51
|
Zhu Y, Zhuang Y, Yu Y, Wang J, Liu Y, Ruan Z, Xiao W, Kong Y. Genomic Characterization of a Carbapenem-Resistant Raoultella planticola Strain Co-Harboring blaIMP-4 and blaSHV-12 Genes. Infect Drug Resist 2024; 17:1251-1258. [PMID: 38560708 PMCID: PMC10981896 DOI: 10.2147/idr.s459649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
Raoultella planticola is an emerging bacterial pathogen responsible for causing infections in both humans and animals. Unfortunately, sporadic reports of carbapenem-resistant R. planticola (CRRP) have been documented worldwide. Here we first reported the complete genome sequence of a CRRP isolate RP_3045 co-carrying blaIMP-4 and blaSHV-12, recovered from a patient in China, and its genetic relatedness to 82 R. planticola strains deposited in the NCBI GenBank database, sourced from humans, animals, and the environment. Whole-genome sequencing was performed using the Illumina NovaSeq 6000 and Oxford Nanopore MinION platforms. Phylogenetic analysis was also performed and visualized using a single nucleotide polymorphism (SNP)-based strategy. The complete genome of R. planticola strain RP_3045 was determined to be 6,312,961 bp in length, comprising five contigs that included one chromosome and four plasmids. RP_3045 was found to be multidrug-resistant and harbored several antimicrobial resistance genes, including both blaIMP-4 and blaSHV-12 genes located on a single plasmid. The most closely related strain was hkcpe63, recovered from humans in Hong Kong, China, in 2014, with 506 SNP differences. R. planticola strains were distributed globally and exhibited strong associations among isolates obtained from different sectors. This study provides evidence for the potential of R. planticola to disseminate carbapenem resistance across different sectors, highlighting the critical need for active and continuous surveillance of CRRP.
Collapse
Affiliation(s)
- Yubin Zhu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yilu Zhuang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yawen Yu
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Jinyue Wang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yongtai Liu
- The First Division Hospital of XinJiang Production and Construction Group, XinJiang, People’s Republic of China
| | - Zhi Ruan
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Wei Xiao
- Department of Emergency Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yingying Kong
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Hangzhou, People’s Republic of China
| |
Collapse
|
52
|
Manageiro V, Cano M, Furtado C, Iglesias C, Reis L, Vieira P, Teixeira A, Martins C, Veloso I, Machado J, Paiva JA, Caniça M. Genomic and epidemiological insight of an outbreak of carbapenemase-producing Enterobacterales in a Portuguese hospital with the emergence of the new KPC-124. J Infect Public Health 2024; 17:386-395. [PMID: 38246112 DOI: 10.1016/j.jiph.2023.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND Carbapenemase-producing Enterobacterales (CPE) is an increasing problem in healthcare settings. This study aimed to identify the source of a CPE outbreak that occurred in 2022, in a tertiary hospital in the North of Portugal, to identify exposed patients, and to assess the risk of becoming CPE-positive following hospital admission. METHODS A multi-disciplinary investigation was conducted including descriptive, analytical, and molecular epidemiology, environmental screening, and assessment of infection control measures. Clinical and environmental isolates were analyzed using whole-genome sequencing and phylogenetic analysis. Additionally, a prospective observational cohort study was conducted to further investigate the risk factors associated with the emergence of new cases in cohorts of CPE-negative admitted patients. RESULTS We observed the presence of multispecies KPC-, IMP-, and/or NDM-producing isolates. Genetically indistinguishable clinical and environmental isolates were found on the same room/ward. The ST45 KPC-3-producing Klebsiella pneumoniae clone was the responsible for the outbreak. During patients' treatment, we detected the emergence of resistance to ceftazidime-avibactam, associated with mutations in the blaKPC-3 gene (blaKPC-46, blaKPC-66 and blaKPC-124, the last variant never previously reported), suggesting a vertical evolutionary trajectory. Patients aged ≥ 75 years, hygiene/feeding-care dependent, and/or subjected to secretion aspiration were risk factors for CPE colonization after hospital admission. Additionally, cases with previous admission to the emergency department suggest that CPE dissemination may occur not only during hospitalization but also in the emergency department. CONCLUSION Overall, the study highlights that selection pressure with antibiotics, like ceftazidime-avibactam, is a contributing factor to the emergence of new β-lactamase variants and antibiotic resistance. It also shows that the hospital environment can be a significant source of CPE transmission, and that routine use of infection control measures and real-time molecular epidemiology investigations are essential to ensure the long-term termination of CPE outbreaks and prevent future resurgences.
Collapse
Affiliation(s)
- Vera Manageiro
- National Reference Laboratory of Antibiotic Resistance and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; ECDC fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Manuela Cano
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Cristina Furtado
- Reference and Surveillance Unit, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Carmen Iglesias
- Clinical Pathology Service, Hospital de Braga, Braga, Portugal
| | - Lígia Reis
- National Reference Laboratory of Antibiotic Resistance and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Patrícia Vieira
- National Reference Laboratory of Antibiotic Resistance and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Aida Teixeira
- Local Unit of the Program for Prevention and Control of Infection and Antimicrobial Resistance (UL-PPCIRA), Hospital de Braga, Braga, Portugal
| | - Cláudia Martins
- Local Unit of the Program for Prevention and Control of Infection and Antimicrobial Resistance (UL-PPCIRA), Hospital de Braga, Braga, Portugal
| | - Isabel Veloso
- Local Unit of the Program for Prevention and Control of Infection and Antimicrobial Resistance (UL-PPCIRA), Hospital de Braga, Braga, Portugal
| | - Jorge Machado
- Coordination of the Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - José Artur Paiva
- Intensive Care Medicine Service, Centro Hospitalar Universitário São João (CHUSJ), Porto, Portugal; Medicine Department, Faculty of Medicine, University of Porto, Porto, Portugal; Infections and Antimicrobial Resistance Prevention Programme, Directorate General of Health, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistance and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal.
| |
Collapse
|
53
|
De Koster S, Xavier BB, Lammens C, Perales Selva N, van Kleef-van Koeveringe S, Coenen S, Glupczynski Y, Leroux-Roels I, Dhaeze W, Hoebe CJPA, Dewulf J, Stegeman A, Kluytmans-Van den Bergh M, Kluytmans J, Goossens H. One Health surveillance of colistin-resistant Enterobacterales in Belgium and the Netherlands between 2017 and 2019. PLoS One 2024; 19:e0298096. [PMID: 38394276 PMCID: PMC10890735 DOI: 10.1371/journal.pone.0298096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Colistin serves as the last line of defense against multidrug resistant Gram-negative bacterial infections in both human and veterinary medicine. This study aimed to investigate the occurrence and spread of colistin-resistant Enterobacterales (ColR-E) using a One Health approach in Belgium and in the Netherlands. METHODS In a transnational research project, a total of 998 hospitalized patients, 1430 long-term care facility (LTCF) residents, 947 children attending day care centres, 1597 pigs and 1691 broilers were sampled for the presence of ColR-E in 2017 and 2018, followed by a second round twelve months later for hospitalized patients and animals. Colistin treatment incidence in livestock farms was used to determine the association between colistin use and resistance. Selective cultures and colistin minimum inhibitory concentrations (MIC) were employed to identify ColR-E. A combination of short-read and long-read sequencing was utilized to investigate the molecular characteristics of 562 colistin-resistant isolates. Core genome multi-locus sequence typing (cgMLST) was applied to examine potential transmission events. RESULTS The presence of ColR-E was observed in all One Health sectors. In Dutch hospitalized patients, ColR-E proportions (11.3 and 11.8% in both measurements) were higher than in Belgian patients (4.4 and 7.9% in both measurements), while the occurrence of ColR-E in Belgian LTCF residents (10.2%) and children in day care centres (17.6%) was higher than in their Dutch counterparts (5.6% and 12.8%, respectively). Colistin use in pig farms was associated with the occurrence of colistin resistance. The percentage of pigs carrying ColR-E was 21.8 and 23.3% in Belgium and 14.6% and 8.9% in the Netherlands during both measurements. The proportion of broilers carrying ColR-E in the Netherlands (5.3 and 1.5%) was higher compared to Belgium (1.5 and 0.7%) in both measurements. mcr-harboring E. coli were detected in 17.4% (31/178) of the screened pigs from 7 Belgian pig farms. Concurrently, four human-related Enterobacter spp. isolates harbored mcr-9.1 and mcr-10 genes. The majority of colistin-resistant isolates (419/473, 88.6% E. coli; 126/166, 75.9% Klebsiella spp.; 50/75, 66.7% Enterobacter spp.) were susceptible to the critically important antibiotics (extended-spectrum cephalosporins, fluoroquinolones, carbapenems and aminoglycosides). Chromosomal colistin resistance mutations have been identified in globally prevalent high-risk clonal lineages, including E. coli ST131 (n = 17) and ST1193 (n = 4). Clonally related isolates were detected in different patients, healthy individuals and livestock animals of the same site suggesting local transmission. Clonal clustering of E. coli ST10 and K. pneumoniae ST45 was identified in different sites from both countries suggesting that these clones have the potential to spread colistin resistance through the human population or were acquired by exposure to a common (food) source. In pig farms, the continuous circulation of related isolates was observed over time. Inter-host transmission between humans and livestock animals was not detected. CONCLUSIONS The findings of this study contribute to a broader understanding of ColR-E prevalence and the possible pathways of transmission, offering insights valuable to both academic research and public health policy development.
Collapse
Affiliation(s)
- Sien De Koster
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
- Department of Clinical Sciences, Institute of Tropical Medicine, HIV/STI Unit, Antwerp, Belgium
- Hospital Outbreak Support Team-HOST, ZNA Middelheim, Antwerp, Belgium
- Hospital Outbreak Support Team-HOST, GZA Ziekenhuizen, Wilrijk, Belgium
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | | | | - Samuel Coenen
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Youri Glupczynski
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Isabel Leroux-Roels
- Laboratory of Medical Microbiology and Infection Control Department, Ghent University Hospital, Ghent, Belgium
| | | | - Christian J. P. A. Hoebe
- Department of Social Medicine, Maastricht University, Maastricht, the Netherlands
- Department of Medical Microbiology, Infectious Diseases and Infection Prevention, Maastricht University Medical Center+, Maastricht, The Netherlands
- Living Lab Public Health, Public Health Service South Limburg, Heerlen, the Netherlands
| | - Jeroen Dewulf
- Faculty of Veterinary Medicine, Department of Internal Medicine, Reproduction and Population Medicine, Veterinary Epidemiology Unit, Ghent University, Merelbeke, Belgium
| | - Arjan Stegeman
- Faculty of Veterinary Medicine, Department of Population Health Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marjolein Kluytmans-Van den Bergh
- Department of Infection Control, Amphia Hospital, Breda, The Netherlands
- Amphia Academy Infectious Disease Foundation, Amphia Hospital, Breda, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jan Kluytmans
- Department of Infection Control, Amphia Hospital, Breda, The Netherlands
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Microvida Laboratory for Microbiology, Amphia Hospital, Breda, The Netherlands
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
54
|
Feng J, Pan M, Zhuang Y, Luo J, Chen Y, Wu Y, Fei J, Zhu Y, Xu Z, Yuan Z, Chen M. Genetic epidemiology and plasmid-mediated transmission of mcr-1 by Escherichia coli ST155 from wastewater of long-term care facilities. Microbiol Spectr 2024; 12:e0370723. [PMID: 38353552 PMCID: PMC10913736 DOI: 10.1128/spectrum.03707-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/02/2024] [Indexed: 03/07/2024] Open
Abstract
Long-term care facilities (LTCFs) for older people play an important and unique role in multidrug-resistant organism transmission. Herein, we investigated the genetic characteristics of mobile colistin resistance gene (mcr-1)-carrying Escherichia coli strains isolated from wastewater of LTCFs in Shanghai. Antimicrobial susceptibility test was carried out by agar dilution methods. Whole-genome sequencing and plasmid sequencing were conducted, and resistance genes and sequence types of colistin in E. coli isolates were analyzed. Core genome multilocus sequence typing (cgMLST) analysis was performed by the Ridom SeqSphere+ software. Phylogenetic tree through the maximum likelihood method was constructed by MEGA X. Out of 306 isolates, only 1 E. coli named ECSJ33 was found, and the plasmid pECSJ33 from ECSJ33 harbored the mcr-1 gene that was located with 59,080 bp belonging to IncI2 type. The plasmid pECSJ33 was capable of conjugation with an efficiency of 2.9 × 10-2. Bioinformatic analysis indicated pECSJ33 shared backbone with the previously reported mcr-1-harboring pHNGDF93 isolated from fish source. Moreover, the cgMLST analysis revealed that ECSJ33 belongs to different lineages from those reported from previous E. coli strains but shared high similarity to NCTC11129 in cluster 11. The phylogenetic tree revealed MCR-1 of ECSJ33 in this study was mostly of animal food origin and that they were closely related. Our study firstly reports detection of genome sequence of a multidrug-resistant mcr-1-harboring E. coli ST155 from wastewater of LTCF source in China. The data may prove that the plasmid pECSJ33 belongs to food origin and help to understand the antimicrobial resistance mechanisms and genomic features of colistin resistance under One Health approach.IMPORTANCEOne Escherichia coli named ECSJ33 was found from wastewater of a long-term care facility (LTCF) and the plasmid pECSJ33 from ECSJ33 harbored the mobile colistin resistance gene (mcr-1) that was located with 59,080 bp belonging to IncI2 type, which was capable of conjugation with an efficiency of 2.9 × 10-2. This paper firstly reports an mcr-1-carrying E. coli strain ST155 isolated from LTCF in China. Comparative genomics analysis indicated pECSJ33 shared backbone with the previously reported mcr-1-harboring pHNGDF93 isolated from fish source. The phylogenetic tree revealed MCR-1 protein of ECSJ33 in this study was mostly of animal food origin and that they were closely related. Therefore, the pECSJ33 could be considered as food-origin transmission mcr-1-harboring plasmid.
Collapse
Affiliation(s)
- Jun Feng
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Miao Pan
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Yuan Zhuang
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Jiayuan Luo
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Yong Chen
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Yitong Wu
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Jiayi Fei
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Yanqi Zhu
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Zhen Xu
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Zhengan Yuan
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Min Chen
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| |
Collapse
|
55
|
Martischang R, Seth-Smith H, Verschuuren TD, Héquet D, Gaïa N, François P, Fluit AC, Kluytmans JAJW, Seiffert SN, Tacconelli E, Cherkaoui A, Harbarth S, Egli A, Kohler P. Regional spread of an atypical ESBL-producing Escherichia coli ST131H89 clone among different human and environmental reservoirs in Western Switzerland. Antimicrob Agents Chemother 2024; 68:e0092523. [PMID: 38169291 PMCID: PMC10848748 DOI: 10.1128/aac.00925-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
We describe the inter-regional spread of a novel ESBL-producing Escherichia coli subclone (ST131H89) in long-term care facility residents, general population, and environmental water sources in Western Switzerland between 2017 and 2020. The study highlights the importance of molecular surveillance for tracking emerging antibiotic-resistant pathogens in healthcare and community settings.
