51
|
Cui M, Zhang HR, Ouyang F, Guo YQ, Li RF, Duan SF, Xiong TD, Wang YL, Wang XQ. Dual Enzyme-Like Performances of PLGA Grafted Maghemite Nanocrystals and Their Synergistic Chemo/Chemodynamic Treatment for Human Lung Adenocarcinoma A549 Cells. J Biomed Nanotechnol 2021; 17:1007-1019. [PMID: 34167616 DOI: 10.1166/jbn.2021.3062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, the emergence of non-toxic but catalytically active inorganic nanoparticles has attracted great attention for cancer treatment, but the therapeutic effect has been affected by the limited reactive oxygen species in tumors. Therefore, the combination of chemotherapy and chemodynamic therapy is regarded as a promising therapeutic strategy. In this paper, we reported the preparation and bioactivity evaluation of poly(lactic acid-co-glycolic acid) (PLGA) grafted-γ-Fe₂O₃ nanoparticles with dual response of endogenous peroxidase and catalase like activities. Our hypothesis is that PLGAgrafted γ-Fe₂O₃ nanoparticles could be used as a drug delivery system for the anti-tumor drug doxorubicin to inhibit the growth of lung adenocarcinoma A549 cells; meanwhile, based on its mimic enzyme properties, this kind of nanoparticles could be combined with doxorubicin in the treatment of A549 cells. Our experimental results showed that the PLGAgrafted γ-Fe₂O₃ nanoparticles could simulate the activity of catalase and decompose hydrogen peroxide into H₂O and oxygen in neutral tumor microenvironment, thus reducing the oxidative damage caused by hydrogenperoxide to lung adenocarcinoma A549 cells. In acidic microenvironment, PLGA grafted γ-Fe₂O₃ nanoparticles could simulate the activity of peroxidase and effectively catalyze the decomposition of hydrogen peroxide to generate highly toxic hydroxyl radicals, which could cause the death of A549 cells. Furthermore, the synergistic effect of peroxidase-like activity of PLGA-grafted γ-Fe₂O₃ nanoparticles and doxorubicin could accelerate the apoptosisand destruction of A549 cells, thus enhancing the antitumor effect of doxorubicin-loaded PLGA-grafted γ-Fe₂O₃ nanoparticles. Therefore, this study provides an effective nanoplatform based on dual inorganic biomimetic nanozymes for the treatment of lung cancer.
Collapse
Affiliation(s)
- Miao Cui
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Hui-Ru Zhang
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Fan Ouyang
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Yu-Qi Guo
- Henan Provincial People's Hospital, Zhengzhou 450003, P. R. China
| | - Rui-Fang Li
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Shao-Feng Duan
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Tian-Di Xiong
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| | - Yun-Long Wang
- Henan Bioengineering Research Center, Zhengzhou 450046, P. R. China
| | - Xue-Qin Wang
- College of Bioengineering, Henan University of Technology, Zhengzhou, Henan 450001, P. R. China
| |
Collapse
|
52
|
The electrochemical immunosensor of the "signal on" strategy that activates MMoO4 (M = Co, Ni) peroxidase with Cu2+ to achieve ultrasensitive detection of CEA. Anal Chim Acta 2021; 1176:338757. [PMID: 34399891 DOI: 10.1016/j.aca.2021.338757] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 12/20/2022]
Abstract
A new type of ultrasensitive electrochemical immunosensor with "signal on" strategy was designed for quantitative detection of CEA. The sensing strategy design is based on the following principles: We use HMSNs-Cu2+@HA as the signal probe, the structure of HA is destroyed under acidic conditions, and the released Cu2+ activates the substrate material MMoO4 (M = Co, Ni) Peroxidase activity initiates the reaction of catalytic H2O2 and realizes the "signal on" condition of electrical signals. This strategy has the following advantages: (1) HA coating of HMSNs-Cu2+ can prevent Cu2+ leakage, has good biocompatibility and can be connected with more antibodies. (2) The prepared sensor has the characteristics of high sensitivity and a low detection limit. When the electrode substrate was CoMoO4, the detection range of the immunosensor was 0.01 pg/mL-40 ng/mL, and the detection limit was 0.0035 pg/mL (S/N = 3). This work innovatively applies the catalytic activity of metal ion-activated nanozymes in the detection of CEA, providing a new perspective for the monitoring and analysis of cancer markers.
Collapse
|
53
|
L-Cysteine as an Irreversible Inhibitor of the Peroxidase-Mimic Catalytic Activity of 2-Dimensional Ni-Based Nanozymes. NANOMATERIALS 2021; 11:nano11051285. [PMID: 34068259 PMCID: PMC8153149 DOI: 10.3390/nano11051285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 12/03/2022]
Abstract
The ability to modulate the catalytic activity of inorganic nanozymes is of high interest. In particular, understanding the interactions of inhibitor molecules with nanozymes can bring them one step closer to the natural enzymes and has thus started to attract intense interest. To date, a few reversible inhibitors of the nanozyme activity have been reported. However, there are no reports of irreversible inhibitor molecules that can permanently inhibit the activity of nanozymes. In the current work, we show the ability of L-cysteine to act as an irreversible inhibitor to permanently block the nanozyme activity of 2-dimensional (2D) NiO nanosheets. Determination of the steady state kinetic parameters allowed us to obtain mechanistic insights into the catalytic inhibition process. Further, based on the irreversible catalytic inhibition capability of L-cysteine, we demonstrate a highly specific sensor for the detection of this biologically important molecule.
Collapse
|
54
|
|
55
|
Yadav N, Singh S. Polyoxometalate-Mediated Vacancy-Engineered Cerium Oxide Nanoparticles Exhibiting Controlled Biological Enzyme-Mimicking Activities. Inorg Chem 2021; 60:7475-7489. [PMID: 33939401 DOI: 10.1021/acs.inorgchem.1c00766] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The biological enzyme-mimetic activity of cerium oxide nanoparticles (CeNPs) is well known to scavenge the reactive oxygen and nitrogen species in cell culture and animal models, imparting protection from the deleterious effects of oxidative and nitrosative stress. The superoxide dismutase (SOD)- and catalase-mimicking activity of CeNPs is reported to be controlled by the oxidation state of the surface "Ce" ions, where a high ratio of Ce3+/4+ or Ce4+/3+ has been considered for the displayed SOD and catalase-like activity, respectively. However, the redox behavior of CeNPs can be controlled by certain ligands that could offer changes in their enzyme-mimetic properties. Therefore, in this work, we have studied the enzyme-mimetic activities of CeNPs under the influence of polyoxometalates [phosphomolybdic acid (PMA) and phosphotungstic acid (PTA)], which are electron-dense molecules displaying quick and reversible multielectron redox reactions. Results revealed that the interaction of PMA with CeNPs results in the inhibition of the SOD-like activity; however, it has no impact on the catalase-like activity. Contrary to this, the interaction of PTA with CeNPs improved the SOD as well as catalase-like activities of CeNPs (3+), which generally do not exhibit catalase activity in the bare form. Although CeNPs (3+) did not show any peroxidase-like activity, CeNPs (4+) showed excellent activity, which was enhanced after the interaction with polyoxometalates. Further, the autoregeneration ability of CeNPs was found to be intact even after PTA or PMA interaction; however, the full catalytic activity was observed in the case of PTA but partially with PMA.
Collapse
Affiliation(s)
- Nisha Yadav
- Nanomaterials and Toxicology Lab, Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Sanjay Singh
- Nanomaterials and Toxicology Lab, Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
56
|
Direct electrochemical enhanced detection of dopamine based on peroxidase-like activity of Fe3O4@Au composite nanoparticles. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105943] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
57
|
Khan S, Sharifi M, Hasan A, Attar F, Edis Z, Bai Q, Derakhshankhah H, Falahati M. Magnetic nanocatalysts as multifunctional platforms in cancer therapy through the synthesis of anticancer drugs and facilitated Fenton reaction. J Adv Res 2021; 30:171-184. [PMID: 34026294 PMCID: PMC8132204 DOI: 10.1016/j.jare.2020.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/16/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022] Open
Abstract
Background Heterocyclic compounds have always been used as a core portion in the development of anticancer drugs. However, there is a pressing need for developing inexpensive and simple alternatives to high-cost and complex chemical agents-based catalysts for large-scale production of heterocyclic compounds. Also, development of some smart platforms for cancer treatment based on nanoparticles (NPs) which facilitate Fenton reaction have been widely explored by different scientists. Magnetic NPs not only can serve as catalysts in the synthesis of heterocyclic compounds with potential anticancer properties, but also are widely used as smart agents in targeting cancer cells and inducing Fenton reactions. Aim of Review Therefore, in this review we aim to present an updated summary of the reports related to the main clinical or basic application and research progress of magnetic NPs in cancer as well as their application in the synthesis of heterocyclic compounds as potential anticancer drugs. Afterwards, specific tumor microenvironment (TME)-responsive magnetic nanocatalysts for cancer treatment through triggering Fenton-like reactions were surveyed. Finally, some ignored factors in the design of magnetic nanocatalysts- triggered Fenton-like reaction, challenges and future perspective of magnetic nanocatalysts-assisted synthesis of heterocyclic compounds and selective cancer therapy were discussed.Key Scientific Concepts of Review:This review may pave the way for well-organized translation of magnetic nanocatalysts in cancer therapy from the bench to the bedside.
