51
|
Oxygen tension modulates the mitochondrial genetic bottleneck and influences the segregation of a heteroplasmic mtDNA variant in vitro. Commun Biol 2021; 4:584. [PMID: 33990696 PMCID: PMC8121860 DOI: 10.1038/s42003-021-02069-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/31/2021] [Indexed: 12/30/2022] Open
Abstract
Most humans carry a mixed population of mitochondrial DNA (mtDNA heteroplasmy) affecting ~1–2% of molecules, but rapid percentage shifts occur over one generation leading to severe mitochondrial diseases. A decrease in the amount of mtDNA within the developing female germ line appears to play a role, but other sub-cellular mechanisms have been implicated. Establishing an in vitro model of early mammalian germ cell development from embryonic stem cells, here we show that the reduction of mtDNA content is modulated by oxygen and reaches a nadir immediately before germ cell specification. The observed genetic bottleneck was accompanied by a decrease in mtDNA replicating foci and the segregation of heteroplasmy, which were both abolished at higher oxygen levels. Thus, differences in oxygen tension occurring during early development likely modulate the amount of mtDNA, facilitating mtDNA segregation and contributing to tissue-specific mutation loads. Using an in vitro culture system, Pezet et al. studied the influence of oxygen on the mitochondrial DNA (mtDNA) in primordial germ cell-like cells (PGCLCs) in vitro. Low oxygen levels resembling in vivo reduced the cell mtDNA content causing a genetic bottleneck and the segregation of different mtDNA genotypes.
Collapse
|
52
|
Thompson PW. Developing new treatments in partnership for primary mitochondrial disease: What does industry need from academics, and what do academics need from industry? J Inherit Metab Dis 2021; 44:301-311. [PMID: 33141457 DOI: 10.1002/jimd.12326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/11/2022]
Abstract
Developing novel therapeutics for primary mitochondrial disease is likely to require significant academia-industry collaboration. Translational assessments, a tool often used in industry at target validation stage, can highlight disease specific development challenges which requires focused collaborative effort. For PMD, definition of pivotal trial populations and primary endpoints is challenging given lack of clinical precedence, high numbers of subgroups with overlapping symptoms despite common genetics. Disease pathophysiology has not been systematically assessed simultaneously with outcomes in available natural history studies, resulting in a lack of pathophysiology biomarker utilization in clinical trials. Preclinical model systems are available to assist drug development efforts, although these may require better standardization and access. Multistakeholder precompetitive efforts have been used to progress disease pathophysiology biomarker and confirmatory clinical trial endpoint readiness in neurological disease with limited treatment options, such as rare familial Parkinson's disease. This type of approach may be beneficial for PMD therapeutic development, although requires significant funding and time, supported by industry and other funding bodies. Industry expertise on chemistry, data quality and drug development know-how is available to support academic drug development efforts. A combination of industry mindset-reduction of uncertainty to provide an indication statement supportable by evidence-together with academic approach-question-based studies to understand disease mechanisms and patients-has great potential to deliver novel PMD therapeutics.
Collapse
Affiliation(s)
- Paul W Thompson
- Mission Therapeutics, Babraham Research Campus, Cambridge, UK
| |
Collapse
|
53
|
Stewart JB. Current progress with mammalian models of mitochondrial DNA disease. J Inherit Metab Dis 2021; 44:325-342. [PMID: 33099782 DOI: 10.1002/jimd.12324] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/16/2022]
Abstract
Mitochondrial disorders make up a large class of heritable diseases that cause a broad array of different human pathologies. They can affect many different organ systems, or display very specific tissue presentation, and can lead to illness either in childhood or later in life. While the over 1200 genes encoded in the nuclear DNA play an important role in human mitochondrial disease, it has been known for over 30 years that mutations of the mitochondria's own small, multicopy DNA chromosome (mtDNA) can lead to heritable human diseases. Unfortunately, animal mtDNA has resisted transgenic and directed genome editing technologies until quite recently. As such, animal models to aid in our understanding of these diseases, and to explore preclinical therapeutic research have been quite rare. This review will discuss the unusual properties of animal mitochondria that have hindered the generation of animal models. It will also discuss the existing mammalian models of human mtDNA disease, describe the methods employed in their generation, and will discuss recent advances in the targeting of DNA-manipulating enzymes to the mitochondria and how these may be employed to generate new models.
Collapse
Affiliation(s)
- James Bruce Stewart
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Wellcome Centre for Mitochondrial Research, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
54
|
Stewart JB, Chinnery PF. Extreme heterogeneity of human mitochondrial DNA from organelles to populations. Nat Rev Genet 2021; 22:106-118. [PMID: 32989265 DOI: 10.1038/s41576-020-00284-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2020] [Indexed: 02/06/2023]
Abstract
Contrary to the long-held view that most humans harbour only identical mitochondrial genomes, deep resequencing has uncovered unanticipated extreme genetic variation within mitochondrial DNA (mtDNA). Most, if not all, humans contain multiple mtDNA genotypes (heteroplasmy); specific patterns of variants accumulate in different tissues, including cancers, over time; and some variants are preferentially passed down or suppressed in the maternal germ line. These findings cast light on the origin and spread of mtDNA mutations at multiple scales, from the organelle to the human population, and challenge the conventional view that high percentages of a mutation are required before a new variant has functional consequences.
Collapse
Affiliation(s)
- James B Stewart
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Wellcome Centre for Mitochondrial Research, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
55
|
Povea-Cabello S, Villanueva-Paz M, Suárez-Rivero JM, Álvarez-Córdoba M, Villalón-García I, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Sánchez-Alcázar JA. Advances in mt-tRNA Mutation-Caused Mitochondrial Disease Modeling: Patients' Brain in a Dish. Front Genet 2021; 11:610764. [PMID: 33510772 PMCID: PMC7835939 DOI: 10.3389/fgene.2020.610764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/26/2020] [Indexed: 01/19/2023] Open
Abstract
Mitochondrial diseases are a heterogeneous group of rare genetic disorders that can be caused by mutations in nuclear (nDNA) or mitochondrial DNA (mtDNA). Mutations in mtDNA are associated with several maternally inherited genetic diseases, with mitochondrial dysfunction as a main pathological feature. These diseases, although frequently multisystemic, mainly affect organs that require large amounts of energy such as the brain and the skeletal muscle. In contrast to the difficulty of obtaining neuronal and muscle cell models, the development of induced pluripotent stem cells (iPSCs) has shed light on the study of mitochondrial diseases. However, it is still a challenge to obtain an appropriate cellular model in order to find new therapeutic options for people suffering from these diseases. In this review, we deepen the knowledge in the current models for the most studied mt-tRNA mutation-caused mitochondrial diseases, MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) and MERRF (myoclonic epilepsy with ragged red fibers) syndromes, and their therapeutic management. In particular, we will discuss the development of a novel model for mitochondrial disease research that consists of induced neurons (iNs) generated by direct reprogramming of fibroblasts derived from patients suffering from MERRF syndrome. We hypothesize that iNs will be helpful for mitochondrial disease modeling, since they could mimic patient’s neuron pathophysiology and give us the opportunity to correct the alterations in one of the most affected cellular types in these disorders.
Collapse
Affiliation(s)
- Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Marina Villanueva-Paz
- Instituto de Investigación Biomédica de Málaga, Departamento de Farmacología y Pediatría, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Juan M Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| | - José A Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, Seville, Spain
| |
Collapse
|
56
|
Isokallio MA, Stewart JB. High-Throughput Detection of mtDNA Mutations Leading to tRNA Processing Errors. Methods Mol Biol 2021; 2192:117-132. [PMID: 33230770 DOI: 10.1007/978-1-0716-0834-0_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Some mutations in the tRNA genes of mitochondrial DNA (mtDNA) have been demonstrated to affect the processing of the mitochondrial transcriptome in human patients with mitochondrial disease. A recent analysis of mtDNA mutations in 527 human tumors revealed that approximately a quarter of the somatic mt-tRNA gene mutations lead to aberrant processing of the mitochondrial transcriptome in these tumors. Here, we describe a method, based on mtDNA mutations induced by the mtDNA mutator mouse, to map the sites that lead to transcript processing abnormalities. Mutations in the mtDNA are identified and quantified by amplicon-based mtDNA sequencing, and compared to the allelic ratios observed in matched RNASeq data. Strong deviation in the variant allele frequencies between the amplicon and RNASeq data suggests that such mutations lead to disruptions in mitochondrial transcript processing.
Collapse
|
57
|
Pitceathly RD, Keshavan N, Rahman J, Rahman S. Moving towards clinical trials for mitochondrial diseases. J Inherit Metab Dis 2021; 44:22-41. [PMID: 32618366 PMCID: PMC8432143 DOI: 10.1002/jimd.12281] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
Abstract
Primary mitochondrial diseases represent some of the most common and severe inherited metabolic disorders, affecting ~1 in 4,300 live births. The clinical and molecular diversity typified by mitochondrial diseases has contributed to the lack of licensed disease-modifying therapies available. Management for the majority of patients is primarily supportive. The failure of clinical trials in mitochondrial diseases partly relates to the inefficacy of the compounds studied. However, it is also likely to be a consequence of the significant challenges faced by clinicians and researchers when designing trials for these disorders, which have historically been hampered by a lack of natural history data, biomarkers and outcome measures to detect a treatment effect. Encouragingly, over the past decade there have been significant advances in therapy development for mitochondrial diseases, with many small molecules now transitioning from preclinical to early phase human interventional studies. In this review, we present the treatments and management strategies currently available to people with mitochondrial disease. We evaluate the challenges and potential solutions to trial design and highlight the emerging pharmacological and genetic strategies that are moving from the laboratory to clinical trials for this group of disorders.
