51
|
Wang P, Jiang H, Boeren S, Dings H, Kulikova O, Bisseling T, Limpens E. A nuclear-targeted effector of Rhizophagus irregularis interferes with histone 2B mono-ubiquitination to promote arbuscular mycorrhisation. THE NEW PHYTOLOGIST 2021; 230:1142-1155. [PMID: 33507543 PMCID: PMC8048545 DOI: 10.1111/nph.17236] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/18/2021] [Indexed: 05/17/2023]
Abstract
Arguably, symbiotic arbuscular mycorrhizal (AM) fungi have the broadest host range of all fungi, being able to intracellularly colonise root cells in the vast majority of all land plants. This raises the question how AM fungi effectively deal with the immune systems of such a widely diverse range of plants. Here, we studied the role of a nuclear-localisation signal-containing effector from Rhizophagus irregularis, called Nuclear Localised Effector1 (RiNLE1), that is highly and specifically expressed in arbuscules. We showed that RiNLE1 is able to translocate to the host nucleus where it interacts with the plant core nucleosome protein histone 2B (H2B). RiNLE1 is able to impair the mono-ubiquitination of H2B, which results in the suppression of defence-related gene expression and enhanced colonisation levels. This study highlights a novel mechanism by which AM fungi can effectively control plant epigenetic modifications through direct interaction with a core nucleosome component. Homologues of RiNLE1 are found in a range of fungi that establish intimate interactions with plants, suggesting that this type of effector may be more widely recruited to manipulate host defence responses.
Collapse
Affiliation(s)
- Peng Wang
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Henan Jiang
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Sjef Boeren
- Laboratory of BiochemistryWageningen University & ResearchWageningen6708 WEthe Netherlands
| | - Harm Dings
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Olga Kulikova
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Ton Bisseling
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| | - Erik Limpens
- Laboratory of Molecular BiologyWageningen University & ResearchWageningen6708 PBthe Netherlands
| |
Collapse
|
52
|
Schreiber KJ, Lewis JD. Identification of a Putative DNA-Binding Protein in Arabidopsis That Acts as a Susceptibility Hub and Interacts With Multiple Pseudomonas syringae Effectors. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:410-425. [PMID: 33373263 DOI: 10.1094/mpmi-10-20-0291-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Phytopathogens use secreted effector proteins to suppress host immunity and promote pathogen virulence, and there is increasing evidence that the host-pathogen interactome comprises a complex network. To identify novel interactors of the Pseudomonas syringae effector HopZ1a, we performed a yeast two-hybrid screen that identified a previously uncharacterized Arabidopsis protein that we designate HopZ1a interactor 1 (ZIN1). Additional analyses in yeast and in planta revealed that ZIN1 also interacts with several other P. syringae effectors. We show that an Arabidopsis loss-of-function zin1 mutant is less susceptible to infection by certain strains of P. syringae, while overexpression of ZIN1 results in enhanced susceptibility. Functionally, ZIN1 exhibits topoisomerase-like activity in vitro. Transcriptional profiling of wild-type and zin1 Arabidopsis plants inoculated with P. syringae indicated that while ZIN1 regulates a wide range of pathogen-responsive biological processes, the list of genes more highly expressed in zin1 versus wild-type plants is particularly enriched for ribosomal protein genes. Altogether, these data illuminate ZIN1 as a potential susceptibility hub that interacts with multiple effectors to influence the outcome of plant-microbe interactions.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Karl J Schreiber
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720-3102, U.S.A
| | - Jennifer D Lewis
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720-3102, U.S.A
- Plant Gene Expression Center, United States Department of Agriculture, Albany, CA 94710-1105, U.S.A
| |
Collapse
|
53
|
Multifaceted Chromatin Structure and Transcription Changes in Plant Stress Response. Int J Mol Sci 2021; 22:ijms22042013. [PMID: 33670556 PMCID: PMC7922328 DOI: 10.3390/ijms22042013] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 01/06/2023] Open
Abstract
Sessile plants are exposed throughout their existence to environmental abiotic and biotic stress factors, such as cold, heat, salinity, drought, dehydration, submergence, waterlogging, and pathogen infection. Chromatin organization affects genome stability, and its dynamics are crucial in plant stress responses. Chromatin dynamics are epigenetically regulated and are required for stress-induced transcriptional regulation or reprogramming. Epigenetic regulators facilitate the phenotypic plasticity of development and the survival and reproduction of plants in unfavorable environments, and they are highly diversified, including histone and DNA modifiers, histone variants, chromatin remodelers, and regulatory non-coding RNAs. They contribute to chromatin modifications, remodeling and dynamics, and constitute a multilayered and multifaceted circuitry for sophisticated and robust epigenetic regulation of plant stress responses. However, this complicated epigenetic regulatory circuitry creates challenges for elucidating the common or differential roles of chromatin modifications for transcriptional regulation or reprogramming in different plant stress responses. Particularly, interacting chromatin modifications and heritable stress memories are difficult to identify in the aspect of chromatin-based epigenetic regulation of transcriptional reprogramming and memory. Therefore, this review discusses the recent updates from the three perspectives—stress specificity or dependence of transcriptional reprogramming, the interplay of chromatin modifications, and transcriptional stress memory in plants. This helps solidify our knowledge on chromatin-based transcriptional reprogramming for plant stress response and memory.
Collapse
|
54
|
Vlachonasios K, Poulios S, Mougiou N. The Histone Acetyltransferase GCN5 and the Associated Coactivators ADA2: From Evolution of the SAGA Complex to the Biological Roles in Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:308. [PMID: 33562796 PMCID: PMC7915528 DOI: 10.3390/plants10020308] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 02/01/2021] [Indexed: 01/08/2023]
Abstract
Transcription of protein-encoding genes starts with forming a pre-initiation complex comprised of RNA polymerase II and several general transcription factors. To activate gene expression, transcription factors must overcome repressive chromatin structure, which is accomplished with multiprotein complexes. One such complex, SAGA, modifies the nucleosomal histones through acetylation and other histone modifications. A prototypical histone acetyltransferase (HAT) known as general control non-repressed protein 5 (GCN5), was defined biochemically as the first transcription-linked HAT with specificity for histone H3 lysine 14. In this review, we analyze the components of the putative plant SAGA complex during plant evolution, and current knowledge on the biological role of the key components of the HAT module, GCN5 and ADA2b in plants, will be summarized.
Collapse
Affiliation(s)
- Konstantinos Vlachonasios
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (S.P.); (N.M.)
| | | | | |
Collapse
|
55
|
Coelho AC, Pires R, Schütz G, Santa C, Manadas B, Pinto P. Disclosing proteins in the leaves of cork oak plants associated with the immune response to Phytophthora cinnamomi inoculation in the roots: A long-term proteomics approach. PLoS One 2021; 16:e0245148. [PMID: 33481834 PMCID: PMC7822296 DOI: 10.1371/journal.pone.0245148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
The pathological interaction between oak trees and Phytophthora cinnamomi has implications in the cork oak decline observed over the last decades in the Iberian Peninsula. During host colonization, the phytopathogen secretes effector molecules like elicitins to increase disease effectiveness. The objective of this study was to unravel the proteome changes associated with the cork oak immune response triggered by P. cinnamomi inoculation in a long-term assay, through SWATH-MS quantitative proteomics performed in the oak leaves. Using the Arabidopis proteome database as a reference, 424 proteins were confidently quantified in cork oak leaves, of which 80 proteins showed a p-value below 0.05 or a fold-change greater than 2 or less than 0.5 in their levels between inoculated and control samples being considered as altered. The inoculation of cork oak roots with P. cinnamomi increased the levels of proteins associated with protein-DNA complex assembly, lipid oxidation, response to endoplasmic reticulum stress, and pyridine-containing compound metabolic process in the leaves. In opposition, several proteins associated with cellular metabolic compound salvage and monosaccharide catabolic process had significantly decreased abundances. The most significant abundance variations were observed for the Ribulose 1,5-Bisphosphate Carboxylase small subunit (RBCS1A), Heat Shock protein 90–1 (Hsp90-1), Lipoxygenase 2 (LOX2) and Histone superfamily protein H3.3 (A8MRLO/At4G40030) revealing a pertinent role for these proteins in the host-pathogen interaction mechanism. This work represents the first SWATH-MS analysis performed in cork oak plants inoculated with P. cinnamomi and highlights host proteins that have a relevant action in the homeostatic states that emerge from the interaction between the oomycete and the host in the long term and in a distal organ.
Collapse
Affiliation(s)
- Ana Cristina Coelho
- Center for Electronic, Optoelectronic and Telecommunications (CEOT), University of Algarve, Faro, Portugal
- Escola Superior de Educação e Comunicação (ESEC), University of Algarve, Faro, Portugal
- * E-mail:
| | - Rosa Pires
- Center for Electronic, Optoelectronic and Telecommunications (CEOT), University of Algarve, Faro, Portugal
| | - Gabriela Schütz
- Center for Electronic, Optoelectronic and Telecommunications (CEOT), University of Algarve, Faro, Portugal
- Instituto Superior de Engenharia, University of Algarve, Faro, Portugal
| | - Cátia Santa
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Bruno Manadas
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Patrícia Pinto
- Center for Marine Sciences (CCMAR), University of Algarve, Faro, Portugal
| |
Collapse
|
56
|
Chen H, Raffaele S, Dong S. Silent control: microbial plant pathogens evade host immunity without coding sequence changes. FEMS Microbiol Rev 2021; 45:6095737. [PMID: 33440001 DOI: 10.1093/femsre/fuab002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Both animals and plants have evolved a robust immune system to surveil and defeat invading pathogenic microbes. Evasion of host immune surveillance is the key for pathogens to initiate successful infection. To evade the host immunity, plant pathogens evolved a variety of strategies such as masking themselves from host immune recognitions, blocking immune signaling transductions, reprogramming immune responses and adapting to immune microenvironmental changes. Gain of new virulence genes, sequence and structural variations enables plant pathogens to evade host immunity through changes in the genetic code. However, recent discoveries demonstrated that variations at the transcriptional, post-transcriptional, post-translational and glycome level enable pathogens to cope with the host immune system without coding sequence changes. The biochemical modification of pathogen associated molecular patterns and silencing of effector genes emerged as potent ways for pathogens to hide from host recognition. Altered processing in mRNA activities provide pathogens with resilience to microenvironment changes. Importantly, these hiding variants are directly or indirectly modulated by catalytic enzymes or enzymatic complexes and cannot be revealed by classical genomics alone. Unveiling these novel host evasion mechanisms in plant pathogens enables us to better understand the nature of plant disease and pinpoints strategies for rational diseases management in global food protection.
Collapse
Affiliation(s)
- Han Chen
- Department of Plant Pathology and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes-Microorganismes, INRAE, CNRS, 24 Chemin de Borde Rouge - Auzeville, CS52627, F31326 Castanet Tolosan Cedex, France
| | - Suomeng Dong
- Department of Plant Pathology and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
57
|
Zhi P, Chang C. Exploiting Epigenetic Variations for Crop Disease Resistance Improvement. FRONTIERS IN PLANT SCIENCE 2021; 12:692328. [PMID: 34149790 PMCID: PMC8212930 DOI: 10.3389/fpls.2021.692328] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/27/2021] [Indexed: 05/07/2023]
Abstract
Pathogen infections seriously threaten plant health and global crop production. Epigenetic processes such as DNA methylation, histone post-translational modifications, chromatin assembly and remodeling play important roles in transcriptional regulation of plant defense responses and could provide a new direction to drive breeding strategies for crop disease resistance improvement. Although past decades have seen unprecedented proceedings in understanding the epigenetic mechanism of plant defense response, most of these advances were derived from studies in model plants like Arabidopsis. In this review, we highlighted the recent epigenetic studies on crop-pathogen interactions and discussed the potentials, challenges, and strategies in exploiting epigenetic variations for crop disease resistance improvement.
