51
|
Seelbinder B, Wagner S, Jain M, Erben E, Klykov S, Stoev ID, Krishnaswamy VR, Kreysing M. Probe-free optical chromatin deformation and measurement of differential mechanical properties in the nucleus. eLife 2024; 13:e76421. [PMID: 38214505 PMCID: PMC10786458 DOI: 10.7554/elife.76421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 11/29/2023] [Indexed: 01/13/2024] Open
Abstract
The nucleus is highly organized to facilitate coordinated gene transcription. Measuring the rheological properties of the nucleus and its sub-compartments will be crucial to understand the principles underlying nuclear organization. Here, we show that strongly localized temperature gradients (approaching 1°C/µm) can lead to substantial intra-nuclear chromatin displacements (>1 µm), while nuclear area and lamina shape remain unaffected. Using particle image velocimetry (PIV), intra-nuclear displacement fields can be calculated and converted into spatio-temporally resolved maps of various strain components. Using this approach, we show that chromatin displacements are highly reversible, indicating that elastic contributions are dominant in maintaining nuclear organization on the time scale of seconds. In genetically inverted nuclei, centrally compacted heterochromatin displays high resistance to deformation, giving a rigid, solid-like appearance. Correlating spatially resolved strain maps with fluorescent reporters in conventional interphase nuclei reveals that various nuclear compartments possess distinct mechanical identities. Surprisingly, both densely and loosely packed chromatin showed high resistance to deformation, compared to medium dense chromatin. Equally, nucleoli display particularly high resistance and strong local anchoring to heterochromatin. Our results establish how localized temperature gradients can be used to drive nuclear compartments out of mechanical equilibrium to obtain spatial maps of their material responses.
Collapse
Affiliation(s)
- Benjamin Seelbinder
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Centre for Systems BiologyDresdenGermany
| | - Susan Wagner
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| | - Manavi Jain
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Centre for Systems BiologyDresdenGermany
| | - Elena Erben
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Centre for Systems BiologyDresdenGermany
| | - Sergei Klykov
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Centre for Systems BiologyDresdenGermany
| | - Iliya Dimitrov Stoev
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Centre for Systems BiologyDresdenGermany
| | | | - Moritz Kreysing
- Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
- Centre for Systems BiologyDresdenGermany
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
| |
Collapse
|
52
|
Kim D, Kim DH. Subcellular mechano-regulation of cell migration in confined extracellular microenvironment. BIOPHYSICS REVIEWS 2023; 4:041305. [PMID: 38505424 PMCID: PMC10903498 DOI: 10.1063/5.0185377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/01/2023] [Indexed: 03/21/2024]
Abstract
Cell migration is a highly coordinated cellular event that determines diverse physiological and pathological processes in which the continuous interaction of a migrating cell with neighboring cells or the extracellular matrix is regulated by the physical setting of the extracellular microenvironment. In confined spaces, cell migration occurs differently compared to unconfined open spaces owing to the additional forces that limit cell motility, which create a driving bias for cells to invade the confined space, resulting in a distinct cell motility process compared to what is expected in open spaces. Moreover, cells in confined environments can be subjected to elevated mechanical compression, which causes physical stimuli and activates the damage repair cycle in the cell, including the DNA in the nucleus. Although cells have a self-restoring system to repair damage from the cell membrane to the genetic components of the nucleus, this process may result in genetic and/or epigenetic alterations that can increase the risk of the progression of diverse diseases, such as cancer and immune disorders. Furthermore, there has been a shift in the paradigm of bioengineering from the development of new biomaterials to controlling biophysical cues and fine-tuning cell behaviors to cure damaged/diseased tissues. The external physical cues perceived by cells are transduced along the mechanosensitive machinery, which is further channeled into the nucleus through subcellular molecular linkages of the nucleoskeleton and cytoskeleton or the biochemical translocation of transcription factors. Thus, external cues can directly or indirectly regulate genetic transcriptional processes and nuclear mechanics, ultimately determining cell fate. In this review, we discuss the importance of the biophysical cues, response mechanisms, and mechanical models of cell migration in confined environments. We also discuss the effect of force-dependent deformation of subcellular components, specifically focusing on subnuclear organelles, such as nuclear membranes and chromosomal organization. This review will provide a biophysical perspective on cancer progression and metastasis as well as abnormal cellular proliferation.
Collapse
Affiliation(s)
- Daesan Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | | |
Collapse
|
53
|
Belhadj J, Surina S, Hengstschläger M, Lomakin AJ. Form follows function: Nuclear morphology as a quantifiable predictor of cellular senescence. Aging Cell 2023; 22:e14012. [PMID: 37845808 PMCID: PMC10726876 DOI: 10.1111/acel.14012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/18/2023] Open
Abstract
Enlarged or irregularly shaped nuclei are frequently observed in tissue cells undergoing senescence. However, it remained unclear whether this peculiar morphology is a cause or a consequence of senescence and how informative it is in distinguishing between proliferative and senescent cells. Recent research reveals that nuclear morphology can act as a predictive biomarker of senescence, suggesting an active role for the nucleus in driving senescence phenotypes. By employing deep learning algorithms to analyze nuclear morphology, accurate classification of cells as proliferative or senescent is achievable across various cell types and species both in vitro and in vivo. This quantitative imaging-based approach can be employed to establish links between senescence burden and clinical data, aiding in the understanding of age-related diseases, as well as assisting in disease prognosis and treatment response.
Collapse
Affiliation(s)
- Jakub Belhadj
- Center for Pathobiochemistry & Genetics, Institute of Medical GeneticsMedical University of ViennaViennaAustria
- Center for Pathobiochemistry & Genetics, Institute of Medical Chemistry and PathobiochemistryMedical University of ViennaViennaAustria
| | - Surina Surina
- Center for Pathobiochemistry & Genetics, Institute of Medical GeneticsMedical University of ViennaViennaAustria
- Center for Pathobiochemistry & Genetics, Institute of Medical Chemistry and PathobiochemistryMedical University of ViennaViennaAustria
- School of Medical SciencesUniversity of Campania Luigi VanvitelliNapoliItaly
| | - Markus Hengstschläger
- Center for Pathobiochemistry & Genetics, Institute of Medical GeneticsMedical University of ViennaViennaAustria
| | - Alexis J. Lomakin
- Center for Pathobiochemistry & Genetics, Institute of Medical GeneticsMedical University of ViennaViennaAustria
- Center for Pathobiochemistry & Genetics, Institute of Medical Chemistry and PathobiochemistryMedical University of ViennaViennaAustria
| |
Collapse
|
54
|
Beedle AE, Jaganathan A, Albajar-Sigalés A, Yavitt FM, Bera K, Andreu I, Granero-Moya I, Zalvidea D, Kechagia Z, Wiche G, Trepat X, Ivaska J, Anseth KS, Shenoy VB, Roca-Cusachs P. Fibrillar adhesion dynamics govern the timescales of nuclear mechano-response via the vimentin cytoskeleton. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566191. [PMID: 37986921 PMCID: PMC10659263 DOI: 10.1101/2023.11.08.566191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The cell nucleus is continuously exposed to external signals, of both chemical and mechanical nature. To ensure proper cellular response, cells need to regulate not only the transmission of these signals, but also their timing and duration. Such timescale regulation is well described for fluctuating chemical signals, but if and how it applies to mechanical signals reaching the nucleus is still unknown. Here we demonstrate that the formation of fibrillar adhesions locks the nucleus in a mechanically deformed conformation, setting the mechanical response timescale to that of fibrillar adhesion remodelling (~1 hour). This process encompasses both mechanical deformation and associated mechanotransduction (such as via YAP), in response to both increased and decreased mechanical stimulation. The underlying mechanism is the anchoring of the vimentin cytoskeleton to fibrillar adhesions and the extracellular matrix through plectin 1f, which maintains nuclear deformation. Our results reveal a mechanism to regulate the timescale of mechanical adaptation, effectively setting a low pass filter to mechanotransduction.
Collapse
Affiliation(s)
- Amy E.M. Beedle
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Department of Physics, King’s College London, London WC2R 2LS, UK
| | - Anuja Jaganathan
- Center for Engineering Mechanobiology and Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Aina Albajar-Sigalés
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - F. Max Yavitt
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303 USA
| | - Kaustav Bera
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303 USA
| | - Ion Andreu
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Instituto Biofisika (UPV/EHU, CSIC), University of the Basque Country, E-48940, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Ignasi Granero-Moya
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Dobryna Zalvidea
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Zanetta Kechagia
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Gerhard Wiche
- Max Perutz Laboratories, Department of Biochemistry and Cell Biology, University of Vienna, 1030 Vienna, Austria
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- University of Barcelona, 08028 Barcelona, Spain
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Life Technologies, University of Turku, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014 Helsinki, Finland
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303 USA
| | - Vivek B. Shenoy
- Center for Engineering Mechanobiology and Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- University of Barcelona, 08028 Barcelona, Spain
| |
Collapse
|
55
|
Cleri F, Giordano S, Blossey R. Nucleosome Array Deformation in Chromatin is Sustained by Bending, Twisting and Kinking of Linker DNA. J Mol Biol 2023; 435:168263. [PMID: 37678705 DOI: 10.1016/j.jmb.2023.168263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/21/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Chromatin in the nucleus undergoes mechanical stresses from different sources during the various stages of cell life. Here a trinucleosome array is used as the minimal model to study the mechanical response to applied stress at the molecular level. By using large-scale, all-atom steered-molecular dynamics simulations, we show that the largest part of mechanical stress in compression is accommodated by the DNA linkers joining pairs of nucleosomes, which store the elastic energy accumulated by the applied force. Different mechanical instabilities (Euler bending, Brazier kinking, twist-bending) can deform the DNA canonical structure, as a function of the increasing force load. An important role of the histone tails in assisting the DNA deformation is highlighted. The overall response of the smallest chromatin fragment to compressive stress leaves the nucleosome assembly with a substantial plastic deformation and localised defects, which can have a potential impact on DNA transcription, downstream signaling pathways, the regulation of gene expression, and DNA repair.
Collapse
Affiliation(s)
- Fabrizio Cleri
- Université de Lille, Institut d'Electronique Microelectronique et Nanotechnologie (IEMN CNRS UMR8520) and Département de Physique, 59652 Villeneuve d'Ascq, France.
| | - Stefano Giordano
- University of Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520 - IEMN - Institut d'Électronique de Microélectronique et de Nanotechnologie, F-59000 Lille, France
| | - Ralf Blossey
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| |
Collapse
|
56
|
Berg IK, Currey ML, Gupta S, Berrada Y, Nguyen BV, Pho M, Patteson AE, Schwarz JM, Banigan EJ, Stephens AD. Transcription inhibition suppresses nuclear blebbing and rupture independently of nuclear rigidity. J Cell Sci 2023; 136:jcs261547. [PMID: 37756607 PMCID: PMC10660790 DOI: 10.1242/jcs.261547] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Chromatin plays an essential role in the nuclear mechanical response and determining nuclear shape, which maintain nuclear compartmentalization and function. However, major genomic functions, such as transcription activity, might also impact cell nuclear shape via blebbing and rupture through their effects on chromatin structure and dynamics. To test this idea, we inhibited transcription with several RNA polymerase II inhibitors in wild-type cells and perturbed cells that presented increased nuclear blebbing. Transcription inhibition suppressed nuclear blebbing for several cell types, nuclear perturbations and transcription inhibitors. Furthermore, transcription inhibition suppressed nuclear bleb formation, bleb stabilization and bleb-based nuclear ruptures. Interestingly, transcription inhibition did not alter the histone H3 lysine 9 (H3K9) modification state, nuclear rigidity, and actin compression and contraction, which typically control nuclear blebbing. Polymer simulations suggested that RNA polymerase II motor activity within chromatin could drive chromatin motions that deform the nuclear periphery. Our data provide evidence that transcription inhibition suppresses nuclear blebbing and rupture, in a manner separate and distinct from chromatin rigidity.
