51
|
Zhang Q, Li G, Zhao W, Wang X, He J, Zhou L, Zhang X, An P, Liu Y, Zhang C, Zhang Y, Liu S, Zhao L, Liu R, Li Y, Jiang W, Wang X, Wang Q, Fang B, Zhao Y, Ren Y, Niu X, Li D, Shi S, Hung WL, Wang R, Liu X, Ren F. Efficacy of Bifidobacterium animalis subsp. lactis BL-99 in the treatment of functional dyspepsia: a randomized placebo-controlled clinical trial. Nat Commun 2024; 15:227. [PMID: 38172093 PMCID: PMC10764899 DOI: 10.1038/s41467-023-44292-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Current treatment for functional dyspepsia (FD) has limited and unsustainable efficacy. Probiotics have the sustainable potential to alleviate FD. This randomized controlled clinical trial (Chinese Clinical Trial Registry, ChiCTR2000041430) assigned 200 FD patients to receive placebo, positive-drug (rabeprazole), or Bifidobacterium animalis subsp. lactis BL-99 (BL-99; low, high doses) for 8-week. The primary outcome was the clinical response rate (CRR) of FD score after 8-week treatment. The secondary outcomes were CRR of FD score at other periods, and PDS, EPS, serum indicators, fecal microbiota and metabolites. The CRR in FD score for the BL-99_high group [45 (90.0%)] was significantly higher than that for placebo [29 (58.0%), p = 0.001], BL-99_low [37 (74.0%), p = 0.044] and positive_control [35 (70.0%), p = 0.017] groups after 8-week treatment. This effect was sustained until 2-week after treatment but disappeared 8-week after treatment. Further metagenomic and metabolomics revealed that BL-99 promoted the accumulation of SCFA-producing microbiota and the increase of SCFA levels in stool and serum, which may account for the increase of serum gastrin level. This study supports the potential use of BL-99 for the treatment of FD.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Guang Li
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Wen Zhao
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Xifan Wang
- Department of Obstetrics and Gynecology, Columbia University, New York, NY, USA
| | - Jingjing He
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Limian Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaoxu Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Peng An
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yinghua Liu
- Department of Nutrition, Chinese PLA General Hospital, Beijing, China
| | - Chengying Zhang
- Department of General Practice, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yong Zhang
- Department of Nutrition, Chinese PLA General Hospital, Beijing, China
| | - Simin Liu
- Center for Global Cardiometabolic Health, Departments of Epidemiology, Medicine, and Surgery, Brown University, Providence, RI, USA
| | - Liang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Rong Liu
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yixuan Li
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Wenjian Jiang
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaoyu Wang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Qingyu Wang
- Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, China
| | - Bing Fang
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yuyang Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Yimei Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Xiaokang Niu
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Dongjie Li
- Department of Cardiovascular Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Shaoqi Shi
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Wei-Lian Hung
- National Center of Technology Innovation for Dairy, Inner Mongolia Dairy Technology Research Institute Co. Ltd., Hohhot, China.
| | - Ran Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Government, Department of Nutrition and Health, China Agricultural University, Beijing, China.
| |
Collapse
|
52
|
Wang H, Yan J, Wang K, Liu Y, Liu S, Wu K, Wang X, Haider A, Liu Y, Zhou Q, Wang X. The gut-liver axis perspective: Exploring the protective potential of polysaccharides from Cistanche deserticola against alcoholic liver disease. Int J Biol Macromol 2024; 256:128394. [PMID: 38013074 DOI: 10.1016/j.ijbiomac.2023.128394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/08/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023]
Abstract
The primary objective of this study is to investigate the potential mechanism behind the protective effect of Cistanche deserticola polysaccharides (CP) against alcoholic liver disease (ALD). Multiple chromography techniques were employed to characterize CP from polysaccharide, the molecular weight distribution of polysaccharides, monosaccharide composition, isomeric hydrogen and isomeric carbon, in order to clarify the material basis of CP. To create the ALD mouse model, we utilized the well-established Lieber-DeCarli alcoholic liquid feed method. Findings from the study revealed that CP administration resulted in significant improvements in intestinal permeability, upregulation of barrier proteins expression, and reduced levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in mouse liver and serum. Additionally, CP treatment reduced the presence of inflammatory cytokines both in serum and liver while enhancing the activity of antioxidant enzymes in the liver. Furthermore, CP effectively reduced alcohol-induced oxidative damage by downregulating Keap1 protein levels in the liver, leading to increased expression of Nrf2 protein. The 16S rDNA sequencing results revealed that CP significantly restored the intestinal microbiota composition in ALD mice. These findings establish a strong association between gut microbiota and liver injury indicators, highlighting the potential of CP in preventing and treating ALD by modulating the gut-liver axis.
Collapse
Affiliation(s)
- Haichao Wang
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Jiajing Yan
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250300, China; Reyoung Pharmaceutical Co., Ltd. Jinan Branch, Jinan 250014, China
| | - Kai Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Yang Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Shan Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Ke Wu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Xumei Wang
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250300, China
| | - Ali Haider
- Department of Allied Health Sciences, The University of Lahore, Gujrat Campus, 50700, Pakistan
| | - Yuhong Liu
- College of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250300, China.
| | - Qian Zhou
- Shandong Academy of Traditional Chinese Medicine, Jinan 250014, China.
| | - Xiaoming Wang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250300, China.
| |
Collapse
|
53
|
Sun X, Chen S, Zhou G, Cheng H. Association between the dietary inflammatory index and all-cause mortality in the U.S. cancer survivors: A prospective cohort study using the National Health and Nutrition Examination Survey database. Prev Med Rep 2024; 37:102582. [PMID: 38259672 PMCID: PMC10801329 DOI: 10.1016/j.pmedr.2023.102582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/11/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Background Cancer remains one of the leading causes of mortality worldwide. Diet can impact inflammation and consequently affect cancer outcomes. The Dietary Inflammatory Index (DII) can serve as a tool to assess the inflammatory potential of cancer survivors' diets and further predict their survival. Objectives To investigate the relationship between the DII and the survival of cancer survivors in National Health and Nutrition Examination Survey (NHANES). Methods An overall sample of 2359 U.S. cancer survivors from the 2005-2014 cohorts of the NHANES were studied. The DII scores were calculated using 28 dietary components and the mortality status was ascertained until December 31, 2015. Based on the multiple analyses, the relationship between DII and all-cause mortality was examined. Results The weighted mean age at baseline was 65.17 ± 14.46 years, 53.16 % were female and 71.30 % were non-Hispanic white. The average DII was 1.51 ± 1.97. After accounting for multiple covariates, positive associations were observed (P < 0.01). Based on Kaplan-Meier survival curves, their significant relationship remains same and the survival probability was decreased among the groups of anti-inflammatory diets (DII < 0) versus pro-inflammatory diets (DII ≥ 0) significantly (Log rank test; P = 0.03). Further analyses were conducted on subgroups and the results are still robust. Conclusions An elevated DII was associated with a rising mortality rate among cancer survivors. DII might serve as a potential inflammatory predictor of cancer mortality prognosis, as well as guide nutritional care and even clinical treatment of cancer survivors.
Collapse
Affiliation(s)
- Xiaohe Sun
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
- Jiangsu Collaborative Innovation Center of TCM Prevention and Treatment of Tumor, The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Shuai Chen
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Guowei Zhou
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| | - Haibo Cheng
- Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
- Jiangsu Collaborative Innovation Center of TCM Prevention and Treatment of Tumor, The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
54
|
Li Y, Zhang Y, Cao M, Zhang R, Wu M, Rui Y, Liu N. The supplementation of Rothia as a potential preventive approach for bone loss in mice with ovariectomy-induced osteoporosis. Food Sci Nutr 2024; 12:340-353. [PMID: 38268892 PMCID: PMC10804113 DOI: 10.1002/fsn3.3747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 01/26/2024] Open
Abstract
There is an inseparable link between bone metabolism and gut microbiota, and the supplementation of probiotics exhibits a significant role in maintaining the homeostasis of gut microbiota and inhibiting bone loss. This study aims to explore the preventive and therapeutic potentials and the specific mechanisms of Rothia on osteoporosis. The mice models of osteoporosis induced by ovariectomy (OVX) were built, and the regular (once a day) and quantitative (200 μL/d) gavage of Rothia was performed for 8 weeks starting from 1 week after OVX. Microcomputed tomography was used to analyze the bone mass and bone microstructure of mice in each group after sacrifice. Histological staining and immunohistochemistry were then applied to identify the expression of pro-inflammatory cytokines, intestinal permeability, and osteogenic and osteoclastic activities of mice. The collected feces of mice in each group were used for 16S rRNA high-throughput sequencing to detect the alterations in composition, abundance, and diversity of gut microbiota. This study demonstrated that the gavage of Rothia alleviated bone loss in mice with OVX-induced osteoporosis, improved OVX-induced intestinal mucosal barrier injury, optimized intestinal permeability (zonula occludens protein 1 and occludin), reduced intestinal inflammation (tumor necrosis factor-α and interleukin-1β), and regulated imbalance of gut microbiota. Based on "gut-bone" axis, this study revealed that regular and quantitative gavage of Rothia can relieve bone loss in mice with OVX-induced osteoporosis by repairing the intestinal mucosal barrier injury, optimizing the intestinal permeability, inhibiting the release of pro-inflammatory cytokines, and improving the disorder of gut microbiota.
Collapse
Affiliation(s)
- Ying‐Juan Li
- Department of Geriatrics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingJiangsuPR China
- School of MedicineSoutheast UniversityNanjingJiangsuPR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingJiangsuPR China
| | - Yuan‐Wei Zhang
- School of MedicineSoutheast UniversityNanjingJiangsuPR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingJiangsuPR China
- Department of Orthopaedics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingJiangsuPR China
| | - Mu‐Min Cao
- School of MedicineSoutheast UniversityNanjingJiangsuPR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingJiangsuPR China
- Department of Orthopaedics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingJiangsuPR China
| | - Ruo‐Lan Zhang
- School of MedicineSoutheast UniversityNanjingJiangsuPR China
| | - Meng‐Ting Wu
- School of MedicineSoutheast UniversityNanjingJiangsuPR China
| | - Yun‐Feng Rui
- School of MedicineSoutheast UniversityNanjingJiangsuPR China
- Multidisciplinary Team (MDT) for Geriatric Hip Fracture Management, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingJiangsuPR China
- Department of Orthopaedics, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingJiangsuPR China
| | - Nai‐Feng Liu
- School of MedicineSoutheast UniversityNanjingJiangsuPR China
- Department of Cardiology, Zhongda Hospital, School of MedicineSoutheast UniversityNanjingJiangsuPR China
| |
Collapse
|
55
|
Wu Y, Guo Y, Huang T, Huang D, Liu L, Shen C, Jiang C, Wang Z, Chen H, Liang P, Hu Y, Zheng Z, Liang T, Zhai D, Zhu H, Liu Q. Licorice flavonoid alleviates gastric ulcers by producing changes in gut microbiota and promoting mucus cell regeneration. Biomed Pharmacother 2023; 169:115868. [PMID: 37952360 DOI: 10.1016/j.biopha.2023.115868] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
Licorice flavonoid (LF) is the main component of Glycyrrhizae Radix et Rhizoma, a "medicine food homology" herbal medicine, which has anti-digestive ulcer activity, but the mechanism in anti-gastric ulcer (GU) remains to be elucidated. In this study, we manifested that LF increased the viability of human gastric mucosal epithelial (GES-1) cells, attenuated ethanol (EtOH)-induced manifestations, reduced histological injury, suppressed inflammation, and restored gastric mucosal barrier in GU rats. After LF therapy, the EtOH-induced gut dysbiosis was partly modulated, and short-chain fatty acids (SCFAs) like butyric acid, propionic acid, and valeric acid were found in higher concentrations. We discovered that the majority of genera that increased in the GU group had a negative correlation with SCFAs in the intestinal tract. In addition, LF-upregulated SCFAs boosted mucus secretion in the gastric epithelium and the expression of mucoprotein (MUC) 5AC and MUC6, particularly the MUC5AC in the gastric foveola. Moreover, LF triggered the EGFR/ERK signal pathway which promoted gastric mucus cell regeneration. Therefore, the findings indicated that LF could inhibit inflammation, promote mucosal barrier repair and angiogenesis, regulate gut microbiota and SCFA metabolism; more importantly, promote epithelial proliferation via activation of the EGFR/ERK pathway, exerting a protective and regenerative effect on the gastric mucosa.
Collapse
Affiliation(s)
- Yufan Wu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yinglin Guo
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Tairun Huang
- Faculty of Chinese Medicines, Macau University of Science and Technology, Taipa, Macau
| | - Dehao Huang
- Huizhou Jiuhui Pharmaceutical Co., Ltd., Huizhou 516000, China
| | - Li Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chunyan Shen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Cuiping Jiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zhuxian Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hongkai Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Peiyi Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Yi Hu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Zeying Zheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Tao Liang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Dan Zhai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China
| | - Hongxia Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| | - Qiang Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
56
|
Sun H, Su X, Liu Y, Li G, Du Q. Roseburia intestinalis relieves intrahepatic cholestasis of pregnancy through bile acid/FXR-FGF15 in rats. iScience 2023; 26:108392. [PMID: 38025767 PMCID: PMC10679810 DOI: 10.1016/j.isci.2023.108392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/25/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Previous research has demonstrated significant differences in intestinal flora between pregnant women with intrahepatic cholestasis of pregnancy (ICP) and healthy pregnant women. The objective of our study is to identify the key bacteria involved in ICP rats and explore the underlying mechanism. We established an ICP rat model and collected rat feces for metagenomic sequencing and found that Roseburia intestinalis (R.I) is the key bacteria in ICP. Transplantation of R.I improved phenotypes associated with ICP through the bile acid/farnesoid X receptor-fibroblast growth factor 15 (FXR-FGF15) signaling pathway. We used the FXR antagonist Z-Guggulsterone (Z-Gu) to verify the key role of FXR in ICP and found that Z-Gu reversed the benefits of R.I on ICP rats. Our research highlights the important role of intestinal flora in the pathogenesis of ICP and provides a novel approach for its treatment.
