51
|
Metcalfe LK, Smith GC, Turner N. Defining lipid mediators of insulin resistance - controversies and challenges. J Mol Endocrinol 2018; 62:JME-18-0023. [PMID: 30068522 DOI: 10.1530/jme-18-0023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/04/2018] [Accepted: 07/31/2018] [Indexed: 12/31/2022]
Abstract
Essential elements of all cells, lipids play important roles in energy production, signalling and as structural components. Despite these critical functions, excessive availability and intracellular accumulation of lipid is now recognised as a major factor contributing to many human diseases, including obesity and diabetes. In the context of these metabolic disorders, ectopic deposition of lipid has been proposed to have deleterious effects of insulin action. While this relationship has been recognised for some time now, there is currently no unifying mechanism to explain how lipids precipitate the development of insulin resistance. This review summarises the evidence linking specific lipid molecules to the induction of insulin resistance, describing some of the current controversies and challenges for future studies in this field.
Collapse
Affiliation(s)
- Louise K Metcalfe
- L Metcalfe, Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, Australia
| | - Greg C Smith
- G Smith, Department of Pharmacology, School of Medical Sciences, UNSW Australia, Kensington, Australia
| | - Nigel Turner
- N Turner, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
52
|
Dallak MA. Acylated ghrelin induces but deacylated ghrelin prevents hepatic steatosis and insulin resistance in lean rats: Effects on DAG/ PKC/JNK pathway. Biomed Pharmacother 2018; 105:299-311. [PMID: 29860222 DOI: 10.1016/j.biopha.2018.05.098] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/20/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022] Open
Abstract
This study investigated the molecular effects of acylated (AG) and unacylated ghrelin (UAG) or their combination on hepatic lipogenesis pathways and DAG/PKC/JNK signaling in the livers of lean rats fed standard diet. Male rats (n = 10) were classified as control + vehicle (saline, 200 μl), AG, UAG, and AG + UAG-treated groups. All treatments were given at final doses of 200 ng/kg of for 14 days (twice/day, S.C). Administration of AG significantly enhanced circulatory levels of AG and UAG turning the normal ratio of AG/UAG from 1:2.5 to 1:1.2. However, while UAG didn't affect circulatory levels of AG, administration of UAG alone or in combination with AG resulted in AG/UAG ratios of 1:7 and 1:3, respectively. Independent of food intake nor the development of peripheral IR, AG increased hepatic DAG, TGs and CHOL contents and induced hepatic IR. Mechanism of action include 1) upregulation of mRNA and protein levels of DGAT-2 and mtGPAT-1, SREBP-1 and SCD-1, and 2) inhibition of fatty acids (FAs) oxidation mediated by inhibition of AMPK/ PPAR-α/CPT-1 axis. Consequently, AG induced membranous translocation of PKCδ and PKCε leading to activation of JNK and significant inhibition of insulin signaling under basal and insulin stimulation as evident by decreases in the phosphorylation levels of IRS (Tyr612) and Akt (Thr318) and increased phosphorylation of IRS (Ser307). However, while UAG only activated FAs oxidation in control rats, it reversed all alterations in all measured biochemical endpoints seen in the AG-treated group, when administered in combination with AG, leading to significant decreases in hepatic fat accumulation and prevention of hepatic IR. In conclusion, while exogenous administration of AG is at high risk of developing steatohepatitis and hepatic IR, co-administration of a balanced dose of UAG reduces this risk and inhibits hepatic lipid accumulation and enhance hepatic insulin signaling.
Collapse
Affiliation(s)
- Mohammad A Dallak
- Department of Physiology, College of Medicine, King's Khalid University, Abha, 61241, Saudi Arabia.
| |
Collapse
|
53
|
Jia Y, Yee JK, Wang C, Nikolaenko L, Diaz-Arjonilla M, Cohen JN, French SW, Liu PY, Lue Y, Lee WNP, Swerdloff RS. Testosterone protects high-fat/low-carbohydrate diet-induced nonalcoholic fatty liver disease in castrated male rats mainly via modulating endoplasmic reticulum stress. Am J Physiol Endocrinol Metab 2018; 314:E366-E376. [PMID: 28928235 PMCID: PMC5966753 DOI: 10.1152/ajpendo.00124.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We previously showed that testosterone (T) deficiency enhanced high-fat/low-carbohydrate diet (HFD)-induced hepatic steatosis in rats independent of insulin resistance and that T replacement reduced hepatic macrovesicular fat accumulation and inflammation. The present report explores the mechanism of T's protective effects on HFD-induced steatohepatitis. Adult male rats were randomized into four treatment groups for 15 wk: intact rats on regular chow diet or HFD, and castrated rats on HFD with or without T replacement. Fatty acid β-oxidation and de novo synthesis were not changed by castration and T replacement, but expression of lipid export proteins ApoB100 and microsomal triglyceride transfer protein (MTP) was suppressed by HFD in both intact and castrated rats but restored by T replacement. Macrovesicular lipid droplet-related proteins perilipin 1 and fat-specific protein 27 were increased by HFD in castrated rats and suppressed by T replacement. Higher activation/expression of ER stress proteins (PERK, IRE-1α, JNK, NF-κB, and CHOP) was demonstrated in castrated rats fed HFD compared with intact animals, and T replacement suppressed these changes. We conclude that 1) HFD leads to ApoB100/MTP suppression reducing export of lipids; 2) castration promotes progression to steatohepatitis through activation of the ER stress pathway and enhancement of macrovesicular droplet protein expression; and 3) testosterone suppresses ER stress, inhibits the formation of macrovesicular lipid droplets, promotes lipid export, and ameliorates steatohepatitis induced by HFD and castration.
Collapse
Affiliation(s)
- Yue Jia
- Division of Endocrinology, Department of Medicine, Harbor-University of California, Los Angeles (UCLA), Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Jennifer K Yee
- Department and Endocrinology, Department of Pediatrics, Harbor-UCLA Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Christina Wang
- Division of Endocrinology, Department of Medicine, Harbor-University of California, Los Angeles (UCLA), Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Liana Nikolaenko
- Division of Endocrinology, Department of Medicine, Harbor-University of California, Los Angeles (UCLA), Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Maruja Diaz-Arjonilla
- Division of Endocrinology, Department of Medicine, Harbor-University of California, Los Angeles (UCLA), Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Joshua N Cohen
- Department and Endocrinology, Department of Pediatrics, Harbor-UCLA Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Samuel W French
- Department of Pathology, Harbor-UCLA Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Peter Y Liu
- Division of Endocrinology, Department of Medicine, Harbor-University of California, Los Angeles (UCLA), Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - YanHe Lue
- Division of Endocrinology, Department of Medicine, Harbor-University of California, Los Angeles (UCLA), Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Wai-Nang P Lee
- Department and Endocrinology, Department of Pediatrics, Harbor-UCLA Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| | - Ronald S Swerdloff
- Division of Endocrinology, Department of Medicine, Harbor-University of California, Los Angeles (UCLA), Medical Center , Torrance, California
- Department of Pathology, Harbor-UCLA Medical Center , Torrance, California
- Los Angeles Biomedical Research Institute , Torrance, California
| |
Collapse
|
54
|
In vivo studies on the mechanism of methylene cyclopropyl acetic acid and methylene cyclopropyl glycine-induced hypoglycemia. Biochem J 2018; 475:1063-1074. [PMID: 29483297 DOI: 10.1042/bcj20180063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/24/2018] [Accepted: 02/26/2018] [Indexed: 01/20/2023]
Abstract
Exposure to the toxins methylene cyclopropyl acetic acid (MCPA) and methylene cyclopropyl glycine (MCPG) of unripe ackee and litchi fruit can lead to hypoglycemia and death; however, the molecular mechanisms by which MCPA and MCPG cause hypoglycemia have not been established in vivo To determine the in vivo mechanisms of action of these toxins, we infused them into conscious rodents and assessed rates of hepatic gluconeogenesis and ketogenesis, hepatic acyl-CoA and hepatic acetyl-CoA content, and hepatocellular energy charge. MCPG suppressed rates of hepatic β-oxidation as reflected by reductions in hepatic ketogenesis, reducing both short- and medium-chain hepatic acyl-CoA concentrations. Hepatic acetyl-CoA content decreased, and hepatic glucose production was inhibited. MCPA also suppressed β-oxidation of short-chain acyl-CoAs, rapidly inhibiting hepatic ketogenesis and hepatic glucose production, depleting hepatic acetyl-CoA content and ATP content, while increasing other short-chain acyl-CoAs. Utilizing a recently developed positional isotopomer NMR tracer analysis method, we demonstrated that MCPA-induced reductions in hepatic acetyl-CoA content were associated with a marked reduction of hepatic pyruvate carboxylase (PC) flux. Taken together, these data reveal the in vivo mechanisms of action of MCPA and MCPG: the hypoglycemia associated with ingestion of these toxins can be ascribed mostly to MCPA- or MCPG-induced reductions in hepatic PC flux due to inhibition of β-oxidation of short-chain acyl-CoAs by MCPA or inhibition of both short- and medium-chain acyl-CoAs by MCPG with resultant reductions in hepatic acetyl-CoA content, with an additional contribution to hypoglycemia through reduced hepatic ATP stores by MCPA.
Collapse
|
55
|
Kleuser B. Divergent Role of Sphingosine 1-Phosphate in Liver Health and Disease. Int J Mol Sci 2018; 19:ijms19030722. [PMID: 29510489 PMCID: PMC5877583 DOI: 10.3390/ijms19030722] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/08/2018] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Two decades ago, sphingosine 1-phosphate (S1P) was discovered as a novel bioactive molecule that regulates a variety of cellular functions. The plethora of S1P-mediated effects is due to the fact that the sphingolipid not only modulates intracellular functions but also acts as a ligand of G protein-coupled receptors after secretion into the extracellular environment. In the plasma, S1P is found in high concentrations, modulating immune cell trafficking and vascular endothelial integrity. The liver is engaged in modulating the plasma S1P content, as it produces apolipoprotein M, which is a chaperone for the S1P transport. Moreover, the liver plays a substantial role in glucose and lipid homeostasis. A dysfunction of glucose and lipid metabolism is connected with the development of liver diseases such as hepatic insulin resistance, non-alcoholic fatty liver disease, or liver fibrosis. Recent studies indicate that S1P is involved in liver pathophysiology and contributes to the development of liver diseases. In this review, the current state of knowledge about S1P and its signaling in the liver is summarized with a specific focus on the dysregulation of S1P signaling in obesity-mediated liver diseases. Thus, the modulation of S1P signaling can be considered as a potential therapeutic target for the treatment of hepatic diseases.
Collapse
Affiliation(s)
- Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, Faculty of Mathematics and Natural Science, University of Potsdam, Arthur-Scheunert Allee 114-116, 14558 Nuthetal, Germany.
| |
Collapse
|
56
|
Abstract
Triglyceride molecules represent the major form of storage and transport of fatty acids within cells and in the plasma. The liver is the central organ for fatty acid metabolism. Fatty acids accrue in liver by hepatocellular uptake from the plasma and by de novo biosynthesis. Fatty acids are eliminated by oxidation within the cell or by secretion into the plasma within triglyceride-rich very low-density lipoproteins. Notwithstanding high fluxes through these pathways, under normal circumstances the liver stores only small amounts of fatty acids as triglycerides. In the setting of overnutrition and obesity, hepatic fatty acid metabolism is altered, commonly leading to the accumulation of triglycerides within hepatocytes, and to a clinical condition known as nonalcoholic fatty liver disease (NAFLD). In this review, we describe the current understanding of fatty acid and triglyceride metabolism in the liver and its regulation in health and disease, identifying potential directions for future research. Advances in understanding the molecular mechanisms underlying the hepatic fat accumulation are critical to the development of targeted therapies for NAFLD. © 2018 American Physiological Society. Compr Physiol 8:1-22, 2018.
