51
|
Roles for macrophage-polarizing interleukins in cancer immunity and immunotherapy. Cell Oncol (Dordr) 2022; 45:333-353. [PMID: 35587857 DOI: 10.1007/s13402-022-00667-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Macrophages are the most abundant and one of the most critical cells of tumor immunity. They provide a bridge between innate and adaptive immunity through releasing cytokines into the tumor microenvironment (TME). A number of interleukin (IL) cytokine family members is involved in shaping the final phenotype of macrophages toward either a classically-activated pro-inflammatory M1 state with anti-tumor activity or an alternatively-activated anti-inflammatory M2 state with pro-tumor activity. Shaping TME macrophages toward the M1 phenotype or recovering this phenotypic state may offer a promising therapeutic approach in patients with cancer. Here, we focus on the impact of macrophage-polarizing ILs on immune cells and IL-mediated cellular cross-interactions within the TME. The key aim of this review is to define therapeutic schedules for addressing ILs in cancer immunotherapy based on their multi-directional impacts in such a milieu. Gathering more knowledge on this area is also important for defining adverse effects related to cytokine therapy and addressing them for reinforcing the efficacy of immunotherapy against cancer.
Collapse
|
52
|
Wang Z, Yang H, Luo B, Duan P, Lin P. NFE2L3 as a Novel Biomarker Associated With IL-2/STAT5/NLRP3 Signaling Pathway in Malignant Pleural Mesothelioma and Other Cancers. Front Genet 2022; 13:805256. [PMID: 35664314 PMCID: PMC9158472 DOI: 10.3389/fgene.2022.805256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 04/19/2022] [Indexed: 11/25/2022] Open
Abstract
Background: Malignant pleural mesothelioma (MPM) is a malignant tumor originating from pleural mesothelial cells and has a high mortality rate worldwide. With the advent of immunotherapy in MPM treatment, there is an urgent need to elucidate the immune-related mechanisms in this caner. Methods: Single-sample gene set enrichment analysis (ssGSEA) was used to score the immunocytes infiltration of data from different database sources. Identification of immunocyte-related genes was performed with weighted gene co-expression network analysis (WGCNA), differentially expressed genes (DEGs) analysis, and correlation analysis. Pan-caner analysis was performed using “DiffExp” and “Correlation” modules in TIMER. Results: T-helper 2 (Th2) cell was found to be a poor prognostic factor for patients with MPM. Then a transcription factor, NFE2L3, was identified as a biomarker that showed a strong positive correlation with Th2 cell infiltration, and was highly expressed in MPM tissues and was related to the poor prognosis of these patients. At the same time, multiple NFE2L3 methylation sites were negatively correlated with Th2 cell infiltration, and patients with a high degree of methylation enjoy a better prognosis. Pan-caner analysis indicated that NFE2L3 might promote the differentiation of Th2 cells through the IL-2/STAT5/NLRP3 signaling pathway in MPM and many other cancers. Conclusion: We believe that NFE2L3 can serve as a potential biomarker related to the diagnosis and prognosis of patients with MPM, and speculate that NFE2L3 could promote Th2 cell differentiation via IL-2/STAT5/NLRP3 signaling pathway in MPM and many other cancers.
Collapse
|
53
|
Shabbir M, Badshah Y, Khan K, Trembley JH, Rizwan A, Faraz F, Shah SA, Farooqi M, Ashraf NM, Afsar T, Almajwal A, Alruwaili NW, Razak S. Association of CTLA-4 and IL-4 polymorphisms in viral induced liver cancer. BMC Cancer 2022; 22:518. [PMID: 35525950 PMCID: PMC9080112 DOI: 10.1186/s12885-022-09633-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most prevalent types of cancer and is responsible for close to one million annual deaths globally. In Pakistan, HCC accounts for 10.7% of cancer incidence. Prior studies indicated an association between interleukin 4 (IL-4) and cytotoxic T lymphocyte protein 4 (CTLA-4) gene polymorphisms in many types of cancers, including HCC that are either hepatitis B virus (HBV)- or hepatitis C Virus (HCV)-induced. The association of IL-4 and CTLA-4 genetic polymorphisms with HCV-induced HCC is not yet determined in the Pakistani population. Therefore, this research is designed to investigate the implication of IL-4 and CTLA-4 gene polymorphisms by determining the association of IL-4 -590 C/T (rs2243250) and CTLA-4 + 49 A/G (rs231775) with HCC in Pakistan. Methods Different bioinformatics tools were employed to determine the pathogenicity of these polymorphisms. Samples were collected from HCV-induced HCC patients, followed by DNA extraction and ARMS-PCR analysis. Results The SNP analysis results indicated a positive association of IL-4 -590C/T and CTLA-4 + 49A/G gene polymorphisms with HCV-induced HCC in Pakistan. The CTLA-4 polymorphism might enhance therapeutic efficiency of HCC chemotherapy medicines. The IL-4 polymorphism might introduce new transcription factor binding site in IL-4 promoter region. Conclusion This study delineated risk factor alleles in CTLA-4 and IL-4 genes associated with HCV-mediated HCC among Pakistani patients that may have application to serve as genetic markers for pre- and early diagnosis and prognosis of HCC in HCV patients.
Collapse
Affiliation(s)
- Maria Shabbir
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| | - Yasmin Badshah
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Khushbukhat Khan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Janeen H Trembley
- Minneapolis VA Health Care System Research Service, Minneapolis, MN, USA.,Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Areeb Rizwan
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Fatima Faraz
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Syeda Alveena Shah
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Mahrukh Farooqi
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | | | - Tayyaba Afsar
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nawaf W Alruwaili
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Suhail Razak
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
54
|
Li H, Yu Z, Wang H, Wang N, Sun X, Yang S, Hua X, Liu Z. Role of ANO1 in tumors and tumor immunity. J Cancer Res Clin Oncol 2022; 148:2045-2068. [PMID: 35471604 DOI: 10.1007/s00432-022-04004-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 03/29/2022] [Indexed: 12/24/2022]
Abstract
Dysregulation of gene amplification, cell-signaling-pathway transduction, epigenetic and transcriptional regulation, and protein interactions drives tumor-cell proliferation and invasion, while ion channels also play an important role in the generation and development of tumor cells. Overexpression of Ca2+-activated Cl- channel anoctamin 1 (ANO1) is shown in numerous cancer types and correlates with poor prognosis. However, the mechanisms involved in ANO1-mediated malignant cellular transformation and the role of ANO1 in tumor immunity remain unknown. In this review, we discuss recent studies to determine the role of ANO1 in tumorigenesis and provide novel insights into the role of ANO1 in the context of tumor immunity. Furthermore, we analyze the roles and potential mechanisms of ANO1 in different types of cancers, and provide novel notions for the role of ANO1 in the tumor microenvironment and for potential use of ANO1 in clinical applications. Our review shows that ANO1 is involved in tumor immunity and microenvironment, and may, therefore, be an effective biomarker and therapeutic drug target.