Collapse
Affiliation(s)
- Romain Martischang
- Infection Control Programme and WHO Collaborating Centre, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Helena Seth-Smith
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, Applied Microbiology Research, Basel University, Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Tess D. Verschuuren
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Delphine Héquet
- Unité Cantonale Hygiène, Prévention et Contrôle de l’infection, Canton de Vaud, Switzerland
| | - Nadia Gaïa
- Genomic Research Laboratory, Geneva University Hospitals, Geneva, Switzerland
| | - Patrice François
- Genomic Research Laboratory, Geneva University Hospitals, Geneva, Switzerland
| | - Ad C. Fluit
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jan A. J. W. Kluytmans
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Salome N. Seiffert
- Division of Human Microbiology, Centre for Laboratory Medicine, St. Gallen, Switzerland
| | - Evelina Tacconelli
- Department of Diagnostics and Public Health, Infectious Diseases, Verona University, Verona, Italy
- Department of Internal Medicine Infectious Diseases, Tübingen University, Tübingen, Germany
| | | | - Stephan Harbarth
- Infection Control Programme and WHO Collaborating Centre, University of Geneva Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Adrian Egli
- Clinical Bacteriology and Mycology, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, Applied Microbiology Research, Basel University, Basel, Switzerland
- Institute of Medical Microbiology, University of Zurich, Zürich, Switzerland
| | - Philipp Kohler
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St Gallen, St Gallen, Switzerland
| |
Collapse
|
56
|
Ham H, Park DS. New Insights and Approach Toward the Genetic Diversity and Strain Typing of Erwinia pyrifoliae Based on rsxC, an Electron Transport Gene. PLANT DISEASE 2024; 108:296-301. [PMID: 37669173 DOI: 10.1094/pdis-03-23-0475-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Erwinia pyrifoliae, a causal agent of black shoot blight in apple and pear trees, is a plant pathogenic bacterium first reported in South Korea. The symptoms of black shoot blight are very similar to those of the fire blight disease in apple and pear trees caused by E. amylovora, as E. pyrifoliae has a genetically very close relationship with E. amylovora. Recently, there have been reports that E. pyrifoliae causes disease in European strawberries, resulting in severe fruit loss that aroused great concern about its spread, distribution, and host range. Therefore, it is essential to establish a trustworthy approach to understanding the distribution patterns of E. pyrifoliae based on the genetic background to strengthen the barrier of potential spreading risks, although advanced methods have been provided to accurately detect E. pyrifoliae and E. amylovora. Consequently, this study discovered a noble and noteworthy gene, rsxC, capable of providing the pathogen genotype by comparing E. pyrifoliae genomic sequences in the international representative genome archive. Different numbers of 40-unit amino acid repeats in this gene among the strains induced intraspecific traits in RsxC. By comparing their repeat pattern, E. pyrifoliae isolates were divided into two main groups, branching into several clades via sequence alignment of 35 E. pyrifoliae isolates from various apple orchards from 2020 to 2021 in South Korea. The newly discovered quadraginta amino acid repeat within this gene would be a valuable genetic touchstone for determining the genotype and distribution pattern of E. pyrifoliae strains, ultimately leading to exploring their evolution. The function of amino acid repeats and the biological significance of strains need to be elucidated further.
Collapse
Affiliation(s)
- Hyeonheui Ham
- Crop Protection Division, National Institute of Agricultural Sciences, Wanju-gun 55365, Republic of Korea
| | - Dong Suk Park
- Crop Protection Division, National Institute of Agricultural Sciences, Wanju-gun 55365, Republic of Korea
| |
Collapse
|
57
|
Quan Z, Li M, Chen Y, Liang J, Takiff H, Gao Q. Performance evaluation of core genome multilocus sequence typing for genotyping of Mycobacterium tuberculosis strains in China: based on multicenter, population-based collection. Eur J Clin Microbiol Infect Dis 2024; 43:297-304. [PMID: 38041721 DOI: 10.1007/s10096-023-04720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/16/2023] [Indexed: 12/03/2023]
Abstract
PURPOSE To evaluate the performance of core genome multilocus sequence typing (cgMLST) for genotyping Mycobacterium tuberculosis (M.tuberculosis) Strains in regions where the lineage 2 strains predominate. METHODS We compared clustering by whole-genome SNP typing with cgMLST clustering in the analysis of WGS data of 6240 strains from five regions of China. Using both the receiver operating characteristic (ROC) curve and epidemiological investigation to determine the optimal threshold for defining genomic clustering by cgMLST. The performance of cgMLST was evaluated by quantifying the sensitivity, specificity and concordance of clustering between two methods. Logistic regression was used to gauge the impact of strain genetic diversity and lineage on cgMLST clustering. RESULTS The optimal threshold for cgMLST to define genomic clustering was determined to be ≤ 10 allelic differences between strains. The overall sensitivity and specificity of cgMLST averaged 99.6% and 96.3%, respectively; the concordance of clustering between two methods averaged 97.1%. Concordance was significantly correlated with strain genetic diversity and was 3.99 times (95% CI, 2.94-5.42) higher in regions with high genetic diversity (π > 1.55 × 10-4) compared to regions with low genetic diversity. The difference missed statistical significance, while concordance for lineage 2 strains (96.8%) was less than that for lineage 4 strains (98.3%). CONCLUSION : cgMLST showed a discriminatory power comparable to whole-genome SNP typing and could be used to genotype clinical M.tuberculosis strains in different regions of China. The discriminative power of cgMLST was significantly correlated with strain genetic diversity and was slightly lower with strains from regions with low genetic diversity.
Collapse
Affiliation(s)
- Zhuo Quan
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Fudan University, 131 Dongan Road, Shanghai, 200032, China
| | - Meng Li
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Fudan University, 131 Dongan Road, Shanghai, 200032, China
| | - Yiwang Chen
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Fudan University, 131 Dongan Road, Shanghai, 200032, China
| | - Jialei Liang
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Fudan University, 131 Dongan Road, Shanghai, 200032, China
| | - Howard Takiff
- Laboratorio de Genética Molecular, CMBC, Instituto Venezolano de Investigaciones Científicas, IVIC, Caracas, Venezuela
| | - Qian Gao
- Shanghai Institute of Infectious Disease and Biosecurity, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Science, Fudan University, 131 Dongan Road, Shanghai, 200032, China.
| |
Collapse
|
58
|
Lee KI. [Population genetics of enterohemorrhagic Escherichia coli using whole-genome sequencing analyses]. Nihon Saikingaku Zasshi 2024; 79:283-289. [PMID: 39631880 DOI: 10.3412/jsb.79.283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is an important pathogen since more than 3,000 cases have been reported annually in Japan. With the advent of next-generation sequencing, it has become feasible to analyze numerous strains using whole-genome sequence (WGS) analysis, making its application to surveillance a realistic possibility. In this paper, we introduce the following research outcomes achieved by our group utilizing WGS analysis of EHEC: 1) development of a WGS analysis pipeline to enhance the accuracy of the surveillance, 2) investigation of the dynamics of mobile elements such as plasmids and phages, and 3) analysis of the phylogeny and pathogenicity of newly identified highly pathogenic EHEC strains.
Collapse
Affiliation(s)
- Ken-Ichi Lee
- Department of Bacteriology I, National Institute of Infectious Diseases
| |
Collapse
|
59
|
Janezic S, Garneau JR, Monot M. Comparative Genomics of Clostridioides difficile. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1435:199-218. [PMID: 38175477 DOI: 10.1007/978-3-031-42108-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Clostridioides difficile, a Gram-positive spore-forming anaerobic bacterium, has rapidly emerged as the leading cause of nosocomial diarrhoea in hospitals. The availability of large numbers of genome sequences, mainly due to the use of next-generation sequencing methods, has undoubtedly shown their immense advantages in the determination of C. difficile population structure. The implementation of fine-scale comparative genomic approaches has paved the way for global transmission and recurrence studies, as well as more targeted studies, such as the PaLoc or CRISPR/Cas systems. In this chapter, we provide an overview of recent and significant findings on C. difficile using comparative genomic studies with implications for epidemiology, infection control and understanding of the evolution of C. difficile.
Collapse
Affiliation(s)
- Sandra Janezic
- National Laboratory for Health, Environment and Food (NLZOH), Maribor, Slovenia.
- Faculty of Medicine, University of Maribor, Maribor, Slovenia.
| | - Julian R Garneau
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Marc Monot
- Institut Pasteur, Université Paris Cité, Plate-forme Technologique Biomics, Paris, France
| |
Collapse
|
60
|
Hakim H, Glasgow HL, Brazelton JN, Gilliam CH, Richards L, Hayden RT. A prospective bacterial whole-genome-sequencing-based surveillance programme for comprehensive early detection of healthcare-associated infection transmission in paediatric oncology patients. J Hosp Infect 2024; 143:53-63. [PMID: 37939882 DOI: 10.1016/j.jhin.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Bacterial whole-genome sequencing (WGS) and determination of genetic relatedness is an important tool for investigation of epidemiologically suspected outbreaks. AIM This prospective cohort study evaluated a comprehensive, prospective bacterial WGS-based surveillance programme for early detection of transmission of most bacterial pathogens among patients at a paediatric oncology hospital. METHODS Cultured bacterial isolates from clinical diagnostic specimens collected prospectively from both inpatient and outpatient encounters between January 2019 and December 2021 underwent routine WGS and core genome multi-locus sequence typing to determine isolates' relatedness. Previously collected isolates from January to December 2018 were retrospectively analysed for identification of prior or ongoing transmission. Multi-patient clusters were investigated to identify potential transmission events based on temporal and spatial epidemiological links and interventions were introduced. FINDINGS A total of 1497 bacterial isolates from 1025 patients underwent WGS. A total of 259 genetically related clusters were detected, of which 18 (6.9%) multi-patient clusters involving 38 (3.7%) patients were identified. Sixteen clusters involved two patients each, and two clusters involved three patients. Following investigation, epidemiologically plausible transmission links were identified in five (27.8%) multi-patient clusters. None of the multi-patient clusters were suspected by conventional epidemiological surveillance. CONCLUSION Bacterial WGS-based surveillance for early detection of hospital transmission detected several limited multi-patient clusters that were unrecognized by conventional epidemiological methods. Genomic surveillance helped efficiently focus interventions while reducing unnecessary investigations.
Collapse
Affiliation(s)
- H Hakim
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA; Infection Prevention and Control, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - H L Glasgow
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - J N Brazelton
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - C H Gilliam
- Infection Prevention and Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - L Richards
- Infection Prevention and Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - R T Hayden
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
61
|
Salgueiro V, Manageiro V, Rosado T, Bandarra NM, Botelho MJ, Dias E, Caniça M. Snapshot of resistome, virulome and mobilome in aquaculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166351. [PMID: 37604365 DOI: 10.1016/j.scitotenv.2023.166351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/28/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Aquaculture environments can be hotspots for resistance genes through the surrounding environment. Our objective was to study the resistome, virulome and mobilome of Gram-negative bacteria isolated in seabream and bivalve molluscs, using a WGS approach. Sixty-six Gram-negative strains (Aeromonadaceae, Enterobacteriaceae, Hafniaceae, Morganellaceae, Pseudomonadaceae, Shewanellaceae, Vibrionaceae, and Yersiniaceae families) were selected for genomic characterization. The species and MLST were determined, and antibiotic/disinfectants/heavy metals resistance genes, virulence determinants, MGE, and pathogenicity to humans were investigated. Our study revealed new sequence-types (e.g. Aeromonas spp. ST879, ST880, ST881, ST882, ST883, ST887, ST888; Shewanella spp. ST40, ST57, ST58, ST60, ST61, ST62; Vibrio spp. ST206, ST205). >140 different genes were identified in the resistome of seabream and bivalve molluscs, encompassing genes associated with β-lactams, tetracyclines, aminoglycosides, quinolones, sulfonamides, trimethoprim, phenicols, macrolides and fosfomycin resistance. Disinfectant resistance genes qacE-type, sitABCD-type and formA-type were found. Heavy metals resistance genes mdt, acr and sil stood out as the most frequent. Most resistance genes were associated with antibiotics/disinfectants/heavy metals commonly used in aquaculture settings. We also identified 25 different genes related with increased virulence, namely associated with adherence, colonization, toxins production, red blood cell lysis, iron metabolism, escape from the immune system of the host. Furthermore, 74.2 % of the strains analysed were considered pathogenic to humans. We investigated the genetic environment of several antibiotic resistance genes, including blaTEM-1B, blaFOX-18, aph(3″)-Ib, dfrA-type, aadA1, catA1-type, tet(A)/(E), qnrB19 and sul1/2. Our analysis also focused on identifying MGE in proximity to these genes (e.g. IntI1, plasmids and TnAs), which could potentially facilitate the spread of resistance among bacteria across different environments. This study provides a comprehensive examination of the diversity of resistance genes that can be transferred to both humans and the environment, with the recognition that aquaculture and the broader environment play crucial roles as intermediaries within this complex transmission network.
Collapse
Affiliation(s)
- Vanessa Salgueiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - Tânia Rosado
- Laboratory of Biology and Ecotoxicology, Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Narcisa M Bandarra
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute for the Sea and Atmosphere, IPMA, Lisbon, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Matosinhos, Portugal
| | - Maria João Botelho
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Matosinhos, Portugal; Division of Oceanography and Marine Environment, Portuguese Institute for the Sea and Atmosphere, Lisbon, Portugal
| | - Elsa Dias
- Laboratory of Biology and Ecotoxicology, Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal; CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
62
|
Mesa V, Delannoy J, Ferraris L, Diancourt L, Mazuet C, Barbut F, Aires J. Core-genome multilocus sequence typing and core-SNP analysis of Clostridium neonatale strains isolated in different spatio-temporal settings. Microbiol Spectr 2023; 11:e0276623. [PMID: 37909758 PMCID: PMC10714970 DOI: 10.1128/spectrum.02766-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
IMPORTANCE Clostridium neonatale has been isolated from the fecal samples of asymptomatic neonates and cases of necrotizing enterocolitis (NEC). Taking advantage of a large collection of independent strains isolated from different spatio-temporal settings, we developed and established a cgMLST scheme for the molecular typing of C. neonatale. Both the cgMLST and cgSNP methods demonstrate comparable discrimination power. Results indicate geographic- and temporal- independent clustering of C. neonatale NEC-associated strains. No specific cgMLST clade of C. neonatale was genetically associated with NEC.
Collapse
Affiliation(s)
- Victoria Mesa
- Université Paris Cité, INSERM, UMR-S 1139 (3PHM), Faculté de Pharmacie de Paris, Paris, France
| | - Johanne Delannoy
- Université Paris Cité, INSERM, UMR-S 1139 (3PHM), Faculté de Pharmacie de Paris, Paris, France
| | - Laurent Ferraris
- Université Paris Cité, INSERM, UMR-S 1139 (3PHM), Faculté de Pharmacie de Paris, Paris, France
| | - Laure Diancourt
- Institut Pasteur, Université de Paris Cité, Centre National de Référence des Bactéries anaérobies et Botulisme, Paris, France
| | - Christelle Mazuet
- Institut Pasteur, Université de Paris Cité, Centre National de Référence des Bactéries anaérobies et Botulisme, Paris, France
| | - Frédéric Barbut
- Université Paris Cité, INSERM, UMR-S 1139 (3PHM), Faculté de Pharmacie de Paris, Paris, France
| | - Julio Aires
- Université Paris Cité, INSERM, UMR-S 1139 (3PHM), Faculté de Pharmacie de Paris, Paris, France
| |
Collapse
|
63
|
Bai S, Fang L, Xiao H, Zhang Y, Guo W, Zhang J, Liu J, Zhang Y, Wang M, Sun R, Han L, Yu Y, Sun J, Liu Y, Liao X. Genomics analysis of KPC-2 and NDM-5-producing Enterobacteriaceae in migratory birds from Qinghai Lake, China. Appl Microbiol Biotechnol 2023; 107:7531-7542. [PMID: 37861819 DOI: 10.1007/s00253-023-12746-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/02/2023] [Accepted: 08/24/2023] [Indexed: 10/21/2023]
Abstract
The study examined the epidemiological characteristics of carbapenem-resistant Enterobacteriaceae (CRE) isolated from migratory birds and surroundings in Qinghai Lake, China. We identified 69 (15.7%) CRE isolates from a total of 439 samples including 29 (6.6%) blaNDM-5 Escherichia coli and 40 (9.1%) blaKPC-2 Klebsiella pneumoniae. WGS analysis indicated that ST746, ST48, ST1011, and ST167 were the primary sequence types (ST) for blaNDM-5 E. coli, while all blaKPC-2 K. pneumoniae were ST11 and harbored numerous antibiotic resistance gene types including blaCTX-M, qnrS, and rmtB. A phylogenetic tree based on core genomes revealed that blaNDM-5 E. coli was highly heterogeneous while the blaKPC-2 K. pneumoniae was highly genetically similar within the group and to human Chinese isolates. IncX3, IncHI2, and IncFIB-HI2 plasmid replicon types were associated with blaNDM-5 spread, while IncFII-R and IncFII plasmids mediated blaKPC-2 spread. We also identified IncFII-R hybrid plasmids most likely formed by IS26-mediated integration of IncFII into IncR plasmid backbones. This also facilitated the persistence of IncFII-R plasmids and antibiotic resistance genes including blaKPC-2. In addition, all of the blaKPC-2 K. pneumoniae isolates harbored a pLVKP-like virulence plasmid carrying a combination of two or more hypervirulence markers that included peg-344, iroB, iucA, rmpA, and rmpA2. This is the first description of ST11 K. pneumoniae that co-carried blaKPC-2- and pLVKP-like virulence plasmids from migratory birds. The blaKPC-2 K. pneumoniae carried by migratory birds displayed high genetic relatedness to human isolates highlighting a high risk of transmission of these K. pneumoniae. KEY POINTS: • Multidrug resistance plasmids (blaKPC-2, bla436NDM-5, bla CTX-M, qnrS, and rmtB). • Co-occurrence of plasmid-mediated resistance and virulence genes. • High similarity between migratory bird genomes and humans.
