51
|
Cotruvo JA. The Chemistry of Lanthanides in Biology: Recent Discoveries, Emerging Principles, and Technological Applications. ACS CENTRAL SCIENCE 2019; 5:1496-1506. [PMID: 31572776 PMCID: PMC6764073 DOI: 10.1021/acscentsci.9b00642] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Indexed: 05/18/2023]
Abstract
The essential biological role of rare earth elements lay hidden until the discovery in 2011 that lanthanides are specifically incorporated into a bacterial methanol dehydrogenase. Only recently has this observation gone from a curiosity to a major research area, with the appreciation for the widespread nature of lanthanide-utilizing organisms in the environment and the discovery of other lanthanide-binding proteins and systems for selective uptake. While seemingly exotic at first glance, biological utilization of lanthanides is very logical from a chemical perspective. The early lanthanides (La, Ce, Pr, Nd) primarily used by biology are abundant in the environment, perform similar chemistry to other biologically useful metals and do so more efficiently due to higher Lewis acidity, and possess sufficiently distinct coordination chemistry to allow for selective uptake, trafficking, and incorporation into enzymes. Indeed, recent advances in the field illustrate clear analogies with the biological coordination chemistry of other metals, particularly CaII and FeIII, but with unique twists-including cooperative metal binding to magnify the effects of small ionic radius differences-enabling selectivity. This Outlook summarizes the recent developments in this young but rapidly expanding field and looks forward to potential future discoveries, emphasizing continuity with principles of bioinorganic chemistry established by studies of other metals. We also highlight how a more thorough understanding of the central chemical question-selective lanthanide recognition in biology-may impact the challenging problems of sensing, capture, recycling, and separations of rare earths.
Collapse
Affiliation(s)
- Joseph A. Cotruvo
- Department of Chemistry, The Pennsylvania State
University, University Park, Pennsylvania 16802, United
States
| |
Collapse
|
52
|
Baesler J, Kopp JF, Pohl G, Aschner M, Haase H, Schwerdtle T, Bornhorst J. Zn homeostasis in genetic models of Parkinson's disease in Caenorhabditis elegans. J Trace Elem Med Biol 2019; 55:44-49. [PMID: 31345364 PMCID: PMC6676891 DOI: 10.1016/j.jtemb.2019.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/09/2019] [Accepted: 05/09/2019] [Indexed: 01/13/2023]
Abstract
While the underlying mechanisms of Parkinson's disease (PD) are still insufficiently studied, a complex interaction between genetic and environmental factors is emphasized. Nevertheless, the role of the essential trace element zinc (Zn) in this regard remains controversial. In this study we altered Zn balance within PD models of the versatile model organism Caenorhabditis elegans (C. elegans) in order to examine whether a genetic predisposition in selected genes with relevance for PD affects Zn homeostasis. Protein-bound and labile Zn species act in various areas, such as enzymatic catalysis, protein stabilization pathways and cell signaling. Therefore, total Zn and labile Zn were quantitatively determined in living nematodes as individual biomarkers of Zn uptake and bioavailability with inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) or a multi-well method using the fluorescent probe ZinPyr-1. Young and middle-aged deletion mutants of catp-6 and pdr-1, which are orthologues of mammalian ATP13A2 (PARK9) and parkin (PARK2), showed altered Zn homeostasis following Zn exposure compared to wildtype worms. Furthermore, age-specific differences in Zn uptake were observed in wildtype worms for total as well as labile Zn species. These data emphasize the importance of differentiation between Zn species as meaningful biomarkers of Zn uptake as well as the need for further studies investigating the role of dysregulated Zn homeostasis in the etiology of PD.
Collapse
Affiliation(s)
- Jessica Baesler
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin, Potsdam, Jena, Germany
| | - Johannes F Kopp
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin, Potsdam, Jena, Germany
| | - Gabriele Pohl
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin, Potsdam, Jena, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Neuroscience, and Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461 Bronx, NY, USA
| | - Hajo Haase
- TraceAge - DFG Research Unit FOR 2558, Berlin, Potsdam, Jena, Germany; Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin, Potsdam, Jena, Germany
| | - Julia Bornhorst
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin, Potsdam, Jena, Germany; Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany.
| |
Collapse
|
53
|
Piechulek A, Berwanger LC, von Mikecz A. Silica nanoparticles disrupt OPT-2/PEP-2-dependent trafficking of nutrient peptides in the intestinal epithelium. Nanotoxicology 2019; 13:1133-1148. [DOI: 10.1080/17435390.2019.1643048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Annette Piechulek
- IUF – Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Lutz C. Berwanger
- IUF – Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| | - Anna von Mikecz
- IUF – Leibniz Research Institute for Environmental Medicine, Heinrich-Heine-University Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
54
|
The C. elegans intestine: organogenesis, digestion, and physiology. Cell Tissue Res 2019; 377:383-396. [DOI: 10.1007/s00441-019-03036-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 04/12/2019] [Indexed: 12/16/2022]
|
55
|
Biguanide is a modifiable pharmacophore for recruitment of endogenous Zn 2+ to inhibit cysteinyl cathepsins: review and implications. Biometals 2019; 32:575-593. [PMID: 31044334 PMCID: PMC6647370 DOI: 10.1007/s10534-019-00197-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/13/2019] [Indexed: 01/28/2023]
Abstract
Excessive activities of cysteinyl cathepsins (CysCts) contribute to the progress of many diseases; however, therapeutic inhibition has been problematic. Zn2+ is a natural inhibitor of proteases with CysHis dyads or CysHis(Xaa) triads. Biguanide forms bidentate metal complexes through the two imino nitrogens. Here, it is discussed that phenformin (phenylethyl biguanide) is a model for recruitment of endogenous Zn2+ to inhibit CysHis/CysHis(X) peptidolysis. Phenformin is a Zn2+-interactive, anti-proteolytic agent in bioassay of living tissue. Benzoyl-L-arginine amide (BAA) is a classical substrate of papain-like proteases; the amide bond is scissile. In this review, the structures of BAA and the phenformin-Zn2+ complex were compared in silico. Their chemistry and dimensions are discussed in light of the active sites of papain-like proteases. The phenyl moieties of both structures bind to the "S2" substrate-binding site that is typical of many proteases. When the phenyl moiety of BAA binds to S2, then the scissile amide bond is directed to the position of the thiolate-imidazolium ion pair, and is then hydrolyzed. However, when the phenyl moiety of phenformin binds to S2, then the coordinated Zn2+ is directed to the identical position; and catalysis is inhibited. Phenformin stabilizes a "Zn2+ sandwich" between the drug and protease active site. Hundreds of biguanide derivatives have been synthesized at the 1 and 5 nitrogen positions; many more are conceivable. Various substituent moieties can register with various arrays of substrate-binding sites so as to align coordinated Zn2+ with catalytic partners of diverse proteases. Biguanide is identified here as a modifiable pharmacophore for synthesis of therapeutic CysCt inhibitors with a wide range of potencies and specificities. Phenformin-Zn2+ Complex.
Collapse
|
56
|
Chapman EM, Lant B, Ohashi Y, Yu B, Schertzberg M, Go C, Dogra D, Koskimäki J, Girard R, Li Y, Fraser AG, Awad IA, Abdelilah-Seyfried S, Gingras AC, Derry WB. A conserved CCM complex promotes apoptosis non-autonomously by regulating zinc homeostasis. Nat Commun 2019; 10:1791. [PMID: 30996251 PMCID: PMC6470173 DOI: 10.1038/s41467-019-09829-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Apoptotic death of cells damaged by genotoxic stress requires regulatory input from surrounding tissues. The C. elegans scaffold protein KRI-1, ortholog of mammalian KRIT1/CCM1, permits DNA damage-induced apoptosis of cells in the germline by an unknown cell non-autonomous mechanism. We reveal that KRI-1 exists in a complex with CCM-2 in the intestine to negatively regulate the ERK-5/MAPK pathway. This allows the KLF-3 transcription factor to facilitate expression of the SLC39 zinc transporter gene zipt-2.3, which functions to sequester zinc in the intestine. Ablation of KRI-1 results in reduced zinc sequestration in the intestine, inhibition of IR-induced MPK-1/ERK1 activation, and apoptosis in the germline. Zinc localization is also perturbed in the vasculature of krit1-/- zebrafish, and SLC39 zinc transporters are mis-expressed in Cerebral Cavernous Malformations (CCM) patient tissues. This study provides new insights into the regulation of apoptosis by cross-tissue communication, and suggests a link between zinc localization and CCM disease.
Collapse
Affiliation(s)
- Eric M Chapman
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, ON, Canada
| | - Benjamin Lant
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, ON, Canada
| | - Yota Ohashi
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
| | - Bin Yu
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, ON, Canada
| | - Michael Schertzberg
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, M5S 3E1, ON, Canada
| | - Christopher Go
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, M5G 1X5, ON, Canada
| | - Deepika Dogra
- Institute for Biochemistry and Biology, Potsdam University, Potsdam, 14476, Germany
| | - Janne Koskimäki
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine, Chicago, IL, 60637, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine, Chicago, IL, 60637, USA
| | - Yan Li
- University of Chicago Center for Research Informatics, The University of Chicago, Chicago, IL, 60637, USA
| | - Andrew G Fraser
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, M5S 3E1, ON, Canada
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine, Chicago, IL, 60637, USA
| | | | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, M5G 1X5, ON, Canada
| | - W Brent Derry
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada.
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, ON, Canada.
| |
Collapse
|
57
|
Gong P, Donohue KB, Mayo AM, Wang Y, Hong H, Wilbanks MS, Barker ND, Guan X, Gust KA. Comparative toxicogenomics of three insensitive munitions constituents 2,4-dinitroanisole, nitroguanidine and nitrotriazolone in the soil nematode Caenorhabditis elegans. BMC SYSTEMS BIOLOGY 2018; 12:92. [PMID: 30547801 PMCID: PMC6293504 DOI: 10.1186/s12918-018-0636-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Ecotoxicological studies on the insensitive munitions formulation IMX-101 and its components 2,4-dinitroanisole (DNAN), nitroguanidine (NQ) and nitrotriazolone (NTO) in various organisms showed that DNAN was the main contributor to the overall toxicity of IMX-101 and suggested that the three compounds acted independently. These results motivated this toxicogenomics study to discern toxicological mechanisms for these compounds at the molecular level. METHODS Here we used the soil nematode Caenorhabditis elegans, a well-characterized genomics model, as the test organism and a species-specific, transcriptome-wide 44 K-oligo probe microarray for gene expression analysis. In addition to the control treatment, C. elegans were exposed for 24 h to 6 concentrations of DNAN (1.95-62.5 ppm) or NQ (83-2667 ppm) or 5 concentrations of NTO (187-3000 ppm) with ten replicates per treatment. The nematodes were transferred to a clean environment after exposure. Reproduction endpoints (egg and larvae counts) were measured at three time points (i.e., 24-, 48- and 72-h). Gene expression profiling was performed immediately after 24-h exposure to each chemical at the lowest, medium and highest concentrations plus the control with four replicates per treatment. RESULTS Statistical analyses indicated that chemical treatment did not significantly affect nematode reproduction but did induce 2175, 378, and 118 differentially expressed genes (DEGs) in NQ-, DNAN-, and NTO-treated nematodes, respectively. Bioinformatic analysis indicated that the three compounds shared both DEGs and DEG-mapped Reactome pathways. Gene set enrichment analysis further demonstrated that DNAN and NTO significantly altered 12 and 6 KEGG pathways, separately, with three pathways in common. NTO mainly affected carbohydrate, amino acid and xenobiotics metabolism while DNAN disrupted protein processing, ABC transporters and several signal transduction pathways. NQ-induced DEGs were mapped to a wide variety of metabolism, cell cycle, immune system and extracellular matrix organization pathways. CONCLUSION Despite the absence of significant effects on apical reproduction endpoints, DNAN, NTO and NQ caused significant alterations in gene expression and pathways at 1.95 ppm, 187 ppm and 83 ppm, respectively. This study provided supporting evidence that the three chemicals may exert independent toxicity by acting on distinct molecular targets and pathways.