Collapse
Affiliation(s)
- Haini Li
- Department of Gastroenterology, Qingdao Sixth People's Hospital, Qingdao, 266001, China
| | - Zongxue Yu
- Department of Endocrinology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266001, China
| | - Haiyan Wang
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Ning Wang
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Xueguo Sun
- Department of Gastroenterology, Qingdao University Affiliated Hospital, Qingdao, 266001, China
| | - Shengmei Yang
- Department of Gynecology, Qingdao University Affiliated Hospital, Qingdao, 266001, China
| | - Xu Hua
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China
| | - Zongtao Liu
- Department of Clinical Laboratory, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
55
|
Negrea G, Rauca VF, Meszaros MS, Patras L, Luput L, Licarete E, Toma VA, Porfire A, Muntean D, Sesarman A, Banciu M. Active Tumor-Targeting Nano-formulations Containing Simvastatin and Doxorubicin Inhibit Melanoma Growth and Angiogenesis. Front Pharmacol 2022; 13:870347. [PMID: 35450036 PMCID: PMC9016200 DOI: 10.3389/fphar.2022.870347] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/08/2022] [Indexed: 01/17/2023] Open
Abstract
Primary melanoma aggressiveness is determined by rapid selection and growth of cellular clones resistant to conventional treatments, resulting in metastasis and recurrence. In addition, a reprogrammed tumor-immune microenvironment supports melanoma progression and response to therapy. There is an urgent need to develop selective and specific drug delivery strategies for modulating the interaction between cancer cells and immune cells within the tumor microenvironment. This study proposes a novel combination therapy consisting of sequential administration of simvastatin incorporated in IL-13-functionalized long-circulating liposomes (IL-13-LCL-SIM) and doxorubicin encapsulated into PEG-coated extracellular vesicles (PEG-EV-DOX) to selectively target both tumor-associated macrophages and melanoma cells. To this end, IL-13 was conjugated to LCL-SIM which was obtained via the lipid film hydration method. EVs enriched from melanoma cells were passively loaded with doxorubicin. The cellular uptake of rhodamine-tagged nano-particles and the antiproliferative potential of the treatments by using the ELISA BrdU-colorimetric immunoassay were investigated in vitro. Subsequently, the therapeutic agents were administered i.v in B16.F10 melanoma-bearing mice, and tumor size was monitored during treatment. The molecular mechanisms of antitumor activity were investigated using angiogenic and inflammatory protein arrays and western blot analysis of invasion (HIF-1) and apoptosis markers (Bcl-xL and Bax). Quantification of oxidative stress marker malondialdehyde (MDA) was determined by HPLC. Immunohistochemical staining of angiogenic markers CD31 and VEGF and of pan-macrophage marker F4/80 was performed to validate our findings. The in vitro data showed that IL-13-functionalized LCL were preferentially taken up by tumor-associated macrophages and indicated that sequential administration of IL-13-LCL-SIM and PEG-EV-DOX had the strongest antiproliferative effect on tumor cells co-cultured with tumor-associated macrophages (TAMs). Accordingly, strong inhibition of tumor growth in the group treated with the sequential combination therapy was reported in vivo. Our data suggested that the antitumor action of the combined treatment was exerted through strong inhibition of several pro-angiogenic factors (VEGF, bFGF, and CD31) and oxidative stress-induced upregulation of pro-apoptotic protein Bax. This novel drug delivery strategy based on combined active targeting of both cancer cells and immune cells was able to induce a potent antitumor effect by disruption of the reciprocal interactions between TAMs and melanoma cells.
Collapse
Affiliation(s)
- Giorgiana Negrea
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Valentin-Florian Rauca
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania.,Department of Dermatology and Allergology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marta Szilvia Meszaros
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Laura Patras
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Lavinia Luput
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Emilia Licarete
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania.,Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Vlad-Alexandru Toma
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania.,Department of Experimental Biology and Biochemistry, Institute of Biological Research, Branch of NIRDBS Bucharest, Cluj-Napoca, Romania
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Dana Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Alina Sesarman
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| |
Collapse
|
56
|
Abstract
Tumour-associated macrophages (TAMs) constitute a plastic and heterogeneous cell population of the tumour microenvironment (TME) that can account for up to 50% of solid tumours. TAMs heterogeneous are associated with different cancer types and stages, different stimulation of bioactive molecules and different TME, which are crucial drivers of tumour progression, metastasis and resistance to therapy. In this context, understanding the sources and regulatory mechanisms of TAM heterogeneity and searching for novel therapies targeting TAM subpopulations are essential for future studies. In this review, we discuss emerging evidence highlighting the redefinition of TAM heterogeneity from three different directions: origins, phenotypes and functions. We notably focus on the causes and consequences of TAM heterogeneity which have implications for the evolution of therapeutic strategies that targeted the subpopulations of TAMs.
Collapse
|
57
|
Tian Y, Xie D, Yang L. Engineering strategies to enhance oncolytic viruses in cancer immunotherapy. Signal Transduct Target Ther 2022; 7:117. [PMID: 35387984 PMCID: PMC8987060 DOI: 10.1038/s41392-022-00951-x] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023] Open
Abstract
Oncolytic viruses (OVs) are emerging as potentially useful platforms in treatment methods for patients with tumors. They preferentially target and kill tumor cells, leaving healthy cells unharmed. In addition to direct oncolysis, the essential and attractive aspect of oncolytic virotherapy is based on the intrinsic induction of both innate and adaptive immune responses. To further augment this efficacious response, OVs have been genetically engineered to express immune regulators that enhance or restore antitumor immunity. Recently, combinations of OVs with other immunotherapies, such as immune checkpoint inhibitors (ICIs), chimeric antigen receptors (CARs), antigen-specific T-cell receptors (TCRs) and autologous tumor-infiltrating lymphocytes (TILs), have led to promising progress in cancer treatment. This review summarizes the intrinsic mechanisms of OVs, describes the optimization strategies for using armed OVs to enhance the effects of antitumor immunity and highlights rational combinations of OVs with other immunotherapies in recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Yaomei Tian
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China
- College of Bioengineering, Sichuan University of Science & Engineering, No. 519, Huixing Road, 643000, Zigong, Sichuan, People's Republic of China
| | - Daoyuan Xie
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, No. 17, Section 3, South Renmin Road, 610041, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
58
|
Li X, Liu M, Shi Q, Fang Y, Fu D, Shen ZX, Yi H, Wang L, Zhao W. Elevated serum IL-13 level is associated with increased Treg cells in tumor microenvironment and disease progression of Diffuse large B-cell lymphoma. Hematol Oncol 2022; 41:230-238. [PMID: 35304777 DOI: 10.1002/hon.2993] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 11/11/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common aggressive lymphoid malignancy, with an immunosuppressive microenvironment affecting clinical outcome. Interleukin (IL)-13 overexpression is observed in multiple solid tumors and contributes to tumor progression. This study aims to investigate pretreatment serum IL-13 levels and their relationship with the prognosis of DLBCL patients. One hundred and sixty-six patients with newly diagnosed DLBCL from June 2015 to July 2017 were included. Patients with elevated pretreatment serum IL-13 levels (IL-13≥1.63pg/ml) were classified into the high IL-13 group and they had significantly lower complete remission rate (60% vs. 74%, p=0.0059), higher progression rate (43% vs. 23%, p=0.0051), and poor progression-free survival (2-yr PFS, 63% vs. 78%,p=0.0078) and overall survival (2-yr OS, 75% vs. 92%, p=0.0027), when compared to those in the low IL-13 group (IL-13<1.63pg/ml). Meanwhile, increased Treg cell ratio in peripheral blood (p=0.0147) and elevated serum IL-2 levels (p=0.0272) were observed in the high IL-13 group. Moreover, RNA sequencing data showed that patients in the high IL-13 group had significantly elevated expression of chemokines and chemokine receptors (CCR4, CCL19, CCL21, CXCL2) related to Treg activation and recruitment. Consistent with the chemokine profile, tumor immunophenotyping analysis revealed that higher Treg cells recruitment in the high IL-13 group than the low IL-13 group (p=0.0116). In vitro, when lymphoma cells co-cultured with peripheral blood monocytes of healthy controls, metformin down-regulated both IL-13 level and Treg cell ratio, in consistent with the decreased serum IL-13 levels of patients after 6 months of metformin maintenance therapy in the high IL-13 group. Taken together, pretreatment serum IL-13 level is related to the immunosuppressive microenvironment and poor clinical outcome of DLBCL patients and could be targeted by metformin, thus providing a new therapeutic strategy in treating DLBCL with high serum IL-13 levels. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Xiao Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengke Liu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qing Shi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Fu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Xiang Shen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongmei Yi
- Department of Pathology, Shanghai Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| | - Weili Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Pôle de Recherches Sino-Français en Science du Vivant et Génomique, Laboratory of Molecular Pathology, Shanghai, China
| |
Collapse
|
59
|
Kitagawa K, Hamaguchi A, Fukushima K, Nakano Y, Regan JW, Mashimo M, Fujino H. Down-regulation of the expression of cyclooxygenase-2 and prostaglandin E 2 by interleukin-4 is mediated via a reduction in the expression of prostanoid EP4 receptors in HCA-7 human colon cancer cells. Eur J Pharmacol 2022; 920:174863. [PMID: 35240193 DOI: 10.1016/j.ejphar.2022.174863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/17/2022] [Accepted: 02/22/2022] [Indexed: 12/18/2022]
Abstract
Chronic inflammatory bowel disease (IBD), which is characterized by prolonged inflammation of the gastrointestinal tract is associated with an increased risk of colorectal cancer. Recent studies revealed that the pathology of IBD is caused by hyperactivated immune responses mediated by differentiated CD4+ naïve helper T cells, such as Th1 and Th17 cells, but not Th2 cells. The human E-type prostanoid 4 (EP4) receptor and its pathways have also been implicated in and/or associated with the early developmental stages of colorectal cancer along with increases in the levels of prostaglandin E2 (PGE2) and cyclooxygenase-2 (COX-2), the hallmarks of colorectal carcinogenesis. In the present study, using an in silico analysis and pharmacological experiments, we demonstrated that interleukin (IL)-4, a signature cytokine of Th2 cells, down-regulated the expression of COX-2 and PGE2 in the human colon cancer cell line, HCA-7. This result may be attributed to a reduction in the expression of prostanoid EP4 receptors through the induction of hypoxia inducible factor-1α via the interleukin-4 receptor-stimulated activation of signal transducer and activator of transcription 6. However, another major Th2 cytokine IL-13 had no effect on the expression of COX-2 or prostanoid EP4 receptors in HCA-7 cells. Therefore, instead of the hyperactivation of Th1/Th17 cells, the deactivation/down-regulation of Th2 cells followed by a decrease in the production of IL-4 in IBD may play a role in the cancerous transformation of cells, at least in prostanoid EP4 receptor-overactivated tumorigenesis.