Collapse
|
58
|
Du Y, Chen X, Guo Y, Zhang X, Zhang H, Li F, Huang G, Meng Y, Shan W. Phytophthora infestans RXLR effector PITG20303 targets a potato MKK1 protein to suppress plant immunity. THE NEW PHYTOLOGIST 2021; 229:501-515. [PMID: 32772378 DOI: 10.1111/nph.16861] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 07/27/2020] [Indexed: 05/21/2023]
Abstract
Pathogens secret a plethora of effectors into the host cell to modulate plant immunity. Analysing the role of effectors in altering the function of their host target proteins will reveal critical components of the plant immune system. Here we show that Phytophthora infestans RXLR effector PITG20303, a virulent variant of AVRblb2 (PITG20300) that escapes recognition by the resistance protein Rpi-blb2, suppresses PAMP-triggered immunity (PTI) and promotes pathogen colonization by targeting and stabilizing a potato MAPK cascade protein, StMKK1. Both PITG20300 and PITG20303 target StMKK1, as confirmed by multiple in vivo and in vitro assays, and StMKK1 was shown to be a negative regulator of plant immunity, as determined by overexpression and gene silencing. StMKK1 is a negative regulator of plant PTI, and the kinase activities of StMKK1 are required for its suppression of PTI and effector interaction. PITG20303 depends partially on MKK1, PITG20300 does not depend on MKK1 for suppression of PTI-induced reactive oxygen species burst, while the full virulence activities of nuclear targeted PITG20303 and PITG20300 are dependent on MKK1. Our results show that PITG20303 and PITG20300 target and stabilize the plant MAPK cascade signalling protein StMKK1 to negatively regulate plant PTI response.
Collapse
Affiliation(s)
- Yu Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaokang Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yalu Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaojiang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Houxiao Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fangfang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Guiyan Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuling Meng
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Weixing Shan
- China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| |
Collapse
|
59
|
Ku YS, Cheng SS, Gerhardt A, Cheung MY, Contador CA, Poon LYW, Lam HM. Secretory Peptides as Bullets: Effector Peptides from Pathogens against Antimicrobial Peptides from Soybean. Int J Mol Sci 2020; 21:E9294. [PMID: 33291499 PMCID: PMC7730307 DOI: 10.3390/ijms21239294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
Soybean is an important crop as both human food and animal feed. However, the yield of soybean is heavily impacted by biotic stresses including insect attack and pathogen infection. Insect bites usually make the plants vulnerable to pathogen infection, which causes diseases. Fungi, oomycetes, bacteria, viruses, and nematodes are major soybean pathogens. The infection by pathogens and the defenses mounted by soybean are an interactive and dynamic process. Using fungi, oomycetes, and bacteria as examples, we will discuss the recognition of pathogens by soybean at the molecular level. In this review, we will discuss both the secretory peptides for soybean plant infection and those for pathogen inhibition. Pathogenic secretory peptides and peptides secreted by soybean and its associated microbes will be included. We will also explore the possible use of externally applied antimicrobial peptides identical to those secreted by soybean and its associated microbes as biopesticides.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Sau-Shan Cheng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Aisha Gerhardt
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Ming-Yan Cheung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Carolina A. Contador
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Lok-Yiu Winnie Poon
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| |
Collapse
|
60
|
An orphan protein of Fusarium graminearum modulates host immunity by mediating proteasomal degradation of TaSnRK1α. Nat Commun 2020; 11:4382. [PMID: 32873802 PMCID: PMC7462860 DOI: 10.1038/s41467-020-18240-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Fusarium graminearum is a causal agent of Fusarium head blight (FHB) and a deoxynivalenol (DON) producer. In this study, OSP24 is identified as an important virulence factor in systematic characterization of the 50 orphan secreted protein (OSP) genes of F. graminearum. Although dispensable for growth and initial penetration, OSP24 is important for infectious growth in wheat rachis tissues. OSP24 is specifically expressed during pathogenesis and its transient expression suppresses BAX- or INF1-induced cell death. Osp24 is translocated into plant cells and two of its 8 cysteine-residues are required for its function. Wheat SNF1-related kinase TaSnRK1α is identified as an Osp24-interacting protein and shows to be important for FHB resistance in TaSnRK1α-overexpressing or silencing transgenic plants. Osp24 accelerates the degradation of TaSnRK1α by facilitating its association with the ubiquitin-26S proteasome. Interestingly, TaSnRK1α also interacts with TaFROG, an orphan wheat protein induced by DON. TaFROG competes against Osp24 for binding with the same region of TaSnRKα and protects it from degradation. Overexpression of TaFROG stabilizes TaSnRK1α and increases FHB resistance. Taken together, Osp24 functions as a cytoplasmic effector by competing against TaFROG for binding with TaSnRK1α, demonstrating the counteracting roles of orphan proteins of both host and fungal pathogens during their interactions. Fusarium graminearum is a major fungal pathogen of cereals. Here the authors show that F. graminearum secretes an effector, Osp24, that induces degradation of the wheat TaSnRK1α kinase to promote disease while an orphan wheat protein, TaFROG1, can compete with Osp24 for binding to TaSnRK1α and protect it from degradation
Collapse
|
61
|
Tomczynska I, Stumpe M, Doan TG, Mauch F. A Phytophthora effector protein promotes symplastic cell-to-cell trafficking by physical interaction with plasmodesmata-localised callose synthases. THE NEW PHYTOLOGIST 2020; 227:1467-1478. [PMID: 32396661 DOI: 10.1111/nph.16653] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/20/2020] [Indexed: 05/03/2023]
Abstract
Pathogen effectors act as disease promoting factors that target specific host proteins with roles in plant immunity. Here, we investigated the function of the RxLR3 effector of the plant-pathogen Phytophthora brassicae. Arabidopsis plants expressing a FLAG-RxLR3 fusion protein were used for co-immunoprecipitation followed by liquid chromatography-tandem mass spectrometry to identify host targets of RxLR3. Fluorescently labelled fusion proteins were used for analysis of subcellular localisation and function of RxLR3. Three closely related members of the callose synthase family, CalS1, CalS2 and CalS3, were identified as targets of RxLR3. RxLR3 co-localised with the plasmodesmal marker protein PDLP5 (PLASMODESMATA-LOCALISED PROTEIN 5) and with plasmodesmata-associated deposits of the β-1,3-glucan polymer callose. In line with a function as an inhibitor of plasmodesmal callose synthases (CalS) enzymes, callose depositions were reduced and cell-to-cell trafficking was promoted in the presence of RxLR3. Plasmodesmal callose deposition in response to infection was compared with wild-type suppressed in RxLR3-expressing Arabidopsis lines. Our results implied a virulence function of the RxLR3 effector as a positive regulator of plasmodesmata transport and provided evidence for competition between P. brassicae and Arabidopsis for control of cell-to-cell trafficking.
Collapse
Affiliation(s)
- Iga Tomczynska
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| | - Tu Giang Doan
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| | - Felix Mauch
- Department of Biology, University of Fribourg, 1700, Fribourg, Switzerland
| |
Collapse
|
62
|
Abstract
Epigenetic mechanisms play fundamental roles in regulating numerous biological processes in various developmental and environmental contexts. Three highly interconnected epigenetic control mechanisms, including small noncoding RNAs, DNA methylation, and histone modifications, contribute to the establishment of plant epigenetic profiles. During the past decade, a growing body of experimental work has revealed the intricate, diverse, and dynamic roles that epigenetic modifications play in plant-nematode interactions. In this review, I summarize recent progress regarding the functions of small RNAs in mediating plant responses to infection by cyst and root-knot nematodes, with a focus on the functions of microRNAs. I also recapitulate recent advances in genome-wide DNA methylation analysis and discuss how cyst nematodes induce extensive and dynamic changes in the plant methylome that impact the transcriptional activity of genes and transposable elements. Finally, the potential role of nematode effector proteins in triggering such epigenome changes is discussed.
Collapse
Affiliation(s)
- Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA;
| |
Collapse
|
63
|
Shang S, Wang B, Zhang S, Liu G, Liang X, Zhang R, Gleason ML, Sun G. A novel effector CfEC92 of Colletotrichum fructicola contributes to glomerella leaf spot virulence by suppressing plant defences at the early infection phase. MOLECULAR PLANT PATHOLOGY 2020; 21:936-950. [PMID: 32512647 PMCID: PMC7279981 DOI: 10.1111/mpp.12940] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 01/10/2020] [Accepted: 03/19/2020] [Indexed: 05/08/2023]
Abstract
The ascomycete fungus Colletotrichum fructicola causes diseases on a broad range of plant species. On susceptible cultivars of apple, it induces severe early defoliation and fruit spots, named glomerella leaf spot (GLS), but the mechanisms of pathogenicity have remained elusive. Phytopathogens exhibit small secreted effectors to advance host infection by manipulating host immune reactions. We report the identification and characterization of CfEC92, an effector required for C. fructicola virulence. CfEC92 is a Colletotrichum-specific small secreted protein that suppresses BAX-triggered cell death in Nicotiana benthamiana. Accumulation of the gene transcript was barely detectable in conidia or vegetative hyphae, but was highly up-regulated in appressoria formed during early apple leaf infection. Gene deletion mutants were not affected in vegetative growth, appressorium formation, or appressorium-mediated cellophane penetration. However, the mutants were significantly reduced in virulence toward apple leaves and fruits. Microscopic examination indicated that infection by the deletion mutants elicited elevated deposition of papillae at the penetration sites, and formation of infection vesicles and primary hyphae was retarded. Signal peptide activity, subcellular localization, and cell death-suppressive activity (without signal peptide) assays suggest that CfEC92 could be secreted and perform virulence functions inside plant cells. RNA sequencing and quantitative reverse transcription PCR results confirmed that the deletion mutants triggered elevated host defence reactions. Our results strongly support the interpretation that CfEC92 contributes to C. fructicola virulence as a plant immunity suppressor at the early infection phase.
Collapse
Affiliation(s)
- Shengping Shang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Bo Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Song Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Guangli Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Xiaofei Liang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Rong Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Mark L. Gleason
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIowa StateUSA
| | - Guangyu Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
64
|
Jiang C, Fan Z, Li Z, Niu D, Li Y, Zheng M, Wang Q, Jin H, Guo J. Bacillus cereus AR156 triggers induced systemic resistance against Pseudomonas syringae pv. tomato DC3000 by suppressing miR472 and activating CNLs-mediated basal immunity in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2020; 21:854-870. [PMID: 32227587 PMCID: PMC7214473 DOI: 10.1111/mpp.12935] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 05/18/2023]
Abstract
Small RNAs play an important role in plant innate immunity. However, their regulatory function in induced systemic resistance (ISR) triggered by plant growth-promoting rhizobacteria remains unclear. Here, using Arabidopsis as a model system, one plant endogenous small RNA, miR472, was identified as an important regulator involved in the process of Bacillus cereus AR156 ISR against Pseudomonas syringae pv. tomato (Pst) DC3000. The results revealed that miR472 was down-regulated with B. cereus AR156 treatment by comparing small RNA profiles and northern blot analysis of Arabidopsis with or without B. cereus AR156 treatment. Plants overexpressing miR472 showed higher susceptibility to Pst DC3000; by contrast, plant lines with miR472 knocked down/out showed the opposite. The transcriptome sequencing revealed thousands of differentially expressed genes in the transgenic plants. Target prediction showed that miR472 targets lots of coiled coil nucleotide-binding site (NBS) and leucine-rich repeat (LRR) type resistance genes and the expression of these targets was negatively correlated with the expression of miR472. In addition, transgenic plants with knocked-out target genes exhibited decreased resistance to Pst DC3000 invasion. Quantitative reverse transcription PCR results indicated that target genes of miR472 were expressed during the process of B. cereus AR156-triggered ISR. Taken together, our results demonstrate that the miR472-mediated silencing pathway is an important regulatory checkpoint occurring via post-transcriptional control of NBS-LRR genes during B. cereus AR156-triggered ISR in Arabidopsis.