Collapse
Affiliation(s)
- Robert D.S. Pitceathly
- Department of Neuromuscular DiseasesUCL Queen Square Institute of Neurology and The National Hospital for Neurology and NeurosurgeryLondonUK
| | - Nandaki Keshavan
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| | - Joyeeta Rahman
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
| | - Shamima Rahman
- Mitochondrial Research GroupUCL Great Ormond Street Institute of Child HealthLondonUK
- Metabolic UnitGreat Ormond Street Hospital for Children NHS Foundation TrustLondonUK
| |
Collapse
|
58
|
Filograna R, Mennuni M, Alsina D, Larsson NG. Mitochondrial DNA copy number in human disease: the more the better? FEBS Lett 2020; 595:976-1002. [PMID: 33314045 PMCID: PMC8247411 DOI: 10.1002/1873-3468.14021] [Citation(s) in RCA: 271] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/02/2020] [Accepted: 11/26/2020] [Indexed: 12/19/2022]
Abstract
Most of the genetic information has been lost or transferred to the nucleus during the evolution of mitochondria. Nevertheless, mitochondria have retained their own genome that is essential for oxidative phosphorylation (OXPHOS). In mammals, a gene‐dense circular mitochondrial DNA (mtDNA) of about 16.5 kb encodes 13 proteins, which constitute only 1% of the mitochondrial proteome. Mammalian mtDNA is present in thousands of copies per cell and mutations often affect only a fraction of them. Most pathogenic human mtDNA mutations are recessive and only cause OXPHOS defects if present above a certain critical threshold. However, emerging evidence strongly suggests that the proportion of mutated mtDNA copies is not the only determinant of disease but that also the absolute copy number matters. In this review, we critically discuss current knowledge of the role of mtDNA copy number regulation in various types of human diseases, including mitochondrial disorders, neurodegenerative disorders and cancer, and during ageing. We also provide an overview of new exciting therapeutic strategies to directly manipulate mtDNA to restore OXPHOS in mitochondrial diseases.
Collapse
Affiliation(s)
- Roberta Filograna
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Mara Mennuni
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - David Alsina
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Nils-Göran Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Max Planck Institute for Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
59
|
He H, Lin X, Wu D, Wang J, Guo J, Green DR, Zhang H, Xu B. Enzymatic Noncovalent Synthesis for Mitochondrial Genetic Engineering of Cancer Cells. CELL REPORTS. PHYSICAL SCIENCE 2020; 1:100270. [PMID: 33511360 PMCID: PMC7839975 DOI: 10.1016/j.xcrp.2020.100270] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Since mitochondria contribute to tumorigenesis and drug resistance in cancer, mitochondrial genetic engineering promises a new direction for cancer therapy. Here, we report the use of the perimitochondrial enzymatic noncovalent synthesis (ENS) of peptides for delivering genes selectively into the mitochondria of cancer cells for mitochondrial genetic engineering. Specifically, the micelles of peptides bind to the voltage-dependent anion channel (VDAC) on mitochondria for the proteolysis by enterokinase (ENTK), generating perimitochondrial nanofibers in cancer cells. This process, facilitating selective delivery of nucleic acid or gene vectors into mitochondria of cancer cells, enables the mitochondrial transgene expression of CRISPR/Cas9, FUNDC1, p53, and fluorescent proteins. Mechanistic investigation indicates that the interaction of the peptide assemblies with the VDAC and mitochondrial membrane potential are necessary for mitochondria targeting. This local enzymatic control of intermolecular noncovalent interactions enables selective mitochondrial genetic engineering, thus providing a strategy for targeting cancer cells.
Collapse
Affiliation(s)
- Hongjian He
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Xinyi Lin
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Difei Wu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Jiaqing Wang
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
| | - Douglas R. Green
- Immunology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105-3678, USA
| | - Hongwei Zhang
- School of Pharmacy, Massachusetts College of Pharmacy and Health Sciences, 179 Longwood Avenue, Boston, MA 02115, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02454, USA
- Lead contact
- Correspondence:
| |
Collapse
|
60
|
Bottani E, Lamperti C, Prigione A, Tiranti V, Persico N, Brunetti D. Therapeutic Approaches to Treat Mitochondrial Diseases: "One-Size-Fits-All" and "Precision Medicine" Strategies. Pharmaceutics 2020; 12:E1083. [PMID: 33187380 PMCID: PMC7696526 DOI: 10.3390/pharmaceutics12111083] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/08/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Primary mitochondrial diseases (PMD) refer to a group of severe, often inherited genetic conditions due to mutations in the mitochondrial genome or in the nuclear genes encoding for proteins involved in oxidative phosphorylation (OXPHOS). The mutations hamper the last step of aerobic metabolism, affecting the primary source of cellular ATP synthesis. Mitochondrial diseases are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. The limited information of the natural history, the limitations of currently available preclinical models, coupled with the large variability of phenotypical presentations of PMD patients, have strongly penalized the development of effective therapies. However, new therapeutic strategies have been emerging, often with promising preclinical and clinical results. Here we review the state of the art on experimental treatments for mitochondrial diseases, presenting "one-size-fits-all" approaches and precision medicine strategies. Finally, we propose novel perspective therapeutic plans, either based on preclinical studies or currently used for other genetic or metabolic diseases that could be transferred to PMD.
Collapse
Affiliation(s)
- Emanuela Bottani
- Department of Diagnostics and Public Health, Section of Pharmacology, University of Verona, 37134 Verona, Italy
| | - Costanza Lamperti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Alessandro Prigione
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Clinic Düsseldorf (UKD), Heinrich Heine University (HHU), 40225 Dusseldorf, Germany;
| | - Valeria Tiranti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
| | - Nicola Persico
- Department of Clinical Science and Community Health, University of Milan, 20122 Milan, Italy;
- Fetal Medicine and Surgery Service, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dario Brunetti
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico C. Besta, 20126 Milan, Italy; (C.L.); (V.T.)
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20129 Milan, Italy
| |
Collapse
|
61
|
Cytochrome c oxidase deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1862:148335. [PMID: 33171185 DOI: 10.1016/j.bbabio.2020.148335] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/31/2020] [Accepted: 11/03/2020] [Indexed: 12/23/2022]
Abstract
Cytochrome c oxidase (COX) deficiency is characterized by a high degree of genetic and phenotypic heterogeneity, partly reflecting the extreme structural complexity, multiple post-translational modification, variable, tissue-specific composition, and the high number of and intricate connections among the assembly factors of this enzyme. In fact, decreased COX specific activity can manifest with different degrees of severity, affect the whole organism or specific tissues, and develop a wide spectrum of disease natural history, including disease onsets ranging from birth to late adulthood. More than 30 genes have been linked to COX deficiency, but the list is still incomplete and in fact constantly updated. We here discuss the current knowledge about COX in health and disease, focusing on genetic aetiology and link to clinical manifestations. In addition, information concerning either fundamental biological features of the enzymes or biochemical signatures of its defects have been provided by experimental in vivo models, including yeast, fly, mouse and fish, which expanded our knowledge on the functional features and the phenotypical consequences of different forms of COX deficiency.
Collapse
|
62
|
Affiliation(s)
- Igor A Sobenin
- National Medical Research Center of Cardiology, Moscow, Russian Federation
| | | |
Collapse
|
63
|
Smith AL, Whitehall JC, Bradshaw C, Gay D, Robertson F, Blain AP, Hudson G, Pyle A, Houghton D, Hunt M, Sampson JN, Stamp C, Mallett G, Amarnath S, Leslie J, Oakley F, Wilson L, Baker A, Russell OM, Johnson R, Richardson CA, Gupta B, McCallum I, McDonald SA, Kelly S, Mathers JC, Heer R, Taylor RW, Perkins ND, Turnbull DM, Sansom OJ, Greaves LC. Age-associated mitochondrial DNA mutations cause metabolic remodelling that contributes to accelerated intestinal tumorigenesis. NATURE CANCER 2020; 1:976-989. [PMID: 33073241 PMCID: PMC7116185 DOI: 10.1038/s43018-020-00112-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/05/2020] [Indexed: 01/15/2023]
Abstract
Oxidative phosphorylation (OXPHOS) defects caused by somatic mitochondrial DNA (mtDNA) mutations increase with age in human colorectal epithelium and are prevalent in colorectal tumours, but whether they actively contribute to tumorigenesis remains unknown. Here we demonstrate that mtDNA mutations causing OXPHOS defects are enriched during the human adenoma/carcinoma sequence, suggesting they may confer a metabolic advantage. To test this we deleted the tumour suppressor Apc in OXPHOS deficient intestinal stem cells in mice. The resulting tumours were larger than in control mice due to accelerated cell proliferation and reduced apoptosis. We show that both normal crypts and tumours undergo metabolic remodelling in response to OXPHOS deficiency by upregulating the de novo serine synthesis pathway (SSP). Moreover, normal human colonic crypts upregulate the SSP in response to OXPHOS deficiency prior to tumorigenesis. Our data show that age-associated OXPHOS deficiency causes metabolic remodelling that can functionally contribute to accelerated intestinal cancer development.