Collapse
Affiliation(s)
- Kana Kitagawa
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Ayaka Hamaguchi
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Keijo Fukushima
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - Yuki Nakano
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan
| | - John W Regan
- Department of Pharmacology & Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721-0207, USA
| | - Masato Mashimo
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts, Kyoto, 610-0311, Japan
| | - Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Graduate School of Pharmaceutical Sciences & Graduate School of Biomedical Sciences, Tokushima University, Tokushima, 770-8505, Japan.
| |
Collapse
|
60
|
Ji HY, Dai KY, Liu C, Yu J, Jia XY, Liu AJ. Preparation, Antioxidant and Immunoregulatory Activities of a Macromolecular Glycoprotein from Salvia miltiorrhiza. Foods 2022; 11:705. [PMID: 35267338 PMCID: PMC8909850 DOI: 10.3390/foods11050705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Salvia miltiorrhiza has exhibited various bioactive functions due to the existence of polysaccharides, hydrophilic phenolic acids, diterpenoid quinones, and essential oils. However, little research has reported the glycoprotein preparation and corresponding bioactivities. In this study, the water-soluble glycoprotein from S. miltiorrhiza roots was firstly isolated with the extraction process optimized by response surface methodology, and then, the preliminary structural properties, and the antioxidant and immunoregulatory activities were investigated. Results showed that the extraction conditions for higher extraction yields were identified as follows: ultrasonic power of 220 W, ultrasonic time of 2.0 h, extraction temperature of 60 °C, liquid/solid ratio of 20 mL/g, and the glycoprotein yields of 1.63 ± 0.04%. Structural analysis showed that the glycoprotein comprised protein and polysaccharide (contents of 76.96% and 20.62%, respectively), with an average molecular weight of 1.55 × 105 Da. Besides, bioactivities analysis showed that the glycoprotein presented strong scavenging effects on multiple free radicals, and effectively enhanced the antioxidant enzyme activities and immunological indicators in cyclophosphamide-induced immunocompromised mice dose-dependently. These data demonstrated that S. miltiorrhiza glycoprotein presented the potential to be a novel edible functional compound, and could be practically applied in the food industry.
Collapse
Affiliation(s)
- Hai-Yu Ji
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (H.-Y.J.); (K.-Y.D.); (C.L.); (J.Y.); (A.-J.L.)
| | - Ke-Yao Dai
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (H.-Y.J.); (K.-Y.D.); (C.L.); (J.Y.); (A.-J.L.)
| | - Chao Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (H.-Y.J.); (K.-Y.D.); (C.L.); (J.Y.); (A.-J.L.)
| | - Juan Yu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (H.-Y.J.); (K.-Y.D.); (C.L.); (J.Y.); (A.-J.L.)
| | - Xiao-Yu Jia
- Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, Key Laboratory of Storage of Agricultural Products, National Engineering Technology Research Center for Preservation of Agricultural Products, Ministry of Agriculture and Rural Affairs, Tianjin 300384, China
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - An-Jun Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; (H.-Y.J.); (K.-Y.D.); (C.L.); (J.Y.); (A.-J.L.)
| |
Collapse
|
61
|
Zeng Y, Wang L, Zhou H, Qi Y. A meta-analysis of Th1 and Th2 cytokine profiles differentiating tuberculous from malignant pleural effusion. Sci Rep 2022; 12:2743. [PMID: 35177742 PMCID: PMC8854582 DOI: 10.1038/s41598-022-06685-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/03/2022] [Indexed: 12/25/2022] Open
Abstract
To clarify the predominance of Th1 or Th2 immune responses in malignant and tuberculous pleural effusion (MPE and TPE, respectively), we performed a meta-analysis of previously published results of the levels of Th1/Th2 cytokines associated with these two types of pleural effusion to evaluate the use of Th1/Th2 cytokine profiles in distinguishing TPE from MPE. We searched the PubMed and EMBASE databases for studies indexed from 2000 to March 2021. We included studies that (a) diagnosed TPE and MPE based on culture or pleural tissue biopsy and that (b) compared levels of Th1/Th2 cytokines between TPE and MPE. Pooled data based on a random-effects model or fixed-effects model and standardized mean differences (SMDs) across studies were used to compare TPE and MPE. We also performed Egger’s test to assess publication bias. Of 917 identified studies, a total of 42 studies were selected for the meta-analysis. Compared with MPE subjects, TPE subjects had a significantly higher level of TNF-α [2.22, (1.60–2.84)], an elevated level of IFN-γ [3.30, (2.57–4.40)] in pleural effusion, a situation where the Th1 immune response dominated. Conversely, the levels of interleukin-4 (IL-4) and IL-10 (Th2 cytokines) were higher in the MPE subjects than in the TPE subjects, showing statistically nonsignificant tiny effects [−0.15, (−0.94 to 0.63) and −0.04, (−0.21 to 0.12), respectively]. We confirmed that TPE, a situation in which the Th1 cytokines are predominant. The slight preponderance of Th2 cytokines in MPE, which is not convincing enough to prove.
Collapse
Affiliation(s)
- Yulin Zeng
- Department of Anesthesiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Liwei Wang
- Department of Anesthesiology, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, 221009, China
| | - Hai Zhou
- Department of Anesthesiology, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, 221009, China.
| | - Yu Qi
- Department of Anesthesiology, Xuzhou Central Hospital, 199 Jiefang South Road, Xuzhou, 221009, China.
| |
Collapse
|
62
|
Leptin in Dental Pulp and Periapical Tissues: A Narrative Review. Int J Mol Sci 2022; 23:ijms23041984. [PMID: 35216099 PMCID: PMC8880140 DOI: 10.3390/ijms23041984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/17/2022] Open
Abstract
Leptin is a non-glycosylated 16 kDa protein synthesized mainly in adipose cells. The main function of leptin is to regulate energy homeostasis and weight control in a central manner. There is increasing evidence that leptin also has systemic effects, acting as a link between innate and acquired immune responses. The expression of leptin and its receptor in human dental pulp and periradicular tissues have already been described, as well as several stimulatory effects of leptin protein expression in dental and periodontal tissues. The aim of this paper was to review and to compile the reported scientific literature on the role and effects of leptin in the dental pulp and periapical tissues. Twelve articles accomplished the inclusion criteria, and a comprehensive narrative review was carried out. Review of the available scientific literature concluded that leptin has the following effects on pulpal and periapical physiology: 1) Stimulates odontogenic differentiation of dental pulp stem cells (DPSCs), 2) Increases the expression of dentin sialophosphoprotein (DSPP) and dentin matrix protein-1 (DMP-1), odontoblastic proteins involved in odontoblastic differentiation and dentin mineralization, 3) Stimulates vascular endothelial growth factor (VEGF) expression in human dental pulp tissue and primary cultured cells of human dental pulp (hDPCs), 4) Stimulates angiogenesis in rat dental pulp cells, and 5) Induces the expression of interleucinas 6 and 8 in human periodontal ligament cells (hPDLCs). There is evidence which suggests that leptin is implicated in the dentin mineralization process and in pulpal and periapical inflammatory and reparative responses.