Collapse
Affiliation(s)
- Isabel K. Berg
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Marilena L. Currey
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sarthak Gupta
- Department of Physics and BioInspired Syracuse, Syracuse University, Syracuse, NY 13244, USA
| | - Yasmin Berrada
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Bao V. Nguyen
- Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Mai Pho
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Alison E. Patteson
- Department of Physics and BioInspired Syracuse, Syracuse University, Syracuse, NY 13244, USA
| | - J. M. Schwarz
- Department of Physics and BioInspired Syracuse, Syracuse University, Syracuse, NY 13244, USA
- Indian Creek Farm, Ithaca, NY 14850, USA
| | - Edward J. Banigan
- Institute of Medical Engineering & Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrew D. Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Molecular and Cellular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
57
|
Bu LL, Yuan HH, Xie LL, Guo MH, Liao DF, Zheng XL. New Dawn for Atherosclerosis: Vascular Endothelial Cell Senescence and Death. Int J Mol Sci 2023; 24:15160. [PMID: 37894840 PMCID: PMC10606899 DOI: 10.3390/ijms242015160] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Endothelial cells (ECs) form the inner linings of blood vessels, and are directly exposed to endogenous hazard signals and metabolites in the circulatory system. The senescence and death of ECs are not only adverse outcomes, but also causal contributors to endothelial dysfunction, an early risk marker of atherosclerosis. The pathophysiological process of EC senescence involves both structural and functional changes and has been linked to various factors, including oxidative stress, dysregulated cell cycle, hyperuricemia, vascular inflammation, and aberrant metabolite sensing and signaling. Multiple forms of EC death have been documented in atherosclerosis, including autophagic cell death, apoptosis, pyroptosis, NETosis, necroptosis, and ferroptosis. Despite this, the molecular mechanisms underlying EC senescence or death in atherogenesis are not fully understood. To provide a comprehensive update on the subject, this review examines the historic and latest findings on the molecular mechanisms and functional alterations associated with EC senescence and death in different stages of atherosclerosis.
Collapse
Affiliation(s)
- Lan-Lan Bu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Huan-Huan Yuan
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Ling-Li Xie
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Min-Hua Guo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
58
|
de Lope-Planelles A, González-Novo R, Madrazo E, Peralta-Carrero G, Cruz Rodríguez MP, Zamora-Carreras H, Torrano V, López-Menéndez H, Roda-Navarro P, Monroy F, Redondo-Muñoz J. Mechanical stress confers nuclear and functional changes in derived leukemia cells from persistent confined migration. Cell Mol Life Sci 2023; 80:316. [PMID: 37801090 PMCID: PMC10558412 DOI: 10.1007/s00018-023-04968-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/07/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023]
Abstract
Nuclear deformability plays a critical role in cell migration. During this process, the remodeling of internal components of the nucleus has a direct impact on DNA damage and cell behavior; however, how persistent migration promotes nuclear changes leading to phenotypical and functional consequences remains poorly understood. Here, we described that the persistent migration through physical barriers was sufficient to promote permanent modifications in migratory-altered cells. We found that derived cells from confined migration showed changes in lamin B1 localization, cell morphology and transcription. Further analysis confirmed that migratory-altered cells showed functional differences in DNA repair, cell response to chemotherapy and cell migration in vivo homing experiments. Experimental modulation of actin polymerization affected the redistribution of lamin B1, and the basal levels of DNA damage in migratory-altered cells. Finally, since major nuclear changes were present in migratory-altered cells, we applied a multidisciplinary biochemical and biophysical approach to identify that confined conditions promoted a different biomechanical response of the nucleus in migratory-altered cells. Our observations suggest that mechanical compression during persistent cell migration has a role in stable nuclear and genomic alterations that might handle the genetic instability and cellular heterogeneity in aging diseases and cancer.
Collapse
Affiliation(s)
- Ana de Lope-Planelles
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Raquel González-Novo
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Elena Madrazo
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Gracia Peralta-Carrero
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - María Pilar Cruz Rodríguez
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Héctor Zamora-Carreras
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain
| | - Verónica Torrano
- Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Horacio López-Menéndez
- Department of Physical Chemistry, Complutense University, Madrid, Spain
- Translational Biophysics, Hospital Doce de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Pedro Roda-Navarro
- Department of Immunology, School of Medicine, University Complutense de Madrid and 12 de Octubre Health Research Institute (Imas12) Madrid, Madrid, Spain
| | - Francisco Monroy
- Department of Physical Chemistry, Complutense University, Madrid, Spain
- Translational Biophysics, Hospital Doce de Octubre Health Research Institute (imas12), Madrid, Spain
| | - Javier Redondo-Muñoz
- Department of Molecular Medicine, Centro de Investigaciones Biológicas Margarita Salas (CIB Margarita Salas-CSIC), Madrid, Spain.
| |
Collapse
|
59
|
De Silva NS, Siewiera J, Alkhoury C, Nader GPF, Nadalin F, de Azevedo K, Couty M, Izquierdo HM, Bhargava A, Conrad C, Maurin M, Antoniadou K, Fouillade C, Londono-Vallejo A, Behrendt R, Bertotti K, Serdjebi C, Lanthiez F, Gallwitz L, Saftig P, Herrero-Fernández B, Saez A, González-Granado JM, van Niel G, Boissonnas A, Piel M, Manel N. Nuclear envelope disruption triggers hallmarks of aging in lung alveolar macrophages. NATURE AGING 2023; 3:1251-1268. [PMID: 37723209 DOI: 10.1038/s43587-023-00488-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/16/2023] [Indexed: 09/20/2023]
Abstract
Aging is characterized by gradual immune dysfunction and increased disease risk. Genomic instability is considered central to the aging process, but the underlying mechanisms of DNA damage are insufficiently defined. Cells in confined environments experience forces applied to their nucleus, leading to transient nuclear envelope rupture (NER) and DNA damage. Here, we show that Lamin A/C protects lung alveolar macrophages (AMs) from NER and hallmarks of aging. AMs move within constricted spaces in the lung. Immune-specific ablation of lamin A/C results in selective depletion of AMs and heightened susceptibility to influenza virus-induced pathogenesis and lung cancer growth. Lamin A/C-deficient AMs that persist display constitutive NER marks, DNA damage and p53-dependent senescence. AMs from aged wild-type and from lamin A/C-deficient mice share a lysosomal signature comprising CD63. CD63 is required to limit damaged DNA in macrophages. We propose that NER-induced genomic instability represents a mechanism of aging in AMs.
Collapse
Affiliation(s)
| | - Johan Siewiera
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Chantal Alkhoury
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | | | | | - Kevin de Azevedo
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Mickaël Couty
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team van Niel, Paris, France
| | | | - Anvita Bhargava
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Cécile Conrad
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Mathieu Maurin
- Institut Curie, PSL Research University, INSERM U932, Paris, France
| | | | - Charles Fouillade
- Institut Curie, PSL Research University, Université Paris-Saclay, CNRS, INSERM, UMR3347, U1021, Orsay, France
| | | | - Rayk Behrendt
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | | | | | - François Lanthiez
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Lisa Gallwitz
- Biochemical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Paul Saftig
- Biochemical Institute, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Beatriz Herrero-Fernández
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Angela Saez
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), Pozuelo de Alarcón, Spain
| | - José María González-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12). Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid. CIBER de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Guillaume van Niel
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team van Niel, Paris, France
| | - Alexandre Boissonnas
- Sorbonne Université, Inserm, CNRS, Centre d'Immunologie et des Maladies Infectieuses, Cimi-Paris, Paris, France
| | - Matthieu Piel
- Institut Curie, PSL Research University, CNRS UMR144, Paris, France
| | - Nicolas Manel
- Institut Curie, PSL Research University, INSERM U932, Paris, France.
| |
Collapse
|
60
|
Zhang X, Shi X, Zhang D, Gong X, Wen Z, Demandel I, Zhang J, Rossello-Martinez A, Chan TJ, Mak M. Compression drives diverse transcriptomic and phenotypic adaptations in melanoma. Proc Natl Acad Sci U S A 2023; 120:e2220062120. [PMID: 37722033 PMCID: PMC10523457 DOI: 10.1073/pnas.2220062120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 08/07/2023] [Indexed: 09/20/2023] Open
Abstract
Physical forces are prominent during tumor progression. However, it is still unclear how they impact and drive the diverse phenotypes found in cancer. Here, we apply an integrative approach to investigate the impact of compression on melanoma cells. We apply bioinformatics to screen for the most significant compression-induced transcriptomic changes and investigate phenotypic responses. We show that compression-induced transcriptomic changes are associated with both improvement and worsening of patient prognoses. Phenotypically, volumetric compression inhibits cell proliferation and cell migration. It also induces organelle stress and intracellular oxidative stress and increases pigmentation in malignant melanoma cells and normal human melanocytes. Finally, cells that have undergone compression become more resistant to cisplatin treatment. Our findings indicate that volumetric compression is a double-edged sword for melanoma progression and drives tumor evolution.
Collapse
Affiliation(s)
- Xingjian Zhang
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
- Yale Cancer Center, Yale University, New Haven, CT06511
| | - Xin Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin300350, China
| | - Dingyao Zhang
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
| | - Xiangyu Gong
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
| | - Zhang Wen
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
| | - Israel Demandel
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
| | - Junqi Zhang
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
| | | | - Trevor J. Chan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
| | - Michael Mak
- Department of Biomedical Engineering, Yale University, New Haven, CT06511
- Yale Cancer Center, Yale University, New Haven, CT06511
| |
Collapse
|
61
|
Gunn AL, Yashchenko AI, Dubrulle J, Johnson J, Hatch EM. A high-content screen reveals new regulators of nuclear membrane stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542944. [PMID: 37398267 PMCID: PMC10312541 DOI: 10.1101/2023.05.30.542944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Nuclear membrane rupture is a physiological response to multiple in vivo processes, such as cell migration, that can cause extensive genome instability and upregulate invasive and inflammatory pathways. However, the underlying molecular mechanisms of rupture are unclear and few regulators have been identified. In this study, we developed a reporter that is size excluded from re-compartmentalization following nuclear rupture events. This allows for robust detection of factors influencing nuclear integrity in fixed cells. We combined this with an automated image analysis pipeline in a high-content siRNA screen to identify new proteins that both increase and decrease nuclear rupture frequency in cancer cells. Pathway analysis identified an enrichment of nuclear membrane and ER factors in our hits and we demonstrate that one of these, the protein phosphatase CTDNEP1, is required for nuclear stability. Further analysis of known rupture contributors, including a newly developed automated quantitative analysis of nuclear lamina gaps, strongly suggests that CTDNEP1 acts in a new pathway. Our findings provide new insights into the molecular mechanism of nuclear rupture and define a highly adaptable program for rupture analysis that removes a substantial barrier to new discoveries in the field.