Collapse
Affiliation(s)
- Michele Alves-Bezerra
- Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, USA
| | - David E Cohen
- Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, USA
| |
Collapse
|
57
|
Insulin Resistance, Obesity and Lipotoxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 960:277-304. [PMID: 28585204 DOI: 10.1007/978-3-319-48382-5_12] [Citation(s) in RCA: 317] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Lipotoxicity , originally used to describe the destructive effects of excess fat accumulation on glucose metabolism, causes functional impairments in several metabolic pathways, both in adipose tissue and peripheral organs, like liver, heart, pancreas and muscle. Lipotoxicity has roles in insulin resistance and pancreatic beta cell dysfunction. Increased circulating levels of lipids and the metabolic alterations in fatty acid utilization and intracellular signaling, have been related to insulin resistance in muscle and liver. Different pathways, like novel protein kinase c pathways and the JNK-1 pathway are involved as the mechanisms of how lipotoxicity leads to insulin resistance in nonadipose tissue organs, such as liver and muscle. Mitochondrial dysfunction plays a role in the pathogenesis of insulin resistance. Endoplasmic reticulum stress, through mainly increased oxidative stress, also plays important role in the etiology of insulin resistance, especially seen in non-alcoholic fatty liver disease. Visceral adiposity and insulin resistance both increase the cardiometabolic risk and lipotoxicity seems to play a crucial role in the pathophysiology of these associations.
Collapse
|
58
|
Abstract
Hepatic steatosis is an underlying feature of nonalcoholic fatty liver disease (NAFLD), which is the most common form of liver disease and is present in up to ∼70% of individuals who are overweight. NAFLD is also associated with hypertriglyceridaemia and low levels of HDL, glucose intolerance, insulin resistance and type 2 diabetes mellitus. Hepatic steatosis is a strong predictor of the development of insulin resistance and often precedes the onset of other known mediators of insulin resistance. This sequence of events suggests that hepatic steatosis has a causal role in the development of insulin resistance in other tissues, such as skeletal muscle. Hepatokines are proteins that are secreted by hepatocytes, and many hepatokines have been linked to the induction of metabolic dysfunction, including fetuin A, fetuin B, retinol-binding protein 4 (RBP4) and selenoprotein P. In this Review, we describe the factors that influence the development of hepatic steatosis, provide evidence of strong links between hepatic steatosis and insulin resistance in non-hepatic tissues, and discuss recent advances in our understanding of how steatosis alters hepatokine secretion to influence metabolic phenotypes through inter-organ communication.
Collapse
Affiliation(s)
- Ruth C R Meex
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program and the Department of Physiology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
- Department of Human Biology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Matthew J Watt
- Monash Biomedicine Discovery Institute, Metabolic Disease and Obesity Program and the Department of Physiology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
59
|
Petersen MC, Shulman GI. Roles of Diacylglycerols and Ceramides in Hepatic Insulin Resistance. Trends Pharmacol Sci 2017; 38:649-665. [PMID: 28551355 DOI: 10.1016/j.tips.2017.04.004] [Citation(s) in RCA: 268] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/19/2017] [Accepted: 04/20/2017] [Indexed: 12/22/2022]
Abstract
Although ample evidence links hepatic lipid accumulation with hepatic insulin resistance, the mechanistic basis of this association is incompletely understood and controversial. Diacylglycerols (DAGs) and ceramides have emerged as the two best-studied putative mediators of lipid-induced hepatic insulin resistance. Both lipids were first associated with insulin resistance in skeletal muscle and were subsequently hypothesized to mediate insulin resistance in the liver. However, the putative roles for DAGs and ceramides in hepatic insulin resistance have proved more complex than originally imagined, with various genetic and pharmacologic manipulations yielding a vast and occasionally contradictory trove of data to sort. In this review we examine the state of this field, turning a critical eye toward both DAGs and ceramides as putative mediators of lipid-induced hepatic insulin resistance.
Collapse
Affiliation(s)
- Max C Petersen
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Gerald I Shulman
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
60
|
Alves-Bezerra M, Ramos IB, De Paula IF, Maya-Monteiro CM, Klett EL, Coleman RA, Gondim KC. Deficiency of glycerol-3-phosphate acyltransferase 1 decreases triacylglycerol storage and induces fatty acid oxidation in insect fat body. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862:324-336. [DOI: 10.1016/j.bbalip.2016.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/06/2016] [Accepted: 12/08/2016] [Indexed: 12/19/2022]
|
61
|
Hernández EÁ, Kahl S, Seelig A, Begovatz P, Irmler M, Kupriyanova Y, Nowotny B, Nowotny P, Herder C, Barosa C, Carvalho F, Rozman J, Neschen S, Jones JG, Beckers J, de Angelis MH, Roden M. Acute dietary fat intake initiates alterations in energy metabolism and insulin resistance. J Clin Invest 2017; 127:695-708. [PMID: 28112681 DOI: 10.1172/jci89444] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/10/2016] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Dietary intake of saturated fat is a likely contributor to nonalcoholic fatty liver disease (NAFLD) and insulin resistance, but the mechanisms that initiate these abnormalities in humans remain unclear. We examined the effects of a single oral saturated fat load on insulin sensitivity, hepatic glucose metabolism, and lipid metabolism in humans. Similarly, initiating mechanisms were examined after an equivalent challenge in mice. METHODS Fourteen lean, healthy individuals randomly received either palm oil (PO) or vehicle (VCL). Hepatic metabolism was analyzed using in vivo 13C/31P/1H and ex vivo 2H magnetic resonance spectroscopy before and during hyperinsulinemic-euglycemic clamps with isotope dilution. Mice underwent identical clamp procedures and hepatic transcriptome analyses. RESULTS PO administration decreased whole-body, hepatic, and adipose tissue insulin sensitivity by 25%, 15%, and 34%, respectively. Hepatic triglyceride and ATP content rose by 35% and 16%, respectively. Hepatic gluconeogenesis increased by 70%, and net glycogenolysis declined by 20%. Mouse transcriptomics revealed that PO differentially regulates predicted upstream regulators and pathways, including LPS, members of the TLR and PPAR families, NF-κB, and TNF-related weak inducer of apoptosis (TWEAK). CONCLUSION Saturated fat ingestion rapidly increases hepatic lipid storage, energy metabolism, and insulin resistance. This is accompanied by regulation of hepatic gene expression and signaling that may contribute to development of NAFLD.REGISTRATION. ClinicalTrials.gov NCT01736202. FUNDING Germany: Ministry of Innovation, Science, and Research North Rhine-Westfalia, German Federal Ministry of Health, Federal Ministry of Education and Research, German Center for Diabetes Research, German Research Foundation, and German Diabetes Association. Portugal: Portuguese Foundation for Science and Technology, FEDER - European Regional Development Fund, Portuguese Foundation for Science and Technology, and Rede Nacional de Ressonância Magnética Nuclear.
Collapse
|
62
|
Antu KA, Riya MP, Nair A, Mishra A, Srivastava AK, Raghu KG. Symplocos cochinchinensis enhances insulin sensitivity via the down regulation of lipogenesis and insulin resistance in high energy diet rat model. JOURNAL OF ETHNOPHARMACOLOGY 2016; 193:500-509. [PMID: 27686268 DOI: 10.1016/j.jep.2016.09.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 09/25/2016] [Accepted: 09/25/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE This plant has been utilized in Indian system of medicine for treatment of diabetes. This is clearly evident from the composition of Ayurvedic preparation for diabetes 'Nisakathakadi Kashayam' where this is one of the main ingredients of this preparation AIM OF THE STUDY: The study aims in elucidating the molecular mechanisms underlying the insulin sensitizing effects of Symplocos cochinchinensis ethanol extract (SCE) using a high fructose and saturated fat (HFS) fed insulin resistant rat model. MATERIALS AND METHODS Experimental groups consisted of normal diet (ND), ND+SCE 500mg/kg bwd, HFS+vehicle, HFS+metformin 100mg/kg bwd, HFS+SCE 250/500mg/kg bwd. Initially the animals were kept under HFS diet for 8 weeks, and at the end of 8 week period, animals were found to develop insulin resistance and dyslipidemia. Post-administration of SCE, metformin or vehicle were carried out for 3 weeks. Gene and protein expressions relevant to insulin signalling pathway were analysed. RESULTS HFS significantly altered the normal physiology of animals via proteins and genes relevant to metabolism like stearoyl-CoA desaturase (SCD1), sterol regulatory element binding protein 1 (SREBP-1c), fatty acid synthase (FAS), glucose 6 phosphatase (G6Pase), phosphoenol pyruvate carboxykinase (PEPCK), glucose transporter 2 (GLUT2), protein tyrosine phosphatse 1B (PTP1B), peroxisome proliferator activated receptor alpha (PPAR alpha), sirtuin 1 (SIRT1) and glucokinase. SCE administration attenuates the insulin resistance in HFS rat by the down regulation of SCD1 gene expression that modulates SREBP-1c dependent and independent hepatic lipid accumulation. CONCLUSION SCE enhances insulin sensitivity via the down regulation of lipogenesis and insulin resistance in HFS rat model.
Collapse
Affiliation(s)
- Kalathookunnel Antony Antu
- Agroprocessing and Natural Products Division, CSIR - National Institute for Interdisciplinary Science and Technology(NIIST), Thiruvananthapuram 695019, Kerala, India
| | - Mariam Philip Riya
- Agroprocessing and Natural Products Division, CSIR - National Institute for Interdisciplinary Science and Technology(NIIST), Thiruvananthapuram 695019, Kerala, India
| | - Anupama Nair
- Agroprocessing and Natural Products Division, CSIR - National Institute for Interdisciplinary Science and Technology(NIIST), Thiruvananthapuram 695019, Kerala, India
| | - Arvind Mishra
- Division of Biochemistry, CSIR - Central Drug Research Institute(CDRI), Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Arvind K Srivastava
- Division of Biochemistry, CSIR - Central Drug Research Institute(CDRI), Sector 10, Janakipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Kozhiparambil Gopalan Raghu
- Agroprocessing and Natural Products Division, CSIR - National Institute for Interdisciplinary Science and Technology(NIIST), Thiruvananthapuram 695019, Kerala, India.
| |
Collapse
|
63
|
Shang J, Castro-Perez JM, Shen X, Zhu Y, Liu H, Qian Y, Previs S, Howard AD, Erion M, Kelley DE, Wang L. Duodenal-jejunal bypass surgery induces hepatic lipidomic alterations associated with ameliorated hepatic steatosis in mice. Obesity (Silver Spring) 2016; 24:1938-45. [PMID: 27458076 DOI: 10.1002/oby.21583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Bariatric surgery induces weight loss and improvement of insulin resistance; one aspect of both is an amelioration of hepatic steatosis. This study was undertaken to assess the changes in the hepatic lipidome after duodenal-jejunal bypass (DJB) surgery. METHODS A DJB surgical model was developed and characterized in diet-induced obese mice. In comparison with sham-operated mice, an unbiased lipidomic profiling of hepatic lipids was performed together with measurements of gene expression within key pathways of hepatic lipid metabolism. RESULTS In the liver of DJB mice, a dramatic reduction (by 77%) in hepatic triacylglycerols was observed. Global lipidomic profiling identified marked decreases of triacylglycerols comprised of medium length fatty acids and with low double bond content. Specific diacylglycerol species were also among the most dramatic decreases in hepatic lipids, whereas lysophosphatidic acids and phosphatidic acids were increased. Expression of fatty acid transporter and lipogenic genes was down-regulated. CONCLUSIONS From in-depth analysis of hepatic lipid composition, specific lipid intermediates were identified that are preferentially changed following DJB surgery. These changes were most likely due to DJB-induced weight loss, and only further studies will be able to distinguish weight loss-dependent from weight loss-independent changes.
Collapse
Affiliation(s)
- Jin Shang
- Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - Jose M Castro-Perez
- Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - Xiaolan Shen
- Safety Assessment and Laboratory Animal Resource, Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - Yonghua Zhu
- Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - Haiying Liu
- Imaging, Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - Ying Qian
- Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - Stephen Previs
- Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - Andrew D Howard
- Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - Mark Erion
- Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - David E Kelley
- Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, New Jersey, USA
| | - Liangsu Wang
- Cardiometabolic Disease, Merck Research Laboratories, Kenilworth, New Jersey, USA
| |
Collapse
|
64
|
Lian J, Wei E, Groenendyk J, Das SK, Hermansson M, Li L, Watts R, Thiesen A, Oudit GY, Michalak M, Lehner R. Ces3/TGH Deficiency Attenuates Steatohepatitis. Sci Rep 2016; 6:25747. [PMID: 27181051 PMCID: PMC4867576 DOI: 10.1038/srep25747] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/22/2016] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease in developed countries. NAFLD describes a wide range of liver pathologies from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. NASH is distinguished from simple steatosis by inflammation, cell death and fibrosis. In this study we found that mice lacking triacylglycerol hydrolase (TGH, also known as carboxylesterase 3 or carboxylesterase 1d) are protected from high-fat diet (HFD) - induced hepatic steatosis via decreased lipogenesis, increased fatty acid oxidation and improved hepatic insulin sensitivity. To examine the effect of the loss of TGH function on the more severe NAFLD form NASH, we ablated Tgh expression in two independent NASH mouse models, Pemt(-/-) mice fed HFD and Ldlr(-/-) mice fed high-fat, high-cholesterol Western-type diet (WTD). TGH deficiency reduced liver inflammation, oxidative stress and fibrosis in Pemt(-/-) mice. TGH deficiency also decreased NASH in Ldlr(-/-) mice. Collectively, these findings indicate that TGH deficiency attenuated both simple hepatic steatosis and irreversible NASH.