Collapse
Affiliation(s)
- Suliman Khan
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Farnoosh Attar
- Department of Food Toxicology, Research Center of Food Technology and Agricultural Products, Standard Research Institute (SRI), Karaj, Iran
| | - Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Qian Bai
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, PR China
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
58
|
Wei M, Lee J, Xia F, Lin P, Hu X, Li F, Ling D. Chemical design of nanozymes for biomedical applications. Acta Biomater 2021; 126:15-30. [PMID: 33652165 DOI: 10.1016/j.actbio.2021.02.036] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
With the advancement of nanochemistry, artificial nanozymes with high catalytic stability, low manufacturing and storage cost, and greater design flexibility over natural enzymes, have emerged as a next-generation nanomedicine. The catalytic activity and selectivity of nanozymes can be readily controlled and optimized by the rational chemical design of nanomaterials. This review summarizes the various chemical approaches to regulate the catalytic activity and selectivity of nanozymes for biomedical applications. We focus on the in-depth correlation between the physicochemical characteristics and catalytic activities of nanozymes from several aspects, including regulating chemical composition, controlling morphology, altering the size, surface modification and self-assembly. Furthermore, the chemically designed nanozymes for various biomedical applications such as biosensing, infectious disease therapy, cancer therapy, neurodegenerative disease therapy and injury therapy, are briefly summarized. Finally, the current challenges and future perspectives of nanozymes are discussed from a chemistry point of view. STATEMENT OF SIGNIFICANCE: As a kind of nanomaterials that performs enzyme-like properties, nanozymes perform high catalytic stability, low manufacturing and storage cost, attracting the attention of researchers from various fields. Notably, chemically designed nanozymes with robust catalytic activity, tunable specificity and multi-functionalities are promising for biomedical applications. It's crucial to define the correlation between the physicochemical characteristics and catalytic activities of nanozymes. To help readers understand this rapidly expanding field, in this review, we summarize various chemical approaches that regulate the catalytic activity and selectivity of nanozymes together with the discussion of related mechanisms, followed by the introduction of diverse biomedical applications using these chemically well-designed nanozymes. Hopefully our review will bridge the chemical design and biomedical applications of nanozymes, supporting the extensive research on high-performance nanozymes.
Collapse
Affiliation(s)
- Min Wei
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiyoung Lee
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fan Xia
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Lin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi Hu
- Department of Clinical Pharmacy, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310058, China; School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
59
|
Xiao W, Su Z, Zhao Y, Wang C. Microwave assisted polyol process for time-saving synthesis of superparamagnetic nanoparticles and application in artificial mimic enzyme. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abf2ce] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
A microwave assisted polyol process accomplished within 10 min was developed for synthesis of superparamagnetic Fe3O4 nanoparticles (MNPs) with well controlled size between 2 and 6 nm. Effects of reaction time and temperature on the size of the MNPs were investigated through transmission electronic microscope, x-ray diffraction pattern, thermogravimetic and magnetic analysis. The results indicates that longer reaction time or higher temperature lead to formation of MNPs with larger size. As a proof-of-concept, the MNPs were utilized as peroxidase and their activity was also investigated. Oxidation of typical substrate, 3, 3’, 5, 5’ -tetramethylbenzidine, can be proceeded by using the MNPs as artificial mimic enzyme. The MNPs display the maximal catalyzed activity under the optimum condition as pH = 3.5, 40 °C and concentration of TMB and H2O2 with 120 and 110 mmol·l−1, respectively. This work provides a new way for fast synthesis of MNPs, which are of potential application in artificial mimic enzyme.
Collapse
|
60
|
Adhikari A, Mondal S, Das M, Biswas P, Pal U, Darbar S, Bhattacharya SS, Pal D, Saha‐Dasgupta T, Das AK, Mallick AK, Pal SK. Incorporation of a Biocompatible Nanozyme in Cellular Antioxidant Enzyme Cascade Reverses Huntington's Like Disorder in Preclinical Model. Adv Healthc Mater 2021; 10:e2001736. [PMID: 33326181 DOI: 10.1002/adhm.202001736] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/18/2020] [Indexed: 12/11/2022]
Abstract
The potentiality of nano-enzymes in therapeutic use has directed contemporary research to develop a substitute for natural enzymes, which are suffering from several disadvantages including low stability, high cost, and difficulty in storage. However, inherent toxicity, inefficiency in the physiological milieu, and incompatibility to function in cellular enzyme networks limit the therapeutic use of nanozymes in living systems. Here, it is shown that citrate functionalized manganese-based biocompatible nanoscale material (C-Mn3 O4 NP) efficiently mimics glutathione peroxidase (GPx) enzyme in the physiological milieu and easily incorporates into the cellular multienzyme cascade for H2 O2 scavenging. A detailed computational study reveals the mechanism of the nanozyme action. The in vivo therapeutic efficacy of C-Mn3 O4 nanozyme is further established in a preclinical animal model of Huntington's disease (HD), a prevalent progressive neurodegenerative disorder, which has no effective medication to date. Management of HD in preclinical animal trial using a biocompatible (non-toxic) nanozyme as a part of the metabolic network may uncover a new paradigm in nanozyme based therapeutic strategy.
Collapse
Affiliation(s)
- Aniruddha Adhikari
- Department of Chemical, Biological and Macromolecular Sciences S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
| | - Susmita Mondal
- Department of Chemical, Biological and Macromolecular Sciences S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
| | - Monojit Das
- Department of Zoology, Uluberia College University of Calcutta Uluberia 711315 India
- Department of Zoology Vidyasagar University Rangamati 721102 India
| | - Pritam Biswas
- Department of Microbiology St. Xavier's College 30, Mother Teresa Sarani Kolkata 700016 India
| | - Uttam Pal
- Technical Research Centre S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
| | - Soumendra Darbar
- Research & Development Division Dey's Medical Stores (Mfg.) Ltd 62, Bondel Road, Ballygunge Kolkata 700019 India
| | | | - Debasish Pal
- Department of Zoology, Uluberia College University of Calcutta Uluberia 711315 India
| | - Tanusri Saha‐Dasgupta
- Technical Research Centre S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
- Department of Condensed Matter Physics and Material Sciences S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
| | - Anjan Kumar Das
- Department of Pathology Coochbehar Govt. Medical College and Hospital Silver Jubilee Road Cooch Behar 736101 India
| | - Asim Kumar Mallick
- Department of Pediatric Medicine Nil Ratan Sircar Medical College and Hospital 138, Acharya Jagadish Chandra Bose Road, Sealdah Kolkata 700014 India
| | - Samir Kumar Pal
- Department of Chemical, Biological and Macromolecular Sciences S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
- Department of Zoology, Uluberia College University of Calcutta Uluberia 711315 India
- Technical Research Centre S. N. Bose National Centre for Basic Sciences Block JD, Sector 3, Salt Lake Kolkata 700106 India
| |
Collapse
|
61
|
Tian R, Xu J, Luo Q, Hou C, Liu J. Rational Design and Biological Application of Antioxidant Nanozymes. Front Chem 2021; 8:831. [PMID: 33644000 PMCID: PMC7905316 DOI: 10.3389/fchem.2020.00831] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/07/2020] [Indexed: 12/13/2022] Open
Abstract
Nanozyme is a type of nanostructured material with intrinsic enzyme mimicking activity, which has been increasingly studied in the biological field. Compared with natural enzymes, nanozymes have many advantages, such as higher stability, higher design flexibility, and more economical production costs. Nanozymes can be used to mimic natural antioxidant enzymes to treat diseases caused by oxidative stress through reasonable design and modification. Oxidative stress is caused by imbalances in the production and elimination of reactive oxygen species (ROS) and reactive nitrogen species (RNS). This continuous oxidative stress can cause damage to some biomolecules and significant destruction to cell structure and function, leading to many physiological diseases. In this paper, the methods to improve the antioxidant properties of nanozymes were reviewed, and the applications of nanozyme antioxidant in the fields of anti-aging, cell protection, anti-inflammation, wound repair, cancer, traumatic brain injury, and nervous system diseases were introduced. Finally, the future challenges and prospects of nanozyme as an ideal antioxidant were discussed.
Collapse
Affiliation(s)
- Ruizhen Tian
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Jiayun Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.,College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, China
| | - Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Chunxi Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| |
Collapse
|
62
|
Yoo S, Min K, Tae G, Han MS. A long-term stable paper-based glucose sensor using a glucose oxidase-loaded, Mn 2BPMP-conjugated nanocarrier with a smartphone readout. NANOSCALE 2021; 13:4467-4474. [PMID: 33503078 DOI: 10.1039/d0nr06348g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A simple paper-based analytical device (PAD) for the one-pot detection of glucose was developed herein using an artificial peroxidase-functionalized and glucose oxidase (GOx)-loaded pluronic-based nanocarrier (PNC). Mn2BPMP (BPMP; 2,6-bis[(bis(2-pyridylmethyl)amino)-methyl]-4-methylphenolate), an artificial peroxidase, was conjugated to PNC, allowing GOx to be loaded with a very high encapsulation efficiency. In solution, Mn2BPMP-PNC showed higher peroxidase-like catalytic efficiency than did Mn2BPMP at physiological pH. In addition, glucose detection via enzyme cascade reaction between GOx and Mn2BPMP in the GOx loaded-Mn2BPMP-PNC was more sensitive than the simple combination of Mn2BPMP and GOx with excellent selectivity. Subsequently, a PAD was fabricated using a laser printer with an assay substance containing GOx loaded-Mn2BPMP-PNC and peroxidase chromogenic substrate. The prepared Mn2BPMP-PNC-based PAD quantitatively measured glucose in human serum ranging from normal levels to those typical for diabetics as well as in buffer by obtaining RGB (red, green, and blue) color values through smartphone readout or the naked eye. Importantly, the present PNC-based PAD maintained the detection efficiency during storage at room temperature for 6 weeks in contrast to the rapid decrease in detection efficiency obtained for PAD containing Mn2BPMP and GOx without PNC.