Collapse
Affiliation(s)
- Anna Lm Smith
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Julia C Whitehall
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Carla Bradshaw
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - David Gay
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow. G61 1QH, UK
| | - Fiona Robertson
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Alasdair P Blain
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Gavin Hudson
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - David Houghton
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Matthew Hunt
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - James N Sampson
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Craig Stamp
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Grace Mallett
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Shoba Amarnath
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle upon Tyne, NE2 4HH, UK
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Newcastle upon Tyne, NE2 4HH, UK
| | - Laura Wilson
- Newcastle Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Angela Baker
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Oliver M Russell
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Riem Johnson
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Claire A Richardson
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Bhavana Gupta
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Iain McCallum
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Stuart Ac McDonald
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | - Seamus Kelly
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - John C Mathers
- Human Nutrition Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH
| | - Rakesh Heer
- Newcastle Cancer Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Neil D Perkins
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow. G61 1QH, UK
| | - Laura C Greaves
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
64
|
Uittenbogaard M, Chiaramello A. Maternally inherited mitochondrial respiratory disorders: from pathogenetic principles to therapeutic implications. Mol Genet Metab 2020; 131:38-52. [PMID: 32624334 PMCID: PMC7749081 DOI: 10.1016/j.ymgme.2020.06.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023]
Abstract
Maternally inherited mitochondrial respiratory disorders are rare, progressive, and multi-systemic diseases that remain intractable, with no effective therapeutic interventions. Patients share a defective oxidative phosphorylation pathway responsible for mitochondrial ATP synthesis, in most cases due to pathogenic mitochondrial variants transmitted from mother to child or to a rare de novo mutation or large-scale deletion of the mitochondrial genome. The clinical diagnosis of these mitochondrial diseases is difficult due to exceptionally high clinical variability, while their genetic diagnosis has improved with the advent of next-generation sequencing. The mechanisms regulating the penetrance of the mitochondrial variants remain unresolved with the patient's nuclear background, epigenomic regulation, heteroplasmy, mitochondrial haplogroups, and environmental factors thought to act as rheostats. The lack of animal models mimicking the phenotypic manifestations of these disorders has hampered efforts toward curative therapies. Patient-derived cellular paradigms provide alternative models for elucidating the pathogenic mechanisms and screening pharmacological small molecules to enhance mitochondrial function. Recent progress has been made in designing promising approaches to curtail the negative impact of dysfunctional mitochondria and alleviate clinical symptoms: 1) boosting mitochondrial biogenesis; 2) shifting heteroplasmy; 3) reprogramming metabolism; and 4) administering hypoxia-based treatment. Here, we discuss their varying efficacies and limitations and provide an outlook on their therapeutic potential and clinical application.
Collapse
Affiliation(s)
- Martine Uittenbogaard
- George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, 2300 I Street N.W., Washington, DC 20037, USA
| | - Anne Chiaramello
- George Washington University School of Medicine and Health Sciences, Department of Anatomy and Cell Biology, 2300 I Street N.W., Washington, DC 20037, USA.
| |
Collapse
|
65
|
La Morgia C, Maresca A, Caporali L, Valentino ML, Carelli V. Mitochondrial diseases in adults. J Intern Med 2020; 287:592-608. [PMID: 32463135 DOI: 10.1111/joim.13064] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/07/2020] [Accepted: 02/21/2020] [Indexed: 02/07/2023]
Abstract
Mitochondrial medicine is a field that expanded exponentially in the last 30 years. Individually rare, mitochondrial diseases as a whole are probably the most frequent genetic disorder in adults. The complexity of their genotype-phenotype correlation, in terms of penetrance and clinical expressivity, natural history and diagnostic algorithm derives from the dual genetic determination. In fact, in addition to the about 1.500 genes encoding mitochondrial proteins that reside in the nuclear genome (nDNA), we have the 13 proteins encoded by the mitochondrial genome (mtDNA), for which 22 specific tRNAs and 2 rRNAs are also needed. Thus, besides Mendelian genetics, we need to consider all peculiarities of how mtDNA is inherited, maintained and expressed to fully understand the pathogenic mechanisms of these disorders. Yet, from the initial restriction to the narrow field of oxidative phosphorylation dysfunction, the landscape of mitochondrial functions impinging on cellular homeostasis, driving life and death, is impressively enlarged. Finally, from the clinical standpoint, starting from the neuromuscular field, where brain and skeletal muscle were the primary targets of mitochondrial dysfunction as energy-dependent tissues, after three decades virtually any subspecialty of medicine is now involved. We will summarize the key clinical pictures and pathogenic mechanisms of mitochondrial diseases in adults.
Collapse
Affiliation(s)
- C La Morgia
- From the, Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - A Maresca
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - L Caporali
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - M L Valentino
- From the, Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| | - V Carelli
- From the, Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.,IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Clinica Neurologica, Bologna, Italy
| |
Collapse
|
66
|
Wei W, Chinnery PF. Inheritance of mitochondrial DNA in humans: implications for rare and common diseases. J Intern Med 2020; 287:634-644. [PMID: 32187761 PMCID: PMC8641369 DOI: 10.1111/joim.13047] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 11/01/2019] [Accepted: 12/10/2019] [Indexed: 12/27/2022]
Abstract
The first draft human mitochondrial DNA (mtDNA) sequence was published in 1981, paving the way for two decades of discovery linking mtDNA variation with human disease. Severe pathogenic mutations cause sporadic and inherited rare disorders that often involve the nervous system. However, some mutations cause mild organ-specific phenotypes that have a reduced clinical penetrance, and polymorphic variation of mtDNA is associated with an altered risk of developing several late-onset common human diseases including Parkinson's disease. mtDNA mutations also accumulate during human life and are enriched in affected organs in a number of age-related diseases. Thus, mtDNA contributes to a wide range of human pathologies. For many decades, it has generally been accepted that mtDNA is inherited exclusively down the maternal line in humans. Although recent evidence has challenged this dogma, whole-genome sequencing has identified nuclear-encoded mitochondrial sequences (NUMTs) that can give the false impression of paternally inherited mtDNA. This provides a more likely explanation for recent reports of 'bi-parental inheritance', where the paternal alleles are actually transmitted through the nuclear genome. The presence of both mutated and wild-type variant alleles within the same individual (heteroplasmy) and rapid shifts in allele frequency can lead to offspring with variable severity of disease. In addition, there is emerging evidence that selection can act for and against specific mtDNA variants within the developing germ line, and possibly within developing tissues. Thus, understanding how mtDNA is inherited has far-reaching implications across medicine. There is emerging evidence that this highly dynamic system is amenable to therapeutic manipulation, raising the possibility that we can harness new understanding to prevent and treat rare and common human diseases where mtDNA mutations play a key role.
Collapse
Affiliation(s)
- W Wei
- From the, Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK.,Medical Research Council Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - P F Chinnery
- From the, Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, UK.,Medical Research Council Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
67
|
Zekonyte U, Bacman SR, Moraes CT. DNA-editing enzymes as potential treatments for heteroplasmic mtDNA diseases. J Intern Med 2020; 287:685-697. [PMID: 32176378 PMCID: PMC7260085 DOI: 10.1111/joim.13055] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022]
Abstract
Mutations in the mitochondrial genome are the cause of many debilitating neuromuscular disorders. Currently, there is no cure or treatment for these diseases, and symptom management is the only relief doctors can provide. Although supplements and vitamins are commonly used in treatment, they provide little benefit to the patient and are only palliative. This is why gene therapy is a promising research topic to potentially treat and, in theory, even cure diseases caused by mutations in the mitochondrial DNA (mtDNA). Mammalian cells contain approximately a thousand copies of mtDNA, which can lead to a phenomenon called heteroplasmy, where both wild-type and mutant mtDNA molecules co-exist within the cell. Disease only manifests once the per cent of mutant mtDNA reaches a high threshold (usually >80%), which causes mitochondrial dysfunction and reduced ATP production. This is a useful feature to take advantage of for gene therapy applications, as not every mutant copy of mtDNA needs to be eliminated, but only enough to shift the heteroplasmic ratio below the disease threshold. Several DNA-editing enzymes have been used to shift heteroplasmy in cell culture and mice. This review provides an overview of these enzymes and discusses roadblocks of applying these to gene therapy in humans.
Collapse
Affiliation(s)
- U Zekonyte
- From the, Graduate Program in Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - S R Bacman
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - C T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
68
|
Mitochondrial Diseases: Hope for the Future. Cell 2020; 181:168-188. [PMID: 32220313 DOI: 10.1016/j.cell.2020.02.051] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 01/15/2023]
Abstract
Mitochondrial diseases are clinically heterogeneous disorders caused by a wide spectrum of mutations in genes encoded by either the nuclear or the mitochondrial genome. Treatments for mitochondrial diseases are currently focused on symptomatic management rather than improving the biochemical defect caused by a particular mutation. This review focuses on the latest advances in the development of treatments for mitochondrial disease, both small molecules and gene therapies, as well as methods to prevent transmission of mitochondrial disease through the germline.
Collapse
|
69
|
Jackson CB, Turnbull DM, Minczuk M, Gammage PA. Therapeutic Manipulation of mtDNA Heteroplasmy: A Shifting Perspective. Trends Mol Med 2020; 26:698-709. [PMID: 32589937 DOI: 10.1016/j.molmed.2020.02.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/19/2020] [Accepted: 02/21/2020] [Indexed: 12/23/2022]
Abstract
Mutations of mitochondrial DNA (mtDNA) often underlie mitochondrial disease, one of the most common inherited metabolic disorders. Since the sequencing of the human mitochondrial genome and the discovery of pathogenic mutations in mtDNA more than 30 years ago, a movement towards generating methods for robust manipulation of mtDNA has ensued, although with relatively few advances and some controversy. While developments in the transformation of mammalian mtDNA have stood still for some time, recent demonstrations of programmable nuclease-based technology suggest that clinical manipulation of mtDNA heteroplasmy may be on the horizon for these largely untreatable disorders. Here we review historical and recent developments in mitochondrially targeted nuclease technology and the clinical outlook for treatment of hereditary mitochondrial disease.