Collapse
Affiliation(s)
- Chunhao Jiang
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest InsectsMinistry of AgricultureNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Zhihang Fan
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest InsectsMinistry of AgricultureNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Zijie Li
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest InsectsMinistry of AgricultureNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| | - Dongdong Niu
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest InsectsMinistry of AgricultureNanjingChina
| | - Yan Li
- Department of Plant PathologyCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Mingzi Zheng
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjingChina
| | - Qi Wang
- Department of Plant PathologyCollege of Plant ProtectionChina Agricultural UniversityBeijingChina
| | - Hailing Jin
- Department of Plant Pathology and MicrobiologyUniversity of CaliforniaRiversideCAUSA
| | - Jianhua Guo
- Department of Plant PathologyCollege of Plant ProtectionNanjing Agricultural UniversityNanjingChina
- Key Laboratory of Monitoring and Management of Crop Diseases and Pest InsectsMinistry of AgricultureNanjingChina
- Engineering Center of Bioresource Pesticide in Jiangsu ProvinceNanjingChina
| |
Collapse
|
65
|
Wang XW, Lv JL, Shi YR, Guo LY. Comparative Transcriptome Analysis Revealed Genes Regulated by Histone Acetylation and Genes Related to Sex Hormone Biosynthesis in Phytophthora infestans. Front Genet 2020; 11:508. [PMID: 32508886 PMCID: PMC7253629 DOI: 10.3389/fgene.2020.00508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/27/2020] [Indexed: 12/17/2022] Open
Abstract
Late blight caused by Phytophthora infestans, is one of the most devastating diseases of potato, and was responsible for the death of millions of people during the Irish Potato Famine in the nineteenth century. Phytophthora infestans is a heterothallic oomycete that typically requires two compatible types (mating types), A1 and A2, to complete sexual reproduction (i.e., oospore production). Oospores have critical effects on disease epidemiology because they serve as the primary inoculum in subsequent growing seasons. The sexual reproduction of Phytophthora species is regulated by α hormones. In previous studies, we proved that transformants in which selected histone deacetylase (HDAC) genes are silenced exhibit abnormal hormone production. In the current study, we compared the transcriptomes of HDAC-silenced and wild-type strains to explore the genes regulated by HDAC and the genes involved in sex hormone biosynthesis in Phytophthora species. A total of 14,423 transcripts of unigenes were identified in the wild-type strain, the HDAC family-silenced transformant (HDST), and the HDAC7-silenced transformant (H7ST). After comparing the intergroup gene expression levels, 1,612 unigenes were identified as differentially expressed among these strains. The expression levels of 16 differentially expressed genes (DEGs) were validated by quantitative real-time PCR. The functional annotation of the DEGs by gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses indicated that HDACs affect the expression of genes related to metabolic and biosynthetic processes, RNA processing, translation, ribosome biogenesis, cellular structural constituents, RNA binding, and protein binding. Moreover, HDAC7 specifically influences the transcription of genes associated with transport, methylation, mitochondria, organelle inner membranes, receptors and transporters, and hydrolase activities. We also identified 18 candidate genes related to α hormones biosynthesis, including a gene encoding the NF-Y transcription factor (PITG_10861). The overexpression of PITG_10861 increased the production of hormone α2. The results of this study revealed P. infestans genes affected by histone acetylation. The data presented herein provide useful inputs for future research on the epigenetic mechanisms and mating behaviors of Phytophthora species.
Collapse
Affiliation(s)
- Xiao-Wen Wang
- Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jia-Lu Lv
- Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ya-Ru Shi
- Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Li-Yun Guo
- Ministry of Agriculture (MOA) Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
66
|
Pagano A, L'Andolina C, Sabatini ME, de Sousa Araújo S, Balestrazzi A, Macovei A. Sodium butyrate induces genotoxic stress in function of photoperiod variations and differentially modulates the expression of genes involved in chromatin modification and DNA repair in Petunia hybrida seedlings. PLANTA 2020; 251:102. [PMID: 32350684 DOI: 10.1007/s00425-020-03392-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Sodium butyrate applied to Petunia hybrida seeds under a long-day photoperiod has a negative impact (reduced seedling length, decreased production of photosynthetic pigments, and accumulation of DNA damage) on early seedling development, whereas its administration under dark/light conditions (complete dark conditions for 5 days followed by exposure to long-day photoperiod for 5 days) bypasses some of the adverse effects. Genotoxic stress impairs plant development. To circumvent DNA damage, plants activate DNA repair pathways in concert with chromatin dynamics. These are essential during seed germination and seedling establishment, and may be influenced by photoperiod variations. To assess this interplay, an experimental design was developed in Petunia hybrida, a relevant horticultural crop and model species. Seeds were treated with different doses of sodium butyrate (NaB, 1 mM and 5 mM) as a stress agent applied under different light/dark conditions throughout a time period of 10 days. Phenotypic (germination percentage and speed, seedling length, and photosynthetic pigments) and molecular (DNA damage and gene expression profiles) analyses were performed to monitor the response to the imposed conditions. Seed germination was not affected by the treatments. Seedling development was hampered by increasing NaB concentrations applied under a long-day photoperiod (L) as reflected by the decreased seedling length accompanied by increased DNA damage. When seedlings were grown under dark conditions for 5 days and then exposed to long-day photoperiod for the remaining 5 days (D/L), the damaging effects of NaB were circumvented. NaB exposure under L conditions resulted in enhanced expression of HAT/HDAC (HISTONE ACETYLTRANSFERASES/HISTONE DEACTEYLASES) genes along with repression of genes involved in DNA repair. Differently, under D/L conditions, the expression of DNA repair genes was increased by NaB treatment and this was associated with lower levels of DNA damage. The observed DNA damage and gene expression profiles suggest the involvement of chromatin modification- and DNA repair-associated pathways in response to NaB and dark/light exposure during seedling development.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Corrado L'Andolina
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Maria Elisa Sabatini
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, via Ferrata 9, 27100, Pavia, Italy
- Viral Control of Cellular Pathways and Biology of Tumorigenesis Unit, European Institute of Oncology (IFOM-IEO), via Adamello 16, 20139, Milano, Italy
| | - Susana de Sousa Araújo
- Instituto de Tecnologia Química E Biológica António Xavier (ITQB-NOVA), Avenida da República, Estação Agronómica Nacional, 2780-157, Oeiras, Portugal
| | - Alma Balestrazzi
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, via Ferrata 9, 27100, Pavia, Italy
| | - Anca Macovei
- Department of Biology and Biotechnology 'L. Spallanzani', University of Pavia, via Ferrata 9, 27100, Pavia, Italy.
| |
Collapse
|
67
|
Li Q, Wang J, Bai T, Zhang M, Jia Y, Shen D, Zhang M, Dou D. A Phytophthora capsici effector suppresses plant immunity via interaction with EDS1. MOLECULAR PLANT PATHOLOGY 2020; 21:502-511. [PMID: 31997517 PMCID: PMC7060136 DOI: 10.1111/mpp.12912] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 05/22/2023]
Abstract
EDS1 (Enhanced Disease Susceptibility 1) plays a crucial role in both effector-triggered immunity activation and plant basal defence. However, whether pathogen effectors can target EDS1 or an EDS1-related pathway to manipulate immunity is rarely reported. In this study, we identified a Phytophthora capsici Avirulence Homolog (Avh) RxLR (Arg-any amino acid-Leu-Arg) effector PcAvh103 that interacts with EDS1. We demonstrated that PcAvh103 can facilitate P. capsici infection and is required for pathogen virulence. Furthermore, genetic evidence showed that PcAvh103 contributes to virulence through targeting EDS1. Finally, PcAvh103 specifically interacts with the lipase domain of EDS1 and can promote the disassociation of EDS1-PAD4 (Phytoalexin Deficient 4) complex in planta. Together, our results revealed that the P. capsici RxLR effector PcAvh103 targets host EDS1 to suppress plant immunity, probably through disrupting the EDS1-PAD4 immune signalling pathway.
Collapse
Affiliation(s)
- Qi Li
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
- Institute of BotanyJiangsu Province and Chinese Academy of SciencesNanjingChina
| | - Ji Wang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Tian Bai
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Ming Zhang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Yuling Jia
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Danyu Shen
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Meixiang Zhang
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| | - Daolong Dou
- Department of Plant PathologyNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
68
|
Schreiber KJ, Lewis JD. Protein Acetylation in Pathogen Virulence and Host Defense: In Vitro Detection of Protein Acetylation by Radiolabeled Acetyl Coenzyme A. Methods Mol Biol 2020; 1991:23-32. [PMID: 31041759 DOI: 10.1007/978-1-4939-9458-8_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Protein acetylation has emerged as a common modification that modulates multiple aspects of protein function, including localization, stability, and protein-protein interactions. It is increasingly evident that protein acetylation significantly impacts the outcome of host-microbe interactions. In order to characterize novel putative acetyltransferase enzymes and their substrates, we describe a simple protocol for the detection of acetyltransferase activity in vitro. Purified proteins are incubated with 14C-acetyl CoA and separated electrophoretically, and acetylated proteins are detected by phosphorimaging or autoradiography.
Collapse
Affiliation(s)
- Karl J Schreiber
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Jennifer D Lewis
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA. .,Plant Gene Expression Center, United States Department of Agriculture, Albany, CA, USA.
| |
Collapse
|
69
|
Situ J, Jiang L, Fan X, Yang W, Li W, Xi P, Deng Y, Kong G, Jiang Z. An RXLR effector PlAvh142 from Peronophythora litchii triggers plant cell death and contributes to virulence. MOLECULAR PLANT PATHOLOGY 2020; 21:415-428. [PMID: 31912634 PMCID: PMC7036370 DOI: 10.1111/mpp.12905] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/05/2019] [Accepted: 12/06/2019] [Indexed: 05/09/2023]
Abstract
Litchi downy blight, caused by the phytopathogenic oomycete Peronophythora litchii, results in tremendous economic loss in litchi production every year. To successfully colonize the host cell, Phytophthora species secret hundreds of RXLR effectors that interfere with plant immunity and facilitate the infection process. Previous work has already predicted 245 candidate RXLR effector-encoding genes in P. litchii, 212 of which have been cloned and tested for plant cell death-inducing activity in this study. We found three such RXLR effectors could trigger plant cell death through transient expression in Nicotiana benthamiana. Further experiments demonstrated that PlAvh142 could induce cell death and immune responses in several plants. We also found that PlAvh142 localized in both the cytoplasm and nucleus of plant cells. The cytoplasmic localization was critical for its cell death-inducing activity. Moreover, deletion either of the two internal repeats in PlAvh142 abolished the cell death-inducing activity. Virus-induced gene silencing assays showed that cell death triggered by PlAvh142 was dependent on the plant transduction components RAR1 (require for Mla12 resistance), SGT1 (suppressor of the G2 allele of skp1) and HSP90 (heat shock protein 90). Finally, knockout of PlAvh142 resulted in significantly attenuated P. litchii virulence on litchi plants, whereas the PlAvh142-overexpressed mutants were more aggressive. These data indicated that PlAvh142 could be recognized in plant cytoplasm and is an important virulence RXLR effector of P. litchii.
Collapse
Affiliation(s)
- Junjian Situ
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Liqun Jiang
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of New Technology in Rice Breeding/Rice Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Xiaoning Fan
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Wensheng Yang
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Wen Li
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Pinggen Xi
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Yizhen Deng
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Guanghui Kong
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| | - Zide Jiang
- Department of Plant Pathology/Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
70
|
Zhang J, Li L, Huang L, Zhang M, Chen Z, Zheng Q, Zhao H, Chen X, Jiang M, Tan M. Maize NAC-domain retained splice variants act as dominant negatives to interfere with the full-length NAC counterparts. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110256. [PMID: 31623792 DOI: 10.1016/j.plantsci.2019.110256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 05/20/2023]
Abstract
The plant-specific NAC transcription factors play diverse roles in various stress signaling. Alternative splicing is particularly prevalent in plants under stress. However, the investigation of cadmium (Cd) on the differential expression of the splice variants of NACs is in its infancy. Here, we identified three Cd-induced intron retention splice NAC variants which only contained the canonical NAC domain, designated as nacDomains, derived from three Cd-upregulated maize NACs. Subcellular localization analysis indicated that both nacDomain and its full-length NAC counterpart co-localized in the nucleus as manifested in the BiFC assay, thus implied that nacDomains and their corresponding NACs form heterodimers through the identical NAC domain. Further chimeric reporter/effector transient expression assay and Cd-tolerance assay in tobacco leaves collectively indicated that nacDomain-NAC heterodimers were involved in the regulation of NAC function. The results obtained here were in accordance with the model of dominant negative, which suggested that nacDomain act as the dominant negative to antagonize the regulation of NAC on its target gene expression and the Cd-tolerance function performance of NAC transcription factor. These findings proposed a novel insight into understanding the molecular mechanisms of Cd response in plants.