Collapse
Affiliation(s)
- Jihong Lian
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Enhui Wei
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jody Groenendyk
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Subhash K. Das
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Martin Hermansson
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Lena Li
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Russell Watts
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Aducio Thiesen
- Department of Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y. Oudit
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Marek Michalak
- Department of Biochemistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Richard Lehner
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
65
|
Berzigotti A, Saran U, Dufour JF. Physical activity and liver diseases. Hepatology 2016; 63:1026-40. [PMID: 26313307 DOI: 10.1002/hep.28132] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/20/2015] [Indexed: 02/06/2023]
Abstract
UNLABELLED Regular physical activity beneficially impacts the risk of onset and progression of several chronic diseases. However, research regarding the effects of exercising on chronic liver diseases is relatively recent. Most researchers focused on nonalcoholic fatty liver disease (NAFLD), in which increasing clinical and experimental data indicate that skeletal muscle crosstalking to the adipose tissue and the liver regulates intrahepatic fat storage. In this setting, physical activity is considered to be required in combination with calories restriction to allow an effective decrease of intrahepatic lipid component, and despite that evidence is not conclusive, some studies suggest that vigorous activity might be more beneficial than moderate activity to improve NAFLD/nonalcoholic steatohepatitis. Evidence regarding the effects of exercise on the risk of hepatocellular carcinoma is scarce; some epidemiological studies indicate a lower risk in patients regularly and vigorously exercising. In compensated cirrhosis, exercise acutely increases portal pressure, but in the longer term it has been proved safe and probably beneficial. Decreased aerobic capacity (VO2 ) correlates with mortality in patients with decompensated cirrhosis, who are almost invariably sarcopenic. In these patients, VO2 is improved by physical activity, which might also reduce the risk of hepatic encephalopathy through an increase in skeletal muscle mass. In solid organ transplantation recipients, exercise is able to improve lean mass, muscle strength, and, as a consequence, aerobic capacity. Few data exist in liver transplant recipients, in whom exercise should be an object of future studies given its high potential of providing long-term beneficial effects. CONCLUSIONS Despite that evidence is far from complete, physical activity should be seen as an important part of the management of patients with liver disease in order to improve their clinical outcome.
Collapse
Affiliation(s)
- Annalisa Berzigotti
- Hepatology, University Clinic of Visceral Surgery and Medicine, Inselspital Berne, Berne, Switzerland
| | - Uttara Saran
- Hepatology, Department of Clinical Research, University of Berne, Berne, Switzerland
| | - Jean-François Dufour
- Hepatology, University Clinic of Visceral Surgery and Medicine, Inselspital Berne, Berne, Switzerland.,Hepatology, Department of Clinical Research, University of Berne, Berne, Switzerland
| |
Collapse
|
66
|
Denechaud PD, Lopez-Mejia IC, Giralt A, Lai Q, Blanchet E, Delacuisine B, Nicolay BN, Dyson NJ, Bonner C, Pattou F, Annicotte JS, Fajas L. E2F1 mediates sustained lipogenesis and contributes to hepatic steatosis. J Clin Invest 2015; 126:137-50. [PMID: 26619117 DOI: 10.1172/jci81542] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 10/22/2015] [Indexed: 12/16/2022] Open
Abstract
E2F transcription factors are known regulators of the cell cycle, proliferation, apoptosis, and differentiation. Here, we reveal that E2F1 plays an essential role in liver physiopathology through the regulation of glycolysis and lipogenesis. We demonstrate that E2F1 deficiency leads to a decrease in glycolysis and de novo synthesis of fatty acids in hepatocytes. We further demonstrate that E2F1 directly binds to the promoters of key lipogenic genes, including Fasn, but does not bind directly to genes encoding glycolysis pathway components, suggesting an indirect effect. In murine models, E2F1 expression and activity increased in response to feeding and upon insulin stimulation through canonical activation of the CDK4/pRB pathway. Moreover, E2F1 expression was increased in liver biopsies from obese, glucose-intolerant humans compared with biopsies from lean subjects. Finally, E2f1 deletion completely abrogated hepatic steatosis in different murine models of nonalcoholic fatty liver disease (NAFLD). In conclusion, our data demonstrate that E2F1 regulates lipid synthesis and glycolysis and thus contributes to the development of liver pathology.
Collapse
|
67
|
Does Diacylglycerol Accumulation in Fatty Liver Disease Cause Hepatic Insulin Resistance? BIOMED RESEARCH INTERNATIONAL 2015; 2015:104132. [PMID: 26273583 PMCID: PMC4529893 DOI: 10.1155/2015/104132] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/27/2015] [Indexed: 01/04/2023]
Abstract
Numerous studies conducted on obese humans and various rodent models of obesity have identified a correlation between hepatic lipid content and the development of insulin resistance in liver and other tissues. Despite a large body of the literature on this topic, the cause and effect relationship between hepatic steatosis and insulin resistance remains controversial. If, as many believe, lipid aggregation in liver drives insulin resistance and other metabolic abnormalities, there are significant unanswered questions as to which lipid mediators are causative in this cascade. Several published papers have now correlated levels of diacylglycerol (DAG), the penultimate intermediate in triglyceride synthesis, with development of insulin resistance and have postulated that this occurs via activation of protein kinase C signaling. Although many studies have confirmed this relationship, many others have reported a disconnect between DAG content and insulin resistance. It has been postulated that differences in methods for DAG measurement, DAG compartmentalization within the cell, or fatty acid composition of the DAG may explain these discrepancies. The purpose of this review is to compare and contrast some of the relevant findings in this area and to discuss a number of unanswered questions regarding the relationship between DAG and insulin resistance.
Collapse
|
68
|
Mosher J, Zhang W, Blumhagen RZ, D'Alessandro A, Nemkov T, Hansen KC, Hesselberth JR, Reis T. Coordination between Drosophila Arc1 and a specific population of brain neurons regulates organismal fat. Dev Biol 2015. [PMID: 26209258 DOI: 10.1016/j.ydbio.2015.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The brain plays a critical yet incompletely understood role in regulating organismal fat. We performed a neuronal silencing screen in Drosophila larvae to identify brain regions required to maintain proper levels of organismal fat. When used to modulate synaptic activity in specific brain regions, the enhancer-trap driver line E347 elevated fat upon neuronal silencing, and decreased fat upon neuronal activation. Unbiased sequencing revealed that Arc1 mRNA levels increase upon E347 activation. We had previously identified Arc1 mutations in a high-fat screen. Here we reveal metabolic changes in Arc1 mutants consistent with a high-fat phenotype and an overall shift toward energy storage. We find that Arc1-expressing cells neighbor E347 neurons, and manipulating E347 synaptic activity alters Arc1 expression patterns. Elevating Arc1 expression in these cells decreased fat, a phenocopy of E347 activation. Finally, loss of Arc1 prevented the lean phenotype caused by E347 activation, suggesting that Arc1 activity is required for E347 control of body fat. Importantly, neither E347 nor Arc1 manipulation altered energy-related behaviors. Our results support a model wherein E347 neurons induce Arc1 in specific neighboring cells to prevent excess fat accumulation.
Collapse
Affiliation(s)
- Jeremy Mosher
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Medical School, Aurora, CO 80045, United States
| | - Wei Zhang
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Medical School, Aurora, CO 80045, United States
| | - Rachel Z Blumhagen
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Medical School, Aurora, CO 80045, United States
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Medical School, Aurora, CO 80045, United States
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado Medical School, Aurora, CO 80045, United States
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, University of Colorado Medical School, Aurora, CO 80045, United States
| | - Jay R Hesselberth
- Department of Biochemistry and Molecular Genetics, University of Colorado Medical School, Aurora, CO 80045, United States
| | - Tânia Reis
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Medical School, Aurora, CO 80045, United States.
| |
Collapse
|
69
|
Berlanga A, Guiu-Jurado E, Porras JA, Aragonès G, Auguet T. [Role of metabolic lipases and lipotoxicity in the development of non-alcoholic steatosis and non-alcoholic steatohepatitis]. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2015; 28:47-61. [PMID: 26049666 DOI: 10.1016/j.arteri.2015.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 10/23/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common liver disease in developed countries, covering a spectrum of pathological conditions ranging from single steatosis to non-alcoholic steatohepatitis, cirrhosis and hepatocellular carcinoma. Its pathogenesis has been often interpreted by the "double-hit" hypothesis, where the lipid accumulation in the liver is followed by proinflammatory mediators inducing inflammation, hepatocellular injury and fibrosis. Nowadays, a more complex model suggests that free fatty acids and their metabolites could be the true lipotoxic agents that contribute to the development of NAFLD and hepatic insulin resistance, suggesting a central role for metabolic lipases in that process.
Collapse
Affiliation(s)
- Alba Berlanga
- Grupo de recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departamento de Medicina y Cirugía, Universidad Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, España
| | - Esther Guiu-Jurado
- Grupo de recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departamento de Medicina y Cirugía, Universidad Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, España
| | - José Antonio Porras
- Grupo de recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departamento de Medicina y Cirugía, Universidad Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, España; Servicio de Medicina Interna, Hospital Universitario Joan XXIII, Tarragona, España
| | - Gemma Aragonès
- Grupo de recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departamento de Medicina y Cirugía, Universidad Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, España
| | - Teresa Auguet
- Grupo de recerca GEMMAIR (AGAUR)-Medicina Aplicada, Departamento de Medicina y Cirugía, Universidad Rovira i Virgili (URV), Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, España; Servicio de Medicina Interna, Hospital Universitario Joan XXIII, Tarragona, España.
| |
Collapse
|
70
|
FGF1 and FGF19 reverse diabetes by suppression of the hypothalamic-pituitary-adrenal axis. Nat Commun 2015; 6:6980. [PMID: 25916467 PMCID: PMC4413509 DOI: 10.1038/ncomms7980] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/19/2015] [Indexed: 12/29/2022] Open
Abstract
Fibroblast growth factor-1 (FGF1) and FGF19 have been shown to improve glucose metabolism in diabetic rodents, but how this occurs is unknown. Here to investigate the mechanism of action of these growth factors, we perform intracerebroventricular (ICV) injections of recombinant FGF1 or FGF19 in an awake rat model of type 1 diabetes (T1D) and measure rates of whole-body lipolysis, hepatic acetyl CoA content, pyruvate carboxylase activity and hepatic glucose production. We show that ICV injection of FGF19 or FGF1 leads to a ∼60% reduction in hepatic glucose production, hepatic acetyl CoA content and whole-body lipolysis, which results from decreases in plasma ACTH and corticosterone concentrations. These effects are abrogated by an intra-arterial infusion of corticosterone. Taken together these studies identify suppression of the HPA axis and ensuing reductions in hepatic acetyl CoA content as a common mechanism responsible for mediating the acute, insulin-independent, glucose-lowering effects of FGF1 and FGF19 in rodents with poorly controlled T1D. Fibroblast growth factor (FGF) family proteins have anti-diabetic effects, but how they work is currently unclear. Here the authors show that injections of FGF1 or FGF19 into the brain of diabetic rats alter glucose and lipid homeostasis by suppressing activity of the hypothalamic-pituitary-adrenal signalling axis.