Collapse
Affiliation(s)
- Christopher B Jackson
- Stem Cells and Metabolism, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Payam A Gammage
- CRUK Beatson Institute, Glasgow, UK; Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
70
|
Nissanka N, Moraes CT. Mitochondrial DNA heteroplasmy in disease and targeted nuclease-based therapeutic approaches. EMBO Rep 2020; 21:e49612. [PMID: 32073748 DOI: 10.15252/embr.201949612] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/11/2019] [Accepted: 01/29/2020] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial DNA (mtDNA) encodes a subset of the genes which are responsible for oxidative phosphorylation. Pathogenic mutations in the human mtDNA are often heteroplasmic, where wild-type mtDNA species co-exist with the pathogenic mtDNA and a bioenergetic defect is only seen when the pathogenic mtDNA percentage surpasses a threshold for biochemical manifestations. mtDNA segregation during germline development can explain some of the extreme variation in heteroplasmy from one generation to the next. Patients with high heteroplasmy for deleterious mtDNA species will likely suffer from bona-fide mitochondrial diseases, which currently have no cure. Shifting mtDNA heteroplasmy toward the wild-type mtDNA species could provide a therapeutic option to patients. Mitochondrially targeted engineered nucleases, such as mitoTALENs and mitoZFNs, have been used in vitro in human cells harboring pathogenic patient-derived mtDNA mutations and more recently in vivo in a mouse model of a pathogenic mtDNA point mutation. These gene therapy tools for shifting mtDNA heteroplasmy can also be used in conjunction with other therapies aimed at eliminating and/or preventing the transfer of pathogenic mtDNA from mother to child.
Collapse
Affiliation(s)
- Nadee Nissanka
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
71
|
Bacman SR, Gammage PA, Minczuk M, Moraes CT. Manipulation of mitochondrial genes and mtDNA heteroplasmy. Methods Cell Biol 2020; 155:441-487. [PMID: 32183972 DOI: 10.1016/bs.mcb.2019.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most patients with mitochondrial DNA (mtDNA) mutations have a mixture of mutant and wild-type mtDNA in their cells. This phenomenon, known as mtDNA heteroplasmy, provides an opportunity to develop therapies by selectively eliminating the mutant fraction. In the last decade, several enzyme-based gene editing platforms were developed to cleave specific DNA sequences. We have taken advantage of these enzymes to develop reagents to selectively eliminate mutant mtDNA. The replication of intact mitochondrial genomes normalizes mtDNA levels and consequently mitochondrial function. In this chapter, we describe the methodology used to design and express these nucleases in mammalian cells in culture and in vivo.
Collapse
Affiliation(s)
- Sandra R Bacman
- Department of Neurology, University of Miami School of Medicine, Miami, FL, United States
| | - P A Gammage
- CRUK Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | - M Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom.
| | - Carlos T Moraes
- Department of Neurology, University of Miami School of Medicine, Miami, FL, United States.
| |
Collapse
|
72
|
Purhonen J, Grigorjev V, Ekiert R, Aho N, Rajendran J, Pietras R, Truvé K, Wikström M, Sharma V, Osyczka A, Fellman V, Kallijärvi J. A spontaneous mitonuclear epistasis converging on Rieske Fe-S protein exacerbates complex III deficiency in mice. Nat Commun 2020; 11:322. [PMID: 31949167 PMCID: PMC6965120 DOI: 10.1038/s41467-019-14201-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
We previously observed an unexpected fivefold (35 vs. 200 days) difference in the survival of respiratory chain complex III (CIII) deficient Bcs1lp.S78G mice between two congenic backgrounds. Here, we identify a spontaneous homoplasmic mtDNA variant (m.G14904A, mt-Cybp.D254N), affecting the CIII subunit cytochrome b (MT-CYB), in the background with short survival. We utilize maternal inheritance of mtDNA to confirm this as the causative variant and show that it further decreases the low CIII activity in Bcs1lp.S78G tissues to below survival threshold by 35 days of age. Molecular dynamics simulations predict D254N to restrict the flexibility of MT-CYB ef loop, potentially affecting RISP dynamics. In Rhodobacter cytochrome bc1 complex the equivalent substitution causes a kinetics defect with longer occupancy of RISP head domain towards the quinol oxidation site. These findings represent a unique case of spontaneous mitonuclear epistasis and highlight the role of mtDNA variation as modifier of mitochondrial disease phenotypes.
Collapse
Affiliation(s)
- Janne Purhonen
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, P.O. Box 63 (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vladislav Grigorjev
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, P.O. Box 63 (Haartmaninkatu 8), FI-00014, Helsinki, Finland
| | - Robert Ekiert
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Noora Aho
- Department of Physics, University of Helsinki, P.O. Box 64 (Gustaf Hällströmin katu 2), FI-00014, Helsinki, Finland.,Department of Chemistry, University of Jyväskylä, P.O. Box 35 (Survontie 9B), FI-40014, Jyväskylä, Finland
| | - Jayasimman Rajendran
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, P.O. Box 63 (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Rafał Pietras
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Katarina Truvé
- Sahlgrenska Academy, University of Gothenburg, P.O. Box 413 (Medicinaregatan 3), 41390, Gothenburg, Sweden
| | - Mårten Wikström
- Institute of Biotechnology, University of Helsinki, PL 56 (Viikinkaari 9), FI-00014, Helsinki, Finland
| | - Vivek Sharma
- Department of Physics, University of Helsinki, P.O. Box 64 (Gustaf Hällströmin katu 2), FI-00014, Helsinki, Finland.,Institute of Biotechnology, University of Helsinki, PL 56 (Viikinkaari 9), FI-00014, Helsinki, Finland
| | - Artur Osyczka
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Kraków, Poland
| | - Vineta Fellman
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, P.O. Box 63 (Haartmaninkatu 8), FI-00014, Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Department of Clinical Sciences, Pediatrics, BMC F12, Lund University, 221 84, Lund, Sweden.,Children's Hospital, Helsinki University Hospital, P.O. Box 281 (Stenbäckinkatu 11), FI-00029, Helsinki, Finland
| | - Jukka Kallijärvi
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, P.O. Box 63 (Haartmaninkatu 8), FI-00014, Helsinki, Finland. .,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
73
|
Khan S, Ince-Dunn G, Suomalainen A, Elo LL. Integrative omics approaches provide biological and clinical insights: examples from mitochondrial diseases. J Clin Invest 2020; 130:20-28. [PMID: 31895050 PMCID: PMC6934214 DOI: 10.1172/jci129202] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High-throughput technologies for genomics, transcriptomics, proteomics, and metabolomics, and integrative analysis of these data, enable new, systems-level insights into disease pathogenesis. Mitochondrial diseases are an excellent target for hypothesis-generating omics approaches, as the disease group is mechanistically exceptionally complex. Although the genetic background in mitochondrial diseases is in either the nuclear or the mitochondrial genome, the typical downstream effect is dysfunction of the mitochondrial respiratory chain. However, the clinical manifestations show unprecedented variability, including either systemic or tissue-specific effects across multiple organ systems, with mild to severe symptoms, and occurring at any age. So far, the omics approaches have provided mechanistic understanding of tissue-specificity and potential treatment options for mitochondrial diseases, such as metabolome remodeling. However, no curative treatments exist, suggesting that novel approaches are needed. In this Review, we discuss omics approaches and discoveries with the potential to elucidate mechanisms of and therapies for mitochondrial diseases.
Collapse
Affiliation(s)
- Sofia Khan
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Gulayse Ince-Dunn
- Research Programs Unit, Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anu Suomalainen
- Research Programs Unit, Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, HiLife, University of Helsinki, Helsinki, Finland
- Helsinki University Hospital, HUSlab, Helsinki, Finland
| | - Laura L. Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| |
Collapse
|
74
|
Thompson K, Collier JJ, Glasgow RIC, Robertson FM, Pyle A, Blakely EL, Alston CL, Oláhová M, McFarland R, Taylor RW. Recent advances in understanding the molecular genetic basis of mitochondrial disease. J Inherit Metab Dis 2020; 43:36-50. [PMID: 31021000 PMCID: PMC7041634 DOI: 10.1002/jimd.12104] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/03/2019] [Accepted: 04/24/2019] [Indexed: 12/22/2022]
Abstract
Mitochondrial disease is hugely diverse with respect to associated clinical presentations and underlying genetic causes, with pathogenic variants in over 300 disease genes currently described. Approximately half of these have been discovered in the last decade due to the increasingly widespread application of next generation sequencing technologies, in particular unbiased, whole exome-and latterly, whole genome sequencing. These technologies allow more genetic data to be collected from patients with mitochondrial disorders, continually improving the diagnostic success rate in a clinical setting. Despite these significant advances, some patients still remain without a definitive genetic diagnosis. Large datasets containing many variants of unknown significance have become a major challenge with next generation sequencing strategies and these require significant functional validation to confirm pathogenicity. This interface between diagnostics and research is critical in continuing to expand the list of known pathogenic variants and concomitantly enhance our knowledge of mitochondrial biology. The increasing use of whole exome sequencing, whole genome sequencing and other "omics" techniques such as transcriptomics and proteomics will generate even more data and allow further interrogation and validation of genetic causes, including those outside of coding regions. This will improve diagnostic yields still further and emphasizes the integral role that functional assessment of variant causality plays in this process-the overarching focus of this review.