Collapse
Affiliation(s)
- Hanxiang Sun
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xiujuan Su
- Clinical Research Center, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yang Liu
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Guohua Li
- Department of Reproductive Immunology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Qiaoling Du
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
57
|
Li J, Cui Z, Wei M, Almutairi MH, Yan P. Omics analysis of the effect of cold normal saline stress through gastric gavage on LPS induced mice. Front Microbiol 2023; 14:1256748. [PMID: 38163070 PMCID: PMC10755949 DOI: 10.3389/fmicb.2023.1256748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/13/2023] [Indexed: 01/03/2024] Open
Abstract
Cold stress is a significant environmental stimulus that negatively affects the health, production, and welfare of animals and birds. However, the specific effects of cold stimulation combined with lipopolysaccharide (LPS) on the mouse intestine remain poorly understood. Therefore, we designed this research to explore the effect of cold stimulation + LPS on mice intestine via microbiome and microbiota sequencing. Forty-eight mice were randomly divided into four experimental groups (n = 12): Control (CC), LPS-induced (CL), cold normal saline-induced (MC) and LPS + cold normal saline-induced (ML). Our results showed body weight was similar among different groups of mice. However, the body weight of mice in groups CC and CL were slightly higher compared to those in groups MC and ML. The results of gene expressions reflected that CL and ML exposure caused gut injury and barrier dysfunction, as evident by decreased ZO-1, OCCLUDIN (P < 0.01), and CASPASE-1 (P < 0.01) expression in the intestine of mice. Moreover, we found that cold stress induced oxidative stress in LPS-challenged mice by increasing malondialdehyde (MDA) accumulation and decreasing the antioxidant capacity [glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), total and antioxidant capacity (T-AOC)]. The cold stress promoted inflammatory response by increased IL-1β in mice treated with cold normal saline + LPS. Whereas, microbiome sequencing revealed differential abundance in four phyla and 24 genera among the mouse groups. Metabolism analysis demonstrated the presence of 4,320 metabolites in mice, with 43 up-regulated and 19 down-regulated in CC vs. MC animals, as well as 1,046 up-regulated and 428 down-regulated in ML vs. CL animals. It is Concluded that cold stress enhances intestinal damage by disrupting the balance of gut microbiota and metabolites, while our findings contribute in improving management practices of livestock in during cold seasons.
Collapse
Affiliation(s)
- Jing Li
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zhihao Cui
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mikhlid H. Almutairi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Peishi Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
58
|
Wu R, Xiong R, Li Y, Chen J, Yan R. Gut microbiome, metabolome, host immunity associated with inflammatory bowel disease and intervention of fecal microbiota transplantation. J Autoimmun 2023; 141:103062. [PMID: 37246133 DOI: 10.1016/j.jaut.2023.103062] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/30/2023]
Abstract
Gut dysbiosis has been associated with inflammatory bowel disease (IBD), one of the most common gastrointestinal diseases. The microbial communities play essential roles in host physiology, with profound effects on immune homeostasis, directly or via their metabolites and/or components. There are increasing clinical trials applying fecal microbiota transplantation (FMT) with Crohn's disease (CD) and ulcerative colitis (UC). The restoration of dysbiotic gut microbiome is considered as one of the mechanisms of FMT therapy. In this work, latest advances in the alterations in gut microbiome and metabolome features in IBD patients and experimental mechanistic understanding on their contribution to the immune dysfunction were reviewed. Then, the therapeutic outcomes of FMT on IBD were summarized based on clinical remission, endoscopic remission and histological remission of 27 clinical trials retrieved from PubMed which have been registered on ClinicalTrials.gov with the results been published in the past 10 years. Although FMT is established as an effective therapy for both subtypes of IBD, the promising outcomes are not always achieved. Among the 27 studies, only 11 studies performed gut microbiome profiling, 5 reported immune response alterations and 3 carried out metabolome analysis. Generally, FMT partially restored typical changes in IBD, resulted in increased α-diversity and species richness in responders and similar but less pronounced shifts of patient microbial and metabolomics profiles toward donor profiles. Measurements of immune responses to FMT mainly focused on T cells and revealed divergent effects on pro-/anti-inflammatory functions. The very limited information and the extremely confounding factors in the designs of the FMT trials significantly hindered a reasonable conclusion on the mechanistic involvement of gut microbiota and metabolites in clinical outcomes and an analysis of the inconsistencies.
Collapse
Affiliation(s)
- Rongrong Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Rui Xiong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Yan Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Junru Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao, China.
| |
Collapse
|
59
|
Eom JA, Jeong JJ, Han SH, Kwon GH, Lee KJ, Gupta H, Sharma SP, Won SM, Oh KK, Yoon SJ, Joung HC, Kim KH, Kim DJ, Suk KT. Gut-microbiota prompt activation of natural killer cell on alcoholic liver disease. Gut Microbes 2023; 15:2281014. [PMID: 37988132 PMCID: PMC10730232 DOI: 10.1080/19490976.2023.2281014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/05/2023] [Indexed: 11/22/2023] Open
Abstract
The liver is rich in innate immune cells, such as natural killer (NK) cells, natural killer T cells, and Kupffer cells associated with the gut microbiome. These immune cells are dysfunctional owing to alcohol consumption. However, there is insufficient data on the association between immune cells and gut microbiome in alcoholic liver disease (ALD). Therefore, the purpose of this study was to evaluate the effects of probiotic strains on NK cells in ALD patients. In total, 125 human blood samples [control (n = 22), alcoholic hepatitis (n = 43), and alcoholic cirrhosis (n = 60]) were collected for flow cytometric analysis. C57BL/6J mice were divided into four groups (normal, EtOH-fed, and 2 EtOH+strain groups [Phocaeicola dorei and Lactobacillus helveticus]). Lymphocytes isolated from mouse livers were analyzed using flow cytometry. The frequency of NK cells increased in patients with alcoholic hepatitis and decreased in patients with alcoholic cirrhosis. The expression of NKp46, an NK cell-activating receptor, was decreased in patients with alcoholic hepatitis and increased in patients with alcoholic cirrhosis compared to that in the control group. The number of cytotoxic CD56dimCD16+ NK cells was significantly reduced in patients with alcoholic cirrhosis. We tested the effect of oral administration P. dorei and L. helveticus in EtOH-fed mice. P. dorei and L. helveticus improved liver inflammation and intestinal barrier damage caused by EtOH supply and increased NK cell activity. Therefore, these observations suggest that the gut microbiome may ameliorate ALD by regulating immune cells.
Collapse
Affiliation(s)
- Jung A Eom
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Jin-Ju Jeong
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Sang Hak Han
- Department of Pathology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Goo Hyun Kwon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Kyeong Jin Lee
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Satya Priya Sharma
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Sung-Min Won
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ki-Kwang Oh
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Hyun Chae Joung
- Chong Kun Dang Bio Research Institute, Ansan-si, Gyeonggi-do, Republic of Korea
| | - Kyung Hwan Kim
- Chong Kun Dang Bio Research Institute, Ansan-si, Gyeonggi-do, Republic of Korea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
60
|
Song WS, Jo SH, Lee JS, Kwon JE, Park JH, Kim YR, Baek JH, Kim MG, Kwon SY, Kim YG. Multiomics analysis reveals the biological effects of live Roseburia intestinalis as a high-butyrate-producing bacterium in human intestinal epithelial cells. Biotechnol J 2023; 18:e2300180. [PMID: 37596881 DOI: 10.1002/biot.202300180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/29/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Butyrate-producing bacteria play a key role in human health, and recent studies have triggered interest in their development as next-generation probiotics. However, there remains limited knowledge not only on the identification of high-butyrate-producing bacteria in the human gut but also in the metabolic capacities for prebiotic carbohydrates and their interaction with the host. Herein, it was discovered that Roseburia intestinalis produces higher levels of butyrate and digests a wider variety of prebiotic polysaccharide structures compared with other human major butyrate-producing bacteria (Eubacterium rectale, Faecalibacterium prausnitzii, and Roseburia hominis). Moreover, R. intestinalis extracts upregulated the mRNA expression of tight junction proteins (TJP1, OCLN, and CLDN3) in human intestinal epithelial cells more than other butyrate-producing bacteria. R. intestinalis was cultured with human intestinal epithelial cells in the mimetic intestinal host-microbe interaction coculture system to explore the health-promoting effects using multiomics approaches. Consequently, it was discovered that live R. intestinalis only enhances purine metabolism and the oxidative pathway, increasing adenosine triphosphate levels in human intestinal epithelial cells, but that heat-killed bacteria had no effect. Therefore, this study proposes that R. intestinalis has potentially high value as a next-generation probiotic to promote host intestinal health.
Collapse
Affiliation(s)
- Won-Suk Song
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Sung-Hyun Jo
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Jae-Seung Lee
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Ji-Eun Kwon
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Ji-Hyeon Park
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Ye-Rim Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Ji-Hyun Baek
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Min-Gyu Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Seo-Young Kwon
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul, Republic of Korea
| |
Collapse
|
61
|
Wan T, Wang Y, He K, Zhu S. Microbial sensing in the intestine. Protein Cell 2023; 14:824-860. [PMID: 37191444 PMCID: PMC10636641 DOI: 10.1093/procel/pwad028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
The gut microbiota plays a key role in host health and disease, particularly through their interactions with the immune system. Intestinal homeostasis is dependent on the symbiotic relationships between the host and the diverse gut microbiota, which is influenced by the highly co-evolved immune-microbiota interactions. The first step of the interaction between the host and the gut microbiota is the sensing of the gut microbes by the host immune system. In this review, we describe the cells of the host immune system and the proteins that sense the components and metabolites of the gut microbes. We further highlight the essential roles of pattern recognition receptors (PRRs), the G protein-coupled receptors (GPCRs), aryl hydrocarbon receptor (AHR) and the nuclear receptors expressed in the intestinal epithelial cells (IECs) and the intestine-resident immune cells. We also discuss the mechanisms by which the disruption of microbial sensing because of genetic or environmental factors causes human diseases such as the inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Tingting Wan
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Yalong Wang
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Kaixin He
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Shu Zhu
- Division of Life Sciences and Medicine, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Institute of Immunology, School of Basic Medical Sciences, University of Science and Technology of China, Hefei 230027, China
- Department of Digestive Disease, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| |
Collapse
|
62
|
Sun Y, Zhang S, Nie Q, He H, Tan H, Geng F, Ji H, Hu J, Nie S. Gut firmicutes: Relationship with dietary fiber and role in host homeostasis. Crit Rev Food Sci Nutr 2023; 63:12073-12088. [PMID: 35822206 DOI: 10.1080/10408398.2022.2098249] [Citation(s) in RCA: 121] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Firmicutes and Bacteroidetes are the predominant bacterial phyla colonizing the healthy human gut. Accumulating evidence suggests that dietary fiber plays a crucial role in host health, yet most studies have focused on how the dietary fiber affects health through gut Bacteroides. More recently, gut Firmicutes have been found to possess many genes responsible for fermenting dietary fiber, and could also interact with the intestinal mucosa and thereby contribute to homeostasis. Consequently, the relationship between dietary fiber and Firmicutes is of interest, as well as the role of Firmicutes in host health. In this review, we summarize the current knowledge regarding the molecular mechanism of dietary fiber degradation by gut Firmicutes and explain the communication pathway of the dietary fiber-Firmicutes-host axis, and the beneficial effects of dietary fiber-induced Firmicutes and their metabolites on health. A better understanding of the dialogue sustained by the dietary fiber-Firmicutes axis and the host could provide new insights into probiotic therapy and novel dietary interventions aimed at increasing the abundance of Firmicutes (such as Faecalibacterium, Lactobacillus, and Roseburia) to promote health.
Collapse
Affiliation(s)
- Yonggan Sun
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Shanshan Zhang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Qixing Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Huijun He
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Huizi Tan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs), School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Haihua Ji
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, China
| |
Collapse
|
63
|
Grander C, Meyer M, Steinacher D, Claudel T, Hausmann B, Pjevac P, Grabherr F, Oberhuber G, Grander M, Brigo N, Jukic A, Schwärzler J, Weiss G, Adolph TE, Trauner M, Tilg H. 24-Norursodeoxycholic acid ameliorates experimental alcohol-related liver disease and activates hepatic PPARγ. JHEP Rep 2023; 5:100872. [PMID: 37818230 PMCID: PMC10561126 DOI: 10.1016/j.jhepr.2023.100872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 10/12/2023] Open
Abstract
Background & Aims Alcohol-related liver disease (ALD) is a global healthcare challenge with limited treatment options. 24-Norursodeoxycholic acid (NorUDCA) is a synthetic bile acid with anti-inflammatory properties in experimental and human cholestatic liver diseases. In the present study, we explored the efficacy of norUDCA in experimental ALD. Methods NorUDCA was tested in a preventive and therapeutic setting in an experimental ALD model (Lieber-DeCarli diet enriched with ethanol). Liver disease was phenotypically evaluated using histology and biochemical methods, and anti-inflammatory properties and peroxisome proliferator-activated receptor gamma activation by norUDCA were evaluated in cellular model systems. Results NorUDCA administration ameliorated ethanol-induced liver injury, reduced hepatocyte death, and reduced the expression of hepatic pro-inflammatory cytokines including tumour necrosis factor (Tnf), Il-1β, Il-6, and Il-10. NorUDCA shifted hepatic macrophages towards an anti-inflammatory M2 phenotype. Further, norUDCA administration altered the composition of the intestinal microbiota, specifically increasing the abundance of Roseburia, Enterobacteriaceae, and Clostridum spp. In a therapeutic model, norUDCA also ameliorated ethanol-induced liver injury. Moreover, norUDCA suppressed lipopolysaccharide-induced IL-6 expression in human peripheral blood mononuclear cells and evoked peroxisome proliferator-activated receptor gamma activation. Conclusions NorUDCA ameliorated experimental ALD, protected against hepatic inflammation, and affected gut microbial commensalism. NorUDCA could serve as a novel therapeutic agent in the future management of patients with ALD. Impact and implications Alcohol-related liver disease is a global healthcare concern with limited treatment options. 24-Norursodeoxycholic acid (NorUDCA) is a modified bile acid, which was proven to be effective in human cholestatic liver diseases. In the present study, we found a protective effect of norUDCA in experimental alcoholic liver disease. For patients with ALD, norUDCA could be a potential new treatment option.