Collapse
Affiliation(s)
- Ping Gong
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA.
| | - Keri B Donohue
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - Anne M Mayo
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - Yuping Wang
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Huixiao Hong
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Mitchell S Wilbanks
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - Natalie D Barker
- Bennett Aerospace Inc., 1249 Kildaire Farm Road, Cary, NC, 27511, USA
| | - Xin Guan
- Bennett Aerospace Inc., 1249 Kildaire Farm Road, Cary, NC, 27511, USA
| | - Kurt A Gust
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| |
Collapse
|
58
|
Morris C, Foster OK, Handa S, Peloza K, Voss L, Somhegyi H, Jian Y, Vo MV, Harp M, Rambo FM, Yang C, Hermann GJ. Function and regulation of the Caenorhabditis elegans Rab32 family member GLO-1 in lysosome-related organelle biogenesis. PLoS Genet 2018; 14:e1007772. [PMID: 30419011 PMCID: PMC6268011 DOI: 10.1371/journal.pgen.1007772] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 11/30/2018] [Accepted: 10/17/2018] [Indexed: 02/07/2023] Open
Abstract
Cell type-specific modifications of conventional endosomal trafficking pathways lead to the formation of lysosome-related organelles (LROs). C. elegans gut granules are intestinally restricted LROs that coexist with conventional degradative lysosomes. The formation of gut granules requires the Rab32 family member GLO-1. We show that the loss of glo-1 leads to the mistrafficking of gut granule proteins but does not significantly alter conventional endolysosome biogenesis. GLO-3 directly binds to CCZ-1 and they both function to promote the gut granule association of GLO-1, strongly suggesting that together, GLO-3 and CCZ-1 activate GLO-1. We found that a point mutation in GLO-1 predicted to spontaneously activate, and function independently of it guanine nucleotide exchange factor (GEF), localizes to gut granules and partially restores gut granule protein localization in ccz-1(-) and glo-3(-) mutants. CCZ-1 forms a heterodimeric complex with SAND-1(MON1), which does not function in gut granule formation, to activate RAB-7 in trafficking pathways to conventional lysosomes. Therefore, our data suggest a model whereby the function of a Rab GEF can be altered by subunit exchange. glo-3(-) mutants, which retain low levels of GLO-3 activity, generate gut granules that lack GLO-1 and improperly accumulate RAB-7 in a SAND-1 dependent process. We show that GLO-1 and GLO-3 restrict the distribution of RAB-7 to conventional endolysosomes, providing insights into the segregation of pathways leading to conventional lysosomes and LROs.
Collapse
Affiliation(s)
- Caitlin Morris
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Olivia K. Foster
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Simran Handa
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Kimberly Peloza
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Laura Voss
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Hannah Somhegyi
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Youli Jian
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - My Van Vo
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Marie Harp
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Fiona M. Rambo
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
| | - Chonglin Yang
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Greg J. Hermann
- Department of Biology, Lewis & Clark College, Portland, Oregon, United States of America
- * E-mail:
| |
Collapse
|
59
|
Superiority of SpiroZin2 Versus FluoZin-3 for monitoring vesicular Zn 2+ allows tracking of lysosomal Zn 2+ pools. Sci Rep 2018; 8:15034. [PMID: 30302024 PMCID: PMC6177427 DOI: 10.1038/s41598-018-33102-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 09/17/2018] [Indexed: 12/28/2022] Open
Abstract
Small-molecule fluorescent probes are powerful and ubiquitous tools for measuring the concentration and distribution of analytes in living cells. However, accurate characterization of these analytes requires rigorous evaluation of cell-to-cell heterogeneity in fluorescence intensities and intracellular distribution of probes. In this study, we perform a parallel and systematic comparison of two small-molecule fluorescent vesicular Zn2+ probes, FluoZin-3 AM and SpiroZin2, to evaluate each probe for measurement of vesicular Zn2+ pools. Our results reveal that SpiroZin2 is a specific lysosomal vesicular Zn2+ probe and affords uniform measurement of resting Zn2+ levels at the single cell level with proper calibration. In contrast, FluoZin-3 AM produces highly variable fluorescence intensities and non-specifically localizes in the cytosol and multiple vesicular compartments. We further applied SpiroZin2 to lactating mouse mammary epithelial cells and detected a transient increase of lysosomal free Zn2+ at 24-hour after lactation hormone treatment, which implies that lysosomes play a role in the regulation of Zn2+ homeostasis during lactation. This study demonstrates the need for critical characterization of small-molecule fluorescent probes to define the concentration and localization of analytes in different cell populations, and reveals SpiroZin2 to be capable of reporting diverse perturbations to lysosomal Zn2+.
Collapse
|
60
|
Gong J, Li YH, Zhang CJ, Huang J, Sun Q. A thiazolo[4,5-b]pyridine-based fluorescent probe for detection of zinc ions and application for in vitro and in vivo bioimaging. Talanta 2018; 185:396-404. [DOI: 10.1016/j.talanta.2018.03.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/15/2018] [Accepted: 03/22/2018] [Indexed: 12/13/2022]
|
61
|
Yuan S, Sharma AK, Richart A, Lee J, Kim BE. CHCA-1 is a copper-regulated CTR1 homolog required for normal development, copper accumulation, and copper-sensing behavior in Caenorhabditis elegans. J Biol Chem 2018; 293:10911-10925. [PMID: 29784876 DOI: 10.1074/jbc.ra118.003503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Indexed: 01/11/2023] Open
Abstract
Copper plays key roles in catalytic and regulatory biochemical reactions essential for normal growth, development, and health. Dietary copper deficiencies or mutations in copper homeostasis genes can lead to abnormal musculoskeletal development, cognitive disorders, and poor growth. In yeast and mammals, copper is acquired through the activities of the CTR1 family of high-affinity copper transporters. However, the mechanisms of systemic responses to dietary or tissue-specific copper deficiency remain unclear. Here, taking advantage of the animal model Caenorhabditis elegans for studying whole-body copper homeostasis, we investigated the role of a C. elegans CTR1 homolog, CHCA-1, in copper acquisition and in worm growth, development, and behavior. Using sequence homology searches, we identified 10 potential orthologs to mammalian CTR1 Among these genes, we found that chca-1, which is transcriptionally up-regulated in the intestine and hypodermis of C. elegans during copper deficiency, is required for normal growth, reproduction, and maintenance of systemic copper balance under copper deprivation. The intestinal copper transporter CUA-1 normally traffics to endosomes to sequester excess copper, and we found here that loss of chca-1 caused CUA-1 to mislocalize to the basolateral membrane under copper overload conditions. Moreover, animals lacking chca-1 exhibited significantly reduced copper avoidance behavior in response to toxic copper conditions compared with WT worms. These results establish that CHCA-1-mediated copper acquisition in C. elegans is crucial for normal growth, development, and copper-sensing behavior.
Collapse
Affiliation(s)
- Sai Yuan
- From the Department of Animal and Avian Sciences and
| | | | | | - Jaekwon Lee
- the Redox Biology Center, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588
| | - Byung-Eun Kim
- From the Department of Animal and Avian Sciences and .,Biological Sciences Graduate Program, University of Maryland, College Park, Maryland 20742 and
| |
Collapse
|
62
|
Tejeda-Guzmán C, Rosas-Arellano A, Kroll T, Webb SM, Barajas-Aceves M, Osorio B, Missirlis F. Biogenesis of zinc storage granules in Drosophila melanogaster. J Exp Biol 2018; 221:jeb168419. [PMID: 29367274 PMCID: PMC5897703 DOI: 10.1242/jeb.168419] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/17/2018] [Indexed: 12/16/2022]
Abstract
Membrane transporters and sequestration mechanisms concentrate metal ions differentially into discrete subcellular microenvironments for use in protein cofactors, signalling, storage or excretion. Here we identify zinc storage granules as the insect's major zinc reservoir in principal Malpighian tubule epithelial cells of Drosophila melanogaster The concerted action of Adaptor Protein-3, Rab32, HOPS and BLOC complexes as well as of the white-scarlet (ABCG2-like) and ZnT35C (ZnT2/ZnT3/ZnT8-like) transporters is required for zinc storage granule biogenesis. Due to lysosome-related organelle defects caused by mutations in the homologous human genes, patients with Hermansky-Pudlak syndrome may lack zinc granules in beta pancreatic cells, intestinal paneth cells and presynaptic vesicles of hippocampal mossy fibers.
Collapse
Affiliation(s)
- Carlos Tejeda-Guzmán
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, C.P. 07360, México
| | - Abraham Rosas-Arellano
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, C.P. 07360, México
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Samuel M Webb
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA
| | - Martha Barajas-Aceves
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, C.P. 07360, México
| | - Beatriz Osorio
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, C.P. 07360, México
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, C.P. 07360, México
| |
Collapse
|
63
|
Chen AJ, Yuan X, Li J, Dong P, Hamza I, Cheng JX. Label-Free Imaging of Heme Dynamics in Living Organisms by Transient Absorption Microscopy. Anal Chem 2018; 90:3395-3401. [PMID: 29401392 PMCID: PMC5972037 DOI: 10.1021/acs.analchem.7b05046] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Heme, a hydrophobic and cytotoxic macrocycle, is an essential cofactor in a large number of proteins and is important for cell signaling. This must mean that heme is mobilized from its place of synthesis or entry into the cell to other parts of the cell where hemoproteins reside. However, the cellular dynamics of heme movement is not well understood, in large part due to the inability to image heme noninvasively in live biological systems. Here, using high-resolution transient absorption microscopy, we showed that heme storage and distribution is dynamic in Caenorhabditis elegans. Intracellular heme exists in concentrated granular puncta which localizes to lysosomal-related organelles. These granules are dynamic, and their breaking down into smaller granules provides a mechanism by which heme stores can be mobilized. Collectively, these direct and noninvasive dynamic imaging techniques provide new insights into heme storage and transport and open a new avenue for label-free investigation of heme function and regulation in living systems.