Collapse
Affiliation(s)
- Kyle Thompson
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Jack J. Collier
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Ruth I. C. Glasgow
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Fiona M. Robertson
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Institute of Genetic MedicineNewcastle UniversityNewcastle upon TyneUK
| | - Emma L. Blakely
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Mitochondrial Diagnostic LaboratoryNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Charlotte L. Alston
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Mitochondrial Diagnostic LaboratoryNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| | - Monika Oláhová
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
| | - Robert W. Taylor
- Wellcome Centre for Mitochondrial Research, Institute of NeuroscienceNewcastle UniversityNewcastle upon TyneUK
- NHS Highly Specialised Mitochondrial Diagnostic LaboratoryNewcastle upon Tyne Hospitals NHS Foundation TrustNewcastle upon TyneUK
| |
Collapse
|
75
|
Klucnika A, Ma H. Mapping and editing animal mitochondrial genomes: can we overcome the challenges? Philos Trans R Soc Lond B Biol Sci 2019; 375:20190187. [PMID: 31787046 DOI: 10.1098/rstb.2019.0187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The animal mitochondrial genome, although small, can have a big impact on health and disease. Non-pathogenic sequence variation among mitochondrial DNA (mtDNA) haplotypes influences traits including fertility, healthspan and lifespan, whereas pathogenic mutations are linked to incurable mitochondrial diseases and other complex conditions like ageing, diabetes, cancer and neurodegeneration. However, we know very little about how mtDNA genetic variation contributes to phenotypic differences. Infrequent recombination, the multicopy nature and nucleic acid-impenetrable membranes present significant challenges that hamper our ability to precisely map mtDNA variants responsible for traits, and to genetically modify mtDNA so that we can isolate specific mutants and characterize their biochemical and physiological consequences. Here, we summarize the past struggles and efforts in developing systems to map and edit mtDNA. We also assess the future of performing forward and reverse genetic studies on animal mitochondrial genomes. This article is part of the theme issue 'Linking the mitochondrial genotype to phenotype: a complex endeavour'.
Collapse
Affiliation(s)
- Anna Klucnika
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Hansong Ma
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
76
|
O'Keefe H, Queen R, Lord P, Elson JL. What can a comparative genomics approach tell us about the pathogenicity of mtDNA mutations in human populations? Evol Appl 2019; 12:1912-1930. [PMID: 31700535 PMCID: PMC6824070 DOI: 10.1111/eva.12851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/13/2019] [Accepted: 07/17/2019] [Indexed: 01/05/2023] Open
Abstract
Mitochondrial disorders are heterogeneous, showing variable presentation and penetrance. Over the last three decades, our ability to recognize mitochondrial patients and diagnose these mutations, linking genotype to phenotype, has greatly improved. However, it has become increasingly clear that these strides in diagnostics have not benefited all population groups. Recent studies have demonstrated that patients from genetically understudied populations, in particular those of black African heritage, are less likely to receive a diagnosis of mtDNA disease. It has been suggested that haplogroup context might influence the presentation and penetrance of mtDNA disease; thus, the spectrum of mutations that are associated with disease in different populations. However, to date there is only one well-established example of such an effect: the increased penetrance of two Leber's hereditary optic neuropathy mutations on a haplogroup J background. This paper conducted the most extensive investigation to date into the importance of haplogroup context on the pathogenicity of mtDNA mutations. We searched for proven human point mutations across 726 multiple sequence alignments derived from 33 non-human species absent of disease. A total of 58 pathogenic point mutations arise in the sequences of these species. We assessed the sequence context and found evidence of population variants that could modulate the phenotypic expression of these point mutations masking the pathogenic effects seen in humans. This supports the theory that sequence context is influential in the presentation of mtDNA disease and has implications for diagnostic practices. We have shown that our current understanding of the pathogenicity of mtDNA point mutations, primarily built on studies of individuals with haplogroups HVUKTJ, will not present a complete picture. This will have the effect of creating a diagnostic inequality, whereby individuals who do not belong to these lineages are less likely to receive a genetic diagnosis.
Collapse
Affiliation(s)
- Hannah O'Keefe
- Institute of Genetic MedicineNewcastle UniversityNewcastle‐upon‐TyneUK
- School of ComputingNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Rachel Queen
- Bioinformatics Core FacilityNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Phillip Lord
- School of ComputingNewcastle UniversityNewcastle‐upon‐TyneUK
| | - Joanna L. Elson
- Institute of Genetic MedicineNewcastle UniversityNewcastle‐upon‐TyneUK
- Centre for Human MetabonomicsNorth‐West UniversityPotchefstroomSouth Africa
| |
Collapse
|
77
|
Al Khatib I, Shutt TE. Advances Towards Therapeutic Approaches for mtDNA Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1158:217-246. [PMID: 31452143 DOI: 10.1007/978-981-13-8367-0_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondria maintain and express their own genome, referred to as mtDNA, which is required for proper mitochondrial function. While mutations in mtDNA can cause a heterogeneous array of disease phenotypes, there is currently no cure for this collection of diseases. Here, we will cover characteristics of the mitochondrial genome important for understanding the pathology associated with mtDNA mutations, and review recent approaches that are being developed to treat and prevent mtDNA disease. First, we will discuss mitochondrial replacement therapy (MRT), where mitochondria from a healthy donor replace maternal mitochondria harbouring mutant mtDNA. In addition to ethical concerns surrounding this procedure, MRT is only applicable in cases where the mother is known or suspected to carry mtDNA mutations. Thus, there remains a need for other strategies to treat patients with mtDNA disease. To this end, we will also discuss several alternative means to reduce the amount of mutant mtDNA present in cells. Such methods, referred to as heteroplasmy shifting, have proven successful in animal models. In particular, we will focus on the approach of targeting engineered endonucleases to specifically cleave mutant mtDNA. Together, these approaches offer hope to prevent the transmission of mtDNA disease and potentially reduce the impact of mtDNA mutations.
Collapse
Affiliation(s)
- Iman Al Khatib
- Deparments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Timothy E Shutt
- Deparments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
78
|
Haroon S, Li A, Weinert JL, Fritsch C, Ericson NG, Alexander-Floyd J, Braeckman BP, Haynes CM, Bielas JH, Gidalevitz T, Vermulst M. Multiple Molecular Mechanisms Rescue mtDNA Disease in C. elegans. Cell Rep 2019; 22:3115-3125. [PMID: 29562168 PMCID: PMC6106782 DOI: 10.1016/j.celrep.2018.02.099] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 12/07/2017] [Accepted: 02/25/2018] [Indexed: 01/03/2023] Open
Abstract
Genetic instability of the mitochondrial genome (mtDNA) plays an important role in human aging and disease. Thus far, it has proven difficult to develop successful treatment strategies for diseases that are caused by mtDNA instability. To address this issue, we developed a model of mtDNA disease in the nematode C. elegans, an animal model that can rapidly be screened for genes and biological pathways that reduce mitochondrial pathology. These worms recapitulate all the major hallmarks of mtDNA disease in humans, including increased mtDNA instability, loss of respiration, reduced neuromuscular function, and a shortened lifespan. We found that these phenotypes could be rescued by intervening in numerous biological pathways, including IGF-1/insulin signaling, mitophagy, and the mitochondrial unfolded protein response, suggesting that it may be possible to ameliorate mtDNA disease through multiple molecular mechanisms.
Collapse
Affiliation(s)
- Suraiya Haroon
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, PA 19104, USA
| | - Annie Li
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, PA 19104, USA
| | - Jaye L Weinert
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, PA 19104, USA
| | - Clark Fritsch
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, PA 19104, USA
| | - Nolan G Ericson
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Bart P Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Biology Department, Ghent University, 9000 Ghent, Belgium
| | - Cole M Haynes
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jason H Bielas
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Tali Gidalevitz
- Department of Biology, Drexel University, Philadelphia, PA 19104, USA
| | - Marc Vermulst
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, PA 19104, USA.
| |
Collapse
|
79
|
Poulton J, Steffann J, Burgstaller J, McFarland R. 243rd ENMC international workshop: Developing guidelines for management of reproductive options for families with maternally inherited mtDNA disease, Amsterdam, the Netherlands, 22–24 March 2019. Neuromuscul Disord 2019; 29:725-733. [DOI: 10.1016/j.nmd.2019.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/13/2019] [Indexed: 01/13/2023]
|
80
|
Filograna R, Koolmeister C, Upadhyay M, Pajak A, Clemente P, Wibom R, Simard ML, Wredenberg A, Freyer C, Stewart JB, Larsson NG. Modulation of mtDNA copy number ameliorates the pathological consequences of a heteroplasmic mtDNA mutation in the mouse. SCIENCE ADVANCES 2019; 5:eaav9824. [PMID: 30949583 PMCID: PMC6447380 DOI: 10.1126/sciadv.aav9824] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/11/2019] [Indexed: 05/18/2023]
Abstract
Heteroplasmic mtDNA mutations typically act in a recessive way and cause mitochondrial disease only if present above a certain threshold level. We have experimentally investigated to what extent the absolute levels of wild-type (WT) mtDNA influence disease manifestations by manipulating TFAM levels in mice with a heteroplasmic mtDNA mutation in the tRNAAla gene. Increase of total mtDNA levels ameliorated pathology in multiple tissues, although the levels of heteroplasmy remained the same. A reduction in mtDNA levels worsened the phenotype in postmitotic tissues, such as heart, whereas there was an unexpected beneficial effect in rapidly proliferating tissues, such as colon, because of enhanced clonal expansion and selective elimination of mutated mtDNA. The absolute levels of WT mtDNA are thus an important determinant of the pathological manifestations, suggesting that pharmacological or gene therapy approaches to selectively increase mtDNA copy number provide a potential treatment strategy for human mtDNA mutation disease.