Collapse
|
63
|
IL4Rα and IL13Rα1 Are Involved in the Development of Human Gallbladder Cancer. J Pers Med 2022; 12:jpm12020249. [PMID: 35207737 PMCID: PMC8875933 DOI: 10.3390/jpm12020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/30/2022] [Accepted: 02/08/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Gallbladder cancer is commonly associated with inflammation, which indicates that inflammation-related cytokines and cytokine receptors are related to the progression of gallbladder cancers. Interleukin 4 (IL4) is a well-known cytokine that promotes the differentiation of naive helper T cells (Th0) to T helper type 2 cells (Th2). IL13 is a cytokine that is secreted by Th2 cells. IL4 and IL13 are closely related in immune responses. However, the role of IL4Rα and IL13Rα1 signaling pathway has not been fully understood in the development of gallbladder cancer. Methods: In human gallbladder carcinomas, the expression of IL4Rα and IL13Rα1 were evaluated with immunohistochemical staining in tissue microarray tissue sections. After knockdown of IL4Rα or IL13Rα1, cell assays to measure the proliferation and apoptosis and Western blotting analysis were conducted in SNU308 human gallbladder cancer cells. Since Janus kinases2 (JAK2) was considered as one of the down-stream kinases under IL4Rα and IL13Rα1 complex, the same kinds of experiments were performed in SNU308 cells treated with AZD1480, Janus-associated kinases2 (JAK2) inhibitor, to demonstrate the cytotoxic effect of AZD1480 in SNU308 cells. Results: Immunohistochemical expression of IL4Rα was significantly associated with the expression of IL13Rα1 in human carcinoma tissue. In univariate analysis, nuclear expression of IL4Rα, cytoplasmic expression of IL4Rα, nuclear expression of IL13Rα1, and cytoplasmic expression of IL13Rα1 were significantly associated with shorter overall survival and shorter relapse-free survival. Multivariate analysis revealed nuclear expression of IL4Rα as an independent poor prognostic indicator of overall survival and relapse-free survival. Then, we found that knockdown of IL4Rα or IL13Rα1 decreased viability and induced apoptosis in SNU308 cells via activation of FOXO3 and similarly, AZD1480 decreased viability and induced apoptosis in SNU308 cells with dose dependent manner. Conclusions: Taken together, our results suggest that IL4Rα and IL13Rα1 might be involved in the development of human gallbladder cancer cells and IL4Rα and IL13Rα1 complex/JAK2 signaling pathway could be efficient therapeutic targets for gallbladder cancer treatment.
Collapse
|
64
|
Mirlekar B. Tumor promoting roles of IL-10, TGF-β, IL-4, and IL-35: Its implications in cancer immunotherapy. SAGE Open Med 2022; 10:20503121211069012. [PMID: 35096390 PMCID: PMC8793114 DOI: 10.1177/20503121211069012] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/07/2021] [Indexed: 12/23/2022] Open
Abstract
Cytokines play a critical role in regulating host immune response toward cancer and determining the overall fate of tumorigenesis. The tumor microenvironment is dominated mainly by immune-suppressive cytokines that control effector antitumor immunity and promote survival and the proliferation of cancer cells, which ultimately leads to enhanced tumor growth. In addition to tumor cells, the heterogeneous immune cells present within the tumor milieu are the significant source of immune-suppressive cytokines. These cytokines are classified into a broad range; however, in most tumor types, the interleukin-10, transforming growth factor-β, interleukin-4, and interleukin-35 are consistently reported as immune-suppressive cytokines that help tumor growth and metastasis. The most emerging concern in cancer treatment is hijacking and restraining the activity of antitumor immune cells in the tumor niche due to a highly immune-suppressive environment. This review summarizes the role and precise functions of interleukin-10, transforming growth factor-β, interleukin-4, and interleukin-35 in modulating tumor immune contexture and its implication in developing effective immune-therapeutic approaches. CONCISE CONCLUSION Recent effort geared toward developing novel immune-therapeutic approaches faces significant challenges due to sustained mutations in tumor cells and a highly immune-suppressive microenvironment present within the tumor milieu. The cytokines play a crucial role in developing an immune-suppressive environment that ultimately dictates the fate of tumorigenesis. This review critically covers the novel aspects of predominant immune-suppressive cytokines such as interleukin-10, transforming growth factor-β, interleukin-4, and interleukin-35 in dictating the fate of tumorigenesis and how targeting these cytokines can help the development of better immune-therapeutic drug regimens for the treatment of cancer.
Collapse
Affiliation(s)
- Bhalchandra Mirlekar
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
65
|
Paccagnella M, Abbona A, Michelotti A, Geuna E, Ruatta F, Landucci E, Denaro N, Vanella P, Lo Nigro C, Galizia D, Merlano M, Garrone O. Circulating Cytokines in Metastatic Breast Cancer Patients Select Different Prognostic Groups and Patients Who Might Benefit from Treatment beyond Progression. Vaccines (Basel) 2022; 10:78. [PMID: 35062739 PMCID: PMC8781714 DOI: 10.3390/vaccines10010078] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/28/2021] [Accepted: 01/03/2022] [Indexed: 12/28/2022] Open
Abstract
Cancer induces immune suppression to overcome its recognition and eradication by the immune system. Cytokines are messengers able to modulate immune response or suppression. There is great interest in the evaluation of their changes during treatment in order to identify their relationship with clinical outcome. We evaluated 18 cytokines in breast cancer patients treated with eribulin before starting treatment (T0) and after four courses of therapy (T1). Longitudinal modifications were considered and cytokine clusters through PCA and HCPC correlated to patients' outcomes were identified. Forty-one metastatic breast cancer patients and fifteen healthy volunteers were included. After clustering, we identified at T0 six patient clusters with different risk of relapse and death. At T1, only four clusters were identified, and three of them accounted for thirty-eight of forty-one patients, suggesting a possible role of treatment in reducing heterogeneity. The cluster with the best survival at T1 was characterized by low levels of IL-4, IL-6, IL-8, IL-10, CCL-2, CCL-4, and TGF-β. The cluster showing the worst survival encompassed high levels of IL-4, IL-6, IL-8, IL-10, CCL-2, and IFN-γ. A subgroup of patients with short progression-free survival (PFS) and long overall survival (OS) was comprised in the cluster characterized by low levels of CCL-2, IL-6, IL-8, IL-10, and IL-12 at T0. Our data support the prognostic significance of longitudinal serum cytokine analysis. This approach may help identify patients for whom early treatment stop avoids needless toxicity or might justify treatment beyond early progression. Further investigations are required to validate this hypothesis.
Collapse
Affiliation(s)
| | - Andrea Abbona
- Translational Oncology ARCO Foundation, 12100 Cuneo, Italy;
| | - Andrea Michelotti
- Department of Medical Oncology, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy; (A.M.); (E.L.)
| | - Elena Geuna
- Multidisciplinary Oncology Outpatient Clinic, Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo, Italy; (E.G.); (D.G.)
| | - Fiorella Ruatta
- Department of Medical Oncology, S. Croce e Carle Teaching Hospital, 12100 Cuneo, Italy; (F.R.); (N.D.); (P.V.)
| | - Elisabetta Landucci
- Department of Medical Oncology, Azienda Ospedaliero Universitaria Pisana, 56126 Pisa, Italy; (A.M.); (E.L.)
| | - Nerina Denaro
- Department of Medical Oncology, S. Croce e Carle Teaching Hospital, 12100 Cuneo, Italy; (F.R.); (N.D.); (P.V.)
| | - Paola Vanella
- Department of Medical Oncology, S. Croce e Carle Teaching Hospital, 12100 Cuneo, Italy; (F.R.); (N.D.); (P.V.)
| | | | - Danilo Galizia
- Multidisciplinary Oncology Outpatient Clinic, Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo, Italy; (E.G.); (D.G.)