Collapse
Affiliation(s)
- Andy Jing Chen
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaojing Yuan
- Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland 20742, United States
| | - Junjie Li
- Department of Electrical & Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Puting Dong
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Iqbal Hamza
- Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland 20742, United States
| | - Ji-Xin Cheng
- Department of Electrical & Computer Engineering, Boston University, Boston, Massachusetts 02215, United States
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
- Photonics Center, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
64
|
Sudheesh KV, Joseph MM, Philips DS, Samanta A, Kumar Maiti K, Ajayaghosh A. pH-Controlled Nanoparticles Formation and Tracking of Lysosomal Zinc Ions in Cancer Cells by Fluorescent Carbazole-Bipyridine Conjugates. ChemistrySelect 2018. [DOI: 10.1002/slct.201703131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Karivachery V. Sudheesh
- Chemical Sciences and Technology Division; CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
| | - Manu M. Joseph
- Chemical Sciences and Technology Division; CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
| | - Divya S. Philips
- Chemical Sciences and Technology Division; CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
| | - Animesh Samanta
- Chemical Sciences and Technology Division; CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
| | - Kaustabh Kumar Maiti
- Chemical Sciences and Technology Division; CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
| | - Ayappanpillai Ajayaghosh
- Chemical Sciences and Technology Division; CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST); Trivandrum 695019 India
| |
Collapse
|
65
|
Brunquell J, Morris S, Snyder A, Westerheide SD. Coffee extract and caffeine enhance the heat shock response and promote proteostasis in an HSF-1-dependent manner in Caenorhabditis elegans. Cell Stress Chaperones 2018; 23:65-75. [PMID: 28674941 PMCID: PMC5741582 DOI: 10.1007/s12192-017-0824-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/12/2017] [Accepted: 06/14/2017] [Indexed: 01/05/2023] Open
Abstract
As the population ages, there is a critical need to uncover strategies to combat diseases of aging. Studies in the soil-dwelling nematode Caenorhabditis elegans have demonstrated the protective effects of coffee extract and caffeine in promoting the induction of conserved longevity pathways including the insulin-like signaling pathway and the oxidative stress response. We were interested in determining the effects of coffee and caffeine treatment on the regulation of the heat shock response. The heat shock response is a highly conserved cellular response that functions as a cytoprotective mechanism during stress, mediated by the heat shock transcription factor HSF-1. In the worm, HSF-1 not only promotes protection against stress but is also essential for development and longevity. Induction of the heat shock response has been suggested to be beneficial for diseases of protein conformation by preventing protein misfolding and aggregation, and as such has been proposed as a therapeutic target for age-associated neurodegenerative disorders. In this study, we demonstrate that coffee is a potent, dose-dependent, inducer of the heat shock response. Treatment with a moderate dose of pure caffeine was also able to induce the heat shock response, indicating caffeine as an important component within coffee for producing this response. The effects that we observe with both coffee and pure caffeine on the heat shock response are both dependent on HSF-1. In a C. elegans Huntington's disease model, worms treated with caffeine were protected from polyglutamine aggregates and toxicity, an effect that was also HSF-1-dependent. In conclusion, these results demonstrate caffeinated coffee, and pure caffeine, as protective substances that promote proteostasis through induction of the heat shock response.
Collapse
Affiliation(s)
- Jessica Brunquell
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, 4202 E. Fowler Ave, ISA 2015, Tampa, FL, 33620, USA
| | - Stephanie Morris
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, 4202 E. Fowler Ave, ISA 2015, Tampa, FL, 33620, USA
| | - Alana Snyder
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, 4202 E. Fowler Ave, ISA 2015, Tampa, FL, 33620, USA
| | - Sandy D Westerheide
- Department of Cell Biology, Microbiology, and Molecular Biology, College of Arts and Sciences, University of South Florida, 4202 E. Fowler Ave, ISA 2015, Tampa, FL, 33620, USA.
| |
Collapse
|
66
|
Dietrich N, Schneider DL, Kornfeld K. A pathway for low zinc homeostasis that is conserved in animals and acts in parallel to the pathway for high zinc homeostasis. Nucleic Acids Res 2017; 45:11658-11672. [PMID: 28977437 PMCID: PMC5714235 DOI: 10.1093/nar/gkx762] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/22/2017] [Indexed: 12/20/2022] Open
Abstract
The essential element zinc plays critical roles in biology. High zinc homeostasis mechanisms are beginning to be defined in animals, but low zinc homeostasis is poorly characterized. We investigated low zinc homeostasis in Caenorhabditis elegans because the genome encodes 14 evolutionarily conserved Zrt, Irt-like protein (ZIP) zinc transporter family members. Three C. elegans zipt genes were regulated in zinc-deficient conditions; these promoters contained an evolutionarily conserved motif that we named the low zinc activation (LZA) element that was both necessary and sufficient for activation of transcription in response to zinc deficiency. These results demonstrated that the LZA element is a critical part of the low zinc homeostasis pathway. Transcriptional regulation of the LZA element required the transcription factor ELT-2 and mediator complex member MDT-15. We investigated conservation in mammals by analyzing LZA element function in human cultured cells; the LZA element-mediated transcriptional activation in response to zinc deficiency in cells, suggesting a conserved pathway of low zinc homeostasis. We propose that the pathway for low zinc homeostasis, which includes the LZA element and ZIP transporters, acts in parallel to the pathway for high zinc homeostasis, which includes the HZA element, HIZR-1 transcription factor and cation diffusion facilitator transporters.
Collapse
Affiliation(s)
- Nicholas Dietrich
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel L Schneider
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
67
|
Cagno S, Brede DA, Nuyts G, Vanmeert F, Pacureanu A, Tucoulou R, Cloetens P, Falkenberg G, Janssens K, Salbu B, Lind OC. Combined Computed Nanotomography and Nanoscopic X-ray Fluorescence Imaging of Cobalt Nanoparticles in Caenorhabditis elegans. Anal Chem 2017; 89:11435-11442. [DOI: 10.1021/acs.analchem.7b02554] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Simone Cagno
- Centre
for Environmental Radioactivity (Centre of Excellence), Faculty of
Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Post Office Box 5003, 1432 Ås, Norway
| | - Dag Anders Brede
- Centre
for Environmental Radioactivity (Centre of Excellence), Faculty of
Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Post Office Box 5003, 1432 Ås, Norway
| | - Gert Nuyts
- Department
of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Frederik Vanmeert
- Department
of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Alexandra Pacureanu
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Remi Tucoulou
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Peter Cloetens
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, 38000 Grenoble, France
| | - Gerald Falkenberg
- Deutsches Elektronen-Synchrotron, Notkestrasse 85, 22607 Hamburg, Germany
| | - Koen Janssens
- Department
of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| | - Brit Salbu
- Centre
for Environmental Radioactivity (Centre of Excellence), Faculty of
Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Post Office Box 5003, 1432 Ås, Norway
| | - Ole Christian Lind
- Centre
for Environmental Radioactivity (Centre of Excellence), Faculty of
Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Post Office Box 5003, 1432 Ås, Norway
| |
Collapse
|
68
|
Zinc depletion promotes apoptosis-like death in drug-sensitive and antimony-resistance Leishmania donovani. Sci Rep 2017; 7:10488. [PMID: 28874760 PMCID: PMC5585245 DOI: 10.1038/s41598-017-10041-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 07/25/2017] [Indexed: 12/28/2022] Open
Abstract
Micronutrients are essential for survival and growth for all the organisms including pathogens. In this manuscript, we report that zinc (Zn) chelator N,N,N’,N’-tetrakis(2-pyridinylmethyl)-1,2-ethylenediamine (TPEN) affects growth and viability of intracellular pathogen Leishmania donovani (LD) by a concentration and time dependent manner. Simultaneous addition of zinc salt reverses the effect of TPEN. Further experiments provide evidence of apoptosis-like death of the parasite due to Zn-depletion. TPEN treatment enhances caspase-like activity suggesting increase in apoptosis-like events in LD. Specific inhibitors of cathepsin B and Endoclease G block TPEN-induced leishmanial death. Evidences show involvement of reactive oxygen species (ROS) potentially of extra-mitochondrial origin in TPEN-induced LD death. Pentavalent antimonials remained the prime source of treatment against leishmaniasis for several decades; however, antimony-resistant Leishmania is now common source of the disease. We also reveal that Zn-depletion can promote apoptosis-like death in antimony-resistant parasites. In summary, we present a new finding about the role of zinc in the survival of drug sensitive and antimony-resistant LD.
Collapse
|
69
|
Zhang JJ, Hao JJ, Zhang YR, Wang YL, Li MY, Miao HL, Zou XJ, Liang B. Zinc mediates the SREBP-SCD axis to regulate lipid metabolism in Caenorhabditis elegans. J Lipid Res 2017; 58:1845-1854. [PMID: 28710073 DOI: 10.1194/jlr.m077198] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/12/2017] [Indexed: 12/15/2022] Open
Abstract
Maintenance of lipid homeostasis is crucial for cells in response to lipid requirements or surplus. The SREBP transcription factors play essential roles in regulating lipid metabolism and are associated with many metabolic diseases. However, SREBP regulation of lipid metabolism is still not completely understood. Here, we showed that reduction of SBP-1, the only homolog of SREBPs in Caenorhabditis elegans, surprisingly led to a high level of zinc. On the contrary, zinc reduction by mutation of sur-7, encoding a member of the cation diffusion facilitator (CDF) family, restored the fat accumulation and fatty acid profile of the sbp-1(ep79) mutant. Zinc reduction resulted in iron overload, which thereby directly activated the conversion activity of stearoyl-CoA desaturase (SCD), a main target of SREBP, to promote lipid biosynthesis and accumulation. However, zinc reduction reversely repressed SBP-1 nuclear translocation and further downregulated the transcription expression of SCD for compensation. Collectively, we revealed zinc-mediated regulation of the SREBP-SCD axis in lipid metabolism, distinct from the negative regulation of SREBP-1 or SREBP-2 by phosphatidylcholine or cholesterol, respectively, thereby providing novel insights into the regulation of lipid homeostasis.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jun-Jun Hao
- State Key Laboratory of Genetic Resources and Evolutionary and Functional Genomics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yu-Ru Zhang
- College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yan-Li Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ming-Yi Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Hui-Lai Miao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xiao-Ju Zou
- Department of Life Science and Biotechnology, Key Laboratory of Special Biological Resource Development and Utilization of University in Yunnan Province, Kunming University, Kunming 650214, China
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China .,Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| |
Collapse
|
70
|
Cuajungco MP, Kiselyov K. The mucolipin-1 (TRPML1) ion channel, transmembrane-163 (TMEM163) protein, and lysosomal zinc handling. Front Biosci (Landmark Ed) 2017; 22:1330-1343. [PMID: 28199205 DOI: 10.2741/4546] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Lysosomes are emerging as important players in cellular zinc ion (Zn2+) homeostasis. The series of work on Zn2+ accumulation in the neuronal lysosomes and the mounting evidence on the role of lysosomal Zn2+ in cell death during mammary gland involution set a biological precedent for the central role of the lysosomes in cellular Zn2+ handling. Such a role appears to involve cytoprotection on the one hand, and cell death on the other. The recent series of work began to identify the molecular determinants of the lysosomal Zn2+ handling. In addition to zinc transporters (ZnT) of the solute-carrier family type 30A (SLC30A), the lysosomal ion channel TRPML1 and the poorly understood novel transporter TMEM163 have been shown to play a role in the Zn2+ uptake by the lysosomes. In this review, we summarize the current knowledge on molecular determinants of the lysosomal Zn2+ handling, uptake, and release pathways, as well as discuss their possible roles in health and disease.