Collapse
Affiliation(s)
- Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Moritz Meyer
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Daniel Steinacher
- Hans Popper Laboratory of Molecular Hepatology, Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Thierry Claudel
- Hans Popper Laboratory of Molecular Hepatology, Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna, The University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Petra Pjevac
- Joint Microbiome Facility of the Medical University of Vienna, The University of Vienna, Vienna, Austria
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Georg Oberhuber
- INNPATH, Tirol-Kliniken University Hospital Innsbruck, Innsbruck, Austria
| | - Manuel Grander
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University Innsbruck, Innsbruck, Austria
| | - Natascha Brigo
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University Innsbruck, Innsbruck, Austria
| | - Almina Jukic
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Julian Schwärzler
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University Innsbruck, Innsbruck, Austria
| | - Timon E. Adolph
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Michael Trauner
- Hans Popper Laboratory of Molecular Hepatology, Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
64
|
Wang M, Jiang Y, Wang S, Fu L, Liang Z, Zhang Y, Huang X, Li X, Feng M, Long D. Yak milk protects against alcohol-induced liver injury in rats. Food Funct 2023; 14:9857-9871. [PMID: 37853817 DOI: 10.1039/d3fo03675h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
The protective effects of yak milk (YM) against chronic alcoholic liver injury in rats were investigated in this study. Histologic and biochemical analyses demonstrated that YM consumption ameliorates alcohol-induced liver injury by increasing the liver antioxidant enzyme activity and reducing inflammation. Furthermore, microbiome and metabolomic analyses exploring YM's impact on gut microbiota and metabolism found that YM administration regulates gut microbiota composition. Specifically, there was a decrease in the relative abundance of Helicobacter, Streptococcus, Peptococcus and Tyzzerella, along with an increase in Turisibacter and Intestinimonas. Moreover, Pearson analysis indicated positive correlations between Peptococcus and Tyzzerella with ALT and AST levels, while showing a negative correlation with ADH levels. Furthermore, differential metabolite analysis of fecal samples from the YM group identified significant increases in the taurine (2-Aminoethanesulfonic acid), hypotaurine (2-Aminoethanesulfonic Acid) and isethionic acid levels. Finally, KEGG topology analysis highlighted taurine and hypotaurine metabolism as the primary pathways influenced by YM intervention. Therefore, these findings collectively suggest that YM may protect alcohol-exposed rats against liver injury by modulating oxidative stress, inflammatory response, gut microbiota disorder, and metabolic regulation.
Collapse
Affiliation(s)
- Man Wang
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Yanshi Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Siying Wang
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Lin Fu
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Zujin Liang
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Ying Zhang
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Xiaodan Huang
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Xin Li
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Meiying Feng
- School of Public Health, Lanzhou University, Lanzhou, China.
| | - Danfeng Long
- School of Public Health, Lanzhou University, Lanzhou, China.
| |
Collapse
|
65
|
Zhang P, Wang X, Li S, Cao X, Zou J, Fang Y, Shi Y, Xiang F, Shen B, Li Y, Fang B, Zhang Y, Guo R, Lv Q, Zhang L, Lu Y, Wang Y, Yu J, Xie Y, Wang R, Chen X, Yu J, Zhang Z, He J, Zhan J, Lv W, Nie Y, Cai J, Xu X, Hu J, Zhang Q, Gao T, Jiang X, Tan X, Xue N, Wang Y, Ren Y, Wang L, Zhang H, Ning Y, Chen J, Zhang L, Jin S, Ren F, Ehrlich SD, Zhao L, Ding X. Metagenome-wide analysis uncovers gut microbial signatures and implicates taxon-specific functions in end-stage renal disease. Genome Biol 2023; 24:226. [PMID: 37828586 PMCID: PMC10571392 DOI: 10.1186/s13059-023-03056-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND The gut microbiota plays a crucial role in regulating host metabolism and producing uremic toxins in patients with end-stage renal disease (ESRD). Our objective is to advance toward a holistic understanding of the gut ecosystem and its functional capacity in such patients, which is still lacking. RESULTS Herein, we explore the gut microbiome of 378 hemodialytic ESRD patients and 290 healthy volunteers from two independent cohorts via deep metagenomic sequencing and metagenome-assembled-genome-based characterization of their feces. Our findings reveal fundamental alterations in the ESRD microbiome, characterized by a panel of 348 differentially abundant species, including ESRD-elevated representatives of Blautia spp., Dorea spp., and Eggerthellaceae, and ESRD-depleted Prevotella and Roseburia species. Through functional annotation of the ESRD-associated species, we uncover various taxon-specific functions linked to the disease, such as antimicrobial resistance, aromatic compound degradation, and biosynthesis of small bioactive molecules. Additionally, we show that the gut microbial composition can be utilized to predict serum uremic toxin concentrations, and based on this, we identify the key toxin-contributing species. Furthermore, our investigation extended to 47 additional non-dialyzed chronic kidney disease (CKD) patients, revealing a significant correlation between the abundance of ESRD-associated microbial signatures and CKD progression. CONCLUSION This study delineates the taxonomic and functional landscapes and biomarkers of the ESRD microbiome. Understanding the role of gut microbiota in ESRD could open new avenues for therapeutic interventions and personalized treatment approaches in patients with this condition.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Xifan Wang
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Shenghui Li
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Xuesen Cao
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Jianzhou Zou
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yi Fang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yiqin Shi
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Fangfang Xiang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Bo Shen
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Ruochun Guo
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Qingbo Lv
- Puensum Genetech Institute, Wuhan, 430076, China
| | - Liwen Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yufei Lu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yaqiong Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Jinbo Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yeqing Xie
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Xiaohong Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Jiawei Yu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Zhen Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Jingjing He
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Jing Zhan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Wenlv Lv
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yuxin Nie
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Jieru Cai
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Xialian Xu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Jiachang Hu
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Qi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Ting Gao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Xiaotian Jiang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Xiao Tan
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Ning Xue
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yimei Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yimei Ren
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Li Wang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Han Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Yichun Ning
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Jing Chen
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Lin Zhang
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Shi Jin
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China
| | - Fazheng Ren
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China
| | - Stanislav Dusko Ehrlich
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Queen Square, London, WC1N 3RX, UK.
| | - Liang Zhao
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, 100190, China.
| | - Xiaoqiang Ding
- Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical Medical Center for Kidney Disease, Shanghai, 200032, China.
| |
Collapse
|
66
|
Chen CY, Ho HC. Roles of gut microbes in metabolic-associated fatty liver disease. Tzu Chi Med J 2023; 35:279-289. [PMID: 38035063 PMCID: PMC10683521 DOI: 10.4103/tcmj.tcmj_86_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 12/02/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is the most common chronic liver disease. Gut dysbiosis is considered a significant contributing factor in disease development. Increased intestinal permeability can be induced by gut dysbiosis, followed by the entry of lipopolysaccharide into circulation to reach peripheral tissue and result in chronic inflammation. We reviewed how microbial metabolites push host physiology toward MAFLD, including short-chain fatty acids (SCFAs), bile acids, and tryptophan metabolites. The effects of SCFAs are generally reported as anti-inflammatory and can improve intestinal barrier function and restore gut microbiota. Gut microbes can influence intestinal barrier function through SCFAs produced by fermentative bacteria, especially butyrate and propionate producers. This is achieved through the activation of free fatty acid sensing receptors. Bile is directly involved in lipid absorption. Gut microbes can alter bile acid composition by bile salt hydrolase-producing bacteria and bacterial hydroxysteroid dehydrogenase-producing bacteria. These bile acids can affect host physiology by activating farnesoid X receptor Takeda G protein-coupled receptor 5. Gut microbes can also induce MAFLD-associated symptoms by producing tryptophan metabolites kynurenine, serotonin, and indole-3-propionate. A summary of bacterial genera involved in SCFAs production, bile acid transformation, and tryptophan metabolism is provided. Many bacteria have demonstrated efficacy in alleviating MAFLD in animal models and are potential therapeutic candidates for MAFLD.
Collapse
Affiliation(s)
- Chun-Yao Chen
- Department of Biomedical Sciences and Engineering, Tzu Chi University, Hualien, Taiwan
| | - Han-Chen Ho
- Department of Anatomy, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
67
|
Liu S, Men X, Guo Y, Cai W, Wu R, Gao R, Zhong W, Guo H, Ruan H, Chou S, Mai J, Ping S, Jiang C, Zhou H, Mou X, Zhao W, Lu Z. Gut microbes exacerbate systemic inflammation and behavior disorders in neurologic disease CADASIL. MICROBIOME 2023; 11:202. [PMID: 37684694 PMCID: PMC10486110 DOI: 10.1186/s40168-023-01638-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/01/2023] [Indexed: 09/10/2023]
Abstract
BACKGROUND Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a cerebral small vessel disease that carries mutations in NOTCH3. The clinical manifestations are influenced by genetic and environmental factors that may include gut microbiome. RESULTS We investigated the fecal metagenome, fecal metabolome, serum metabolome, neurotransmitters, and cytokines in a cohort of 24 CADASIL patients with 28 healthy household controls. The integrated-omics study showed CADASIL patients harbored an altered microbiota composition and functions. The abundance of bacterial coenzyme A, thiamin, and flavin-synthesizing pathways was depleted in patients. Neurotransmitter balance, represented by the glutamate/GABA (4-aminobutanoate) ratio, was disrupted in patients, which was consistent with the increased abundance of two major GABA-consuming bacteria, Megasphaera elsdenii and Eubacterium siraeum. Essential inflammatory cytokines were significantly elevated in patients, accompanied by an increased abundance of bacterial virulence gene homologs. The abundance of patient-enriched Fusobacterium varium positively correlated with the levels of IL-1β and IL-6. Random forest classification based on gut microbial species, serum cytokines, and neurotransmitters showed high predictivity for CADASIL with AUC = 0.89. Targeted culturomics and mechanisms study further showed that patient-derived F. varium infection caused systemic inflammation and behavior disorder in Notch3R170C/+ mice potentially via induction of caspase-8-dependent noncanonical inflammasome activation in macrophages. CONCLUSION These findings suggested the potential linkage among the brain-gut-microbe axis in CADASIL. Video Abstract.
Collapse
Affiliation(s)
- Sheng Liu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Xuejiao Men
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Yang Guo
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Wei Cai
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Ruizhen Wu
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Rongsui Gao
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Weicong Zhong
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Huating Guo
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Hengfang Ruan
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China
| | - Shuli Chou
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Junrui Mai
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Suning Ping
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Chao Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou, 310012, Zhejiang, China
| | - Hongwei Zhou
- Department of Laboratory Medicine, Microbiome Medicine Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, Guangdong, China
| | - Xiangyu Mou
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Wenjing Zhao
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China.
| | - Zhengqi Lu
- Department of Neurology, Center for the Study of Mental and Neurological Disorders, the Third Affiliated Hospital of Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
68
|
Choi KJ, Yoon MY, Kim JE, Yoon SS. Gut commensal Kineothrix alysoides mitigates liver dysfunction by restoring lipid metabolism and gut microbial balance. Sci Rep 2023; 13:14668. [PMID: 37674003 PMCID: PMC10482948 DOI: 10.1038/s41598-023-41160-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as Non-Alcoholic Fatty Liver Disease, is a widespread liver condition characterized by excessive fat buildup in hepatocytes without significant alcohol consumption. Manipulation of the gut microbiome has been considered to prevent and improve the occurrence and progression of MASLD, particularly through the gut-liver axis. This study aimed to investigate the correlation between the gut microbiome and liver function and determine whether the gut microbiome can ameliorate MASLD. We comparatively analyzed the gut microbiome composition between mice fed normal chow and those fed a high-fat diet and observed that the abundance of Kineothrix alysoides decreased in the high-fat group. Further analysis showed that treatment with K. alysoides in the high-fat diet group led to decreased weight loss, and MASLD attenuation. Importantly, K. alysoides treatment attenuated MASLD in mice fed a high-fat, high-fructose diet (HFHF), which can cause advanced liver damage. Furthermore, administration of K. alysoides altered the gut microbial composition in the HFHF diet group and improved MASLD. Overall, these findings demonstrate the potential of K. alysoides in restoring gut health and facilitating lipid metabolism to prevent and treat MASLD.
Collapse
Affiliation(s)
- Kyoung Jin Choi
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
- Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea
| | - Mi Young Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Ji-Eun Kim
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea.
| | - Sang Sun Yoon
- Department of Microbiology and Immunology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, South Korea.
- Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, South Korea.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, South Korea.
- Institute of Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, South Korea.
