humans and animal models, we discuss current literature supporting sex differences in outcomes in response to Pb exposure and explore some of the ideas regarding potential molecular mechanisms that may contribute to sex-related differences in outcomes from developmental Pb exposure. The sex-dependent variability in outcomes from developmental Pb exposure may arise from a combination of complex factors, including, but not limited to, intrinsic sex-specific molecular/genetic mechanisms and external risk factors including sex-specific responses to environmental stressors which may act through shared epigenetic pathways to influence the genome and behavioral output.
Collapse
Affiliation(s)
- Garima Singh
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Vikrant Singh
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Deborah A. Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Jay S. Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
90
|
Epigenetic Etiology of Intellectual Disability. J Neurosci 2017; 37:10773-10782. [PMID: 29118205 DOI: 10.1523/jneurosci.1840-17.2017] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022] Open
Abstract
Intellectual disability (ID) is a prevailing neurodevelopmental condition associated with impaired cognitive and adaptive behaviors. Many chromatin-modifying enzymes and other epigenetic regulators have been genetically associated with ID disorders (IDDs). Here we review how alterations in the function of histone modifiers, chromatin remodelers, and methyl-DNA binding proteins contribute to neurodevelopmental defects and altered brain plasticity. We also discuss how progress in human genetics has led to the generation of mouse models that unveil the molecular etiology of ID, and outline the direction in which this field is moving to identify therapeutic strategies for IDDs. Importantly, because the chromatin regulators linked to IDDs often target common downstream genes and cellular processes, the impact of research in individual syndromes goes well beyond each syndrome and can also contribute to the understanding and therapy of other IDDs. Furthermore, the investigation of these disorders helps us to understand the role of chromatin regulators in brain development, plasticity, and gene expression, thereby answering fundamental questions in neurobiology.
Collapse
|
91
|
Scandaglia M, Lopez-Atalaya JP, Medrano-Fernandez A, Lopez-Cascales MT, Del Blanco B, Lipinski M, Benito E, Olivares R, Iwase S, Shi Y, Barco A. Loss of Kdm5c Causes Spurious Transcription and Prevents the Fine-Tuning of Activity-Regulated Enhancers in Neurons. Cell Rep 2017; 21:47-59. [PMID: 28978483 PMCID: PMC5679733 DOI: 10.1016/j.celrep.2017.09.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/29/2017] [Accepted: 09/04/2017] [Indexed: 12/17/2022] Open
Abstract
During development, chromatin-modifying enzymes regulate both the timely establishment of cell-type-specific gene programs and the coordinated repression of alternative cell fates. To dissect the role of one such enzyme, the intellectual-disability-linked lysine demethylase 5C (Kdm5c), in the developing and adult brain, we conducted parallel behavioral, transcriptomic, and epigenomic studies in Kdm5c-null and forebrain-restricted inducible knockout mice. Together, genomic analyses and functional assays demonstrate that Kdm5c plays a critical role as a repressor responsible for the developmental silencing of germline genes during cellular differentiation and in fine-tuning activity-regulated enhancers during neuronal maturation. Although the importance of these functions declines after birth, Kdm5c retains an important genome surveillance role preventing the incorrect activation of non-neuronal and cryptic promoters in adult neurons.
Collapse
Affiliation(s)
- Marilyn Scandaglia
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Jose P Lopez-Atalaya
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Alejandro Medrano-Fernandez
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Maria T Lopez-Cascales
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Beatriz Del Blanco
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Michal Lipinski
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Eva Benito
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Roman Olivares
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan, 5815 Medical Science II, Ann Arbor, MI 48109, USA
| | - Yang Shi
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Angel Barco
- Instituto de Neurociencias (Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas), Molecular Neurobiology and Neuropathology Unit, Av. Santiago Ramón y Cajal s/n, Sant Joan d'Alacant, 03550 Alicante, Spain.
| |
Collapse
|
92
|
Shen H, Xu W, Lan F. Histone lysine demethylases in mammalian embryonic development. Exp Mol Med 2017; 49:e325. [PMID: 28450736 PMCID: PMC6130211 DOI: 10.1038/emm.2017.57] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 12/18/2022] Open
Abstract
Post-translational modifications, such as methylation, acetylation and phosphorylation, of histone proteins play important roles in regulating dynamic chromatin structure. Histone demethylation has become one of the most active research areas of epigenetics in the past decade. To date, with the exception of histone H3 lysine 79 methylation, the demethylases for all major lysine methylation sites have been discovered. These enzymes have been shown to be involved in various biological processes, with embryonic development being an exciting emerging area. This review will primarily discuss the involvement of these demethylases in the regulation of mammalian embryonic development, including their roles in embryonic stem cell pluripotency, primordial germ cell (PGC) formation and maternal-to-zygotic transition.