Collapse
|
71
|
Cooper DE, Grevengoed TJ, Klett EL, Coleman RA. Glycerol-3-phosphate Acyltransferase Isoform-4 (GPAT4) Limits Oxidation of Exogenous Fatty Acids in Brown Adipocytes. J Biol Chem 2015; 290:15112-20. [PMID: 25918168 DOI: 10.1074/jbc.m115.649970] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 11/06/2022] Open
Abstract
Glycerol-3-phosphate acyltransferase-4 (GPAT4) null pups grew poorly during the suckling period and, as adults, were protected from high fat diet-induced obesity. To determine why Gpat4(-/-) mice failed to gain weight during these two periods of high fat feeding, we examined energy metabolism. Compared with controls, the metabolic rate of Gpat4(-/-) mice fed a 45% fat diet was 12% higher. Core body temperature was 1 ºC higher after high fat feeding. Food intake, fat absorption, and activity were similar in both genotypes. Impaired weight gain in Gpat4(-/-) mice did not result from increased heat loss, because both cold tolerance and response to a β3-adrenergic agonist were similar in both genotypes. Because GPAT4 comprises 65% of the total GPAT activity in brown adipose tissue (BAT), we characterized BAT function. A 45% fat diet increased the Gpat4(-/-) BAT expression of peroxisome proliferator-activated receptor α (PPAR) target genes, Cpt1α, Pgc1α, and Ucp1, and BAT mitochondria oxidized oleate and pyruvate at higher rates than controls, suggesting that fatty acid signaling and flux through the TCA cycle were enhanced. To assess the role of GPAT4 directly, neonatal BAT preadipocytes were differentiated to adipocytes. Compared with controls, Gpat4(-/-) brown adipocytes incorporated 33% less fatty acid into triacylglycerol and 46% more into the pathway of β-oxidation. The increased oxidation rate was due solely to an increase in the oxidation of exogenous fatty acids. These data suggest that in the absence of cold exposure, GPAT4 limits excessive fatty acid oxidation and the detrimental induction of a hypermetabolic state.
Collapse
Affiliation(s)
| | | | - Eric L Klett
- From the Departments of Nutrition and Medicine, University of North Carolina, Chapel Hill, North Carolina 27599
| | | |
Collapse
|
72
|
Perry RJ, Zhang D, Zhang XM, Boyer JL, Shulman GI. Controlled-release mitochondrial protonophore reverses diabetes and steatohepatitis in rats. Science 2015; 347:1253-6. [PMID: 25721504 DOI: 10.1126/science.aaa0672] [Citation(s) in RCA: 224] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major factor in the pathogenesis of type 2 diabetes (T2D) and nonalcoholic steatohepatitis (NASH). The mitochondrial protonophore 2,4 dinitrophenol (DNP) has beneficial effects on NAFLD, insulin resistance, and obesity in preclinical models but is too toxic for clinical use. We developed a controlled-release oral formulation of DNP, called CRMP (controlled-release mitochondrial protonophore), that produces mild hepatic mitochondrial uncoupling. In rat models, CRMP reduced hypertriglyceridemia, insulin resistance, hepatic steatosis, and diabetes. It also normalized plasma transaminase concentrations, ameliorated liver fibrosis, and improved hepatic protein synthetic function in a methionine/choline-deficient rat model of NASH. Chronic treatment with CRMP was not associated with any systemic toxicity. These data offer proof of concept that mild hepatic mitochondrial uncoupling may be a safe and effective therapy for the related epidemics of metabolic syndrome, T2D, and NASH.
Collapse
Affiliation(s)
- Rachel J Perry
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA. Departments of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA. Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Dongyan Zhang
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Xian-Man Zhang
- Departments of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - James L Boyer
- Departments of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA. Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA
| | - Gerald I Shulman
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA. Departments of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA. Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
73
|
Cai Z, Jiang X, Pan Y, Chen L, Zhang L, Zhu K, Cai Y, Ling Y, Chen F, Xu X, Chen M. Transcriptomic analysis of hepatic responses to testosterone deficiency in miniature pigs fed a high-cholesterol diet. BMC Genomics 2015; 16:59. [PMID: 25887406 PMCID: PMC4328429 DOI: 10.1186/s12864-015-1283-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/26/2015] [Indexed: 12/15/2022] Open
Abstract
Background Recent studies have indicated that low serum testosterone levels are associated with increased risk of developing hepatic steatosis; however, the mechanisms mediating this phenomenon have not been fully elucidated. To gain insight into the role of testosterone in modulating hepatic steatosis, we investigated the effects of testosterone on the development of hepatic steatosis in pigs fed a high-fat and high-cholesterol (HFC) diet and profiled hepatic gene expression by RNA-Seq in HFC-fed intact male pigs (IM), castrated male pigs (CM), and castrated male pigs with testosterone replacement (CMT). Results Serum testosterone levels were significantly decreased in CM pigs, and testosterone replacement attenuated castration-induced testosterone deficiency. CM pigs showed increased liver injury accompanied by increased hepatocellular steatosis, inflammation, and elevated serum alanine aminotransferase levels compared with IM pigs. Moreover, serum levels of total cholesterol, low-density lipoprotein cholesterol, and triglycerides were markedly increased in CM pigs. Testosterone replacement decreased serum and hepatic lipid levels and improved liver injury in CM pigs. Compared to IM and CMT pigs, CM pigs had lower serum levels of superoxide dismutase but higher levels of malondialdehyde. Gene expression analysis revealed that upregulated genes in the livers of CM pigs were mainly enriched for genes mediating immune and inflammatory responses, oxidative stress, and apoptosis. Surprisingly, the downregulated genes mainly included those that regulate metabolism-related processes, including fatty acid oxidation, steroid biosynthesis, cholesterol and bile acid metabolism, and glucose metabolism. KEGG analysis showed that metabolic pathways, fatty acid degradation, pyruvate metabolism, the tricarboxylic acid cycle, and the nuclear factor-kappaB signaling pathway were the major pathways altered in CM pigs. Conclusions This study demonstrated that testosterone deficiency aggravated hypercholesterolemia and hepatic steatosis in pigs fed an HFC diet and that these effects could be reversed by testosterone replacement therapy. Impaired metabolic processes, enhanced immune and inflammatory responses, oxidative stress, and apoptosis may contribute to the increased hepatic steatosis induced by testosterone deficiency and an HFC diet. These results deepened our understanding of the molecular mechanisms of testosterone deficiency-induced hepatic steatosis and provided a foundation for future investigations. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1283-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhaowei Cai
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xiaoling Jiang
- Department of Cancer Genetics, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| | - Yongming Pan
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Liang Chen
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Lifan Zhang
- College of Animal Science, Nanjing Agricultural University, Nanjing, 310058, China.
| | - Keyan Zhu
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yueqin Cai
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Yun Ling
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Fangming Chen
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Xiaoping Xu
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Minli Chen
- Laboratory Animal Research Center, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
74
|
Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids. Proc Natl Acad Sci U S A 2015; 112:1143-8. [PMID: 25564660 DOI: 10.1073/pnas.1423952112] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A central paradox in type 2 diabetes is the apparent selective nature of hepatic insulin resistance--wherein insulin fails to suppress hepatic glucose production yet continues to stimulate lipogenesis, resulting in hyperglycemia, hyperlipidemia, and hepatic steatosis. Although efforts to explain this have focused on finding a branch point in insulin signaling where hepatic glucose and lipid metabolism diverge, we hypothesized that hepatic triglyceride synthesis could be driven by substrate, independent of changes in hepatic insulin signaling. We tested this hypothesis in rats by infusing [U-(13)C] palmitate to measure rates of fatty acid esterification into hepatic triglyceride while varying plasma fatty acid and insulin concentrations independently. These experiments were performed in normal rats, high fat-fed insulin-resistant rats, and insulin receptor 2'-O-methoxyethyl chimeric antisense oligonucleotide-treated rats. Rates of fatty acid esterification into hepatic triglyceride were found to be dependent on plasma fatty acid infusion rates, independent of changes in plasma insulin concentrations and independent of hepatocellular insulin signaling. Taken together, these results obviate a paradox of selective insulin resistance, because the major source of hepatic lipid synthesis, esterification of preformed fatty acids, is primarily dependent on substrate delivery and largely independent of hepatic insulin action.
Collapse
|
75
|
Gauthier MS, Pérusse JR, Lavoie MÈ, Sladek R, Madiraju SRM, Ruderman NB, Coulombe B, Prentki M, Rabasa-Lhoret R. Increased subcutaneous adipose tissue expression of genes involved in glycerolipid-fatty acid cycling in obese insulin-resistant versus -sensitive individuals. J Clin Endocrinol Metab 2014; 99:E2518-28. [PMID: 25210878 PMCID: PMC5393488 DOI: 10.1210/jc.2014-1662] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT A subpopulation of obese individuals remains insulin sensitive (ISO). They represent a unique human model to investigate factors underlying insulin resistance (IR) without the confounding effect of major differences in weight/adiposity. Altered fatty-acid (FA) metabolism in sc adipose tissue (SAT) contributes to obesity-associated IR. OBJECTIVE To test the hypothesis that ISO and body mass index-matched insulin-resistant obese (IRO) patients demonstrate differential SAT expression profiles of genes involved in glycerolipid-FA metabolism and that weight loss-induced improvement of IR ameliorates these changes. DESIGN AND SETTING A cross-sectional and longitudinal study. PATIENTS AND INTERVENTION Thirty-eight nondiabetic obese women were stratified into ISO (n = 25) or IRO (n = 13) groups based on hyperinsulinemic-euglycemic clamp results. Subjects were studied before and after a 6-month hypocaloric diet intervention. MAIN OUTCOME MEASURES mRNA (quantitative RT-PCR) and protein (mass spectrometry and immunoblots) levels were measured in SAT biopsies. RESULTS Despite having age, body mass index, and fat mass similar to ISO individuals, IRO patients had lower insulin sensitivity and glucose tolerance (P < .05). Baseline SAT mRNA and protein levels of genes involved in both the synthesis and lipolysis of glycerolipid-FAs were higher in IRO individuals (P < .05), even when groups were matched for visceral adipose tissue content. The dietary intervention resulted in approximately 6% weight loss in both the IRO and ISO groups (P < .05) but only ameliorated insulin sensitivity in IRO individuals (P < .05). Likewise, the intervention reduced the expression of most glycerolipid-FA metabolism genes (P < .05), with expression levels in IRO individuals being restored to ISO levels. CONCLUSIONS Increased SAT expression of genes involved in both the synthesis and hydrolysis of glycerolipid-FAs is closely associated with IR in obese women. The results suggest that enhanced glycerolipid-FA cycling in SAT contributes to obesity-associated IR.