Collapse
Affiliation(s)
- Soyeon Yoo
- Department of Chemistry, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | | | | | | |
Collapse
|
63
|
Dou J, Li L, Guo M, Mei F, Zheng D, Xu H, Xue R, Bao X, Zhao F, Zhang Y. Iron Oxide Nanoparticles Combined with Cytosine Arabinoside Show Anti-Leukemia Stem Cell Effects on Acute Myeloid Leukemia by Regulating Reactive Oxygen Species. Int J Nanomedicine 2021; 16:1231-1244. [PMID: 33633448 PMCID: PMC7900778 DOI: 10.2147/ijn.s278885] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND AND AIM Acute myeloid leukemia (AML), initiated and maintained by leukemia stem cells (LSCs), is often relapsed or refractory to therapy. The present study aimed at assessing the effects of nanozyme-like Fe3O4 nanoparticles (IONPs) combined with cytosine arabinoside (Ara-C) on LSCs in vitro and in vivo. METHODS The CD34+CD38-LSCs, isolated from human AML cell line KG1a by a magnetic activated cell sorting method, were treated with Ara-C, IONPs, and Ara-C+ IONPs respectively in vitro. The cellular proliferation, apoptosis, reactive oxygen species (ROS), and the related molecular expression levels in LSCs were analyzed using flow cytometry, RT-qPCR, and Western blot. The nonobese diabetic/severe combined immune deficiency mice were transplanted with LSCs or non-LSCs via tail vein, and then the mice were treated with Ara-C, IONPs and IONPs plus Ara-C, respectively. The therapeutic effects on the AML bearing mice were further evaluated. RESULTS LSCs indicated stronger cellular proliferation, more clone formation, and more robust resistance to Ara-C than non-LSCs. Compared with LSCs treated with Ara-C alone, LSCs treated with IONPs plus Ara-C showed a significant increase in apoptosis and ROS levels that might be regulated by nanozyme-like IONPs via improving the expression of pro-oxidation molecule gp91-phox but decreasing the expression of antioxidation molecule superoxide dismutase 1. The in vivo results suggested that, compared with the AML bearing mice treated with Ara-C alone, the mice treated with IONPs plus Ara-C markedly reduced the abnormal leukocyte numbers in peripheral blood and bone marrow and significantly extended the survival of AML bearing mice. CONCLUSION IONPs combined with Ara-C showed the effectiveness on reducing AML burden in the mice engrafted with LSCs and extending mouse survival by increasing LSC's ROS level to induce LSC apoptosis. Our findings suggest that targeting LSCs could control the AML relapse by using IONPs plus Ara-C.
Collapse
Affiliation(s)
- Jun Dou
- Department of Pathogenic Biology and Immunology, Medical College, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Luoyang Li
- Department of Pathogenic Biology and Immunology, Medical College, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Mei Guo
- Department of Pathogenic Biology and Immunology, Medical College, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Feng Mei
- Department of Pathogenic Biology and Immunology, Medical College, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Danfeng Zheng
- Department of Pathogenic Biology and Immunology, Medical College, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Hui Xu
- Department of Pathogenic Biology and Immunology, Medical College, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Rui Xue
- Department of Pathogenic Biology and Immunology, Medical College, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Xueyang Bao
- Department of Pathogenic Biology and Immunology, Medical College, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Fengshu Zhao
- Department of Pathogenic Biology and Immunology, Medical College, Southeast University, Nanjing, 210009, People’s Republic of China
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
64
|
Li Y, Liu J. Nanozyme's catching up: activity, specificity, reaction conditions and reaction types. MATERIALS HORIZONS 2021; 8:336-350. [PMID: 34821258 DOI: 10.1039/d0mh01393e] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanozymes aim to mimic enzyme activities. In addition to catalytic activity, nanozymes also need to have specificity and catalyze biologically relevant reactions under physiological conditions to fit in the definition of enzyme and to set nanozymes apart from typical inorganic catalysts. Previous discussions in the nanozyme field mainly focused on the types of reactions or certain analytical, biomedical or environmental applications. In this article, we discuss efforts made to mimic enzymes. First, the catalytic cycles are compared, where a key difference is specific substrate binding by enzymes versus non-specific substrate adsorption by nanozymes. We then reviewed efforts to engineer and surface-modify nanomaterials to accelerate reaction rates, strategies to graft affinity ligands and molecularly imprinted polymers to achieve specific catalysis, and methods to bring nanozyme reactions to neutral pH and ambient temperature. Most of the current nanozyme reactions used a few model chromogenic substrates of no biological relevance. Therefore, we also reviewed efforts to catalyze the conversion of biomolecules and biopolymers using nanozymes. By the efforts to close the gaps between nanozymes and enzymes, we believe nanozymes are catching up rapidly. Still, challenges exist in materials design to further improve nanozymes as true enzyme mimics and achieve impactful applications.
Collapse
Affiliation(s)
- Yuqing Li
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| | | |
Collapse
|
65
|
Xu L, Yang L, Liu A. Facile one-pot synthesis of Mn 3O 4 nanorods and their analytical application. NEW J CHEM 2021. [DOI: 10.1039/d1nj02513a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
One-pot synthesis of Mn3O4 nanorods in aqueous solution at room temperature without using templates and surfactants was achieved for the first time, opening a new route for preparing various metal nanorods for detecting H2O2-related targets.
Collapse
Affiliation(s)
- Lijun Xu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Lu Yang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
- Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China
| | - Aihua Liu
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| |
Collapse
|
66
|
Selective and sensitive detection of cholesterol using intrinsic peroxidase-like activity of biogenic palladium nanoparticles. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
67
|
Shen L, Ye D, Zhao H, Zhang J. Perspectives for Single-Atom Nanozymes: Advanced Synthesis, Functional Mechanisms, and Biomedical Applications. Anal Chem 2020; 93:1221-1231. [PMID: 33371664 DOI: 10.1021/acs.analchem.0c04084] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Single-atom nanozymes (SANs) are one of the newest generations of nanozymes, which have been greatly developed in the past few years and exploited widely for many applications, such as biosensing, disease diagnosis and therapy, bioimaging, and so on. SANs, possessing dispersed single-atom structures and a well-defined coordination environment, exhibit remarkable catalytic performance with both high activity and stability. In this paper, the most recent progress in SANs is reviewed in terms of their advanced synthesis, characterization, functional mechanisms, performance validation/optimization, and biomedical applications. Several technical challenges hindering practical applications of SANs are analyzed, and possible research directions are also proposed for overcoming the challenges.
Collapse
|
68
|
Shah F, Yadav N, Singh S. Phosphotungstate-sandwiched between cerium oxide and gold nanoparticles exhibit enhanced catalytic reduction of 4-nitrophenol and peroxidase enzyme-like activity. Colloids Surf B Biointerfaces 2020; 198:111478. [PMID: 33272726 DOI: 10.1016/j.colsurfb.2020.111478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/25/2020] [Accepted: 11/15/2020] [Indexed: 11/17/2022]
Abstract
The catalytic performance of gold (Au) decorated cerium oxide nanoparticles (nanoceria) can be potentially crucial because such a defined arrangement of multiple materials may provide improved chemical and biological catalytic activities. In this work, we have utilized a highly localized approach to reduce Au nanoparticles (AuNPs) on the nanoceria-phosphotungstate composite's surface. Phosphotungstic acid (PTA) bound on nanoceria's surface acts as a UV-light dependent redox molecule that specifically reduces AuNPs. The mechanistic study demonstrates that PTA* molecules outstanding electron transfer ability leads to an excellent improvement in the catalytic performance of nanoceria-PTA*-AuNPs composite. Nanoceria-PTA*-AuNPs showed better and faster degradation of 4-nitrophenol than either nanoceria or PTA*-AuNPs. The developed nanoceria-PTA*-AuNPs exhibited efficient (>80 % in 5 min) conversion of 4-NP into 4-AP at room temperature and neutral pH. Additionally, the nanoceria-PTA*-AuNPs also showed improved peroxidase enzyme-like activity than the corresponding control samples. The observed catalytic activity could be due to the rapid electron transfer from nanoceria to AuNPs, where the metal nanoparticle acts as an electron sink, mediated by PTA*. Nanoceria-PTA*-AuNPs showed ∼ 2-fold better catalytic oxidation of peroxidase substrate than PTA*-AuNPs. The reported nanoceria-PTA*-AuNPs nanocomposites are expected to display improved biological enzyme-like activities, photocatalysis, and other biomedical applications.