Collapse
Affiliation(s)
- Math P Cuajungco
- Department of Biological Science, and Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA, 92831, USA
| | - Kirill Kiselyov
- Dept. of Biological Sciences, University of Pittsburgh, 519 Langley Hall, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA,
| |
Collapse
|
71
|
Warnhoff K, Roh HC, Kocsisova Z, Tan CH, Morrison A, Croswell D, Schneider DL, Kornfeld K. The Nuclear Receptor HIZR-1 Uses Zinc as a Ligand to Mediate Homeostasis in Response to High Zinc. PLoS Biol 2017; 15:e2000094. [PMID: 28095401 PMCID: PMC5240932 DOI: 10.1371/journal.pbio.2000094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 12/14/2016] [Indexed: 11/18/2022] Open
Abstract
Nuclear receptors were originally defined as endocrine sensors in humans, leading to the identification of the nuclear receptor superfamily. Despite intensive efforts, most nuclear receptors have no known ligand, suggesting new ligand classes remain to be discovered. Furthermore, nuclear receptors are encoded in the genomes of primitive organisms that lack endocrine signaling, suggesting the primordial function may have been environmental sensing. Here we describe a novel Caenorhabditis elegans nuclear receptor, HIZR-1, that is a high zinc sensor in an animal and the master regulator of high zinc homeostasis. The essential micronutrient zinc acts as a HIZR-1 ligand, and activated HIZR-1 increases transcription of genes that promote zinc efflux and storage. The results identify zinc as the first inorganic molecule to function as a physiological ligand for a nuclear receptor and direct environmental sensing as a novel function of nuclear receptors. Zinc is an essential nutrient for all life forms, and maintaining zinc homeostasis is critical for survival. However, little is known about how animals sense changes in zinc availability and make adjustments to maintain homeostasis. In particular, logic dictates there must be a mechanism for zinc sensing, but it has not been defined in animals. We discovered that the nuclear receptor transcription factor HIZR-1 is the master regulator of high zinc homeostasis in the roundworm Caenorhabditis elegans. In response to high dietary zinc, HIZR-1 activates transcription of multiple genes that encode a network of proteins that store and detoxify excess zinc. Furthermore, our results suggest HIZR-1 itself is the high zinc sensor, since it directly binds zinc ions in the ligand-binding domain that regulates transcriptional activation. These findings advance the understanding of zinc homeostasis and nuclear receptor biology. Nuclear receptors were initially characterized as receptors for hormones such as estrogen, indicating complex animals use these transcription factors to monitor their internal environment. However, nuclear receptors are present in simple organisms that lack endocrine signaling, suggesting these transcription factors might have a primordial function in sensing the external environment. Our results identify a new class of nuclear receptor ligands, the inorganic ion zinc, and a new function for nuclear receptors in directly sensing levels of a nutrient. We speculate that nutrient homeostasis mediated by direct binding of nutrients to the ligand-binding domain is a primordial function of nuclear receptors, whereas endocrine signaling in complex animals mediated by direct binding of hormones to the ligand-binding domain is a derived function of nuclear receptors that appeared later in evolution.
Collapse
Affiliation(s)
- Kurt Warnhoff
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Hyun C. Roh
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zuzana Kocsisova
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Chieh-Hsiang Tan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrew Morrison
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Damari Croswell
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Daniel L. Schneider
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
72
|
Hester J, Hanna-Rose W, Diaz F. Zinc deficiency reduces fertility in C. elegans hermaphrodites and disrupts oogenesis and meiotic progression. Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:203-209. [PMID: 27663471 PMCID: PMC5945198 DOI: 10.1016/j.cbpc.2016.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/16/2016] [Accepted: 09/18/2016] [Indexed: 11/19/2022]
Abstract
Zinc is necessary for successful gametogenesis in mammals; however the role of zinc in the gonad function of non-mammalian species has not been investigated. The genetic tractability, short generation time, and hermaphroditic reproduction of the nematode C. elegans offer distinct advantages for the study of impaired gametogenesis as a result of zinc deficiency. However the phenotypic reproductive effects arising from zinc restriction have not been established in this model. We therefore examined the effect of zinc deficiency on C. elegans reproduction by exposing worms to the zinc chelator N,N,N',N'-tetrakis (2-pyridylmethyl)ethane-1,2-diamine (TPEN). Treatment began at the early larval stage and continued until reproductive senescence. TPEN treatment reduced the total number of progeny produced by C. elegans hermaphrodites compared with control subjects, with the largest difference in output observed 48h after larval stage 4. At this time-point, zinc deficient worms displayed fewer embryos in the uterus and disorganized oocyte development when observed under DIC microscopy. DAPI staining revealed impaired oogenesis and chromosome dynamics with an expanded region of pachytene stage oocytes extending into the proximal arm of the gonad. This phenotype was not seen in control or zinc-rescue subjects. This study demonstrates that reproduction in C. elegans is sensitive to environmental perturbations in zinc, indicating that this is a good model for future studies in zinc-mediated subfertility. Aberrant oocyte development and disruption of the pachytene-diplotene transition indicate that oogenesis in particular is affected by zinc deficiency in this model.
Collapse
Affiliation(s)
- James Hester
- Intercollege Program in Physiology, The Pennsylvania State University, University Park, PA 16802
| | - Wendy Hanna-Rose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Francisco Diaz
- Intercollege Program in Physiology, The Pennsylvania State University, University Park, PA 16802; Department of Animal Science, The Pennsylvania State University, University Park, PA 16802.
| |
Collapse
|
73
|
Hunt PR. The C. elegans model in toxicity testing. J Appl Toxicol 2017; 37:50-59. [PMID: 27443595 PMCID: PMC5132335 DOI: 10.1002/jat.3357] [Citation(s) in RCA: 363] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 05/20/2016] [Accepted: 05/21/2016] [Indexed: 12/25/2022]
Abstract
Caenorhabditis elegans is a small nematode that can be maintained at low cost and handled using standard in vitro techniques. Unlike toxicity testing using cell cultures, C. elegans toxicity assays provide data from a whole animal with intact and metabolically active digestive, reproductive, endocrine, sensory and neuromuscular systems. Toxicity ranking screens in C. elegans have repeatedly been shown to be as predictive of rat LD50 ranking as mouse LD50 ranking. Additionally, many instances of conservation of mode of toxic action have been noted between C. elegans and mammals. These consistent correlations make the case for inclusion of C. elegans assays in early safety testing and as one component in tiered or integrated toxicity testing strategies, but do not indicate that nematodes alone can replace data from mammals for hazard evaluation. As with cell cultures, good C. elegans culture practice (GCeCP) is essential for reliable results. This article reviews C. elegans use in various toxicity assays, the C. elegans model's strengths and limitations for use in predictive toxicology, and GCeCP. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Journal of Applied Toxicology published by John Wiley & Sons Ltd.
Collapse
|
74
|
Aschner M, Palinski C, Sperling M, Karst U, Schwerdtle T, Bornhorst J. Imaging metals in Caenorhabditis elegans. Metallomics 2017; 9:357-364. [DOI: 10.1039/c6mt00265j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
75
|
Mendoza AD, Woodruff TK, Wignall SM, O'Halloran TV. Zinc availability during germline development impacts embryo viability in Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:194-202. [PMID: 27664515 PMCID: PMC5210184 DOI: 10.1016/j.cbpc.2016.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 11/29/2022]
Abstract
Zinc is an essential metal that serves as a cofactor in a variety of cellular processes, including meiotic maturation. Cellular control of zinc uptake, availability and efflux is closely linked to meiotic progression in rodent and primate reproduction where large fluctuations in zinc levels are critical at several steps in the oocyte-to-embryo transition. Despite these well-documented roles of zinc fluxes during meiosis, only a few of the genes encoding key zinc receptors, membrane-spanning transporters, and downstream signaling pathway factors have been identified to date. Furthermore, little is known about analogous roles for zinc fluxes in the context of a whole organism. Here, we evaluate whether zinc availability regulates germline development and oocyte viability in the nematode Caenorhabditis elegans, an experimentally flexible model organism. We find that similar to mammals, mild zinc limitation in C. elegans profoundly impacts the reproductive axis: the brood size is significantly reduced under conditions of zinc limitation where other physiological functions are not perturbed. Zinc limitation in this organism has a more pronounced impact on oocytes than sperm and this leads to the decrease in viable embryo production. Moreover, acute zinc limitation of isolated zygotes prevents extrusion of the second polar body during meiosis and leads to aneuploid embryos. Thus, the zinc-dependent steps in C. elegans gametogenesis roughly parallel those described in meiotic-to-mitotic transitions in mammals.
Collapse
Affiliation(s)
- Adelita D Mendoza
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Teresa K Woodruff
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sarah M Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Thomas V O'Halloran
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
76
|
Abstract
Lysosomes are highly acidic cellular organelles traditionally viewed as sacs of enzymes involved in digesting extracellular or intracellular macromolecules for the regeneration of basic building blocks, cellular housekeeping, or pathogen degradation. Bound by a single lipid bilayer, lysosomes receive their substrates by fusing with endosomes or autophagosomes, or through specialized translocation mechanisms such as chaperone-mediated autophagy or microautophagy. Lysosomes degrade their substrates using up to 60 different soluble hydrolases and release their products either to the cytosol through poorly defined exporting and efflux mechanisms or to the extracellular space by fusing with the plasma membrane. However, it is becoming evident that the role of the lysosome in nutrient homeostasis goes beyond the disposal of waste or the recycling of building blocks. The lysosome is emerging as a signaling hub that can integrate and relay external and internal nutritional information to promote cellular and organismal homeostasis, as well as a major contributor to the processing of energy-dense molecules like glycogen and triglycerides. Here we describe the current knowledge of the nutrient signaling pathways governing lysosomal function, the role of the lysosome in nutrient mobilization, and how lysosomes signal other organelles, distant tissues, and even themselves to ensure energy homeostasis in spite of fluctuations in energy intake. At the same time, we highlight the value of genomics approaches to the past and future discoveries of how the lysosome simultaneously executes and controls cellular homeostasis.