Collapse
Affiliation(s)
- Marie-Soleil Gauthier
- Institut de recherches cliniques de Montréal (M.-S.G., J.R.P., M.-E.L., B.C., R.R.-L.), Montréal, QC H2W 1R7, Canada; Montreal Diabetes Research Center at the Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM) (M.-S.G., M.-E.L., R.S., S.R.M.M., M.P., R.R.-L.), Montréal, QC H2X 0A9, Canada; McGill University and Centre d'Innovation Génome Québec (R.S.), Montréal, QC H3A 0G1, Canada; Molecular Nutrition Unit at the CRCHUM (S.R.M.M., M.P.), Montréal, QC H2X 0A9, Canada; Diabetes and Metabolism Research Unit (N.B.R.), and Department of Medicine and Section of Endocrinology (N.B.R.), Boston University School of Medicine, Boston, Massachusetts 02118; Departments of Biochemistry (B.C., M.P.) and Nutrition (M.-E.L., M.P., R.R.-L.), Faculty of Medicine, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Kahle M, Schäfer A, Seelig A, Schultheiß J, Wu M, Aichler M, Leonhardt J, Rathkolb B, Rozman J, Sarioglu H, Hauck SM, Ueffing M, Wolf E, Kastenmueller G, Adamski J, Walch A, Hrabé de Angelis M, Neschen S. High fat diet-induced modifications in membrane lipid and mitochondrial-membrane protein signatures precede the development of hepatic insulin resistance in mice. Mol Metab 2014; 4:39-50. [PMID: 25685688 PMCID: PMC4314525 DOI: 10.1016/j.molmet.2014.11.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 11/05/2014] [Accepted: 11/07/2014] [Indexed: 12/14/2022] Open
Abstract
Objective Excess lipid intake has been implicated in the pathophysiology of hepatosteatosis and hepatic insulin resistance. Lipids constitute approximately 50% of the cell membrane mass, define membrane properties, and create microenvironments for membrane-proteins. In this study we aimed to resolve temporal alterations in membrane metabolite and protein signatures during high-fat diet (HF)-mediated development of hepatic insulin resistance. Methods We induced hepatosteatosis by feeding C3HeB/FeJ male mice an HF enriched with long-chain polyunsaturated C18:2n6 fatty acids for 7, 14, or 21 days. Longitudinal changes in hepatic insulin sensitivity were assessed via the euglycemic-hyperinsulinemic clamp, in membrane lipids via t-metabolomics- and membrane proteins via quantitative proteomics-analyses, and in hepatocyte morphology via electron microscopy. Data were compared to those of age- and litter-matched controls maintained on a low-fat diet. Results Excess long-chain polyunsaturated C18:2n6 intake for 7 days did not compromise hepatic insulin sensitivity, however, induced hepatosteatosis and modified major membrane lipid constituent signatures in liver, e.g. increased total unsaturated, long-chain fatty acid-containing acyl-carnitine or membrane-associated diacylglycerol moieties and decreased total short-chain acyl-carnitines, glycerophosphocholines, lysophosphatidylcholines, or sphingolipids. Hepatic insulin sensitivity tended to decrease within 14 days HF-exposure. Overt hepatic insulin resistance developed until day 21 of HF-intervention and was accompanied by morphological mitochondrial abnormalities and indications for oxidative stress in liver. HF-feeding progressively decreased the abundance of protein-components of all mitochondrial respiratory chain complexes, inner and outer mitochondrial membrane substrate transporters independent from the hepatocellular mitochondrial volume in liver. Conclusions We assume HF-induced modifications in membrane lipid- and protein-signatures prior to and during changes in hepatic insulin action in liver alter membrane properties – in particular those of mitochondria which are highly abundant in hepatocytes. In turn, a progressive decrease in the abundance of mitochondrial membrane proteins throughout HF-exposure likely impacts on mitochondrial energy metabolism, substrate exchange across mitochondrial membranes, contributes to oxidative stress, mitochondrial damage, and the development of insulin resistance in liver.
Collapse
Key Words
- 2-[14C]DG, 2-[1-14C]deoxyglucose
- ALT, alanine aminotransferase
- AUC, area under the curve
- B, basal
- Basal, 17 h fasting
- Clamp
- DAG, diacylglycerol
- Diabetes
- EGP, endogenous (hepatic) glucose production
- GIR, glucose infusion rate
- HF, high-fat diet
- Hepatosteatosis
- IS, insulin-stimulated
- LF, low-fat diet
- Metabolomics
- Mitochondria
- NEFA, non-esterified fatty acids
- PCaa, diacylglycerophosphocholine
- PCae, glycerophosphocholine
- Proteomics
- ROS, reactive oxygen species
- Ra, rate of appearance
- Rd, rate of disappearance
- Rg, glucose metabolic index
- SM, sphingolipid
- TAG, triacylglycerol
- WAT, white adipose tissue
- lysoPC, lysophosphatidylcholines
Collapse
Affiliation(s)
- M Kahle
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Munich, Germany ; Member of German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany
| | - A Schäfer
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany ; Member of German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany
| | - A Seelig
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Munich, Germany
| | - J Schultheiß
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Munich, Germany ; Member of German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany
| | - M Wu
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Munich, Germany ; Member of German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany
| | - M Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany
| | - J Leonhardt
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany
| | - B Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany ; Gene Center, Ludwig-Maximilians-Universität München, Feodor Lynen-Straße 25, 81377 Munich, Germany
| | - J Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany ; Member of German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany
| | - H Sarioglu
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany
| | - S M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany ; Member of German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany
| | - M Ueffing
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany ; Member of German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany
| | - E Wolf
- Gene Center, Ludwig-Maximilians-Universität München, Feodor Lynen-Straße 25, 81377 Munich, Germany
| | - G Kastenmueller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany
| | - J Adamski
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Munich, Germany ; Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany
| | - A Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany
| | - M Hrabé de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Munich, Germany ; German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany ; Member of German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany
| | - S Neschen
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764 Neuherberg, Munich, Germany ; German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany ; Member of German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764 Neuherberg, Munich, Germany
| |
Collapse
|
77
|
Jelenik T, Séquaris G, Kaul K, Ouwens DM, Phielix E, Kotzka J, Knebel B, Weiß J, Reinbeck AL, Janke L, Nowotny P, Partke HJ, Zhang D, Shulman GI, Szendroedi J, Roden M. Tissue-specific differences in the development of insulin resistance in a mouse model for type 1 diabetes. Diabetes 2014; 63:3856-67. [PMID: 24917575 DOI: 10.2337/db13-1794] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Although insulin resistance is known to underlie type 2 diabetes, its role in the development of type 1 diabetes has been gaining increasing interest. In a model of type 1 diabetes, the nonobese diabetic (NOD) mouse, we found that insulin resistance driven by lipid- and glucose-independent mechanisms is already present in the liver of prediabetic mice. Hepatic insulin resistance is associated with a transient rise in mitochondrial respiration followed by increased production of lipid peroxides and c-Jun N-terminal kinase activity. At the onset of diabetes, increased adipose tissue lipolysis promotes myocellular diacylglycerol accumulation. This is paralleled by increased myocellular protein kinase C θ activity and serum fetuin A levels. Muscle mitochondrial oxidative capacity is unchanged at the onset but decreases at later stages of diabetes. In conclusion, hepatic and muscle insulin resistance manifest at different stages and involve distinct cellular mechanisms during the development of diabetes in the NOD mouse.
Collapse
Affiliation(s)
- Tomas Jelenik
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - Gilles Séquaris
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - Kirti Kaul
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - D Margriet Ouwens
- German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany Department of Endocrinology, Ghent University Hospital, Ghent, Belgium
| | - Esther Phielix
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - Jörg Kotzka
- German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Birgit Knebel
- German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Jürgen Weiß
- German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Anna Lena Reinbeck
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - Linda Janke
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - Peter Nowotny
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany
| | - Hans-Joachim Partke
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany
| | - Dongyan Zhang
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT
| | - Gerald I Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany Department of Endocrinology and Diabetology, Heinrich-Heine University, Düsseldorf, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center, Düsseldorf, Germany German Center for Diabetes Research, Partner Düsseldorf, Germany Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Düsseldorf, Germany Department of Endocrinology and Diabetology, Heinrich-Heine University, Düsseldorf, Germany
| |
Collapse
|
78
|
Hwang SL, Jeong YT, Li X, Kim YD, Lu Y, Chang YC, Lee IK, Chang HW. Inhibitory cross-talk between the AMPK and ERK pathways mediates endoplasmic reticulum stress-induced insulin resistance in skeletal muscle. Br J Pharmacol 2014; 169:69-81. [PMID: 23373714 DOI: 10.1111/bph.12124] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 12/12/2012] [Accepted: 12/26/2012] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Endoplasmic reticulum (ER) stress has been implicated in the pathogeneses of insulin resistance and type 2 diabetes, and extracellular signal-regulated kinase (ERK) antagonist is an insulin sensitizer that can restore muscle insulin responsiveness in both tunicamycin-treated muscle cells and type 2 diabetic mice. The present study was undertaken to determine whether the chemical or genetic inhibition ER stress pathway targeting by ERK results in metabolic benefits in muscle cells. EXPERIMENTAL APPROACH ER stress was induced in L6 myotubes using tunicamycin (5 μg·mL(-1) ) or thapsigargin (300 nM) and cells were transfected with siRNA ERK or AMPKα2. Changes in ER stress and in the ERK and AMPK signalling pathways were explored by Western blotting. The phosphorylation levels of insulin receptor substrate 1 were analysed by immunoprecipitation and using glucose uptake assay. KEY RESULTS ER stress dampened insulin-stimulated signals and glucose uptake, whereas treatment with the specific ERK inhibitor U0126 (25 μM) rescued impaired insulin signalling via AMPK activation. In db/db mice, U0126 administration decreased markers of insulin resistance and increased the phosphorylations of Akt and AMPK in muscle tissues. CONCLUSIONS AND IMPLICATIONS Inhibition of ERK signalling pathways by a chemical inhibitor and knockdown of ERK improved AMPK and Akt signallings and reversed ER stress-induced insulin resistance in L6 myotubes. These findings suggest that ERK signalling plays an important role in the regulation of insulin signals in muscle cells under ER stress.
Collapse
Affiliation(s)
- Seung-Lark Hwang
- College of Pharmacy, Yeungnam University, Gyeongsan, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
79
|
Zhang C, Cooper DE, Grevengoed TJ, Li LO, Klett EL, Eaton JM, Harris TE, Coleman RA. Glycerol-3-phosphate acyltransferase-4-deficient mice are protected from diet-induced insulin resistance by the enhanced association of mTOR and rictor. Am J Physiol Endocrinol Metab 2014; 307:E305-15. [PMID: 24939733 PMCID: PMC4121579 DOI: 10.1152/ajpendo.00034.2014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Glycerol-3-phosphate acyltransferase (GPAT) activity is highly induced in obese individuals with insulin resistance, suggesting a correlation between GPAT function, triacylglycerol accumulation, and insulin resistance. We asked whether microsomal GPAT4, an isoform regulated by insulin, might contribute to the development of hepatic insulin resistance. Compared with control mice fed a high fat diet, Gpat4(-/-) mice were more glucose tolerant and were protected from insulin resistance. Overexpression of GPAT4 in mouse hepatocytes impaired insulin-suppressed gluconeogenesis and insulin-stimulated glycogen synthesis. Impaired glucose homeostasis was coupled to inhibited insulin-stimulated phosphorylation of Akt(Ser⁴⁷³) and Akt(Thr³⁰⁸). GPAT4 overexpression inhibited rictor's association with the mammalian target of rapamycin (mTOR), and mTOR complex 2 (mTORC2) activity. Compared with overexpressed GPAT3 in mouse hepatocytes, GPAT4 overexpression increased phosphatidic acid (PA), especially di16:0-PA. Conversely, in Gpat4(-/-) hepatocytes, both mTOR/rictor association and mTORC2 activity increased, and the content of PA in Gpat4(-/-) hepatocytes was lower than in controls, with the greatest decrease in 16:0-PA species. Compared with controls, liver and skeletal muscle from Gpat4(-/-)-deficient mice fed a high-fat diet were more insulin sensitive and had a lower hepatic content of di16:0-PA. Taken together, these data demonstrate that a GPAT4-derived lipid signal, likely di16:0-PA, impairs insulin signaling in mouse liver and contributes to hepatic insulin resistance.
Collapse
Affiliation(s)
- Chongben Zhang
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Daniel E Cooper
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Trisha J Grevengoed
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Lei O Li
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Eric L Klett
- Department of Medicine, University of North Carolina, Chapel Hill, North Carolina; and
| | - James M Eaton
- Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia
| | - Thurl E Harris
- Department of Pharmacology, University of Virginia Health System, Charlottesville, Virginia
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina;
| |
Collapse
|
80
|
The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 2014; 510:84-91. [PMID: 24899308 DOI: 10.1038/nature13478] [Citation(s) in RCA: 850] [Impact Index Per Article: 77.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/14/2014] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease and its downstream sequelae, hepatic insulin resistance and type 2 diabetes, are rapidly growing epidemics, which lead to increased morbidity and mortality rates, and soaring health-care costs. Developing interventions requires a comprehensive understanding of the mechanisms by which excess hepatic lipid develops and causes hepatic insulin resistance and type 2 diabetes. Proposed mechanisms implicate various lipid species, inflammatory signalling and other cellular modifications. Studies in mice and humans have elucidated a key role for hepatic diacylglycerol activation of protein kinase Cε in triggering hepatic insulin resistance. Therapeutic approaches based on this mechanism could alleviate the related epidemics of non-alcoholic fatty liver disease and type 2 diabetes.