Collapse
Affiliation(s)
- Jie Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liping Huang
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan, 528225, China
| | - Manman Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ziyan Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingsong Zheng
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haiyan Zhao
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingyi Jiang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mingpu Tan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
71
|
Zhang X, Liu B, Zou F, Shen D, Yin Z, Wang R, He F, Wang Y, Tyler BM, Fan W, Qian W, Dou D. Whole Genome Re-sequencing Reveals Natural Variation and Adaptive Evolution of Phytophthora sojae. Front Microbiol 2019; 10:2792. [PMID: 31849921 PMCID: PMC6895562 DOI: 10.3389/fmicb.2019.02792] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/18/2019] [Indexed: 12/23/2022] Open
Abstract
Due to the monocultural basis of agricultural crops, mutated plant microbes with increased pathogenicity can easily spread in the field and lead to serious yield losses. As a major threat to a wide range of crop plants, oomycete pathogens continuously undergo adaptive evolution to overcome plant defense barriers. However, the genetic basis of their evolution at the molecular level remains largely unknown. Here, we investigated the nature variation and the population genomics of the soybean pathogen Phytophthora sojae by high-throughput genome re-sequencing. Genomic variation analysis revealed uneven “two-speed” evolutionary pattern with genes in gene-sparse regions (GSRs) showing higher rates of structural polymorphisms and positive selection. GSRs are enriched in effector genes and transposase-related genes. Our results also suggested that the NADH oxidase and MIP transporter gene families undergo rapid and diversifying selection. Furthermore, we demonstrated that P. sojae isolates possess varying numbers of RxLR effectors with diverse sequences, totaling 471 members. Among them, 42 core RxLR effectors are assumed to be important for infection. Finally, we observed that Avr genes exhibit abundant sequence variation in P. sojae isolates. Several novel variants lead to the evading of host resistance, including a complete deletion in Avr3c and amino acid mutations in Avr1a. Taken together, our results provide an adaptive landscape of P. sojae at single-nucleotide resolution, as well as resources for further resistance breeding and disease prevention against this important plant pathogen.
Collapse
Affiliation(s)
- Xiong Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Bo Liu
- Agricultural Genomic Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Fen Zou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Zhiyuan Yin
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Rongbo Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Feng He
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Brett M Tyler
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, OR, United States
| | - Wei Fan
- Agricultural Genomic Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wanqiang Qian
- Agricultural Genomic Institute, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China.,Department of Plant Pathology, China Agricultural University, Beijing, China
| |
Collapse
|
72
|
Liu Y, Lu S, Liu K, Wang S, Huang L, Guo L. Proteomics: a powerful tool to study plant responses to biotic stress. PLANT METHODS 2019; 15:135. [PMID: 31832077 PMCID: PMC6859632 DOI: 10.1186/s13007-019-0515-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/29/2019] [Indexed: 05/08/2023]
Abstract
In recent years, mass spectrometry-based proteomics has provided scientists with the tremendous capability to study plants more precisely than previously possible. Currently, proteomics has been transformed from an isolated field into a comprehensive tool for biological research that can be used to explain biological functions. Several studies have successfully used the power of proteomics as a discovery tool to uncover plant resistance mechanisms. There is growing evidence that indicates that the spatial proteome and post-translational modifications (PTMs) of proteins directly participate in the plant immune response. Therefore, understanding the subcellular localization and PTMs of proteins is crucial for a comprehensive understanding of plant responses to biotic stress. In this review, we discuss current approaches to plant proteomics that use mass spectrometry, with particular emphasis on the application of spatial proteomics and PTMs. The purpose of this paper is to investigate the current status of the field, discuss recent research challenges, and encourage the application of proteomics techniques to further research.
Collapse
Affiliation(s)
- Yahui Liu
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- National Institute of Metrology, Beijing, China
| | - Song Lu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Kefu Liu
- School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Sheng Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lanping Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
73
|
Reyes-Tena A, Huguet-Tapia JC, Lamour KH, Goss EM, Rodríguez-Alvarado G, Vázquez-Marrufo G, Santillán-Mendoza R, Fernández-Pavía SP. Genome Sequence Data of Six Isolates of Phytophthora capsici from Mexico. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1267-1269. [PMID: 31425006 DOI: 10.1094/mpmi-01-19-0014-a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phytophthora capsici is an oomycete plant pathogen with a wide host range. Worldwide, P. capsici is known for causing the principal disease of chili pepper crops. Our goal was to expand the available genome resources for this diverse pathogen by generating whole-genome sequences for six isolates of P. capsici from Mexico.
Collapse
Affiliation(s)
- Alfredo Reyes-Tena
- Laboratorio de Patología Vegetal, Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán, 58880, México
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, U.S.A
| | - José C Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, U.S.A
| | - Kurt H Lamour
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, U.S.A
| | - Erica M Goss
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, U.S.A
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32610, U.S.A
| | - Gerardo Rodríguez-Alvarado
- Laboratorio de Patología Vegetal, Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán, 58880, México
| | - Gerardo Vázquez-Marrufo
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, 58880, México
| | - Ricardo Santillán-Mendoza
- Laboratorio de Patología Vegetal, Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán, 58880, México
| | - Sylvia P Fernández-Pavía
- Laboratorio de Patología Vegetal, Instituto de Investigaciones Agropecuarias y Forestales, Universidad Michoacana de San Nicolás de Hidalgo, Tarímbaro, Michoacán, 58880, México
| |
Collapse
|
74
|
Wang Y, Tyler BM, Wang Y. Defense and Counterdefense During Plant-Pathogenic Oomycete Infection. Annu Rev Microbiol 2019; 73:667-696. [DOI: 10.1146/annurev-micro-020518-120022] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Plant-pathogenic oomycetes include numerous species that are ongoing threats to agriculture and natural ecosystems. Understanding the molecular dialogs between oomycetes and plants is instrumental for sustaining effective disease control. Plants respond to oomycete infection by multiple defense actions including strengthening of physical barriers, production of antimicrobial molecules, and programmed cell death. These responses are tightly controlled and integrated via a three-layered immune system consisting of a multiplex recognition layer, a resilient signal-integration layer, and a diverse defense-action layer. Adapted oomycete pathogens utilize apoplastic and intracellular effector arsenals to counter plant immunity mechanisms within each layer, including by evasion or suppression of recognition, interference with numerous signaling components, and neutralization or suppression of defense actions. A coevolutionary arms race continually drives the emergence of new mechanisms of plant defense and oomycete counterdefense.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;,
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| | - Brett M. Tyler
- Center for Genome Research and Biocomputing and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;,
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing 210095, China
| |
Collapse
|
75
|
Chen XR, Zhang Y, Li HY, Zhang ZH, Sheng GL, Li YP, Xing YP, Huang SX, Tao H, Kuan T, Zhai Y, Ma W. The RXLR Effector PcAvh1 Is Required for Full Virulence of Phytophthora capsici. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:986-1000. [PMID: 30811314 DOI: 10.1094/mpmi-09-18-0251-r] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plant pathogens employ diverse secreted effector proteins to manipulate host physiology and defense in order to foster diseases. The destructive Phytophthora pathogens encode hundreds of cytoplasmic effectors, which are believed to function inside the plant cells. Many of these cytoplasmic effectors contain the conserved N-terminal RXLR motif. Understanding the virulence function of RXLR effectors will provide important knowledge of Phytophthora pathogenesis. Here, we report the characterization of RXLR effector PcAvh1 from the broad-host range pathogen Phytophthora capsici. Only expressed during infection, PcAvh1 is quickly induced at the early infection stages. CRISPR/Cas9-knockout of PcAvh1 in P. capsici severely impairs virulence while overexpression enhances disease development in Nicotiana benthamiana and bell pepper, demonstrating that PcAvh1 is an essential virulence factor. Ectopic expression of PcAvh1 induces cell death in N. benthamiana, tomato, and bell pepper. Using yeast two-hybrid screening, we found that PcAvh1 interacts with the scaffolding subunit of the protein phosphatase 2A (PP2Aa) in plant cells. Virus-induced gene silencing of PP2Aa in N. benthamiana attenuates resistance to P. capsici and results in dwarfism, suggesting that PP2Aa regulates plant immunity and growth. Collectively, these results suggest that PcAvh1 contributes to P. capsici infection, probably through its interaction with host PP2Aa.
Collapse
Affiliation(s)
- Xiao-Ren Chen
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
- 2Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Ye Zhang
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Hai-Yang Li
- 3College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, China
| | - Zi-Hui Zhang
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Gui-Lin Sheng
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yan-Peng Li
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Yu-Ping Xing
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Shen-Xin Huang
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Hang Tao
- 1College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu Province 225009, China
| | - Tung Kuan
- 2Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Yi Zhai
- 2Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Wenbo Ma
- 2Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| |
Collapse
|
76
|
Zhang P, Jia Y, Shi J, Chen C, Ye W, Wang Y, Ma W, Qiao Y. The WY domain in the Phytophthora effector PSR1 is required for infection and RNA silencing suppression activity. THE NEW PHYTOLOGIST 2019; 223:839-852. [PMID: 30963588 DOI: 10.1111/nph.15836] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/29/2019] [Indexed: 05/27/2023]
Abstract
Phytophthora pathogens manipulate host innate immunity by secreting numerous RxLR effectors, thereby facilitating pathogen colonization. Predicted single and tandem repeats of WY domains are the most prominent C-terminal motifs conserved across the Phytophthora RxLR superfamily. However, the functions of individual WY domains in effectors remain poorly understood. The Phytophthora sojae effector PSR1 promotes infection by suppressing small RNA biogenesis in plant hosts. We identified one single WY domain following the RxLR motif in PSR1. This domain was required for RNA silencing suppression activity and infection in Nicotiana benthamiana, Arabidopsis and soybean. Mutations of the conserved residues in the WY domain did not affect the subcellular localization of PSR1 but abolished its effect on plant development and resistance to viral and Phytophthora pathogens. This is at least in part due to decreased protein stability of the PSR1 mutants in planta. The identification of the WY domain in PSR1 allows predicts that a family of PSR1-like effectors also possess RNA silencing suppression activity. Mutation of the conserved residues in two members of this family, PpPSR1L from P. parasitica and PcPSR1L from P. capsici, perturbed their biological functions, indicating that the WY domain is critical in Phytophthora PSR1 and PSR1-like effectors.
Collapse
Affiliation(s)
- Peng Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Yijuan Jia
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jinxia Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chen Chen
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521, USA
- Center for Plant Cell Biology, University of California, Riverside, CA, 92521, USA
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| |
Collapse
|
77
|
Nie H, Zhang L, Zhuang H, Yang X, Qiu D, Zeng H. Secreted protein MoHrip2 is required for full virulence of Magnaporthe oryzae and modulation of rice immunity. Appl Microbiol Biotechnol 2019; 103:6153-6167. [PMID: 31154490 DOI: 10.1007/s00253-019-09937-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/20/2019] [Accepted: 05/21/2019] [Indexed: 01/04/2023]
Abstract
MoHrip2, identified from Magnaporthe oryzae as an elicitor, can activate plant defense responses either in the form of recombinant protein in vitro or ectopic expressed protein in rice. However, its intrinsic function in the infective interaction of M. oryzae-rice is largely unknown. Here, we found that mohrip2 expression was significantly induced at stages of fungal penetration and colonization. Meanwhile, the induced MoHrip2 mainly accumulated in the rice apoplast by outlining the entire invasive hyphae during infection, and its secretion was via the conventional endoplasmic reticulum (ER)-to-Golgi pathway, demonstrating the nature of MoHrip2 as an apoplastic effector. What's more, the disease facilitating function of MoHrip2 was revealed by the significantly compromised virulence of Δmohrip2 mutants on rice seedlings and even on the wounded rice leaves. Inoculations of these mutant strains on rice leaf sheaths showed a reduction in penetration and subsequent expansion of fungal growth, which is probably due to activated host immunity including the expression of certain defense-related genes and the production of certain phytoalexins. Altogether, these results demonstrated the necessity of MoHrip2 in suppression of host immunity and the full virulence of M. oryzae.