Collapse
Affiliation(s)
- Vinod K Mony
- a Department of Biology , College of Arts and Sciences, University of Virginia , Charlottesville , VA , USA
| | - Shawna Benjamin
- a Department of Biology , College of Arts and Sciences, University of Virginia , Charlottesville , VA , USA.,b Department of Cell Biology , School of Medicine, University of Virginia , Charlottesville , VA , USA
| | - Eyleen J O'Rourke
- a Department of Biology , College of Arts and Sciences, University of Virginia , Charlottesville , VA , USA.,b Department of Cell Biology , School of Medicine, University of Virginia , Charlottesville , VA , USA.,c Robert M. Berne Cardiovascular Research Center, University of Virginia , Charlottesville , VA , USA
| |
Collapse
|
77
|
Sharma RK, Gajanan LK, Mehata MS, Hussain F, Kumar A. Synthesis, characterization and fluorescence turn-on behavior of new porphyrin analogue: meta-benziporphodimethenes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 169:58-65. [PMID: 27337052 DOI: 10.1016/j.saa.2016.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 06/09/2016] [Accepted: 06/11/2016] [Indexed: 06/06/2023]
Abstract
New fluorescence switch-on meso-substituted free base meta-benziporphodimethenes were synthesized, characterized via acid catalyzed condensation reaction and metallated with Zn(2+). Their photophysical properties were also studied. The fluorescence spectra analysis demonstrates substituent's independent behaviour on emitting λmax. The average Stokes shift of 33nm was observed. Crystal structure of 8 was obtained and gave expected perturbed geometry.
Collapse
Affiliation(s)
- Ravi Kumar Sharma
- Department of Applied Chemistry, Delhi Technological University, Bawana Road, Delhi, India
| | - Lale Kiran Gajanan
- Department of Applied Chemistry, Delhi Technological University, Bawana Road, Delhi, India
| | - Mohan Singh Mehata
- Department of Applied Physics, Delhi Technological University, Bawana Road, Delhi, India
| | | | - Anil Kumar
- Department of Applied Chemistry, Delhi Technological University, Bawana Road, Delhi, India.
| |
Collapse
|
78
|
Chun H, Sharma AK, Lee J, Chan J, Jia S, Kim BE. The Intestinal Copper Exporter CUA-1 Is Required for Systemic Copper Homeostasis in Caenorhabditis elegans. J Biol Chem 2016; 292:1-14. [PMID: 27881675 DOI: 10.1074/jbc.m116.760876] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/15/2016] [Indexed: 12/23/2022] Open
Abstract
Copper plays key catalytic and regulatory roles in biochemical processes essential for normal growth, development, and health. Defects in copper metabolism cause Menkes and Wilson's disease, myeloneuropathy, and cardiovascular disease and are associated with other pathophysiological states. Consequently, it is critical to understand the mechanisms by which organisms control the acquisition, distribution, and utilization of copper. The intestinal enterocyte is a key regulatory point for copper absorption into the body; however, the mechanisms by which intestinal cells transport copper to maintain organismal copper homeostasis are poorly understood. Here, we identify a mechanism by which organismal copper homeostasis is maintained by intestinal copper exporter trafficking that is coordinated with extraintestinal copper levels in Caenorhabditis elegans Specifically, we show that CUA-1, the C. elegans homolog of ATP7A/B, localizes to lysosome-like organelles (gut granules) in the intestine under copper overload conditions for copper detoxification, whereas copper deficiency results in a redistribution of CUA-1 to basolateral membranes for copper efflux to peripheral tissues. Worms defective in gut granule biogenesis exhibit defects in copper sequestration and increased susceptibility to toxic copper levels. Interestingly, however, a splice isoform CUA-1.2 that lacks a portion of the N-terminal domain is targeted constitutively to the basolateral membrane irrespective of dietary copper concentration. Our studies establish that CUA-1 is a key intestinal copper exporter and that its trafficking is regulated to maintain systemic copper homeostasis. C. elegans could therefore be exploited as a whole-animal model system to study regulation of intra- and intercellular copper trafficking pathways.
Collapse
Affiliation(s)
- Haarin Chun
- From the Department of Animal and Avian Sciences
| | | | - Jaekwon Lee
- the Redox Biology Center, Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68588, and
| | - Jefferson Chan
- the Department of Chemistry, University of California at Berkeley, Berkeley, California 94720
| | - Shang Jia
- the Department of Chemistry, University of California at Berkeley, Berkeley, California 94720
| | - Byung-Eun Kim
- From the Department of Animal and Avian Sciences, .,Biological Sciences Graduate Program, University of Maryland, College Park, Maryland 20742
| |
Collapse
|
79
|
Lee HJ, Cho CW, Seo H, Singha S, Jun YW, Lee KH, Jung Y, Kim KT, Park S, Bae SC, Ahn KH. A two-photon fluorescent probe for lysosomal zinc ions. Chem Commun (Camb) 2016; 52:124-7. [PMID: 26503088 DOI: 10.1039/c5cc06976a] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The selective detection of zinc ions in lysosomes over that in cytosol is achieved with a fluorescent probe, which enabled the fluorescence imaging of endogenous zinc ions in lysosomes of NIH 3T3 cells as well as mouse hippocampal tissues by two-photon microscopy under excitation at 900 nm.
Collapse
Affiliation(s)
- Hyo-Jun Lee
- Department of Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea.
| | - Chang-Woo Cho
- Department of Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea.
| | - Hyewon Seo
- Department of Chemistry, POSTECH, Pohang 790-784, Republic of Korea.
| | - Subhankar Singha
- Department of Chemistry, POSTECH, Pohang 790-784, Republic of Korea.
| | - Yong Woong Jun
- Department of Chemistry, POSTECH, Pohang 790-784, Republic of Korea.
| | - Kyung-Ha Lee
- Division of Integrative Biosciences and Biotechnology, POSTECH, Pohang 790-784, Republic of Korea
| | - Youngseob Jung
- Division of Integrative Biosciences and Biotechnology, POSTECH, Pohang 790-784, Republic of Korea
| | - Kyong-Tai Kim
- Division of Integrative Biosciences and Biotechnology, POSTECH, Pohang 790-784, Republic of Korea
| | - Seongjun Park
- School of Life Sciences, UNIST, Ulsan 689-798, Republic of Korea
| | - Sung Chul Bae
- School of Life Sciences, UNIST, Ulsan 689-798, Republic of Korea
| | - Kyo Han Ahn
- Department of Chemistry, POSTECH, Pohang 790-784, Republic of Korea.
| |
Collapse
|
80
|
A conditional proteomics approach to identify proteins involved in zinc homeostasis. Nat Methods 2016; 13:931-937. [PMID: 27617391 DOI: 10.1038/nmeth.3998] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 07/21/2016] [Indexed: 12/19/2022]
Abstract
Zinc signaling and dynamics play significant roles in many physiological responses and diseases. To understand the physiological roles of zinc in detail, comprehensive identification of proteins under high concentration of mobile zinc ion is crucial. We developed a 'conditional proteomics' approach to identify proteins involved in zinc homeostasis based on a chemical proteomic strategy that utilizes designer zinc-responsive labeling reagents to tag such proteins and quantitative mass spectrometry for their identification. We used this method to elucidate zinc dyshomeostasis induced by nitric-oxide-triggered oxidative stress in glioma cells, and we unveiled dynamic changes of the zinc-related proteomes. Moreover, we characterized unknown zinc-rich vesicles generated by oxidative stress as endoplasmic-reticulum- and Golgi-related vesicles.
Collapse
|
81
|
Sharma RK, Maurya A, Rajamani P, Mehata MS, Kumar A. meta-Benziporphodimethenes: New Cell-Imaging Porphyrin Analogue Molecules. ChemistrySelect 2016. [DOI: 10.1002/slct.201600812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ravi Kumar Sharma
- Department of Applied Chemistry; Delhi Technological University; Bawana Road Delhi-42 India
| | - Anurag Maurya
- School of Environmental Sciences; Jawaharlal Nehru University; Delhi-67 India
| | - Paulraj Rajamani
- School of Environmental Sciences; Jawaharlal Nehru University; Delhi-67 India
| | - Mohan Singh Mehata
- Department of Applied Physics; Delhi Technological University; Bawana Road Delhi-42 India
| | - Anil Kumar
- Department of Applied Chemistry; Delhi Technological University; Bawana Road Delhi-42 India
| |
Collapse
|
82
|
Dietrich N, Tan CH, Cubillas C, Earley BJ, Kornfeld K. Insights into zinc and cadmium biology in the nematode Caenorhabditis elegans. Arch Biochem Biophys 2016; 611:120-133. [PMID: 27261336 DOI: 10.1016/j.abb.2016.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/18/2016] [Accepted: 05/28/2016] [Indexed: 10/21/2022]
Abstract
Zinc is an essential metal that is involved in a wide range of biological processes, and aberrant zinc homeostasis is implicated in multiple human diseases. Cadmium is chemically similar to zinc, but it is a nonessential environmental pollutant. Because zinc deficiency and excess are deleterious, animals require homeostatic mechanisms to maintain zinc levels in response to dietary fluctuations. The nematode Caenorhabditis elegans is emerging as a powerful model system to investigate zinc trafficking and homeostasis as well as cadmium toxicity. Here we review genetic and molecular studies that have combined to generate a picture of zinc homeostasis based on the transcriptional control of zinc transporters in intestinal cells. Furthermore, we summarize studies of cadmium toxicity that reveal intriguing parallels with zinc biology.
Collapse
Affiliation(s)
- Nicholas Dietrich
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States.
| | - Chieh-Hsiang Tan
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Ciro Cubillas
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Brian James Earley
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| |
Collapse
|
83
|
Lu Q, Haragopal H, Slepchenko KG, Stork C, Li YV. Intracellular zinc distribution in mitochondria, ER and the Golgi apparatus. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2016; 8:35-43. [PMID: 27186321 PMCID: PMC4859877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
Zinc (Zn(2+)) is required for numerous cellular functions. As such, the homeostasis and distribution of intracellular zinc can influence cellular metabolism and signaling. However, the exact distribution of free zinc within live cells remains elusive. Previously we showed the release of zinc from thapsigargin/IP3-sensitive endoplasmic reticulum (ER) storage in cortical neurons. In the present study, we investigated if other cellular organelles also contain free chelatable zinc and function as organelle storage for zinc. To identify free zinc within the organelles, live cells were co-stained with Zinpyr-1, a zinc fluorescent dye, and organelle-specific fluorescent dyes (MitoFluor Red 589: mitochondria; ER Tracker Red: endoplasmic reticulum; BODIPY TR ceramide: Golgi apparatus; Syto Red 64: nucleus). We examined organelles that represent potential storing sites for intracellular zinc. We showed that zinc fluorescence staining was co-localized with MitoFluor Red 589, ER Tracker Red, and BODIPY TR ceramide respectively, suggesting the presence of free zinc in mitochondria, endoplasmic reticulum, and the Golgi apparatus. On the other hand, cytosol and nucleus had nearly no detectable zinc fluorescence. It is known that nucleus contains high amount of zinc binding proteins that have high zinc binding affinity. The absence of zinc fluorescence suggests that there is little free zinc in these two regions. It also indicates that the zinc fluorescence detected in mitochondria, ER and Golgi apparatus represents free chelatable zinc. Taken together, our results support that these organelles are potential zinc storing organelles during cellular zinc homeostasis.