Collapse
Affiliation(s)
- R. Filograna
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - C. Koolmeister
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - M. Upadhyay
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - A. Pajak
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - P. Clemente
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | - R. Wibom
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - M. L. Simard
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - A. Wredenberg
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - C. Freyer
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, S-171 76 Stockholm, Sweden
| | - J. B. Stewart
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
| | - N. G. Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 76 Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, S-171 77 Stockholm, Sweden
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, S-171 76 Stockholm, Sweden
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, D-50931 Cologne, Germany
- Corresponding author.
| |
Collapse
|
81
|
Dhar R, Missarova AM, Lehner B, Carey LB. Single cell functional genomics reveals the importance of mitochondria in cell-to-cell phenotypic variation. eLife 2019; 8:38904. [PMID: 30638445 PMCID: PMC6366901 DOI: 10.7554/elife.38904] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 01/13/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations frequently have outcomes that differ across individuals, even when these individuals are genetically identical and share a common environment. Moreover, individual microbial and mammalian cells can vary substantially in their proliferation rates, stress tolerance, and drug resistance, with important implications for the treatment of infections and cancer. To investigate the causes of cell-to-cell variation in proliferation, we used a high-throughput automated microscopy assay to quantify the impact of deleting >1500 genes in yeast. Mutations affecting mitochondria were particularly variable in their outcome. In both mutant and wild-type cells mitochondrial membrane potential - but not amount - varied substantially across individual cells and predicted cell-to-cell variation in proliferation, mutation outcome, stress tolerance, and resistance to a clinically used anti-fungal drug. These results suggest an important role for cell-to-cell variation in the state of an organelle in single cell phenotypic variation.
Collapse
Affiliation(s)
- Riddhiman Dhar
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Alsu M Missarova
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Ben Lehner
- Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Lucas B Carey
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
82
|
Beadnell TC, Scheid AD, Vivian CJ, Welch DR. Roles of the mitochondrial genetics in cancer metastasis: not to be ignored any longer. Cancer Metastasis Rev 2018; 37:615-632. [PMID: 30542781 PMCID: PMC6358502 DOI: 10.1007/s10555-018-9772-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mitochondrial DNA (mtDNA) encodes for only a fraction of the proteins that are encoded within the nucleus, and therefore has typically been regarded as a lesser player in cancer biology and metastasis. Accumulating evidence, however, supports an increased role for mtDNA impacting tumor progression and metastatic susceptibility. Unfortunately, due to this delay, there is a dearth of data defining the relative contributions of specific mtDNA polymorphisms (SNP), which leads to an inability to effectively use these polymorphisms to guide and enhance therapeutic strategies and diagnosis. In addition, evidence also suggests that differences in mtDNA impact not only the cancer cells but also the cells within the surrounding tumor microenvironment, suggesting a broad encompassing role for mtDNA polymorphisms in regulating the disease progression. mtDNA may have profound implications in the regulation of cancer biology and metastasis. However, there are still great lengths to go to understand fully its contributions. Thus, herein, we discuss the recent advances in our understanding of mtDNA in cancer and metastasis, providing a framework for future functional validation and discovery.
Collapse
Affiliation(s)
- Thomas C Beadnell
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Adam D Scheid
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Carolyn J Vivian
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Danny R Welch
- Department of Cancer Biology, The Kansas University Medical Center, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
- The University of Kansas Cancer Center, 3901 Rainbow Blvd., Kansas City, KS, 66160, USA.
| |
Collapse
|
83
|
Palozzi JM, Jeedigunta SP, Hurd TR. Mitochondrial DNA Purifying Selection in Mammals and Invertebrates. J Mol Biol 2018; 430:4834-4848. [DOI: 10.1016/j.jmb.2018.10.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/20/2018] [Accepted: 10/25/2018] [Indexed: 01/19/2023]
|
84
|
Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat Med 2018; 24:1691-1695. [PMID: 30250142 PMCID: PMC6225988 DOI: 10.1038/s41591-018-0165-9] [Citation(s) in RCA: 210] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023]
Abstract
Mutations of the mitochondrial genome (mtDNA) underlie a substantial portion of mitochondrial disease burden. These disorders are currently incurable and effectively untreatable, with heterogeneous penetrance, presentation and prognosis. To address the lack of effective treatment for these disorders, we exploited a recently developed mouse model that recapitulates common molecular features of heteroplasmic mtDNA disease in cardiac tissue: the m.5024C>T tRNAAla mouse. Through application of a programmable nuclease therapy approach, using systemically administered, mitochondrially targeted zinc-finger nucleases (mtZFN) delivered by adeno-associated virus, we induced specific elimination of mutant mtDNA across the heart, coupled to a reversion of molecular and biochemical phenotypes. These findings constitute proof of principle that mtDNA heteroplasmy correction using programmable nucleases could provide a therapeutic route for heteroplasmic mitochondrial diseases of diverse genetic origin.
Collapse
|
85
|
|
86
|
MitoTALEN reduces mutant mtDNA load and restores tRNA Ala levels in a mouse model of heteroplasmic mtDNA mutation. Nat Med 2018; 24:1696-1700. [PMID: 30250143 DOI: 10.1038/s41591-018-0166-8] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 07/26/2018] [Indexed: 11/08/2022]
Abstract
Mutations in the mitochondrial DNA (mtDNA) are responsible for several metabolic disorders, commonly involving muscle and the central nervous system1. Because of the critical role of mtDNA in oxidative phosphorylation, the majority of pathogenic mtDNA mutations are heteroplasmic, co-existing with wild-type molecules1. Using a mouse model with a heteroplasmic mtDNA mutation2, we tested whether mitochondrial-targeted TALENs (mitoTALENs)3,4 could reduce the mutant mtDNA load in muscle and heart. AAV9-mitoTALEN was administered via intramuscular, intravenous, and intraperitoneal injections. Muscle and heart were efficiently transduced and showed a robust reduction in mutant mtDNA, which was stable over time. The molecular defect, namely a decrease in transfer RNAAla levels, was restored by the treatment. These results showed that mitoTALENs, when expressed in affected tissues, could revert disease-related phenotypes in mice.
Collapse
|
87
|
Nicholls TJ, Gustafsson CM. Separating and Segregating the Human Mitochondrial Genome. Trends Biochem Sci 2018; 43:869-881. [PMID: 30224181 DOI: 10.1016/j.tibs.2018.08.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 12/17/2022]
Abstract
Cells contain thousands of copies of the mitochondrial genome. These genomes are distributed within the tubular mitochondrial network, which is itself spread across the cytosol of the cell. Mitochondrial DNA (mtDNA) replication occurs throughout the cell cycle and ensures that cells maintain a sufficient number of mtDNA copies. At replication termination the genomes must be resolved and segregated within the mitochondrial network. Defects in mtDNA replication and segregation are a cause of human mitochondrial disease associated with failure of cellular energy production. This review focuses upon recent developments on how mitochondrial genomes are physically separated at the end of DNA replication, and how these genomes are subsequently segregated and distributed around the mitochondrial network.
Collapse
Affiliation(s)
- Thomas J Nicholls
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, SE-405 30 Gothenburg, Sweden.
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, PO Box 440, SE-405 30 Gothenburg, Sweden
| |
Collapse
|
88
|
The mitochondrial DNA genetic bottleneck: inheritance and beyond. Essays Biochem 2018; 62:225-234. [PMID: 29880721 DOI: 10.1042/ebc20170096] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 12/11/2022]
Abstract
mtDNA is a multicopy genome. When mutations exist, they can affect a varying proportion of the mtDNA present within every cell (heteroplasmy). Heteroplasmic mtDNA mutations can be maternally inherited, but the proportion of mutated alleles differs markedly between offspring within one generation. This led to the genetic bottleneck hypothesis, explaining the rapid changes in allele frequency seen during transmission from one generation to the next. Although a physical reduction in mtDNA has been demonstrated in several species, a comprehensive understanding of the molecular mechanisms is yet to be revealed. Several questions remain, including the role of selection for and against specific alleles, whether all bottlenecks are the same, and precisely how the bottleneck is controlled during development. Although originally thought to be limited to the germline, there is evidence that bottlenecks exist in other cell types during development, perhaps explaining why different tissues in the same organism contain different levels of mutated mtDNA. Moreover, tissue-specific bottlenecks may occur throughout life in response to environmental influences, adding further complexity to the situation. Here we review key recent findings, and suggest ways forward that will hopefully advance our understanding of the role of mtDNA in human disease.