Collapse
Affiliation(s)
- Amanda L. Gunn
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, 1100 Fairview Ave, Seattle, Washington 98109, USA
| | - Artem I. Yashchenko
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, 1100 Fairview Ave, Seattle, Washington 98109, USA
| | - Julien Dubrulle
- Cellular Imaging Shared Resource, The Fred Hutchinson Cancer Center, 1100 Fairview Ave, Seattle, Washington 98109, USA
| | - Jodiene Johnson
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, 1100 Fairview Ave, Seattle, Washington 98109, USA
| | - Emily M. Hatch
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, 1100 Fairview Ave, Seattle, Washington 98109, USA
| |
Collapse
|
62
|
Canat A, Atilla D, Torres‐Padilla M. Hyperosmotic stress induces 2-cell-like cells through ROS and ATR signaling. EMBO Rep 2023; 24:e56194. [PMID: 37432066 PMCID: PMC10481651 DOI: 10.15252/embr.202256194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/12/2023] Open
Abstract
Mouse embryonic stem cells (ESCs) display pluripotency features characteristic of the inner cell mass of the blastocyst. Mouse embryonic stem cell cultures are highly heterogeneous and include a rare population of cells, which recapitulate characteristics of the 2-cell embryo, referred to as 2-cell-like cells (2CLCs). Whether and how ESC and 2CLC respond to environmental cues has not been fully elucidated. Here, we investigate the impact of mechanical stress on the reprogramming of ESC to 2CLC. We show that hyperosmotic stress induces 2CLC and that this induction can occur even after a recovery time from hyperosmotic stress, suggesting a memory response. Hyperosmotic stress in ESCs leads to accumulation of reactive-oxygen species (ROS) and ATR checkpoint activation. Importantly, preventing either elevated ROS levels or ATR activation impairs hyperosmotic-mediated 2CLC induction. We further show that ROS generation and the ATR checkpoint act within the same molecular pathway in response to hyperosmotic stress to induce 2CLCs. Altogether, these results shed light on the response of ESC to mechanical stress and on our understanding of 2CLC reprogramming.
Collapse
Affiliation(s)
- Antoine Canat
- Institute of Epigenetics and Stem Cells (IES)Helmholtz Zentrum MünchenMünchenGermany
| | - Derya Atilla
- Institute of Epigenetics and Stem Cells (IES)Helmholtz Zentrum MünchenMünchenGermany
| | - Maria‐Elena Torres‐Padilla
- Institute of Epigenetics and Stem Cells (IES)Helmholtz Zentrum MünchenMünchenGermany
- Faculty of BiologyLudwig‐Maximilians UniversitätMünchenGermany
| |
Collapse
|
63
|
Coscarella IL, Landim-Vieira M, Rastegarpouyani H, Chase PB, Irianto J, Pinto JR. Nucleus Mechanosensing in Cardiomyocytes. Int J Mol Sci 2023; 24:13341. [PMID: 37686151 PMCID: PMC10487505 DOI: 10.3390/ijms241713341] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Cardiac muscle contraction is distinct from the contraction of other muscle types. The heart continuously undergoes contraction-relaxation cycles throughout an animal's lifespan. It must respond to constantly varying physical and energetic burdens over the short term on a beat-to-beat basis and relies on different mechanisms over the long term. Muscle contractility is based on actin and myosin interactions that are regulated by cytoplasmic calcium ions. Genetic variants of sarcomeric proteins can lead to the pathophysiological development of cardiac dysfunction. The sarcomere is physically connected to other cytoskeletal components. Actin filaments, microtubules and desmin proteins are responsible for these interactions. Therefore, mechanical as well as biochemical signals from sarcomeric contractions are transmitted to and sensed by other parts of the cardiomyocyte, particularly the nucleus which can respond to these stimuli. Proteins anchored to the nuclear envelope display a broad response which remodels the structure of the nucleus. In this review, we examine the central aspects of mechanotransduction in the cardiomyocyte where the transmission of mechanical signals to the nucleus can result in changes in gene expression and nucleus morphology. The correlation of nucleus sensing and dysfunction of sarcomeric proteins may assist the understanding of a wide range of functional responses in the progress of cardiomyopathic diseases.
Collapse
Affiliation(s)
| | - Maicon Landim-Vieira
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Hosna Rastegarpouyani
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Institute for Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Prescott Bryant Chase
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Jerome Irianto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Jose Renato Pinto
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
64
|
严 然, 陈 祥, 张 译, 王 梦, 李 顺, 刘 贻. [Advances in cell nuclear mechanobiology and its regulation mechanisms]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:617-624. [PMID: 37666750 PMCID: PMC10477395 DOI: 10.7507/1001-5515.202304036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/09/2023] [Indexed: 09/06/2023]
Abstract
As an important intracellular genetic and regulatory center, the nucleus is not only a terminal effector of intracellular biochemical signals, but also has a significant impact on cell function and phenotype through direct or indirect regulation of nuclear mechanistic cues after the cell senses and responds to mechanical stimuli. The nucleus relies on chromatin-nuclear membrane-cytoskeleton infrastructure to couple signal transduction, and responds to these mechanical stimuli in the intracellular and extracellular physical microenvironments. Changes in the morphological structure of the nucleus are the most intuitive manifestation of this mechanical response cascades and are the basis for the direct response of the nucleus to mechanical stimuli. Based on such relationships of the nucleus with cell behavior and phenotype, abnormal nuclear morphological changes are widely used in clinical practice as disease diagnostic tools. This review article highlights the latest advances in how nuclear morphology responds and adapts to mechanical stimuli. Additionally, this article will shed light on the factors that mechanically regulate nuclear morphology as well as the tumor physio-pathological processes involved in nuclear morphology and the underlying mechanobiological mechanisms. It provides new insights into the mechanisms that nuclear mechanics regulates disease development and its use as a potential target for diagnosis and treatment.
Collapse
Affiliation(s)
- 然 严
- 电子科技大学 生命科学与技术学院(成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- 成都中医药大学附属医院(成都 610072)Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| | - 祥燕 陈
- 电子科技大学 生命科学与技术学院(成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - 译兮 张
- 电子科技大学 生命科学与技术学院(成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - 梦 王
- 电子科技大学 生命科学与技术学院(成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - 顺 李
- 电子科技大学 生命科学与技术学院(成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - 贻尧 刘
- 电子科技大学 生命科学与技术学院(成都 610054)School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- 成都中医药大学附属医院(成都 610072)Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, P. R. China
| |
Collapse
|
65
|
Devany J, Falk MJ, Holt LJ, Murugan A, Gardel ML. Epithelial tissue confinement inhibits cell growth and leads to volume-reducing divisions. Dev Cell 2023; 58:1462-1476.e8. [PMID: 37339629 PMCID: PMC10528006 DOI: 10.1016/j.devcel.2023.05.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 05/12/2023] [Accepted: 05/26/2023] [Indexed: 06/22/2023]
Abstract
Cell proliferation is a central process in tissue development, homeostasis, and disease, yet how proliferation is regulated in the tissue context remains poorly understood. Here, we introduce a quantitative framework to elucidate how tissue growth dynamics regulate cell proliferation. Using MDCK epithelial monolayers, we show that a limiting rate of tissue expansion creates confinement that suppresses cell growth; however, this confinement does not directly affect the cell cycle. This leads to uncoupling between rates of cell growth and division in epithelia and, thereby, reduces cell volume. Division becomes arrested at a minimal cell volume, which is consistent across diverse epithelia in vivo. Here, the nucleus approaches the minimum volume capable of packaging the genome. Loss of cyclin D1-dependent cell-volume regulation results in an abnormally high nuclear-to-cytoplasmic volume ratio and DNA damage. Overall, we demonstrate how epithelial proliferation is regulated by the interplay between tissue confinement and cell-volume regulation.
Collapse
Affiliation(s)
- John Devany
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA; James Franck Institute, The University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| | - Martin J Falk
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA; James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Liam J Holt
- Institute for Systems Genetics, New York University, Grossman School of Medicine, New York, NY 10016, USA
| | - Arvind Murugan
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA; James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Margaret L Gardel
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA; James Franck Institute, The University of Chicago, Chicago, IL 60637, USA; Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
66
|
Wallace M, Zahr H, Perati S, Morsink CD, Johnson LE, Gacita AM, Lai S, Wallrath LL, Benjamin IJ, McNally EM, Kirby TJ, Lammerding J. Nuclear damage in LMNA mutant iPSC-derived cardiomyocytes is associated with impaired lamin localization to the nuclear envelope. Mol Biol Cell 2023; 34:mbcE21100527. [PMID: 37585285 PMCID: PMC10846625 DOI: 10.1091/mbc.e21-10-0527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
The LMNA gene encodes the nuclear envelope proteins Lamins A and C, which comprise a major part of the nuclear lamina, provide mechanical support to the nucleus, and participate in diverse intracellular signaling. LMNA mutations give rise to a collection of diseases called laminopathies, including dilated cardiomyopathy (LMNA-DCM) and muscular dystrophies. Although nuclear deformities are a hallmark of LMNA-DCM, the role of nuclear abnormalities in the pathogenesis of LMNA-DCM remains incompletely understood. Using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) from LMNA mutant patients and healthy controls, we show that LMNA mutant iPSC-CM nuclei have altered shape or increased size compared to healthy control iPSC-CM nuclei. The LMNA mutation exhibiting the most severe nuclear deformities, R249Q, additionally caused reduced nuclear stiffness and increased nuclear fragility. Importantly, for all cell lines, the degree of nuclear abnormalities corresponded to the degree of Lamin A/C and Lamin B1 mislocalization from the nuclear envelope. The mislocalization was likely due to altered assembly of Lamin A/C. Collectively, these results point to the importance of correct lamin assembly at the nuclear envelope in providing mechanical stability to the nucleus and suggest that defects in nuclear lamina organization may contribute to the nuclear and cellular dysfunction in LMNA-DCM.
Collapse
Affiliation(s)
- Melanie Wallace
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Ithaca, NY 14853
| | - Hind Zahr
- Weill Institute for Cell and Molecular Biology, Ithaca, NY 14853
| | - Shriya Perati
- Weill Institute for Cell and Molecular Biology, Ithaca, NY 14853
| | - Chloé D. Morsink
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, VU Medical Center, 1081 HZ Amsterdam, The Netherlands
| | | | - Anthony M. Gacita
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern Medicine, Chicago, IL 60611
| | - Shuping Lai
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Lori L. Wallrath
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA 52242
| | - Ivor J. Benjamin
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Feinberg School of Medicine, Northwestern Medicine, Chicago, IL 60611
| | - Tyler J. Kirby
- Weill Institute for Cell and Molecular Biology, Ithaca, NY 14853
- Department of Physiology, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, VU Medical Center, 1081 HZ Amsterdam, The Netherlands
| | - Jan Lammerding
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Ithaca, NY 14853
| |
Collapse
|
67
|
Lele TP, Levy DL, Mishra K. Editorial: Nuclear morphology in development and disease. Front Cell Dev Biol 2023; 11:1267645. [PMID: 37614225 PMCID: PMC10443097 DOI: 10.3389/fcell.2023.1267645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Affiliation(s)
- Tanmay P. Lele
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, United States
- Artie McFerrin Department of Chemical Engineering, College of Engineering, Texas A&M University, College Station, TX, United States
- Department of Translational Medical Sciences, Texas A&M University, Houston, TX, United States
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States
| | - Krishnaveni Mishra
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Hyderabad, Andhra Pradesh, India
| |
Collapse
|
68
|
Hinnant T, Ning W, Lechler T. Compartment specific responses to contractility in the small intestinal epithelium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.07.552224. [PMID: 37609300 PMCID: PMC10441304 DOI: 10.1101/2023.08.07.552224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Tissues are subject to multiple mechanical inputs at the cellular level that influence their overall shape and function. In the small intestine, actomyosin contractility can be induced by many physiological and pathological inputs. However, we have little understanding of how contractility impacts the intestinal epithelium on a cellular and tissue level. In this study, we probed the cell and tissue-level effects of contractility by using mouse models to genetically increase the level of myosin activity in the two distinct morphologic compartments of the intestinal epithelium, the crypts and villi. We found that increased contractility in the villar compartment caused shape changes in the cells that expressed the transgene and their immediate neighbors. While there were no discernable effects on villar architecture, even low levels of transgene induction in the villi caused non-cell autonomous hyperproliferation of the transit amplifying cells in the crypt, driving increased cell flux through the crypt-villar axis. In contrast, induction of increased contractility in the proliferating cells of the crypts resulted in nuclear deformations, DNA damage, and apoptosis. This study reveals the complex and diverse responses of different intestinal epithelial cells to contractility and provides important insight into mechanical regulation of intestinal physiology.