Collapse
Affiliation(s)
- Foram Shah
- Nanomaterials and Nanotoxicology Lab, Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Nisha Yadav
- Nanomaterials and Nanotoxicology Lab, Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Sanjay Singh
- Nanomaterials and Nanotoxicology Lab, Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
69
|
Chen Q, Liu Y, Liu J, Liu J. Liposome‐Boosted Peroxidase‐Mimicking Nanozymes Breaking the pH Limit. Chemistry 2020; 26:16659-16665. [DOI: 10.1002/chem.202004133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/03/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Qiaoshu Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and, Molecular Engineering of, Hunan Province Hunan University Changsha 410082 P. R. China
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Yibo Liu
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L 3G1 Canada
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Key Laboratory for Bio-Nanotechnology and, Molecular Engineering of, Hunan Province Hunan University Changsha 410082 P. R. China
| | - Juewen Liu
- Department of Chemistry Waterloo Institute for Nanotechnology University of Waterloo Waterloo Ontario N2L 3G1 Canada
- Centre for Eye and Vision Research 17W Hong Kong Science Park Hong Kong China
| |
Collapse
|
70
|
Baldim V, Yadav N, Bia N, Graillot A, Loubat C, Singh S, Karakoti AS, Berret JF. Polymer-Coated Cerium Oxide Nanoparticles as Oxidoreductase-like Catalysts. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42056-42066. [PMID: 32812730 DOI: 10.1021/acsami.0c08778] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cerium oxide nanoparticles have been shown to mimic oxidoreductase enzymes by catalyzing the decomposition of organic substrates and reactive oxygen species. This mimicry can be found in superoxide radicals and hydrogen peroxides, which are harmful molecules produced in oxidative stress-associated diseases. Despite the fact that nanoparticle functionalization is mandatory in the context of nanomedicine, the influence of polymer coatings on their enzyme-like catalytic activity is poorly understood. In this work, six polymer-coated cerium oxide nanoparticles are prepared by the association of 7.8 nm cerium oxide cores with two poly(sodium acrylate) and four poly(ethylene glycol) (PEG)-grafted copolymers with different terminal or anchoring end groups, such as phosphonic acids. The superoxide dismutase-, catalase-, peroxidase-, and oxidase-like catalytic activities of the coated nanoparticles were systematically studied. It is shown that the polymer coatings do not affect the superoxide dismutase-like, impair the catalase-like and oxidase-like, and surprisingly improves peroxidase-like catalytic activities of cerium oxide nanoparticles. It is also demonstrated that the particles coated with the PEG-grafted copolymers perform better than the poly(acrylic acid)-coated ones as oxidoreductase-like enzymes, a result that confirms the benefit of having phosphonic acids as anchoring groups at the particle surface.
Collapse
Affiliation(s)
- Victor Baldim
- Matière et systèmes complexes, Université de Paris, CNRS, 75013 Paris, France
- Electrochimie et Physicochimie aux Interfaces, Université de Versailles Saint-Quentin-en-Yvelines, 45 Avenue des États-Unis, 78035 Versailles, France
| | - Nisha Yadav
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad, 380009 Gujarat, India
| | - Nicolas Bia
- SPECIFIC POLYMERS, ZAC Via Domitia, 150 Avenue des Cocardières, 34160 Castries, France
| | - Alain Graillot
- SPECIFIC POLYMERS, ZAC Via Domitia, 150 Avenue des Cocardières, 34160 Castries, France
| | - Cédric Loubat
- SPECIFIC POLYMERS, ZAC Via Domitia, 150 Avenue des Cocardières, 34160 Castries, France
| | - Sanjay Singh
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Navrangpura, Ahmedabad, 380009 Gujarat, India
| | - Ajay S Karakoti
- Global Innovative Center for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment (FEBE), The University of Newcastle, Callaghan, NSW 2308, Australia
| | | |
Collapse
|
71
|
Stasyuk N, Smutok O, Demkiv O, Prokopiv T, Gayda G, Nisnevitch M, Gonchar M. Synthesis, Catalytic Properties and Application in Biosensorics of Nanozymes and Electronanocatalysts: A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E4509. [PMID: 32806607 PMCID: PMC7472306 DOI: 10.3390/s20164509] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
Abstract
The current review is devoted to nanozymes, i.e., nanostructured artificial enzymes which mimic the catalytic properties of natural enzymes. Use of the term "nanozyme" in the literature as indicating an enzyme is not always justified. For example, it is used inappropriately for nanomaterials bound with electrodes that possess catalytic activity only when applying an electric potential. If the enzyme-like activity of such a material is not proven in solution (without applying the potential), such a catalyst should be named an "electronanocatalyst", not a nanozyme. This paper presents a review of the classification of the nanozymes, their advantages vs. natural enzymes, and potential practical applications. Special attention is paid to nanozyme synthesis methods (hydrothermal and solvothermal, chemical reduction, sol-gel method, co-precipitation, polymerization/polycondensation, electrochemical deposition). The catalytic performance of nanozymes is characterized, a critical point of view on catalytic parameters of nanozymes described in scientific papers is presented and typical mistakes are analyzed. The central part of the review relates to characterization of nanozymes which mimic natural enzymes with analytical importance ("nanoperoxidase", "nanooxidases", "nanolaccase") and their use in the construction of electro-chemical (bio)sensors ("nanosensors").
Collapse
Affiliation(s)
- Nataliya Stasyuk
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
| | - Oleh Smutok
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
- Department of Biology and Chemistry, Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine
| | - Olha Demkiv
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
- Faculty of Veterinary Hygiene, Ecology and Law, Stepan Gzhytskyi National University of Veterinary Medicine and Biotechnologies, 79000 Lviv, Ukraine
| | - Tetiana Prokopiv
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
| | - Galina Gayda
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
| | - Marina Nisnevitch
- Department of Chemical Engineering, Ariel University, Kyriat-ha-Mada, Ariel 4070000, Israel;
| | - Mykhailo Gonchar
- Institute of Cell Biology, National Academy of Sciences of Ukraine, 79005 Lviv, Ukraine; (N.S.); (O.S.); (O.D.); (T.P.); (G.G.)
- Department of Biology and Chemistry, Drohobych Ivan Franko State Pedagogical University, 82100 Drohobych, Ukraine
| |
Collapse
|
72
|
Sadaf A, Ahmad R, Ghorbal A, Elfalleh W, Khare SK. Synthesis of cost-effective magnetic nano-biocomposites mimicking peroxidase activity for remediation of dyes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27211-27220. [PMID: 31062240 DOI: 10.1007/s11356-019-05270-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
The present study describes preparation of cellulose incorporated magnetic nano-biocomposites (CNPs) by using cellulose as base material. The prepared CNPs were characterised by SEM, EDAX, TEM, XRD, and FT-IR and found to exhibit an intrinsic peroxidase-like activity with a Km and Vmax of 550 μM and 3.8 μM/ml/min, respectively. The CNPs exhibited higher pH and thermal stability compared to commercial peroxidase. These nanocomposites were able to completely remove (i) a persistent azo dye, methyl orange at a concentration of 50 ppm, within 60 min under acidic conditions (pH 3.0) and also (ii) decolourize commercial textile dye mixture under acidic conditions within 30 min. CNP-mediated degradation of dyes into simple products was further confirmed by UV-Vis and AT-IR spectroscopy The added advantage of CNPs separation after decolourization by simple magnet due to their magnetic properties and consequent reusability makes them fairy attractive system for dye remediation from environmental samples or textile industries effluents.
Collapse
Affiliation(s)
- Ayesha Sadaf
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi, India
| | - Razi Ahmad
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi, India
| | - Achraf Ghorbal
- Department of Chemical Industry and Processes, Higher Institute of Applied Sciences and Technology of Gabes, Gabes, Tunisia
| | - Walid Elfalleh
- Department of Chemical Industry and Processes, Higher Institute of Applied Sciences and Technology of Gabes, Gabes, Tunisia
| | - Sunil Kumar Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Hauz Khas, New Delhi, India.
| |
Collapse
|
73
|
Xing Y, Si H, Sun D, Hou X. Magnetic Fe3O4@NH2-MIL-101(Fe) nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104929] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
74
|
Capasso Palmiero U, Küffner AM, Krumeich F, Faltova L, Arosio P. Adaptive Chemoenzymatic Microreactors Composed of Inorganic Nanoparticles and Bioinspired Intrinsically Disordered Proteins. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Umberto Capasso Palmiero
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH Zurich 8093 Zurich Switzerland
| | - Andreas M. Küffner
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH Zurich 8093 Zurich Switzerland
| | - Frank Krumeich
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH Zurich 8093 Zurich Switzerland
| | - Lenka Faltova
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH Zurich 8093 Zurich Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH Zurich 8093 Zurich Switzerland
| |
Collapse
|
75
|
Capasso Palmiero U, Küffner AM, Krumeich F, Faltova L, Arosio P. Adaptive Chemoenzymatic Microreactors Composed of Inorganic Nanoparticles and Bioinspired Intrinsically Disordered Proteins. Angew Chem Int Ed Engl 2020; 59:8138-8142. [DOI: 10.1002/anie.202000835] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/28/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Umberto Capasso Palmiero
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH Zurich 8093 Zurich Switzerland
| | - Andreas M. Küffner
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH Zurich 8093 Zurich Switzerland
| | - Frank Krumeich
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH Zurich 8093 Zurich Switzerland
| | - Lenka Faltova
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH Zurich 8093 Zurich Switzerland
| | - Paolo Arosio
- Department of Chemistry and Applied BiosciencesInstitute for Chemical and BioengineeringETH Zurich 8093 Zurich Switzerland
| |
Collapse
|
76
|
Rashtbari S, Dehghan G, Amini M. An ultrasensitive label-free colorimetric biosensor for the detection of glucose based on glucose oxidase-like activity of nanolayered manganese-calcium oxide. Anal Chim Acta 2020; 1110:98-108. [PMID: 32278405 DOI: 10.1016/j.aca.2020.03.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/04/2020] [Accepted: 03/10/2020] [Indexed: 11/29/2022]
Abstract
During the last years, enzyme-based biosensors have gained much more attention among the researchers and have had great success in the determination of different biological macromolecules. Nanomaterials with intrinsic enzyme-mimic activity are widely used in biomedicine as artificial enzymes. Here, we report glucose oxidase-mimic activity of nanolayered manganese-calcium (Mn-Ca) oxide nanoparticles (NL-MnCaO2). In this work, NL-MnCaO2nanoparticles were synthesized and characterized using different techniques including transmission electron microscopy (TEM), scanning electron microscopy (SEM), fourier-transform infrared spectroscopy (FTIR) and powder X-ray diffraction (XRD). Also, the ability of these compounds for the glucose and hydrogen peroxide (H2O2) determination was investigated. A non-enzymatic strategy for the colorimetric detection of glucose and H2O2 was reported which can be utilized not only for the rapid detection and analysis of glucose by the naked eye but also the quantitative assay of glucose by spectrophotometry. The in situ generated H2O2 and gluconic acid (GA) from the oxidation of glucose through the glucose oxidase-mimicking activity of NL-MnCaO2 was detected using a colorimetric method. Also, the results confirmed the application of these compounds for the detection of glucose in human serum samples with a detection limit (LOD) of 6.12 × 10-6 M. The results showed that NL-MnCaO2 can be used as an alternative for the natural enzymes and act as a simple, sensitive and enzyme-free biosensor for the detection of glucose in real samples. The proposed strategy shows some advantages including sensitivity, short detection time and low detection limit.