- BioMe Inc., Seoul, South Korea.
| |
Collapse
|
69
|
Ni Y, Qian L, Siliceo SL, Long X, Nychas E, Liu Y, Ismaiah MJ, Leung H, Zhang L, Gao Q, Wu Q, Zhang Y, Jia X, Liu S, Yuan R, Zhou L, Wang X, Li Q, Zhao Y, El-Nezami H, Xu A, Xu G, Li H, Panagiotou G, Jia W. Resistant starch decreases intrahepatic triglycerides in patients with NAFLD via gut microbiome alterations. Cell Metab 2023; 35:1530-1547.e8. [PMID: 37673036 DOI: 10.1016/j.cmet.2023.08.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/22/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a hepatic manifestation of metabolic dysfunction for which effective interventions are lacking. To investigate the effects of resistant starch (RS) as a microbiota-directed dietary supplement for NAFLD treatment, we coupled a 4-month randomized placebo-controlled clinical trial in individuals with NAFLD (ChiCTR-IOR-15007519) with metagenomics and metabolomics analysis. Relative to the control (n = 97), the RS intervention (n = 99) resulted in a 9.08% absolute reduction of intrahepatic triglyceride content (IHTC), which was 5.89% after adjusting for weight loss. Serum branched-chain amino acids (BCAAs) and gut microbial species, in particular Bacteroides stercoris, significantly correlated with IHTC and liver enzymes and were reduced by RS. Multi-omics integrative analyses revealed the interplay among gut microbiota changes, BCAA availability, and hepatic steatosis, with causality supported by fecal microbiota transplantation and monocolonization in mice. Thus, RS dietary supplementation might be a strategy for managing NAFLD by altering gut microbiota composition and functionality.
Collapse
Affiliation(s)
- Yueqiong Ni
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, 07745 Jena, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| | - Lingling Qian
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Sara Leal Siliceo
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Xiaoxue Long
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Emmanouil Nychas
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Yan Liu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Marsena Jasiel Ismaiah
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio 70211, Finland; School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Howell Leung
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, 07745 Jena, Germany
| | - Lei Zhang
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Qiongmei Gao
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Qian Wu
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Ying Zhang
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Xi Jia
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shuangbo Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Rui Yuan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaolin Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qi Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Hani El-Nezami
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio 70211, Finland; School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Huating Li
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Gianni Panagiotou
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11A, 07745 Jena, Germany; Department of Medicine, The University of Hong Kong, Hong Kong, China; Friedrich Schiller University, Faculty of Biological Sciences, Jena, Germany.
| | - Weiping Jia
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| |
Collapse
|
70
|
Ma Y, Liu X, Zhang X, Yu Y, Li Y, Song M, Wang J. Efficient Mining of Anticancer Peptides from Gut Metagenome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300107. [PMID: 37382183 PMCID: PMC10477861 DOI: 10.1002/advs.202300107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/03/2023] [Indexed: 06/30/2023]
Abstract
The gut microbiome plays a crucial role in modulating host health and disease. It serves as a vast reservoir of functional molecules that hold great potential for clinical applications. One specific area of interest is identifying anticancer peptides (ACPs) for innovative cancer therapies. However, ACPs discovery is hindered by a heavy reliance on experimental methodologies. To overcome this limitation, we here employed a novel approach by leveraging the overlap between ACPs and antimicrobial peptides (AMPs). By combining well-established AMP prediction methods with mining techniques in metagenomic cohorts, a total of 40 potential ACPs is identified. Out of the identified ACPs, 39 demonstrated inhibitory effects against at least one cancer cell line, exhibiting significant differences from known ACPs. Moreover, the therapeutic potential of the two most promising peptides in a mouse xenograft cancer model is evaluated. Encouragingly, the peptides exhibit effective tumor inhibition without any detectable toxic effects. Interestingly, both peptides display uncommon secondary structures, highlighting its distinctive characteristics. This findings highlight the efficacy of the multi-center mining approach, which effectively uncovers novel ACPs from the gut microbiome. This approach has significant implications for expanding treatment options not only for CRC, but also for other cancer types.
Collapse
Affiliation(s)
- Yue Ma
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of Sciences100101BeijingP. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
- Max Planck Institute for Evolutionary Biology24306PlönGermany
| | - Xiaolin Liu
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of Sciences100101BeijingP. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
- Max Planck Institute for Evolutionary Biology24306PlönGermany
| | - Xuan Zhang
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of Sciences100101BeijingP. R. China
| | - Ying Yu
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of Sciences100101BeijingP. R. China
| | - Yujing Li
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of Sciences100101BeijingP. R. China
- Institute for Stem Cell and RegenerationChinese Academy of Sciences100101BeijingP. R. China
- Beijing Institute for Stem Cell and Regenerative Medicine100101BeijingP. R. China
| | - Moshi Song
- State Key Laboratory of Membrane BiologyInstitute of ZoologyChinese Academy of Sciences100101BeijingP. R. China
- Institute for Stem Cell and RegenerationChinese Academy of Sciences100101BeijingP. R. China
- Beijing Institute for Stem Cell and Regenerative Medicine100101BeijingP. R. China
| | - Jun Wang
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of Sciences100101BeijingP. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
71
|
Zou J, Yang R, Feng R, Liu J, Wan JB. Ginsenoside Rk2, a dehydroprotopanaxadiol saponin, alleviates alcoholic liver disease via regulating NLRP3 and NLRP6 inflammasome signaling pathways in mice. J Pharm Anal 2023; 13:999-1012. [PMID: 37842661 PMCID: PMC10568107 DOI: 10.1016/j.jpha.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/19/2023] [Accepted: 05/08/2023] [Indexed: 10/17/2023] Open
Abstract
Heavy alcohol consumption results in alcoholic liver disease (ALD) with inadequate therapeutic options. Here, we first report the potential beneficial effects of ginsenoside Rk2 (Rk2), a rare dehydroprotopanaxadiol saponin isolated from streamed ginseng, against alcoholic liver injury in mice. Chronic-plus-single-binge ethanol feeding caused severe liver injury, as manifested by significantly elevated serum aminotransferase levels, hepatic histological changes, increased lipid accumulation, oxidative stress, and inflammation in the liver. These deleterious effects were alleviated by the treatment with Rk2 (5 and 30 mg/kg). Acting as an nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inhibitor, Rk2 ameliorates alcohol-induced liver inflammation by inhibiting NLRP3 inflammasome signaling in the liver. Meanwhile, the treatment with Rk2 alleviated the alcohol-induced intestinal barrier dysfunction via enhancing NLRP6 inflammasome in the intestine. Our findings indicate that Rk2 is a promising agent for the prevention and treatment of ALD and other NLPR3-driven diseases.
Collapse
Affiliation(s)
- Jian Zou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Rujie Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Ruibing Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| |
Collapse
|
72
|
Shao L, Fu J, Xie L, Cai G, Cheng Y, Zheng N, Zeng P, Yan X, Ling Z, Ye S. Fecal Microbiota Underlying the Coexistence of Schizophrenia and Multiple Sclerosis in Chinese Patients. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2023; 2023:5602401. [PMID: 37680457 PMCID: PMC10482522 DOI: 10.1155/2023/5602401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/11/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023]
Abstract
Both schizophrenia (SZ) and multiple sclerosis (MS) affect millions of people worldwide and impose a great burden on society. Recent studies indicated that MS elevated the risk of SZ and vice versa, whereas the underlying pathological mechanisms are still obscure. Considering that fecal microbiota played a vital role in regulating brain functions, the fecal microbiota and serum cytokines from 90 SZ patients and 71 age-, gender-, and BMI-matched cognitively normal subjects (referred as SZC), 22 MS patients and 33 age-, gender-, and BMI-matched healthy subjects (referred as MSC) were analyzed. We found that both diseases demonstrated similar microbial diversity and shared three differential genera, including the down-regulated Faecalibacterium, Roseburia, and the up-regulated Streptococcus. Functional analysis indicated that the three genera were involved in pathways such as "carbohydrate metabolism" and "amino acid metabolism." Moreover, the variation patterns of serum cytokines associated with MS and SZ patients were a bit different. Among the six cytokines perturbed in both diseases, TNF-α increased, while IL-8 and MIP-1α decreased in both diseases. IL-1ra, PDGF-bb, and RANTES were downregulated in MS patients but upregulated in SZ patients. Association analyses showed that Faecalibacterium demonstrated extensive correlations with cytokines in both diseases. Most notably, Faecalibacterium correlated negatively with TNF-α. In other words, fecal microbiota such as Faecalibacterium may contribute to the coexistence of MS and SZ by regulating serum cytokines. Our study revealed the potential roles of fecal microbiota in linking MS and SZ, which paves the way for developing gut microbiota-targeted therapies that can manage two diseases with a single treat.
Collapse
Affiliation(s)
- Li Shao
- School of Clinical Medicine, Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Jinlong Fu
- School of Clinical Medicine, Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Lulu Xie
- Rugao Experimental Primary School, Nantong, China
| | - Guangyong Cai
- Department of Rehabilitation Medicine, Lishui Second People's Hospital, Lishui, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Nengneng Zheng
- Department of Obstetrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ping Zeng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiumei Yan
- Department of Rehabilitation Medicine, Lishui Second People's Hospital, Lishui, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Shiwei Ye
- Department of Psychiatry, Lishui Second People's Hospital, Lishui, China
| |
Collapse
|
73
|
Zhu L, Wang Y, Pan CQ, Xing H. Gut microbiota in alcohol-related liver disease: pathophysiology and gut-brain cross talk. Front Pharmacol 2023; 14:1258062. [PMID: 37601074 PMCID: PMC10436520 DOI: 10.3389/fphar.2023.1258062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
Alcohol-related liver disease (ALD) from excessive alcohol intake has a unique gut microbiota profile. The disease progression-free survival in ALD patients has been associated with the degree of gut dysbiosis. The vicious cycles between gut dysbiosis and the disease progression in ALD including: an increase of acetaldehyde production and bile acid secretion, impaired gut barrier, enrichment of circulating microbiota, toxicities of microbiota metabolites, a cascade of pro-inflammatory chemokines or cytokines, and augmentation in the generation of reactive oxygen species. The aforementioned pathophysiology process plays an important role in different disease stages with a spectrum of alcohol hepatitis, ALD cirrhosis, neurological dysfunction, and hepatocellular carcinoma. This review aims to illustrate the pathophysiology of gut microbiota and clarify the gut-brain crosstalk in ALD, which may provide the opportunity of identifying target points for future therapeutic intervention in ALD.
Collapse
Affiliation(s)
- Lin Zhu
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yixuan Wang
- Division of Gastroenterology and Hepatology, BaoJi Central Hospital, Shaanxi, China
| | - Calvin Q. Pan
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Division of Gastroenterology and Hepatology, NYU Langone Health, New York University School of Medicine, New York, NY, United States
| | - Huichun Xing
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Center of Liver Diseases, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
74
|
Deng Y, Wang J, Xie G, Zou G, Li S, Zhang J, Cai W, Xu J. Correlation between gut microbiota and the development of Graves' disease: A prospective study. iScience 2023; 26:107188. [PMID: 37485373 PMCID: PMC10362358 DOI: 10.1016/j.isci.2023.107188] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
The association between gut microbiota and development of Graves' disease (GD) remains unclear. This study aimed to profile the gut microbiota of 65 patients newly diagnosed with GD before and after treatment and 33 physical examination personnel via 16S rRNA sequencing. Significant differences in the gut microbiota composition were observed between the two groups, showing relative bacterial abundances of 1 class, 1 order, 5 families, and 14 genera. After treatment, the abundance of the significantly enriched biota in the GD group decreased considerably, whereas that of the previously decreased biota increased considerably. Further, interleukin-17 levels decreased significantly. The random forest method was used to identify 12 genera that can distinguish patients with GD from healthy controls. Our study revealed that the gut microbiota of patients with GD exhibit unique characteristics compared with that of healthy individuals, which may be related to an imbalance in the immune system and gut microbiota.
Collapse
Affiliation(s)
- Yuanyuan Deng
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang 330006, People's Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang 330006, People’s Republic of China
| | - Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang 330006, People's Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang 330006, People’s Republic of China
| | - Guijiao Xie
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Guilin Zou
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang 330006, People's Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang 330006, People’s Republic of China
| | - Shanshan Li
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Jie Zhang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
| | - Wei Cai
- Department of Medical Genetics and Cell Biology, Medical College of Nanchang University, Nanchang 330006, People’s Republic of China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang 330006, People's Republic of China
- Jiangxi Clinical Research Center for Endocrine and Metabolic Disease, Nanchang 330006, People's Republic of China
- Jiangxi Branch of National Clinical Research Center for Metabolic Disease, Nanchang 330006, People’s Republic of China
| |
Collapse
|
75
|
Hatayama K, Ebara A, Okuma K, Tokuno H, Hasuko K, Masuyama H, Ashikari I, Shirasawa T. Characteristics of Intestinal Microbiota in Japanese Patients with Mild Cognitive Impairment and a Risk-Estimating Method for the Disorder. Biomedicines 2023; 11:1789. [PMID: 37509429 PMCID: PMC10376419 DOI: 10.3390/biomedicines11071789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Intestinal microbiota may play a significant role in the development and progression of mild cognitive impairment (MCI). In addition, sex differences in the prevalence of MCI and intestinal microbiota are likely to exist. Therefore, this study investigated the association between MCI and intestinal microbiota by comparing Japanese patients in their 70s with MCI (11 males and 18 females) and disease-free controls (17 males and 23 females), taking sex into account. In both sexes, Clostridium_XVIII, Eggerthella, Erysipelatoclostridium, Flavonifractor, and Ruminococcus 2 were the more abundant taxa in the MCI group, whereas Megasphaera, Oscillibacter, Prevotella, Roseburia, and Victivallis were less abundant. Based on these characteristics, it was hypothesized that the composition of the intestinal microbiota in the MCI group leads to dysregulation of the intestinal microbiota, increased intestinal and blood-brain barrier permeability, and increased chronic neuroinflammation, with the long-term persistence of these abnormalities ultimately leading to cognitive decline. Furthermore, risk estimation models for MCI based on intestinal microbiota data were developed using structural equation modeling. These tests discriminated between the MCI and control groups. Incorporating these factors into intestinal microbiota testing using stool samples may be an efficient method to screen individuals with MCI.