Collapse
Affiliation(s)
- Shuancheng Bai
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Liangxing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hongliang Xiao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yin Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wenying Guo
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jixing Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Juan Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yan Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Minge Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Ruanyang Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Lu Han
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yang Yu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yahong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xiaoping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou, China.
- Veterinary Pharmacology Department, College of Veterinary Medicine, National Reference Laboratory of Veterinary Drug Residues, South China Agricultural University, Guangzhou, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.
| |
Collapse
|
64
|
Feng L, Zhang M, Fan Z. Population genomic analysis of clinical ST15 Klebsiella pneumoniae strains in China. Front Microbiol 2023; 14:1272173. [PMID: 38033569 PMCID: PMC10684719 DOI: 10.3389/fmicb.2023.1272173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
ST15 Klebsiella pneumoniae (Kpn) is a growing public health concern in China and worldwide, yet its genomic and evolutionary dynamics in this region remain poorly understood. This study comprehensively elucidates the population genomics of ST15 Kpn in China by analyzing 287 publicly available genomes. The proportion of the genomes increased sharply from 2012 to 2021, and 92.3% of them were collected from the Yangtze River Delta (YRD) region of eastern China. Carbapenemase genes, including OXA-232, KPC-2, and NDM, were detected in 91.6% of the studied genomes, and 69.2% of which were multidrug resistant (MDR) and hypervirulent (hv). Phylogenetic analysis revealed four clades, C1 (KL112, 59.2%), C2 (mainly KL19, 30.7%), C3 (KL48, 0.7%) and C4 (KL24, 9.4%). C1 appeared in 2007 and was OXA-232-producing and hv; C2 and C4 appeared between 2005 and 2007, and both were KPC-2-producing but with different levels of virulence. Transmission clustering detected 86.1% (n = 247) of the enrolled strains were grouped into 55 clusters (2-159 strains) and C1 was more transmissible than others. Plasmid profiling revealed 88 plasmid clusters (PCs) that were highly heterogeneous both between and within clades. 60.2% (n = 53) of the PCs carrying AMR genes and 7 of which also harbored VFs. KPC-2, NDM and OXA-232 were distributed across 14, 4 and 1 PCs, respectively. The MDR-hv strains all carried one of two homologous PCs encoding iucABCD and rmpA2 genes. Pangenome analysis revealed two major coinciding accessory components predominantly located on plasmids. One component, associated with KPC-2, encompassed 15 additional AMR genes, while the other, linked to OXA-232, involved seven more AMR genes. This study provides essential insights into the genomic evolution of the high-risk ST15 CP-Kpn strains in China and warrants rigorous monitoring.
Collapse
Affiliation(s)
- Li Feng
- Jiyang College, Zhejiang A&F University, Zhuji, China
| | | | | |
Collapse
|
65
|
Sawhney SS, Vargas RC, Wallace MA, Muenks CE, Lubbers BV, Fritz SA, Burnham CAD, Dantas G. Diagnostic and commensal Staphylococcus pseudintermedius genomes reveal niche adaptation through parallel selection of defense mechanisms. Nat Commun 2023; 14:7065. [PMID: 37923729 PMCID: PMC10624692 DOI: 10.1038/s41467-023-42694-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Staphylococcus pseudintermedius is historically understood as a prevalent commensal and pathogen of dogs, though modern clinical diagnostics reveal an expanded host-range that includes humans. It remains unclear whether differentiation across S. pseudintermedius populations is driven primarily by niche-type or host-species. We sequenced 501 diagnostic and commensal isolates from a hospital, veterinary diagnostic laboratory, and within households in the American Midwest, and performed a comparative genomics investigation contrasting human diagnostic, animal diagnostic, human colonizing, pet colonizing, and household-surface S. pseudintermedius isolates. Though indistinguishable by core and accessory gene architecture, diagnostic isolates harbor more encoded and phenotypic resistance, whereas colonizing and surface isolates harbor similar CRISPR defense systems likely reflective of common household phage exposures. Furthermore, household isolates that persist through anti-staphylococcal decolonization report elevated rates of base-changing mutations in - and parallel evolution of - defense genes, as well as reductions in oxacillin and trimethoprim-sulfamethoxazole susceptibility. Together we report parallel niche-specific bolstering of S. pseudintermedius defense mechanisms through gene acquisition or mutation.
Collapse
Affiliation(s)
- Sanjam S Sawhney
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rhiannon C Vargas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meghan A Wallace
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Carol E Muenks
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Brian V Lubbers
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, USA
| | - Stephanie A Fritz
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Carey-Ann D Burnham
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
66
|
Archer EW, Chisnall T, Tano-Debrah K, Card RM, Duodu S, Kunadu APH. Prevalence and genomic characterization of Salmonella isolates from commercial chicken eggs retailed in traditional markets in Ghana. Front Microbiol 2023; 14:1283835. [PMID: 38029182 PMCID: PMC10646427 DOI: 10.3389/fmicb.2023.1283835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023] Open
Abstract
Salmonella enterica are important foodborne bacterial pathogens globally associated with poultry. Exposure to Salmonella-contaminated eggs and egg-related products is a major risk for human salmonellosis. Presently, there is a huge data gap regarding the prevalence and circulating serovars of Salmonella in chicken eggs sold in Ghana. In this study, 2,304 eggs (pools of six per sample unit) collected from informal markets in Accra, Kumasi and Tamale, representing the three ecological belts across Ghana, were tested for Salmonella. Antimicrobial susceptibility testing and Whole Genome Sequencing (WGS) of the isolates were performed using standard microdilution protocols and the Illumina NextSeq platform, respectively. The total prevalence of Salmonella was 5.5% with a higher rate of contamination in eggshell (4.9%) over egg content (1.8%). The serovars identified were S. Ajiobo (n = 1), S. Chester (n = 6), S. Hader (n = 7), S. enteritidis (n = 2); and S. I 4:b:- (n = 8). WGS analysis revealed varied sequence types (STs) that were serovar specific. The S. I 4:b:- isolates had a novel ST (ST8938), suggesting a local origin. The two S. enteritidis isolates belonged to ST11 and were identified with an invasive lineage of a global epidemic clade. All isolates were susceptible to ampicillin, azithromycin, cefotaxime, ceftazidime, gentamicin, meropenem, and tigecycline. The phenotypic resistance profiles to seven antimicrobials: chloramphenicol (13%), ciprofloxacin (94%), and nalidixic acid (94%), colistin (13%), trimethoprim (50%) sulfamethoxazole (50%) and tetracycline (50%) corresponded with the presence of antimicrobial resistance (AMR) determinants including quinolones (gyrA (D87N), qnrB81), aminoglycosides (aadA1), (aph(3")-Ib aph(6)-Id), tetracyclines (tet(A)), phenicols (catA1), trimethoprim (dfrA14 and dfrA1). The S. enteritidis and S. Chester isolates were multidrug resistant (MDR). Several virulence factors were identified, notably cytolethal distending toxin (cdtB gene), rck, pef and spv that may promote host invasion and disease progression in humans. The findings from this study indicate the presence of multidrug resistant and virulent strains of Salmonella serovars in Ghanaian chicken eggs, with the potential to cause human infections. This is a critical baseline information that could be used for Salmonella risk assessment in the egg food chain to mitigate potential future outbreaks.
Collapse
Affiliation(s)
- Edward W. Archer
- Nutrition and Food Science Department, University of Ghana, Accra, Ghana
- Food and Drug Authority, Food Safety Management Department, Accra, Ghana
| | - Tom Chisnall
- Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Kwaku Tano-Debrah
- Nutrition and Food Science Department, University of Ghana, Accra, Ghana
| | | | - Samuel Duodu
- Biochemistry Cell and Molecular Biology Department, University of Ghana, Accra, Ghana
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | | |
Collapse
|
67
|
Wang D, Berglund B, Li Q, Shangguan X, Li J, Liu F, Yao F, Li X. Transmission of clones of carbapenem-resistant Escherichia coli between a hospital and an urban wastewater treatment plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122455. [PMID: 37633440 DOI: 10.1016/j.envpol.2023.122455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Carbapenem-resistant Enterobacterales (CRE) constitute an urgent threat to worldwide public health. The spread of CRE is facilitated by transmission via the environment. Wastewater treatment plants (WWTPs) are considered to be important sources of antibiotic resistance and hot spots of antibiotic-resistant bacteria (ARB) which can facilitate dissemination of antibiotic resistance genes. In this study, water samples were collected over one year from a WWTP in Jinan, Shandong province, China, from different functional sites in the wastewater treatment process. Carbapenem-resistant Escherichia coli (CREC) were isolated by selective cultivation and whole-genome sequenced to investigate the occurrence and characteristics of CREC in the WWTP. A total of 77 CREC isolates were included in the study and the detection rate of CREC in the WWTP water inlet was found to be 85%. An additional 10 CREC were isolated from a nearby teaching hospital during the sampling period and included for comparison to the environmental isolates. Susceptibility testing showed that all CREC were multidrug-resistant. 6 different carbapenem resistance genes (CRGs) were detected, including blaNDM-5 (n = 75), blaNDM-1 (n = 6), blaNDM-4 (n = 3), blaNDM-6 (n = 1), blaNDM-9 (n = 1), and blaKPC-2 (n = 4). 42 CREC isolates were whole-genome sequenced with Illumina short-read sequencing. 11 of these were also sequenced with Nanopore long-read sequencing. Plasmids carrying CRGs were found to belong to IncX3 (n = 35), IncFII (n = 12), IncFIA (n = 5), IncFIB (n = 2), IncC (n = 1), and IncP6 (n = 1). Clonal dissemination of CREC belonging to ST167, ST448, and ST746 was observed between different parts of the WWTP. Furthermore, isolates from the WWTP, including an isolate belonging to the high-risk ST167 strain, were found to be clonally related to CREC isolated at the hospital. The spread of CRGs is of considerable concern and strategies to prevent environmental dissemination of this contaminant urgently needs to be implemented.
Collapse
Affiliation(s)
- Di Wang
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Björn Berglund
- Department of Cell and Molecular Biology, Uppsala University, 751 24, Uppsala, Sweden
| | - Qi Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xiaorong Shangguan
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jingjing Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Feng Liu
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Fanghui Yao
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xuewen Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
68
|
Rodríguez-Pallares S, Mateo-Vargas MA, Rodríguez-Iglesias MA, Galán-Sánchez F. Molecular characterization of consecutive isolates of OXA-48-producing Klebsiella pneumoniae: changes in the virulome using next-generation sequencing (NGS). Microbes Infect 2023; 25:105217. [PMID: 37716437 DOI: 10.1016/j.micinf.2023.105217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Little is known about the clonality of consecutive OXA-48 producing-Klebsiella pneumoniae isolates from the same patient and the possibility of changes in their virulomes over time. We studied the molecular characteristics of twenty OXA-48-producing K. pneumoniae consecutive isolates from six patients using whole-genome sequencing. The genomes were screened for antimicrobial resistance and virulence factor genes and for replicon groups. MLST and SNPs analysis was performed. MLST analysis found 3 STs: ST11 (n = 13; 65.0%); ST4975 (n = 5, 25.0%); ST307 (n = 2; 10.0%). AcrAb efflux pump, siderophore enterobactin and rcsAB capsule synthesis regulator were detected in all sequenced isolates. The regulator of mucoid phenotype A (rmpA) and rmpA2 were not detected. Isolates also carried type 3 fimbriae (n = 19; 95.0%), yersiniabactin (n = 15; 75.0%) and type 1 fimbriae (7; 35.0%). Type 3 fimbriae and yersiniabactin were lost and recovered in consecutive isolates of two patients, probably acquired by horizontal gene transfer. Our findings reveal that recurrent infections are due to the same isolate, with an average of 2.69 SNPs per month, with different virulence profiles, and that the acquisition of virulence factor genes over time is possible.
Collapse
Affiliation(s)
- Salud Rodríguez-Pallares
- UGC Microbiología, Hospital Universitario Puerta del Mar, Avda. Ana de Viya 21, 11009, Cádiz, Spain.
| | | | - Manuel A Rodríguez-Iglesias
- UGC Microbiología, Hospital Universitario Puerta del Mar, Avda. Ana de Viya 21, 11009, Cádiz, Spain; Universidad de Cádiz, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Hospital Universitario Puerta del Mar, Avda. Ana de Viya 21, 11009, Cádiz, Spain
| | - Fátima Galán-Sánchez
- UGC Microbiología, Hospital Universitario Puerta del Mar, Avda. Ana de Viya 21, 11009, Cádiz, Spain; Instituto de Investigación e Innovación Biomédica de Cádiz (INIBICA), Hospital Universitario Puerta del Mar, Avda. Ana de Viya 21, 11009, Cádiz, Spain
| |
Collapse
|
69
|
Chandran A, Priya PS, Meenatchi R, Vaishnavi S, Pavithra V, Ajith Kumar TT, Arockiaraj J. Insights into molecular aspects of pathogenesis and disease management in acute hepatopancreatic necrosis disease (AHPND): An updated review. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109138. [PMID: 37802265 DOI: 10.1016/j.fsi.2023.109138] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/08/2023]
Abstract
Shrimp aquaculture is a rapidly growing sector that makes a significant economic contribution. However, the aquaculture industry is confronted with significant challenges, and infectious diseases, notably Acute Hepatopancreatic Necrosis Disease (AHPND), have emerged as severe threat. AHPND is caused by pathogens carrying the pVA-1 plasmid, which expresses the PirAB toxin, and it has wreaked havoc in shrimp aquaculture, imposing substantial economic burdens. To address this issue, it is crucial to delve into shrimp's immune responses. Therefore, this comprehensive review offers an in-depth examination of AHPND outbreaks, encompassing various facets such as environmental factors, host susceptibility, and the mechanisms employed by the pathogens. Traditional approaches to combat AHPND, primarily relying on chemicals and antibiotics, have raised concerns related to antibiotic resistance and have demonstrated limited success in disease control. Hence this review spotlights recent advancements in molecular diagnostics, therapeutic agents, and research related to shrimp immunity. Understanding these developments is crucial in the ongoing battle against AHPND. In conclusion, this review underscores the pressing need to comprehend the underlying mechanisms of AHPND pathogenesis and emphasizes the importance of developing comprehensive and effective solutions to combat this devastating disease, which continues to threaten the sustainability of shrimp farming.