Collapse
Affiliation(s)
- Samaneh Rashtbari
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Mojtaba Amini
- Department of Chemistry, Faculty of Science, University of Maragheh, Maragheh, Iran
| |
Collapse
|
77
|
Rastogi L, Ankam DP, Dash K. Intrinsic peroxidase-like activity of 4-amino hippuric acid reduced/stabilized gold nanoparticles and its application in the selective determination of mercury and iron in ground water. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117805. [PMID: 31787536 DOI: 10.1016/j.saa.2019.117805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Herein, we report a method for the synthesis of 4-aminohippuric acid (4-AHA) reduced/stabilized gold nanoparticles and their peroxidase mimicking properties for the colorimetric detection of Fe3+ and Hg2+. The synthesis of nanoparticles was evidenced by appearance of bright red color and an absorption peak at 518 nm. Transmission electron microscopic (TEM) characterization revealed the nanoparticles to be spherical with average size of about 5.9 ± 1.7 nm. X-ray diffraction (XRD) analysis established highly crystalline nature of the nanoparticles. The synthesized nanoparticles have shown very good peroxidase mimicking property; exhibiting the catalytic oxidation of the chromogen 3,3',5,5'-tetramethyl benzidine (TMB) to a blue color product, in the presence of hydrogen peroxide. The peroxidase mimicking activity of the nanoparticles was found to be selectivity enhanced in the presence of Fe3+ and Hg2+ while there was no change in the activity in the presence of other concomitant ions. The mechanism studies revealed that the synthesized gold nanoparticles assisted in electron transfer during the catalytic process however the stimulation of peroxidase-like activity in the presence of Fe3+ and Hg2+ is owed to both generation of hydroxyl radical and accelerated electron transfer. The assay was made selective for iron by the addition of cysteine in acetate buffer; whereas the selective detection of mercury was achieved by carrying out the assay in citrate buffer. The linear ranges for the determination of Fe3+ and Hg2+ in deionized water were found to be: 5-50 ppb and 5-200 ppb respectively. The limits of quantification (LOQ) for Fe3+ and Hg2+ were 4.0 and 2.5 ppb respectively. The assay was applied for the determination of Fe3+ and Hg2+ in drinking and ground water samples. The method holds potential for the on-field screening of these metal ions in real environmental samples.
Collapse
Affiliation(s)
- Lori Rastogi
- National Centre for Compositional Characterization of Materials, Bhabha Atomic Research Centre, ECIL-Post, Hyderabad 500 062, Telangana, India
| | - Durga Prasad Ankam
- National Centre for Compositional Characterization of Materials, Bhabha Atomic Research Centre, ECIL-Post, Hyderabad 500 062, Telangana, India
| | - K Dash
- National Centre for Compositional Characterization of Materials, Bhabha Atomic Research Centre, ECIL-Post, Hyderabad 500 062, Telangana, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
78
|
Wang J, Wang Y, Zhang D. Exploring the bactericidal performance and application of novel mimic enzyme Co 4S 3. J Colloid Interface Sci 2020; 561:327-337. [PMID: 31771873 DOI: 10.1016/j.jcis.2019.10.110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 12/24/2022]
Abstract
Novel and uniform Co4S3 nanoparticles were synthesized through a two-step hydrothermal process and testified to possess intrinsic peroxidase (POx)-like activity for the first time. As a fresh POx mimic, we studied its catalytic properties, kinetic, and mechanism to catalyze the oxidation of 3, 3', 5, 5'-tetramethylbenzidine in the presence of H2O2. According to the experiments, the bactericidal mechanism is the same as that of simulated enzyme. Based on the ability of Co4S3 inducing H2O2 to express O2-, the bactericidal rate can be as high as 100%. Besides, using the POx-like activity of Co4S3, a new off-on sensor for H2O2 and l-cysteine (l-Cys) detection is constructed. The sensor reveals a good wide linear response to H2O2 in the 40-2000 µM with a detection limit of 18 µM, while l-Cys in the 20-100 mM with a detection limit of 10 mM. The proposed method also shows great stability, high selectivity, and excellent practicability.
Collapse
Affiliation(s)
- Jin Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, 19 (Jia) Yuquan Road, Beijing 100039, China; Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Yi Wang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Dun Zhang
- CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Open Studio for Marine Corrosion and Protection, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
79
|
|
80
|
Vallabani NVS, Vinu A, Singh S, Karakoti A. Tuning the ATP-triggered pro-oxidant activity of iron oxide-based nanozyme towards an efficient antibacterial strategy. J Colloid Interface Sci 2020; 567:154-164. [PMID: 32045737 DOI: 10.1016/j.jcis.2020.01.099] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 01/28/2023]
Abstract
An alarming increase in bacterial resistance towards various types of antibiotics makes it imperative to design alternate or combinational therapies to treat stubborn bacterial infections. In this perspective, emerging tools like nanozymes, nanomaterials with biological enzyme like characteristics, are being utilised to control infections caused by bacterial pathogens. Among several nanozymes used for antibacterial applications, Fe3O4 nanoparticles (NP) received great attention due to their effective peroxidase like activity. The pH dependent peroxidase activity of Fe3O4 NP results in generation of OH radical via the unique Fenton chemistry of iron. However, their pH dependent activity is restricted to acidic environment and dramatic loss in antibacterial activity is observed at near neutral pH. Here we describe a novel strategy to overcome the pH lacunae of citrate coated Fe3O4 NP by utilizing adenosine triphosphate disodium salt (ATP) as a synergistic agent to accelerate the OH radical production and restore its antibacterial activity over a wide range of pH. This synergistic combination (30 µg/mL Fe3O4 NP and 2.5 mM ATP) shows a high bactericidal activity against both gram positive (B. subtilis) and gram negative (E. coli) bacterial strains, in presence of H2O2, at neutral pH. The synergistic effect (Fe3O4 NP + ATP) is determined from the viability assessment and membrane damage studies and is further confirmed by comparing the concentration of generated OH radicals. Over all, this study illustrates ATP assisted and OH-mediated bactericidal activity of Fe3O4 nanozyme at near neutral pH.
Collapse
Affiliation(s)
- N V Srikanth Vallabani
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment (FEBE), The University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Sanjay Singh
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| | - Ajay Karakoti
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India; Global Innovative Center for Advanced Nanomaterials (GICAN), Faculty of Engineering and Built Environment (FEBE), The University of Newcastle, Callaghan, New South Wales 2308, Australia.
| |
Collapse
|
81
|
Nanozymes: created by learning from nature. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1183-1200. [DOI: 10.1007/s11427-019-1570-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/26/2019] [Indexed: 10/25/2022]
|
82
|
Shakil MS, Hasan MA, Sarker SR. Iron Oxide Nanoparticles for Breast Cancer Theranostics. Curr Drug Metab 2020; 20:446-456. [PMID: 30465497 DOI: 10.2174/1389200220666181122105043] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Breast cancer is the second leading cause of death in women worldwide. The extremely fast rate of metastasis and ability to develop resistance mechanism to all the conventional drugs make them very difficult to treat which are the causes of high morbidity and mortality of breast cancer patients. Scientists throughout the world have been focusing on the early detection of breast tumor so that treatment can be started at the very early stage. Moreover, conventional treatment processes such as chemotherapy, radiotherapy, and local surgery suffer from various limitations including toxicity, genetic mutation of normal cells, and spreading of cancer cells to healthy tissues. Therefore, new treatment regimens with minimum toxicity to normal cells need to be urgently developed. METHODS Iron oxide nanoparticles have been widely used for targeting hyperthermia and imaging of breast cancer cells. They can be conjugated with drugs, proteins, enzymes, antibodies or nucleotides to deliver them to target organs, tissues or tumors using external magnetic field. RESULTS Iron oxide nanoparticles have been successfully used as theranostic agents for breast cancer both in vitro and in vivo. Furthermore, their functionalization with drugs or functional biomolecules enhance their drug delivery efficiency and reduces the systemic toxicity of drugs. CONCLUSION This review mainly focuses on the versatile applications of superparamagnetic iron oxide nanoparticles on the diagnosis, treatment, and detecting progress of breast cancer treatment. Their wide application is because of their excellent superparamagnetic, biocompatible and biodegradable properties.
Collapse
Affiliation(s)
- Md Salman Shakil
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Md Ashraful Hasan
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Satya Ranjan Sarker
- Department of Biotechnology and Genetic Engineering, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| |
Collapse
|
83
|
Chishti B, Fouad H, Seo HK, Alothman OY, Ansari ZA, Ansari SG. ATP fosters the tuning of nanostructured CeO2 peroxidase-like activity for promising antibacterial performance. NEW J CHEM 2020. [DOI: 10.1039/c9nj05955e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recyclable nano CeO2 POD mimic records a Km reduction (∼30% and ∼19.72% for TMB and H2O2, respectively) in 900 seconds at pH 4.5. ATP boosts catalytic feasibility in nano CeO2 at physiological pH.