Collapse
Affiliation(s)
- Haizhen Nie
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lin Zhang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huiqian Zhuang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiufen Yang
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Dewen Qiu
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongmei Zeng
- The State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
78
|
de Vries S, de Vries J, Rose LE. The Elaboration of miRNA Regulation and Gene Regulatory Networks in Plant⁻Microbe Interactions. Genes (Basel) 2019; 10:genes10040310. [PMID: 31010062 PMCID: PMC6523410 DOI: 10.3390/genes10040310] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 02/06/2023] Open
Abstract
Plants are exposed to diverse abiotic and biotic stimuli. These require fast and specific integrated responses. Such responses are coordinated at the protein and transcript levels and are incorporated into larger regulatory networks. Here, we focus on the evolution of transcriptional regulatory networks involved in plant–pathogen interactions. We discuss the evolution of regulatory networks and their role in fine-tuning plant defense responses. Based on the observation that many of the cornerstones of immune signaling in angiosperms are also present in streptophyte algae, it is likely that some regulatory components also predate the origin of land plants. The degree of functional conservation of many of these ancient components has not been elucidated. However, ongoing functional analyses in bryophytes show that some components are conserved. Hence, some of these regulatory components and how they are wired may also trace back to the last common ancestor of land plants or earlier. Of course, an understanding of the similarities and differences during the evolution of plant defense networks cannot ignore the lineage-specific coevolution between plants and their pathogens. In this review, we specifically focus on the small RNA regulatory networks involved in fine-tuning of the strength and timing of defense responses and highlight examples of pathogen exploitation of the host RNA silencing system. These examples illustrate well how pathogens frequently target gene regulation and thereby alter immune responses on a larger scale. That this is effective is demonstrated by the diversity of pathogens from distinct kingdoms capable of manipulating the same gene regulatory networks, such as the RNA silencing machinery.
Collapse
Affiliation(s)
- Sophie de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| | - Jan de Vries
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada.
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, 38106 Braunschweig, Germany.
| | - Laura E Rose
- Institute of Population Genetics, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany.
- CEPLAS-Cluster of Excellence in Plant Sciences, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany.
| |
Collapse
|
79
|
Li Q, Ai G, Shen D, Zou F, Wang J, Bai T, Chen Y, Li S, Zhang M, Jing M, Dou D. A Phytophthora capsici Effector Targets ACD11 Binding Partners that Regulate ROS-Mediated Defense Response in Arabidopsis. MOLECULAR PLANT 2019; 12:565-581. [PMID: 30703564 DOI: 10.1016/j.molp.2019.01.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 01/20/2019] [Accepted: 01/20/2019] [Indexed: 05/24/2023]
Abstract
Reactive oxygen species (ROS) play a vital role in plant immune response, but the genes involved in the regulation of ROS are scantily reported. Phytophthora pathogens produce a large number of effectors to promote infection, but the modes of action adopted are largely unknown. Here, we report that RxLR207 could activate ROS-mediated cell death in Nicotiana benthamiana and was essential for virulence of P. capsici. We found that this effector targeted BPA1 (binding partner of ACD11) and four members of BPLs (BPA1-Like proteins) in Arabidopsis, and the bpa1 and bpl mutants had enhanced ROS accumulation and cell death under biotic or abiotic stresses. Furthermore, we showed that BPA1 and several BPLs functioned redundantly in plant immunity to P. capsici. We discovered that BPA1 and all six BPLs interacted with ACD11, and stabilization of ACD11 was impaired in the bpa1, bpl2, bpl3, and bpl4 mutants. RxLR207 could promote the degradation of BPA1, BPL1, BPL2, and BPL4 to disrupt ACD11 stabilization in a 26S proteasome-dependent manner. Taken together, these findings indicate the important roles of Arabidopsis BPA1 and its homologs in ROS homeostasis and defense response, highlighting the usefulness of a pathogen effector-directed approach as a promising strategy for the discovery of novel plant immune regulators.
Collapse
Affiliation(s)
- Qi Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Gan Ai
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Fen Zou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ji Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Bai
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanyu Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Shutian Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Meixiang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Maofeng Jing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
80
|
Tenuivirus utilizes its glycoprotein as a helper component to overcome insect midgut barriers for its circulative and propagative transmission. PLoS Pathog 2019; 15:e1007655. [PMID: 30921434 PMCID: PMC6456217 DOI: 10.1371/journal.ppat.1007655] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/09/2019] [Accepted: 02/24/2019] [Indexed: 12/31/2022] Open
Abstract
Many persistent transmitted plant viruses, including rice stripe virus (RSV), cause serious damage to crop production worldwide. Although many reports have indicated that a successful insect-mediated virus transmission depends on a proper interaction between the virus and its insect vector, the mechanism(s) controlling this interaction remained poorly understood. In this study, we used RSV and its small brown planthopper (SBPH) vector as a working model to elucidate the molecular mechanisms underlying the entrance of RSV virions into SBPH midgut cells for virus circulative and propagative transmission. We have determined that this non-enveloped tenuivirus uses its non-structural glycoprotein NSvc2 as a helper component to overcome the midgut barrier(s) for RSV replication and transmission. In the absence of this glycoprotein, purified RSV virions were unable to enter SBPH midgut cells. In the RSV-infected cells, this glycoprotein was processed into two mature proteins: an amino-terminal protein (NSvc2-N) and a carboxyl-terminal protein (NSvc2-C). Both NSvc2-N and NSvc2-C interact with RSV virions. Our results showed that the NSvc2-N could bind directly to the surface of midgut lumen via its N-glycosylation sites. Upon recognition, the midgut cells underwent endocytosis followed by compartmentalization of RSV virions and NSvc2 into early and then late endosomes. The NSvc2-C triggered cell membrane fusion via its highly conserved fusion loop motifs under the acidic condition inside the late endosomes, leading to the release of RSV virions from endosomes into cytosol. In summary, our results showed for the first time that a rice tenuivirus utilized its glycoprotein NSvc2 as a helper component to ensure a proper interaction between its virions and SBPH midgut cells for its circulative and propagative transmission. Over 75% of the known plant viruses are insect transmitted. Understanding how plant viruses interact with their insect vectors during virus transmission is a key step towards the successful management of plant viruses worldwide. Several models for the direct or indirect virus–insect vector interactions have been proposed for the non-persistent or semi-persistent virus transmissions. However, the mechanisms controlling the interactions between viruses and their insect vector midgut barriers are poorly understood. In this study, we demonstrated that the circulative and propagative transmitted rice stripe virus (RSV) utilized its glycoprotein NSvc2 as a helper component to ensure a specific interaction between its virions and SBPH midgut cells to overcome the midgut barriers inside this vector. This is the first report of a viral helper component mediated mechanism for persistent-propagative virus transmission. Our new findings and working model should expand our knowledge on the molecular mechanism(s) controlling the interaction between virus and its insect vector during virus circulative and propagative transmission in nature.
Collapse
|
81
|
Jiang N, Cui J, Shi Y, Yang G, Zhou X, Hou X, Meng J, Luan Y. Tomato lncRNA23468 functions as a competing endogenous RNA to modulate NBS-LRR genes by decoying miR482b in the tomato -Phytophthora infestans interaction. HORTICULTURE RESEARCH 2019; 6:28. [PMID: 30729018 PMCID: PMC6355781 DOI: 10.1038/s41438-018-0096-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/07/2018] [Accepted: 09/19/2018] [Indexed: 05/05/2023]
Abstract
Our previous studies indicated that tomato miR482b could negatively regulate the resistance of tomato to Phytophthora infestans and the expression of miR482b was decreased after inoculation with P. infestans. However, the mechanism by which the accumulation of miR482b is suppressed remains unclear. In this study, we wrote a program to identify 89 long noncoding RNA (lncRNA)-originated endogenous target mimics (eTMs) for 46 miRNAs from our RNA-Seq data. Three tomato lncRNAs, lncRNA23468, lncRNA01308 and lncRNA13262, contained conserved eTM sites for miR482b. When lncRNA23468 was overexpressed in tomato, miR482b expression was significantly decreased, and the expression of the target genes, NBS-LRRs, was significantly increased, resulting in enhanced resistance to P. infestans. Silencing lncRNA23468 in tomato led to the increased accumulation of miR482b and decreased accumulation of NBS-LRRs, as well as reduced resistance to P. infestans. In addition, the accumulation of both miR482b and NBS-LRRs was not significantly changed in tomato plants that overexpressed lncRNA23468 with a mutated eTM site. Based on the VIGS system, a target gene of miR482b, Solyc02g036270.2, was silenced. The disease symptoms of the VIGS-Solyc02g036270.2 tomato plants were in accordance with those of tomato plants in which lncRNA23468 was silenced after inoculation with P. infestans. More severe disease symptoms were found in the modified plants than in the control plants. Our results demonstrate that lncRNAs functioning as eTMs may modulate the effects of miRNAs in tomato and provide insight into how the lncRNA23468-miR482b-NBS-LRR module regulates tomato resistance to P. infestans.
Collapse
Affiliation(s)
- Ning Jiang
- School of Life Science and Biotechnology, Dalian University of Technology, 116024 Dalian, China
| | - Jun Cui
- School of Life Science and Biotechnology, Dalian University of Technology, 116024 Dalian, China
| | - Yunsheng Shi
- School of Computer Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Guanglei Yang
- School of Life Science and Biotechnology, Dalian University of Technology, 116024 Dalian, China
| | - Xiaoxu Zhou
- School of Life Science and Biotechnology, Dalian University of Technology, 116024 Dalian, China
| | - Xinxin Hou
- School of Life Science and Biotechnology, Dalian University of Technology, 116024 Dalian, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, 116024 Dalian, China
| | - Yushi Luan
- School of Life Science and Biotechnology, Dalian University of Technology, 116024 Dalian, China
| |
Collapse
|
82
|
Dicer functions transcriptionally and posttranscriptionally in a multilayer antiviral defense. Proc Natl Acad Sci U S A 2019; 116:2274-2281. [PMID: 30674672 DOI: 10.1073/pnas.1812407116] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In antiviral RNA interference (RNAi), Dicer plays a primary role in processing double-stranded RNA (dsRNA) molecules into small-interfering RNAs (siRNAs) that guide Argonaute effectors to posttranscriptional suppression of target viral genes. Here, we show a distinct role for Dicer in the siRNA-independent transcriptional induction of certain host genes upon viral infection in a filamentous fungus. Previous studies have shown that the two key players, dicer-like 2 (dcl2) and argonaute-like 2 (agl2), of antiviral RNAi in a phytopathogenic ascomycete, Cryphonectria parasitica, are highly transcriptionally induced upon infection with certain RNA mycoviruses, including the positive-stranded RNA hypovirus mutant lacking the RNAi suppressor (Cryphonectria hypovirus 1-Δp69, CHV1-Δp69). This induction is regulated by the Spt-Ada-Gcn5 acetyltransferase (SAGA) complex, a well-known transcriptional coactivator. The present study shows that diverse host genes, in addition to dcl2 and agl2, were up-regulated more than 10-fold by SAGA upon infection with CHV1-Δp69. Interestingly, DCL2, but not AGL2, was essential for SAGA-mediated global gene up-regulation. Moreover, deletion of certain virus-induced genes enhanced a CHV1-Δp69 symptom (growth rate) but not its accumulation. Constitutive, modest levels of dcl2 expression drastically reduced viral siRNA accumulation but were sufficient for full-scale up-regulation of host genes, suggesting that high induction of dcl2 and siRNA production are not essential for the transcriptional up-regulation function of DCL2. These data clearly demonstrate the dual functionality of DCL2: as a dsRNA-specific nuclease in posttranscriptional antiviral RNA silencing and as a key player in SAGA-mediated host gene induction, which independently represses viral replication and alleviates virus-induced symptom expression.