Collapse
Affiliation(s)
- Abhirami Chandran
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - P Snega Priya
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Ramu Meenatchi
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - S Vaishnavi
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - V Pavithra
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | | | - Jesu Arockiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
70
|
Bianconi I, Aschbacher R, Pagani E. Current Uses and Future Perspectives of Genomic Technologies in Clinical Microbiology. Antibiotics (Basel) 2023; 12:1580. [PMID: 37998782 PMCID: PMC10668849 DOI: 10.3390/antibiotics12111580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
Recent advancements in sequencing technology and data analytics have led to a transformative era in pathogen detection and typing. These developments not only expedite the process, but also render it more cost-effective. Genomic analyses of infectious diseases are swiftly becoming the standard for pathogen analysis and control. Additionally, national surveillance systems can derive substantial benefits from genomic data, as they offer profound insights into pathogen epidemiology and the emergence of antimicrobial-resistant strains. Antimicrobial resistance (AMR) is a pressing global public health issue. While clinical laboratories have traditionally relied on culture-based antimicrobial susceptibility testing, the integration of genomic data into AMR analysis holds immense promise. Genomic-based AMR data can furnish swift, consistent, and highly accurate predictions of resistance phenotypes for specific strains or populations, all while contributing invaluable insights for surveillance. Moreover, genome sequencing assumes a pivotal role in the investigation of hospital outbreaks. It aids in the identification of infection sources, unveils genetic connections among isolates, and informs strategies for infection control. The One Health initiative, with its focus on the intricate interconnectedness of humans, animals, and the environment, seeks to develop comprehensive approaches for disease surveillance, control, and prevention. When integrated with epidemiological data from surveillance systems, genomic data can forecast the expansion of bacterial populations and species transmissions. Consequently, this provides profound insights into the evolution and genetic relationships of AMR in pathogens, hosts, and the environment.
Collapse
Affiliation(s)
- Irene Bianconi
- Laboratory of Microbiology and Virology, Provincial Hospital of Bolzano (SABES-ASDAA), Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversitätvia Amba Alagi 5, 39100 Bolzano, Italy; (R.A.); (E.P.)
| | | | | |
Collapse
|
71
|
Uribe G, Salipante SJ, Curtis L, Lieberman JA, Kurosawa K, Cookson BT, Hoogestraat D, Stewart MK, Olmstead T, Bourassa L. Evaluation of Fourier transform-infrared spectroscopy (FT-IR) as a control measure for nosocomial outbreak investigations. J Clin Microbiol 2023; 61:e0034723. [PMID: 37787542 PMCID: PMC10595069 DOI: 10.1128/jcm.00347-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/29/2023] [Indexed: 10/04/2023] Open
Abstract
Whole-genome sequencing (WGS) provides greater resolution than other molecular epidemiology strategies and is emerging as a new gold standard approach for microbial strain typing. The Bruker IR Biotyper is designed as a screening tool to identify bacterial isolates that require WGS to establish accurate relationships, but its performance and utility in nosocomial outbreak investigations have not been thoroughly investigated. Here, we evaluated the IR Biotyper by retrospectively examining isolates tested by WGS during investigations of potential nosocomial transmission events or outbreaks. Ninety-eight clinical isolates from 14 different outbreak investigations were examined: three collections of Acinetobacter baumannii (n = 2, n = 9, n = 5 isolates in each collection), one of Escherichia coli (n = 16), two of Pseudomonas aeruginosa (n = 2 and n = 5), two of Serratia marcescens (n = 9 and n = 7), five of Staphylococcus aureus (n = 8, n = 4, n = 3, n = 3, n = 17), and one of Stenotrophomonas maltophilia (n = 8). Linear regression demonstrated a weak, positive correlation between the number of pairwise genome-wide single-nucleotide polymorphisms (SNPs) and IR Biotyper spectral distance values for Gram-positive (r = 0.43, P ≤ 0.0001), Gram-negative (r = 0.1554, P = 0.0639), and all organisms combined (r = 0.342, P ≤ 0.0001). Overall, the IR Biotyper had a positive predictive value (PPV) of 55.81% for identifying strains that were closely related by genomic identity, but a negative predictive value (NPV) of 86.79% for identifying unrelated isolates. When experimentally adjusted cut-offs were applied to A. baumannii, P. aeruginosa, and E. coli, the PPV was 62% for identifying strains that were closely related and the NPV was 100% for identifying unrelated isolates. Implementation of the IR Biotyper as a screening tool in this cohort would have reduced the number of Gram-negative isolates requiring further WGS analysis by 50% and would reduce the number of S. aureus isolates needing WGS resolution by 48%.
Collapse
Affiliation(s)
- Gabriela Uribe
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Stephen J. Salipante
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Lauren Curtis
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Joshua A. Lieberman
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Kyoko Kurosawa
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Brad T. Cookson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Daniel Hoogestraat
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Mary K. Stewart
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Tessa Olmstead
- Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - Lori Bourassa
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
72
|
Hsu JF, Lu JJ, Chu SM, Lee WJ, Huang HR, Chiang MC, Yang PH, Tsai MH. The Clinical and Genetic Characteristics of Streptococcus agalactiae Meningitis in Neonates. Int J Mol Sci 2023; 24:15387. [PMID: 37895067 PMCID: PMC10607198 DOI: 10.3390/ijms242015387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is an important pathogen of bacterial meningitis in neonates. We aimed to investigate the clinical and genetic characteristics of neonatal GBS meningitis. All neonates with GBS meningitis at a tertiary level medical center in Taiwan between 2003 and 2020 were analyzed. Capsule serotyping, multilocus sequence typing, antimicrobial resistance, and whole-genome sequencing (WGS) were performed on the GBS isolates. We identified 48 neonates with GBS meningitis and 140 neonates with GBS sepsis. Neonates with GBS meningitis had significantly more severe clinical symptoms; thirty-seven neonates (77.8%) had neurological complications; seven (14.6%) neonates died; and 17 (41.5%) survivors had neurological sequelae at discharge. The most common serotypes that caused meningitis in neonates were type III (68.8%), Ia (20.8%), and Ib (8.3%). Sequence type (ST) is highly correlated with serotypes, and ST17/III GBS accounted for more than half of GBS meningitis cases (56.3%, n = 27), followed by ST19/Ia, ST23/Ia, and ST12/Ib. All GBS isolates were sensitive to ampicillin, but a high resistance rates of 72.3% and 70.7% to erythromycin and clindamycin, respectively, were noted in the cohort. The virulence and pilus genes varied greatly between different GBS serotypes. WGS analyses showed that the presence of PezT; BspC; and ICESag37 was likely associated with the occurrence of meningitis and was documented in 60.4%, 77.1%, and 52.1% of the GBS isolates that caused neonatal meningitis. We concluded that GBS meningitis can cause serious morbidity in neonates. Further experimental models are warranted to investigate the clinical and genetic relevance of GBS meningitis. Specific GBS strains that likely cause meningitis requires further investigation and clinical attention.
Collapse
Affiliation(s)
- Jen-Fu Hsu
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (W.-J.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Jang-Jih Lu
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 333, Taiwan
| | - Shih-Ming Chu
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (W.-J.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Wei-Ju Lee
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (W.-J.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Hsuan-Rong Huang
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (W.-J.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ming-Chou Chiang
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (W.-J.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Peng-Hong Yang
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (W.-J.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ming-Horng Tsai
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Division of Neonatology and Pediatric Hematology-Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Yunlin 638, Taiwan
| |
Collapse
|
73
|
Ham H, Park DS. Novel approach toward the understanding of genetic diversity based on the two types of amino acid repeats in Erwinia amylovora. Sci Rep 2023; 13:17876. [PMID: 37857695 PMCID: PMC10587187 DOI: 10.1038/s41598-023-44558-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023] Open
Abstract
Erwinia amylovora is a notorious plant pathogenic bacterium of global concern that has devastated the apple and pear production industry worldwide. Nevertheless, the approaches available currently to understand the genetic diversity of E. amylovora remain unsatisfactory because of the lack of a trustworthy index and data covering the globally occurring E. amylovora strains; thus, their origin and distribution pattern remains ambiguous. Therefore, there is a growing need for robust approaches for obtaining this information via the comparison of the genomic structure of Amygdaloideae-infecting strains to understand their genetic diversity and distribution. Here, the whole-genome sequences of 245 E. amylovora strains available from the NCBI database were compared to identify intraspecific genes for use as an improved index for the simple classification of E. amylovora strains regarding their distribution. Finally, we discovered two kinds of strain-typing protein-encoding genes, i.e., the SAM-dependent methyltransferase and electron transport complex subunit RsxC. Interestingly, both of these proteins carried an amino acid repeat in these strains: SAM-dependent methyltransferase comprised a single-amino-acid repeat (asparagine), whereas RsxC carried a 40-amino-acid repeat, which was differentially distributed among the strains. These noteworthy findings and approaches may enable the exploration of the genetic diversity of E. amylovora from a global perspective.
Collapse
Affiliation(s)
- Hyeonheui Ham
- Crop Protection Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea
| | - Dong Suk Park
- Crop Protection Division, Department of Agro-Food Safety and Crop Protection, National Institute of Agricultural Sciences, Rural Development Administration, Wanju, 55365, Republic of Korea.
| |
Collapse
|
74
|
Kos A, Papić B, Golob M, Avberšek J, Kušar D, Ledina T, Đorđević J, Bulajić S. Genomic Insights into Methicillin-Resistant Staphylococci and Mammaliicocci from Bulk Tank Milk of Dairy Farms in Serbia. Antibiotics (Basel) 2023; 12:1529. [PMID: 37887230 PMCID: PMC10604148 DOI: 10.3390/antibiotics12101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 10/28/2023] Open
Abstract
The potential risk to human and animal health provides a rationale for research on methicillin-resistant staphylococci (MRS) and mammaliicocci (MRM) in dairy herds. Here, we aimed to estimate their occurrence in the bulk tank milk (BTM) samples collected in 2019-2021 from 283 bovine dairy farms in the Belgrade district. We used whole-genome sequencing to characterize the obtained isolates and assess their genetic relatedness. A total of 70 MRS/MRM were recovered, most frequently Staphylococcus haemolyticus and Mammaliicoccus sciuri. Five clusters of 2-4 genetically related isolates were identified and epidemiological data indicated transmission through, e.g., farm visits by personnel or milk collection trucks. Most MRSA isolates belonged to the typical livestock-associated lineage ST398-t034. One MRSA isolate (ST152-t355) harbored the PVL-encoding genes. Since MRS/MRM isolates obtained in this study frequently harbored genes conferring multidrug resistance (MDR), this argues for their role as reservoirs for the spread of antimicrobial resistance genes. The pipeline milking system and total bacterial count >100,000 CFU/mL were significantly associated with higher occurrences of MRS/MRM. Our study confirms that BTM can be a zoonotic source of MRS, including MDR strains. This highlights the urgent need for good agricultural practices and the continuous monitoring of MRS/MRM in dairy farms.
Collapse
Affiliation(s)
- Andrea Kos
- Directorate for National Reference Laboratories, Ministry of Agriculture, Forestry and Water Management, Batajnički drum 7, 11186 Belgrade, Serbia;
| | - Bojan Papić
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (B.P.); (M.G.); (J.A.); (D.K.)
| | - Majda Golob
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (B.P.); (M.G.); (J.A.); (D.K.)
| | - Jana Avberšek
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (B.P.); (M.G.); (J.A.); (D.K.)
| | - Darja Kušar
- Institute of Microbiology and Parasitology, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (B.P.); (M.G.); (J.A.); (D.K.)
| | - Tijana Ledina
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia; (T.L.); (J.Đ.)
| | - Jasna Đorđević
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia; (T.L.); (J.Đ.)
| | - Snežana Bulajić
- Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, University of Belgrade, Bulevar Oslobođenja 18, 11000 Belgrade, Serbia; (T.L.); (J.Đ.)
| |
Collapse
|
75
|
Schouls LM, Witteveen S, van Santen-Verheuvel M, de Haan A, Landman F, van der Heide H, Kuijper EJ, Notermans DW, Bosch T, Hendrickx APA. Molecular characterization of MRSA collected during national surveillance between 2008 and 2019 in the Netherlands. COMMUNICATIONS MEDICINE 2023; 3:123. [PMID: 37700016 PMCID: PMC10497500 DOI: 10.1038/s43856-023-00348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND Although the Netherlands is a country with a low endemic level, methicillin-resistant Staphylococcus aureus (MRSA) poses a significant health care problem. Therefore, high coverage national MRSA surveillance has been in place since 1989. To monitor possible changes in the type-distribution and emergence of resistance and virulence, MRSA isolates are molecularly characterized. METHODS All 43,321 isolates from 36,520 persons, collected 2008-2019, were typed by multiple-locus variable number tandem repeats analysis (MLVA) with simultaneous PCR detection of the mecA, mecC and lukF-PV genes, indicative for PVL. Next-generation sequencing data of 4991 isolates from 4798 persons were used for whole genome multi-locus sequence typing (wgMLST) and identification of resistance and virulence genes. RESULTS We show temporal change in the molecular characteristics of the MRSA population with the proportion of PVL-positive isolates increasing from 15% in 2008-2010 to 25% in 2017-2019. In livestock-associated MRSA obtained from humans, PVL-positivity increases to 6% in 2017-2019 with isolates predominantly from regions with few pig farms. wgMLST reveals the presence of 35 genogroups with distinct resistance, virulence gene profiles and specimen origin. Typing shows prolonged persistent MRSA carriage with a mean carriage period of 407 days. There is a clear spatial and a weak temporal relationship between isolates that clustered in wgMLST, indicative for regional spread of MRSA strains. CONCLUSIONS Using molecular characterization, this exceptionally large study shows genomic changes in the MRSA population at the national level. It reveals waxing and waning of types and genogroups and an increasing proportion of PVL-positive MRSA.
Collapse
Affiliation(s)
- Leo M Schouls
- Centre for Infectious Disease Control. National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | - Sandra Witteveen
- Centre for Infectious Disease Control. National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Marga van Santen-Verheuvel
- Centre for Infectious Disease Control. National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Angela de Haan
- Centre for Infectious Disease Control. National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Fabian Landman
- Centre for Infectious Disease Control. National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Han van der Heide
- Centre for Infectious Disease Control. National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Ed J Kuijper
- Department of Medical Microbiology and Experimental Bacteriology, Leiden University Medical Center, Leiden, The Netherlands
| | - Daan W Notermans
- Centre for Infectious Disease Control. National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Thijs Bosch
- Centre for Infectious Disease Control. National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Antoni P A Hendrickx
- Centre for Infectious Disease Control. National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
76
|
Mourão J, Ribeiro-Almeida M, Novais C, Magalhães M, Rebelo A, Ribeiro S, Peixe L, Novais Â, Antunes P. From Farm to Fork: Persistence of Clinically Relevant Multidrug-Resistant and Copper-Tolerant Klebsiella pneumoniae Long after Colistin Withdrawal in Poultry Production. Microbiol Spectr 2023; 11:e0138623. [PMID: 37428073 PMCID: PMC10434174 DOI: 10.1128/spectrum.01386-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023] Open
Abstract
Concerns about colistin-resistant bacteria in animal food-environmental-human ecosystems prompted the poultry sector to implement colistin restrictions and explore alternative trace metals/copper feed supplementation. The impact of these strategies on the selection and persistence of colistin-resistant Klebsiella pneumoniae in the whole poultry production chain needs clarification. We assessed colistin-resistant and copper-tolerant K. pneumoniae occurrence in chickens raised with inorganic and organic copper formulas from 1-day-old chicks to meat (7 farms from 2019 to 2020), after long-term colistin withdrawal (>2 years). Clonal diversity and K. pneumoniae adaptive features were characterized by cultural, molecular, and whole-genome-sequencing (WGS) approaches. Most chicken flocks (75%) carried K. pneumoniae at early and preslaughter stages, with a significant decrease (P < 0.05) in meat batches (17%) and sporadic water/feed contamination. High rates (>50%) of colistin-resistant/mcr-negative K. pneumoniae were observed among fecal samples, independently of feed. Most samples carried multidrug-resistant (90%) and copper-tolerant (81%; silA and pcoD positive and with a MICCuSO4 of ≥16 mM) isolates. WGS revealed accumulation of colistin resistance-associated mutations and F type multireplicon plasmids carrying antibiotic resistance and metal/copper tolerance genes. The K. pneumoniae population was polyclonal, with various lineages dispersed throughout poultry production. ST15-KL19, ST15-KL146, and ST392-KL27 and IncF plasmids were similar to those from global human clinical isolates, suggesting chicken production as a reservoir/source of clinically relevant K. pneumoniae lineages and genes with potential risk to humans through food and/or environmental exposure. Despite the limited mcr spread due to the long-term colistin ban, this action was ineffective in controlling colistin-resistant/mcr-negative K. pneumoniae, regardless of feed. This study provides crucial insights into the persistence of clinically relevant K. pneumoniae in the poultry production chain and highlights the need for continued surveillance and proactive food safety actions within a One Health perspective. IMPORTANCE The spread of bacteria resistant to last-resort antibiotics such as colistin throughout the food chain is a serious concern for public health. The poultry sector has responded by restricting colistin use and exploring alternative trace metals/copper feed supplements. However, it is unclear how and to which extent these changes impact the selection and persistence of clinically relevant Klebsiella pneumoniae throughout the poultry chain. We found a high occurrence of copper-tolerant and colistin-resistant/mcr-negative K. pneumoniae in chicken flocks, regardless of inorganic and organic copper formulas use and a long-term colistin ban. Despite the high K. pneumoniae isolate diversity, the occurrence of identical lineages and plasmids across samples and/or clinical isolates suggests poultry as a potential source of human K. pneumoniae exposure. This study highlights the need for continued surveillance and proactive farm-to-fork actions to mitigate the risks to public health, relevant for stakeholders involved in the food industry and policymakers tasked with regulating food safety.