Collapse
Affiliation(s)
- Taylor Hinnant
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710 USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA
| | - Wenxiu Ning
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710 USA
- Center for Life Sciences, School of Life Sciences, State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming 650500, China
| | - Terry Lechler
- Department of Dermatology, Duke University Medical Center, Durham, NC 27710 USA
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
69
|
Hemmati F, Akinpelu A, Song J, Amiri F, McDaniel A, McMurray C, Afthinos A, Andreadis ST, Aitken AV, Biancardi VC, Gerecht S, Mistriotis P. Downregulation of YAP Activity Restricts P53 Hyperactivation to Promote Cell Survival in Confinement. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302228. [PMID: 37267923 PMCID: PMC10427377 DOI: 10.1002/advs.202302228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Indexed: 06/04/2023]
Abstract
Cell migration through confining three dimensional (3D) topographies can lead to loss of nuclear envelope integrity, DNA damage, and genomic instability. Despite these detrimental phenomena, cells transiently exposed to confinement do not usually die. Whether this is also true for cells subjected to long-term confinement remains unclear at present. To investigate this, photopatterning and microfluidics are employed to fabricate a high-throughput device that circumvents limitations of previous cell confinement models and enables prolonged culture of single cells in microchannels with physiologically relevant length scales. The results of this study show that continuous exposure to tight confinement can trigger frequent nuclear envelope rupture events, which in turn promote P53 activation and cell apoptosis. Migrating cells eventually adapt to confinement and evade cell death by downregulating YAP activity. Reduced YAP activity, which is the consequence of confinement-induced YAP1/2 translocation to the cytoplasm, suppresses the incidence of nuclear envelope rupture and abolishes P53-mediated cell death. Cumulatively, this work establishes advanced, high-throughput biomimetic models for better understanding cell behavior in health and disease, and underscores the critical role of topographical cues and mechanotransduction pathways in the regulation of cell life and death.
Collapse
Affiliation(s)
- Farnaz Hemmati
- Department of Chemical EngineeringAuburn UniversityAuburnAL36849USA
| | - Ayuba Akinpelu
- Department of Chemical EngineeringAuburn UniversityAuburnAL36849USA
| | - Jiyeon Song
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | - Farshad Amiri
- Department of Chemical EngineeringAuburn UniversityAuburnAL36849USA
| | - Anya McDaniel
- Department of Chemical EngineeringAuburn UniversityAuburnAL36849USA
| | - Collins McMurray
- Department of Chemical EngineeringAuburn UniversityAuburnAL36849USA
| | | | - Stelios T. Andreadis
- Departments of Chemical and Biological EngineeringThe State University of New YorkBuffaloNY14260USA
- Department of Biomedical EngineeringUniversity at BuffaloThe State University of New YorkBuffaloNY14228USA
- Center of Excellence in Bioinformatics and Life SciencesBuffaloNY14203USA
- Center for Cell Gene and Tissue Engineering (CGTE)University at BuffaloThe State University of New YorkBuffaloNY14260USA
| | - Andrew V. Aitken
- Department of AnatomyPhysiology and PharmacologyCollege of Veterinary MedicineAuburn UniversityAuburnAL36849USA
- Center for Neurosciences InitiativeAuburn UniversityAuburnAL36849USA
| | - Vinicia C. Biancardi
- Department of AnatomyPhysiology and PharmacologyCollege of Veterinary MedicineAuburn UniversityAuburnAL36849USA
- Center for Neurosciences InitiativeAuburn UniversityAuburnAL36849USA
| | - Sharon Gerecht
- Department of Biomedical EngineeringDuke UniversityDurhamNC27708USA
| | | |
Collapse
|
70
|
Elpers MA, Varlet AA, Agrawal R, Lammerding J. Agarose-based 3D Cell Confinement Assay to Study Nuclear Mechanobiology. Curr Protoc 2023; 3:e847. [PMID: 37459474 PMCID: PMC10407883 DOI: 10.1002/cpz1.847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Cells in living tissues are exposed to substantial mechanical forces and constraints imposed by neighboring cells, the extracellular matrix, and external factors. Mechanical forces and physical confinement can drive various cellular responses, including changes in gene expression, cell growth, differentiation, and migration, all of which have important implications in physiological and pathological processes, such as immune cell migration or cancer metastasis. Previous studies have shown that nuclear deformation induced by 3D confinement promotes cell contractility but can also cause DNA damage and changes in chromatin organization, thereby motivating further studies in nuclear mechanobiology. In this protocol, we present a custom-developed, easy-to-use, robust, and low-cost approach to induce precisely defined physical confinement on cells using agarose pads with micropillars and externally applied weights. We validated the device by confirming nuclear deformation, changes in nuclear area, and cell viability after confinement. The device is suitable for short- and long-term confinement studies and compatible with imaging of both live and fixed samples, thus presenting a versatile approach to studying the impact of 3D cell confinement and nuclear deformation on cellular function. This article contains detailed protocols for the fabrication and use of the confinement device, including live cell imaging and labeling of fixed cells for subsequent analysis. These protocols can be amended for specific applications. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Design and fabrication of the confinement device wafer Basic Protocol 2: Cell confinement assay Support Protocol 1: Fixation and staining of cells after confinement Support protocol 2: Live/dead staining of cells during confinement.
Collapse
Affiliation(s)
- Margaret A. Elpers
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Alice-Anais Varlet
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Richa Agrawal
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Jan Lammerding
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
71
|
Hsia CR, Melters DP, Dalal Y. The Force is Strong with This Epigenome: Chromatin Structure and Mechanobiology. J Mol Biol 2023; 435:168019. [PMID: 37330288 PMCID: PMC10567996 DOI: 10.1016/j.jmb.2023.168019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
All life forms sense and respond to mechanical stimuli. Throughout evolution, organisms develop diverse mechanosensing and mechanotransduction pathways, leading to fast and sustained mechanoresponses. Memory and plasticity characteristics of mechanoresponses are thought to be stored in the form of epigenetic modifications, including chromatin structure alterations. These mechanoresponses in the chromatin context share conserved principles across species, such as lateral inhibition during organogenesis and development. However, it remains unclear how mechanotransduction mechanisms alter chromatin structure for specific cellular functions, and if altered chromatin structure can mechanically affect the environment. In this review, we discuss how chromatin structure is altered by environmental forces via an outside-in pathway for cellular functions, and the emerging concept of how chromatin structure alterations can mechanically affect nuclear, cellular, and extracellular environments. This bidirectional mechanical feedback between chromatin of the cell and the environment can potentially have important physiological implications, such as in centromeric chromatin regulation of mechanobiology in mitosis, or in tumor-stroma interactions. Finally, we highlight the current challenges and open questions in the field and provide perspectives for future research.
Collapse
Affiliation(s)
- Chieh-Ren Hsia
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/JeremiahHsia
| | - Daniël P Melters
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/dpmelters
| | - Yamini Dalal
- Chromatin Structure and Epigenetic Mechanisms, Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, NCI, NIH, Bethesda, MD, United States. https://twitter.com/NCIYaminiDalal
| |
Collapse
|
72
|
Yue X, Cui J, Sun Z, Liu L, Li Y, Shao L, Feng Q, Wang Z, Hambright WS, Cui Y, Huard J, Mu Y, Mu X. Nuclear softening mediated by Sun2 suppression delays mechanical stress-induced cellular senescence. Cell Death Discov 2023; 9:167. [PMID: 37198162 DOI: 10.1038/s41420-023-01467-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/28/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
Nuclear decoupling and softening are the main cellular mechanisms to resist mechanical stress-induced nuclear/DNA damage, however, its molecular mechanisms remain much unknown. Our recent study of Hutchinson-Gilford progeria syndrome (HGPS) disease revealed the role of nuclear membrane protein Sun2 in mediating nuclear damages and cellular senescence in progeria cells. However, the potential role of Sun2 in mechanical stress-induced nuclear damage and its correlation with nuclear decoupling and softening is still not clear. By applying cyclic mechanical stretch to mesenchymal stromal cells (MSCs) of WT and Zmpset24-/- mice (Z24-/-, a model for HGPS), we observed much increased nuclear damage in Z24-/- MSCs, which also featured elevated Sun2 expression, RhoA activation, F-actin polymerization and nuclear stiffness, indicating the compromised nuclear decoupling capacity. Suppression of Sun2 with siRNA effectively reduced nuclear/DNA damages caused by mechanical stretch, which was mediated by increased nuclear decoupling and softening, and consequently improved nuclear deformability. Our results reveal that Sun2 is greatly involved in mediating mechanical stress-induced nuclear damage by regulating nuclear mechanical properties, and Sun2 suppression can be a novel therapeutic target for treating progeria aging or aging-related diseases.
Collapse
Affiliation(s)
- Xianlin Yue
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Cui
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zewei Sun
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lei Liu
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ying Li
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Liwei Shao
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qi Feng
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ziyue Wang
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - William S Hambright
- Steadman Philippon Research Institute, Center for Regenerative Sports Medicine, Vail, CO, USA
| | - Yan Cui
- Department of Orthopaedic Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Johnny Huard
- Steadman Philippon Research Institute, Center for Regenerative Sports Medicine, Vail, CO, USA
| | - Yanling Mu
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Xiaodong Mu
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
73
|
Shah PP, Santini GT, Shen KM, Jain R. InterLINCing Chromatin Organization and Mechanobiology in Laminopathies. Curr Cardiol Rep 2023; 25:307-314. [PMID: 37052760 PMCID: PMC10185580 DOI: 10.1007/s11886-023-01853-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2023] [Indexed: 04/14/2023]
Abstract
PURPOSE OF REVIEW In this review, we explore the chromatin-related consequences of laminopathy-linked mutations through the lens of mechanotransduction. RECENT FINDINGS Multiple studies have highlighted the role of the nuclear lamina in maintaining the integrity of the nucleus. The lamina also has a critical role in 3D genome organization. Mutations in lamina proteins associated with various laminopathies result in the loss of organization of DNA at the nuclear periphery. However, it remains unclear if or how these two aspects of lamin function are connected. Recent data suggests that unlinking the cytoskeleton from the nuclear lamina may be beneficial to slow progress of deleterious phenotypes observed in laminopathies. In this review, we highlight emerging data that suggest interlinked chromatin- and mechanical biology-related pathways are interconnected in the pathogenesis of laminopathies.