Collapse
|
83
|
Hu Y, Lu Y, Zhao Y, Zhou DX. Histone Acetylation Dynamics Integrates Metabolic Activity to Regulate Plant Response to Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:1236. [PMID: 31636650 PMCID: PMC6788390 DOI: 10.3389/fpls.2019.01236] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/05/2019] [Indexed: 05/20/2023]
Abstract
Histone lysine acetylation is an essential chromatin modification for epigenetic regulation of gene expression during plant response to stress. On the other hand, enzymes involved in histone acetylation homeostasis require primary metabolites as substrates or cofactors whose levels are greatly influenced by stress and growth conditions in plants. In addition, histone lysine acylation that requires similar enzymes for deposition and removal as histone acetylation has been recently characterized in plant. Results on understanding the intrinsic relationship between histone acetylation/acylation, metabolism and stress response in plants are accumulating. In this review, we summarize recent advance in the field and propose a model of interplay between metabolism and epigenetic regulation of genes expression in plant adaptation to stress.
Collapse
Affiliation(s)
- Yongfeng Hu
- College of Bioengineering, Jingchu University of Technology, Jingmen, China
| | - Yue Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Institute of Plant Science of Paris-Saclay (IPS2), CNRS, INRA, University Paris-sud 11, University Paris-Saclay, Orsay, France
- *Correspondence: Dao-Xiu Zhou,
| |
Collapse
|
84
|
Comprehensive Analysis of the Cadmium Tolerance of Abscisic Acid-, Stress- and Ripening-Induced Proteins (ASRs) in Maize. Int J Mol Sci 2019; 20:ijms20010133. [PMID: 30609672 PMCID: PMC6337223 DOI: 10.3390/ijms20010133] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/21/2018] [Accepted: 12/25/2018] [Indexed: 01/07/2023] Open
Abstract
In plants, abscisic acid-, stress-, and ripening-induced (ASR) proteins have been shown to impart tolerance to multiple abiotic stresses such as drought and salinity. However, their roles in metal stress tolerance are poorly understood. To screen plant Cd-tolerance genes, the yeast-based gene hunting method which aimed to screen Cd-tolerance colonies from maize leaf cDNA library hosted in yeast was carried out. Here, maize ZmASR1 was identified to be putative Cd-tolerant through this survival screening strategy. In silico analysis of the functional domain organization, phylogenetic classification and tissue-specific expression patterns revealed that maize ASR1 to ASR5 are typical ASRs with considerable expression in leaves. Further, four of them were cloned for testifying Cd tolerance using yeast complementation assay. The results indicated that they all confer Cd tolerance in Cd-sensitive yeast. Then they were transiently expressed in tobacco leaves for subcellular localization analysis and for Cd-challenged lesion assay, continuously. The results demonstrated that all 4 maize ASRs tested are localized to the cell nucleus and cytoplasm in tobacco leaves. Moreover, they were confirmed to be Cd-tolerance genes in planta through lesion analysis in Cd-infiltrated leaves transiently expressing them. Taken together, our results demonstrate that maize ASRs play important roles in Cd tolerance, and they could be used as promising candidate genes for further functional studies toward improving the Cd tolerance in plants.
Collapse
|
85
|
Wang Y, Wang Y. Phytophthora sojae effectors orchestrate warfare with host immunity. Curr Opin Microbiol 2018; 46:7-13. [PMID: 29454192 DOI: 10.1016/j.mib.2018.01.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/11/2018] [Indexed: 11/26/2022]
Abstract
Phytophthora sojae is one of the most damaging plant pathogens of soybean. To aid establishment of a compatible interaction with its host, P. sojae deploys many secreted effectors. These effectors act either in the apoplastic space to cope with hostile conditions or inside of host cells to reprogram host physiology favoring pathogen growth. Effectors have been used as molecular probes, which revealed in Phytophthora that effectors execute their virulence function via manipulating host targets. In addition, recent studies have discovered 'pseudo-effectors' in Phytophthora that act as decoys to shield virulence effectors from host defense, a new paradigm in plant-pathogen interactions.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing 210095, China.
| |
Collapse
|
86
|
Chen H, Shu H, Wang L, Zhang F, Li X, Ochola SO, Mao F, Ma H, Ye W, Gu T, Jiang L, Wu Y, Wang Y, Kamoun S, Dong S. Phytophthora methylomes are modulated by 6mA methyltransferases and associated with adaptive genome regions. Genome Biol 2018; 19:181. [PMID: 30382931 PMCID: PMC6211444 DOI: 10.1186/s13059-018-1564-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/16/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Filamentous plant pathogen genomes often display a bipartite architecture with gene-sparse, repeat-rich compartments serving as a cradle for adaptive evolution. The extent to which this two-speed genome architecture is associated with genome-wide DNA modifications is unknown. RESULTS We show that the oomycetes Phytophthora infestans and Phytophthora sojae possess functional adenine N6-methylation (6mA) methyltransferases that modulate patterns of 6mA marks across the genome. In contrast, 5-methylcytosine could not be detected in these species. Methylated DNA IP sequencing (MeDIP-seq) of each species reveals 6mA is depleted around the transcription start sites (TSSs) and is associated with lowly expressed genes, particularly transposable elements. Genes occupying the gene-sparse regions have higher levels of 6mA in both genomes, possibly implicating the methylome in adaptive evolution. All six putative adenine methyltransferases from P. infestans and P. sojae, except PsDAMT2, display robust enzymatic activities. Surprisingly, single knockouts in P. sojae significantly reduce in vivo 6mA levels, indicating that the three enzymes are not fully redundant. MeDIP-seq of the psdamt3 mutant reveals uneven 6mA methylation reduction across genes, suggesting that PsDAMT3 may have a preference for gene body methylation after the TSS. Furthermore, transposable elements such as DNA elements are more active in the psdamt3 mutant. A large number of genes, particularly those from the adaptive genomic compartment, are differentially expressed. CONCLUSIONS Our findings provide evidence that 6mA modification is potentially an epigenetic mark in Phytophthora genomes, and complex patterns of 6mA methylation may be associated with adaptive evolution in these important plant pathogens.
Collapse
Affiliation(s)
- Han Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haidong Shu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liyuan Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fan Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | | | - Fei Mao
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongyu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenwu Ye
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingting Gu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lubin Jiang
- Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yufeng Wu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Suomeng Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
87
|
Li H, Wang H, Jing M, Zhu J, Guo B, Wang Y, Lin Y, Chen H, Kong L, Ma Z, Wang Y, Ye W, Dong S, Tyler B, Wang Y. A Phytophthora effector recruits a host cytoplasmic transacetylase into nuclear speckles to enhance plant susceptibility. eLife 2018; 7:e40039. [PMID: 30346270 PMCID: PMC6249003 DOI: 10.7554/elife.40039] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 10/21/2018] [Indexed: 12/14/2022] Open
Abstract
Oomycete pathogens secrete host cell-entering effector proteins to manipulate host immunity during infection. We previously showed that PsAvh52, an early-induced RxLR effector secreted from the soybean root rot pathogen, Phytophthora sojae, could suppress plant immunity. Here, we found that PsAvh52 is required for full virulence on soybean and binds to a novel soybean transacetylase, GmTAP1, in vivo and in vitro. PsAvh52 could cause GmTAP1 to relocate into the nucleus where GmTAP1 could acetylate histones H2A and H3 during early infection, thereby promoting susceptibility to P. sojae. In the absence of PsAvh52, GmTAP1 remained confined to the cytoplasm and did not modify plant susceptibility. These results demonstrate that GmTAP1 is a susceptibility factor that is hijacked by PsAvh52 in order to promote epigenetic modifications that enhance the susceptibility of soybean to P. sojae infection.
Collapse
Affiliation(s)
- Haiyang Li
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Haonan Wang
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Maofeng Jing
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Jinyi Zhu
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Baodian Guo
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Yang Wang
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Yachun Lin
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Han Chen
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Liang Kong
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Zhenchuan Ma
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Yan Wang
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Wenwu Ye
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Suomeng Dong
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| | - Brett Tyler
- Center for Genome Research and BiocomputingOregon State UniversityCorvallisUnited States
- Department of Botany and Plant PathologyOregon State UniversityCorvallisUnited States
| | - Yuanchao Wang
- Department of Plant PathologyNanjing Agriculture UniversityNanjingChina
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education)NanjingChina
| |
Collapse
|
88
|
Zhang X, He D, Zhao Y, Cheng X, Zhao W, Taylor IA, Yang J, Liu J, Peng YL. A positive-charged patch and stabilized hydrophobic core are essential for avirulence function of AvrPib in the rice blast fungus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:133-146. [PMID: 29989241 DOI: 10.1111/tpj.14023] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 06/20/2018] [Indexed: 05/09/2023]
Abstract
Fungal avirulence effectors, a key weapon utilized by pathogens to promote their infection, are recognized by immune receptors to boost host R gene-mediated resistance. Many avirulence effectors share sparse sequence homology to proteins with known functions, and their molecular and biochemical functions together with the evolutionary relationship among different members remain largely unknown. Here, the crystal structure of AvrPib, an avirulence effector from Magnaporthe oryzae, was determined and showed a high degree of similarity to the M. oryzae Avrs and ToxB (MAX) effectors. Compared with other MAX effectors, AvrPib has a distinct positive-charge patch formed by five positive-charged residues (K29, K30, R50, K52 and K70) on the surface. These five key residues were essential to avirulence function of AvrPib and affected its nuclear localization into host cells. Moreover, residues V39 and V58, which locate in the hydrophobic core of the structure, cause loss of function of AvrPib by single-point mutation in natural isolates. In comparison with the wild-type AvrPib, the V39A or V58A mutations resulted in a partial or entire loss of secondary structure elements. Taken together, our results suggest that differences in the surface charge distribution of avirulence proteins could be one of the major bases for the variation in effector-receptor specificity, and that destabilization of the hydrophobic core is one of the major mechanisms employed by AvrPib for the fungus to evade recognition by resistance factors in the host cell.