| | - Marco Merlano
- Experimental Cell Therapy Lab, Candiolo Cancer Institute, FPO-IRCCS Candiolo, 10060 Torino, Italy;
| | - Ornella Garrone
- Department of Medical Oncology, Fondazione IRCCS Ca’ Granda Ospedale Policlinico Maggiore, 20122 Milano, Italy;
| |
Collapse
|
66
|
Pansy K, Uhl B, Krstic J, Szmyra M, Fechter K, Santiso A, Thüminger L, Greinix H, Kargl J, Prochazka K, Feichtinger J, Deutsch AJA. Immune Regulatory Processes of the Tumor Microenvironment under Malignant Conditions. Int J Mol Sci 2021; 22:13311. [PMID: 34948104 PMCID: PMC8706102 DOI: 10.3390/ijms222413311] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) is a critical regulator of tumor growth, progression, and metastasis. Since immune cells represent a large fraction of the TME, they play a key role in mediating pro- and anti-tumor immune responses. Immune escape, which suppresses anti-tumor immunity, enables tumor cells to maintain their proliferation and growth. Numerous mechanisms, which have been intensively studied in recent years, are involved in this process and based on these findings, novel immunotherapies have been successfully developed. Here, we review the composition of the TME and the mechanisms by which immune evasive processes are regulated. In detail, we describe membrane-bound and soluble factors, their regulation, and their impact on immune cell activation in the TME. Furthermore, we give an overview of the tumor/antigen presentation and how it is influenced under malignant conditions. Finally, we summarize novel TME-targeting agents, which are already in clinical trials for different tumor entities.
Collapse
Affiliation(s)
- Katrin Pansy
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (K.P.); (B.U.); (M.S.); (K.F.); (L.T.); (H.G.); (K.P.)
| | - Barbara Uhl
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (K.P.); (B.U.); (M.S.); (K.F.); (L.T.); (H.G.); (K.P.)
| | - Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; (J.K.); (J.F.)
| | - Marta Szmyra
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (K.P.); (B.U.); (M.S.); (K.F.); (L.T.); (H.G.); (K.P.)
| | - Karoline Fechter
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (K.P.); (B.U.); (M.S.); (K.F.); (L.T.); (H.G.); (K.P.)
| | - Ana Santiso
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (A.S.); (J.K.)
| | - Lea Thüminger
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (K.P.); (B.U.); (M.S.); (K.F.); (L.T.); (H.G.); (K.P.)
| | - Hildegard Greinix
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (K.P.); (B.U.); (M.S.); (K.F.); (L.T.); (H.G.); (K.P.)
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (A.S.); (J.K.)
| | - Katharina Prochazka
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (K.P.); (B.U.); (M.S.); (K.F.); (L.T.); (H.G.); (K.P.)
| | - Julia Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; (J.K.); (J.F.)
| | - Alexander JA. Deutsch
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (K.P.); (B.U.); (M.S.); (K.F.); (L.T.); (H.G.); (K.P.)
| |
Collapse
|
67
|
Malignant and Benign T Cells Constituting Cutaneous T-Cell Lymphoma. Int J Mol Sci 2021; 22:ijms222312933. [PMID: 34884736 PMCID: PMC8657644 DOI: 10.3390/ijms222312933] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is a heterogeneous group of non-Hodgkin lymphoma, including various clinical manifestations, such as mycosis fungoides (MF) and Sézary syndrome (SS). CTCL mostly develops from CD4 T cells with the skin-tropic memory phenotype. Malignant T cells in MF lesions show the phenotype of skin resident memory T cells (TRM), which reside in the peripheral tissues for long periods and do not recirculate. On the other hand, malignant T cells in SS represent the phenotype of central memory T cells (TCM), which are characterized by recirculation to and from the blood and lymphoid tissues. The kinetics and the functional characteristics of malignant cells in CTCL are still unclear due, in part, to the fact that both the malignant cells and the T cells exerting anti-tumor activity possess the same characteristics as T cells. Capturing the features of both the malignant and the benign T cells is necessary for understanding the pathogenesis of CTCL and would lead to new therapeutic strategies specifically targeting the skin malignant T cells or benign T cells.
Collapse
|
68
|
Amo-Aparicio J, Garcia-Garcia J, Francos-Quijorna I, Urpi A, Esteve-Codina A, Gut M, Quintana A, Lopez-Vales R. Interleukin-4 and interleukin-13 induce different metabolic profiles in microglia and macrophages that relate with divergent outcomes after spinal cord injury. Am J Cancer Res 2021; 11:9805-9820. [PMID: 34815787 PMCID: PMC8581417 DOI: 10.7150/thno.65203] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/14/2021] [Indexed: 11/05/2022] Open
Abstract
Background: Microglia and macrophages adopt a pro-inflammatory phenotype after spinal cord injury (SCI), what is thought to contribute to secondary tissue degeneration. We previously reported that this is due, in part, to the low levels of anti-inflammatory cytokines, such as IL-4. Since IL-13 and IL-4 share receptors and both cytokines drive microglia and macrophages towards an anti-inflammatory phenotype in vitro, here we studied whether administration of IL-13 and IL-4 after SCI leads to beneficial effects. Methods: We injected mice with recombinant IL-13 or IL-4 at 48 h after SCI and assessed their effects on microglia and macrophage phenotype and functional outcomes. We also performed RNA sequencing analysis of macrophages and microglia sorted from the injured spinal cords of mice treated with IL-13 or IL-4 and evaluated the metabolic state of these cells by using Seahorse technology. Results: We observed that IL-13 induced the expression of anti-inflammatory markers in microglia and macrophages after SCI but, in contrast to IL-4, it failed to mediate functional recovery. We found that these two cytokines induced different gene signatures in microglia and macrophages after SCI and that IL-4, in contrast to IL-13, shifted microglia and macrophage metabolism from glycolytic to oxidative phosphorylation. These findings were further confirmed by measuring the metabolic profile of these cells. Importantly, we also revealed that macrophages stimulated with IL-4 or IL-13 are not deleterious to neurons, but they become cytotoxic when oxidative metabolism is blocked. This suggests that the metabolic shift, from glycolysis to oxidative phosphorylation, is required to minimize the cytotoxic responses of microglia and macrophages. Conclusions: These results reveal that the metabolic fitness of microglia and macrophages after SCI contributes to secondary damage and that strategies aimed at boosting oxidative phosphorylation might be a novel approach to minimize the deleterious actions of microglia and macrophages in neurotrauma.
Collapse
|
69
|
Wu HC, Hu QR, Luo T, Wei WC, Wu HJ, Li J, Zheng LF, Xu QY, Deng ZY, Chen F. The immunomodulatory effects of ginsenoside derivative Rh2-O on splenic lymphocytes in H22 tumor-bearing mice is partially mediated by TLR4. Int Immunopharmacol 2021; 101:108316. [PMID: 34768129 DOI: 10.1016/j.intimp.2021.108316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE Previously, we reported the octyl ester derivative of ginsenoside Rh2 (Rh2-O) had better antitumor and immunomodulatory effects than Rh2 in H22 tumor-bearing mice. Therefore, this study further explored the effects of Rh2-O on splenic lymphocytes in H22 tumor-bearing mice and the underlying mechanism. METHODS Wild type and Tlr4-/- mice were selected to establish the H22 tumor-bearing mice model. After the treatment of Rh2-O (10 mg/kg by gavage) for 15 days, the sizes of tumor were measured. Subsequently, the splenic lymphocytes were isolated and the activities (eg. cell proliferation, cytotoxicity and cytokine secretion) were evaluated. Then, the proteins and mRNA expression levels of TRAF6 and NF-ĸB p65 in splenic lymphocytes were examined. RESULTS The results showed that Rh2-O administration enhanced the proliferative capacity and cytotoxicity of splenic lymphocytes, and the effects were Tlr4-associated. Compared to WT mice, the up-regulation of cytokines secretion (eg. IFN-γ, IL-2 and IL-4) in isolated splenic lymphocytes after Rh2-O administration was lower in Tlr4-/- mice. Moreover, the results showed Rh2-O increased the expression of TRAF6 and the level of endonuclear NF-ĸB p65, which was inhibited in Tlr4-/- mice (P < 0.05). CONCLUSION Rh2-O could exert immunomodulatory effects on splenic lymphocytes with the partial participation of TLR4 in H22 tumor-bearing mice.