Collapse
Affiliation(s)
- Qiping Lu
- Interdisciplinary Program of Molecular and Cellular Biology, Ohio UniversityAthens, OH 45701, USA
- Graduate Program of Biological Sciences, Ohio UniversityAthens, OH 45701, USA
| | | | - Kira G Slepchenko
- Department of Biomedical Sciences, Ohio UniversityAthens, OH 45701, USA
| | - Christian Stork
- Department of Biomedical Sciences, Ohio UniversityAthens, OH 45701, USA
| | - Yang V Li
- Interdisciplinary Program of Molecular and Cellular Biology, Ohio UniversityAthens, OH 45701, USA
- Graduate Program of Biological Sciences, Ohio UniversityAthens, OH 45701, USA
- Department of Biomedical Sciences, Ohio UniversityAthens, OH 45701, USA
| |
Collapse
|
84
|
Kumar J, Barhydt T, Awasthi A, Lithgow GJ, Killilea DW, Kapahi P. Zinc Levels Modulate Lifespan through Multiple Longevity Pathways in Caenorhabditis elegans. PLoS One 2016; 11:e0153513. [PMID: 27078872 PMCID: PMC4831763 DOI: 10.1371/journal.pone.0153513] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 03/30/2016] [Indexed: 12/22/2022] Open
Abstract
Zinc is an essential trace metal that has integral roles in numerous biological processes, including enzymatic function, protein structure, and cell signaling pathways. Both excess and deficiency of zinc can lead to detrimental effects on development and metabolism, resulting in abnormalities and disease. We altered the zinc balance within Caenorhabditis elegans to examine how changes in zinc burden affect longevity and healthspan in an invertebrate animal model. We found that increasing zinc levels in vivo with excess dietary zinc supplementation decreased the mean and maximum lifespan, whereas reducing zinc levels in vivo with a zinc-selective chelator increased the mean and maximum lifespan in C. elegans. We determined that the lifespan shortening effects of excess zinc required expression of DAF-16, HSF-1 and SKN-1 proteins, whereas the lifespan lengthening effects of the reduced zinc may be partially dependent upon this set of proteins. Furthermore, reducing zinc levels led to greater nuclear localization of DAF-16 and enhanced dauer formation compared to controls, suggesting that the lifespan effects of zinc are mediated in part by the insulin/IGF-1 pathway. Additionally, zinc status correlated with several markers of healthspan in worms, including proteostasis, locomotion and thermotolerance, with reduced zinc levels always associated with improvements in function. Taken together, these data support a role for zinc in regulating both development and lifespan in C. elegans, and that suggest that regulation of zinc homeostasis in the worm may be an example of antagonistic pleiotropy.
Collapse
Affiliation(s)
- Jitendra Kumar
- The Buck Institute for Research on Aging, Novato, California, United States of America
- DBT-PU-IPLS Programme, Department of Botany/Biotechnology, Patna University, Patna- 800005, Bihar, India
- * E-mail: (PK); (DWK); (JK)
| | - Tracy Barhydt
- The Buck Institute for Research on Aging, Novato, California, United States of America
| | - Anjali Awasthi
- Department of Biological Sciences, Birla Institute of Technology and Science, Rajasthan, India
| | - Gordon J. Lithgow
- The Buck Institute for Research on Aging, Novato, California, United States of America
| | - David W. Killilea
- Nutrition & Metabolism Center, Children’s Hospital of Oakland Research Institute, Oakland, California, United States of America
- * E-mail: (PK); (DWK); (JK)
| | - Pankaj Kapahi
- The Buck Institute for Research on Aging, Novato, California, United States of America
- * E-mail: (PK); (DWK); (JK)
| |
Collapse
|
85
|
Barrett A, Hermann GJ. A Caenorhabditis elegans Homologue of LYST Functions in Endosome and Lysosome-Related Organelle Biogenesis. Traffic 2016; 17:515-35. [PMID: 26822177 DOI: 10.1111/tra.12381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/25/2016] [Accepted: 01/25/2016] [Indexed: 01/20/2023]
Abstract
LYST-1 is a Caenorhabditis elegans BEACH domain containing protein (BDCP) homologous to LYST and NBEAL2, BDCPs controlling organelle biogenesis that are implicated in human disease. Unlike the three other BDCPs encoded by C. elegans, mutations in lyst-1 lead to smaller lysosome-related organelles (LROs), smaller lysosomes, increased numbers of LROs and decreased numbers of early endosomes. lyst-1(-) mutations do not obviously disrupt protein trafficking to lysosomes or LROs, however, the formation of gut granules is diminished.
Collapse
Affiliation(s)
- Alec Barrett
- Department of Biology, Lewis & Clark College, 0615 SW Palatine Hill Rd., Portland, OR, 97219, USA
| | - Greg J Hermann
- Department of Biology, Lewis & Clark College, 0615 SW Palatine Hill Rd., Portland, OR, 97219, USA
| |
Collapse
|
86
|
Keith SA, Maddux SK, Zhong Y, Chinchankar MN, Ferguson AA, Ghazi A, Fisher AL. Graded Proteasome Dysfunction in Caenorhabditis elegans Activates an Adaptive Response Involving the Conserved SKN-1 and ELT-2 Transcription Factors and the Autophagy-Lysosome Pathway. PLoS Genet 2016; 12:e1005823. [PMID: 26828939 PMCID: PMC4734690 DOI: 10.1371/journal.pgen.1005823] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 12/31/2015] [Indexed: 12/30/2022] Open
Abstract
The maintenance of cellular proteins in a biologically active and structurally stable state is a vital endeavor involving multiple cellular pathways. One such pathway is the ubiquitin-proteasome system that represents a major route for protein degradation, and reductions in this pathway usually have adverse effects on the health of cells and tissues. Here, we demonstrate that loss-of-function mutants of the Caenorhabditis elegans proteasome subunit, RPN-10, exhibit moderate proteasome dysfunction and unexpectedly develop both increased longevity and enhanced resistance to multiple threats to the proteome, including heat, oxidative stress, and the presence of aggregation prone proteins. The rpn-10 mutant animals survive through the activation of compensatory mechanisms regulated by the conserved SKN-1/Nrf2 and ELT-2/GATA transcription factors that mediate the increased expression of genes encoding proteasome subunits as well as those mediating oxidative- and heat-stress responses. Additionally, we find that the rpn-10 mutant also shows enhanced activity of the autophagy-lysosome pathway as evidenced by increased expression of the multiple autophagy genes including atg-16.2, lgg-1, and bec-1, and also by an increase in GFP::LGG-1 puncta. Consistent with a critical role for this pathway, the enhanced resistance of the rpn-10 mutant to aggregation prone proteins depends on autophagy genes atg-13, atg-16.2, and prmt-1. Furthermore, the rpn-10 mutant is particularly sensitive to the inhibition of lysosome activity via either RNAi or chemical means. We also find that the rpn-10 mutant shows a reduction in the numbers of intestinal lysosomes, and that the elt-2 gene also plays a novel and vital role in controlling the production of functional lysosomes by the intestine. Overall, these experiments suggest that moderate proteasome dysfunction could be leveraged to improve protein homeostasis and organismal health and longevity, and that the rpn-10 mutant provides a unique platform to explore these possibilities.
Collapse
Affiliation(s)
- Scott A. Keith
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sarah K. Maddux
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- Center for Healthy Aging, Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
| | - Yayu Zhong
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- Center for Healthy Aging, Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
| | - Meghna N. Chinchankar
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- Center for Healthy Aging, Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
| | - Annabel A. Ferguson
- Division of Geriatric Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Arjumand Ghazi
- Rangos Research Center, Department of Pediatrics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alfred L. Fisher
- Division of Geriatrics, Gerontology, and Palliative Medicine, Department of Medicine, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- Center for Healthy Aging, Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio (UTHSCSA), San Antonio, Texas, United States of America
- San Antonio GRECC, South Texas VA Healthcare System, San Antonio, Texas, United States of America
| |
Collapse
|
87
|
Tanji T, Nishikori K, Haga S, Kanno Y, Kobayashi Y, Takaya M, Gengyo-Ando K, Mitani S, Shiraishi H, Ohashi-Kobayashi A. Characterization of HAF-4- and HAF-9-localizing organelles as distinct organelles in Caenorhabditis elegans intestinal cells. BMC Cell Biol 2016; 17:4. [PMID: 26817689 PMCID: PMC4729119 DOI: 10.1186/s12860-015-0076-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 12/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The intestinal cells of Caenorhabditis elegans are filled with heterogeneous granular organelles that are associated with specific organ functions. The best studied of these organelles are lipid droplets and acidified gut granules associated with GLO-1, a homolog of the small GTPase Rab38. In this study, we characterized a subset of the intestinal granules in which HAF-4 and HAF-9 localize on the membrane. HAF-4 and HAF-9 are ATP-binding cassette (ABC) transporter proteins that are homologous to the mammalian lysosomal peptide transporter TAPL (transporter associated with antigen processing-like, ABCB9). RESULTS Using transgenic worms expressing fluorescent protein-tagged marker proteins, we demonstrated that the HAF-4- and HAF-9-localizing organelles are not lipid droplets and do not participate in yolk protein transport. They were also ruled out as GLO-1-positive acidified gut granules. Furthermore, we clarified that the late endosomal protein RAB-7 localizes to the HAF-4- and HAF-9-localizing organelles and is required for their biogenesis. CONCLUSIONS Our results indicate that the HAF-4- and HAF-9-localizing organelles are distinct intestinal organelles associated with the endocytic pathway.
Collapse
Affiliation(s)
- Takahiro Tanji
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa-gun, Iwate, 028-3694, Japan.
| | - Kenji Nishikori
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa-gun, Iwate, 028-3694, Japan.
| | - Syoko Haga
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa-gun, Iwate, 028-3694, Japan.
| | - Yuki Kanno
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa-gun, Iwate, 028-3694, Japan.
| | - Yusuke Kobayashi
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa-gun, Iwate, 028-3694, Japan.
| | - Mai Takaya
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa-gun, Iwate, 028-3694, Japan.
| | - Keiko Gengyo-Ando
- Department of Physiology, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
- Present address: Saitama University Brain Science Institute, 255 Shimo-okubo, Sakura-ku, Saitama, 338-8570, Japan.
| | - Shohei Mitani
- Department of Physiology, School of Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan.
| | - Hirohisa Shiraishi
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa-gun, Iwate, 028-3694, Japan.
| | - Ayako Ohashi-Kobayashi
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, 2-1-1 Nishi-tokuta, Yahaba, Shiwa-gun, Iwate, 028-3694, Japan.
| |
Collapse
|
88
|
Maurer LL, Yang X, Schindler AJ, Taggart RK, Jiang C, Hsu-Kim H, Sherwood DR, Meyer JN. Intracellular trafficking pathways in silver nanoparticle uptake and toxicity in Caenorhabditis elegans. Nanotoxicology 2015; 10:831-5. [PMID: 26559224 DOI: 10.3109/17435390.2015.1110759] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We used the nematode Caenorhabditis elegans to study the roles of endocytosis and lysosomal function in uptake and subsequent toxicity of silver nanoparticles (AgNP) in vivo. To focus on AgNP uptake and effects rather than silver ion (AgNO3) effects, we used a minimally dissolvable AgNP, citrate-coated AgNPs (CIT-AgNPs). We found that the clathrin-mediated endocytosis inhibitor chlorpromazine reduced the toxicity of CIT-AgNPs but not AgNO3. We also tested the sensitivity of three endocytosis-deficient mutants (rme-1, rme-6 and rme-8) and two lysosomal function deficient mutants (cup-5 and glo-1) as compared to wild-type (N2 strain). One of the endocytosis-deficient mutants (rme-6) took up less silver and was resistant to the acute toxicity of CIT-AgNPs compared to N2s. None of those mutants showed altered sensitivity to AgNO3. Lysosome and lysosome-related organelle mutants were more sensitive to the growth-inhibiting effects of both CIT-AgNPs and AgNO3. Our study provides mechanistic evidence suggesting that early endosome formation is necessary for AgNP-induced toxicity in vivo, as rme-6 mutants were less sensitive to the toxic effects of AgNPs than C. elegans with mutations involved in later steps in the endocytic process.