Collapse
Affiliation(s)
- Joana Mourão
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
| | - Marisa Ribeiro-Almeida
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
| | - Carla Novais
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Mafalda Magalhães
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| | - Andreia Rebelo
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal
- ESS, Polytechnic of Porto, Porto, Portugal
| | - Sofia Ribeiro
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Luísa Peixe
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ângela Novais
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Patrícia Antunes
- UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Microbiology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, Porto, Portugal
| |
Collapse
|
77
|
Zou H, Zhou Z, Berglund B, Zheng B, Meng M, Zhao L, Zhang H, Wang Z, Wu T, Li Q, Li X. Persistent transmission of carbapenem-resistant, hypervirulent Klebsiella pneumoniae between a hospital and urban aquatic environments. WATER RESEARCH 2023; 242:120263. [PMID: 37390655 DOI: 10.1016/j.watres.2023.120263] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
The increasing prevalence of infections caused by carbapenem-resistant hypervirulent Klebsiella pneumoniae strains (CR-hvKP) prompts the question of whether these strains also circulate outside of clinical settings. However, the environmental occurrence and dissemination of CR-hvKP are poorly studied. In the current study, we investigated the epidemiological characteristics, and dissemination dynamics of carbapenem-resistant K. pneumoniae (CRKP) isolated from a hospital, an urban wastewater treatment plant (WWTP), and adjacent rivers in Eastern China during one year of monitoring. A total of 101 CRKP were isolated, 54 were determined to be CR-hvKP harboring pLVPK-like virulence plasmids, which were isolated from the hospital (29 out of 51), WWTP (23 out of 46), and rivers (2 out of 4), respectively. The period with lowest detection rate of CR-hvKP in the WWTP, August, corresponded with the lowest detection rate at the hospital. Comparing the inlet and outlet of the WWTP, no significant reduction of the detection of CR-hvKP and relative abundance of carbapenem resistance genes was observed. The detection rate of CR-hvKP and the relative abundance of carbapenemase genes were significantly higher in the WWTP in colder months compared to warmer months. Clonal dissemination of CR-hvKP clones of ST11-KL64 between the hospital and the aquatic environment, as well as the horizontal spread of IncFII-IncR and IncC plasmids carrying carbapenemase genes, was observed. Furthermore, phylogenetic analysis showed that the ST11-KL64 CR-hvKP strain has spread nationally by interregional transmission. These results indicated transmission of CR-hvKP clones between hospital and urban aquatic environments, prompting the need for improved wastewater disinfection and epidemiological models to predict the public health hazard from prevalence data of CR-hvKP.
Collapse
Affiliation(s)
- Huiyun Zou
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ziyu Zhou
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Björn Berglund
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 751 24, Sweden
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Min Meng
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ling Zhao
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hui Zhang
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhongyi Wang
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tianle Wu
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qi Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xuewen Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
78
|
Wang Y, Zhang P, Wu J, Chen S, Jin Y, Long J, Duan G, Yang H. Transmission of livestock-associated methicillin-resistant Staphylococcus aureus between animals, environment, and humans in the farm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86521-86539. [PMID: 37418185 DOI: 10.1007/s11356-023-28532-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 06/28/2023] [Indexed: 07/08/2023]
Abstract
Staphylococcus aureus (S. aureus) is a fearsome bacterial pathogen that can colonize and infect humans and animals. Depending on the different sources, MRSA is classified as hospital-associated methicillin-resistant S. aureus (HA-MRSA), community-associated MRSA (CA-MRSA), and livestock-associated MRSA (LA-MRSA). LA-MRSA is initially associated with livestock, and clonal complexes (CCs) were almost always 398. However, the continued development of animal husbandry, globalization, and the widespread use of antibiotics have increased the spread of LA-MRSA among humans, livestock, and the environment, and other clonal complexes such as CC9, CC5, and CC8 have gradually emerged in various countries. This may be due to frequent host switching between humans and animals, as well as between animals. Host-switching is typically followed by subsequent adaptation through acquisition and/or loss of mobile genetic elements (MGEs) such as phages, pathogenicity islands, and plasmids as well as further host-specific mutations allowing it to expand into new host populations. This review aimed to provide an overview of the transmission characteristics of S. aureus in humans, animals, and farm environments, and also to describe the main prevalent clones of LA-MRSA and the changes in MGEs during host switching.
Collapse
Affiliation(s)
- Ying Wang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Peihua Zhang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Jian Wu
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Jinzhao Long
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, No. 100 of Science Avenue, Zhengzhou, 450001, China.
| |
Collapse
|
79
|
Sting R, Pölzelbauer C, Eisenberg T, Bonke R, Blazey B, Peters M, Riße K, Sing A, Berger A, Dangel A, Rau J. Corynebacterium ulcerans Infections in Eurasian Beavers ( Castor fiber). Pathogens 2023; 12:979. [PMID: 37623939 PMCID: PMC10459376 DOI: 10.3390/pathogens12080979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/26/2023] Open
Abstract
The Eurasian beaver (Castor fiber) has been reintroduced successfully in Germany since the 1990s. Since wildlife is an important source of zoonotic infectious diseases, monitoring of invasive and reintroduced species is crucial with respect to the One Health approach. Three Eurasian beavers were found dead in the German federal states of Bavaria, North Rhine-Westphalia and Baden-Wuerttemberg in 2015, 2021 and 2022, respectively. During post-mortem examinations, Corynebacterium (C.) ulcerans could be isolated from the abscesses of two beavers and from the lungs of one of the animals. Identification of the bacterial isolates at the species level was carried out by spectroscopic analysis using MALDI-TOF MS, FT-IR and biochemical profiles and were verified by molecular analysis based on 16-23S internal transcribed spacer (ITS) region sequencing. Molecular characterization of the C. ulcerans isolates using whole-genome sequencing (WGS) revealed a genome size of about 2.5 Mbp and a GC content of 53.4%. Multilocus sequence typing (MLST) analysis classified all three isolates as the sequence type ST-332. A minimum spanning tree (MST) based on cgMLST allelic profiles, including 1211 core genes of the sequenced C. ulcerans isolates, showed that the beaver-derived isolates clearly group on the branch of C. ulcerans with the closest relationship to each other, in close similarity to an isolate from a dog. Antibiotic susceptibility testing revealed resistance to clindamycin and, in one strain, to erythromycin according to EUCAST, while all isolates were susceptible to the other antimicrobials tested.
Collapse
Affiliation(s)
- Reinhard Sting
- Chemical and Veterinary Analysis Agency (CVUA) Stuttgart, 70736 Fellbach, Germany; (C.P.); (B.B.); (J.R.)
- Consiliary Laboratory for Corynebacterium pseudotuberculosis (DVG), 70736 Fellbach, Germany
| | - Catharina Pölzelbauer
- Chemical and Veterinary Analysis Agency (CVUA) Stuttgart, 70736 Fellbach, Germany; (C.P.); (B.B.); (J.R.)
| | - Tobias Eisenberg
- Hessian State Laboratory (LHL), 35392 Giessen, Germany; (T.E.); (R.B.); (K.R.)
| | - Rebecca Bonke
- Hessian State Laboratory (LHL), 35392 Giessen, Germany; (T.E.); (R.B.); (K.R.)
| | - Birgit Blazey
- Chemical and Veterinary Analysis Agency (CVUA) Stuttgart, 70736 Fellbach, Germany; (C.P.); (B.B.); (J.R.)
| | - Martin Peters
- Chemical and Veterinary Investigation Office Westfalen, 59821 Arnsberg, Germany;
| | - Karin Riße
- Hessian State Laboratory (LHL), 35392 Giessen, Germany; (T.E.); (R.B.); (K.R.)
| | - Andreas Sing
- Germany National Consiliary Laboratory for Diphtheria, 85764 Oberschleißheim, Germany; (A.S.); (A.B.)
| | - Anja Berger
- Germany National Consiliary Laboratory for Diphtheria, 85764 Oberschleißheim, Germany; (A.S.); (A.B.)
| | - Alexandra Dangel
- Bavarian Health and Food Safety Authority, 85764 Oberschleißheim, Germany;
| | - Jörg Rau
- Chemical and Veterinary Analysis Agency (CVUA) Stuttgart, 70736 Fellbach, Germany; (C.P.); (B.B.); (J.R.)
| |
Collapse
|
80
|
van den Wollenberg L, van Maanen C, Buter R, Janszen P, Rey F, van Engelen E. Detection and molecular characterization of Actinomyces denticolens causing lymph node abscessation in horses. Front Vet Sci 2023; 10:1225528. [PMID: 37546341 PMCID: PMC10399742 DOI: 10.3389/fvets.2023.1225528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction Abscessation of equine head lymph nodes can be caused by various bacteria, but Streptococcus equi subsp. equi is mainly involved. At our laboratory, samples of three unrelated horses with submandibular abscesses were found negative for S. equi, and further testing proved the presence of another genus. This raised the question for the exact identity of this pathogen and whether these isolates were epidemiologically related and it warranted further characterization with regards of virulence and resistance factors. Methods Culture followed by identification using MALDI-TOF MS, MIC testing and whole genome sequencing (WGS) was performed to characterize the bacteria. Results Bacterial culture and subsequent identification with MALDI-TOF MS resulted in the reliable identification of A. denticolens in two of the three cases. Final confirmation of A. denticolens for all three isolates was achieved by analysis of the WGS data, supported by multilocus sequence typing (MLST). The three isolates showed 95% nucleotide sequence identity. The number of single nucleotide polymorphisms (10,170 to 36,058) indicated that the isolates were not clonal, suggesting that these cases were epidemiologically unrelated. Only four known virulence related genes were detected. The absence of known antibiotic resistance genes was in line with the high susceptibility, as indicated by the susceptibility patterns obtained for two of the three isolates. Conclusion We conclude that A. denticolens should be included in the differential diagnosis of (submandibular) lymph node abscessation in horses, especially if strangles cannot be confirmed with laboratory diagnostics. Furthermore, we report the first draft genome of A. denticolens isolated from horses.
Collapse
Affiliation(s)
| | - C. van Maanen
- Royal GD (Animal Health Service), Deventer, Netherlands
| | - R. Buter
- Royal GD (Animal Health Service), Deventer, Netherlands
| | - P. Janszen
- Equine Clinic De Raaphorst, Wassenaar, Netherlands
| | - F. Rey
- Veterinary Clinic Winsum, Equine Division, Winsum, Netherlands
| | | |
Collapse
|
81
|
Nouws S, Verhaegen B, Denayer S, Crombé F, Piérard D, Bogaerts B, Vanneste K, Marchal K, Roosens NHC, De Keersmaecker SCJ. Transforming Shiga toxin-producing Escherichia coli surveillance through whole genome sequencing in food safety practices. Front Microbiol 2023; 14:1204630. [PMID: 37520372 PMCID: PMC10381951 DOI: 10.3389/fmicb.2023.1204630] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Shiga toxin-producing Escherichia coli (STEC) is a gastrointestinal pathogen causing foodborne outbreaks. Whole Genome Sequencing (WGS) in STEC surveillance holds promise in outbreak prevention and confinement, in broadening STEC epidemiology and in contributing to risk assessment and source attribution. However, despite international recommendations, WGS is often restricted to assist outbreak investigation and is not yet fully implemented in food safety surveillance across all European countries, in contrast to for example in the United States. Methods In this study, WGS was retrospectively applied to isolates collected within the context of Belgian food safety surveillance and combined with data from clinical isolates to evaluate its benefits. A cross-sector WGS-based collection of 754 strains from 1998 to 2020 was analyzed. Results We confirmed that WGS in food safety surveillance allows accurate detection of genomic relationships between human cases and strains isolated from food samples, including those dispersed over time and geographical locations. Identifying these links can reveal new insights into outbreaks and direct epidemiological investigations to facilitate outbreak management. Complete WGS-based isolate characterization enabled expanding epidemiological insights related to circulating serotypes, virulence genes and antimicrobial resistance across different reservoirs. Moreover, associations between virulence genes and severe disease were determined by incorporating human metadata into the data analysis. Gaps in the surveillance system were identified and suggestions for optimization related to sample centralization, harmonizing isolation methods, and expanding sampling strategies were formulated. Discussion This study contributes to developing a representative WGS-based collection of circulating STEC strains and by illustrating its benefits, it aims to incite policymakers to support WGS uptake in food safety surveillance.
Collapse
Affiliation(s)
- Stéphanie Nouws
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
- IDlab, Department of Information Technology, Ghent University—IMEC, Ghent, Belgium
| | - Bavo Verhaegen
- National Reference Laboratory for Shiga Toxin-Producing Escherichia coli (NRL STEC) and for Foodborne Outbreaks (NRL FBO), Foodborne Pathogens, Sciensano, Brussels, Belgium
| | - Sarah Denayer
- National Reference Laboratory for Shiga Toxin-Producing Escherichia coli (NRL STEC) and for Foodborne Outbreaks (NRL FBO), Foodborne Pathogens, Sciensano, Brussels, Belgium
| | - Florence Crombé
- National Reference Centre for Shiga Toxin-Producing Escherichia coli (NRC STEC), Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Denis Piérard
- National Reference Centre for Shiga Toxin-Producing Escherichia coli (NRC STEC), Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel, Brussels, Belgium
| | - Bert Bogaerts
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Kevin Vanneste
- Transversal Activities in Applied Genomics, Sciensano, Brussels, Belgium
| | - Kathleen Marchal
- IDlab, Department of Information Technology, Ghent University—IMEC, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
82
|
Tourasse NJ, Jolley KA, Kolstø AB, Økstad OA. Core genome multilocus sequence typing scheme for Bacillus cereus group bacteria. Res Microbiol 2023; 174:104050. [PMID: 36893969 DOI: 10.1016/j.resmic.2023.104050] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
Core genome multilocus sequence typing (cgMLST) employs a strategy where the set of orthologous genes common to all members of a group of organisms are used for phylogenetic analysis of the group members. The Bacillus cereus group consists of species with pathogenicity towards insect species as well as warm-blooded animals including humans. While B. cereus is an opportunistic pathogen linked to a range of human disease conditions, including emesis and diarrhoea, Bacillus thuringiensis is an entomopathogenic species with toxicity toward insect larvae, and therefore used as a biological pesticide worldwide. Bacillus anthracis is a classical obligate pathogen causing anthrax, an acute lethal condition in herbivores as well as humans, and which is endemic in many parts of the world. The group also includes a range of additional species, and B. cereus group bacteria have been subject to analysis with a wide variety of phylogenetic typing systems. Here we present, based on analyses of 173 complete genomes from B. cereus group species available in public databases, the identification of a set of 1568 core genes which were used to create a core genome multilocus typing scheme for the group which is implemented in the PubMLST system as an open online database freely available to the community. The new cgMLST system provides unprecedented resolution over existing phylogenetic analysis schemes covering the B. cereus group.