Collapse
|
81
|
Hall AM, Soufi N, Chambers KT, Chen Z, Schweitzer GG, McCommis KS, Erion DM, Graham MJ, Su X, Finck BN. Abrogating monoacylglycerol acyltransferase activity in liver improves glucose tolerance and hepatic insulin signaling in obese mice. Diabetes 2014; 63:2284-96. [PMID: 24595352 PMCID: PMC4066334 DOI: 10.2337/db13-1502] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Monoacylglycerol acyltransferase (MGAT) enzymes convert monoacylglycerol to diacylglycerol (DAG), a lipid that has been linked to the development of hepatic insulin resistance through activation of protein kinase C (PKC). The expression of genes that encode MGAT enzymes is induced in the livers of insulin-resistant human subjects with nonalcoholic fatty liver disease, but whether MGAT activation is causal of hepatic steatosis or insulin resistance is unknown. We show that the expression of Mogat1, which encodes MGAT1, and MGAT activity are also increased in diet-induced obese (DIO) and ob/obmice. To probe the metabolic effects of MGAT1 in the livers of obese mice, we administered antisense oligonucleotides (ASOs) against Mogat1 to DIO and ob/ob mice for 3 weeks. Knockdown of Mogat1 in liver, which reduced hepatic MGAT activity, did not affect hepatic triacylglycerol content and unexpectedly increased total DAG content. Mogat1 inhibition also increased both membrane and cytosolic compartment DAG levels. However, Mogat1 ASO treatment significantly improved glucose tolerance and hepatic insulin signaling in obese mice. In summary, inactivation of hepatic MGAT activity, which is markedly increased in obese mice, improved glucose tolerance and hepatic insulin signaling independent of changes in body weight, intrahepatic DAG and TAG content, and PKC signaling.
Collapse
Affiliation(s)
- Angela M Hall
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Nisreen Soufi
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Kari T Chambers
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Zhouji Chen
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - George G Schweitzer
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Kyle S McCommis
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - Derek M Erion
- Cardiovascular, Metabolic, and Endocrine Diseases Research Unit, Pfizer Global Research and Development, Cambridge, MA
| | | | - Xiong Su
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MODepartment of Biochemistry and Molecular Biology, Medical College of Soochow University, Suzhou, China
| | - Brian N Finck
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
82
|
Abstract
Increased hepatic lipid content is associated with hepatic as well as whole‐body insulin resistance and is typical for individuals with type 2 diabetes mellitus. However, whether insulin resistance causes hepatic steatosis or whether hepatic steatosis per se reduces insulin sensitivity remains unclear. Multiple metabolic pathways lead to the development of hepatic steatosis, including enhanced free fatty acid release from adipose tissues (lipolysis), increased de novo fatty acid synthesis (lipogenesis), decreased mitochondrial β‐oxidation and decreased very low‐density lipoprotein secretion. Although the molecular mechanisms leading to the development of hepatic steatosis in the pathogenesis of type 2 diabetes mellitus are complex, several recent animal models have shown that modulating important enzymes involved in hepatic fatty acid and glycerolipid synthesis might be a key for treating hepatic insulin resistance. We highlight recent advances in the understanding of the molecular mechanisms leading to the development of hepatic steatosis and insulin resistance. (J Diabetes Invest, doi: 10.1111/j.2040‐1124.2011.00111.x, 2011)
Collapse
Affiliation(s)
- Takashi Matsuzaka
- Department of Internal Medicine (Endocrinology and Metabolism), Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hitoshi Shimano
- Department of Internal Medicine (Endocrinology and Metabolism), Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
83
|
Role of diacylglycerol activation of PKCθ in lipid-induced muscle insulin resistance in humans. Proc Natl Acad Sci U S A 2014; 111:9597-602. [PMID: 24979806 DOI: 10.1073/pnas.1409229111] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Muscle insulin resistance is a key feature of obesity and type 2 diabetes and is strongly associated with increased intramyocellular lipid content and inflammation. However, the cellular and molecular mechanisms responsible for causing muscle insulin resistance in humans are still unclear. To address this question, we performed serial muscle biopsies in healthy, lean subjects before and during a lipid infusion to induce acute muscle insulin resistance and assessed lipid and inflammatory parameters that have been previously implicated in causing muscle insulin resistance. We found that acute induction of muscle insulin resistance was associated with a transient increase in total and cytosolic diacylglycerol (DAG) content that was temporally associated with protein kinase (PKC)θ activation, increased insulin receptor substrate (IRS)-1 serine 1101 phosphorylation, and inhibition of insulin-stimulated IRS-1 tyrosine phosphorylation and AKT2 phosphorylation. In contrast, there were no associations between insulin resistance and alterations in muscle ceramide, acylcarnitine content, or adipocytokines (interleukin-6, adiponectin, retinol-binding protein 4) or soluble intercellular adhesion molecule-1. Similar associations between muscle DAG content, PKCθ activation, and muscle insulin resistance were observed in healthy insulin-resistant obese subjects and obese type 2 diabetic subjects. Taken together, these data support a key role for DAG activation of PKCθ in the pathogenesis of lipid-induced muscle insulin resistance in obese and type 2 diabetic individuals.
Collapse
|
84
|
Cao J, Perez S, Goodwin B, Lin Q, Peng H, Qadri A, Zhou Y, Clark RW, Perreault M, Tobin JF, Gimeno RE. Mice deleted for GPAT3 have reduced GPAT activity in white adipose tissue and altered energy and cholesterol homeostasis in diet-induced obesity. Am J Physiol Endocrinol Metab 2014; 306:E1176-87. [PMID: 24714397 DOI: 10.1152/ajpendo.00666.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glycerol-3-phosphate acyltransferases (GPATs) catalyze the first step in the synthesis of glycerolipids and glycerophospholipids. Microsomal GPAT, the major GPAT activity, is encoded by at least two closely related genes, GPAT3 and GPAT4. To investigate the in vivo functions of GPAT3, we generated Gpat3-deficient (Gpat3(-/-)) mice. Total GPAT activity in white adipose tissue of Gpat3(-/-) mice was reduced by 80%, suggesting that GPAT3 is the predominant GPAT in this tissue. In liver, GPAT3 deletion had no impact on total GPAT activity but resulted in a 30% reduction in N-ethylmaleimide-sensitive GPAT activity. The Gpat3(-/-) mice were viable and fertile and exhibited no obvious metabolic abnormalities on standard laboratory chow. However, when fed a high-fat diet, female Gpat3(-/-) mice showed decreased body weight gain and adiposity and increased energy expenditure. Increased energy expenditure was also observed in male Gpat3(-/-) mice, although it was not accompanied by a significant change in body weight. GPAT3 deficiency lowered fed, but not fasted, glucose levels and tended to improve glucose tolerance in diet-induced obese male and female mice. On a high-fat diet, Gpat3(-/-) mice had enlarged livers and displayed a dysregulation in cholesterol metabolism. These data establish GPAT3 as the primary GPAT in white adipose tissue and reveal an important role of the enzyme in regulating energy, glucose, and lipid homeostasis.
Collapse
Affiliation(s)
- Jingsong Cao
- Cardiovascular and Metabolic Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Sylvie Perez
- Cardiovascular and Metabolic Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Bryan Goodwin
- Cardiovascular and Metabolic Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Qingcong Lin
- Cardiovascular and Metabolic Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Haibing Peng
- Cardiovascular and Metabolic Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Ariful Qadri
- Cardiovascular and Metabolic Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Yingjiang Zhou
- Cardiovascular and Metabolic Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Ronald W Clark
- Cardiovascular and Metabolic Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Mylene Perreault
- Cardiovascular and Metabolic Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - James F Tobin
- Cardiovascular and Metabolic Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| | - Ruth E Gimeno
- Cardiovascular and Metabolic Disease Research Unit, Pfizer Worldwide Research and Development, Cambridge, Massachusetts
| |
Collapse
|
85
|
Targeting Hepatic Glycerolipid Synthesis and Turnover to Treat Fatty Liver Disease. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/498369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of metabolic abnormalities ranging from simple hepatic steatosis (accumulation of neutral lipid) to development of steatotic lesions, steatohepatitis, and cirrhosis. NAFLD is extremely prevalent in obese individuals and with the epidemic of obesity; nonalcoholic steatohepatitis (NASH) has become the most common cause of liver disease in the developed world. NASH is rapidly emerging as a prominent cause of liver failure and transplantation. Moreover, hepatic steatosis is tightly linked to risk of developing insulin resistance, diabetes, and cardiovascular disease. Abnormalities in hepatic lipid metabolism are part and parcel of the development of NAFLD and human genetic studies and work conducted in experimentally tractable systems have identified a number of enzymes involved in fat synthesis and degradation that are linked to NAFLD susceptibility as well as progression to NASH. The goal of this review is to summarize the current state of our knowledge on these pathways and focus on how they contribute to etiology of NAFLD and related metabolic diseases.
Collapse
|
86
|
Abstract
Long-chain fatty acyl-coenzyme As (CoAs) are critical regulatory molecules and metabolic intermediates. The initial step in their synthesis is the activation of fatty acids by one of 13 long-chain acyl-CoA synthetase isoforms. These isoforms are regulated independently and have different tissue expression patterns and subcellular locations. Their acyl-CoA products regulate metabolic enzymes and signaling pathways, become oxidized to provide cellular energy, and are incorporated into acylated proteins and complex lipids such as triacylglycerol, phospholipids, and cholesterol esters. Their differing metabolic fates are determined by a network of proteins that channel the acyl-CoAs toward or away from specific metabolic pathways and serve as the basis for partitioning. This review evaluates the evidence for acyl-CoA partitioning by reviewing experimental data on proteins that are believed to contribute to acyl-CoA channeling, the metabolic consequences of loss of these proteins, and the potential role of maladaptive acyl-CoA partitioning in the pathogenesis of metabolic disease and carcinogenesis.
Collapse
|
87
|
Khan S, Abu Jawdeh BG, Goel M, Schilling WP, Parker MD, Puchowicz MA, Yadav SP, Harris RC, El-Meanawy A, Hoshi M, Shinlapawittayatorn K, Deschênes I, Ficker E, Schelling JR. Lipotoxic disruption of NHE1 interaction with PI(4,5)P2 expedites proximal tubule apoptosis. J Clin Invest 2014; 124:1057-68. [PMID: 24531551 DOI: 10.1172/jci71863] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 12/11/2013] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease progression can be predicted based on the degree of tubular atrophy, which is the result of proximal tubule apoptosis. The Na+/H+ exchanger NHE1 regulates proximal tubule cell survival through interaction with phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2], but pathophysiologic triggers for NHE1 inactivation are unknown. Because glomerular injury permits proximal tubule luminal exposure and reabsorption of fatty acid/albumin complexes, we hypothesized that accumulation of amphipathic, long-chain acyl-CoA (LC-CoA) metabolites stimulates lipoapoptosis by competing with the structurally similar PI(4,5)P2 for NHE1 binding. Kidneys from mouse models of progressive, albuminuric kidney disease exhibited increased fatty acids, LC-CoAs, and caspase-2-dependent proximal tubule lipoapoptosis. LC-CoAs and the cytosolic domain of NHE1 directly interacted, with an affinity comparable to that of the PI(4,5)P2-NHE1 interaction, and competing LC-CoAs disrupted binding of the NHE1 cytosolic tail to PI(4,5)P2. Inhibition of LC-CoA catabolism reduced NHE1 activity and enhanced apoptosis, whereas inhibition of proximal tubule LC-CoA generation preserved NHE1 activity and protected against apoptosis. Our data indicate that albuminuria/lipiduria enhances lipotoxin delivery to the proximal tubule and accumulation of LC-CoAs contributes to tubular atrophy by severing the NHE1-PI(4,5)P2 interaction, thereby lowering the apoptotic threshold. Furthermore, these data suggest that NHE1 functions as a metabolic sensor for lipotoxicity.