Collapse
|
89
|
Simard ML, Mourier A, Greaves LC, Taylor RW, Stewart JB. A novel histochemistry assay to assess and quantify focal cytochrome c oxidase deficiency. J Pathol 2018; 245:311-323. [PMID: 29660116 PMCID: PMC6032845 DOI: 10.1002/path.5084] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 03/12/2018] [Accepted: 04/05/2018] [Indexed: 01/25/2023]
Abstract
Defects in the respiratory chain, interfering with energy production in the cell, are major underlying causes of mitochondrial diseases. In spite of this, the surprising variety of clinical symptoms, disparity between ages of onset, as well as the involvement of mitochondrial impairment in ageing and age‐related diseases continue to challenge our understanding of the pathogenic processes. This complexity can be in part attributed to the unique metabolic needs of organs or of various cell types. In this view, it remains essential to investigate mitochondrial dysfunction at the cellular level. For this purpose, we developed a novel enzyme histochemical method that enables precise quantification in fresh‐frozen tissues using competing redox reactions which ultimately lead to the reduction of tetrazolium salts and formazan deposition in cytochrome c oxidase‐deficient mitochondria. We demonstrate that the loss of oxidative activity is detected at very low levels – this achievement is unequalled by previous techniques and opens up new opportunities for the study of early disease processes or comparative investigations. Moreover, human biopsy samples of mitochondrial disease patients of diverse genotypic origins were used and the successful detection of COX‐deficient cells suggests a broad application for this new method. Lastly, the assay can be adapted to a wide range of tissues in the mouse and extends to other animal models, which we show here with the fruit fly, Drosophila melanogaster. Overall, the new assay provides the means to quantify and map, on a cell‐by‐cell basis, the full extent of COX deficiency in tissues, thereby expending new possibilities for future investigation. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | - Arnaud Mourier
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,CNRS, Université de Bordeaux, Institut de Biochimie et Génétique Cellulaires, UMR5095, Bordeaux, France
| | - Laura C Greaves
- Newcastle University LLHW Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK.,Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,NHS Highly Specialised Mitochondrial Diagnostic Laboratory, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - James B Stewart
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| |
Collapse
|
90
|
Hirose M, Schilf P, Gupta Y, Zarse K, Künstner A, Fähnrich A, Busch H, Yin J, Wright MN, Ziegler A, Vallier M, Belheouane M, Baines JF, Tautz D, Johann K, Oelkrug R, Mittag J, Lehnert H, Othman A, Jöhren O, Schwaninger M, Prehn C, Adamski J, Shima K, Rupp J, Häsler R, Fuellen G, Köhling R, Ristow M, Ibrahim SM. Low-level mitochondrial heteroplasmy modulates DNA replication, glucose metabolism and lifespan in mice. Sci Rep 2018; 8:5872. [PMID: 29651131 PMCID: PMC5897405 DOI: 10.1038/s41598-018-24290-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 03/29/2018] [Indexed: 01/07/2023] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) lead to heteroplasmy, i.e., the intracellular coexistence of wild-type and mutant mtDNA strands, which impact a wide spectrum of diseases but also physiological processes, including endurance exercise performance in athletes. However, the phenotypic consequences of limited levels of naturally arising heteroplasmy have not been experimentally studied to date. We hence generated a conplastic mouse strain carrying the mitochondrial genome of an AKR/J mouse strain (B6-mtAKR) in a C57BL/6 J nuclear genomic background, leading to >20% heteroplasmy in the origin of light-strand DNA replication (OriL). These conplastic mice demonstrate a shorter lifespan as well as dysregulation of multiple metabolic pathways, culminating in impaired glucose metabolism, compared to that of wild-type C57BL/6 J mice carrying lower levels of heteroplasmy. Our results indicate that physiologically relevant differences in mtDNA heteroplasmy levels at a single, functionally important site impair the metabolic health and lifespan in mice.
Collapse
Affiliation(s)
- Misa Hirose
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Paul Schilf
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Yask Gupta
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Kim Zarse
- Energy Metabolism Laboratory, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Axel Künstner
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Anke Fähnrich
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Hauke Busch
- Medical Systems Biology Group, Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
- Institute for Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Junping Yin
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Marvin N Wright
- Institute of Medical Biometry and Statistics, University of Lübeck, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
- Leibniz Institute for Prevention Research and Epidemiology, BIPS GmbH, Department Biometry and Data Management, Unit Statistical Methods in Genetics and Live-Course Epidemiology, Bremen, Germany
| | | | - Marie Vallier
- Max Planck Institute for Evolutionary Biology, Evolutionary Genomics, Plön, Germany
| | - Meriem Belheouane
- Max Planck Institute for Evolutionary Biology, Evolutionary Genomics, Plön, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Evolutionary Genomics, Plön, Germany
- Institute for Experimental Medicine, Section of Evolutionary Medicine, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Diethard Tautz
- Max Planck Institute for Evolutionary Biology, Evolutionary Genomics, Plön, Germany
| | - Kornelia Johann
- Center of Brain Behavior & Metabolism, Molecular Endocrinology, University of Lübeck, Lübeck, Germany
| | - Rebecca Oelkrug
- Center of Brain Behavior & Metabolism, Molecular Endocrinology, University of Lübeck, Lübeck, Germany
| | - Jens Mittag
- Center of Brain Behavior & Metabolism, Molecular Endocrinology, University of Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- Center of Brain Behavior & Metabolism, Clinical Endocrinology and Metabolism, University of Lübeck, Lübeck, Germany
| | - Alaa Othman
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
- Center of Brain, Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Olaf Jöhren
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Markus Schwaninger
- Center of Brain, Behavior & Metabolism, University of Lübeck, Lübeck, Germany
| | - Cornelia Prehn
- Helmholtz Center, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Neuherberg, Germany
| | - Jerzy Adamski
- Helmholtz Center, German Research Center for Environmental Health, Institute of Experimental Genetics, Genome Analysis Center, Neuherberg, Germany
| | - Kensuke Shima
- Department of Infectious Disease and Microbiology, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Disease and Microbiology, University of Lübeck, Lübeck, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Georg Fuellen
- Institute for Biostatistics and Informatics in Medicine and Ageing Research, Rostock University Medical Center, Rostock, Germany
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock University, Rostock, Germany
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland.
| | - Saleh M Ibrahim
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.
- College of Medicine and Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates.
| |
Collapse
|
91
|
Roles of Mitochondrial DNA Mutations in Stem Cell Ageing. Genes (Basel) 2018; 9:genes9040182. [PMID: 29584704 PMCID: PMC5924524 DOI: 10.3390/genes9040182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial DNA (mtDNA) mutations accumulate in somatic stem cells during ageing and cause mitochondrial dysfunction. In this review, we summarize the studies that link mtDNA mutations to stem cell ageing. We discuss the age-related behaviours of the somatic mtDNA mutations in stem cell populations and how they potentially contribute to stem cell ageing by altering mitochondrial properties in humans and in mtDNA-mutator mice. We also draw attention to the diverse fates of the mtDNA mutations with different origins during ageing, with potential selective pressures on the germline inherited but not the somatic mtDNA mutations.
Collapse
|
92
|
Kuszak AJ, Espey MG, Falk MJ, Holmbeck MA, Manfredi G, Shadel GS, Vernon HJ, Zolkipli-Cunningham Z. Nutritional Interventions for Mitochondrial OXPHOS Deficiencies: Mechanisms and Model Systems. ANNUAL REVIEW OF PATHOLOGY 2018; 13:163-191. [PMID: 29099651 PMCID: PMC5911915 DOI: 10.1146/annurev-pathol-020117-043644] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multisystem metabolic disorders caused by defects in oxidative phosphorylation (OXPHOS) are severe, often lethal, conditions. Inborn errors of OXPHOS function are termed primary mitochondrial disorders (PMDs), and the use of nutritional interventions is routine in their supportive management. However, detailed mechanistic understanding and evidence for efficacy and safety of these interventions are limited. Preclinical cellular and animal model systems are important tools to investigate PMD metabolic mechanisms and therapeutic strategies. This review assesses the mechanistic rationale and experimental evidence for nutritional interventions commonly used in PMDs, including micronutrients, metabolic agents, signaling modifiers, and dietary regulation, while highlighting important knowledge gaps and impediments for randomized controlled trials. Cellular and animal model systems that recapitulate mutations and clinical manifestations of specific PMDs are evaluated for their potential in determining pathological mechanisms, elucidating therapeutic health outcomes, and investigating the value of nutritional interventions for mitochondrial disease conditions.
Collapse
Affiliation(s)
- Adam J Kuszak
- Office of Dietary Supplements, National Institutes of Health, Bethesda, Maryland 20852, USA;
| | - Michael Graham Espey
- Division of Cancer Biology, National Cancer Institute, Rockville, Maryland 20850, USA;
| | - Marni J Falk
- Department of Pediatrics, Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Marissa A Holmbeck
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06510-8023, USA;
| | - Giovanni Manfredi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA;
| | - Gerald S Shadel
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut 06510-8023, USA;
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520-8023, USA;
| | - Hilary J Vernon
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland 21205, USA;
| | - Zarazuela Zolkipli-Cunningham
- Department of Pediatrics, Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
93
|
Burr SP, Pezet M, Chinnery PF. Mitochondrial DNA Heteroplasmy and Purifying Selection in the Mammalian Female Germ Line. Dev Growth Differ 2018; 60:21-32. [PMID: 29363102 PMCID: PMC11520955 DOI: 10.1111/dgd.12420] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 12/08/2017] [Indexed: 01/19/2023]
Abstract
Inherited mutations in the mitochondrial (mt)DNA are a major cause of human disease, with approximately 1 in 5000 people affected by one of the hundreds of identified pathogenic mtDNA point mutations or deletions. Due to the severe, and often untreatable, symptoms of many mitochondrial diseases, identifying how these mutations are inherited from one generation to the next has been an area of intense research in recent years. Despite large advances in our understanding of this complex process, many questions remain unanswered, with one of the most hotly debated being whether or not purifying selection acts against pathogenic mutations during germline development.