Collapse
Affiliation(s)
- Parisha P. Shah
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Smilow Center for Translational Research, 09-184, 3400 Civic Center Blvd., Philadelphia, PA 19104 USA
| | - Garrett T. Santini
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Kaitlyn M. Shen
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Rajan Jain
- Departments of Medicine and Cell and Developmental Biology, Penn Cardiovascular Institute, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Smilow Center for Translational Research, 09-101, 3400 Civic Center Blvd., Philadelphia, PA 19104 USA
| |
Collapse
|
74
|
Rai R, Biju K, Sun W, Sodeinde T, Al-Hiyasat A, Morgan J, Ye X, Li X, Chen Y, Chang S. Homology directed telomere clustering, ultrabright telomere formation and nuclear envelope rupture in cells lacking TRF2 B and RAP1. Nat Commun 2023; 14:2144. [PMID: 37059728 PMCID: PMC10104862 DOI: 10.1038/s41467-023-37761-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/30/2023] [Indexed: 04/16/2023] Open
Abstract
Double-strand breaks (DSBs) due to genotoxic stress represent potential threats to genome stability. Dysfunctional telomeres are recognized as DSBs and are repaired by distinct DNA repair mechanisms. RAP1 and TRF2 are telomere binding proteins essential to protect telomeres from engaging in homology directed repair (HDR), but how this occurs remains unclear. In this study, we examined how the basic domain of TRF2 (TRF2B) and RAP1 cooperate to repress HDR at telomeres. Telomeres lacking TRF2B and RAP1 cluster into structures termed ultrabright telomeres (UTs). HDR factors localize to UTs, and UT formation is abolished by RNaseH1, DDX21 and ADAR1p110, suggesting that they contain DNA-RNA hybrids. Interaction between the BRCT domain of RAP1 and KU70/KU80 is also required to repress UT formation. Expressing TRF2∆B in Rap1-/- cells resulted in aberrant lamin A localization in the nuclear envelope and dramatically increased UT formation. Expressing lamin A phosphomimetic mutants induced nuclear envelope rupturing and aberrant HDR-mediated UT formation. Our results highlight the importance of shelterin and proteins in the nuclear envelope in repressing aberrant telomere-telomere recombination to maintain telomere homeostasis.
Collapse
Affiliation(s)
- Rekha Rai
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA.
| | - Kevin Biju
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA
- Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Wenqi Sun
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Tori Sodeinde
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA
| | - Amer Al-Hiyasat
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA
| | - Jaida Morgan
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA
| | - Xianwen Ye
- University of Chinese Academy of Sciences, 100049, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Xueqing Li
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yong Chen
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai, 201210, China
| | - Sandy Chang
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, 330 Cedar Street, CT, 06520, USA.
- Department of Pathology, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520, USA.
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, 330 Cedar Street, New Haven, CT, 06520, USA.
| |
Collapse
|
75
|
Wieder R. Fibroblasts as Turned Agents in Cancer Progression. Cancers (Basel) 2023; 15:2014. [PMID: 37046676 PMCID: PMC10093070 DOI: 10.3390/cancers15072014] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Differentiated epithelial cells reside in the homeostatic microenvironment of the native organ stroma. The stroma supports their normal function, their G0 differentiated state, and their expansion/contraction through the various stages of the life cycle and physiologic functions of the host. When malignant transformation begins, the microenvironment tries to suppress and eliminate the transformed cells, while cancer cells, in turn, try to resist these suppressive efforts. The tumor microenvironment encompasses a large variety of cell types recruited by the tumor to perform different functions, among which fibroblasts are the most abundant. The dynamics of the mutual relationship change as the sides undertake an epic battle for control of the other. In the process, the cancer "wounds" the microenvironment through a variety of mechanisms and attracts distant mesenchymal stem cells to change their function from one attempting to suppress the cancer, to one that supports its growth, survival, and metastasis. Analogous reciprocal interactions occur as well between disseminated cancer cells and the metastatic microenvironment, where the microenvironment attempts to eliminate cancer cells or suppress their proliferation. However, the altered microenvironmental cells acquire novel characteristics that support malignant progression. Investigations have attempted to use these traits as targets of novel therapeutic approaches.
Collapse
Affiliation(s)
- Robert Wieder
- Rutgers New Jersey Medical School and the Cancer Institute of New Jersey, Newark, NJ 07103, USA
| |
Collapse
|
76
|
Gargalionis AN, Papavassiliou KA, Papavassiliou AG. Mechanobiology of solid tumors. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166555. [PMID: 36150659 DOI: 10.1016/j.bbadis.2022.166555] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/22/2022] [Accepted: 09/16/2022] [Indexed: 10/14/2022]
Abstract
Mechanical features of cancer cells emerge as a distinct trait during development and progression of solid tumors. Herein, we discuss recent key findings regarding the impact of various types of mechanical stresses on cancer cell properties. Data suggest that different mechanical forces, alterations of matrix rigidity and tumor microenvironment facilitate cancer hallmarks, especially invasion and metastasis. Moreover, a subset of mechanosensory proteins are responsible for mediating mechanically induced oncogenic signaling and response to chemotherapy. Delineating cancer dynamics and decoding of respective signal transduction mechanisms will provide new therapeutic strategies against solid tumors in the future.
Collapse
Affiliation(s)
- Antonios N Gargalionis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece.
| | - Kostas A Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens 11527, Greece.
| |
Collapse
|
77
|
Hsia CR, McAllister J, Hasan O, Judd J, Lee S, Agrawal R, Chang CY, Soloway P, Lammerding J. Confined migration induces heterochromatin formation and alters chromatin accessibility. iScience 2022; 25:104978. [PMID: 36117991 PMCID: PMC9474860 DOI: 10.1016/j.isci.2022.104978] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 06/14/2022] [Accepted: 08/15/2022] [Indexed: 01/17/2023] Open
Abstract
During migration, cells often squeeze through small constrictions, requiring extensive deformation. We hypothesized that nuclear deformation associated with such confined migration could alter chromatin organization and function. By studying cells migrating through microfluidic devices that mimic interstitial spaces in vivo, we found that confined migration results in increased H3K9me3 and H3K27me3 heterochromatin marks that persist for days. This "confined migration-induced heterochromatin" (CMiH) was distinct from heterochromatin formation during migration initiation. Confined migration decreased chromatin accessibility at intergenic regions near centromeres and telomeres, suggesting heterochromatin spreading from existing sites. Consistent with the overall decrease in accessibility, global transcription was decreased during confined migration. Intriguingly, we also identified increased accessibility at promoter regions of genes linked to chromatin silencing, tumor invasion, and DNA damage response. Inhibiting CMiH reduced migration speed, suggesting that CMiH promotes confined migration. Together, our findings indicate that confined migration induces chromatin changes that regulate cell migration and other functions.
Collapse
Affiliation(s)
- Chieh-Ren Hsia
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Jawuanna McAllister
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Ovais Hasan
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Seoyeon Lee
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Richa Agrawal
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Chao-Yuan Chang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Paul Soloway
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
78
|
Bera K, Kiepas A, Zhang Y, Sun SX, Konstantopoulos K. The interplay between physical cues and mechanosensitive ion channels in cancer metastasis. Front Cell Dev Biol 2022; 10:954099. [PMID: 36158191 PMCID: PMC9490090 DOI: 10.3389/fcell.2022.954099] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Physical cues have emerged as critical influencers of cell function during physiological processes, like development and organogenesis, and throughout pathological abnormalities, including cancer progression and fibrosis. While ion channels have been implicated in maintaining cellular homeostasis, their cell surface localization often places them among the first few molecules to sense external cues. Mechanosensitive ion channels (MICs) are especially important transducers of physical stimuli into biochemical signals. In this review, we describe how physical cues in the tumor microenvironment are sensed by MICs and contribute to cancer metastasis. First, we highlight mechanical perturbations, by both solid and fluid surroundings typically found in the tumor microenvironment and during critical stages of cancer cell dissemination from the primary tumor. Next, we describe how Piezo1/2 and transient receptor potential (TRP) channels respond to these physical cues to regulate cancer cell behavior during different stages of metastasis. We conclude by proposing alternative mechanisms of MIC activation that work in tandem with cytoskeletal components and other ion channels to bestow cells with the capacity to sense, respond and navigate through the surrounding microenvironment. Collectively, this review provides a perspective for devising treatment strategies against cancer by targeting MICs that sense aberrant physical characteristics during metastasis, the most lethal aspect of cancer.
Collapse
Affiliation(s)
- Kaustav Bera
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
| | - Alexander Kiepas
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Alexander Kiepas, ; Konstantinos Konstantopoulos,
| | - Yuqi Zhang
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
| | - Sean X. Sun
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Konstantinos Konstantopoulos
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Oncology, The Johns Hopkins University, Baltimore, MD, United States
- *Correspondence: Alexander Kiepas, ; Konstantinos Konstantopoulos,
| |
Collapse
|
79
|
Li Y, Wong IY, Guo M. Reciprocity of Cell Mechanics with Extracellular Stimuli: Emerging Opportunities for Translational Medicine. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107305. [PMID: 35319155 PMCID: PMC9463119 DOI: 10.1002/smll.202107305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Human cells encounter dynamic mechanical cues in healthy and diseased tissues, which regulate their molecular and biophysical phenotype, including intracellular mechanics as well as force generation. Recent developments in bio/nanomaterials and microfluidics permit exquisitely sensitive measurements of cell mechanics, as well as spatiotemporal control over external mechanical stimuli to regulate cell behavior. In this review, the mechanobiology of cells interacting bidirectionally with their surrounding microenvironment, and the potential relevance for translational medicine are considered. Key fundamental concepts underlying the mechanics of living cells as well as the extracelluar matrix are first introduced. Then the authors consider case studies based on 1) microfluidic measurements of nonadherent cell deformability, 2) cell migration on micro/nano-topographies, 3) traction measurements of cells in three-dimensional (3D) matrix, 4) mechanical programming of organoid morphogenesis, as well as 5) active mechanical stimuli for potential therapeutics. These examples highlight the promise of disease diagnosis using mechanical measurements, a systems-level understanding linking molecular with biophysical phenotype, as well as therapies based on mechanical perturbations. This review concludes with a critical discussion of these emerging technologies and future directions at the interface of engineering, biology, and medicine.
Collapse
Affiliation(s)
- Yiwei Li
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China
| | - Ian Y Wong
- School of Engineering, Center for Biomedical Engineering, Joint Program in Cancer Biology, Brown University, 184 Hope St Box D, Providence, RI, 02912, USA
| | - Ming Guo
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
80
|
Zhao H, Xie J, Wu S, Sánchez OF, Zhang X, Freeman JL, Yuan C. Pre-differentiation exposure of PFOA induced persistent changes in DNA methylation and mitochondrial morphology in human dopaminergic-like neurons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119684. [PMID: 35764183 DOI: 10.1016/j.envpol.2022.119684] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/10/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Perfluorooctanoic acid (PFOA) is abundant in environment due to its historical uses in consumer products and industrial applications. Exposure to low doses of PFOA has been associated with various disease risks, including neurological disorders. The underlying mechanism, however, remains poorly understood. In this study, we examined the effects of low dose PFOA exposure at 0.4 and 4 μg/L on the morphology, epigenome, mitochondrion, and neuronal markers of dopaminergic (DA)-like SH-SY5Y cells. We observed persistent decreases in H3K4me3, H3K27me3 and 5 mC markers in nucleus along with alterations in nuclear size and chromatin compaction percentage in DA-like neurons differentiated from SH-SY5Y cells exposed to 0.4 and 4 μg/L PFOA. Among the selected epigenetic features, DNA methylation pattern can be used to distinguish between PFOA-exposed and naïve populations, suggesting the involvement of epigenetic regulation. Moreover, DA-like neurons with pre-differentiation PFOA exposure exhibit altered network connectivity, mitochondrial volume, and TH expression, implying impairment in DA neuron functionality. Collectively, our results revealed the prolonged effects of developmental PFOA exposure on the fitness of DA-like neurons and identified epigenome and mitochondrion as potential targets for bearing long-lasting changes contributing to increased risks of neurological diseases later in life.