Collapse
|
88
|
Fayyaz S, Henkel J, Japtok L, Krämer S, Damm G, Seehofer D, Püschel GP, Kleuser B. Involvement of sphingosine 1-phosphate in palmitate-induced insulin resistance of hepatocytes via the S1P2 receptor subtype. Diabetologia 2014; 57:373-82. [PMID: 24292566 DOI: 10.1007/s00125-013-3123-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 11/06/2013] [Indexed: 02/06/2023]
Abstract
AIMS/HYPOTHESIS Enhanced plasma levels of NEFA have been shown to induce hepatic insulin resistance, which contributes to the development of type 2 diabetes. Indeed, sphingolipids can be formed via a de novo pathway from the saturated fatty acid palmitate and the amino acid serine. Besides ceramides, sphingosine 1-phosphate (S1P) has been identified as a major bioactive lipid mediator. Therefore, our aim was to investigate the generation and function of S1P in hepatic insulin resistance. METHODS The incorporation of palmitate into sphingolipids was performed by rapid-resolution liquid chromatography-MS/MS in primary human and rat hepatocytes. The influence of S1P and the involvement of S1P receptors in hepatic insulin resistance was examined in human and rat hepatocytes, as well as in New Zealand obese (NZO) mice. RESULTS Palmitate induced an impressive formation of extra- and intracellular S1P in rat and human hepatocytes. An elevation of hepatic S1P levels was observed in NZO mice fed a high-fat diet. Once generated, S1P was able, similarly to palmitate, to counteract insulin signalling. The inhibitory effect of S1P was abolished in the presence of the S1P2 receptor antagonist JTE-013 both in vitro and in vivo. In agreement with this, the immunomodulator FTY720-phosphate, which binds to all S1P receptors except S1P2, was not able to inhibit insulin signalling. CONCLUSIONS/INTERPRETATION These data indicate that palmitate is metabolised by hepatocytes to S1P, which acts via stimulation of the S1P2 receptor to impair insulin signalling. In particular, S1P2 inhibition could be considered as a novel therapeutic target for the treatment of insulin resistance.
Collapse
Affiliation(s)
- Susann Fayyaz
- Faculty of Mathematics and Natural Science, Institute of Nutritional Science, Department of Toxicology, University of Potsdam, Arthur-Scheunert Allee 114-116, 14558, Nuthetal, Potsdam, Germany
| | | | | | | | | | | | | | | |
Collapse
|
89
|
Birkenfeld AL, Shulman GI. Nonalcoholic fatty liver disease, hepatic insulin resistance, and type 2 diabetes. Hepatology 2014; 59:713-23. [PMID: 23929732 PMCID: PMC3946772 DOI: 10.1002/hep.26672] [Citation(s) in RCA: 557] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/31/2013] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), hepatic insulin resistance, and type 2 diabetes are all strongly associated and are all reaching epidemic proportions. Whether there is a causal link between NAFLD and hepatic insulin resistance is controversial. This review will discuss recent studies in both humans and animal models of NAFLD that have implicated increases in hepatic diacylglycerol (DAG) content leading to activation of novel protein kinase Cϵ (PKCϵ) resulting in decreased insulin signaling in the pathogenesis of NAFLD-associated hepatic insulin resistance and type 2 diabetes. The DAG-PKCϵ hypothesis can explain the occurrence of hepatic insulin resistance observed in most cases of NAFLD associated with obesity, lipodystrophy, and type 2 diabetes.
Collapse
Affiliation(s)
- Andreas L. Birkenfeld
- Charité - University School of Medicine, Department of Endocrinology Diabetes and Nutrition, Center for Cardiovascular Research, Berlin, Germany
- Howard Hughes Medical Institute and the Departments of Internal Medicine and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Gerald I. Shulman
- Howard Hughes Medical Institute and the Departments of Internal Medicine and Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
90
|
|
91
|
Auberval N, Dal S, Bietiger W, Pinget M, Jeandidier N, Maillard-Pedracini E, Schini-Kerth V, Sigrist S. Metabolic and oxidative stress markers in Wistar rats after 2 months on a high-fat diet. Diabetol Metab Syndr 2014; 6:130. [PMID: 25960774 PMCID: PMC4424531 DOI: 10.1186/1758-5996-6-130] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 09/29/2014] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Metabolic syndrome is associated with an increased risk of cardiovascular and hepatic complications. Oxidative stress in metabolic tissues has emerged as a universal feature of metabolic syndrome and its co-morbidities. We aimed to develop a rapidly and easily induced model of metabolic syndrome in rats to evaluate its impact on plasma and tissue oxidative stress. MATERIALS AND METHODS Metabolic syndrome was induced in rats using a high-fat diet (HFD), and these rats were compared to rats fed a normal diet (ND) for 2 months. Metabolic control was determined by measuring body weight, blood glucose, triglycerides, lipid peroxidation and protein carbonylation in plasma. Insulinemia was evaluated through the measure of C-peptide. Histological analysis was performed on the pancreas, liver and blood vessels. RESULTS After 2 months, the HFD induced an increase in body weight, insulin and triglycerides. Liver steatosis was also observed in the HFD group, which was associated with an increase in glycogen storage. In the pancreas, the HFD induced islet hyperplasia. Tissue oxidative stress was also increased in the liver, pancreas and blood vessels, but plasma oxidative stress remained unchanged. CONCLUSION This paper reports the development of a fast and easy model of rat metabolic syndrome associated with tissue oxidative stress. This model may be a good tool for the biological validation of drugs or antioxidants to limit or prevent the complications of metabolic syndrome.
Collapse
Affiliation(s)
- Nathalie Auberval
- />UMR DIATHEC, EA 7294, Centre Européen d’Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
| | - Stéphanie Dal
- />UMR DIATHEC, EA 7294, Centre Européen d’Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
| | - William Bietiger
- />UMR DIATHEC, EA 7294, Centre Européen d’Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
| | - Michel Pinget
- />UMR DIATHEC, EA 7294, Centre Européen d’Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
- />Structure d’Endocrinologie, Diabète –Nutrition et Addictologie, Pôle NUDE, Hôpitaux Universitaires de Strasbourg, (HUS), 67000 Strasbourg, France
| | - Nathalie Jeandidier
- />UMR DIATHEC, EA 7294, Centre Européen d’Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
- />Structure d’Endocrinologie, Diabète –Nutrition et Addictologie, Pôle NUDE, Hôpitaux Universitaires de Strasbourg, (HUS), 67000 Strasbourg, France
| | - Elisa Maillard-Pedracini
- />UMR DIATHEC, EA 7294, Centre Européen d’Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
| | - Valérie Schini-Kerth
- />Département de Pharmacologie et Physicochimie, UMR 7213 Centre National de la Recherche Scientifique, Université de Strasbourg, Faculté de Pharmacie, BP60024, 67401 Illkirch, France
| | - Séverine Sigrist
- />UMR DIATHEC, EA 7294, Centre Européen d’Etude du Diabète, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, Bld René Leriche, 67200 Strasbourg, France
| |
Collapse
|
92
|
The impact of dietary methionine restriction on biomarkers of metabolic health. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:351-76. [PMID: 24373243 DOI: 10.1016/b978-0-12-800101-1.00011-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calorie restriction without malnutrition, commonly referred to as dietary restriction (DR), results in a well-documented extension of life span. DR also produces significant, long-lasting improvements in biomarkers of metabolic health that begin to accrue soon after its introduction. The improvements are attributable in part to the effects of DR on energy balance, which limit fat accumulation through reduction in energy intake. Accumulation of excess body fat occurs when energy intake chronically exceeds the energy costs for growth and maintenance of existing tissue. The resulting obesity promotes the development of insulin resistance, disordered lipid metabolism, and increased expression of inflammatory markers in peripheral tissues. The link between the life-extending effects of DR and adiposity is the subject of an ongoing debate, but it is clear that decreased fat accumulation improves insulin sensitivity and produces beneficial effects on overall metabolic health. Over the last 20 years, dietary methionine restriction (MR) has emerged as a promising DR mimetic because it produces a comparable extension in life span, but surprisingly, does not require food restriction. Dietary MR also reduces adiposity but does so through a paradoxical increase in both energy intake and expenditure. The increase in energy expenditure fully compensates for increased energy intake and effectively limits fat deposition. Perhaps more importantly, the diet increases metabolic flexibility and overall insulin sensitivity and improves lipid metabolism while decreasing systemic inflammation. In this chapter, we describe recent advances in our understanding of the mechanisms and effects of dietary MR and discuss the remaining obstacles to implementing MR as a treatment for metabolic disease.
Collapse
|
93
|
Zhang C, Klett EL, Coleman RA. Lipid signals and insulin resistance. CLINICAL LIPIDOLOGY 2013; 8:659-667. [PMID: 24533033 PMCID: PMC3921899 DOI: 10.2217/clp.13.67] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The metabolic syndrome, a cluster of metabolic derangements that include obesity, glucose intolerance, dyslipidemia and hypertension, is a major risk factor for cardiovascular disease. Insulin resistance has been proposed to be the common feature that links obesity to the metabolic syndrome, but the mechanism remains obscure. Although the excess content of triacylglycerol in muscle and liver is highly associated with insulin resistance in these tissues, triacylglycerol itself is not causal but merely a marker. Thus, attention has turned to the accumulation of cellular lipids known to have signaling roles. This review will discuss recent progress in understanding how glycerolipids and related lipid intermediates may impair insulin signaling.
Collapse
Affiliation(s)
- Chongben Zhang
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Eric L Klett
- Department of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rosalind A Coleman
- Department of Nutrition, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
94
|
Kim MO, Lee SH, Seo JH, Kim IS, Han AR, Moon DO, Cho S, Cui L, Kim J, Lee HS. Aralia cordata inhibits triacylglycerol biosynthesis in HepG2 cells. J Med Food 2013; 16:1108-14. [PMID: 24283275 DOI: 10.1089/jmf.2012.2636] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Glycerol-3-phosphate acyltransferase (GPAT) catalyzes the first committed step in triacylglycerol (TAG) and phospholipid biosynthesis, and has been considered as one of the drug targets for treating hepatic steatosis, insulin resistance, and other metabolic disorders. The aim of this study was to investigate the GPAT inhibitors from natural products and to evaluate their effects. The methanol extract of Aralia cordata roots showed a strong inhibitory effect on the human GPAT1 activity. A further bioactivity-guided approach led to the isolation of ent-pimara-8(14),15-dien-19-oic acid, (PA), one of the major compounds of A. cordata, which suppressed the GPAT1 activity with IC50 value of 60.5 μM. PA markedly reduced de novo lysophosphatidic acid synthesis through inhibition of GPAT activity and therefore significantly decreased synthesis of TAG in the HepG2 cells. These results suggest that PA as well as A. cordata root extract could be beneficial in controlling lipid metabolism.
Collapse
Affiliation(s)
- Mun Ock Kim
- 1 Targeted Medicine Research Center , Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongwon-Gun, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Saturated and unsaturated fat induce hepatic insulin resistance independently of TLR-4 signaling and ceramide synthesis in vivo. Proc Natl Acad Sci U S A 2013; 110:12780-5. [PMID: 23840067 DOI: 10.1073/pnas.1311176110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Hepatic insulin resistance is a principal component of type 2 diabetes, but the cellular and molecular mechanisms responsible for its pathogenesis remain unknown. Recent studies have suggested that saturated fatty acids induce hepatic insulin resistance through activation of the toll-like receptor 4 (TLR-4) receptor in the liver, which in turn transcriptionally activates hepatic ceramide synthesis leading to inhibition of insulin signaling. In this study, we demonstrate that TLR-4 receptor signaling is not directly required for saturated or unsaturated fat-induced hepatic insulin resistance in both TLR-4 antisense oligonucleotide treated and TLR-4 knockout mice, and that ceramide accumulation is not dependent on TLR-4 signaling or a primary event in hepatic steatosis and impairment of insulin signaling. Further, we show that both saturated and unsaturated fats lead to hepatic accumulation of diacylglycerols, activation of PKCε, and impairment of insulin-stimulated IRS-2 signaling. These data demonstrate that saturated fat-induced insulin resistance is independent of TLR-4 activation and ceramides.
Collapse
|
96
|
Chan SM, Sun RQ, Zeng XY, Choong ZH, Wang H, Watt MJ, Ye JM. Activation of PPARα ameliorates hepatic insulin resistance and steatosis in high fructose-fed mice despite increased endoplasmic reticulum stress. Diabetes 2013; 62:2095-105. [PMID: 23349482 PMCID: PMC3661626 DOI: 10.2337/db12-1397] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endoplasmic reticulum (ER) stress is suggested to cause hepatic insulin resistance by increasing de novo lipogenesis (DNL) and directly interfering with insulin signaling through the activation of the c-Jun N-terminal kinase (JNK) and IκB kinase (IKK) pathway. The current study interrogated these two proposed mechanisms in a mouse model of hepatic insulin resistance induced by a high fructose (HFru) diet with the treatment of fenofibrate (FB) 100 mg/kg/day, a peroxisome proliferator-activated receptor α (PPARα) agonist known to reduce lipid accumulation while maintaining elevated DNL in the liver. FB administration completely corrected HFru-induced glucose intolerance, hepatic steatosis, and the impaired hepatic insulin signaling (pAkt and pGSK3β). Of note, both the IRE1/XBP1 and PERK/eIF2α arms of unfolded protein response (UPR) signaling were activated. While retaining the elevated DNL (indicated by the upregulation of SREBP1c, ACC, FAS, and SCD1 and [3H]H2O incorporation into lipids), FB treatment markedly increased fatty acid oxidation (indicated by induction of ACOX1, p-ACC, β-HAD activity, and [14C]palmitate oxidation) and eliminated the accumulation of diacylglycerols (DAGs), which is known to have an impact on insulin signaling. Despite the marked activation of UPR signaling, neither JNK nor IKK appeared to be activated. These findings suggest that lipid accumulation (mainly DAGs), rather than the activation of JNK or IKK, is pivotal for ER stress to cause hepatic insulin resistance. Therefore, by reducing the accumulation of deleterious lipids, activation of PPARα can ameliorate hepatic insulin resistance against increased ER stress.