Collapse
Affiliation(s)
- Stephen P. Burr
- MRC Mitochondrial Biology UnitDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Mikael Pezet
- MRC Mitochondrial Biology UnitDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Patrick F. Chinnery
- MRC Mitochondrial Biology UnitDepartment of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| |
Collapse
|
94
|
McCann BJ, Cox A, Gammage PA, Stewart JB, Zernicka-Goetz M, Minczuk M. Delivery of mtZFNs into Early Mouse Embryos. Methods Mol Biol 2018; 1867:215-228. [PMID: 30155826 DOI: 10.1007/978-1-4939-8799-3_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mitochondrial diseases often result from mutations in the mitochondrial genome (mtDNA). In most cases, mutant mtDNA coexists with wild-type mtDNA, resulting in heteroplasmy. One potential future approach to treat heteroplasmic mtDNA diseases is the specific elimination of pathogenic mtDNA mutations, lowering the level of mutant mtDNA below pathogenic thresholds. Mitochondrially targeted zinc-finger nucleases (mtZFNs) have been demonstrated to specifically target and introduce double-strand breaks in mutant mtDNA, facilitating substantial shifts in heteroplasmy. One application of mtZFN technology, in the context of heteroplasmic mtDNA disease, is delivery into the heteroplasmic oocyte or early embryo to eliminate mutant mtDNA, preventing transmission of mitochondrial diseases through the germline. Here we describe a protocol for efficient production of mtZFN mRNA in vitro, and delivery of these into 0.5 dpc mouse embryos to elicit shifts of mtDNA heteroplasmy.
Collapse
Affiliation(s)
- Beverly J McCann
- Mitochondrial Genetics Group, MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Andy Cox
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Payam A Gammage
- Mitochondrial Genetics Group, MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - James B Stewart
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Michal Minczuk
- Mitochondrial Genetics Group, MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
95
|
Siegmund SE, Yang H, Sharma R, Javors M, Skinner O, Mootha V, Hirano M, Schon EA. Low-dose rapamycin extends lifespan in a mouse model of mtDNA depletion syndrome. Hum Mol Genet 2017; 26:4588-4605. [PMID: 28973153 PMCID: PMC5886265 DOI: 10.1093/hmg/ddx341] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/31/2017] [Accepted: 08/24/2017] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial disorders affecting oxidative phosphorylation (OxPhos) are caused by mutations in both the nuclear and mitochondrial genomes. One promising candidate for treatment is the drug rapamycin, which has been shown to extend lifespan in multiple animal models, and which was previously shown to ameliorate mitochondrial disease in a knock-out mouse model lacking a nuclear-encoded gene specifying an OxPhos structural subunit (Ndufs4). In that model, relatively high-dose intraperitoneal rapamycin extended lifespan and improved markers of neurological disease, via an unknown mechanism. Here, we administered low-dose oral rapamycin to a knock-in (KI) mouse model of authentic mtDNA disease, specifically, progressive mtDNA depletion syndrome, resulting from a mutation in the mitochondrial nucleotide salvage enzyme thymidine kinase 2 (TK2). Importantly, low-dose oral rapamycin was sufficient to extend Tk2KI/KI mouse lifespan significantly, and did so in the absence of detectable improvements in mitochondrial dysfunction. We found no evidence that rapamycin increased survival by acting through canonical pathways, including mitochondrial autophagy. However, transcriptomics and metabolomics analyses uncovered systemic metabolic changes pointing to a potential 'rapamycin metabolic signature.' These changes also implied that rapamycin may have enabled the Tk2KI/KI mice to utilize alternative energy reserves, and possibly triggered indirect signaling events that modified mortality through developmental reprogramming. From a therapeutic standpoint, our results support the possibility that low-dose rapamycin, while not targeting the underlying mtDNA defect, could represent a crucial therapy for the treatment of mtDNA-driven, and some nuclear DNA-driven, mitochondrial diseases.
Collapse
Affiliation(s)
| | | | - Rohit Sharma
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Martin Javors
- Department of Psychiatry, University of Texas, San Antonio, TX 78229, USA
| | - Owen Skinner
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Vamsi Mootha
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | - Eric A Schon
- Department of Neurology
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
96
|
De Fanti S, Vicario S, Lang M, Simone D, Magli C, Luiselli D, Gianaroli L, Romeo G. Intra-individual purifying selection on mitochondrial DNA variants during human oogenesis. Hum Reprod 2017; 32:1100-1107. [PMID: 28333293 DOI: 10.1093/humrep/dex051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/27/2017] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Does selection for mtDNA mutations occur in human oocytes? SUMMARY ANSWER We provide statistical evidence in favor of the existence of purifying selection for mtDNA mutations in human oocytes acting between the expulsion of the first and second polar bodies (PBs). WHAT IS KNOWN ALREADY Several lines of evidence in Metazoa, including humans, indicate that variation within the germline of mitochondrial genomes is under purifying selection. The presence of this internal selection filter in the germline has important consequences for the evolutionary trajectory of mtDNA. However, the nature and localization of this internal filter are still unclear while several hypotheses are proposed in the literature. STUDY DESIGN, SIZE, DURATION In this study, 60 mitochondrial genomes were sequenced from 17 sets of oocytes, first and second PBs, and peripheral blood taken from nine women between 38 and 43 years of age. PARTICIPANTS/MATERIALS, SETTING, METHODS Whole genome amplification was performed only on the single cell samples and Sanger sequencing was performed on amplicons. The comparison of variant profiles between first and second PB sequences showed no difference in substitution rates but displayed instead a sharp difference in pathogenicity scores of protein-coding sequences using three different metrics (MutPred, Polyphen and SNPs&GO). MAIN RESULTS AND THE ROLE OF CHANCE Unlike the first, second PBs showed no significant differences in pathogenic scores with blood and oocyte sequences. This suggests that a filtering mechanism for disadvantageous variants operates during oocyte development between the expulsion of the first and second PB. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION The sample size is small and further studies are needed before this approach can be used in clinical practice. Studies on a model organism would allow the sample size to be increased. WIDER IMPLICATIONS OF THE FINDINGS This work opens the way to the study of the correlation between mtDNA mutations, mitochondrial capacity and viability of oocytes. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by a SISMER grant. Laboratory facilities and skills were freely provided by SISMER, and by the Alma Mater Studiorum, University of Bologna. The authors have no conflict of interest to disclose.
Collapse
Affiliation(s)
- Sara De Fanti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna 40126, Italy
| | - Saverio Vicario
- Institute of Atmospheric Pollution Research, National Research Council, C/O Physics Department, University of Bari 'Aldo Moro', Bari 70132, Italy
| | - Martin Lang
- Medical Genetics Unit, S. Orsola Hospital, University of Bologna, Bologna 40126, Italy.,Current address: Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Domenico Simone
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari 'Aldo Moro',Bari70132, Italy
| | - Cristina Magli
- Reproductive Medicine Unit, S.I.S.Me.R., Bologna 40138, Italy
| | - Donata Luiselli
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna 40126, Italy
| | - Luca Gianaroli
- Reproductive Medicine Unit, S.I.S.Me.R., Bologna 40138, Italy
| | - Giovanni Romeo
- Medical Genetics Unit, S. Orsola Hospital, University of Bologna, Bologna 40126, Italy
| |
Collapse
|
97
|
Zhang H, Wang Y, Xuan X, Wang G, Guo H, Fan J. A dynamic invertible intramolecular charge-transfer fluorescence probe: real-time monitoring of mitochondrial ATPase activity. Chem Commun (Camb) 2017; 53:5535-5538. [PMID: 28466886 DOI: 10.1039/c7cc02450a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A dynamic invertible intramolecular charge-transfer (ICT) process could provide abundant response signals for real-time monitoring in living organisms. Herein, based on dynamic invertible ICT, we have reported a cancer cell-targeted fluorescence probe (OPM) for mitochondrial ATPase activity. Due to its abundant response signals, OPM could real-time monitor mitochondrial ATPase activity during the cancer apoptosis process, successfully.
Collapse
Affiliation(s)
- Hua Zhang
- Henan Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Key Laboratory of Green Chemical Media and Reactions, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering Institution, Henan Normal University, 453007 Xinxiang, China.
| | | | | | | | | | | |
Collapse
|
98
|
Human iPSC-Derived Neural Progenitors Are an Effective Drug Discovery Model for Neurological mtDNA Disorders. Cell Stem Cell 2017; 20:659-674.e9. [PMID: 28132834 DOI: 10.1016/j.stem.2016.12.013] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 11/04/2016] [Accepted: 12/19/2016] [Indexed: 01/19/2023]
Abstract
Mitochondrial DNA (mtDNA) mutations frequently cause neurological diseases. Modeling of these defects has been difficult because of the challenges associated with engineering mtDNA. We show here that neural progenitor cells (NPCs) derived from human induced pluripotent stem cells (iPSCs) retain the parental mtDNA profile and exhibit a metabolic switch toward oxidative phosphorylation. NPCs derived in this way from patients carrying a deleterious homoplasmic mutation in the mitochondrial gene MT-ATP6 (m.9185T>C) showed defective ATP production and abnormally high mitochondrial membrane potential (MMP), plus altered calcium homeostasis, which represents a potential cause of neural impairment. High-content screening of FDA-approved drugs using the MMP phenotype highlighted avanafil, which we found was able to partially rescue the calcium defect in patient NPCs and differentiated neurons. Overall, our results show that iPSC-derived NPCs provide an effective model for drug screening to target mtDNA disorders that affect the nervous system.
Collapse
|