Collapse
Affiliation(s)
- Han-Cheng Wu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Qi-Rui Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Ting Luo
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Wen-Cheng Wei
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Hui-Juan Wu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Jing Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Liu-Feng Zheng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Qun-Ying Xu
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, China
| | - Ze-Yuan Deng
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330047, China
| | - Fang Chen
- Jiangxi Provincial Key Laboratory of Preventive Medicine, School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
70
|
IL-4 and IL-13 Promote Proliferation of Mammary Epithelial Cells through STAT6 and IRS-1. Int J Mol Sci 2021; 22:ijms222112008. [PMID: 34769439 PMCID: PMC8584551 DOI: 10.3390/ijms222112008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/08/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
T helper (Th)2 cytokines such as interleukin (IL)-4 and IL-13 control immune function by acting on leukocytes. They also regulate multiple responses in non-hematopoietic cells. During pregnancy, IL-4 and IL-13 facilitate alveologenesis of mammary glands. This particular morphogenesis generates alveoli from existing ducts and requires substantial cell proliferation. Using 3D cultures of primary mouse mammary epithelial cells, we demonstrate that IL-4 and IL-13 promote cell proliferation, leading to enlargement of mammary acini with partially filled lumens. The mitogenic effects of IL-4 and IL-13 are mediated by STAT6 as inhibition of STAT6 suppresses cell proliferation and improves lumen formation. In addition, IL-4 and IL-13 stimulate tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1). Prolonged treatment with these cytokines leads to increased IRS-1 abundance, which, in turn, amplifies IL-4- and IL-13-stimulated IRS-1 tyrosine phosphorylation. Through signaling crosstalk between IL-4/IL-13 and insulin, a hormone routinely included in mammary cultures, IRS-1 tyrosine phosphorylation is further enhanced. Lowering IRS-1 expression reduces cell proliferation, suggesting that IRS-1 is involved in IL-4- and IL-13-stimulated cell proliferation. Thus, a Th2-dominant cytokine milieu during pregnancy confers mammary gland development by promoting cell proliferation.
Collapse
|
71
|
He M, Hu C, Deng J, Ji H, Tian W. Identification of a novel glycolysis-related signature to predict the prognosis of patients with breast cancer. World J Surg Oncol 2021; 19:294. [PMID: 34600547 PMCID: PMC8487479 DOI: 10.1186/s12957-021-02409-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022] Open
Abstract
Background Breast cancer (BC) has a high incidence and mortality rate in females. Its conventional clinical characteristics are far from accurate for the prediction of individual outcomes. Therefore, we aimed to develop a novel signature to predict the survival of patients with BC. Methods We analyzed the data of a training cohort from the Cancer Genome Atlas (TCGA) database and a validation cohort from the Gene Expression Omnibus (GEO) database. After the applications of Gene Set Enrichment Analysis (GSEA) and Cox regression analyses, a glycolysis-related signature for predicting the survival of patients with BC was developed; the signature contained AK3, CACNA1H, IL13RA1, NUP43, PGK1, and SDC1. Furthermore, on the basis of expression levels of the six-gene signature, we constructed a risk score formula to classify the patients into high- and low-risk groups. The receiver operating characteristic (ROC) curve and the Kaplan-Meier curve were used to assess the predicted capacity of the model. Later, a nomogram was developed to predict the outcomes of patients with risk score and clinical features over a period of 1, 3, and 5 years. We further used Human Protein Atlas (HPA) database to validate the expressions of the six biomarkers in tumor and sample tissues, which were taken as control. Results We constructed a six-gene signature to predict the outcomes of patients with BC. The patients in the high-risk group showed poor prognosis than those in the low-risk group. The area under the curve (AUC) values were 0.719 and 0.702, showing that the prediction performance of the signature is acceptable. Additionally, Cox regression analysis revealed that these biomarkers could independently predict the prognosis of BC patients with BC without being affected by clinical factors. The expression levels of all six biomarkers in BC tissues were higher than that in normal tissues; however, AK3 was an exception. Conclusion We developed a six-gene signature to predict the prognosis of patients with BC. Our signature has been proved to have the ability to make an accurate prediction and might be useful in expanding the hypothesis in clinical research.
Collapse
Affiliation(s)
- Menglin He
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, No. 155 Hanzhong Road, Qinhuai District, Nanjing, 210029, Jiangsu, China
| | - Cheng Hu
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, No. 155 Hanzhong Road, Qinhuai District, Nanjing, 210029, Jiangsu, China
| | - Jian Deng
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, No. 155 Hanzhong Road, Qinhuai District, Nanjing, 210029, Jiangsu, China
| | - Hui Ji
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, No. 155 Hanzhong Road, Qinhuai District, Nanjing, 210029, Jiangsu, China
| | - Weiqian Tian
- Department of Anesthesiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, No. 155 Hanzhong Road, Qinhuai District, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
72
|
Mu Q, Najafi M. Modulation of the tumor microenvironment (TME) by melatonin. Eur J Pharmacol 2021; 907:174365. [PMID: 34302814 DOI: 10.1016/j.ejphar.2021.174365] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022]
Abstract
The tumor microenvironment (TME) includes a number of non-cancerous cells that affect cancer cell survival. Although CD8+ T lymphocytes and natural killer (NK) cells suppress tumor growth through induction of cell death in cancer cells, there are various immunosuppressive cells such as regulatory T cells (Tregs), tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), etc., which drive cancer cell proliferation. These cells may also support tumor growth and metastasis by stimulating angiogenesis, epithelial-mesenchymal transition (EMT), and resistance to apoptosis. Interactions between cancer cells and other cells, as well as molecules released into EMT, play a key role in tumor growth and suppression of antitumoral immunity. Melatonin is a natural hormone that may be found in certain foods and is also available as a drug. Melatonin has been demonstrated to modulate cell activity and the release of cytokines and growth factors in TME. The purpose of this review is to explain the cellular and molecular mechanisms of cancer cell resistance as a result of interactions with TME. Next, we explain how melatonin affects cells and interactions within the TME.
Collapse
Affiliation(s)
- Qi Mu
- College of Nursing, Inner Mongolia University for Nationalities, Tongliao, 028000, China.
| | - Masoud Najafi
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
73
|
Poncin A, Onesti CE, Josse C, Boulet D, Thiry J, Bours V, Jerusalem G. Immunity and Breast Cancer: Focus on Eosinophils. Biomedicines 2021; 9:biomedicines9091087. [PMID: 34572273 PMCID: PMC8470317 DOI: 10.3390/biomedicines9091087] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/24/2021] [Indexed: 01/21/2023] Open
Abstract
The role of eosinophils, a cell type involved in the immune response to parasitic infections and allergies, has been investigated in different cancer types, in both tumor tissue and at the circulating level. Most studies showed a role mainly in conjunction with immunotherapy in melanomas and lung tumors, while few data are available in breast cancer. In this review, we summarize literature data on breast cancer, showing a prognostic role of circulating eosinophil counts as well as of the presence of tumor tissue infiltration by eosinophils. In particular, some studies showed an association between a higher circulating eosinophil count and a good prognosis, as well as an association with response to neoadjuvant chemotherapy in hormone receptor-negative/HER2-positive and in triple negative breast cancer. Several mechanistic studies have also been conducted in in vivo models, but the exact mechanism by which eosinophils act in the presence of breast cancer is still unknown. Further studies on this subject are desirable, in order to understand their role at the cellular level, identify related biomarkers and/or possibly search for new therapeutic targets.
Collapse
Affiliation(s)
- Aurélie Poncin
- Department of Medical Oncology, University Hospital of Liege, CHU Sart Tilman, 4000 Liege, Belgium; (A.P.); (G.J.)
| | - Concetta Elisa Onesti
- Clinical and Oncological Research Department, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Correspondence:
| | - Claire Josse
- Laboratory of Human Genetics, GIGA Research Center, University of Liège, 4000 Liege, Belgium; (C.J.); (D.B.); (J.T.); (V.B.)
| | - Delphine Boulet
- Laboratory of Human Genetics, GIGA Research Center, University of Liège, 4000 Liege, Belgium; (C.J.); (D.B.); (J.T.); (V.B.)
| | - Jérôme Thiry
- Laboratory of Human Genetics, GIGA Research Center, University of Liège, 4000 Liege, Belgium; (C.J.); (D.B.); (J.T.); (V.B.)
| | - Vincent Bours
- Laboratory of Human Genetics, GIGA Research Center, University of Liège, 4000 Liege, Belgium; (C.J.); (D.B.); (J.T.); (V.B.)
| | - Guy Jerusalem
- Department of Medical Oncology, University Hospital of Liege, CHU Sart Tilman, 4000 Liege, Belgium; (A.P.); (G.J.)