Collapse
Affiliation(s)
- Han Zhao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Junkai Xie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Shichen Wu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Oscar F Sánchez
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Xinle Zhang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Jennifer L Freeman
- School of Health Sciences, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN, 47907, USA
| | - Chongli Yuan
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA; Purdue University Center for Cancer Research, West Lafayette, IN, 47907, USA.
| |
Collapse
|
81
|
Zuela-Sopilniak N, Lammerding J. Can't handle the stress? Mechanobiology and disease. Trends Mol Med 2022; 28:710-725. [PMID: 35717527 PMCID: PMC9420767 DOI: 10.1016/j.molmed.2022.05.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Mechanobiology is a rapidly growing research area focused on how mechanical forces and properties influence biological systems at the cell, molecular, and tissue level, and how those biological systems, in turn, control mechanical parameters. Recently, it has become apparent that disrupted mechanobiology has a significant role in many diseases, from cardiovascular disease to muscular dystrophy and cancer. An improved understanding of this intricate process could be harnessed toward developing alternative and more targeted treatment strategies, and to advance the fields of regenerative and personalized medicine. Modulating the mechanical properties of the cellular microenvironment has already been used successfully to boost antitumor immune responses and to induce cardiac and spinal regeneration, providing inspiration for further research in this area.
Collapse
Affiliation(s)
- Noam Zuela-Sopilniak
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Jan Lammerding
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
82
|
Bell ES, Shah P, Zuela-Sopilniak N, Kim D, Varlet AA, Morival JL, McGregor AL, Isermann P, Davidson PM, Elacqua JJ, Lakins JN, Vahdat L, Weaver VM, Smolka MB, Span PN, Lammerding J. Low lamin A levels enhance confined cell migration and metastatic capacity in breast cancer. Oncogene 2022; 41:4211-4230. [PMID: 35896617 PMCID: PMC9925375 DOI: 10.1038/s41388-022-02420-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/12/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Aberrations in nuclear size and shape are commonly used to identify cancerous tissue. However, it remains unclear whether the disturbed nuclear structure directly contributes to the cancer pathology or is merely a consequence of other events occurring during tumorigenesis. Here, we show that highly invasive and proliferative breast cancer cells frequently exhibit Akt-driven lower expression of the nuclear envelope proteins lamin A/C, leading to increased nuclear deformability that permits enhanced cell migration through confined environments that mimic interstitial spaces encountered during metastasis. Importantly, increasing lamin A/C expression in highly invasive breast cancer cells reflected gene expression changes characteristic of human breast tumors with higher LMNA expression, and specifically affected pathways related to cell-ECM interactions, cell metabolism, and PI3K/Akt signaling. Further supporting an important role of lamins in breast cancer metastasis, analysis of lamin levels in human breast tumors revealed a significant association between lower lamin A levels, Akt signaling, and decreased disease-free survival. These findings suggest that downregulation of lamin A/C in breast cancer cells may influence both cellular physical properties and biochemical signaling to promote metastatic progression.
Collapse
Affiliation(s)
- Emily S. Bell
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY,Current address: Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA
| | - Pragya Shah
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | | | - Dongsung Kim
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Alice-Anais Varlet
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Julien L.P. Morival
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Alexandra L. McGregor
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY
| | - Philipp Isermann
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | | | - Joshua J. Elacqua
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Jonathan N. Lakins
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA
| | - Linda Vahdat
- Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Valerie M. Weaver
- Center for Bioengineering and Tissue Regeneration, Department of Surgery, University of California, San Francisco, San Francisco, CA,Helen Diller Cancer Center, Department of Bioengineering and Therapeutic Sciences, and Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Marcus B. Smolka
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY
| | - Paul N. Span
- Department of Radiation Oncology, Radiotherapy & OncoImmunology laboratory, Radboud University Nijmegen Medical Center, Nijmegen, the Netherlands
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA. .,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
83
|
Kalukula Y, Stephens AD, Lammerding J, Gabriele S. Mechanics and functional consequences of nuclear deformations. Nat Rev Mol Cell Biol 2022; 23:583-602. [PMID: 35513718 PMCID: PMC9902167 DOI: 10.1038/s41580-022-00480-z] [Citation(s) in RCA: 199] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2022] [Indexed: 02/08/2023]
Abstract
As the home of cellular genetic information, the nucleus has a critical role in determining cell fate and function in response to various signals and stimuli. In addition to biochemical inputs, the nucleus is constantly exposed to intrinsic and extrinsic mechanical forces that trigger dynamic changes in nuclear structure and morphology. Emerging data suggest that the physical deformation of the nucleus modulates many cellular and nuclear functions. These functions have long been considered to be downstream of cytoplasmic signalling pathways and dictated by gene expression. In this Review, we discuss an emerging perspective on the mechanoregulation of the nucleus that considers the physical connections from chromatin to nuclear lamina and cytoskeletal filaments as a single mechanical unit. We describe key mechanisms of nuclear deformations in time and space and provide a critical review of the structural and functional adaptive responses of the nucleus to deformations. We then consider the contribution of nuclear deformations to the regulation of important cellular functions, including muscle contraction, cell migration and human disease pathogenesis. Collectively, these emerging insights shed new light on the dynamics of nuclear deformations and their roles in cellular mechanobiology.
Collapse
Affiliation(s)
- Yohalie Kalukula
- University of Mons, Soft Matter and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, Place du Parc, 20 B-7000 Mons, Belgium
| | - Andrew D. Stephens
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jan Lammerding
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA,Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sylvain Gabriele
- University of Mons, Soft Matter and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, CIRMAP, Place du Parc, 20 B-7000 Mons, Belgium
| |
Collapse
|
84
|
Jain N, Lord JM, Vogel V. Mechanoimmunology: Are inflammatory epigenetic states of macrophages tuned by biophysical factors? APL Bioeng 2022; 6:031502. [PMID: 36051106 PMCID: PMC9427154 DOI: 10.1063/5.0087699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/26/2022] [Indexed: 11/17/2022] Open
Abstract
Many inflammatory diseases that are responsible for a majority of deaths are still uncurable, in part as the underpinning pathomechanisms and how to combat them is still poorly understood. Tissue-resident macrophages play pivotal roles in the maintenance of tissue homeostasis, but if they gradually convert to proinflammatory phenotypes, or if blood-born proinflammatory macrophages persist long-term after activation, they contribute to chronic inflammation and fibrosis. While biochemical factors and how they regulate the inflammatory transcriptional response of macrophages have been at the forefront of research to identify targets for therapeutic interventions, evidence is increasing that physical factors also tune the macrophage phenotype. Recently, several mechanisms have emerged as to how physical factors impact the mechanobiology of macrophages, from the nuclear translocation of transcription factors to epigenetic modifications, perhaps even DNA methylation. Insight into the mechanobiology of macrophages and associated epigenetic modifications will deliver novel therapeutic options going forward, particularly in the context of increased inflammation with advancing age and age-related diseases. We review here how biophysical factors can co-regulate pro-inflammatory gene expression and epigenetic modifications and identify knowledge gaps that require urgent attention if this therapeutic potential is to be realized.
Collapse
Affiliation(s)
- Nikhil Jain
- Authors to whom correspondence should be addressed: and
| | | | - Viola Vogel
- Department of Health Sciences and Technology, Institute of Translational Medicine, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
85
|
Gupta VK, Chaudhuri O. Mechanical regulation of cell-cycle progression and division. Trends Cell Biol 2022; 32:773-785. [PMID: 35491306 PMCID: PMC9378598 DOI: 10.1016/j.tcb.2022.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
Abstract
Cell-cycle progression and division are fundamental biological processes in animal cells, and their biochemical regulation has been extensively studied. An emerging body of work has revealed how mechanical interactions of cells with their microenvironment in tissues, including with the extracellular matrix (ECM) and neighboring cells, also plays a crucial role in regulating cell-cycle progression and division. We review recent work on how cells interpret physical cues and alter their mechanics to promote cell-cycle progression and initiate cell division, and then on how dividing cells generate forces on their surrounding microenvironment to successfully divide. Finally, the article ends by discussing how force generation during division potentially contributes to larger tissue-scale processes involved in development and homeostasis.
Collapse
Affiliation(s)
- Vivek K Gupta
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA, USA..
| |
Collapse
|
86
|
Pressure Loading Induces DNA Damage in Human Hepatocyte Line L02 Cells via the ERK1/2-Dicer Signaling Pathway. Int J Mol Sci 2022; 23:ijms23105342. [PMID: 35628153 PMCID: PMC9140865 DOI: 10.3390/ijms23105342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/07/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
Alteration of liver tissue mechanical microenvironment is proven to be a key factor for causing hepatocyte injury and even triggering the occurrence of hepatocellular carcinoma; however, the underlying mechanisms involved are not fully understood. In this study, using a customized, pressure-loading device, we assess the effect of pressure loading on DNA damage in human hepatocytes. We show that pressure loading leads to DNA damage and S-phase arresting in the cell cycle, and activates the DNA damage response in hepatocytes. Meanwhile, pressure loading upregulates Dicer expression, and its silencing exacerbates pressure-induced DNA damage. Moreover, pressure loading also activates ERK1/2 signaling molecules. Blockage of ERK1/2 signaling inhibits pressure-upregulated Dicer expression and exacerbates DNA damage by suppressing DNA damage response in hepatocytes. Our findings demonstrate that compressive stress loading induces hepatocyte DNA damage through the ERK1/2–Dicer signaling pathway, which provides evidence for a better understanding of the link between the altered mechanical environment and liver diseases.
Collapse
|
87
|
Nuclear lamin isoforms differentially contribute to LINC complex-dependent nucleocytoskeletal coupling and whole-cell mechanics. Proc Natl Acad Sci U S A 2022; 119:e2121816119. [PMID: 35439057 PMCID: PMC9170021 DOI: 10.1073/pnas.2121816119] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Interactions between the cell nucleus and cytoskeleton regulate cell mechanics and are facilitated by the interplay between the nuclear lamina and linker of nucleoskeleton and cytoskeleton (LINC) complexes. To date, the specific contribution of the four lamin isoforms to nucleocytoskeletal connectivity and whole-cell mechanics remains unknown. We discover that A- and B-type lamins distinctively interact with LINC complexes that bind F-actin and vimentin filaments to differentially modulate cortical stiffness, cytoplasmic stiffness, and contractility of mouse embryonic fibroblasts (MEFs). We propose and experimentally verify an integrated lamin–LINC complex–cytoskeleton model that explains cellular mechanical phenotypes in lamin-deficient MEFs. Our findings uncover potential mechanisms for cellular defects in human laminopathies and many cancers associated with mutations or modifications in lamin isoforms. The ability of a cell to regulate its mechanical properties is central to its function. Emerging evidence suggests that interactions between the cell nucleus and cytoskeleton influence cell mechanics through poorly understood mechanisms. Here we conduct quantitative confocal imaging to show that the loss of A-type lamins tends to increase nuclear and cellular volume while the loss of B-type lamins behaves in the opposite manner. We use fluorescence recovery after photobleaching, atomic force microscopy, optical tweezer microrheology, and traction force microscopy to demonstrate that A-type lamins engage with both F-actin and vimentin intermediate filaments (VIFs) through the linker of nucleoskeleton and cytoskeleton (LINC) complexes to modulate cortical and cytoplasmic stiffness as well as cellular contractility in mouse embryonic fibroblasts (MEFs). In contrast, we show that B-type lamins predominantly interact with VIFs through LINC complexes to regulate cytoplasmic stiffness and contractility. We then propose a physical model mediated by the lamin–LINC complex that explains these distinct mechanical phenotypes (mechanophenotypes). To verify this model, we use dominant negative constructs and RNA interference to disrupt the LINC complexes that facilitate the interaction of the nucleus with the F-actin and VIF cytoskeletons and show that the loss of these elements results in mechanophenotypes like those observed in MEFs that lack A- or B-type lamin isoforms. Finally, we demonstrate that the loss of each lamin isoform softens the cell nucleus and enhances constricted cell migration but in turn increases migration-induced DNA damage. Together, our findings uncover distinctive roles for each of the four major lamin isoforms in maintaining nucleocytoskeletal interactions and cellular mechanics.