Collapse
Affiliation(s)
- Benazir Chishti
- Centre for Interdisciplinary Research in Basic Science
- Jamia Millia Islamia
- India
| | - H. Fouad
- Applied Medical Science Dept. Community College
- King Saud University
- Riyadh 11433
- Saudi Arabia
- Biomedical Engineering Department
| | - H. K. Seo
- School of Chemical Engineering
- Jeonbuk National University
- Jeonju 54896
- South Korea
| | - Othman Y. Alothman
- Chemical Engineering Department
- College of Engineering
- King Saud University
- Riyadh
- Saudi Arabia
| | - Z. A. Ansari
- Centre for Interdisciplinary Research in Basic Science
- Jamia Millia Islamia
- India
| | - S. G. Ansari
- Centre for Interdisciplinary Research in Basic Science
- Jamia Millia Islamia
- India
| |
Collapse
|
84
|
Kang T, Kim YG, Kim D, Hyeon T. Inorganic nanoparticles with enzyme-mimetic activities for biomedical applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213092] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
85
|
He SB, Zhuang QQ, Yang L, Lin MY, Kuang Y, Peng HP, Deng HH, Xia XH, Chen W. A Heparinase Sensor Based on a Ternary System of Hg2+–Heparin–Osmium Nanoparticles. Anal Chem 2019; 92:1635-1642. [DOI: 10.1021/acs.analchem.9b05222] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shao-Bin He
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Quan-Quan Zhuang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
- Department of Pharmacy, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Liu Yang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Mei-Ying Lin
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Ye Kuang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Hua-Ping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Hao-Hua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
86
|
Li S, Zhao X, Yu X, Wan Y, Yin M, Zhang W, Cao B, Wang H. Fe 3O 4 Nanozymes with Aptamer-Tuned Catalysis for Selective Colorimetric Analysis of ATP in Blood. Anal Chem 2019; 91:14737-14742. [PMID: 31622079 DOI: 10.1021/acs.analchem.9b04116] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this work, a simple and highly selective colorimetric method has been developed for quantifying trace-level ATP using Fe3O4 nanoparticles (Fe3O4 NPs). It was discovered that Fe3O4 NPs could present the dramatically enhanced catalysis once anchored with ATP-specific aptamers (Apts), which is about 6-fold larger than that of bare Fe3O4 NPs. In the presence of ATP, however, the Apts would be desorbed from Fe3O4 NPs due to the Apts-target binding event, leading to the decrease of catalysis rationally depending on ATP concentrations. A colorimetric strategy was thereby developed to facilitate the highly selective detection of ATP, showing the linear concentrations ranging from 0.50 to 100 μM. Subsequently, the developed ATP sensor was employed for the evaluation of ATP in blood with the analysis performances comparably better than those of the documented detection methods, showing the potential applications in the clinical laboratory for the detective diagnosis of some ATP-indicative diseases. Importantly, such a catalysis-based detection strategy should be extended to other kinds of nanozymes with intrinsic catalysis properties (i.e., peroxidase and oxidase-like activities), promising as a universal candidate for monitoring various biological species simply by using target-specific recognition elements like Apts and antibodies.
Collapse
Affiliation(s)
- Shuai Li
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering , Qufu Normal University , Qufu City , Shandong Province 273165 , P. R. China.,College of Physics and Engineering , Qufu Normal University , Qufu City , Shandong Province 273165 , P. R. China
| | - Xiaoting Zhao
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering , Qufu Normal University , Qufu City , Shandong Province 273165 , P. R. China
| | - Xiaoxue Yu
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering , Qufu Normal University , Qufu City , Shandong Province 273165 , P. R. China
| | - Yuqi Wan
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering , Qufu Normal University , Qufu City , Shandong Province 273165 , P. R. China
| | - Mengyuan Yin
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering , Qufu Normal University , Qufu City , Shandong Province 273165 , P. R. China
| | - Wenwen Zhang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering , Qufu Normal University , Qufu City , Shandong Province 273165 , P. R. China
| | - Bingqiang Cao
- College of Physics and Engineering , Qufu Normal University , Qufu City , Shandong Province 273165 , P. R. China
| | - Hua Wang
- Institute of Medicine and Materials Applied Technologies, College of Chemistry and Chemical Engineering , Qufu Normal University , Qufu City , Shandong Province 273165 , P. R. China
| |
Collapse
|
87
|
Chen W, Li S, Wang J, Sun K, Si Y. Metal and metal-oxide nanozymes: bioenzymatic characteristics, catalytic mechanism, and eco-environmental applications. NANOSCALE 2019; 11:15783-15793. [PMID: 31432841 DOI: 10.1039/c9nr04771a] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phenolic contaminants (R-OH) are a category of highly toxic organic compounds that are widespread in aquatic ecosystems and can induce carcinogenic risk to wildlife and humans; natural enzymes as green catalysts are capable of step-polymerizing these compounds to produce diverse macromolecular self-coupling products via radical-mediated C-C and C-O-C bonding at either the ortho- or para-carbon position, thereby evading the bioavailability and ecotoxicity of these compounds. Intriguingly, certain artificial metal and metal-oxide nanomaterials are known as nanozymes. They not only possess the unique properties of nanomaterials but also display intrinsic enzyme-mimicking activities. These artificial nanozymes are expected to surmount the shortcomings, such as low stability, easy inactivation, difficult recycling, and high cost, of natural enzymes, thus contributing to eco-environmental restoration. This review highlights the available studies on the enzymatic characteristics and catalytic mechanisms of natural enzymes and artificial metal and metal-oxide nanozymes in the removal and transformation of R-OH. These advances will provide key research directions beneficial to the multifunctional applications of artificial nanozymes in aquatic ecosystems.
Collapse
Affiliation(s)
- Wenjun Chen
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, Anhui, China.
| | | | | | | | | |
Collapse
|
88
|
Vallabani NVS, Singh S, Karakoti AS. Magnetic Nanoparticles: Current Trends and Future Aspects in Diagnostics and Nanomedicine. Curr Drug Metab 2019; 20:457-472. [DOI: 10.2174/1389200220666181122124458] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/23/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022]
Abstract
Background:
Biomedical applications of Magnetic Nanoparticles (MNPs) are creating a major impact on
disease diagnosis and nanomedicine or a combined platform called theranostics. A significant progress has been
made to engineer novel and hybrid MNPs for their multifunctional modalities such as imaging, biosensors, chemotherapeutic
or photothermal and antimicrobial agents. MNPs are successfully applied in biomedical applications
due to their unique and tunable properties such as superparamagnetism, stability, and biocompatibility. Approval of
ferumoxytol (feraheme) for MRI and the fact that several Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are
currently undergoing clinical trials have paved a path for future MNPs formulations. Intensive research is being
carried out in designing and developing novel nanohybrids for multiple applications in nanomedicine.
Objective:
The objective of the present review is to summarize recent developments of MNPs in imaging modalities
like MRI, CT, PET and PA, biosensors and nanomedicine including their role in targeting and drug delivery. Relevant
theory and examples of the use of MNPs in these applications have been cited and discussed to create a thorough
understanding of the developments in this field.
Conclusion:
MNPs have found widespread use as contrast agents in imaging modalities, as tools for bio-sensing, and
as therapeutic and theranostics agents. Multiple formulations of MNPs are in clinical testing and may be accepted in
clinical settings in near future.
Collapse
Affiliation(s)
- Naga Veera Srikanth Vallabani
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Sanjay Singh
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Ajay Singh Karakoti
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
89
|
Red blood cells as an efficient in vitro model for evaluating the efficacy of metallic nanoparticles. 3 Biotech 2019; 9:279. [PMID: 31245243 DOI: 10.1007/s13205-019-1807-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022] Open
Abstract
Blood and the linings of blood vessels may be regarded as a fifth tissue type. The human body contains 5 × 109 red blood cells (RBCs) per ml, a total of 2.5 × 1013 cells in the 5 l of blood present in the body. With an average lifetime of 125 days, human RBCs are destroyed by leukocytes in the spleen and liver. Nowadays red blood cells are extensively used to study various metabolic functions. Nanoparticles (NP) are being widely accepted for drug delivery system. This review summarizes the red blood cells, NPs and their characteristics on the basis of the RBC components along with drug delivery systems through RBCs. Further, we also discussed that how erythrocytes can be used as an efficient in vitro model for evaluating the efficacy of various nanocomposite materials.