- Department of Medical Oncology, University of Liege, 4000 Liege, Belgium
| |
Collapse
|
74
|
Gupta P, Jiang ZK, Yang B, Manzuk L, Rosfjord E, Yao J, Lemon L, Noorbehesht K, David J, Puthenveetil S, Casavant JM, Muszynska E, Li F, Leal M, Sapra P, Giddabasappa A. Targeting and pharmacology of an anti-IL13Rα2 antibody and antibody-drug conjugate in a melanoma xenograft model. MAbs 2021; 13:1958662. [PMID: 34347577 PMCID: PMC8344738 DOI: 10.1080/19420862.2021.1958662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
IL13Rα2 is a cell surface tumor antigen that is overexpressed in multiple tumor types. Here, we studied biodistribution and targeting potential of an anti-IL13Rα2 antibody (Ab) and anti-tumor activity of anti-IL13Rα2-antibody-drug conjugate (ADC). The anti-IL13Rα2 Ab was labeled with fluorophore AF680 or radioisotope 89Zr for in vivo tracking using fluorescence molecular tomography (FMT) or positron emission tomography (PET) imaging, respectively. Both imaging modalities showed that the tumor was the major uptake site for anti-IL13Rα2-Ab, with peak uptake of 5–8% ID and 10% ID/g as quantified from FMT and PET, respectively. Pharmacological in vivo competition with excess of unlabeled anti-IL13Rα2-Ab significantly reduced the tumor uptake, indicative of antigen-specific tumor accumulation. Further, FMT imaging demonstrated similar biodistribution and pharmacokinetic profiles of an auristatin-conjugated anti-IL13Rα2-ADC as compared to the parental Ab. Finally, the anti-IL13Rα2-ADC exhibited a dose-dependent anti-tumor effect on A375 xenografts, with 90% complete responders at a dose of 3 mg/kg. Taken together, both FMT and PET showed a favorable biodistribution profile for anti-IL13Rα2-Ab/ADC, along with antigen-specific tumor targeting and excellent therapeutic efficacy in the A375 xenograft model. This work shows the great potential of this anti-IL13Rα2-ADC as a targeted anti-cancer agent.
Collapse
Affiliation(s)
- Parul Gupta
- Global Science & Technology - Comparative Medicine, Pfizer Inc., San Diego, CA, USA.,Biomedicine Design, Pfizer Inc., San Diego, CA, USA
| | - Ziyue Karen Jiang
- Global Science & Technology - Comparative Medicine, Pfizer Inc., San Diego, CA, USA
| | - Bing Yang
- Global Science & Technology - Comparative Medicine, Pfizer Inc., San Diego, CA, USA
| | - Lisa Manzuk
- Global Science & Technology - Comparative Medicine, Pfizer Inc., San Diego, CA, USA
| | - Edward Rosfjord
- Oncology Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Johnny Yao
- Oncology Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Luanna Lemon
- Oncology Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Kavon Noorbehesht
- Global Science & Technology - Comparative Medicine, Pfizer Inc., San Diego, CA, USA
| | - John David
- Global Science & Technology - Comparative Medicine, Pfizer Inc., San Diego, CA, USA
| | | | | | - Elwira Muszynska
- Oncology Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Fengping Li
- Biomedicine Design, Pfizer Inc., San Diego, CA, USA
| | | | - Puja Sapra
- Oncology Research and Development, Pfizer Inc., Pearl River, NY, USA
| | - Anand Giddabasappa
- Global Science & Technology - Comparative Medicine, Pfizer Inc., San Diego, CA, USA
| |
Collapse
|
75
|
Briukhovetska D, Dörr J, Endres S, Libby P, Dinarello CA, Kobold S. Interleukins in cancer: from biology to therapy. Nat Rev Cancer 2021; 21:481-499. [PMID: 34083781 PMCID: PMC8173513 DOI: 10.1038/s41568-021-00363-z] [Citation(s) in RCA: 432] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
Interleukins and associated cytokines serve as the means of communication for innate and adaptive immune cells as well as non-immune cells and tissues. Thus, interleukins have a critical role in cancer development, progression and control. Interleukins can nurture an environment enabling and favouring cancer growth while simultaneously being essential for a productive tumour-directed immune response. These properties of interleukins can be exploited to improve immunotherapies to promote effectiveness as well as to limit side effects. This Review aims to unravel some of these complex interactions.
Collapse
Affiliation(s)
- Daria Briukhovetska
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Janina Dörr
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany
- German Center for Translational Cancer Research (DKTK), Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Peter Libby
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU, Munich, Germany.
- German Center for Translational Cancer Research (DKTK), Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany.
| |
Collapse
|
76
|
Ji HY, Liu C, Dai KY, Yu J, Liu AJ, Chen YF. The immunosuppressive effects of low molecular weight chitosan on thymopentin-activated mice bearing H22 solid tumors. Int Immunopharmacol 2021; 99:108008. [PMID: 34330058 DOI: 10.1016/j.intimp.2021.108008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/11/2022]
Abstract
In the present study, the low molecular weight of chitosan (CS) was prepared and its activity on thymopentin-activated mice bearing H22 solid tumors was further researched. The purity and molecular weight of CS were determined by UV and HPGPC spectra, and its immunosuppressive effects on H22 tumor-bearing mice were evaluated through determination on immune organs, cells and cytokines. Results showed that CS contained little impurities with the average molecular weight of 1.20 × 104 Da. The in vivo antitumor experiments demonstrated that CS facilitated to destroy immune organs (thymuses and spleens), suppress immune cells (lymphocytes, macrophages and NK cells) activities and reduce immune-related cytokines (TNF-α, IFN-γ, IL-2 and IL-4) expressions of H22 tumor-bearing mice even with simultaneous TP5 stimulation. Our data suggested that CS could not be applied to improve immune response in cancer-bearing patients, but might be employed for treatments on autoimmune diseases or organ transplant patients.
Collapse
Affiliation(s)
- Hai-Yu Ji
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chao Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Ke-Yao Dai
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Juan Yu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - An-Jun Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Ye-Fu Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
77
|
Jacquelot N, Seillet C, Wang M, Pizzolla A, Liao Y, Hediyeh-Zadeh S, Grisaru-Tal S, Louis C, Huang Q, Schreuder J, Souza-Fonseca-Guimaraes F, de Graaf CA, Thia K, Macdonald S, Camilleri M, Luong K, Zhang S, Chopin M, Molden-Hauer T, Nutt SL, Umansky V, Ciric B, Groom JR, Foster PS, Hansbro PM, McKenzie ANJ, Gray DHD, Behren A, Cebon J, Vivier E, Wicks IP, Trapani JA, Munitz A, Davis MJ, Shi W, Neeson PJ, Belz GT. Blockade of the co-inhibitory molecule PD-1 unleashes ILC2-dependent antitumor immunity in melanoma. Nat Immunol 2021; 22:851-864. [PMID: 34099918 PMCID: PMC7611091 DOI: 10.1038/s41590-021-00943-z] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 04/26/2021] [Indexed: 01/17/2023]
Abstract
Group 2 innate lymphoid cells (ILC2s) are essential to maintain tissue homeostasis. In cancer, ILC2s can harbor both pro-tumorigenic and anti-tumorigenic functions, but we know little about their underlying mechanisms or whether they could be clinically relevant or targeted to improve patient outcomes. Here, we found that high ILC2 infiltration in human melanoma was associated with a good clinical prognosis. ILC2s are critical producers of the cytokine granulocyte-macrophage colony-stimulating factor, which coordinates the recruitment and activation of eosinophils to enhance antitumor responses. Tumor-infiltrating ILC2s expressed programmed cell death protein-1, which limited their intratumoral accumulation, proliferation and antitumor effector functions. This inhibition could be overcome in vivo by combining interleukin-33-driven ILC2 activation with programmed cell death protein-1 blockade to significantly increase antitumor responses. Together, our results identified ILC2s as a critical immune cell type involved in melanoma immunity and revealed a potential synergistic approach to harness ILC2 function for antitumor immunotherapies.