Collapse
|
88
|
Molecular sensors for detection of tumor-stroma crosstalk. Adv Cancer Res 2022; 154:47-91. [PMID: 35459472 DOI: 10.1016/bs.acr.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In most solid tumors, malignant cells coexist with non-cancerous host tissue comprised of a variety of extracellular matrix components and cell types, notably fibroblasts, immune cells, and endothelial cells. It is becoming increasingly evident that the non-cancerous host tissue, often referred to as the tumor stroma or the tumor microenvironment, wields tremendous influence in the proliferation, survival, and metastatic ability of cancer cells. The tumor stroma has an active biological role in the transmission of signals, such as growth factors and chemokines that activate oncogenic signaling pathways by autocrine and paracrine mechanisms. Moreover, the constituents of the stroma define the mechanical properties and the physical features of solid tumors, which influence cancer progression and response to therapy. Inspired by the emerging importance of tumor-stroma crosstalk and oncogenic physical forces, numerous biosensors, or advanced imaging and analysis techniques have been developed and applied to investigate complex and challenging questions in cancer research. These techniques facilitate measurements and biological readouts at scales ranging from subcellular to tissue-level with unprecedented level of spatial and temporal precision. Here we examine the application of biosensor technology for studying the complex and dynamic multiscale interactions of the tumor-host system.
Collapse
|
89
|
Almagro J, Messal HA, Elosegui-Artola A, van Rheenen J, Behrens A. Tissue architecture in tumor initiation and progression. Trends Cancer 2022; 8:494-505. [PMID: 35300951 DOI: 10.1016/j.trecan.2022.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 01/13/2023]
Abstract
The 3D architecture of tissues bearing tumors impacts on the mechanical microenvironment of cancer, the accessibility of stromal cells, and the routes of invasion. A myriad of intrinsic and extrinsic forces exerted by the cancer cells, the host tissue, and the molecular and cellular microenvironment modulate the morphology of the tumor and its malignant potential through mechanical, biochemical, genetic, and epigenetic cues. Recent studies have investigated how tissue architecture influences cancer biology from tumor initiation and progression to distant metastatic seeding and response to therapy. With a focus on carcinoma, the most common type of cancer, this review discusses the latest discoveries on how tumor architecture is built and how tissue morphology affects the biology and progression of cancer cells.
Collapse
Affiliation(s)
- Jorge Almagro
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK; Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK
| | - Hendrik A Messal
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Alberto Elosegui-Artola
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London, UK; Department of Physics, King's College London, London, UK
| | - Jacco van Rheenen
- Department of Molecular Pathology, Oncode Institute, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Axel Behrens
- Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK; Cancer Stem Cell Laboratory, The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, London, UK; Convergence Science Centre, Imperial College London, London, UK; Division of Cancer, Imperial College London, London, UK.
| |
Collapse
|
90
|
Fanfone D, Wu Z, Mammi J, Berthenet K, Neves D, Weber K, Halaburkova A, Virard F, Bunel F, Jamard C, Hernandez-Vargas H, Tait SWG, Hennino A, Ichim G. Confined migration promotes cancer metastasis through resistance to anoikis and increased invasiveness. eLife 2022; 11:e73150. [PMID: 35256052 PMCID: PMC8903834 DOI: 10.7554/elife.73150] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022] Open
Abstract
Mechanical stress is known to fuel several hallmarks of cancer, ranging from genome instability to uncontrolled proliferation or invasion. Cancer cells are constantly challenged by mechanical stresses not only in the primary tumour but also during metastasis. However, this latter has seldom been studied with regards to mechanobiology, in particular resistance to anoikis, a cell death programme triggered by loss of cell adhesion. Here, we show in vitro that migrating breast cancer cells develop resistance to anoikis following their passage through microporous membranes mimicking confined migration (CM), a mechanical constriction that cancer cells encounter during metastasis. This CM-induced resistance was mediated by Inhibitory of Apoptosis Proteins, and sensitivity to anoikis could be restored after their inhibition using second mitochondria-derived activator of caspase (SMAC) mimetics. Anoikis-resistant mechanically stressed cancer cells displayed enhanced cell motility and evasion from natural killer cell-mediated immune surveillance, as well as a marked advantage to form lung metastatic lesions in mice. Our findings reveal that CM increases the metastatic potential of breast cancer cells.
Collapse
Affiliation(s)
- Deborah Fanfone
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCAN, Université de LyonLyonFrance
| | - Zhichong Wu
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Université Lyon 1, VilleurbanneVilleurbanneFrance
- Centre Léon BérardLyonFrance
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jade Mammi
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCAN, Université de LyonLyonFrance
| | - Kevin Berthenet
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCAN, Université de LyonLyonFrance
- Centre Léon BérardLyonFrance
| | | | - Kathrin Weber
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCAN, Université de LyonLyonFrance
| | - Andrea Halaburkova
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCAN, Université de LyonLyonFrance
| | - François Virard
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Université Claude Bernard Lyon 1, Faculté d’Odontologie, Hospices Civils de LyonLyonFrance
| | - Félix Bunel
- ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, Laboratoire de PhysiqueLyonFrance
| | - Catherine Jamard
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCAN, Université de LyonLyonFrance
| | - Hector Hernandez-Vargas
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Centre Léon BérardLyonFrance
- Université Claude Bernard Lyon 1LyonFrance
| | - Stephen WG Tait
- Cancer Research UK Beatson InstituteGlasgowUnited Kingdom
- Institute of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Ana Hennino
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Université Lyon 1, VilleurbanneVilleurbanneFrance
- Centre Léon BérardLyonFrance
| | - Gabriel Ichim
- Cancer Research Center of Lyon (CRCL), INSERM 1052, CNRSLyonFrance
- Cancer Cell Death Laboratory, part of LabEx DEVweCAN, Université de LyonLyonFrance
| |
Collapse
|
91
|
Beeghly GF, Amofa KY, Fischbach C, Kumar S. Regulation of Tumor Invasion by the Physical Microenvironment: Lessons from Breast and Brain Cancer. Annu Rev Biomed Eng 2022; 24:29-59. [PMID: 35119915 DOI: 10.1146/annurev-bioeng-110220-115419] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The success of anticancer therapies is often limited by heterogeneity within and between tumors. While much attention has been devoted to understanding the intrinsic molecular diversity of tumor cells, the surrounding tissue microenvironment is also highly complex and coevolves with tumor cells to drive clinical outcomes. Here, we propose that diverse types of solid tumors share common physical motifs that change in time and space, serving as universal regulators of malignancy. We use breast cancer and glioblastoma as instructive examples and highlight how invasion in both diseases is driven by the appropriation of structural guidance cues, contact-dependent heterotypic interactions with stromal cells, and elevated interstitial fluid pressure and flow. We discuss how engineering strategies show increasing value for measuring and modeling these physical properties for mechanistic studies. Moreover, engineered systems offer great promise for developing and testing novel therapies that improve patient prognosis by normalizing the physical tumor microenvironment. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Garrett F Beeghly
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA;
| | - Kwasi Y Amofa
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, USA; .,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York, USA; .,Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, USA
| | - Sanjay Kumar
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Berkeley, California, USA; .,Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California, USA.,Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
92
|
Lee G, Cho Y, Kim EH, Choi JM, Chae SS, Lee MG, Kim J, Choi WJ, Kwon J, Han EH, Kim SH, Park S, Chung YH, Chi SG, Jung BH, Shin JH, Lee JO. Pillar-Based Mechanical Induction of an Aggressive Tumorigenic Lung Cancer Cell Model. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20-31. [PMID: 34914354 DOI: 10.1021/acsami.1c12380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Tissue microarchitecture imposes physical constraints to the migration of individual cells. Especially in cancer metastasis, three-dimensional structural barriers within the extracellular matrix are known to affect the migratory behavior of cells, regulating the pathological state of the cells. Here, we employed a culture platform with micropillar arrays of 2 μm diameter and 16 μm pitch (2.16 micropillar) as a mechanical stimulant. Using this platform, we investigated how a long-term culture of A549 human lung carcinoma cells on the (2.16) micropillar-embossed dishes would influence the pathological state of the cell. A549 cells grown on the (2.16) micropillar array with 10 μm height exhibited a significantly elongated morphology and enhanced migration even after the detachment and reattachment, as evidenced in the conventional wound-healing assay, single-cell tracking analysis, and in vivo tumor colonization assays. Moreover, the pillar-induced morphological deformation in nuclei was accompanied by cell-cycle arrest in the S phase, leading to suppressed proliferation. While these marked traits of morphology-migration-proliferation support more aggressive characteristics of metastatic cancer cells, typical indices of epithelial-mesenchymal transition were not found, but instead, remarkable traces of amoeboidal transition were confirmed. Our study also emphasizes the importance of mechanical stimuli from the microenvironment during pathogenesis and how gained traits can be passed onto subsequent generations, ultimately affecting their pathophysiological behavior. Furthermore, this study highlights the potential use of pillar-based mechanical stimuli as an in vitro cell culture strategy to induce more aggressive tumorigenic cancer cell models.
Collapse
Affiliation(s)
- Geonhee Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Youngbin Cho
- Department of Mechanical Engineering, Korea Advanced of Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Eun Hye Kim
- Laboratory of Translational Therapeutics, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Jong Min Choi
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Soo Sang Chae
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Min-Goo Lee
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Jonghyun Kim
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Won Jin Choi
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Joseph Kwon
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Eun Hee Han
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Seong Hwan Kim
- Laboratory of Translational Therapeutics, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Young-Ho Chung
- Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Cheongju 28119, Republic of Korea
| | - Sung-Gil Chi
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Byung Hwa Jung
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Jennifer H Shin
- Department of Mechanical Engineering, Korea Advanced of Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Jeong-O Lee
- Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon 34114, Republic of Korea
| |
Collapse
|
93
|
Abstract
Cells generate and sense mechanical forces that trigger biochemical signals to elicit cellular responses that control cell fate changes. Mechanical forces also physically distort neighboring cells and the surrounding connective tissue, which propagate mechanochemical signals over long distances to guide tissue patterning, organogenesis, and adult tissue homeostasis. As the largest and stiffest organelle, the nucleus is particularly sensitive to mechanical force and deformation. Nuclear responses to mechanical force include adaptations in chromatin architecture and transcriptional activity that trigger changes in cell state. These force-driven changes also influence the mechanical properties of chromatin and nuclei themselves to prevent aberrant alterations in nuclear shape and help maintain genome integrity. This review will discuss principles of nuclear mechanotransduction and chromatin mechanics and their role in DNA damage and cell fate regulation.
Collapse
Affiliation(s)
- Yekaterina A Miroshnikova
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki 00014, Finland
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sara A Wickström
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki 00014, Finland
- Wihuri Research Institute, Biomedicum Helsinki, University of Helsinki, Helsinki 00290, Finland
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
- Max Planck Institute for Biology of Ageing, Cologne 50931, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
94
|
Beshay PE, Cortes-Medina MG, Menyhert MM, Song JW. The biophysics of cancer: emerging insights from micro- and nanoscale tools. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100056. [PMID: 35156093 PMCID: PMC8827905 DOI: 10.1002/anbr.202100056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is a complex and dynamic disease that is aberrant both biologically and physically. There is growing appreciation that physical abnormalities with both cancer cells and their microenvironment that span multiple length scales are important drivers for cancer growth and metastasis. The scope of this review is to highlight the key advancements in micro- and nano-scale tools for delineating the cause and consequences of the aberrant physical properties of tumors. We focus our review on three important physical aspects of cancer: 1) solid mechanical properties, 2) fluid mechanical properties, and 3) mechanical alterations to cancer cells. Beyond posing physical barriers to the delivery of cancer therapeutics, these properties are also known to influence numerous biological processes, including cancer cell invasion and migration leading to metastasis, and response and resistance to therapy. We comment on how micro- and nanoscale tools have transformed our fundamental understanding of the physical dynamics of cancer progression and their potential for bridging towards future applications at the interface of oncology and physical sciences.