Collapse
Affiliation(s)
- Nicolas J Tourasse
- Department of Pharmacology and Pharmaceutical Biosciences, University of Oslo, Norway; University of Bordeaux, CNRS, INSERM, ARNA, UMR 5320, U1212, F-33000 Bordeaux, France.
| | | | - Anne-Brit Kolstø
- Department of Pharmacology and Pharmaceutical Biosciences, University of Oslo, Norway.
| | - Ole Andreas Økstad
- Department of Pharmacology and Pharmaceutical Biosciences, University of Oslo, Norway.
| |
Collapse
|
83
|
Roberts LW, Enoch DA, Khokhar F, Blackwell GA, Wilson H, Warne B, Gouliouris T, Iqbal Z, Török ME. Long-read sequencing reveals genomic diversity and associated plasmid movement of carbapenemase-producing bacteria in a UK hospital over 6 years. Microb Genom 2023; 9:mgen001048. [PMID: 37405394 PMCID: PMC10438816 DOI: 10.1099/mgen.0.001048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/22/2023] [Indexed: 07/06/2023] Open
Abstract
Healthcare-associated infections (HCAIs) affect the most vulnerable people in society and are increasingly difficult to treat in the face of mounting antimicrobial resistance (AMR). Routine surveillance represents an effective way of understanding the circulation and burden of bacterial resistance and transmission in hospital settings. Here, we used whole-genome sequencing (WGS) to retrospectively analyse carbapenemase-producing Gram-negative bacteria from a single hospital in the UK over 6 years (n=165). We found that the vast majority of isolates were either hospital-onset (HAI) or HCAI. Most carbapenemase-producing organisms were carriage isolates, with 71 % isolated from screening (rectal) swabs. Using WGS, we identified 15 species, the most common being Escherichia coli and Klebsiella pneumoniae. Only one significant clonal outbreak occurred during the study period and involved a sequence type (ST)78 K. pneumoniae carrying bla NDM-1 on an IncFIB/IncHI1B plasmid. Contextualization with public data revealed little evidence of this ST outside of the study hospital, warranting ongoing surveillance. Carbapenemase genes were found on plasmids in 86 % of isolates, the most common types being bla NDM- and bla OXA-type alleles. Using long-read sequencing, we determined that approximately 30 % of isolates with carbapenemase genes on plasmids had acquired them via horizontal transmission. Overall, a national framework to collate more contextual genomic data, particularly for plasmids and resistant bacteria in the community, is needed to better understand how carbapenemase genes are transmitted in the UK.
Collapse
Affiliation(s)
- Leah W. Roberts
- European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
- Department of Medicine, University of Cambridge, England, UK
| | - David A. Enoch
- Clinical Microbiology & Public Health Laboratory, UK Health Security Agency, Cambridge, UK
| | - Fahad Khokhar
- Centre for Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
| | | | - Hayley Wilson
- Department of Medicine, University of Cambridge, England, UK
| | - Ben Warne
- Department of Medicine, University of Cambridge, England, UK
- Department of Infectious Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Theodore Gouliouris
- Department of Medicine, University of Cambridge, England, UK
- Clinical Microbiology & Public Health Laboratory, UK Health Security Agency, Cambridge, UK
- Department of Infectious Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Zamin Iqbal
- European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, UK
| | - M. Estée Török
- Department of Medicine, University of Cambridge, England, UK
- Clinical Microbiology & Public Health Laboratory, UK Health Security Agency, Cambridge, UK
- Department of Infectious Diseases, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
84
|
Mizusawa M, Carroll KC. Recent updates in the development of molecular assays for the rapid identification and susceptibility testing of MRSA. Expert Rev Mol Diagn 2023; 23:679-699. [PMID: 37419696 DOI: 10.1080/14737159.2023.2234823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/22/2023] [Accepted: 07/06/2023] [Indexed: 07/09/2023]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) is a frequent cause of healthcare- and community-associated infections. Nasal carriage of MRSA is a risk factor for subsequent MRSA infections. Increased morbidity and mortality are associated with MRSA infections and screening and diagnostic tests for MRSA play an important role in clinical management. AREAS COVERED A literature search was conducted in PubMed and supplemented by citation searching. In this article, we provide a comprehensive review of molecular-based methods for MRSA screening and diagnostic tests including individual nucleic acid detection assays, syndromic panels, and sequencing technologies with a focus on their analytical performance. EXPERT OPINION Molecular based-assays for the detection of MRSA have improved in terms of accuracy and availability. Rapid turnaround enables earlier contact isolation and decolonization for MRSA. The availability of syndromic panel tests that include MRSA as a target has expanded from positive blood cultures to pneumonia and osteoarticular infections. Sequencing technologies allow detailed characterizations of novel methicillin-resistance mechanisms that can be incorporated into future assays. Next generation sequencing is capable of diagnosing MRSA infections that cannot be identified by conventional methods and metagenomic next-generation sequencing (mNGS) assays will likely move closer to implementation as front-line diagnostics in the near future.
Collapse
Affiliation(s)
- Masako Mizusawa
- Monmouth Medical Center, Rutgers University Robert Wood Johnson Medical School, Long Branch, NJ, USA
| | - Karen C Carroll
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
85
|
Gonzalez JM, Aranda B. Microbial Growth under Limiting Conditions-Future Perspectives. Microorganisms 2023; 11:1641. [PMID: 37512814 PMCID: PMC10383181 DOI: 10.3390/microorganisms11071641] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Microorganisms rule the functioning of our planet and each one of the individual macroscopic living creature. Nevertheless, microbial activity and growth status have always been challenging tasks to determine both in situ and in vivo. Microbial activity is generally related to growth, and the growth rate is a result of the availability of nutrients under adequate or adverse conditions faced by microbial cells in a changing environment. Most studies on microorganisms have been carried out under optimum or near-optimum growth conditions, but scarce information is available about microorganisms at slow-growing states (i.e., near-zero growth and maintenance metabolism). This study aims to better understand microorganisms under growth-limiting conditions. This is expected to provide new perspectives on the functions and relevance of the microbial world. This is because (i) microorganisms in nature frequently face conditions of severe growth limitation, (ii) microorganisms activate singular pathways (mostly genes remaining to be functionally annotated), resulting in a broad range of secondary metabolites, and (iii) the response of microorganisms to slow-growth conditions remains to be understood, including persistence strategies, gene expression, and cell differentiation both within clonal populations and due to the complexity of the environment.
Collapse
Affiliation(s)
- Juan M Gonzalez
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, IRNAS-CSIC, E-41012 Sevilla, Spain
| | - Beatriz Aranda
- Instituto de Recursos Naturales y Agrobiología de Sevilla, Consejo Superior de Investigaciones Científicas, IRNAS-CSIC, E-41012 Sevilla, Spain
| |
Collapse
|
86
|
Fu Y, M’ikanatha NM, Dudley EG. Whole-Genome Subtyping Reveals Population Structure and Host Adaptation of Salmonella Typhimurium from Wild Birds. J Clin Microbiol 2023; 61:e0184722. [PMID: 37249426 PMCID: PMC10281135 DOI: 10.1128/jcm.01847-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/12/2023] [Indexed: 05/31/2023] Open
Abstract
Within-host evolution of bacterial pathogens can lead to host-associated variants of the same species or serovar. Identification and characterization of closely related variants from diverse host species are crucial to public health and host-pathogen adaptation research. However, the work remained largely underexplored at a strain level until the advent of whole-genome sequencing (WGS). Here, we performed WGS-based subtyping and analyses of Salmonella enterica serovar Typhimurium (n = 787) from different wild birds across 18 countries over a 75-year period. We revealed seven avian host-associated S. Typhimurium variants/lineages. These lineages emerged globally over short timescales and presented genetic features distinct from S. Typhimurium lineages circulating among humans and domestic animals. We further showed that, in terms of virulence, host adaptation of these variants was driven by genome degradation. Our results provide a snapshot of the population structure and genetic diversity of S. Typhimurium within avian hosts. We also demonstrate the value of WGS-based subtyping and analyses in unravelling closely related variants at the strain level.
Collapse
Affiliation(s)
- Yezhi Fu
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | - Edward G. Dudley
- Department of Food Science, The Pennsylvania State University, University Park, Pennsylvania, USA
- E. coli Reference Center, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
87
|
Hamerlinck H, Aerssens A, Boelens J, Dehaene A, McMahon M, Messiaen AS, Vandendriessche S, Velghe A, Leroux-Roels I, Verhasselt B. Sanitary installations and wastewater plumbing as reservoir for the long-term circulation and transmission of carbapenemase producing Citrobacter freundii clones in a hospital setting. Antimicrob Resist Infect Control 2023; 12:58. [PMID: 37337245 DOI: 10.1186/s13756-023-01261-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/29/2023] [Indexed: 06/21/2023] Open
Abstract
BACKGROUND Accumulating evidence shows a role of the hospital wastewater system in the spread of multidrug-resistant organisms, such as carbapenemase producing Enterobacterales (CPE). Several sequential outbreaks of CPE on the geriatric ward of the Ghent University hospital have led to an outbreak investigation. Focusing on OXA-48 producing Citrobacter freundii, the most prevalent species, we aimed to track clonal relatedness using whole genome sequencing (WGS). By exploring transmission routes we wanted to improve understanding and (re)introduce targeted preventive measures. METHODS Environmental screening (toilet water, sink and shower drains) was performed between 2017 and 2021. A retrospective selection was made of 53 Citrobacter freundii screening isolates (30 patients and 23 environmental samples). DNA from frozen bacterial isolates was extracted and prepped for shotgun WGS. Core genome multilocus sequence typing was performed with an in-house developed scheme using 3,004 loci. RESULTS The CPE positivity rate of environmental screening samples was 19.0% (73/385). Highest percentages were found in the shower drain samples (38.2%) and the toilet water samples (25.0%). Sink drain samples showed least CPE positivity (3.3%). The WGS data revealed long-term co-existence of three patient sample derived C. freundii clusters. The biggest cluster (ST22) connects 12 patients and 8 environmental isolates taken between 2018 and 2021 spread across the ward. In an overlapping period, another cluster (ST170) links eight patients and four toilet water isolates connected to the same room. The third C. freundii cluster (ST421) connects two patients hospitalised in the same room but over a period of one and a half year. Additional sampling in 2022 revealed clonal isolates linked to the two largest clusters (ST22, ST170) in the wastewater collection pipes connecting the rooms. CONCLUSIONS Our findings suggest long-term circulation and transmission of carbapenemase producing C. freundii clones in hospital sanitary installations despite surveillance, daily cleaning and intermittent disinfection protocols. We propose a role for the wastewater drainage system in the spread within and between rooms and for the sanitary installations in the indirect transmission via bioaerosol plumes. To tackle this problem, a multidisciplinary approach is necessary including careful design and maintenance of the plumbing system.
Collapse
Affiliation(s)
- Hannelore Hamerlinck
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium.
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium.
| | - Annelies Aerssens
- Department of Infection Control, Ghent University Hospital, Ghent, Belgium
| | - Jerina Boelens
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Andrea Dehaene
- Department of Infection Control, Ghent University Hospital, Ghent, Belgium
| | - Michael McMahon
- Department of Infection Control, Ghent University Hospital, Ghent, Belgium
| | | | | | - Anja Velghe
- Department of Geriatrics, Ghent University Hospital, Ghent, Belgium
| | - Isabel Leroux-Roels
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Department of Infection Control, Ghent University Hospital, Ghent, Belgium
| | - Bruno Verhasselt
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
88
|
Grealy L, Wilson P, Gillen C, Duffy É, Healy ML, Daly B, Polyzois I, Van Harten M, Dougall A, Brennan GI, Coleman DC, McManus BA. Immersion of debrided diabetic foot ulcer (DFU) tissue in electrochemically generated pH neutral hypochlorous acid significantly reduces the microbial bioburden: whole-genome sequencing of Staphylococcus aureus, the most prevalent species recovered. J Hosp Infect 2023:S0195-6701(23)00179-2. [PMID: 37308064 DOI: 10.1016/j.jhin.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/08/2023] [Accepted: 06/08/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Diabetic foot ulcer infections (DFUIs) are the leading cause of lower limb amputations, mediated predominantly by Staphylococcus aureus. pH neutral electrochemically-generated hypochlorous acid (anolyte) is a non-toxic, microbiocidal agent with significant potential for wound disinfection. AIMS To investigate both the effectiveness of anolyte for microbial bioburden reduction in debrided ulcer tissues and the population of resident S. aureus. METHODS Fifty-one debrided tissues from 30 people with type II diabetes were aliquoted by wet weight and immersed in 1 or 10 ml volumes of anolyte (200 parts per million) or saline for three min. Microbial loads recovered were determined in colony forming units/g (CFU/g) of tissue following aerobic, anaerobic and staphylococcal-selective culture. Bacterial species were identified and 50 S. aureus isolates from 30 tissues underwent whole-genome sequencing (WGS). FINDINGS The ulcers were predominantly superficial, lacking signs of infection (39/51, 76.5%). Of the 42/51 saline-treated tissues yielding ≥105 CFU/g, a microbial threshold reported to impede wound-healing, only 4/42 (9.5%) were clinically-diagnosed DFUIs. Microbial loads from anolyte-treated tissues were significantly lower than saline-treated tissues using 1 ml (1065-fold, 2.0 log) and 10 ml (8216-fold, 2.1 log) immersion volumes (p<0.0005). Staphylococcus aureus was the predominant species recovered (44/51, 86.3%) and 50 isolates underwent WGS. All were meticillin-susceptible and comprised 12 sequence types (STs), predominantly ST1, ST5 and ST15. Whole-genome multilocus sequence typing identified three clusters of closely related isolates from 10 patients indicating inter-patient transmission. CONCLUSIONS Short immersions of debrided ulcer tissue in anolyte significantly reduced microbial bioburden: a potential novel DFUI treatment.
Collapse
Affiliation(s)
- Liam Grealy
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, The University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Pauline Wilson
- Department of Endocrinology & Diabetes, St. James's Hospital, Dublin, Ireland
| | - Corey Gillen
- Department of Endocrinology & Diabetes, St. James's Hospital, Dublin, Ireland
| | - Éilish Duffy
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, The University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Marie-Louise Healy
- Department of Endocrinology & Diabetes, St. James's Hospital, Dublin, Ireland
| | - Blánaid Daly
- Division of Public and Child Dental Health, Dublin Dental University Hospital, The University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Ioannis Polyzois
- Division of Restorative Dentistry and Periodontology, Dublin Dental University Hospital, The University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Maria Van Harten
- Division of Public and Child Dental Health, Dublin Dental University Hospital, The University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Alison Dougall
- Division of Public and Child Dental Health, Dublin Dental University Hospital, The University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Gráinne I Brennan
- National MRSA Reference Laboratory, St. James's Hospital, Dublin, Ireland
| | - David C Coleman
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, The University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Brenda A McManus
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, The University of Dublin, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
89
|
Shelenkov A, Mikhaylova Y, Voskanyan S, Egorova A, Akimkin V. Whole-Genome Sequencing Revealed the Fusion Plasmids Capable of Transmission and Acquisition of Both Antimicrobial Resistance and Hypervirulence Determinants in Multidrug-Resistant Klebsiella pneumoniae Isolates. Microorganisms 2023; 11:1314. [PMID: 37317293 DOI: 10.3390/microorganisms11051314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023] Open
Abstract
Klebsiella pneumoniae, a member of the Enterobacteriaceae family, has become a dangerous pathogen accountable for a large fraction of the various infectious diseases in both clinical and community settings. In general, the K. pneumoniae population has been divided into the so-called classical (cKp) and hypervirulent (hvKp) lineages. The former, usually developing in hospitals, can rapidly acquire resistance to a wide spectrum of antimicrobial drugs, while the latter is associated with more aggressive but less resistant infections, mostly in healthy humans. However, a growing number of reports in the last decade have confirmed the convergence of these two distinct lineages into superpathogen clones possessing the properties of both, and thus imposing a significant threat to public health worldwide. This process is associated with horizontal gene transfer, in which plasmid conjugation plays a very important role. Therefore, the investigation of plasmid structures and the ways plasmids spread within and between bacterial species will provide benefits in developing prevention measures against these powerful pathogens. In this work, we investigated clinical multidrug-resistant K. pneumoniae isolates using long- and short-read whole-genome sequencing, which allowed us to reveal fusion IncHI1B/IncFIB plasmids in ST512 isolates capable of simultaneously carrying hypervirulence (iucABCD, iutA, prmpA, peg-344) and resistance determinants (armA, blaNDM-1 and others), and to obtain insights into their formation and transmission mechanisms. Comprehensive phenotypic, genotypic and phylogenetic analysis of the isolates, as well as of their plasmid repertoire, was performed. The data obtained will facilitate epidemiological surveillance of high-risk K. pneumoniae clones and the development of prevention strategies against them.