Collapse
Affiliation(s)
- Stanley M.H. Chan
- Molecular Pharmacology for Diabetes Group, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Ruo-Qiong Sun
- Molecular Pharmacology for Diabetes Group, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Xiao-Yi Zeng
- Molecular Pharmacology for Diabetes Group, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Zi-Heng Choong
- Molecular Pharmacology for Diabetes Group, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Hao Wang
- Molecular Pharmacology for Diabetes Group, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, Victoria, Australia
| | - Matthew J. Watt
- Biology of Lipid Metabolism Laboratory, Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Ji-Ming Ye
- Molecular Pharmacology for Diabetes Group, Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, Victoria, Australia
- Corresponding author: Ji-Ming Ye,
| |
Collapse
|
97
|
Kumashiro N, Yoshimura T, Cantley JL, Majumdar SK, Guebre-Egziabher F, Kursawe R, Vatner DF, Fat I, Kahn M, Erion DM, Zhang XM, Zhang D, Manchem VP, Bhanot S, Gerhard GS, Petersen KF, Cline GW, Samuel VT, Shulman GI. Role of patatin-like phospholipase domain-containing 3 on lipid-induced hepatic steatosis and insulin resistance in rats. Hepatology 2013; 57:1763-72. [PMID: 23175050 PMCID: PMC3597437 DOI: 10.1002/hep.26170] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/07/2012] [Indexed: 12/13/2022]
Abstract
UNLABELLED Genome-wide array studies have associated the patatin-like phospholipase domain-containing 3 (PNPLA3) gene polymorphisms with hepatic steatosis. However, it is unclear whether PNPLA3 functions as a lipase or a lipogenic enzyme and whether PNPLA3 is involved in the pathogenesis of hepatic insulin resistance. To address these questions we treated high-fat-fed rats with specific antisense oligonucleotides to decrease hepatic and adipose pnpla3 expression. Reducing pnpla3 expression prevented hepatic steatosis, which could be attributed to decreased fatty acid esterification measured by the incorporation of [U-(13) C]-palmitate into hepatic triglyceride. While the precursors for phosphatidic acid (PA) (long-chain fatty acyl-CoAs and lysophosphatidic acid [LPA]) were not decreased, we did observe an ∼20% reduction in the hepatic PA content, ∼35% reduction in the PA/LPA ratio, and ∼60%-70% reduction in transacylation activity at the level of acyl-CoA:1-acylglycerol-sn-3-phosphate acyltransferase. These changes were associated with an ∼50% reduction in hepatic diacylglycerol (DAG) content, an ∼80% reduction in hepatic protein kinase Cε activation, and increased hepatic insulin sensitivity, as reflected by a 2-fold greater suppression of endogenous glucose production during the hyperinsulinemic-euglycemic clamp. Finally, in humans, hepatic PNPLA3 messenger RNA (mRNA) expression was strongly correlated with hepatic triglyceride and DAG content, supporting a potential lipogenic role of PNPLA3 in humans. CONCLUSION PNPLA3 may function primarily in a lipogenic capacity and inhibition of PNPLA3 may be a novel therapeutic approach for treatment of nonalcoholic fatty liver disease-associated hepatic insulin resistance.
Collapse
Affiliation(s)
- Naoki Kumashiro
- Howard Hughes Medical Institute, Yale University, School of MedicineNew Haven, CT,Department of Internal Medicine, Yale University School of MedicineNew Haven, CT
| | - Toru Yoshimura
- Department of Internal Medicine, Yale University School of MedicineNew Haven, CT
| | - Jennifer L Cantley
- Howard Hughes Medical Institute, Yale University, School of MedicineNew Haven, CT,Department of Internal Medicine, Yale University School of MedicineNew Haven, CT
| | - Sachin K Majumdar
- Department of Internal Medicine, Yale University School of MedicineNew Haven, CT
| | | | - Romy Kursawe
- Department of Pediatrics, Yale University School of MedicineNew Haven, CT
| | - Daniel F Vatner
- Department of Internal Medicine, Yale University School of MedicineNew Haven, CT
| | - Ioana Fat
- Department of Internal Medicine, Yale University School of MedicineNew Haven, CT
| | - Mario Kahn
- Department of Internal Medicine, Yale University School of MedicineNew Haven, CT
| | - Derek M Erion
- Howard Hughes Medical Institute, Yale University, School of MedicineNew Haven, CT,Department of Internal Medicine, Yale University School of MedicineNew Haven, CT,Department of Cellular & Molecular Physiology, Yale University School of MedicineNew Haven, CT
| | - Xian-Man Zhang
- Howard Hughes Medical Institute, Yale University, School of MedicineNew Haven, CT,Department of Internal Medicine, Yale University School of MedicineNew Haven, CT
| | - Dongyan Zhang
- Howard Hughes Medical Institute, Yale University, School of MedicineNew Haven, CT,Department of Internal Medicine, Yale University School of MedicineNew Haven, CT,Department of Cellular & Molecular Physiology, Yale University School of MedicineNew Haven, CT
| | | | | | | | - Kitt F Petersen
- Department of Internal Medicine, Yale University School of MedicineNew Haven, CT
| | - Gary W Cline
- Department of Internal Medicine, Yale University School of MedicineNew Haven, CT
| | - Varman T Samuel
- Department of Internal Medicine, Yale University School of MedicineNew Haven, CT,Veterans Affairs Medical CenterWest Haven CT
| | - Gerald I Shulman
- Howard Hughes Medical Institute, Yale University, School of MedicineNew Haven, CT,Department of Internal Medicine, Yale University School of MedicineNew Haven, CT,Department of Cellular & Molecular Physiology, Yale University School of MedicineNew Haven, CT,Correspondence to: Gerald I. Shulman, Howard Hughes Medical Institute, Yale University, Department of Internal Medicine, Yale University School of Medicine, P.O. Box 9812, New Haven, CT, 06536-8012. ; fax: 203-737-4059
| |
Collapse
|
98
|
Mitochondria-type GPAT is required for mitochondrial fusion. EMBO J 2013; 32:1265-79. [PMID: 23572076 PMCID: PMC3642685 DOI: 10.1038/emboj.2013.77] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 03/12/2013] [Indexed: 01/09/2023] Open
Abstract
Glycerol-3-phosphate acyltransferase (GPAT) is involved in the first step in glycerolipid synthesis and is localized in both the endoplasmic reticulum (ER) and mitochondria. To clarify the functional differences between ER-GPAT and mitochondrial (Mt)-GPAT, we generated both GPAT mutants in C. elegans and demonstrated that Mt-GPAT is essential for mitochondrial fusion. Mutation of Mt-GPAT caused excessive mitochondrial fragmentation. The defect was rescued by injection of lysophosphatidic acid (LPA), a direct product of GPAT, and by inhibition of LPA acyltransferase, both of which lead to accumulation of LPA in the cells. Mitochondrial fragmentation in Mt-GPAT mutants was also rescued by inhibition of mitochondrial fission protein DRP-1 and by overexpression of mitochondrial fusion protein FZO-1/mitofusin, suggesting that the fusion/fission balance is affected by Mt-GPAT depletion. Mitochondrial fragmentation was also observed in Mt-GPAT-depleted HeLa cells. A mitochondrial fusion assay using HeLa cells revealed that Mt-GPAT depletion impaired mitochondrial fusion process. We postulate from these results that LPA produced by Mt-GPAT functions not only as a precursor for glycerolipid synthesis but also as an essential factor of mitochondrial fusion.
Collapse
|
99
|
Dominguez CL, Floyd DH, Xiao A, Mullins GR, Kefas BA, Xin W, Yacur MN, Abounader R, Lee JK, Wilson GM, Harris TE, Purow BW. Diacylglycerol kinase α is a critical signaling node and novel therapeutic target in glioblastoma and other cancers. Cancer Discov 2013; 3:782-97. [PMID: 23558954 DOI: 10.1158/2159-8290.cd-12-0215] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although diacylglycerol kinase α (DGKα) has been linked to several signaling pathways related to cancer cell biology, it has been neglected as a target for cancer therapy. The attenuation of DGKα activity via DGKα-targeting siRNA and small-molecule inhibitors R59022 and R59949 induced caspase-mediated apoptosis in glioblastoma cells and in other cancers, but lacked toxicity in noncancerous cells. We determined that mTOR and hypoxia-inducible factor-1α (HIF-1α) are key targets of DGKα inhibition, in addition to its regulation of other oncogenes. DGKα regulates mTOR transcription via a unique pathway involving cyclic AMP. Finally, we showed the efficacy of DGKα inhibition with short hairpin RNA or a small-molecule agent in glioblastoma and melanoma xenograft treatment models, with growth delay and decreased vascularity. This study establishes DGKα as a central signaling hub and a promising therapeutic target in the treatment of cancer.
Collapse
Affiliation(s)
- Charli L Dominguez
- Division of Neuro-Oncology, Department of Neurology, College of Nursing and Health Professions, University of Southern Indiana, Evansville, Indiana, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Kursawe R, Caprio S, Giannini C, Narayan D, Lin A, D’Adamo E, Shaw M, Pierpont B, Cushman SW, Shulman GI. Decreased transcription of ChREBP-α/β isoforms in abdominal subcutaneous adipose tissue of obese adolescents with prediabetes or early type 2 diabetes: associations with insulin resistance and hyperglycemia. Diabetes 2013; 62:837-44. [PMID: 23209190 PMCID: PMC3581226 DOI: 10.2337/db12-0889] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Insulin resistance associated with altered fat partitioning in liver and adipose tissues is a prediabetic condition in obese adolescents. We investigated interactions between glucose tolerance, insulin sensitivity, and the expression of lipogenic genes in abdominal subcutaneous adipose and liver tissue in 53 obese adolescents. Based on their 2-h glucose tests they were stratified in the following groups: group 1, 2-h glucose level <120 mg/dL; group 2, 2-h glucose level between 120 and 140 mg/dL; and group 3, 2-h glucose level >140 mg/dL. Liver and adipose tissue insulin sensitivity were greater in group 1 than in group 2 and group 3, and muscle insulin sensitivity progressively decreased from group 1 to group 3. The expression of the carbohydrate-responsive element-binding protein (ChREBP) was decreased in adipose tissue but increased in the liver (eight subjects) in adolescents with impaired glucose tolerance or type 2 diabetes. The expression of adipose ChREBPα and ChREBPβ was inversely related to 2-h glucose level and positively correlated to insulin sensitivity. Improvement of glucose tolerance in four subjects was associated with an increase of ChREBP/GLUT4 expression in the adipose tissue. In conclusion, early in the development of prediabetes/type 2 diabetes in youth, ChREBPβ expression in adipose tissue predicts insulin resistance and, therefore, might play a role in the regulation of glucose tolerance.
Collapse
Affiliation(s)
- Romy Kursawe
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut; the
| | - Sonia Caprio
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut; the
- Corresponding author: Sonia Caprio,
| | - Cosimo Giannini
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut; the
| | - Deepak Narayan
- Department of Plastic Surgery, Yale University School of Medicine, New Haven, Connecticut; the
| | - Aiping Lin
- W.M. Keck Foundation Biostatistics Resource, Yale University School of Medicine, New Haven, Connecticut; the
| | - Ebe D’Adamo
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut; the
| | - Melissa Shaw
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut; the
| | - Bridget Pierpont
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut; the
| | - Samuel W. Cushman
- Diabetes Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; the
| | - Gerald I. Shulman
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut; the
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut; and the
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|