Collapse
Affiliation(s)
| | - Aya Ebara
- Symbiosis Solutions Inc., Tokyo 101-0064, Japan
| | - Kana Okuma
- Symbiosis Solutions Inc., Tokyo 101-0064, Japan
| | | | | | | | | | | |
Collapse
|
76
|
Sun C, Song R, Zhou J, Jia Y, Lu J. Fermented Bamboo Fiber Improves Productive Performance by Regulating Gut Microbiota and Inhibiting Chronic Inflammation of Sows and Piglets during Late Gestation and Lactation. Microbiol Spectr 2023; 11:e0408422. [PMID: 37042787 PMCID: PMC10269633 DOI: 10.1128/spectrum.04084-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
Sows exhibit metabolic syndrome and significant changes in intestinal microbiota during late gestation and lactation, affecting sow performance and piglet health. Dietary fiber (DF) is widely applied to improve sow performance by modulating gut microbiota and their by-products. Here, 60 sows were randomly allocated to groups, including CON (8% wheat bran), FBF-1 (1% fermented bamboo fiber), FBF-2 (2.5% fermented bamboo fiber), and FBF-3 (4% fermented bamboo fiber) from day 80 of gestation (G80d) to the end of lactation (L21d). Compared with CON, the FBF-3 diet decreased lactation backfat loss, increased average daily feed intake (ADFI) during lactation, and the weight gain of piglets, while supplementation of FBF increased fecal water content and reduced the rate of constipation in sows. Further, the yield and quality of milk of sows in FBF groups were improved. The FBF-3 diet significantly reduced markers of intestinal permeability (diamine oxidase and endotoxin) and systemic inflammation (interleukin-6 [IL-6] and tumor necrosis factor alpha) in sow serum during lactation, while it increased the anti-inflammatory marker (IL-10). Similarly, the piglets in the FBF-2 and FBF-3 groups had lower levels of IL-6 and higher levels of IgG, IgM, and insulin-like growth factor in serum. In addition, sows fed the 4% FBF diet had higher levels of acetate, propionate, butyrate, and total short-chain fatty acids (SCFAs) in feces than CON, and total SCFAs were promoted in piglets from the FBF-3 group. Spearman correlation analysis showed that immunity, inflammation, and intestinal microbiota are closely related to sow performance, which can affect piglet growth. The potential mechanism could be that FBF promoted the enrichment of beneficial genera such as Lachnospira, Lachnospiracea_XPB1014_Group, and Roseburia and the production of SCFAs in the sow's intestine, and reduced the relative abundance of harmful bacteria such as Fusobacterium, Sutterellaceae, and Sutterella. Meanwhile, the intake of FBF by sows affected the gut microbial composition of their offspring piglets, significantly increasing the relative abundance of beneficial bacteria Alistipes and Lachnoclostridium and decreasing the relative abundance of pathogenic bacteria Trueperella among colonic microorganisms. IMPORTANCE Dietary fiber is widely applied in the nutrition of sows due to its potential value in improving performance and intestinal health. Fermented bamboo fiber, rich in dietary fiber, has not been fully evaluated to be used in sow diets. Sows mobilize body reserves during gestation and lactation due to nutrients being prioritized for lactation purposes while feeding piglets, which generally leads to metabolism and immunity undergoing drastic changes. The main manifestations are increased inflammation and intestinal permeability and disturbed intestinal flora, which ultimately reduces the ADFI and milk quality, thus affecting the growth of piglets. The study described here is the first attempt to provide FBF for sows in late gestation and lactation can reverse this process. The 4% FBF was initially explored to have the most significantly beneficial effect. It provides a potentially effective method for dietary modification to control the gut microbiota and its metabolites to improve sow and piglet health. Moreover, the sow-piglet model offers a reference for investigating the impact of dietary fiber on the intestinal health of human mothers and infants.
Collapse
Affiliation(s)
- Chuansong Sun
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- The National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Rui Song
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- The National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jianyong Zhou
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- The National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yubiao Jia
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- The National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jianjun Lu
- Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou, China
- The National Engineering Laboratory for Feed Safety and Pollution Prevention and Controlling, National Development and Reform Commission, Zhejiang University, Hangzhou, China
- Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Nutrition and Feed Science, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, Zhejiang University, Hangzhou, China
| |
Collapse
|
77
|
Mishra G, Singh P, Molla M, Yimer YS, Dinda SC, Chandra P, Singh BK, Dagnew SB, Assefa AN, Ewunetie A. Harnessing the potential of probiotics in the treatment of alcoholic liver disorders. Front Pharmacol 2023; 14:1212742. [PMID: 37361234 PMCID: PMC10287977 DOI: 10.3389/fphar.2023.1212742] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
In the current scenario, prolonged consumption of alcohol across the globe is upsurging an appreciable number of patients with the risk of alcohol-associated liver diseases. According to the recent report, the gut-liver axis is crucial in the progression of alcohol-induced liver diseases, including steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Despite several factors associated with alcoholic liver diseases, the complexity of the gut microflora and its great interaction with the liver have become a fascinating area for researchers due to the high exposure of the liver to free radicals, bacterial endotoxins, lipopolysaccharides, inflammatory markers, etc. Undoubtedly, alcohol-induced gut microbiota imbalance stimulates dysbiosis, disrupts the intestinal barrier function, and trigger immune as well as inflammatory responses which further aggravate hepatic injury. Since currently available drugs to mitigate liver disorders have significant side effects, hence, probiotics have been widely researched to alleviate alcohol-associated liver diseases and to improve liver health. A broad range of probiotic bacteria like Lactobacillus, Bifidobacteria, Escherichia coli, Sacchromyces, and Lactococcus are used to reduce or halt the progression of alcohol-associated liver diseases. Several underlying mechanisms, including alteration of the gut microbiome, modulation of intestinal barrier function and immune response, reduction in the level of endotoxins, and bacterial translocation, have been implicated through which probiotics can effectively suppress the occurrence of alcohol-induced liver disorders. This review addresses the therapeutic applications of probiotics in the treatment of alcohol-associated liver diseases. Novel insights into the mechanisms by which probiotics prevent alcohol-associated liver diseases have also been elaborated.
Collapse
Affiliation(s)
- Garima Mishra
- Pharmaceutical Chemistry Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Pradeep Singh
- Pharmaceutical Chemistry Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Mulugeta Molla
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Yohannes Shumet Yimer
- Social Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | | | - Phool Chandra
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | | | - Samuel Berihun Dagnew
- Clinical Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Abraham Nigussie Assefa
- Social Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Amien Ewunetie
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
78
|
Elucidating gut microbiota and metabolite patterns shaped by goat milk-based infant formula feeding in mice colonized by healthy infant feces. Food Chem 2023; 410:135413. [PMID: 36623461 DOI: 10.1016/j.foodchem.2023.135413] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
The gut microbiota plays an evolutionarily conserved role in host metabolism, which is influenced by diet. Here, we investigated differences in shaping the gut microbiota and regulating metabolism in cow milk-based infant formula, goat milk-based infant formula, and mix milk-based infant formula compared with pasteurized human milk. 16S rRNA results showed that goat milk-based infant formula selectively increased the relative abundance of Blautia, Roseburia, Alistites and Muribaculum in the gut compared to other infant formulas. Metabolomics identification indicated that goat milk-based infant formula mainly emphasized bile acid biosynthesis, arachidonic acid metabolism and steroid biosynthesis metabolic pathways. Metabolites associated with these metabolic pathways were positively associated with increased microorganisms in goat milk-based infant formula, particularly Alistipes. Furthermore, we found a deficiency of Akkermansia abundance in three infant formula-fed compared to pasteurizedhuman milk-fed. This study presents new insights into the improvement and application of goat milk-based infant formulas in terms of intestinal microecology.
Collapse
|
79
|
Singh RP, Niharika J, Thakur R, Wagstaff BA, Kumar G, Kurata R, Patel D, Levy CW, Miyazaki T, Field RA. Utilization of dietary mixed-linkage β-glucans by the Firmicute Blautia producta. J Biol Chem 2023; 299:104806. [PMID: 37172725 PMCID: PMC10318527 DOI: 10.1016/j.jbc.2023.104806] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
The β-glucans are structurally varied, naturally occurring components of the cell walls, and storage materials of a variety of plant and microbial species. In the human diet, mixed-linkage glucans [MLG - β-(1,3/4)-glucans] influence the gut microbiome and the host immune system. Although consumed daily, the molecular mechanism by which human gut Gram-positive bacteria utilize MLG largely remains unknown. In this study, we used Blautia producta ATCC 27340 as a model organism to develop an understanding of MLG utilization. B. producta encodes a gene locus comprising a multi-modular cell-anchored endo-glucanase (BpGH16MLG), an ABC transporter, and a glycoside phosphorylase (BpGH94MLG) for utilizing MLG, as evidenced by the upregulation of expression of the enzyme- and solute binding protein (SBP)-encoding genes in this cluster when the organism is grown on MLG. We determined that recombinant BpGH16MLG cleaved various types of β-glucan, generating oligosaccharides suitable for cellular uptake by B. producta. Cytoplasmic digestion of these oligosaccharides is then performed by recombinant BpGH94MLG and β-glucosidases (BpGH3-AR8MLG and BpGH3-X62MLG). Using targeted deletion, we demonstrated BpSBPMLG is essential for B. producta growth on barley β-glucan. Furthermore, we revealed that beneficial bacteria, such as Roseburia faecis JCM 17581T, Bifidobacterium pseudocatenulatum JCM 1200T, Bifidobacterium adolescentis JCM 1275T, and Bifidobacterium bifidum JCM 1254, can also utilize oligosaccharides resulting from the action of BpGH16MLG. Disentangling the β-glucan utilizing the capability of B. producta provides a rational basis on which to consider the probiotic potential of this class of organism.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance Tec (GIFT)-City, Gandhinagar, Gujarat, India; Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India.
| | - Jayashree Niharika
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance Tec (GIFT)-City, Gandhinagar, Gujarat, India; Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Raksha Thakur
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Ben A Wagstaff
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Gulshan Kumar
- Division of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute, SAS Nagar, Punjab, India
| | - Rikuya Kurata
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka City, Shizuoka, Japan
| | - Dhaval Patel
- Department of Industrial Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance Tec (GIFT)-City, Gandhinagar, Gujarat, India
| | - Colin W Levy
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK
| | - Takatsugu Miyazaki
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka City, Shizuoka, Japan; Research Institute of Green Science and Technology, Shizuoka University, Shizuoka City, Shizuoka, Japan
| | - Robert A Field
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK.
| |
Collapse
|
80
|
Li Y, Zheng J, Wang Y, Yang H, Cao L, Gan S, Ma J, Liu H. Immuno-stimulatory activity of Astragalus polysaccharides in cyclophosphamide-induced immunosuppressed mice by regulating gut microbiota. Int J Biol Macromol 2023; 242:124789. [PMID: 37164141 DOI: 10.1016/j.ijbiomac.2023.124789] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/16/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023]
Abstract
Evidence has indicated the immune-stimulatory effect of Astragalus polysaccharides (APS), yet it remains unknown whether the potential mechanism is associated with gut microbiota. In this study, we aimed to investigate the role of gut microbiota in APS-initiated immune-enhancing activity in mice. BALB/c mice were injected with cyclophosphamide to establish a mouse immunosuppression model. We found that APS significantly ameliorated the immunosuppression in mice, indicative of the increased immune organ indices, the promoted proliferation of immune cells, and the up-regulated intestinal inflammation. Western blot analysis demonstrated that APS treatment significantly activated Toll-like receptor 4 (TLR4) and mitogen-activated protein kinase (MAPK) pathways in the intestine. By 16S rDNA sequencing, APS treatment reversed the gut microbiota dysbiosis in immunocompromised mice. At the genus level, APS increased the abundance of bacteria (like Lactobacillus, Bifidobacteria, Roseburia, and Desulfovibrio) and decreased the content of several bacteria (like Oscillibacter, Tyzzerella, and Lachnoclostridium). However, APS had no immune-enhancing effect on immunocompromised mice with gut microbiota depletion. In conclusion, APS can enhance immune responses in immunocompromised mice by modulating gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Yanan Li
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China; College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Junping Zheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Yao Wang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China; College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Huabing Yang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Lu Cao
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China
| | - Shuiyong Gan
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Jun Ma
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, PR China.