Collapse
Affiliation(s)
- Andrey Shelenkov
- Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, 111123 Moscow, Russia
| | - Yulia Mikhaylova
- Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, 111123 Moscow, Russia
| | - Shushanik Voskanyan
- Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, 111123 Moscow, Russia
| | - Anna Egorova
- Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, 111123 Moscow, Russia
| | - Vasiliy Akimkin
- Central Research Institute of Epidemiology, Novogireevskaya Str., 3a, 111123 Moscow, Russia
| |
Collapse
|
90
|
Davidova-Gerzova L, Lausova J, Sukkar I, Nesporova K, Nechutna L, Vlkova K, Chudejova K, Krutova M, Palkovicova J, Kaspar J, Dolejska M. Hospital and community wastewater as a source of multidrug-resistant ESBL-producing Escherichia coli. Front Cell Infect Microbiol 2023; 13:1184081. [PMID: 37256105 PMCID: PMC10225658 DOI: 10.3389/fcimb.2023.1184081] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023] Open
Abstract
Introduction Hospitals and wastewater are recognized hot spots for the selection and dissemination of antibiotic-resistant bacteria to the environment, but the total participation of hospitals in the spread of nosocomial pathogens to municipal wastewater treatment plants (WWTPs) and adjacent rivers had not previously been revealed. Methods We used a combination of culturing and whole-genome sequencing to explore the transmission routes of Escherichia coli from hospitalized patients suffering from urinary tract infections (UTI) via wastewater to the environment. Samples were collected in two periods in three locations (A, B, and C) and cultured on selective antibiotic-enhanced plates. Results In total, 408 E. coli isolates were obtained from patients with UTI (n=81), raw hospital sewage (n=73), WWTPs inflow (n=96)/outflow (n=106), and river upstream (n=21)/downstream (n=31) of WWTPs. The majority of the isolates produced extended-spectrum beta-lactamase (ESBL), mainly CTX-M-15, and showed multidrug resistance (MDR) profiles. Seven carbapenemase-producing isolates with GES-5 or OXA-244 were obtained in two locations from wastewater and river samples. Isolates were assigned to 74 different sequence types (ST), with the predominance of ST131 (n=80) found in all sources including rivers. Extraintestinal pathogenic lineages frequently found in hospital sewage (ST10, ST38, and ST69) were also found in river water. Despite generally high genetic diversity, phylogenetic analysis of ST10, ST295, and ST744 showed highly related isolates (SNP 0-18) from different sources, providing the evidence for the transmission of resistant strains through WWTPs to surface waters. Discussion Results of this study suggest that 1) UTI share a minor participation in hospitals wastewaters; 2) a high diversity of STs and phylogenetic groups in municipal wastewaters derive from the urban influence rather than hospitals; and 3) pathogenic lineages and bacteria with emerging resistance genotypes associated with hospitals spread into surface waters. Our study highlights the contribution of hospital and municipal wastewater to the transmission of ESBL- and carbapenemase-producing E. coli with MDR profiles to the environment.
Collapse
Affiliation(s)
- Lenka Davidova-Gerzova
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Jarmila Lausova
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czechia
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Iva Sukkar
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Kristina Nesporova
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Lucie Nechutna
- Department of Microbiology, Faculty of Medicine and University Hospital Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Katerina Vlkova
- Department of Microbiology, Faculty of Medicine and University Hospital Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Katerina Chudejova
- Department of Microbiology, Faculty of Medicine and University Hospital Pilsen, Charles University, Pilsen, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
| | - Marcela Krutova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czechia
| | - Jana Palkovicova
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Jakub Kaspar
- Center of Cardiovascular and Transplant Surgery, St. Anne’s University Hospital Brno, Brno, Czechia
| | - Monika Dolejska
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, Czechia
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, Czechia
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czechia
- Department of Clinical Microbiology and Immunology, Institute of Laboratory Medicine, The University Hospital Brno, Brno, Czechia
| |
Collapse
|
91
|
Card RM, Chisnall T, Begum R, Sarker MS, Hossain MS, Sagor MS, Mahmud MA, Uddin ASMA, Karim MR, Lindahl JF, Samad MA. Multidrug-resistant non-typhoidal Salmonella of public health significance recovered from migratory birds in Bangladesh. Front Microbiol 2023; 14:1162657. [PMID: 37256054 PMCID: PMC10226424 DOI: 10.3389/fmicb.2023.1162657] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/31/2023] [Indexed: 06/01/2023] Open
Abstract
Non-typhoidal Salmonella provides an exemplar for the One Health approach as it encompasses public and animal health, food safety, and environmental considerations. The contribution of environmental aspects is currently less well-defined. The purpose of this study was to determine the carriage occurrence of non-typhoidal Salmonella in migratory birds in Bangladesh and assess the potential significance to public and animal health. Cloacal swabs (N = 453) were collected in the years 2018-2020 from Tanguar and Hakaluki Haors, important wetland ecosystems in Northeastern Bangladesh. The prevalence of Salmonella was 13.5% (61 positive swabs). Classical serotyping identified six serovars: Salmonella enterica subsp. enterica serovars Perth, Kentucky, Albany, Infantis, Weltevreden, and Brancaster. Resistance towards 14 antimicrobials was assessed by broth microdilution minimum inhibitory concentration determination and the antimicrobial resistance (AMR) genotype established by whole-genome sequencing. S. Perth and S. Weltevreden isolates were susceptible and harbored no acquired AMR genes. Isolates from the remaining serovars were multidrug resistant, commonly possessing resistance to tetracycline, ampicillin, chloramphenicol, sulfamethoxazole, trimethoprim, and ciprofloxacin. Salmonella resistant to ciprofloxacin meets WHO criteria for priority pathogens. There was excellent concordance between resistance phenotype and the presence of corresponding AMR genes, many of which reside on Salmonella Genomic Islands. High-level ciprofloxacin resistance correlated with the presence of mutations in the chromosomal gyrB and/or parC genes. The S. Kentucky isolates were ST198, a widely distributed multidrug-resistant lineage reported in humans and animals, and constituting an ongoing risk to public health worldwide. We have demonstrated that multidrug-resistant non-typhoidal Salmonella of public health significance can be recovered from migratory birds. A potential for risk can manifest through direct interaction, transmission to food-producing livestock on farms, and dissemination via the long range migratory movements of birds. Risks can be mitigated by measures including continued surveillance and implementation of good farm biosecurity practices.
Collapse
Affiliation(s)
- Roderick M. Card
- Animal and Plant Health Agency, New Haw, Addlestone, United Kingdom
| | - Thomas Chisnall
- Animal and Plant Health Agency, New Haw, Addlestone, United Kingdom
| | - Ruhena Begum
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Md Samun Sarker
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Muhammad Sazzad Hossain
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Md Shahjalal Sagor
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Mohammad Asheak Mahmud
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - A. S. M. Ashab Uddin
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Md Rezaul Karim
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| | - Johanna F. Lindahl
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mohammed Abdus Samad
- Antimicrobial Resistance Action Center (ARAC), Animal Health Research Division, Bangladesh Livestock Research Institute, Savar, Bangladesh
| |
Collapse
|
92
|
Sartori L, Sellera FP, Fuga B, Sano E, Monte DFM, Cardoso B, Côrtes LDA, Lincopan N. Phylogenomic Analysis of CTX-M-15-Positive Escherichia coli from Companion Animal Reveals Intercontinental Dissemination of ST90 Within a One Health Framework. Microb Drug Resist 2023. [PMID: 37155698 DOI: 10.1089/mdr.2022.0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
The global dissemination of extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli has been considered a critical issue within a One Health framework. The aim of this study was to perform a genomic investigation of an ESBL-producing E. coli strain belonging to the globally spread sequence type/clonal complex ST90/CC23, isolated from gastrointestinal tract of a dog, in Brazil. Besides CTX-M-15 ESBL, this E. coli isolate carried mutations conferring resistance to human and veterinary fluoroquinolones (GyrA [Ser83Leu, Asp87Asn], ParC [Ser80Ile] and ParE [Ser458Ala]), and resistance determinants to disinfectants and pesticides. Noteworthy, phylogenomic analysis revealed that this multidrug E. coli strain clustered with ST90 lineages isolated from human, dog, and livestock in Brazil. The phylogenetic tree also revealed that this E. coli strain shares a common ancestor with isolates from the United States, Russia, Germany, and China, highlighting the potential global spreading of this clone. In summary, we report genomic data of CTX-M-15-positive E.coli ST90 colonizing a pet. Colonization of companion animals by critical resistant pathogens highlights the need for close monitoring to better understand the epidemiology and genetic factors contributing for successful adaptation of global clones at the human-animal interface.
Collapse
Affiliation(s)
- Luciana Sartori
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
| | - Fábio P Sellera
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), Brazil
| | - Bruna Fuga
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), Brazil
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Elder Sano
- One Health Brazilian Resistance Project (OneBR), Brazil
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Daniel F M Monte
- One Health Brazilian Resistance Project (OneBR), Brazil
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Food Research Center, University of São Paulo, São Paulo, Brazil
| | - Brenda Cardoso
- One Health Brazilian Resistance Project (OneBR), Brazil
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Nilton Lincopan
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil
- One Health Brazilian Resistance Project (OneBR), Brazil
- Department of Microbiology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
93
|
Supa-Amornkul S, Intuy R, Ruangchai W, Chaturongakul S, Palittapongarnpim P. Evidence of international transmission of mobile colistin resistant monophasic Salmonella Typhimurium ST34. Sci Rep 2023; 13:7080. [PMID: 37127697 PMCID: PMC10151351 DOI: 10.1038/s41598-023-34242-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023] Open
Abstract
S. 4,[5],12:i:-, a monophasic variant of S. enterica serovar Typhimurium, is an important multidrug resistant serovar. Strains of colistin-resistant S. 4,[5],12:i:- have been reported in several countries with patients occasionally had recent histories of travels to Southeast Asia. In the study herein, we investigated the genomes of S. 4,[5],12:i:- carrying mobile colistin resistance (mcr) gene in Thailand. Three isolates of mcr-3.1 carrying S. 4,[5],12:i:- in Thailand were sequenced by both Illumina and Oxford Nanopore platforms and we analyzed the sequences together with the whole genome sequences of other mcr-3 carrying S. 4,[5],12:i:- isolates available in the NCBI Pathogen Detection database. Three hundred sixty-nine core genome SNVs were identified from 27 isolates, compared to the S. Typhimurium LT2 reference genome. A maximum-likelihood phylogenetic tree was constructed and revealed that the samples could be divided into three clades, which correlated with the profiles of fljAB-hin deletions and plasmids. A couple of isolates from Denmark had the genetic profiles similar to Thai isolates, and were from the patients who had traveled to Thailand. Complete genome assembly of the three isolates revealed the insertion of a copy of IS26 at the same site near iroB, suggesting that the insertion was an initial step for the deletions of fljAB-hin regions, the hallmark of the 4,[5],12:i:- serovar. Six types of plasmid replicons were identified with the majority being IncA/C. The coexistence of mcr-3.1 and blaCTX-M-55 was found in both hybrid-assembled IncA/C plasmids but not in IncHI2 plasmid. This study revealed possible transmission links between colistin resistant S. 4,[5],12:i:- isolates found in Thailand and Denmark and confirmed the important role of plasmids in transferring multidrug resistance.
Collapse
Affiliation(s)
- Sirirak Supa-Amornkul
- Mahidol International Dental School, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
- Department of Microbiology, Faculty of Science, Pornchai Matangkasombut Center for Microbial Genomics, Mahidol University, Bangkok, Thailand
| | - Rattanaporn Intuy
- Department of Microbiology, Faculty of Science, Pornchai Matangkasombut Center for Microbial Genomics, Mahidol University, Bangkok, Thailand
| | - Wuthiwat Ruangchai
- Department of Microbiology, Faculty of Science, Pornchai Matangkasombut Center for Microbial Genomics, Mahidol University, Bangkok, Thailand
| | - Soraya Chaturongakul
- Department of Microbiology, Faculty of Science, Pornchai Matangkasombut Center for Microbial Genomics, Mahidol University, Bangkok, Thailand
- Molecular Medical Biosciences Cluster, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Prasit Palittapongarnpim
- Department of Microbiology, Faculty of Science, Pornchai Matangkasombut Center for Microbial Genomics, Mahidol University, Bangkok, Thailand.
- Department of Microbiology, Faculty of Science, Mahidol University, Rama 6 Road, Bangkok, 10400, Thailand.
| |
Collapse
|
94
|
Linkevicius M, Bonnin RA, Alm E, Svartström O, Apfalter P, Hartl R, Hasman H, Roer L, Räisänen K, Dortet L, Pfennigwerth N, Hans JB, Tóth Á, Buzgó L, Cormican M, Delappe N, Monaco M, Giufrè M, Hendrickx AP, Samuelsen Ø, Pöntinen AK, Caniça M, Manageiro V, Oteo-Iglesias J, Pérez-Vázquez M, Westmo K, Mäkitalo B, Palm D, Monnet DL, Kohlenberg A. Rapid cross-border emergence of NDM-5-producing Escherichia coli in the European Union/European Economic Area, 2012 to June 2022. Euro Surveill 2023; 28:2300209. [PMID: 37166762 PMCID: PMC10176832 DOI: 10.2807/1560-7917.es.2023.28.19.2300209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/10/2023] [Indexed: 05/12/2023] Open
Abstract
Whole genome sequencing data of 874 Escherichia coli isolates carrying bla NDM-5 from 13 European Union/European Economic Area countries between 2012 and June 2022 showed the predominance of sequence types ST167, ST405, ST410, ST361 and ST648, and an increasing frequency of detection. Nearly a third (30.6%) of these isolates were associated with infections and more than half (58.2%) were predicted to be multidrug-resistant. Further spread of E. coli carrying bla NDM-5 would leave limited treatment options for serious E. coli infections.