Collapse
Affiliation(s)
- Peter E Beshay
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| | | | - Miles M Menyhert
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
95
|
Rich J, Tian Z, Huang TJ. Sonoporation: Past, Present, and Future. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2100885. [PMID: 35399914 PMCID: PMC8992730 DOI: 10.1002/admt.202100885] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Indexed: 05/09/2023]
Abstract
A surge of research in intracellular delivery technologies is underway with the increased innovations in cell-based therapies and cell reprogramming. Particularly, physical cell membrane permeabilization techniques are highlighted as the leading technologies because of their unique features, including versatility, independence of cargo properties, and high-throughput delivery that is critical for providing the desired cell quantity for cell-based therapies. Amongst the physical permeabilization methods, sonoporation holds great promise and has been demonstrated for delivering a variety of functional cargos, such as biomolecular drugs, proteins, and plasmids, to various cells including cancer, immune, and stem cells. However, traditional bubble-based sonoporation methods usually require special contrast agents. Bubble-based sonoporation methods also have high chances of inducing irreversible damage to critical cell components, lowering the cell viability, and reducing the effectiveness of delivered cargos. To overcome these limitations, several novel non-bubble-based sonoporation mechanisms are under development. This review will cover both the bubble-based and non-bubble-based sonoporation mechanisms being employed for intracellular delivery, the technologies being investigated to overcome the limitations of traditional platforms, as well as perspectives on the future sonoporation mechanisms, technologies, and applications.
Collapse
Affiliation(s)
- Joseph Rich
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Zhenhua Tian
- Department of Aerospace Engineering, Mississippi State University, Mississippi State, MS, 39762, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
96
|
Agrawal R, Windsor A, Lammerding J. Assembly and Use of a Microfluidic Device to Study Nuclear Mechanobiology During Confined Migration. Methods Mol Biol 2022; 2502:329-349. [PMID: 35412249 PMCID: PMC9862508 DOI: 10.1007/978-1-0716-2337-4_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cancer metastasis, that is, the spreading of tumor cells from the primary tumor to distant sites, requires cancer cells to travel through pores substantially smaller than their cross section . This "confined migration" requires substantial deformation by the relatively large and rigid nucleus, which can impact nuclear compartmentalization, trigger cellular mechanotransduction pathways, and increase genomic instability. To improve our understanding of how cells perform and respond to confined migration, we developed polydimethylsiloxane (PDMS) microfluidic devices in which cells migrate through a precisely controlled "field of pillars" that closely mimic the intermittent confinement of tumor microenvironments and interstitial spaces. The devices can be designed with various densities of pillars, ranging from a very low density that does not require nuclear deformation to high densities that present microenvironment conditions with severe confinement. The devices enable assessment of cellular fitness for confined migration based on the distance traveled through the constriction area over several days. In this protocol, we present two complementary techniques to generate silicon master molds for the device fabrication: (1) SU-8 soft lithography for rapid prototyping and for devices with relatively large features; and (2) reactive ion etching (RIE) to achieve finer features and more durable molds. In addition, we describe the production, use, and validation of the devices, along with the analysis pipeline for experiments using the devices with fluorescently labeled cells. Collectively, this protocol enables the study of confined migration and is readily amendable to investigate other aspects of confined migration mechanobiology, such as nuclear pore complex function in response to nuclear deformation.
Collapse
Affiliation(s)
- Richa Agrawal
- Weill Institute for Cellular and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Aaron Windsor
- Cornell NanoScale Science and Technology Facility, Cornell University, Ithaca NY 14850, USA
| | - Jan Lammerding
- Weill Institute for Cellular and Molecular Biology, Cornell University, Ithaca, NY 14853, USA,Nancy E. and Peter C. Meinig School of Engineering, Cornell University, Ithaca, NY 14853, USA,Correspondence should be addressed to
| |
Collapse
|
97
|
Physical Forces and Transient Nuclear Envelope Rupture during Metastasis: The Key for Success? Cancers (Basel) 2021; 14:cancers14010083. [PMID: 35008251 PMCID: PMC8750110 DOI: 10.3390/cancers14010083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/16/2021] [Accepted: 12/21/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Metastasis is the process that allows the seeding of tumor cells in a new organ. The migration and invasion of cancer cells involves the pulling, pushing, and squeezing of cells through narrow spaces and pores. Tumor cells need to cross several physical barriers, such as layers of basement membranes as well as the endothelium wall during the way in and out of the blood stream, to reach the new organ. The aim of this review is to highlight the role of physical compression in the success of metastasis. We will especially focus on nuclear squeezing and nuclear envelope rupture and explain how they can actively participate in the creation of genomic heterogeneity as well as supporting metastasis growth. Abstract During metastasis, invading tumor cells and circulating tumor cells (CTC) face multiple mechanical challenges during migration through narrow pores and cell squeezing. However, little is known on the importance and consequences of mechanical stress for tumor progression and success in invading a new organ. Recently, several studies have shown that cell constriction can lead to nuclear envelope rupture (NER) during interphase. This loss of proper nuclear compartmentalization has a profound effect on the genome, being a key driver for the genome evolution needed for tumor progression. More than just being a source of genomic alterations, the transient nuclear envelope collapse can also support metastatic growth by several mechanisms involving the innate immune response cGAS/STING pathway. In this review we will describe the importance of the underestimated role of cellular squeezing in the progression of tumorigenesis. We will describe the complexity and difficulty for tumor cells to reach the metastatic site, detail the genomic aberration diversity due to NER, and highlight the importance of the activation of the innate immune pathway on cell survival. Cellular adaptation and nuclear deformation can be the key to the metastasis success in many unsuspected aspects.
Collapse
|
98
|
Caragine CM, Kanellakopoulos N, Zidovska A. Mechanical stress affects dynamics and rheology of the human genome. SOFT MATTER 2021; 18:107-116. [PMID: 34874386 DOI: 10.1039/d1sm00983d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Material properties of the genome are critical for proper cellular function - they directly affect timescales and length scales of DNA transactions such as transcription, replication and DNA repair, which in turn impact all cellular processes via the central dogma of molecular biology. Hence, elucidating the genome's rheology in vivo may help reveal physical principles underlying the genome's organization and function. Here, we present a novel noninvasive approach to study the genome's rheology and its response to mechanical stress in form of nuclear injection in live human cells. Specifically, we use Displacement Correlation Spectroscopy to map nucleus-wide genomic motions pre/post injection, during which we deposit rheological probes inside the cell nucleus. While the genomic motions inform on the bulk rheology of the genome pre/post injection, the probe's motion informs on the local rheology of its surroundings. Our results reveal that mechanical stress of injection leads to local as well as nucleus-wide changes in the genome's compaction, dynamics and rheology. We find that the genome pre-injection exhibits subdiffusive motions, which are coherent over several micrometers. In contrast, genomic motions post-injection become faster and uncorrelated, moreover, the genome becomes less compact and more viscous across the entire nucleus. In addition, we use the injected particles as rheological probes and find the genome to condense locally around them, mounting a local elastic response. Taken together, our results show that mechanical stress alters both dynamics and material properties of the genome. These changes are consistent with those observed upon DNA damage, suggesting that the genome experiences similar effects during the injection process.
Collapse
Affiliation(s)
- Christina M Caragine
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY 10003, USA.
| | - Nikitas Kanellakopoulos
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY 10003, USA.
| | - Alexandra Zidovska
- Center for Soft Matter Research, Department of Physics, New York University, New York, NY 10003, USA.
| |
Collapse
|
99
|
Siemsen K, Rajput S, Rasch F, Taheri F, Adelung R, Lammerding J, Selhuber‐Unkel C. Tunable 3D Hydrogel Microchannel Networks to Study Confined Mammalian Cell Migration. Adv Healthc Mater 2021; 10:e2100625. [PMID: 34668667 PMCID: PMC8743577 DOI: 10.1002/adhm.202100625] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/12/2021] [Indexed: 11/12/2022]
Abstract
Cells adapt and move due to chemical, physical, and mechanical cues from their microenvironment. It is therefore important to create materials that mimic human tissue physiology by surface chemistry, architecture, and dimensionality to control cells in biomedical settings. The impact of the environmental architecture is particularly relevant in the context of cancer cell metastasis, where cells migrate through small constrictions in their microenvironment to invade surrounding tissues. Here, a synthetic hydrogel scaffold with an interconnected, random, 3D microchannel network is presented that is functionalized with collagen to promote cell adhesion. It is shown that cancer cells can invade such scaffolds within days, and both the microarchitecture and stiffness of the hydrogel modulate cell invasion and nuclear dynamics of the cells. Specifically, it is found that cell migration through the microchannels is a function of hydrogel stiffness. In addition to this, it is shown that the hydrogel stiffness and confinement, influence the occurrence of nuclear envelope ruptures of cells. The tunable hydrogel microarchitecture and stiffness thus provide a novel tool to investigate cancer cell invasion as a function of the 3D microenvironment. Furthermore, the material provides a promising strategy to control cell positioning, migration, and cellular function in biological applications, such as tissue engineering.
Collapse
Affiliation(s)
| | - Sunil Rajput
- Institute for Molecular Systems Engineering (IMSE)Heidelberg UniversityHeidelberg69120Germany
| | - Florian Rasch
- Institute for Materials ScienceKiel UniversityKielD‐24143Germany
| | - Fereydoon Taheri
- Institute for Molecular Systems Engineering (IMSE)Heidelberg UniversityHeidelberg69120Germany
| | - Rainer Adelung
- Institute for Materials ScienceKiel UniversityKielD‐24143Germany
| | - Jan Lammerding
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaNY14853USA
| | - Christine Selhuber‐Unkel
- Institute for Molecular Systems Engineering (IMSE)Heidelberg UniversityHeidelberg69120Germany
- Max Planck School Matter to LifeJahnstraße 29Heidelberg69120Germany
| |
Collapse
|
100
|
Hobson CM, Falvo MR, Superfine R. A survey of physical methods for studying nuclear mechanics and mechanobiology. APL Bioeng 2021; 5:041508. [PMID: 34849443 PMCID: PMC8604565 DOI: 10.1063/5.0068126] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
It is increasingly appreciated that the cell nucleus is not only a home for DNA but also a complex material that resists physical deformations and dynamically responds to external mechanical cues. The molecules that confer mechanical properties to nuclei certainly contribute to laminopathies and possibly contribute to cellular mechanotransduction and physical processes in cancer such as metastasis. Studying nuclear mechanics and the downstream biochemical consequences or their modulation requires a suite of complex assays for applying, measuring, and visualizing mechanical forces across diverse length, time, and force scales. Here, we review the current methods in nuclear mechanics and mechanobiology, placing specific emphasis on each of their unique advantages and limitations. Furthermore, we explore important considerations in selecting a new methodology as are demonstrated by recent examples from the literature. We conclude by providing an outlook on the development of new methods and the judicious use of the current techniques for continued exploration into the role of nuclear mechanobiology.
Collapse
Affiliation(s)
| | - Michael R. Falvo
- Department of Physics and Astronomy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Richard Superfine
- Department of Applied Physical Science, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|