Collapse
Affiliation(s)
- Hongjie Shen
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Epigenetics, Shanghai Ministry of Education, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Wenqi Xu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Epigenetics, Shanghai Ministry of Education, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Fei Lan
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Epigenetics, Shanghai Ministry of Education, and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
93
|
Bell CG. Insights in human epigenomic dynamics through comparative primate analysis. Genomics 2016; 108:115-125. [DOI: 10.1016/j.ygeno.2016.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 08/03/2016] [Accepted: 09/29/2016] [Indexed: 12/11/2022]
|
94
|
Lussi YC, Mariani L, Friis C, Peltonen J, Myers TR, Krag C, Wong G, Salcini AE. Impaired removal of H3K4 methylation affects cell fate determination and gene transcription. Development 2016; 143:3751-3762. [PMID: 27578789 DOI: 10.1242/dev.139139] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/20/2016] [Indexed: 01/30/2023]
Abstract
Methylation of histone 3 lysine 4 (H3K4) is largely associated with promoters and enhancers of actively transcribed genes and is finely regulated during development by the action of histone methyltransferases and demethylases. H3K4me3 demethylases of the KDM5 family have been previously implicated in development, but how the regulation of H3K4me3 level controls developmental processes is not fully established. Here, we show that the H3K4 demethylase RBR-2, the unique member of the KDM5 family in C. elegans, acts cell-autonomously and in a catalytic-dependent manner to control vulva precursor cells fate acquisition, by promoting the LIN-12/Notch pathway. Using genome-wide approaches, we show that RBR-2 reduces the H3K4me3 level at transcription start sites (TSSs) and in regions upstream of the TSSs, and acts both as a transcription repressor and activator. Analysis of the lin-11 genetic locus, a direct RBR-2 target gene required for vulva precursor cell fate acquisition, shows that RBR-2 controls the epigenetic signature of the lin-11 vulva-specific enhancer and lin-11 expression, providing in vivo evidence that RBR-2 can positively regulate transcription and cell fate acquisition by controlling enhancer activity.
Collapse
Affiliation(s)
- Yvonne C Lussi
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen DK-2200, Denmark.,Centre for Epigenetics, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Luca Mariani
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen DK-2200, Denmark.,Centre for Epigenetics, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Carsten Friis
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen DK-2200, Denmark.,Centre for Epigenetics, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Juhani Peltonen
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio 70211, Finland
| | - Toshia R Myers
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen DK-2200, Denmark.,Centre for Epigenetics, University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Claudia Krag
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen DK-2200, Denmark
| | - Garry Wong
- A. I. Virtanen Institute for Molecular Sciences, Department of Neurobiology, University of Eastern Finland, Kuopio 70211, Finland
| | - Anna Elisabetta Salcini
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen DK-2200, Denmark .,Centre for Epigenetics, University of Copenhagen, Copenhagen DK-2200, Denmark
| |
Collapse
|
95
|
Wei G, Deng X, Agarwal S, Iwase S, Disteche C, Xu J. Patient Mutations of the Intellectual Disability Gene KDM5C Downregulate Netrin G2 and Suppress Neurite Growth in Neuro2a Cells. J Mol Neurosci 2016; 60:33-45. [PMID: 27421841 DOI: 10.1007/s12031-016-0770-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/13/2016] [Indexed: 12/11/2022]
Abstract
The X-linked lysine (K)-specific demethylase 5C (KDM5C) gene plays an important role in brain development and behavior. It encodes a histone demethylase that is involved in gene regulation in neuronal differentiation and morphogenesis. When mutated, it causes neuropsychiatric symptoms, such as intellectual disability, delayed language development, epilepsy, and impulsivity. To better understand how the patient mutations affect neuronal development, we expressed KDM5C mutants in Neuro2a cells, a mouse neuroblastoma cell line. Retinoic acid (RA)-induced neurite growth was suppressed by the mutation KDM5C (Y751C) , KDM5C (H514A) , and KDM5C (F642L) , but not KDM5C (D87G) or KDM5C (A388P) . RNA-seq analysis indicated an upregulation of genes important for neuronal development, such as Ntng2, Enah, Gas1, Slit2, and Dscam, in response to the RA treatment in control Neuro2a cells transfected with GFP or wild-type KDM5C. In contrast, in cells transfected with KDM5C (Y751C) , these genes were not upregulated by RA. Ntng2 was downregulated in cells with KDM5C mutations, concordant with the lower levels of H3K4 methylation at its promoter. Moreover, knocking down Ntng2 in control Neuro2a cells led to the phenotype of short neurites similar to that of cells with KDM5C (Y751C) , whereas Ntng2 overexpression in the mutant cells rescued the morphological phenotype. These findings provide new insight into the pathogenesis of phenotypes associated with KDM5C mutations.
Collapse
Affiliation(s)
- Gengze Wei
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Xinxian Deng
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Saurabh Agarwal
- Department of Human Genetics, University of Michigan, 5815 Medical Science II, Ann Arbor, MI, USA
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan, 5815 Medical Science II, Ann Arbor, MI, USA
| | | | - Jun Xu
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA.
| |
Collapse
|
96
|
Coppola CJ, C Ramaker R, Mendenhall EM. Identification and function of enhancers in the human genome. Hum Mol Genet 2016; 25:R190-R197. [PMID: 27402881 DOI: 10.1093/hmg/ddw216] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 06/30/2016] [Indexed: 12/31/2022] Open
Abstract
The study of gene regulation has rapidly advanced by leveraging next-generation sequencing to identify and characterize the cis and trans elements that are critical for defining cell identity. These advances have paralleled a movement towards whole genome sequencing in clinics. These two tracks have increasingly synergized to underscore the importance of cis-regulatory elements in development as well produce countless studies implicating these elements in human disease. Other studies have emphasized the clinical phenotypes associated with variation or mutations in trans factors, including non-coding RNAs and chromatin regulators. These studies highlight the importance of obtaining a comprehensive understanding of mammalian gene regulation for predicting the impact of genetic variation on patient phenotypes. Currently lagging behind the generation of vast datasets and annotations is our ability to examine these putative elements in the dynamic context of a developing organism.
Collapse
Affiliation(s)
| | - Ryne C Ramaker
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eric M Mendenhall
- University of Alabama in Huntsville, Huntsville, AL, USA HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| |
Collapse
|
97
|
Affiliation(s)
- Emily Brookes
- MRC Laboratory of Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|