Collapse
Affiliation(s)
| | - Rémy A Bonnin
- French National Reference Center for Antimicrobial Resistance, INSERM UMR 1184, Paris-Saclay University, Bicêtre Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Erik Alm
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Olov Svartström
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Petra Apfalter
- Austrian National Reference Centre for Antimicrobial Resistance, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Rainer Hartl
- Austrian National Reference Centre for Antimicrobial Resistance, Ordensklinikum Linz Elisabethinen, Linz, Austria
| | - Henrik Hasman
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Louise Roer
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Kati Räisänen
- Department of Health Security, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Laurent Dortet
- French National Reference Center for Antimicrobial Resistance, INSERM UMR 1184, Paris-Saclay University, Bicêtre Hospital, Assistance Publique des Hôpitaux de Paris, Paris, France
| | - Niels Pfennigwerth
- National Reference Centre for multidrug-resistant Gram-negative bacteria, Ruhr University Bochum, Bochum, Germany
| | - Jörg B Hans
- National Reference Centre for multidrug-resistant Gram-negative bacteria, Ruhr University Bochum, Bochum, Germany
| | - Ákos Tóth
- National Public Health Centre, Budapest, Hungary
| | - Lilla Buzgó
- National Public Health Centre, Budapest, Hungary
| | | | | | - Monica Monaco
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Giufrè
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Antoni Pa Hendrickx
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Ørjan Samuelsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, University Hospital of North Norway, Tromsø, Norway
- Department of Pharmacy, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Anna K Pöntinen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, University Hospital of North Norway, Tromsø, Norway
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Jesús Oteo-Iglesias
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos del Centro Nacional de Microbiología and CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - María Pérez-Vázquez
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos del Centro Nacional de Microbiología and CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Karin Westmo
- Public Health Agency of Sweden, Stockholm, Sweden
| | | | - Daniel Palm
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| | | | - Anke Kohlenberg
- European Centre for Disease Prevention and Control, Stockholm, Sweden
| |
Collapse
|
95
|
Yan S, Jiang Z, Zhang W, Liu Z, Dong X, Li D, Liu Z, Li C, Liu X, Zhu L. Genomes-based MLST, cgMLST, wgMLST and SNP analysis of Salmonella Typhimurium from animals and humans. Comp Immunol Microbiol Infect Dis 2023; 96:101973. [PMID: 36989679 DOI: 10.1016/j.cimid.2023.101973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Salmonella Typhimurium (S. Typhimurium) is an important food-borne and zoonotic pathogen that causes salmonellosis. With the development of whole genome sequencing (WGS), genome-based typing has been widely applied to bacteriology. In this study, we investigated genotyping and phylogenetic clusters of S. Typhimurium isolates from humans and animals in different provinces (including Beijing, Shandong, Guangxi, Shaanxi, Henan, and Shanghai) of China during 2009-2018 using multi locus sequence typing (MLST), core genome MLST (cgMLST), whole genome MLST (wgMLST) and single nucleotide polymorphism (SNP) based on WGS. 29 S. Typhimurium isolates from chicken (n = 22), sick pigeon (n = 2), patients (n = 4) and sick swine (n = 1) were tested. MLST analysis showed S. Typhimurium strains were divided into four STs, namely ST19 (n = 14), ST34 (n = 12), ST128 (n = 2) and ST1544 (n = 1). cgMLST and wgMLST divided 29 strains into 27 cgSTs and 29 wgST, respectively. Phylogenetic clustering showed that all isolates were divided into 4 clusters and 4 singletons. SNP analysis was used to examine MLST, cgMLST, wgMLST analysis. Finally, comparisons of MLST, cgMLST, wgMLST, and SNP were analyzed and the results showed their precision increased in order. In summary, genomic typing and phylogenetic relationships of 29 S. Typhimurium strains from different sources in China were analyzed. These findings were beneficial to investigate molecular pathogenesis, bacterial diversity, and traceability analysis of Salmonella.
Collapse
Affiliation(s)
- Shigan Yan
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zhaoxu Jiang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Wencheng Zhang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zhenhai Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Xiaorui Dong
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Donghui Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zijun Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Chengyu Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Xu Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Liping Zhu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
96
|
Kunoh T, Yamamoto T, Ono E, Sugimoto S, Takabe K, Takeda M, Utada AS, Nomura N. Identification of lthB, a Gene Encoding a Putative Glycosyltransferase Family 8 Protein Required for Leptothrix Sheath Formation. Appl Environ Microbiol 2023; 89:e0191922. [PMID: 36951572 PMCID: PMC10132092 DOI: 10.1128/aem.01919-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/20/2023] [Indexed: 03/24/2023] Open
Abstract
The bacterium Leptothrix cholodnii generates cell chains encased in sheaths that are composed of woven nanofibrils. The nanofibrils are mainly composed of glycoconjugate repeats, and several glycosyltransferases (GTs) are required for its biosynthesis. However, only one GT (LthA) has been identified to date. In this study, we screened spontaneous variants of L. cholodnii SP6 to find those that form smooth colonies, which is one of the characteristics of sheathless variants. Genomic DNA sequencing of an isolated variant revealed an insertion in the locus Lcho_0972, which encodes a putative GT family 8 protein. We thus designated this protein LthB and characterized it using deletion mutants and antibodies. LthB localized adjacent to the cell envelope. ΔlthB cell chains were nanofibril free and thus sheathless, indicating that LthB is involved in nanofibril biosynthesis. Unlike the ΔlthA mutant and the wild-type strain, which often generate planktonic cells, most ΔlthB organisms presented as long cell chains under static conditions, resulting in deficient pellicle formation, which requires motile planktonic cells. These results imply that sheaths are not required for elongation of cell chains. Finally, calcium depletion, which induces cell chain breakage due to sheath loss, abrogated the expression of LthA, but not LthB, suggesting that these GTs cooperatively participate in glycoconjugate biosynthesis under different signaling controls. IMPORTANCE In recent years, the regulation of cell chain elongation of filamentous bacteria via extracellular signals has attracted attention as a potential strategy to prevent clogging of water distribution systems and filamentous bulking of activated sludge in industrial settings. However, a fundamental understanding of the ecology of filamentous bacteria remains elusive. Since sheath formation is associated with cell chain elongation in most of these bacteria, the molecular mechanisms underlying nanofibril sheath formation, including the intracellular signaling cascade in response to extracellular stimuli, must be elucidated. Here, we isolated a sheathless variant of L. cholodnii SP6 and thus identified a novel glycosyltransferase, LthB. Although mutants with deletions of lthA, encoding another GT, and lthB were both defective for nanofibril formation, they exhibited different phenotypes of cell chain elongation and pellicle formation. Moreover, LthA expression, but not LthB expression, was influenced by extracellular calcium, which is known to affect nanofibril formation, indicating the functional diversities of LthA and LthB. Such molecular insights are critical for a better understanding of ecology of filamentous bacteria, which, in turn, can be used to improve strategies to control filamentous bacteria in industrial facilities.
Collapse
Affiliation(s)
- Tatsuki Kunoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Tatsuya Yamamoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Erika Ono
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shinya Sugimoto
- Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan
- Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kyosuke Takabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Minoru Takeda
- Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Andrew S. Utada
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Nobuhiko Nomura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
97
|
Hu X, Chen Y, Xu H, Qiao J, Ge H, Liu R, Zheng B. Genomic epidemiology and transmission characteristics of mcr1-positive colistin-resistant Escherichia coli strains circulating at natural environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163600. [PMID: 37086987 DOI: 10.1016/j.scitotenv.2023.163600] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
MCR-positive Escherichia coli (MCRPEC) have been reported in humans worldwide. The high prevalence of mcr-1 poses clinical and environmental risks due to its diverse genetic mechanisms. Given the vital role of animals and the environment in the spread of antibiotic resistance, a "One Health" perspective should be taken when addressing antimicrobial resistance issues. This study conducted a prospective study in six farms (located in Jiaxing City, Zhejiang province, China) in 2019. MCRPEC strains were screened from samples of different sources. The molecular epidemiological surveys and transmission potential were investigated by whole-genome sequencing and phylogenetic analysis. MCRPEC were detected in different farms with various sources. Sequence type complex 10 was dominant and distributed widely in multiple sources. Core-genome multilocus sequence type (cgMLST) analysis indicated that clonal transmission could occur within and between farms. In addition, mcr-1 genes with different locations showed different transmission tendencies. The study indicated that interspecies and cross-regional transmission of MCRPEC could occur between different sectors in farms. Further surveillance and research of non-clinical MCRPEC strains are necessary to reduce the threat of MCRPEC.
Collapse
Affiliation(s)
- Xinjun Hu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, China
| | - Yingying Chen
- Department of Neurosurgery, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing 312000, China
| | - Hao Xu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Jie Qiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Haoyu Ge
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Ruishan Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China.
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
98
|
Gideskog M, Falkeborn T, Welander J, Melhus Å. Source Control of Gram-Negative Bacteria Using Self-Disinfecting Sinks in a Swedish Burn Centre. Microorganisms 2023; 11:microorganisms11040965. [PMID: 37110388 PMCID: PMC10143680 DOI: 10.3390/microorganisms11040965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Several retrospective studies have identified hospital sinks as reservoirs of Gram-negative bacteria. The aim of this study was to prospectively investigate the bacterial transmission from sinks to patients and if self-disinfecting sinks could reduce this risk. Samples were collected weekly from sinks (self-disinfecting, treated with boiling water, not treated) and patients in the Burn Centre at Linköping University Hospital, Sweden. The antibiotic susceptibility of Gram-negative isolates was tested, and eight randomly chosen patient isolates and their connected sink isolates were subjected to whole genome sequencing (WGS). Of 489 sink samples, 232 (47%) showed growth. The most frequent findings were Stenotrophomonas maltophilia (n = 130), Pseudomonas aeruginosa (n = 128), and Acinetobacter spp. (n = 55). Bacterial growth was observed in 20% of the samplings from the self-disinfecting sinks and in 57% from the sinks treated with boiling water (p = 0.0029). WGS recognized one transmission of Escherichia coli sampled from an untreated sink to a patient admitted to the same room. In conclusion, the results showed that sinks can serve as reservoirs of Gram-negative bacteria and that self-disinfecting sinks can reduce the transmission risk. Installing self-disinfecting sinks in intensive care units is an important measure in preventing nosocomial infection among critically ill patients.
Collapse
Affiliation(s)
- Maria Gideskog
- Department of Communicable Disease and Infection Control, Linköping University Hospital, SE-581 85 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden
| | - Tina Falkeborn
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden
- Department of Clinical Microbiology, Linköping University Hospital, SE-581 85 Linköping, Sweden
| | - Jenny Welander
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 85 Linköping, Sweden
- Department of Clinical Microbiology, Linköping University Hospital, SE-581 85 Linköping, Sweden
| | - Åsa Melhus
- Section of Clinical Microbiology, Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| |
Collapse
|
99
|
De Koster S, Ringenier M, Xavier BB, Lammens C, De Coninck D, De Bruyne K, Mensaert K, Kluytmans-van den Bergh M, Kluytmans J, Dewulf J, Goossens H. Genetic characterization of ESBL-producing and ciprofloxacin-resistant Escherichia coli from Belgian broilers and pigs. Front Microbiol 2023; 14:1150470. [PMID: 37089550 PMCID: PMC10116946 DOI: 10.3389/fmicb.2023.1150470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
BackgroundThe increasing number of infections caused by Escherichia coli resistant to clinically important antibiotics is a global concern for human and animal health. High overall levels of extended-spectrum beta-lactamase (ESBL)-producing and ciprofloxacin-resistant (ciproR) Escherichia coli in livestock are reported in Belgium. This cross-sectional study aimed to genotypically characterize and trace ESBL-and ciproR-E. coli of Belgian food-producing animals.MethodsA total of 798 fecal samples were collected in a stratified-random sampling design from Belgian broilers and sows. Consequently, 77 ESBL-E. coli and 84 ciproR-E. coli were sequenced using Illumina MiSeq. Minimum inhibitory concentration (MIC) for fluoroquinolones and cephalosporins were determined. Molecular in silico typing, resistance and virulence gene determination, and plasmid identification was performed. Scaffolds harboring ESBL or plasmid-mediated quinolone resistance (PMQR) genes were analyzed to detect mobile genetic elements (MGEs) and plasmid origins. Core genome allelic distances were used to determine genetic relationships among isolates.ResultsA variety of E. coli sequence types (ST) (n = 63), resistance genes and virulence profiles was detected. ST10 was the most frequently encountered ST (8.1%, n = 13). The pandemic multidrug-resistant clone ST131 was not detected. Most farms harbored more than one ESBL type, with blaCTX-M-1 (41.6% of ESBL-E. coli) being the most prevalent and blaCTX M-15 (n = 3) being the least prevalent. PMQR genes (15.5%, n = 13) played a limited role in the occurrence of ciproR-E. coli. More importantly, sequential acquisition of mutations in quinolone resistance-determining regions (QRDR) of gyrA and parC led to increasing MICs for fluoroquinolones. GyrA S83L, D87N and ParC S80I mutations were strongly associated with high-level fluoroquinolone resistance. Genetically related isolates identified within the farms or among different farms highlight transmission of resistant E. coli or the presence of a common reservoir. IncI1-I(alpha) replicon type plasmids carried different ESBL genes (blaCTX-M-1, blaCTX-M-32 and blaTEM-52C). In addition, the detection of plasmid replicons with associated insertion sequence (IS) elements and ESBL/PMQR genes in different farms and among several STs (e.g., IncI1-I(alpha)/IncX3) underline that plasmid transmission could be another important contributor to transmission of resistance in these farms.ConclusionOur findings reveal a multifaceted narrative of transmission pathways. These findings could be relevant in understanding and battling the problem of antibiotic resistance in farms.
Collapse
Affiliation(s)
- Sien De Koster
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
| | - Moniek Ringenier
- Veterinary Epidemiology Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
- HIV/STI Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Hospital Outbreak Support Team-HOST, ZNA Middelheim, Antwerp, Belgium
- Hospital Outbreak Support Team-HOST, GZA Ziekenhuizen, Wilrijk, Belgium
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
| | | | | | | | - Marjolein Kluytmans-van den Bergh
- Department of Infection Control, Amphia Hospital, Breda, Netherlands
- Julius Center for Health Sciences and Primary Care, UMC Utrecht, University of Utrecht, CG Utrecht, Netherlands
- Amphia Academy Infectious Disease Foundation, Amphia Hospital, CK Breda, Netherlands
| | - Jan Kluytmans
- Julius Center for Health Sciences and Primary Care, UMC Utrecht, University of Utrecht, CG Utrecht, Netherlands
- Microvida Laboratory for Microbiology, Amphia Hospital, Breda, Netherlands
| | - Jeroen Dewulf
- Veterinary Epidemiology Unit, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Diseases Institute, University of Antwerp, Antwerp, Belgium
- *Correspondence: Herman Goossens,
| | | |
Collapse
|
100
|
Wang D, Zou H, Zhao L, Li Q, Meng M, Li X, Berglund B. High prevalence of Escherichia coli co-harboring conjugative plasmids with colistin- and carbapenem resistance genes in a wastewater treatment plant in China. Int J Hyg Environ Health 2023; 250:114159. [PMID: 36989999 DOI: 10.1016/j.ijheh.2023.114159] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 03/06/2023] [Accepted: 03/13/2023] [Indexed: 03/31/2023]
Abstract
Emergence and dissemination of resistance to last-resort antibiotics such as carbapenem and colistin is a growing, global health concern. Wastewater treatment plants (WWTPs) link human activities and the environment, can act as reservoirs and sources for emerging antibiotic resistance, and likely play a large role in antibiotic resistance transmission. The aim of this study was to investigate occurrence and characteristics of colistin- and carbapenem-resistant Escherichia coli (CCREC) in wastewater and sludge samples collected over a one-year period from different functional areas of an urban WWTP in Jinan city, Shandong, China. A total of 8 CCREC were isolated from 168 samples with selective agar and PCR, corresponding to high prevalence of 4.8%, co-harboring carbapenem resistance genes (blaNDM) and colistin resistance gene (mcr-1) and subsequently whole-genome sequenced. Additionally, all isolates were multidrug-resistant by antimicrobial susceptibility testing and carried a variety of antibiotic resistance genes. Two isolates carrying virulence genes associated with avian pathogenic E. coli were identified, one belonging to the high-risk clone O101:H9-ST167. Southern blotting was used to characterize CCREC isolates and plasmids carrying blaNDM-genes or mcr-1 could be transferred to a recipient strain E. coli J53 by in vitro conjugation assays. Resistance to other antibiotic classes were sporadically co-transferred to the transconjugant. Transposition of and mcr-1-carrying element from a transferable IncHI2-plasmid was observed among two CCREC clones isolated within 4 days of each other. The occurrence of multidrug-resistant CCREC capable of transferring their antibiotic resistance genotypes via conjugative plasmids is alarming. WWTPs bring bacteria from different sources together, providing opportunities for horizontal exchange of DNA among compatible hosts. Further dissemination of the colistin-, carbapenem-, or both colistin- and carbapenem resistant E. coli could lead to a serious threat to public health.
Collapse
Affiliation(s)
- Di Wang
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Huiyun Zou
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ling Zhao
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Qi Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Min Meng
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xuewen Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| | - Björn Berglund
- Department of Cell and Molecular Biology, Uppsala University, 751 24, Uppsala, Sweden
| |
Collapse
|