Collapse
|
90
|
Shah M, Shah J, Arya H, Vyas A, Vijapura A, Gajipara A, Shamal A, Bakshi M, Thakore P, Shah R, Saxena V, Varade D, Singh S. Biological Oxidase Enzyme Mimetic Cu‐Pt Nanoalloys: A Multifunctional Nanozyme for Colorimetric Detection of Ascorbic Acid and Identification of Mammalian Cells. ChemistrySelect 2019. [DOI: 10.1002/slct.201900681] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Maitri Shah
- Division of Biological and Life SciencesSchool of Arts and SciencesAhmedabad University, Central Campus, Navrangpura, Ahmedabad 380009 Gujarat India
| | - Juhi Shah
- Division of Biological and Life SciencesSchool of Arts and SciencesAhmedabad University, Central Campus, Navrangpura, Ahmedabad 380009 Gujarat India
| | - Homica Arya
- Division of Biological and Life SciencesSchool of Arts and SciencesAhmedabad University, Central Campus, Navrangpura, Ahmedabad 380009 Gujarat India
| | - Aashna Vyas
- Division of Biological and Life SciencesSchool of Arts and SciencesAhmedabad University, Central Campus, Navrangpura, Ahmedabad 380009 Gujarat India
| | - Akdasbanu Vijapura
- Division of Biological and Life SciencesSchool of Arts and SciencesAhmedabad University, Central Campus, Navrangpura, Ahmedabad 380009 Gujarat India
| | - Akhil Gajipara
- Division of Biological and Life SciencesSchool of Arts and SciencesAhmedabad University, Central Campus, Navrangpura, Ahmedabad 380009 Gujarat India
| | - Anmol Shamal
- Division of Biological and Life SciencesSchool of Arts and SciencesAhmedabad University, Central Campus, Navrangpura, Ahmedabad 380009 Gujarat India
| | - Malvika Bakshi
- Division of Biological and Life SciencesSchool of Arts and SciencesAhmedabad University, Central Campus, Navrangpura, Ahmedabad 380009 Gujarat India
| | - Prachi Thakore
- Division of Biological and Life SciencesSchool of Arts and SciencesAhmedabad University, Central Campus, Navrangpura, Ahmedabad 380009 Gujarat India
| | - Rutvi Shah
- Division of Biological and Life SciencesSchool of Arts and SciencesAhmedabad University, Central Campus, Navrangpura, Ahmedabad 380009 Gujarat India
| | - Vijaylaxmi Saxena
- Division of Biological and Life SciencesSchool of Arts and SciencesAhmedabad University, Central Campus, Navrangpura, Ahmedabad 380009 Gujarat India
| | - Dharmesh Varade
- School of Engineering and Applied ScienceAhmedabad University, GICT Building, Central Campus, Navrangpura, Ahmedabad 380009 Gujarat India
| | - Sanjay Singh
- Division of Biological and Life SciencesSchool of Arts and SciencesAhmedabad University, Central Campus, Navrangpura, Ahmedabad 380009 Gujarat India
| |
Collapse
|
91
|
Zhang X, Jiang X, Croley TR, Boudreau MD, He W, Cai J, Li P, Yin JJ. Ferroxidase-like and antibacterial activity of PtCu alloy nanoparticles. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:99-115. [PMID: 31099294 DOI: 10.1080/10590501.2019.1602991] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Many metal nanoparticles are reported to have intrinsic enzyme-like activities and offer great potential in chemical and biomedical applications. In this study, PtCu alloy nanoparticles (NPs), synthesized through hydrothermal treatment of Cu2+ and Pt2+ in an aqueous solution, were evaluated for ferroxidase-like and antibacterial activity. Electron spin resonance (ESR) spectroscopy and colorimetric methods were used to demonstrate that PtCu NPs exhibited strong ferroxidase-like activity in a weakly acidic environment and that this activity was not affected by the presence of most other ions, except silver. Based on the color reaction of salicylic acid in the presence of Fe3+, we tested the ferroxidase-like activity of PtCu NPs to specifically detect Fe2+ in a solution of an oral iron supplement and compared these results with data acquired from atomic absorption spectroscopy and the phenanthroline colorimetric method. The results showed that the newly developed PtCu NPs detection method was equivalent to or better than the other two methods used for Fe2+ detection. The antibacterial experiments showed that PtCu NPs have strong antibacterial activity against Staphylococcus aureus and Escherichia coli. Herein, we demonstrate that the peroxidase-like activity of PtCu NPs can catalyze H2O2 and generate hydroxyl radicals, which may elucidate the antibacterial activity of the PtCu NPs against S. aureus and E. coli. These results showed that PtCu NPs exhibited both ferroxidase- and peroxidase-like activity and that they may serve as convenient and efficient NPs for the detection of Fe2+ and for antibacterial applications.
Collapse
Affiliation(s)
- Xiaowei Zhang
- a Food and Bioengineering College , Xuchang University , Xuchang , P. R. China
- c Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , College Park , MD , USA
| | - Xiumei Jiang
- c Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , College Park , MD , USA
| | - Timothy R Croley
- c Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , College Park , MD , USA
| | - Mary D Boudreau
- d National Center for Toxicological Research , U.S. Food and Drug Administration , Jefferson , AR , USA
| | - Weiwei He
- b Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, College of Advanced Materials and Energy , Institute of Surface Micro and Nano Materials, Xuchang University , Xuchang , P. R. China
| | - Junhui Cai
- b Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, College of Advanced Materials and Energy , Institute of Surface Micro and Nano Materials, Xuchang University , Xuchang , P. R. China
| | - Peirui Li
- a Food and Bioengineering College , Xuchang University , Xuchang , P. R. China
| | - Jun-Jie Yin
- c Division of Analytical Chemistry, Office of Regulatory Science, Center for Food Safety and Applied Nutrition , U.S. Food and Drug Administration , College Park , MD , USA
| |
Collapse
|
92
|
Dehghan G, Shaghaghi M, Alizadeh P. A novel ultrasensitive and non-enzymatic "turn-on-off" fluorescence nanosensor for direct determination of glucose in the serum: As an alternative approach to the other optical and electrochemical methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 214:459-468. [PMID: 30807944 DOI: 10.1016/j.saa.2019.02.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/16/2018] [Accepted: 02/16/2019] [Indexed: 06/09/2023]
Abstract
A new, simple, rapid, highly sensitive and selective and non-enzymatic fluorometric method for direct determination of glucose in real samples was developed. The method was based on the inhibition of fluorescence resonance energy transfer (FRET) process between terbium (III)-1, 10-phenanthroline (Tb-phen) complex and silver nanoparticles (AgNPs). Upon the addition of glucose, the quenched FRET-based fluorescence of Tb-phen complex was gradually recovered by glucose via its strong adsorption on the surface of AgNPs and removal of Tb-phen complex from AgNPs surface. Therefore the fluorescence of Tb-phen complex switched to "turn-on" state. Under the optimum conditions, a linear relationship was obtained between the enhanced fluorescence intensity and glucose concentration in the range of (5-900) × 10-8 M with the detection limit of 1.94 × 10-8 M. The proposed sensing system was successfully applied to determine glucose in the spiked normal and diabetic patient serum samples after deproteinization with acetonitrile. Analytical recoveries from treated serum samples were in the range of 99.97-104.80% and 92.14-105.43%, respectively. The common interfering species, such as ascorbic acid, fructose and galactose did not cause interior interference due to unique emission properties of Tb-phen complex probe. Also the interaction of the Tb-phen complex with AgNPs, which led to the fluorescence intensity quenching of the complex, was further examined by FTIR technique. In short, as compared to most of the existing methods, the newly proposed method, provides some advantages and makes it promising for the direct rapid screening of glucose residues of real samples in clinical diagnosis of diabetes, as an alternative approach to the other exiting optical and electrochemical methods.
Collapse
Affiliation(s)
- Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| | - Masoomeh Shaghaghi
- Department of Chemistry, Payame Noor University, P. O. Box 19395-3697, Tehran, Iran.
| | - Pari Alizadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
93
|
Dong H, Fan Y, Zhang W, Gu N, Zhang Y. Catalytic Mechanisms of Nanozymes and Their Applications in Biomedicine. Bioconjug Chem 2019; 30:1273-1296. [PMID: 30966739 DOI: 10.1021/acs.bioconjchem.9b00171] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The research on nanozymes has increased dramatically in recent years and a new interdiscipline, nanozymology, has emerged. A variety of nanomaterials have been designed to mimic the characteristics of natural enzymes, which connects an important bridge between nanotechnology and biological science. Unlike natural enzymes, the nanoscale properties of nanozymes endow them with the potential to regulate their enzymatic-like activity from different perspectives. The mechanisms behind those methods are intriguing. In this Review, we introduce these mechanisms from the aspects of surface chemistry, surface modification, molecular imprinting, and hybridization and then focus attention on some specific catalytic mechanisms of several representative nanozymes. The applications of nanozymes ranging from bioassay, imaging, to disease therapy are also discussed in detail to prove the fact that the inherent physicochemical properties of nanomaterials not only make nanozymes the analogues of biological enzymes, but also endow them with incomparable advantages and broad prospects in biomedical fields. Finally, four characteristics and some challenges of nanozymes are summarized.
Collapse
Affiliation(s)
- Haijiao Dong
- School of Biological Science and Medical Engineering , Southeast University, State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices , Nanjing , Jiangsu 210096 , P.R. China
| | - Yaoyao Fan
- School of Biological Science and Medical Engineering , Southeast University, State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices , Nanjing , Jiangsu 210096 , P.R. China
| | - Wei Zhang
- School of Biological Science and Medical Engineering , Southeast University, State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices , Nanjing , Jiangsu 210096 , P.R. China.,The Jiangsu Province Research Institute for Clinical Medicine , The First Affiliated Hospital of Nanjing Medical University , Nanjing 210029 , P.R. China
| | - Ning Gu
- School of Biological Science and Medical Engineering , Southeast University, State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices , Nanjing , Jiangsu 210096 , P.R. China
| | - Yu Zhang
- School of Biological Science and Medical Engineering , Southeast University, State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices , Nanjing , Jiangsu 210096 , P.R. China
| |
Collapse
|
94
|
Wu CW, Unnikrishnan B, Tseng YT, Wei SC, Chang HT, Huang CC. Mesoporous manganese oxide/manganese ferrite nanopopcorns with dual enzyme mimic activities: A cascade reaction for selective detection of ketoses. J Colloid Interface Sci 2019; 541:75-85. [DOI: 10.1016/j.jcis.2019.01.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/06/2019] [Accepted: 01/15/2019] [Indexed: 12/25/2022]
|
95
|
Liu X, Huang D, Lai C, Qin L, Zeng G, Xu P, Li B, Yi H, Zhang M. Peroxidase-Like Activity of Smart Nanomaterials and Their Advanced Application in Colorimetric Glucose Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900133. [PMID: 30908899 DOI: 10.1002/smll.201900133] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/20/2019] [Indexed: 05/27/2023]
Abstract
Diabetes is a dominating health issue with 425 million people suffering from the disease worldwide and 4 million deaths each year. To avoid further complications, the diabetic patient blood glucose level should be strictly monitored despite there being no cure for diabetes. Colorimetric biosensing has attracted significant attention because of its low cost, simplicity, and practicality. Recently, some nanomaterials have been found that possess unexpected peroxidase-like activity, and great advances have been made in fabricating colorimetric glucose biosensors based on the peroxidase-like activity of these nanomaterials using glucose oxidase. Compared with natural horseradish peroxidase, the nanomaterials exhibit flexibility in structure design and composition, and have easy separation and storage, high stability, simple preparation, and tunable catalytic activity. To highlight the significant progress in the field of nanomaterial-based peroxidase-like activity, this work discusses the various smart nanomaterials that mimic horseradish peroxidase and its mechanism and development history, and the applications in colorimetric glucose biosensors. Different approaches for tunable peroxidase-like activity of nanomaterials are summarized, such as size, morphology, and shape; surface modification and coating; and metal doping and alloy. Finally, the conclusion and challenges facing peroxidase-like activity of nanomaterials and future directions are discussed.