Collapse
Affiliation(s)
- Laura L Maurer
- a Nicholas School of the Environment, Duke University , Durham , NC , USA .,b Center for the Environmental Implications of Nanotechnology, Duke University , Durham , NC , USA
| | - Xinyu Yang
- a Nicholas School of the Environment, Duke University , Durham , NC , USA .,b Center for the Environmental Implications of Nanotechnology, Duke University , Durham , NC , USA
| | | | - Ross K Taggart
- b Center for the Environmental Implications of Nanotechnology, Duke University , Durham , NC , USA .,d Department of Civil & Environmental Engineering , Duke University , Durham , NC , USA
| | - Chuanjia Jiang
- b Center for the Environmental Implications of Nanotechnology, Duke University , Durham , NC , USA .,d Department of Civil & Environmental Engineering , Duke University , Durham , NC , USA
| | - Heileen Hsu-Kim
- b Center for the Environmental Implications of Nanotechnology, Duke University , Durham , NC , USA .,d Department of Civil & Environmental Engineering , Duke University , Durham , NC , USA
| | | | - Joel N Meyer
- a Nicholas School of the Environment, Duke University , Durham , NC , USA .,b Center for the Environmental Implications of Nanotechnology, Duke University , Durham , NC , USA
| |
Collapse
|
89
|
Kambe T, Tsuji T, Hashimoto A, Itsumura N. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol Rev 2015; 95:749-84. [DOI: 10.1152/physrev.00035.2014] [Citation(s) in RCA: 708] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Zinc is involved in a variety of biological processes, as a structural, catalytic, and intracellular and intercellular signaling component. Thus zinc homeostasis is tightly controlled at the whole body, tissue, cellular, and subcellular levels by a number of proteins, with zinc transporters being particularly important. In metazoan, two zinc transporter families, Zn transporters (ZnT) and Zrt-, Irt-related proteins (ZIP) function in zinc mobilization of influx, efflux, and compartmentalization/sequestration across biological membranes. During the last two decades, significant progress has been made in understanding the molecular properties, expression, regulation, and cellular and physiological roles of ZnT and ZIP transporters, which underpin the multifarious functions of zinc. Moreover, growing evidence indicates that malfunctioning zinc homeostasis due to zinc transporter dysfunction results in the onset and progression of a variety of diseases. This review summarizes current progress in our understanding of each ZnT and ZIP transporter from the perspective of zinc physiology and pathogenesis, discussing challenging issues in their structure and zinc transport mechanisms.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tokuji Tsuji
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ayako Hashimoto
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Naoya Itsumura
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
90
|
A Drosophila model identifies a critical role for zinc in mineralization for kidney stone disease. PLoS One 2015; 10:e0124150. [PMID: 25970330 PMCID: PMC4430225 DOI: 10.1371/journal.pone.0124150] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/11/2015] [Indexed: 12/14/2022] Open
Abstract
Ectopic calcification is a driving force for a variety of diseases, including kidney stones and atherosclerosis, but initiating factors remain largely unknown. Given its importance in seemingly divergent disease processes, identifying fundamental principal actors for ectopic calcification may have broad translational significance. Here we establish a Drosophila melanogaster model for ectopic calcification by inhibiting xanthine dehydrogenase whose deficiency leads to kidney stones in humans and dogs. Micro X-ray absorption near edge spectroscopy (μXANES) synchrotron analyses revealed high enrichment of zinc in the Drosophila equivalent of kidney stones, which was also observed in human kidney stones and Randall's plaques (early calcifications seen in human kidneys thought to be the precursor for renal stones). To further test the role of zinc in driving mineralization, we inhibited zinc transporter genes in the ZnT family and observed suppression of Drosophila stone formation. Taken together, genetic, dietary, and pharmacologic interventions to lower zinc confirm a critical role for zinc in driving the process of heterogeneous nucleation that eventually leads to stone formation. Our findings open a novel perspective on the etiology of urinary stones and related diseases, which may lead to the identification of new preventive and therapeutic approaches.
Collapse
|
91
|
Cation Diffusion Facilitator family: Structure and function. FEBS Lett 2015; 589:1283-95. [PMID: 25896018 DOI: 10.1016/j.febslet.2015.04.007] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/01/2015] [Accepted: 04/08/2015] [Indexed: 01/13/2023]
Abstract
The Cation Diffusion Facilitators (CDFs) form a family of membrane-bound proteins capable of transporting zinc and other heavy metal ions. Involved in metal tolerance/resistance by efflux of ions, CDF proteins share a two-modular architecture consisting of a transmembrane domain (TMD) and C-terminal domain (CTD) that protrudes into the cytoplasm. Discovery of a Zn²⁺ and Cd²⁺ CDF transporter from a marine bacterium Maricaulis maris that does not possess the CTD questions current perceptions regarding this family of proteins. This article describes a new, CTD-lacking subfamily of CDFs and our current knowledge about this family of proteins in the view of these findings.
Collapse
|
92
|
Luallen RJ, Bakowski MA, Troemel ER. Characterization of microsporidia-induced developmental arrest and a transmembrane leucine-rich repeat protein in Caenorhabditis elegans. PLoS One 2015; 10:e0124065. [PMID: 25874557 PMCID: PMC4395247 DOI: 10.1371/journal.pone.0124065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 03/10/2015] [Indexed: 12/26/2022] Open
Abstract
Microsporidia comprise a highly diverged phylum of intracellular, eukaryotic pathogens, with some species able to cause life-threatening illnesses in immunocompromised patients. To better understand microsporidian infection in animals, we study infection of the genetic model organism Caenorhabditis elegans and a species of microsporidia, Nematocida parisii, which infects Caenorhabditis nematodes in the wild. We conducted a targeted RNAi screen for host C. elegans genes important for infection and growth of N. parisii, using nematode larval arrest as an assay for infection. Here, we present the results of this RNAi screen, and our analyses on one of the RNAi hits from the screen that was ultimately not corroborated by loss of function mutants. This hit was an RNAi clone against F56A8.3, a conserved gene that encodes a transmembrane protein containing leucine-rich repeats (LRRs), a domain found in numerous pathogen receptors from other systems. This RNAi clone caused C. elegans to be resistant to infection by N. parisii, leading to reduced larval arrest and lower pathogen load. Characterization of the endogenous F56A8.3 protein revealed that it is expressed in the intestine, localized to the membrane around lysosome-related organelles (LROs), and exists in two different protein isoforms in C. elegans. We used the CRISPR-Cas9 system to edit the F56A8.3 locus and created both a frameshift mutant resulting in a truncated protein and a complete knockout mutant. Neither of these mutants was able to recapitulate the infection phenotypes of the RNAi clone, indicating that the RNAi-mediated phenotypes are due to an off-target effect of the RNAi clone. Nevertheless, this study describes microsporidia-induced developmental arrest in C. elegans, presents results from an RNAi screen for host genes important for microsporidian infection, and characterizes aspects of the conserved F56A8.3 gene and its protein product.
Collapse
Affiliation(s)
- Robert J. Luallen
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Malina A. Bakowski
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
| | - Emily R. Troemel
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
93
|
Sreenath K, Yuan Z, Allen JR, Davidson MW, Zhu L. A fluorescent indicator for imaging lysosomal zinc(II) with Förster resonance energy transfer (FRET)-enhanced photostability and a narrow band of emission. Chemistry 2015; 21:867-74. [PMID: 25382395 PMCID: PMC4294628 DOI: 10.1002/chem.201403479] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Indexed: 12/29/2022]
Abstract
We demonstrate a strategy to transfer the zinc(II) sensitivity of a fluoroionophore with low photostability and a broad emission band to a bright and photostable fluorophore with a narrow emission band. The two fluorophores are covalently connected to afford an intramolecular Förster resonance energy transfer (FRET) conjugate. The FRET donor in the conjugate is a zinc(II)-sensitive arylvinylbipyridyl fluoroionophore, the absorption and emission of which undergo bathochromic shifts upon zinc(II) coordination. When the FRET donor is excited, efficient intramolecular energy transfer occurs to result in the emission of the acceptor boron dipyrromethene (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene or BODIPY) as a function of zinc(II) concentration. The broad emission band of the donor/zinc(II) complex is transformed into the strong, narrow emission band of the BODIPY acceptor in the FRET conjugates, which can be captured within the narrow emission window that is preferred for multicolor imaging experiments. In addition to competing with other nonradiative decay processes of the FRET donor, the rapid intramolecular FRET of the excited FRET-conjugate molecule protects the donor fluorophore from photobleaching, thus enhancing the photostability of the indicator. FRET conjugates 3 and 4 contain aliphatic amino groups, which selectively target lysosomes in mammalian cells. This subcellular localization preference was verified by using confocal fluorescence microscopy, which also shows the zinc(II)-enhanced emission of 3 and 4 in lysosomes. It was further shown using two-color structured illumination microscopy (SIM), which is capable of extending the lateral resolution over the Abbe diffraction limit by a factor of two, that the morpholino-functionalized compound 4 localizes in the interior of lysosomes, rather than anchoring on the lysosomal membranes, of live HeLa cells.
Collapse
Affiliation(s)
- Kesavapillai Sreenath
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390 (USA)
| | - Zhao Yuan
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390 (USA)
| | - John R. Allen
- National High Magnetic Field Laboratory and Department of Biological Sciences, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310 (USA)
| | - Michael W. Davidson
- National High Magnetic Field Laboratory and Department of Biological Sciences, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310 (USA)
| | - Lei Zhu
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390 (USA)
| |
Collapse
|
94
|
Chen Y, Bai Y, Han Z, He W, Guo Z. Photoluminescence imaging of Zn2+in living systems. Chem Soc Rev 2015; 44:4517-46. [DOI: 10.1039/c5cs00005j] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Advances in PL imaging techniques, such as confocal microscopy, two photon microscopy, lifetime and optical imaging techniques, have made remarkable contributions in Zn2+tracking.