| |
Collapse
|
81
|
Guo W, Cui S, Tang X, Yan Y, Xiong F, Zhang Q, Zhao J, Mao B, Zhang H. Intestinal microbiomics and hepatic metabolomics insights into the potential mechanisms of probiotic Bifidobacterium pseudolongum CCFM1253 preventing acute liver injury in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37099000 DOI: 10.1002/jsfa.12665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Bifidobacterium pseudolongum is widely exists in mammal gut and its abundance is associated with human and animal health. The present study aimed to investigate the potential mechanisms of B. pseudolongum CCFM1253 on protecting against lipopolysaccharide (LPS)-induced acute liver injury (ALI) by metagenomic analysis and liver metabolomic profiles. RESULTS Bifidobacterium pseudolongum CCFM1253 preintervention remarkably attenuated the influence of LPS on serum alanine transaminase and aspartate amino transferase activities. B. pseudolongum CCFM1253 preintervention remarkably attenuated the inflammation responses (tumor necrosis factor-α, interleukin-1β, and interleukin-6) and elevated antioxidative enzymes activities [total antioxidant capacity, superoxide dismutase, catalase, and glutathione peroxidase] in ALI mice by intervening in the Nf-kβ and Nrf2 pathways, respectively. Bifidobacterium pseudolongum CCFM1253 treatment elevated the proportion of Alistipes and Bifidobacterium, and decreased the proportion of uncultured Bacteroidales bacterium, Muribaculum, Parasutterella and Ruminococcaceae UCG-010 in ALI mice, which were strongly correlated with the inhibition of inflammation responses and oxidative stress. Untargeted liver metabolomics exhibited that the hepatoprotective efficacy of B. pseudolongum CCFM1253 might be achieved by altering liver metabolites-related riboflavin metabolism, phenylalanine metabolism, alanine, citrate cycle (tricarboxylic acid cycle), and so on. Furthermore, riboflavin exposure could control the contents of malondialdehyde, superoxide dismutase, and catalase in hydrogen peroxide-treated HepG2 cells. CONCLUSION Bifidobacterium pseudolongum CCFM1253 can effectively alleviate inflammatory response and oxidative stress, and regulate the intestinal microbiota composition and liver metabolism, and elevate the liver riboflavin content in LPS-treated mice. Therefore, B. pseudolongum CCFM1253 could serves as a potential probiotic to ameliorate the host health. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Weiling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yongqiu Yan
- Ningbo Yuyi Biotechnology Co., Ltd, Ningbo, China
| | - Feifei Xiong
- Ningbo Yuyi Biotechnology Co., Ltd, Ningbo, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
82
|
Pabst O, Hornef MW, Schaap FG, Cerovic V, Clavel T, Bruns T. Gut-liver axis: barriers and functional circuits. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00771-6. [PMID: 37085614 DOI: 10.1038/s41575-023-00771-6] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 04/23/2023]
Abstract
The gut and the liver are characterized by mutual interactions between both organs, the microbiome, diet and other environmental factors. The sum of these interactions is conceptualized as the gut-liver axis. In this Review we discuss the gut-liver axis, concentrating on the barriers formed by the enterohepatic tissues to restrict gut-derived microorganisms, microbial stimuli and dietary constituents. In addition, we discuss the establishment of barriers in the gut and liver during development and their cooperative function in the adult host. We detail the interplay between microbial and dietary metabolites, the intestinal epithelium, vascular endothelium, the immune system and the various host soluble factors, and how this interplay establishes a homeostatic balance in the healthy gut and liver. Finally, we highlight how this balance is disrupted in diseases of the gut and liver, outline the existing therapeutics and describe the cutting-edge discoveries that could lead to the development of novel treatment approaches.
Collapse
Affiliation(s)
- Oliver Pabst
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany.
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH Aachen University, Aachen, Germany
| | - Frank G Schaap
- Department of General, Visceral and Transplantation Surgery, RWTH Aachen University, Aachen, Germany
- Department of Surgery, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, Aachen, Germany
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH Aachen University, Aachen, Germany
| | - Tony Bruns
- Department of Internal Medicine III, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
83
|
Zhao C, Hu X, Qiu M, Bao L, Wu K, Meng X, Zhao Y, Feng L, Duan S, He Y, Zhang N, Fu Y. Sialic acid exacerbates gut dysbiosis-associated mastitis through the microbiota-gut-mammary axis by fueling gut microbiota disruption. MICROBIOME 2023; 11:78. [PMID: 37069691 PMCID: PMC10107595 DOI: 10.1186/s40168-023-01528-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Mastitis is one of the most severe diseases in humans and animals, especially on dairy farms. Mounting evidence indicates that gastrointestinal dysbiosis caused by induction of subacute ruminal acidosis (SARA) by high-grain diet consumption and low in dietary fiber is associated with mastitis initiation and development, however, the underlying mechanism remains unknown. RESULTS In the present study, we found that cows with SARA-associated mastitis have altered metabolic profiles in the rumen, with increased sialic acids level in particular. Consumption of sialic acid (SA) in antibiotic-treated mice, but not healthy mice, induced marked mastitis. SA treatment of antibiotic-treated mice also induced mucosal and systemic inflammatory responses, as evidenced by increased colon and liver injuries and several inflammatory markers. In addition, gut dysbiosis caused by antibiotic impaired gut barrier integrity, which was aggravated by SA treatment. SA potentiated serum LPS level caused by antibiotic treatment, leading to increased activation of the TLR4-NF-κB/NLRP3 pathways in the mammary gland and colon. Moreover, SA facilitated gut dysbiosis caused by antibiotic, and especially enhanced Enterobacteriaceae and Akkermansiaceae, which correlated with mastitis parameters. Fecal microbiota transplantation from SA-antibiotic-treated mice mimicked mastitis in recipient mice. In vitro experiments showed that SA prompted Escherichia coli growth and virulence gene expression, leading to higher proinflammatory cytokine production in macrophages. Targeting the inhibition of Enterobacteriaceae by sodium tungstate or treating with the commensal Lactobacillus reuteri alleviated SA-facilitated mastitis. In addition, SARA cows had distinct ruminal microbial structure by the enrichment of SA-utilizing opportunistic pathogenic Moraxellaceae and the depletion of SA-utilizing commensal Prevotellaceae. Treating mice with the specific sialidase inhibitor zanamivir reduced SA production and Moraxellaceae abundance, and improved mastitis in mice caused by ruminal microbiota transplantation from cows with SARA-associated mastitis. CONCLUSIONS This study, for the first time, indicates that SA aggravates gut dysbiosis-induced mastitis by promoting gut microbiota disturbance and is regulated by commensal bacteria, indicating the important role of the microbiota-gut-mammary axis in mastitis pathogenesis and suggesting a potential strategy for mastitis intervention based on gut metabolism regulation. Video Abstract.
Collapse
Affiliation(s)
- Caijun Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Xiaoyu Hu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China.
| | - Min Qiu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Lijuan Bao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Keyi Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Xiangyue Meng
- Department of Breast Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan Province, China
| | - Yihong Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Lianjun Feng
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Shiyu Duan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Yuhong He
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China
| | - Naisheng Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China.
| | - Yunhe Fu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin Province, China.
| |
Collapse
|
84
|
Sun X, Cui Q, Ni J, Liu X, Zhu J, Zhou T, Huang H, OuYang K, Wu Y, Yang Z. Retracted and Republished from: "Gut Microbiota Mediates the Therapeutic Effect of Monoclonal Anti-TLR4 Antibody on Acetaminophen-Induced Acute Liver Injury in Mice". Microbiol Spectr 2023; 11:e0471522. [PMID: 36942972 PMCID: PMC10186863 DOI: 10.1128/spectrum.04715-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/14/2023] [Indexed: 03/23/2023] Open
Abstract
Acetaminophen (APAP) overdose is one of the most common causes of acute liver injury (ALI) in Western countries. Many studies have shown that the gut microbiota plays an important role in liver injury. Currently, the only approved treatment for APAP-induced ALI is N-acetylcysteine; therefore, it is essential to develop new therapeutic agents and explore the underlying mechanisms. We developed a novel monoclonal anti-Toll-like receptor 4 (TLR4) antibody (ATAB) and hypothesized that it has therapeutic effects on APAP-induced ALI and that the gut microbiota may be involved in the underlying mechanism of ATAB treatment. Male C57BL/6 mice were treated with APAP and ATAB, which produced a therapeutic effect on ALI and altered the members of the gut microbiota and their metabolic pathways, such as Roseburia, Lactobacillus, Akkermansia, and the fatty acid pathway, etc. Furthermore, we verified that purified short-chain fatty acids (SCFAs) could alleviate ALI. Moreover, a separate group of mice that received feces from the ATAB group showed less severe liver injury than mice that received feces from the APAP group. ATAB therapy also improved gut barrier functions in mice and reduced the expression of the protein zonulin. Our results revealed that the gut microbiota plays an important role in the therapeutic effect of ATAB on APAP-induced ALI. IMPORTANCE In this study, we found that a monoclonal anti-Toll-like receptor 4 antibody can alleviate APAP-induced acute liver injury through changes in the gut microbiota, metabolic pathways, and gut barrier function. This work suggested that the gut microbiota can be a therapeutic target of APAP-induced acute liver injury, and we performed foundation for further research.
Collapse
Affiliation(s)
- Xuewei Sun
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing, China
- Binzhou Medical University, Yantai, China
| | - Qian Cui
- Air Force Hospital of Eastern Theater, Nanjing, China
| | - Juan Ni
- The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Xiaoguang Liu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, China
| | - Jin Zhu
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing, China
| | - Tingting Zhou
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing, China
| | - HuaYing Huang
- The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Ke OuYang
- The First Affiliated Hospital of Nanjing Medical University (Jiangsu Province Hospital), Nanjing, China
| | - Yulong Wu
- Binzhou Medical University, Yantai, China
| | - Zhan Yang
- Centre for Diseases Prevention and Control of Eastern Theater, Nanjing, China
| |
Collapse
|
85
|
You JJ, Qiu J, Li GN, Peng XM, Ma Y, Zhou CC, Fang SW, Huang RW, Xiao ZH. The relationship between gut microbiota and neonatal pathologic jaundice: A pilot case-control study. Front Microbiol 2023; 14:1122172. [PMID: 37007464 PMCID: PMC10060978 DOI: 10.3389/fmicb.2023.1122172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/07/2023] [Indexed: 03/18/2023] Open
Abstract
Background and objectiveNeonatal jaundice is a common clinical disease in neonates. Pathologic jaundice is more harmful to neonates. There are a few studies on the biomarkers of pathologic jaundice and the correlation between gut microbiota and clinical indices. Therefore, we aimed to reveal the characteristics of gut microbiota in pathologic jaundice, provide potential biomarkers for the diagnosis of pathologic jaundice, and find the correlation between gut microbiota and clinical indices.MethodsFourteen neonates with physiologic jaundice were recruited into a control group (Group A). Additionally, 14 neonates with pathologic jaundice were recruited into a case group (Group B). The microbial communities were analyzed using 16S rDNA sequencing. LEfSe and the differences in the relative abundance of gut microbiota were used to identify different bacteria among the two groups. The ROC curve was used to assess effective biomarkers for pathologic jaundice. Spearman’s rank-sum correlation coefficient was used to evaluate the correlation between gut microbiota and clinical indices.ResultsThere were no differences in the total richness or diversity of gut microbiota between the two groups. At the phylum and genus levels, compared with the control group, Bacteroidetes (p = 0.002) and Braydrhizobium (p = 0.01) were significantly higher, while Actinobacteria (p = 0.003) and Bidfldobacterium (p = 0.016) were significantly lower in the case group. Bacteroidetes were valuable in differentiating pathologic jaundice from physiologic jaundice by the ROC curve, and the area under the ROC curve (AUC) value was 0.839 [95%CI (0.648–0.995)]. In the case group, Bacteroidetes were negatively associated with total bilirubin (TBIL) (p < 0.05). In the control group, Bacteroidetes were positively associated with TBIL (p < 0.05).ConclusionBacteroidetes could be used as biomarkers to identify pathologic jaundice and Bacteroidetes are positively associated with bilirubin levels.
Collapse
Affiliation(s)
- Jia Jia You
- Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, China
- Academy of Pediatrics, Hengyang Medical School, University of South China, Hengyang, China
- Department of Emergency Center, Hunan Children’s Hospital, Changsha, China
| | - Jun Qiu
- Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, China
| | - Gui Nan Li
- Department of Neonatology, Hunan Children’s Hospital, Changsha, China
| | - Xiao Ming Peng
- Department of Neonatology, Hunan Children’s Hospital, Changsha, China
| | - Ye Ma
- Department of Neonatology, Hunan Children’s Hospital, Changsha, China
| | - Chang Ci Zhou
- Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, China
- Academy of Pediatrics, Hengyang Medical School, University of South China, Hengyang, China
- Department of Emergency Center, Hunan Children’s Hospital, Changsha, China
| | - Si Wei Fang
- Pediatrics Research Institute of Hunan Province, Hunan Children’s Hospital, Changsha, China
- Academy of Pediatrics, Hengyang Medical School, University of South China, Hengyang, China
- Department of Emergency Center, Hunan Children’s Hospital, Changsha, China
| | - Rui Wen Huang
- Department of Neonatology, Hunan Children’s Hospital, Changsha, China
- *Correspondence: Rui Wen Huang,
| | - Zheng Hui Xiao
- Department of Emergency Center, Hunan Children’s Hospital, Changsha, China
- Zheng Hui Xiao,
| |
Collapse
|
86
|
Tanelian A, Nankova B, Cheriyan A, Arens C, Hu F, Sabban EL. Differences in gut microbiota associated with stress resilience and susceptibility to single prolonged stress in female rodents. Neurobiol Stress 2023; 24:100533. [PMID: 36970450 PMCID: PMC10034505 DOI: 10.1016/j.ynstr.2023.100533] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Exposure to traumatic stress is a major risk factor for the development of neuropsychiatric disorders in a subpopulation of individuals, whereas others remain resilient. The determinants of resilience and susceptibility remain unclear. Here, we aimed to characterize the microbial, immunological, and molecular differences between stress-susceptible and stress-resilient female rats before and after exposure to a traumatic experience. Animals were randomly divided into unstressed controls (n = 10) and experimental groups (n = 16) exposed to Single Prolonged Stress (SPS), an animal model of PTSD. Fourteen days later, all rats underwent a battery of behavioral tests and were sacrificed the following day to collect different organs. Stool samples were collected before and after SPS. Behavioral analyses revealed divergent responses to SPS. The SPS treated animals were further subdivided into SPS-resilient (SPS-R) and SPS-susceptible (SPS-S) subgroups. Comparative analysis of fecal 16S sequencing before and after SPS exposure indicated significant differences in the gut microbial composition, functionality, and metabolites of the SPS-R and SPS-S subgroups. In line with the observed distinct behavioral phenotypes, the SPS-S subgroup displayed higher blood-brain barrier permeability and neuroinflammation relative to the SPS-R and/or controls. These results indicate, for the first time, pre-existing and trauma-induced differences in the gut microbial composition and functionality of female rats that relate to their ability to cope with traumatic stress. Further characterization of these factors will be crucial for understanding susceptibility and fostering resilience, especially in females, who are more likely than males to develop mood disorders.