Collapse
Affiliation(s)
- Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Bisheng Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
96
|
Attar F, Shahpar MG, Rasti B, Sharifi M, Saboury AA, Rezayat SM, Falahati M. Nanozymes with intrinsic peroxidase-like activities. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2018.12.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
97
|
Mu X, Wang J, Li Y, Xu F, Long W, Ouyang L, Liu H, Jing Y, Wang J, Dai H, Liu Q, Sun Y, Liu C, Zhang XD. Redox Trimetallic Nanozyme with Neutral Environment Preference for Brain Injury. ACS NANO 2019; 13:1870-1884. [PMID: 30753061 DOI: 10.1021/acsnano.8b08045] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Metal nanozyme has attracted wide interest for biomedicine, and a highly catalytic material in the physiological environment is highly desired. However, catalytic selectivity of nanozyme is still highly challenging, limiting its wide application. Here, we show a trimetallic (triM) nanozyme with highly catalytic activity and environmental selectivity. Enzyme-mimicked investigations find that the triM system possesses multi-enzyme-mimetic activity for removing reactive oxygen species (ROS) and reactive nitrogen species (RNS), such as 1O2, H2O2, •OH, and •NO. Importantly, triM nanozyme exhibits the significant neutral environment preference for removing the •OH, 1O2, and •NO free radical, indicating its highly catalytic selectivity. The density functional theory (DFT) calculations reveal that triM nanozyme can capture electrons very easily and provides more attraction to reactive oxygen and nitrogen species (RONS) radicals in the neutral environment. In vitro experiments show that triM nanozyme can improve the viability of injured neural cell. In the LPS-induced brain injury model, the superoxide dismutase (SOD) activity and lipid peroxidation can be greatly recovered after triM nanozyme treatment. Moreover, the triM nanozyme treatment can significantly improve the survival rate, neuroinflammation, and reference memory of injured mice. Present work provides a feasible route for improving selectivity of nanozyme in the physiological environment as well as exploring potential applications in brain science.
Collapse
Affiliation(s)
- Xiaoyu Mu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Junying Wang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Yonghui Li
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Fujuan Xu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Wei Long
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , China
| | - Lufei Ouyang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Haile Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Yaqi Jing
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Jingya Wang
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , China
| | - Haitao Dai
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Qiang Liu
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , China
| | - Yuanming Sun
- Tianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , China
| | - Changlong Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences , Tianjin University , Tianjin 300350 , China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences , Tianjin University , Tianjin 300350 , China
| |
Collapse
|
98
|
Huang Y, Ren J, Qu X. Nanozymes: Classification, Catalytic Mechanisms, Activity Regulation, and Applications. Chem Rev 2019; 119:4357-4412. [PMID: 30801188 DOI: 10.1021/acs.chemrev.8b00672] [Citation(s) in RCA: 1723] [Impact Index Per Article: 287.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Because of the high catalytic activities and substrate specificity, natural enzymes have been widely used in industrial, medical, and biological fields, etc. Although promising, they often suffer from intrinsic shortcomings such as high cost, low operational stability, and difficulties of recycling. To overcome these shortcomings, researchers have been devoted to the exploration of artificial enzyme mimics for a long time. Since the discovery of ferromagnetic nanoparticles with intrinsic horseradish peroxidase-like activity in 2007, a large amount of studies on nanozymes have been constantly emerging in the next decade. Nanozymes are one kind of nanomaterials with enzymatic catalytic properties. Compared with natural enzymes, nanozymes have the advantages such as low cost, high stability and durability, which have been widely used in industrial, medical, and biological fields. A thorough understanding of the possible catalytic mechanisms will contribute to the development of novel and high-efficient nanozymes, and the rational regulations of the activities of nanozymes are of great significance. In this review, we systematically introduce the classification, catalytic mechanism, activity regulation as well as recent research progress of nanozymes in the field of biosensing, environmental protection, and disease treatments, etc. in the past years. We also propose the current challenges of nanozymes as well as their future research focus. We anticipate this review may be of significance for the field to understand the properties of nanozymes and the development of novel nanomaterials with enzyme mimicking activities.
Collapse
Affiliation(s)
- Yanyan Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China.,College of Light Industry and Food Engineering , Nanjing Forestry University , Nanjing 210037 , China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , China
| |
Collapse
|
99
|
Ain NU, Safdar N, Yasmin A. Additive-based stability assessment of biologically designed CuO and GSH-CuO nanospheres and their applicability as Nano-biosensors. Colloids Surf B Biointerfaces 2019; 178:66-73. [PMID: 30836320 DOI: 10.1016/j.colsurfb.2019.02.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
Uncapped and Glutathione capped Cupric oxide nanospheres were synthesized by the interaction of Berberis lycium (Bl) root extract with corresponding salt solution. CuO nanospheres were best optimized by mixing 2% Bl extract solution with 1 mM CuSO4·5H2O (pH 11, 90 °C) Reduced glutathione (0.25 mM) in solution form was added in respective emulsion after 24 h. Synthesis of nanospheres was ensured by distinct surface plasmonic resonance peaks shown by CuO (370-420 nm). Addition of glutathione resulted in sharp blue shift and lowered absorbance values in UV spectra suggesting the decrease in nanoparticles' size and concentration. Average particle sizes as deduced with XRD were found to be 18.52 and 16.57 nm for CuO and GSH-CuO nanospheres respectively. Additive based stability assessment of synthesized nanospheres revealed CuO and GSH-CuO nanospheres to be highly stable in the presence of Catechin hydrate among various tested chemical compounds while ascorbic acid appeared as a strong destabilizing agent. TMB was oxidized by H2O2 in the presence of synthesized enzymes likewise horseradish peroxidase; though exhibited moderate results. Glutathione stabilized cupric oxide nanospheres exhibited the potential to be modulated further into efficient nanozymes as these showed better affinity towards chromogenic substrate TMB (Km value 0.32 mM) and better catalytic efficiency (0.075 mM-1 s-1) compared to uncapped CuO nanomimetics (1.6 mM, 0.033 mM-1 s-1). All of the tested additives served as inhibitors to the peroxidase mimicking potential of CuO and GSH-CuO nanozymes.
Collapse
Affiliation(s)
- Noor-Ul Ain
- Microbiology and Biotechnology Research Lab, Department of Biotechnology, Fatima Jinnah Women University. Pakistan Old Presidency, the Mall, Rawalpindi, 46000, Pakistan.
| | - Naila Safdar
- Microbiology and Biotechnology Research Lab, Department of Biotechnology, Fatima Jinnah Women University. Pakistan Old Presidency, the Mall, Rawalpindi, 46000, Pakistan.
| | - Azra Yasmin
- Microbiology and Biotechnology Research Lab, Department of Biotechnology, Fatima Jinnah Women University. Pakistan Old Presidency, the Mall, Rawalpindi, 46000, Pakistan.
| |
Collapse
|
100
|
Singh S. Nanomaterials Exhibiting Enzyme-Like Properties (Nanozymes): Current Advances and Future Perspectives. Front Chem 2019; 7:46. [PMID: 30805331 PMCID: PMC6370642 DOI: 10.3389/fchem.2019.00046] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/18/2019] [Indexed: 12/17/2022] Open
Abstract
Biological enzymes are macromolecular catalysts that catalyze the biochemical reactions of the natural systems. Although each enzyme performs a particular function, however, holds several drawbacks, which limits its utilization in broad-spectrum applications. Natural enzymes require strict physiological conditions for performing catalytic functions. Their limited stability in harsh environmental conditions, the high cost of synthesis, isolation, and purification are some of the significant drawbacks. Therefore, as an alternative to natural enzymes, recently several strategies have been developed including the synthesis of molecules, complexes, and nanoparticles mimicking their intrinsic catalytic properties. Nanoparticles exhibiting the properties of an enzyme are termed as “nanozymes.” Nanozymes offer several advantages over natural enzymes, therefore, a rapid expansion of the development of artificial biocatalysts. These advantages include simple methods of synthesis, low cost, high stability, robust catalytic performance, and smooth surface modification of nanomaterials. In this context, nanozymes are tremendously being explored to establish a wide range of applications in biosensing, immunoassays, disease diagnosis and therapy, theranostics, cell/tissue growth, protection from oxidative stress, and removal of pollutants. Considering the importance of nanozymes, this article has been designed to comprehensively discuss the different enzyme-like properties, such as peroxidase, catalase, superoxide dismutase, and oxidase, exhibited by various nanoparticles.
Collapse
Affiliation(s)
- Sanjay Singh
- Division of Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Ahmedabad, India
| |
Collapse
|