Collapse
Affiliation(s)
- Yuncong Chen
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Yang Bai
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Zhong Han
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210093
| |
Collapse
|
95
|
Roh HC, Dimitrov I, Deshmukh K, Zhao G, Warnhoff K, Cabrera D, Tsai W, Kornfeld K. A modular system of DNA enhancer elements mediates tissue-specific activation of transcription by high dietary zinc in C. elegans. Nucleic Acids Res 2014; 43:803-16. [PMID: 25552416 PMCID: PMC4333406 DOI: 10.1093/nar/gku1360] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Zinc is essential for biological systems, and aberrant zinc metabolism is implicated in a broad range of human diseases. To maintain homeostasis in response to fluctuating levels of dietary zinc, animals regulate gene expression; however, mechanisms that mediate the transcriptional response to fluctuating levels of zinc have not been fully defined. Here, we identified DNA enhancer elements that mediate intestine-specific transcriptional activation in response to high levels of dietary zinc in C. elegans. Using bioinformatics, we characterized an evolutionarily conserved enhancer element present in multiple zinc-inducible genes, the high zinc activation (HZA) element. The HZA was consistently adjacent to a GATA element that mediates expression in intestinal cells. Functional studies using transgenic animals demonstrated that this modular system of DNA enhancers mediates tissue-specific transcriptional activation in response to high levels of dietary zinc. We used this information to search the genome and successfully identified novel zinc-inducible genes. To characterize the mechanism of enhancer function, we demonstrated that the GATA transcription factor ELT-2 and the mediator subunit MDT-15 are necessary for zinc-responsive transcriptional activation. These findings define new mechanisms of zinc homeostasis and tissue-specific regulation of transcription.
Collapse
Affiliation(s)
- Hyun Cheol Roh
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ivan Dimitrov
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Krupa Deshmukh
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Guoyan Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kurt Warnhoff
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel Cabrera
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wendy Tsai
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
96
|
Hong-Hermesdorf A, Miethke M, Gallaher SD, Kropat J, Dodani SC, Chan J, Barupala D, Domaille DW, Shirasaki DI, Loo JA, Weber PK, Pett-Ridge J, Stemmler TL, Chang CJ, Merchant SS. Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas. Nat Chem Biol 2014; 10:1034-42. [PMID: 25344811 PMCID: PMC4232477 DOI: 10.1038/nchembio.1662] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 09/05/2014] [Indexed: 12/03/2022]
Abstract
We identified a Cu-accumulating structure with a dynamic role in intracellular Cu homeostasis. During Zn limitation, Chlamydomonas reinhardtii hyperaccumulates Cu, a process dependent on the nutritional Cu sensor CRR1, but it is functionally Cu deficient. Visualization of intracellular Cu revealed major Cu accumulation sites coincident with electron-dense structures that stained positive for low pH and polyphosphate, suggesting that they are lysosome-related organelles. Nano-secondary ion MS showed colocalization of Ca and Cu, and X-ray absorption spectroscopy was consistent with Cu(+) accumulation in an ordered structure. Zn resupply restored Cu homeostasis concomitant with reduced abundance of these structures. Cu isotope labeling demonstrated that sequestered Cu(+) became bioavailable for the synthesis of plastocyanin, and transcriptome profiling indicated that mobilized Cu became visible to CRR1. Cu trafficking to intracellular accumulation sites may be a strategy for preventing protein mismetallation during Zn deficiency and enabling efficient cuproprotein metallation or remetallation upon Zn resupply.
Collapse
Affiliation(s)
- Anne Hong-Hermesdorf
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | - Marcus Miethke
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | - Sean D Gallaher
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | - Janette Kropat
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA
| | - Sheel C Dodani
- Department of Chemistry and Howard Hughes Medical Institute, University of California, Berkeley, USA
| | - Jefferson Chan
- Department of Chemistry and Howard Hughes Medical Institute, University of California, Berkeley, USA
| | - Dulmini Barupala
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, USA
| | - Dylan W Domaille
- Department of Chemistry and Howard Hughes Medical Institute, University of California, Berkeley, USA
| | - Dyna I Shirasaki
- Department of Biological Chemistry, University of California, Los Angeles, USA
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA.Institute for Genomics and Proteomics, University of California, Los Angeles, USA.Department of Biological Chemistry, University of California, Los Angeles, USA
| | - Peter K Weber
- Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, USA
| | - Jennifer Pett-Ridge
- Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, USA
| | - Timothy L Stemmler
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, USA
| | - Christopher J Chang
- Department of Chemistry and Howard Hughes Medical Institute, University of California, Berkeley, USA
| | - Sabeeha S Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, USA.Institute for Genomics and Proteomics, University of California, Los Angeles, USA
| |
Collapse
|
97
|
Sreenath K, Yuan Z, Allen JR, Davidson MW, Zhu L. A Fluorescent Indicator for Imaging Lysosomal Zinc(II) with Förster Resonance Energy Transfer (FRET)-Enhanced Photostability and a Narrow Band of Emission. Chemistry 2014; 21:4163-4163. [PMID: 25378058 DOI: 10.1002/chem.403479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Indexed: 01/05/2023]
Abstract
We demonstrate a strategy to transfer the zinc(II) sensitivity of a fluoroionophore with low photostability and a broad emission band to a bright and photostable fluorophore with a narrow emission band. The two fluorophores are covalently connected to afford an intramolecular Förster resonance energy transfer (FRET) conjugate. The FRET donor in the conjugate is a zinc(II)-sensitive arylvinylbipyridyl fluoroionophore, the absorption and emission of which undergo bathochromic shifts upon zinc(II) coordination. When the FRET donor is excited, efficient intramolecular energy transfer occurs to result in the emission of the acceptor boron dipyrromethene (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene or BODIPY) as a function of zinc(II) concentration. The broad emission band of the donor/zinc(II) complex is transformed into the strong, narrow emission band of the BODIPY acceptor in the FRET conjugates, which can be captured within the narrow emission window that is preferred for multicolor imaging experiments. In addition to competing with other nonradiative decay processes of the FRET donor, the rapid intramolecular FRET of the excited FRET-conjugate molecule protects the donor fluorophore from photobleaching, thus enhancing the photostability of the indicator. FRET conjugates 3 and 4 contain aliphatic amino groups, which selectively target lysosomes in mammalian cells. This subcellular localization preference was verified by using confocal fluorescence microscopy, which also shows the zinc(II)-enhanced emission of 3 and 4 in lysosomes. It was further shown using two-color structured illumination microscopy (SIM), which is capable of extending the lateral resolution over the Abbe diffraction limit by a factor of two, that the morpholino-functionalized compound 4 localizes in the interior of lysosomes, rather than anchoring on the lysosomal membranes, of live HeLa cells.
Collapse
Affiliation(s)
- Kesavapillai Sreenath
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, FL 32306-4390 (USA); Present Address: Department of Chemistry, VTM NSS College, Dhanuvachapuram, Kerala, 695 503 (India)
| | | | | | | | | |
Collapse
|
98
|
Warnhoff K, Murphy JT, Kumar S, Schneider DL, Peterson M, Hsu S, Guthrie J, Robertson JD, Kornfeld K. The DAF-16 FOXO transcription factor regulates natc-1 to modulate stress resistance in Caenorhabditis elegans, linking insulin/IGF-1 signaling to protein N-terminal acetylation. PLoS Genet 2014; 10:e1004703. [PMID: 25330323 PMCID: PMC4199503 DOI: 10.1371/journal.pgen.1004703] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 08/26/2014] [Indexed: 12/24/2022] Open
Abstract
The insulin/IGF-1 signaling pathway plays a critical role in stress resistance and longevity, but the mechanisms are not fully characterized. To identify genes that mediate stress resistance, we screened for C. elegans mutants that can tolerate high levels of dietary zinc. We identified natc-1, which encodes an evolutionarily conserved subunit of the N-terminal acetyltransferase C (NAT) complex. N-terminal acetylation is a widespread modification of eukaryotic proteins; however, relatively little is known about the biological functions of NATs. We demonstrated that loss-of-function mutations in natc-1 cause resistance to a broad-spectrum of physiologic stressors, including multiple metals, heat, and oxidation. The C. elegans FOXO transcription factor DAF-16 is a critical target of the insulin/IGF-1 signaling pathway that mediates stress resistance, and DAF-16 is predicted to directly bind the natc-1 promoter. To characterize the regulation of natc-1 by DAF-16 and the function of natc-1 in insulin/IGF-1 signaling, we analyzed molecular and genetic interactions with key components of the insulin/IGF-1 pathway. natc-1 mRNA levels were repressed by DAF-16 activity, indicating natc-1 is a physiological target of DAF-16. Genetic studies suggested that natc-1 functions downstream of daf-16 to mediate stress resistance and dauer formation. Based on these findings, we hypothesize that natc-1 is directly regulated by the DAF-16 transcription factor, and natc-1 is a physiologically significant effector of the insulin/IGF-1 signaling pathway that mediates stress resistance and dauer formation. These studies identify a novel biological function for natc-1 as a modulator of stress resistance and dauer formation and define a functionally significant downstream effector of the insulin/IGF-1 signaling pathway. Protein N-terminal acetylation mediated by the NatC complex may play an evolutionarily conserved role in regulating stress resistance.
Collapse
Affiliation(s)
- Kurt Warnhoff
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John T. Murphy
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sandeep Kumar
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Daniel L. Schneider
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michelle Peterson
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Simon Hsu
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - James Guthrie
- Research Reactor Center, University of Missouri, Columbia, Missouri, United States of America
| | - J. David Robertson
- Research Reactor Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
99
|
Abstract
Metal ion assimilation is essential for all forms of life. However, organisms must properly control the availability of these nutrients within the cell to avoid inactivating proteins by mismetallation. To safeguard against an imbalance between supply and demand in eukaryotes, intracellular compartments contain metal transporters that load and unload metals. Although the vacuoles of Saccharomyces cerevisiae and Arabidopsis thaliana are well established locales for the storage of copper, zinc, iron, and manganese, related compartments are emerging as important mediators of metal homeostasis. Here we describe these compartments and review their metal transporter complement.
Collapse
Affiliation(s)
| | - Sabeeha S Merchant
- From the Department of Chemistry and Biochemistry and the Institute for Genomics and Proteomics, UCLA, Los Angeles, California 90095
| |
Collapse
|
100
|
Sato K, Norris A, Sato M, Grant BD. C. elegans as a model for membrane traffic. WORMBOOK : THE ONLINE REVIEW OF C. ELEGANS BIOLOGY 2014:1-47. [PMID: 24778088 PMCID: PMC4096984 DOI: 10.1895/wormbook.1.77.2] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The counterbalancing action of the endocytosis and secretory pathways maintains a dynamic equilibrium that regulates the composition of the plasma membrane, allowing it to maintain homeostasis and to change rapidly in response to alterations in the extracellular environment and/or intracellular metabolism. These pathways are intimately integrated with intercellular signaling systems and play critical roles in all cells. Studies in Caenorhabditis elegans have revealed diverse roles of membrane trafficking in physiology and development and have also provided molecular insight into the fundamental mechanisms that direct cargo sorting, vesicle budding, and membrane fisson and fusion. In this review, we summarize progress in understanding membrane trafficking mechanisms derived from work in C. elegans, focusing mainly on work done in non-neuronal cell-types, especially the germline, early embryo, coelomocytes, and intestine.
Collapse
Affiliation(s)
- Ken Sato
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan. ;
| | | | | | | |
Collapse
|