Collapse
Affiliation(s)
- Xin Zhang
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Dan He
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Yanxiang Zhao
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xilan Cheng
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wensheng Zhao
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Ian A Taylor
- Macromolecular Structure Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jun Yang
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| | - Junfeng Liu
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - You-Liang Peng
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
89
|
Cheng D, Tan M, Yu H, Li L, Zhu D, Chen Y, Jiang M. Comparative analysis of Cd-responsive maize and rice transcriptomes highlights Cd co-modulated orthologs. BMC Genomics 2018; 19:709. [PMID: 30257650 PMCID: PMC6158873 DOI: 10.1186/s12864-018-5109-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 09/21/2018] [Indexed: 11/29/2022] Open
Abstract
Background Metal tolerance is often an integrative result of metal uptake and distribution, which are fine-tuned by a network of signaling cascades and metal transporters. Thus, with the goal of advancing the molecular understanding of such metal homeostatic mechanisms, comparative RNAseq-based transcriptome analysis was conducted to dissect differentially expressed genes (DEGs) in maize roots exposed to cadmium (Cd) stress. Results To unveil conserved Cd-responsive genes in cereal plants, the obtained 5166 maize DEGs were compared with 2567 Cd-regulated orthologs in rice roots, and this comparison generated 880 universal Cd-responsive orthologs groups composed of 1074 maize DEGs and 981 rice counterparts. More importantly, most of the orthologous DEGs showed coordinated expression pattern between Cd-treated maize and rice, and these include one large orthologs group of pleiotropic drug resistance (PDR)-type ABC transporters, two clusters of amino acid transporters, and 3 blocks of multidrug and toxic compound extrusion (MATE) efflux family transporters, and 3 clusters of heavy metal-associated domain (HMAD) isoprenylated plant proteins (HIPPs), as well as all 4 groups of zinc/iron regulated transporter protein (ZIPs). Additionally, several blocks of tandem maize paralogs, such as germin-like proteins (GLPs), phenylalanine ammonia-lyases (PALs) and several enzymes involved in JA biosynthesis, displayed consistent co-expression pattern under Cd stress. Out of the 1074 maize DEGs, approximately 30 maize Cd-responsive genes such as ZmHIPP27, stress-responsive NAC transcription factor (ZmSNAC1) and 9-cis-epoxycarotenoid dioxygenase (NCED, vp14) were also common stress-responsive genes reported to be uniformly regulated by multiple abiotic stresses. Moreover, the aforementioned three promising Cd-upregulated genes with rice counterparts were identified to be novel Cd-responsive genes in maize. Meanwhile, one maize glutamate decarboxylase (ZmGAD1) with Cd co-modulated rice ortholog was selected for further analysis of Cd tolerance via heterologous expression, and the results suggest that ZmGAD1 can confer Cd tolerance in yeast and tobacco leaves. Conclusions These novel findings revealed the conserved function of Cd-responsive orthologs and paralogs, which would be valuable for elucidating the genetic basis of the plant response to Cd stress and unraveling Cd tolerance genes. Electronic supplementary material The online version of this article (10.1186/s12864-018-5109-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dan Cheng
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingpu Tan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Haijuan Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Liang Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Dandan Zhu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yahua Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Mingyi Jiang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
90
|
Wang B, Yang X, Wang Y, Xie Y, Zhou X. Tomato Yellow Leaf Curl Virus V2 Interacts with Host Histone Deacetylase 6 To Suppress Methylation-Mediated Transcriptional Gene Silencing in Plants. J Virol 2018; 92:e00036-18. [PMID: 29950418 PMCID: PMC6146709 DOI: 10.1128/jvi.00036-18] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 06/22/2018] [Indexed: 12/12/2022] Open
Abstract
Cytosine DNA methylation is a conserved epigenetic silencing mechanism that defends against biotic stresses such as geminivirus infection. As a countermeasure, geminiviruses encode proteins that inhibit methylation and transcriptional gene silencing (TGS). Previous studies showed that V2 protein of Tomato yellow leaf curl virus (TYLCV) functions as a TGS suppressor. However, how V2 mediates TGS suppression remains unknown. Here we show that V2 interacts directly with a Nicotiana benthamiana histone deacetylase 6 (NbHDA6), a homolog of Arabidopsis HDA6 (AtHDA6), known to be involved in gene silencing in cooperation with methyltransferase 1 (MET1). NbHDA6 genetically complemented a late-flowering phenotype and restored histone deacetylation of an AtHDA6 mutant. Furthermore, our investigation showed that NbHDA6 displayed histone deacetylase enzymatic activity, which was not inhibited by V2. Genetic analysis revealed that silencing of NbHDA6 expression resulted in enhanced susceptibility to TYLCV infection. In addition, methylation-sensitive PCR and bisulfite sequencing analysis showed that silencing of NbHDA6 expression caused reduced DNA methylation of the viral genome in infected plants. HDA6 was previously shown to recruit and physically interact with MET1 to function in gene silencing. Using competitive pulldown and coimmunoprecipitation assays, we demonstrated that V2 did not interact but competed with NbMET1 for direct binding to NbHDA6. These findings suggest that V2 interacts with host HDA6 and interferes with the recruitment of MET1 by HDA6, resulting in decreased methylation of the viral DNA genome by TGS with a concomitant increase in host susceptibility to TYLCV infection.IMPORTANCE Plants employ repressive viral genome methylation as an epigenetic defense against geminiviruses. In turn, geminiviruses encode proteins that inhibit methylation by TGS. Previous studies showed that TYLCV V2 can efficiently suppress TGS, but the mechanism remains unknown. We showed that V2 interacted with NbHDA6 but did not inhibit its enzymatic activity. As HDA6 is known to be involved in gene silencing in cooperation with MET1, we explored the relationship between V2, NbMET1, and NbHDA6. Our investigation showed that V2 did not interact but competed with NbMET1 for direct binding to NbHDA6. To our knowledge, this is the first report that viral proteins inhibit TGS by interacting with histone deacetylase but not by blocking the methyl cycle. This work provides an additional mechanism for TGS suppression by geminiviruses.
Collapse
Affiliation(s)
- Bi Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, People's Republic of China
| | - Xiuling Yang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yaqin Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Yan Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
91
|
Zheng X, Wagener N, McLellan H, Boevink PC, Hua C, Birch PRJ, Brunner F. Phytophthora infestans RXLR effector SFI5 requires association with calmodulin for PTI/MTI suppressing activity. THE NEW PHYTOLOGIST 2018; 219:1433-1446. [PMID: 29932222 PMCID: PMC6099356 DOI: 10.1111/nph.15250] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/03/2018] [Indexed: 05/04/2023]
Abstract
Pathogens secrete effector proteins to interfere with plant innate immunity, in which Ca2+ /calmodulin (CaM) signalling plays key roles. Thus far, few effectors have been identified that directly interact with CaM for defence suppression. Here, we report that SFI5, an RXLR effector from Phytophthora infestans, suppresses microbe-associated molecular pattern (MAMP)-triggered immunity (MTI) by interacting with host CaMs. We predicted the CaM-binding site in SFI5 using in silico analysis. The interaction between SFI5 and CaM was tested by both in vitro and in vivo assays. MTI suppression by SFI5 and truncated variants were performed in a tomato protoplast system. We found that both the predicted CaM-binding site and the full-length SFI5 protein interact with CaM in the presence of Ca2+ . MTI responses, such as FRK1 upregulation, reactive oxygen species accumulation, and mitogen-activated protein kinase activation were suppressed by truncated SFI5 proteins containing the C-terminal CaM-binding site but not by those without it. The plasma membrane localization of SFI5 and its ability to enhance infection were also perturbed by loss of the CaM-binding site. We conclude that CaM-binding is required for localization and activity of SFI5. We propose that SFI5 suppresses plant immunity by interfering with immune signalling components after activation by CaMs.
Collapse
Affiliation(s)
- Xiangzi Zheng
- Department of BiochemistryCentre for Plant Molecular BiologyEberhard Karls UniversityAuf der Morgenstelle 32D‐72076TübingenGermany
- Center for Molecular Cell and Systems BiologyCollege of Life SciencesFujian Agriculture and Forestry UniversityFuzhou350002China
| | - Nadine Wagener
- Department of BiochemistryCentre for Plant Molecular BiologyEberhard Karls UniversityAuf der Morgenstelle 32D‐72076TübingenGermany
| | - Hazel McLellan
- Division of Plant SciencesUniversity of Dundee (at James Hutton Institute)Errol RdInvergowrie, DundeeDD2 5DAUK
| | - Petra C. Boevink
- Cell and Molecular SciencesThe James Hutton InstituteErrol RdInvergowrie, DundeeDD2 5DAUK
| | - Chenlei Hua
- Department of BiochemistryCentre for Plant Molecular BiologyEberhard Karls UniversityAuf der Morgenstelle 32D‐72076TübingenGermany
| | - Paul R. J. Birch
- Division of Plant SciencesUniversity of Dundee (at James Hutton Institute)Errol RdInvergowrie, DundeeDD2 5DAUK
- Cell and Molecular SciencesThe James Hutton InstituteErrol RdInvergowrie, DundeeDD2 5DAUK
| | - Frédéric Brunner
- Department of BiochemistryCentre for Plant Molecular BiologyEberhard Karls UniversityAuf der Morgenstelle 32D‐72076TübingenGermany
- PlantResponse Biotech, S.L.Centre for Plant Biotechnology and Genomics (CBGP)Campus de Montegancedo28223Pozuelo de Alarcón, MadridSpain
| |
Collapse
|
92
|
Pan Y, Liu Z, Rocheleau H, Fauteux F, Wang Y, McCartney C, Ouellet T. Transcriptome dynamics associated with resistance and susceptibility against fusarium head blight in four wheat genotypes. BMC Genomics 2018; 19:642. [PMID: 30157778 PMCID: PMC6116500 DOI: 10.1186/s12864-018-5012-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023] Open
Abstract
Background Fusarium head blight (FHB) of wheat in North America is caused mostly by the fungal pathogen Fusarium graminearum (Fg). Upon exposure to Fg, wheat initiates a series of cellular responses involving massive transcriptional reprogramming. In this study, we analyzed transcriptomics data of four wheat genotypes (Nyubai, Wuhan 1, HC374, and Shaw), at 2 and 4 days post inoculation (dpi) with Fg, using RNA-seq technology. Results A total of 37,772 differentially expressed genes (DEGs) were identified, 28,961 from wheat and 8811 from the pathogen. The susceptible genotype Shaw exhibited the highest number of host and pathogen DEGs, including 2270 DEGs associating with FHB susceptibility. Protein serine/threonine kinases and LRR-RK were associated with susceptibility at 2 dpi, while several ethylene-responsive, WRKY, Myb, bZIP and NAC-domain containing transcription factors were associated with susceptibility at 4 dpi. In the three resistant genotypes, 220 DEGs were associated with resistance. Glutathione S-transferase (GST), membrane proteins and distinct LRR-RKs were associated with FHB resistance across the three genotypes. Genes with unique, high up-regulation by Fg in Wuhan 1 were mostly transiently expressed at 2 dpi, while many defense-associated genes were up-regulated at both 2 and 4 dpi in Nyubai; the majority of unique genes up-regulated in HC374 were detected at 4 dpi only. In the pathogen, most genes showed increased expression between 2 and 4 dpi in all genotypes, with stronger levels in the susceptible host; however two pectate lyases and a hydrolase were expressed higher at 2 dpi, and acetyltransferase activity was highly enriched at 4 dpi. Conclusions There was an early up-regulation of LRR-RKs, different between susceptible and resistant genotypes; subsequently, distinct sets of genes associated with defense response were up-regulated. Differences in expression profiles among the resistant genotypes indicate genotype-specific defense mechanisms. This study also shows a greater resemblance in transcriptomics of HC374 to Nyubai, consistent with their sharing of two FHB resistance QTLs on 3BS and 5AS, compared to Wuhan 1 which carries one QTL on 2DL in common with HC374. Electronic supplementary material The online version of this article (10.1186/s12864-018-5012-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Youlian Pan
- Digital Technologies Research Centre, NRC, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada.
| | - Ziying Liu
- Digital Technologies Research Centre, NRC, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Hélène Rocheleau
- Ottawa Research and Development Centre, AAFC, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - François Fauteux
- Digital Technologies Research Centre, NRC, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Yunli Wang
- Digital Technologies Research Centre, NRC, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Curt McCartney
- Morden Research and Development Centre, AAFC, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Thérèse Ouellet
- Ottawa Research and Development Centre, AAFC, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
93
|
Pan Y, Liu Z, Rocheleau H, Fauteux F, Wang Y, McCartney C, Ouellet T. Transcriptome dynamics associated with resistance and susceptibility against fusarium head blight in four wheat genotypes. BMC Genomics 2018. [PMID: 30157778 DOI: 10.1186/s12864-018-5012-5013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Fusarium head blight (FHB) of wheat in North America is caused mostly by the fungal pathogen Fusarium graminearum (Fg). Upon exposure to Fg, wheat initiates a series of cellular responses involving massive transcriptional reprogramming. In this study, we analyzed transcriptomics data of four wheat genotypes (Nyubai, Wuhan 1, HC374, and Shaw), at 2 and 4 days post inoculation (dpi) with Fg, using RNA-seq technology. RESULTS A total of 37,772 differentially expressed genes (DEGs) were identified, 28,961 from wheat and 8811 from the pathogen. The susceptible genotype Shaw exhibited the highest number of host and pathogen DEGs, including 2270 DEGs associating with FHB susceptibility. Protein serine/threonine kinases and LRR-RK were associated with susceptibility at 2 dpi, while several ethylene-responsive, WRKY, Myb, bZIP and NAC-domain containing transcription factors were associated with susceptibility at 4 dpi. In the three resistant genotypes, 220 DEGs were associated with resistance. Glutathione S-transferase (GST), membrane proteins and distinct LRR-RKs were associated with FHB resistance across the three genotypes. Genes with unique, high up-regulation by Fg in Wuhan 1 were mostly transiently expressed at 2 dpi, while many defense-associated genes were up-regulated at both 2 and 4 dpi in Nyubai; the majority of unique genes up-regulated in HC374 were detected at 4 dpi only. In the pathogen, most genes showed increased expression between 2 and 4 dpi in all genotypes, with stronger levels in the susceptible host; however two pectate lyases and a hydrolase were expressed higher at 2 dpi, and acetyltransferase activity was highly enriched at 4 dpi. CONCLUSIONS There was an early up-regulation of LRR-RKs, different between susceptible and resistant genotypes; subsequently, distinct sets of genes associated with defense response were up-regulated. Differences in expression profiles among the resistant genotypes indicate genotype-specific defense mechanisms. This study also shows a greater resemblance in transcriptomics of HC374 to Nyubai, consistent with their sharing of two FHB resistance QTLs on 3BS and 5AS, compared to Wuhan 1 which carries one QTL on 2DL in common with HC374.