Collapse
|
87
|
Huang X, Yang Y, Li X, Zhu X, Lin D, Ma Y, Zhou M, Cui X, Zhang B, Dang D, Lü Y, Yue C. The gut microbiota: A new perspective for tertiary prevention of hepatobiliary and gallbladder diseases. Front Nutr 2023; 10:1089909. [PMID: 36814514 PMCID: PMC9940272 DOI: 10.3389/fnut.2023.1089909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/11/2023] [Indexed: 02/10/2023] Open
Abstract
The gut microbiota is a complex ecosystem that has coevolved with the human body for hundreds of millions of years. In the past 30 years, with the progress of gene sequencing and omics technology, the research related to gut microbiota has developed rapidly especially in the field of digestive system diseases and systemic metabolic diseases. Mechanical, biological, immune, and other factors make the intestinal flora form a close bidirectional connection with the liver and gallbladder, which can be called the "gut-liver-biliary axis." Liver and gallbladder, as internal organs of the peritoneum, suffer from insidious onset, which are not easy to detect. The diagnosis is often made through laboratory chemical tests and imaging methods, and intervention measures are usually taken only when organic lesions have occurred. At this time, some people may have entered the irreversible stage of disease development. We reviewed the literature describing the role of intestinal flora in the pathogenesis and biotherapy of hepatobiliary diseases in the past 3-5 years, including the dynamic changes of intestinal flora at different stages of the disease, as well as the signaling pathways involved in intestinal flora and its metabolites, etc. After summarizing the above contents, we hope to highlight the potential of intestinal flora as a new clinical target for early prevention, early diagnosis, timely treatment and prognosis of hepatobiliary diseases. GRAPHICAL ABSTRACT.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yi Yang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Xueli Li
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
- Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry and Chemical Engineering, Yan’an University, Yan’an, Shaanxi, China
| | - Xiaoya Zhu
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Dan Lin
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yueran Ma
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Min Zhou
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Xiangyi Cui
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Bingyu Zhang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Dongmei Dang
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Yuhong Lü
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| | - Changwu Yue
- Yan’an Key Laboratory of Microbial Drug Innovation and Transformation, School of Basic Medicine, Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
88
|
Kim HH, Shim YR, Choi SE, Kim MH, Lee G, You HJ, Choi WM, Yang K, Ryu T, Kim K, Kim MJ, Woo C, Chung KPS, Hong SH, Eun HS, Kim SH, Ko G, Park JE, Gao B, Kim W, Jeong WI. Catecholamine induces Kupffer cell apoptosis via growth differentiation factor 15 in alcohol-associated liver disease. Exp Mol Med 2023; 55:158-170. [PMID: 36631664 PMCID: PMC9898237 DOI: 10.1038/s12276-022-00921-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 01/13/2023] Open
Abstract
Chronic alcohol consumption often induces hepatic steatosis but rarely causes severe inflammation in Kupffer cells (KCs) despite the increased hepatic influx of lipopolysaccharide (LPS), suggesting the presence of a veiled tolerance mechanism. In addition to LPS, the liver is affected by several gut-derived neurotransmitters through the portal blood, but the effects of catecholamines on KCs have not been clearly explored in alcohol-associated liver disease (ALD). Hence, we investigated the regulatory roles of catecholamine on inflammatory KCs under chronic alcohol exposure. We discovered that catecholamine levels were significantly elevated in the cecum, portal blood, and liver tissues of chronic ethanol-fed mice. Increased catecholamines induced mitochondrial translocation of cytochrome P450 2E1 in perivenous hepatocytes expressing the β2-adrenergic receptor (ADRB2), leading to the enhanced production of growth differentiation factor 15 (GDF15). Subsequently, GDF15 profoundly increased ADRB2 expression in adjacent inflammatory KCs to facilitate catecholamine/ADRB2-mediated apoptosis. Single-cell RNA sequencing of KCs confirmed the elevated expression of Adrb2 and apoptotic genes after chronic ethanol intake. Genetic ablation of Adrb2 or hepatic Gdf15 robustly decreased the number of apoptotic KCs near perivenous areas, exacerbating alcohol-associated inflammation. Consistently, we found that blood and stool catecholamine levels and perivenous GDF15 expression were increased in patients with early-stage ALD along with an increase in apoptotic KCs. Our findings reveal a novel protective mechanism against ALD, in which the catecholamine/GDF15 axis plays a critical role in KC apoptosis, and identify a unique neuro-metabo-immune axis between the gut and liver that elicits hepatoprotection against alcohol-mediated pathogenic challenges.
Collapse
Affiliation(s)
- Hee-Hoon Kim
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Young-Ri Shim
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Sung Eun Choi
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Myung-Ho Kim
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea ,grid.32224.350000 0004 0386 9924Liver Center, Gastrointestinal Division, Massachusetts General Hospital, Boston, MA USA
| | - Giljae Lee
- grid.31501.360000 0004 0470 5905Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826 Republic of Korea
| | - Hyun Ju You
- grid.31501.360000 0004 0470 5905Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826 Republic of Korea
| | - Won-Mook Choi
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea ,grid.413967.e0000 0001 0842 2126Department of Gastroenterology, Liver Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505 Republic of Korea
| | - Keungmo Yang
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Tom Ryu
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Kyurae Kim
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Min Jeong Kim
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Chaerin Woo
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Katherine Po Sin Chung
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Song Hwa Hong
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Hyuk Soo Eun
- grid.37172.300000 0001 2292 0500Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea ,grid.254230.20000 0001 0722 6377Department of Internal Medicine, Chungnam National University, College of Medicine, Daejeon, 35015 Republic of Korea
| | - Seok-Hwan Kim
- grid.254230.20000 0001 0722 6377Department of Surgery, Chungnam National University, College of Medicine, Daejeon, 35015 Republic of Korea
| | - GwangPyo Ko
- grid.31501.360000 0004 0470 5905Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, 08826 Republic of Korea
| | - Jong-Eun Park
- grid.37172.300000 0001 2292 0500Single-Cell Medical Genomics Laboratory, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141 Republic of Korea
| | - Bin Gao
- grid.420085.b0000 0004 0481 4802Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institute of Health, Bethesda, MD 20892 USA
| | - Won Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul Metropolitan Government Boramae Medical Center, Seoul, 07061, Republic of Korea.
| | - Won-Il Jeong
- Laboratory of Liver Research, Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
89
|
Chen H, Wu X, Sun R, Lu H, Lin R, Gao X, Li G, Feng Z, Zhu R, Yao Y, Feng B, Liu Z. Dysregulation of CD177 + neutrophils on intraepithelial lymphocytes exacerbates gut inflammation via decreasing microbiota-derived DMF. Gut Microbes 2023; 15:2172668. [PMID: 36729914 PMCID: PMC9897772 DOI: 10.1080/19490976.2023.2172668] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Neutrophils synergize with intestinal resident intraepithelial lymphocytes (IELs) to serve as the first-line defense and maintain intestinal homeostasis. However, the underlying mechanisms whereby neutrophils regulate IELs to inhibit intestinal inflammation are still not completely understood. Here, we found that depletion of neutrophils (especially CD177+ subset) caused expansion of colitogenic TCRγδ+CD8αα+ IELs, increased intestinal inflammation, and dysbiosis after dextran sulfate sodium exposure or Citrobacter rodentium infection in mice. scRNA-seq analysis revealed a pyroptosis-related gene signature and hyperresponsiveness to microbiota in TCRγδ+CD8αα+ IELs from colitic Cd177-/- mice. Microbiota-derived fumarate and its derivative dimethyl fumarate (DMF), as well as fumarate-producing microbiotas, decreased in the feces of colitic Cd177-/- mice. Elimination of dysbiosis by antibiotics treatment or co-housing procedure and DMF supplementation restrained TCRγδ+CD8αα+ IEL activation. Consistently, DMF significantly alleviated intestinal mucosal inflammation in mice through restricting gasdermin D (GSDMD)-induced pyroptosis of TCRγδ+CD8αα+ IELs. Therefore, our data reveal that neutrophils inhibit intestinal inflammation by promoting microbiota-derived DMF to regulate TCRγδ+CD8αα+ IEL activation in a GSDMD-mediated pyroptosis-dependent manner, and that DMF may serve as a therapeutic target for the management of intestinal inflammation.
Collapse
Affiliation(s)
- Huimin Chen
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaohan Wu
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruicong Sun
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huiying Lu
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ritian Lin
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiang Gao
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Gengfeng Li
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongsheng Feng
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Ruixin Zhu
- Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yao Yao
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baisui Feng
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease Research, The Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Gastroenterology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Division of Immunology, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
90
|
Zhang H, Shen H, Zhou L, Xie L, Kong D, Wang H. Mucosal-Associated Invariant T Cells in the Digestive System: Defender or Destroyer? Cell Mol Gastroenterol Hepatol 2023; 15:809-819. [PMID: 36584816 PMCID: PMC9971522 DOI: 10.1016/j.jcmgh.2022.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/01/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of innate T lymphocytes that express the semi-invariant T cell receptor and recognize riboflavin metabolites via the major histocompatibility complex class I-related protein. Given the abundance of MAIT cells in the human body, their role in human diseases has been increasingly studied in recent years. MAIT cells may serve as targets for clinical therapy. Specifically, this review discusses how MAIT cells are altered in gastric, esophageal, intestinal, and hepatobiliary diseases and describes their protective or pathogenic roles. A greater understanding of MAIT cells will provide a more favorable therapeutic approach for digestive diseases in the clinical field.
Collapse
Affiliation(s)
- Hejiao Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Haiyuan Shen
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Liangliang Zhou
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Linxi Xie
- School of Basic Medical Science, Anhui Medical University, Hefei, China
| | - Derun Kong
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China.
| |
Collapse
|
91
|
He D, Liu L, Zhang Z, Yang X, Jia Y, Wen Y, Cheng S, Meng P, Li C, Zhang H, Pan C, Zhang F. Association between gut microbiota and longevity: a genetic correlation and mendelian randomization study. BMC Microbiol 2022; 22:302. [PMID: 36510142 PMCID: PMC9746102 DOI: 10.1186/s12866-022-02703-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/11/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Longevity is one of the most complex phenotypes, and its genetic basis remains unclear. This study aimed to explore the genetic correlation and potential causal association between gut microbiota and longevity. RESULTS Linkage disequilibrium score (LDSC) regression analysis and a bi-directional two-sample Mendelian Randomization (MR) analysis were performed to analyze gut microbiota and longevity-related traits. LDSC analysis detected four candidate genetic correlations, including Veillonella (genetic correlation = 0.5578, P = 4.67 × 10- 2) and Roseburia (genetic correlation = 0.4491, P = 2.67 × 10- 2) for longevity, Collinsella (genetic correlation = 0.3144, P = 4.07 × 10- 2) for parental lifespan and Sporobacter (genetic correlation = 0.2092, P = 3.53 × 10- 2) for healthspan. Further MR analysis observed suggestive causation between Collinsella and parental longevity (father's age at death) (weighted median: b = 1.79 × 10- 3, P = 3.52 × 10- 2). Reverse MR analysis also detected several causal effects of longevity-related traits on gut microbiota, such as longevity and Sporobacter (IVW: b = 7.02 × 10- 1, P = 4.21 × 10- 25). Statistical insignificance of the heterogeneity test and pleiotropy test supported the validity of the MR study. CONCLUSION Our study found evidence that gut microbiota is causally associated with longevity, or vice versa, providing novel clues for understanding the roles of gut microbiota in aging development.
Collapse
Affiliation(s)
- Dan He
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Li Liu
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Zhen Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Xuena Yang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Yumeng Jia
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Yan Wen
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Shiqiang Cheng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Peilin Meng
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Chun'e Li
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Huijie Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Chuyu Pan
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China
| | - Feng Zhang
- Key Laboratory of Trace Elements and Endemic Diseases of National Health and Family Planning Commission, Xi'an Jiaotong University, 710061, Xi'an, China.
- Key Laboratory of Environment and Genes Related to Diseases of Ministry of Education of China, Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
92
|
Wang Z, Zhou S, Jiang Y. Sea buckthorn pulp and seed oils ameliorate lipid metabolism disorders and modulate gut microbiota in C57BL/6J mice on high-fat diet. Front Nutr 2022; 9:1067813. [PMID: 36570130 PMCID: PMC9773879 DOI: 10.3389/fnut.2022.1067813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Non-alcoholic fatty liver diseases (NAFLD), along with the complications of obesity and dyslipidemia, are worldwide lipid metabolism disorders. Recent evidence showed that NAFLD could be ameliorated by diet and lifestyles by attenuating gut microbiota dysbiosis via the gut-liver axis. Sea buckthorn oils, including sea buckthorn pulp oil (SBPO) and sea buckthorn seed oil (SBSO), were investigated in this study for their beneficial effects on gut-liver axis in C57BL/6J mice on a high-fat diet. Methods Sixty of male C57BL/6J mice were assigned into five groups, fed with low-fat diet containing soybean oil (SO), high-fat diet comprising lard oil (LO), peanut oil (PO), SBSO or SBPO, respectively, for 12 weeks. Serum and hepatic biochemical analysis, liver and perirenal fat histological analysis, and fecal 16S rRNA gene sequencing were conducted to reflect the influence of five diets on gut-liver axis. Results Dietary SBPO reduced visceral fat accumulation, adipose cell size, serum and hepatic triglyceride, LDL-C levels, and hepatic cell damage score; increased gut microbiota diversity with a higher abundance of Lactobacillus, Roseburia, and Oscillibacter compared with PO. SBSO showed equal or weaker effects compared to SBPO. Conclusion This study demonstrates that dietary SBPO has the potential to ameliorate NAFLD and related metabolic disorders, like obesity and dyslipidemia, by modulating gut microbiota.