Collapse
Affiliation(s)
- Youlian Pan
- Digital Technologies Research Centre, NRC, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada.
| | - Ziying Liu
- Digital Technologies Research Centre, NRC, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Hélène Rocheleau
- Ottawa Research and Development Centre, AAFC, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - François Fauteux
- Digital Technologies Research Centre, NRC, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Yunli Wang
- Digital Technologies Research Centre, NRC, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Curt McCartney
- Morden Research and Development Centre, AAFC, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Thérèse Ouellet
- Ottawa Research and Development Centre, AAFC, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
94
|
Chen Y, Wang J, Yang N, Wen Z, Sun X, Chai Y, Ma Z. Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nat Commun 2018; 9:3429. [PMID: 30143616 PMCID: PMC6109063 DOI: 10.1038/s41467-018-05683-7] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 07/16/2018] [Indexed: 02/07/2023] Open
Abstract
Interactions between bacteria and fungi have great environmental, medical, and agricultural importance, but the molecular mechanisms are largely unknown. Here, we study the interactions between the bacterium Pseudomonas piscium, from the wheat head microbiome, and the plant pathogenic fungus Fusarium graminearum. We show that a compound secreted by the bacteria (phenazine-1-carboxamide) directly affects the activity of fungal protein FgGcn5, a histone acetyltransferase of the SAGA complex. This leads to deregulation of histone acetylation at H2BK11, H3K14, H3K18, and H3K27 in F. graminearum, as well as suppression of fungal growth, virulence, and mycotoxin biosynthesis. Therefore, an antagonistic bacterium can inhibit growth and virulence of a plant pathogenic fungus by manipulating fungal histone modification.
Collapse
Affiliation(s)
- Yun Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Jing Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Nan Yang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ziyue Wen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Xuepeng Sun
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
95
|
Zhang Y, Huang J, Ochola SO, Dong S. Functional Analysis of PsAvr3c Effector Family From Phytophthora Provides Probes to Dissect SKRP Mediated Plant Susceptibility. FRONTIERS IN PLANT SCIENCE 2018; 9:1105. [PMID: 30090111 PMCID: PMC6069499 DOI: 10.3389/fpls.2018.01105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/09/2018] [Indexed: 05/28/2023]
Abstract
PsAvr3c is an effector identified from oomycete plant pathogen Phytophthora sojae that causes soybean root and stem rot disease. Earlier studies have demonstrated that PsAvr3c binds to a novel soybean spliceosomal complex protein, GmSKRP, to reprogram the splicing of hundreds of pre-mRNAs and consequently subvert host immunity. PsAvr3c family genes are present in some other Phytophthora species, but their function remains unknown. Here, we characterized the functions of PsAvh27b (PsAvr3c paralog from P. sojae), ProbiAvh89 and PparvAvh214 (orthologs from P. cinnamomi var. robiniae and Phytophthora parvispora, respectively). The study reveals that both PsAvh27b and ProbiAvh89 interact with GmSKRPs in vitro, and stabilize GmSKRP1 in vivo. However, PparvAvh214 cannot interact with GmSKRPs proteins. The qRT-PCR result illustrates that the alternative splicing of pre-mRNAs of several soybean defense-related genes are altered in PsAvh27b and ProbiAvh89 when over-expressed on soybean hairy roots. Moreover, PsAvr3c family members display differences in promoting Phytophthora infection in a SKRP-dependent manner. Overall, this study highlights that the effector-mediated host pre-mRNA alternative splicing occurs in other pathosystems, thus providing new probes to further dissect SKRP-mediated plant susceptibility.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jie Huang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Sylvans O. Ochola
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, Chxsina
| |
Collapse
|
96
|
Shi X, Long Y, He F, Zhang C, Wang R, Zhang T, Wu W, Hao Z, Wang Y, Wang GL, Ning Y. The fungal pathogen Magnaporthe oryzae suppresses innate immunity by modulating a host potassium channel. PLoS Pathog 2018; 14:e1006878. [PMID: 29385213 PMCID: PMC5809103 DOI: 10.1371/journal.ppat.1006878] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/12/2018] [Accepted: 01/12/2018] [Indexed: 11/19/2022] Open
Abstract
Potassium (K+) is required by plants for growth and development, and also contributes to immunity against pathogens. However, it has not been established whether pathogens modulate host K+ signaling pathways to enhance virulence and subvert host immunity. Here, we show that the effector protein AvrPiz-t from the rice blast pathogen Magnaporthe oryzae targets a K+ channel to subvert plant immunity. AvrPiz-t interacts with the rice plasma-membrane-localized K+ channel protein OsAKT1 and specifically suppresses the OsAKT1-mediated K+ currents. Genetic and phenotypic analyses show that loss of OsAKT1 leads to decreased K+ content and reduced resistance against M. oryzae. Strikingly, AvrPiz-t interferes with the association of OsAKT1 with its upstream regulator, the cytoplasmic kinase OsCIPK23, which also plays a positive role in K+ absorption and resistance to M. oryzae. Furthermore, we show a direct correlation between blast disease resistance and external K+ status in rice plants. Together, our data present a novel mechanism by which a pathogen suppresses plant host immunity by modulating a host K+ channel. Plant nutritional status can greatly influence plant immunity in response to pathogen invasion. Rice blast, a devastating rice disease caused by the hemibiotrophic fungus Magnaporthe oryzae, causes a significant reduction in yield and affects food security. In this study, we demonstrate that the M. oryzae secreted protein AvrPiz-t interacts with rice OsAKT1, a potassium (K+) channel protein, and suppresses OsAKT1-mediated inward K+ currents, possibly by competing with the OsAKT1 upstream regulator, OsCIPK23. We also show that both OsAKT1 and OsCIPK23 are required for K+ uptake and resistance against M. oryzae infection in rice. This study provides new insights into the molecular basis of pathogen-mediated perturbation of a plant nutrition pathway.
Collapse
Affiliation(s)
- Xuetao Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yu Long
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Feng He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chongyang Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ruyi Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ting Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zeyun Hao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail: (YW); (GLW); (YN)
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Plant Pathology, Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (YW); (GLW); (YN)
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (YW); (GLW); (YN)
| |
Collapse
|
97
|
Ramirez-Prado JS, Piquerez SJM, Bendahmane A, Hirt H, Raynaud C, Benhamed M. Modify the Histone to Win the Battle: Chromatin Dynamics in Plant-Pathogen Interactions. FRONTIERS IN PLANT SCIENCE 2018; 9:355. [PMID: 29616066 PMCID: PMC5868138 DOI: 10.3389/fpls.2018.00355] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/02/2018] [Indexed: 05/02/2023]
Abstract
Relying on an immune system comes with a high energetic cost for plants. Defense responses in these organisms are therefore highly regulated and fine-tuned, permitting them to respond pertinently to the attack of a microbial pathogen. In recent years, the importance of the physical modification of chromatin, a highly organized structure composed of genomic DNA and its interacting proteins, has become evident in the research field of plant-pathogen interactions. Several processes, including DNA methylation, changes in histone density and variants, and various histone modifications, have been described as regulators of various developmental and defense responses. Herein, we review the state of the art in the epigenomic aspects of plant immunity, focusing on chromatin modifications, chromatin modifiers, and their physiological consequences. In addition, we explore the exciting field of understanding how plant pathogens have adapted to manipulate the plant epigenomic regulation in order to weaken their immune system and thrive in their host, as well as how histone modifications in eukaryotic pathogens are involved in the regulation of their virulence.
Collapse
Affiliation(s)
- Juan S. Ramirez-Prado
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Sophie J. M. Piquerez
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Abdelhafid Bendahmane
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Heribert Hirt
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Cécile Raynaud
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
| | - Moussa Benhamed
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, University Paris-Sud, University of Évry Val d’Essonne, University Paris Diderot, Sorbonne Paris-Cite, University of Paris-Saclay, UMR9213 Institut des Sciences des Plantes de Paris Saclay, Essonne, France
- *Correspondence: Moussa Benhamed,
| |
Collapse
|
98
|
Servatius P, Kazmaier U. Total synthesis of the natural HDAC inhibitor Cyl-1. Org Biomol Chem 2018; 16:3464-3472. [DOI: 10.1039/c8ob00391b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A chelate enolate Claisen rearrangement was used as a key step in the first total synthesis of Cyl-1, a cyclic tetrapeptide from Cylindrocladium scoparium.
Collapse
Affiliation(s)
- Phil Servatius
- Institute of Organic Chemistry
- Saarland University
- 66041 Saarbrücken
- Germany
| | - Uli Kazmaier
- Institute of Organic Chemistry
- Saarland University
- 66041 Saarbrücken
- Germany
| |
Collapse
|
99
|
Wang Y, Wang Y. Trick or Treat: Microbial Pathogens Evolved Apoplastic Effectors Modulating Plant Susceptibility to Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:6-12. [PMID: 29090656 DOI: 10.1094/mpmi-07-17-0177-fi] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The apoplastic space between the plant cell wall and the plasma membrane constitutes a major battleground for plant-pathogen interactions. To survive in harsh conditions in the plant apoplast, pathogens must cope with various immune responses. During infection, plant pathogens secrete an arsenal of effector proteins into the apoplast milieu, some of which are detected by the plant surveillance system and, thus, activate plant innate immunity. Effectors that evade plant perception act in modulating plant apoplast immunity to favor successful pathogen infection. The concerted actions of apoplastic effectors often determine the outcomes of plant-pathogen interactions. In this review, we summarize current advances on the understanding of apoplastic effectors and highlight the strategies employed by pathogens to counter host apoplastic defense.
Collapse
Affiliation(s)
- Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), Nanjing, 210095, China
| |
Collapse
|
100
|
Abstract
Lysine acetylation is a key posttranslational modification that regulates diverse proteins involved in a range of biological processes. The role of histone acetylation in plant defense is well established, and it is known that pathogen effector proteins encoding acetyltransferases can directly acetylate host proteins to alter immunity. However, it is unclear whether endogenous plant enzymes can modulate protein acetylation during an immune response. Here, we investigate how the effector molecule HC-toxin (HCT), a histone deacetylase inhibitor produced by the fungal pathogen Cochliobolus carbonum race 1, promotes virulence in maize through altering protein acetylation. Using mass spectrometry, we globally quantified the abundance of 3,636 proteins and the levels of acetylation at 2,791 sites in maize plants treated with HCT as well as HCT-deficient or HCT-producing strains of C. carbonum Analyses of these data demonstrate that acetylation is a widespread posttranslational modification impacting proteins encoded by many intensively studied maize genes. Furthermore, the application of exogenous HCT enabled us to show that the activity of plant-encoded enzymes (histone deacetylases) can be modulated to alter acetylation of nonhistone proteins during an immune response. Collectively, these results provide a resource for further mechanistic studies examining the regulation of protein function by reversible acetylation and offer insight into the complex immune response triggered by virulent C. carbonum.
Collapse
|