Collapse
Affiliation(s)
- Zhen Wang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai, China,School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, China
| | - Shengmin Zhou
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai, China,*Correspondence: Shengmin Zhou,
| | - Yuanrong Jiang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd., Shanghai, China
| |
Collapse
|
93
|
Zhao W, Peng D, Li W, Chen S, Liu B, Huang P, Wu J, Du B, Li P. Probiotic-fermented Pueraria lobata (Willd.) Ohwi alleviates alcoholic liver injury by enhancing antioxidant defense and modulating gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:6877-6888. [PMID: 35655427 DOI: 10.1002/jsfa.12049] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pueraria lobata (Willd.) Ohwi (PL) has been used in China to detoxify alcohol and protect the liver for millennia, though its mechanism of liver protection has not been elucidated. However, fermentation is considered to be one of the effective ways to enhance the efficacy of traditional Chinese medicine. The aim of this study was to investigate the hepatoprotective mechanism of probiotic-fermented PL (FPL). Sprague Dawley rats were administered with FPL followed by gavage of alcohol for seven consecutive days; following that, liver injury levels were evaluated in rats. RESULTS FPL ameliorated lipid accumulation and inflammation levels in rats. Meanwhile, the levels of ethanol dehydrogenase, acetaldehyde dehydrogenase, and cytochrome P4502E1 were elevated by FPL treatment. It was observed that the levels of catalase, superoxide dismutase, and glutathione peroxidase were elevated, and the expression of nuclear transcriptional factor (erythroid-derived 2)-like 2 (Nrf2) and heme oxygenase-1 genes and proteins were increased by FPL treatment, demonstrating that the Nrf2-mediated signal pathway was activated. Furthermore, FPL restored the composition of the gut microbiota with an increase in the abundances of Firmicutes and Lactobacillus and a decrease in the abundances of Bacteroidota and Akkermansia. Additionally, a strong correlation was found between the gut microbiota and the antioxidant parameters. CONCLUSION The results indicate that FPL possesses an excellent protective effect in alcoholic liver injury. Our findings are beneficial to the development of hepatoprotective nutraceuticals for alcoholics. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenjun Zhao
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Dong Peng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Weijie Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Suiying Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bing Liu
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pingxi Huang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Junsong Wu
- Guangzhou Songyuan Agricultural Technology Co., Ltd, Guangzhou, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
94
|
Jin L, Bian X, Dong W, Yang R, Jing C, Li X, Yang D, Guo C, Gao W. A Chinese herbs complex ameliorates gut microbiota dysbiosis induced by intermittent cold exposure in female rats. Front Microbiol 2022; 13:1065780. [PMID: 36532488 PMCID: PMC9748289 DOI: 10.3389/fmicb.2022.1065780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/14/2022] [Indexed: 11/21/2023] Open
Abstract
Cold is a common source of stress in the alpine areas of northern China. It affects the microbial community, resulting in the invasion of pathogenic microorganisms and intestinal diseases. In recent years, studies have reported that Chinese herbal extracts and their fermentation broth have a significant beneficial effect on gut microbiota. This study aimed to investigate the probiotic effect of a self-designed Chinese herbs complex on the gut microbiota of rats exposed to cold. The rats were treated with intermittent cold exposure and Chinese herbs complex for 14 days, and the gut microbiota composition and other parameters were assayed. The 16s ribosomal DNA high-throughput sequencing and analysis confirmed that the Chinese herbs complex positively improved the gut microbiota. We found that cold exposure could lead to significant changes in the composition of gut microbiota, and affect the intestinal barrier and other physiological functions. The relative abundance of some probiotics in the genus such as Roseburia, Parasutterella, and Elusimicrobium in rats treated with Chinese herbs complex was significantly increased. Serum D-lactic acid (D-LA) and lipopolysaccharide (LPS) were increased in the cold exposure group and decreased in the Chinese herbs complex-treated group. Moreover, the Chinese herbs complex significantly increased the protein expression of occludin. In conclusion, the Chinese herbs complex is effective in restoring the gut microbiota caused by cold exposure, improving the function of the intestinal barrier, and may act as a prebiotic in combatting gut dysbiosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Danfeng Yang
- Department of Nutrition and Food Hygiene, Institute of Environmental and Operational Medicine, Tianjin, China
| | - Changjiang Guo
- Department of Nutrition and Food Hygiene, Institute of Environmental and Operational Medicine, Tianjin, China
| | - Weina Gao
- Department of Nutrition and Food Hygiene, Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
95
|
Bio-Fermented Malic Acid Facilitates the Production of High-Quality Chicken via Enhancing Muscle Antioxidant Capacity of Broilers. Antioxidants (Basel) 2022; 11:antiox11122309. [PMID: 36552518 PMCID: PMC9774538 DOI: 10.3390/antiox11122309] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022] Open
Abstract
Malic acid, an intermediate of the tricarboxylic acid (TCA) cycle, is a promising acidifier with strong antioxidant capacity. This study aimed to evaluate the effects of bio-fermented malic acid (BFMA) on promoting the body health, performance and meat quality of broilers. A total of 288 one-day-old Arbor Acres male broiler chicks were randomly divided into four treatments with six replicates in each. Every replicate had 12 chicks. Four experimental diets contained 0, 4, 8, and 12 g/kg BFMA, respectively. During the 42-day trial, mortality was recorded daily, feed intake and body weight of each replicate being recorded every week. Blood samples were collected on days 21 and 42 for chemical analysis. After slaughter at the age of 42 days, the carcass traits and meat quality of the broilers were measured, breast muscle samples were collected for the determination of antioxidant capacity, and cecal digesta were pretreated for microbiota analysis. Dietary BFMA significantly increased feed intake and daily gain, and decreased feed conversion ratio and death and culling ratio of the broilers at the earlier stage. The water-holding capacity of breast muscle indicated by the indexes of dripping loss and cooking loss was significantly increased by BFMA, especially at the addition level of 8 g/kg. Dietary BFMA significantly decreased the activity of superoxide dismutase and contents of immunoglobulin A and glutathione, and increased contents of immunoglobulin G and M in serum of the broilers. The contents of glutathione, inosinic acid, and total antioxidant capacity and the activities of glutathione-Px and superoxide dismutase were significantly increased by dietary BFMA, with the level of 8 g/kg best. The diversity of cecal microbiota of broilers was obviously altered by BFMA. In conclusion, as one of several acidifiers, addition of BFMA in diets could improve the performance and body health of broilers, probably by reinforcing immunity and perfecting cecal microbiota structure. As one of the intermediates of the TCA cycle, BFMA increases the water-holding capacity of breast muscle of broilers, probably through reducing lactate accumulates and enhancing antioxidant capacity.
Collapse
|
96
|
Zhou Z, Pan X, Li L. Crosstalk between liver macrophages and gut microbiota: An important component of inflammation-associated liver diseases. Front Cell Dev Biol 2022; 10:1070208. [PMID: 36483677 PMCID: PMC9723159 DOI: 10.3389/fcell.2022.1070208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/10/2022] [Indexed: 08/30/2023] Open
Abstract
Hepatic macrophages have been recognized as primary sensors and responders in liver inflammation. By processing host or exogenous biochemical signals, including microbial components and metabolites, through the gut-liver axis, hepatic macrophages can both trigger or regulate inflammatory responses. Crosstalk between hepatic macrophages and gut microbiota is an important component of liver inflammation and related liver diseases, such as acute liver injury (ALI), alcoholic liver disease (ALD), and nonalcoholic fatty liver disease (NAFLD). This review summarizes recent advances in knowledge related to the crosstalk between hepatic macrophages and gut microbiota, including the therapeutic potential of targeting hepatic macrophages as a component of gut microecology in inflammation-associated liver diseases.
Collapse
Affiliation(s)
| | | | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
97
|
Zhang H, Duan Y, Cai F, Cao D, Wang L, Qiao Z, Hong Q, Li N, Zheng Y, Su M, Liu Z, Zhu B. Next-Generation Probiotics: Microflora Intervention to Human Diseases. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5633403. [PMID: 36440358 PMCID: PMC9683952 DOI: 10.1155/2022/5633403] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 06/06/2022] [Indexed: 11/02/2023]
Abstract
With the development of human genome sequencing and techniques such as intestinal microbial culture and fecal microbial transplantation, newly discovered microorganisms have been isolated, cultured, and researched. Consequently, many beneficial probiotics have emerged as next-generation probiotics (NGPs). Currently, "safety," "individualized treatment," and "internal interaction within the flora" are requirements of a potential NGPs. Furthermore, in the complex ecosystem of humans and microbes, it is challenging to identify the relationship between specific strains, specific flora, and hosts to warrant a therapeutic intervention in case of a disease. Thus, this review focuses on the progress made in NGPs and human health research by elucidating the limitations of traditional probiotics; summarizing the functions and strengths of Akkermansia muciniphila, Faecalibacterium prausnitzii, Bacteroides fragilis, Eubacterium hallii, and Roseburia spp. as NGPs; and determining the role of their intervention in treatment of certain diseases. Finally, we aim to provide a reference for developing new probiotics in the future.
Collapse
Affiliation(s)
- Huanchang Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Yunfeng Duan
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Feng Cai
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Demin Cao
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Lei Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Zhenyi Qiao
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Qing Hong
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Nan Li
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Yuanrong Zheng
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Miya Su
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Zhenmin Liu
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Shanghai, China
| | - Baoli Zhu
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
98
|
Heinzer K, Lang S, Farowski F, Wisplinghoff H, Vehreschild MJGT, Martin A, Nowag A, Kretzschmar A, Scholz CJ, Roderburg C, Mohr R, Tacke F, Kasper P, Goeser T, Steffen HM, Demir M. Dietary omega-6/omega-3 ratio is not associated with gut microbiota composition and disease severity in patients with nonalcoholic fatty liver disease. Nutr Res 2022; 107:12-25. [PMID: 36162275 DOI: 10.1016/j.nutres.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 12/27/2022]
Abstract
In this cross-sectional study, we hypothesized that a high dietary ratio of omega-6 (n-6) to omega-3 (n-3) fatty acids could be associated with an altered gut bacterial composition and with the disease severity in patients with nonalcoholic fatty liver disease (NAFLD). A total of 101 NAFLD patients were included in the study, of which 63 underwent a liver biopsy. All 101 patients completed a 14-day food and activity record. Ebispro 2016 professional software was used to calculate individual macronutrients and micronutrients consumed. Patients were grouped into 3 quantiles (Q) according to a low (Q1: <6.1, n = 34), moderate (Q2: 6.1-7.8, n = 33), or high (Q3: >7.8, n = 34) dietary n-6/n-3 ratio. Stool samples were analyzed using 16S rRNA gene sequencing. Spearman correlation coefficients and principal coordinate analysis were used to detect differences in the bacterial composition of the gut microbiota. The median dietary n-6/n-3 ratio of all patients was 6.7 (range, 3.1-14.9). No significant associations between the dietary n-6/n-3 ratio and the gut microbiota composition or disease severity were observed. However, the abundance of specific bacteria such as Catenibacterium or Lactobacillus ruminis were found to be positively correlated and the abundance of Clostridium were negatively correlated with dietary n-6 fatty acid intake. The results indicate that a high dietary n-6/n-3 ratio is probably not a highly relevant factor in the pathogenesis of human NAFLD. Further studies are needed to clarify the importance of interactions between gut bacterial taxa and n-6 fatty acids in the pathophysiology of NAFLD.
Collapse
Affiliation(s)
- Kathrin Heinzer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Sonja Lang
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany; Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Fedja Farowski
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany; German Centre for Infection Research (DZIF), partner site Bonn/Cologne; Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Hilmar Wisplinghoff
- Wisplinghoff Laboratories, Cologne, Germany; University of Cologne, Faculty of Medicine, Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany; Institute for Virology and Medical Microbiology, University Witten/Herdecke, Witten, Germany
| | - Maria J G T Vehreschild
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany; German Centre for Infection Research (DZIF), partner site Bonn/Cologne; Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anna Martin
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Angela Nowag
- Wisplinghoff Laboratories, Cologne, Germany; University of Cologne, Faculty of Medicine, Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany
| | | | | | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité Universitätsmedizin, Berlin, Germany
| | - Raphael Mohr
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité Universitätsmedizin, Berlin, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité Universitätsmedizin, Berlin, Germany
| | - Philipp Kasper
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Tobias Goeser
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Hans-Michael Steffen
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
99
|
Shen Z, Luo W, Tan B, Nie K, Deng M, Wu S, Xiao M, Wu X, Meng X, Tong T, Zhang C, Ma K, Liao Y, Xu J, Wang X. Roseburia intestinalis stimulates TLR5-dependent intestinal immunity against Crohn's disease. EBioMedicine 2022; 85:104285. [PMID: 36182776 PMCID: PMC9526137 DOI: 10.1016/j.ebiom.2022.104285] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background Methods Findings Interpretation Funding
Collapse
|
100
|
Zhao C, Bao L, Qiu M, Wu K, Zhao Y, Feng L, Xiang K, Zhang N, Hu X, Fu Y. Commensal cow Roseburia reduces gut-dysbiosis-induced mastitis through inhibiting bacterial translocation by producing butyrate in mice. Cell Rep 2022; 41:111681. [DOI: 10.1016/j.celrep.2022.111681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/17/2022] [Accepted: 10/26/2022] [Indexed: 11/23/2022] Open
|