Collapse
Affiliation(s)
- Nicolas Jacquelot
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
- Princess Margaret Cancer Centre, Toronto, Ontario, Canada.
| | - Cyril Seillet
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Minyu Wang
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Angela Pizzolla
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Yang Liao
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, Victoria, Australia
| | - Soroor Hediyeh-Zadeh
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Sharon Grisaru-Tal
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Cynthia Louis
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Qiutong Huang
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Jaring Schreuder
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland, Australia
| | | | - Carolyn A de Graaf
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kevin Thia
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Sean Macdonald
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Mary Camilleri
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Kylie Luong
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Shengbo Zhang
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Chopin
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Tristan Molden-Hauer
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joanna R Groom
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Paul S Foster
- Priority Research Centres for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- Priority Research Centres for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, New South Wales, Australia
- Centre for Inflammation, Centenary Institute, Sydney, New South Wales, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | | | - Daniel H D Gray
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan Cebon
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, Victoria, Australia
- Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
- Ludwig Institute for Cancer Research, Melbourne-Austin Branch, Melbourne, Victoria, Australia
| | - Eric Vivier
- Innate Pharma Research Labs, Marseille, France
- Aix Marseille University, CNRS, INSERM, CIML, Marseille, France
- Service d'Immunologie, Marseille Immunopole, Hôpital de la Timone, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - Ian P Wicks
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Rheumatology Unit, Royal Melbourne Hospital, Melbourne, Australia
| | - Joseph A Trapani
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Ariel Munitz
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Melissa J Davis
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia
| | - Wei Shi
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, Victoria, Australia
- Department of Computing and Information Systems, University of Melbourne, Melbourne, Victoria, Australia
| | - Paul J Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, Victoria, Australia
| | - Gabrielle T Belz
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
- The University of Queensland Diamantina Institute, University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
78
|
IL-13Rα2 Is a Biomarker of Diagnosis and Therapeutic Response in Human Pancreatic Cancer. Diagnostics (Basel) 2021; 11:diagnostics11071140. [PMID: 34201539 PMCID: PMC8303581 DOI: 10.3390/diagnostics11071140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/08/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
IL-13Rα2 is a high-affinity binding protein for its ligand IL-13 and a cancer-testis antigen as it is expressed in the testis. IL-13Rα2 is highly expressed in various cancers, including pancreatic cancer, and consists of three domains: extracellular, transmembrane, and cytoplasmic. The extracellular domain binds to the ligand to form a biologically active complex, which initiates signaling through AP-1 and other pathways. IL-13Rα2 is also expressed in diseased cells such as fibroblasts that are involved in various inflammatory diseases, including cancer. We have reported that IL-13Rα2 is a prognostic biomarker for malignant glioma, adrenocortical cancer, and pancreatic cancer. In pancreatic cancer, a small sample of tissue could be examined for the expression of IL-13Rα2 by using the endoscopic ultrasound-fine needle aspiration technique (EUS-FNA). In addition, a peptide-based targeted approach using Pep-1L peptide could be used to study the biodistribution and whole-body cancer imaging for the screening of pancreatic cancer in suspected subjects.
Collapse
|
79
|
Li CM, Chen Z. Autoimmunity as an Etiological Factor of Cancer: The Transformative Potential of Chronic Type 2 Inflammation. Front Cell Dev Biol 2021; 9:664305. [PMID: 34235145 PMCID: PMC8255631 DOI: 10.3389/fcell.2021.664305] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/31/2021] [Indexed: 12/12/2022] Open
Abstract
Recent epidemiological studies have found an alarming trend of increased cancer incidence in adults younger than 50 years of age and projected a substantial rise in cancer incidence over the next 10 years in this age group. This trend was exemplified in the incidence of non-cardia gastric cancer and its disproportionate impact on non-Hispanic white females under the age of 50. The trend is concurrent with the increasing incidence of autoimmune diseases in industrialized countries, suggesting a causal link between the two. While autoimmunity has been suspected to be a risk factor for some cancers, the exact mechanisms underlying the connection between autoimmunity and cancer remain unclear and are often controversial. The link has been attributed to several mediators such as immune suppression, infection, diet, environment, or, perhaps most plausibly, chronic inflammation because of its well-recognized role in tumorigenesis. In that regard, autoimmune conditions are common causes of chronic inflammation and may trigger repetitive cycles of antigen-specific cell damage, tissue regeneration, and wound healing. Illustrating the connection between autoimmune diseases and cancer are patients who have an increased risk of cancer development associated with genetically predisposed insufficiency of cytotoxic T lymphocyte-associated protein 4 (CTLA4), a prototypical immune checkpoint against autoimmunity and one of the main targets of cancer immune therapy. The tumorigenic process triggered by CTLA4 insufficiency has been shown in a mouse model to be dependent on the type 2 cytokines interleukin-4 (IL4) and interleukin-13 (IL13). In this type 2 inflammatory milieu, crosstalk with type 2 immune cells may initiate epigenetic reprogramming of epithelial cells, leading to a metaplastic differentiation and eventually malignant transformation even in the absence of classical oncogenic mutations. Those findings complement a large body of evidence for type 1, type 3, or other inflammatory mediators in inflammatory tumorigenesis. This review addresses the potential of autoimmunity as a causal factor for tumorigenesis, the underlying inflammatory mechanisms that may vary depending on host-environment variations, and implications to cancer prevention and immunotherapy.
Collapse
Affiliation(s)
- Chris M Li
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Zhibin Chen
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
80
|
Jiménez-Cortegana C, López-Saavedra A, Sánchez-Jiménez F, Pérez-Pérez A, Castiñeiras J, Virizuela-Echaburu JA, de la Cruz-Merino L, Sánchez-Margalet V. Leptin, Both Bad and Good Actor in Cancer. Biomolecules 2021; 11:913. [PMID: 34202969 PMCID: PMC8235379 DOI: 10.3390/biom11060913] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
Leptin is an important regulator of basal metabolism and food intake, with a pivotal role in obesity. Leptin exerts many different actions on various tissues and systems, including cancer, and is considered as a linkage between metabolism and the immune system. During the last decades, obesity and leptin have been associated with the initiation, proliferation and progression of many types of cancer. Obesity is also linked with complications and mortality, irrespective of the therapy used, affecting clinical outcomes. However, some evidence has suggested its beneficial role, called the "obesity paradox", and the possible antitumoral role of leptin. Recent data regarding the immunotherapy of cancer have revealed that overweight leads to a more effective response and leptin may probably be involved in this beneficial process. Since leptin is a positive modulator of both the innate and the adaptive immune system, it may contribute to the increased immune response stimulated by immunotherapy in cancer patients and may be proposed as a good actor in cancer. Our purpose is to review this dual role of leptin in cancer, as well as trying to clarify the future perspectives of this adipokine, which further highlights its importance as a cornerstone of the immunometabolism in oncology.
Collapse
Affiliation(s)
- Carlos Jiménez-Cortegana
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| | - Ana López-Saavedra
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| | - Flora Sánchez-Jiménez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| | - Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| | - Jesús Castiñeiras
- Urology Service, Virgen Macarena University Hospital, University of Seville, 41009 Sevilla, Spain;
| | - Juan A. Virizuela-Echaburu
- Medical Oncology Service, Virgen Macarena University Hospital, University of Seville, 41009 Sevilla, Spain; (J.A.V.-E.); (L.d.l.C.-M.)
| | - Luis de la Cruz-Merino
- Medical Oncology Service, Virgen Macarena University Hospital, University of Seville, 41009 Sevilla, Spain; (J.A.V.-E.); (L.d.l.C.-M.)
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, School of Medicine, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (C.J.-C.); (A.L.-S.); (F.S.-J.); (A.P.-P.)
| |
Collapse
|
81
|
Drexler K, Schmidt KM, Jordan K, Federlin M, Milenkovic VM, Liebisch G, Artati A, Schmidl C, Madej G, Tokarz J, Cecil A, Jagla W, Haerteis S, Aung T, Wagner C, Kolodziejczyk M, Heinke S, Stanton EH, Schwertner B, Riegel D, Wetzel CH, Buchalla W, Proescholdt M, Klein CA, Berneburg M, Schlitt HJ, Brabletz T, Ziegler C, Parkinson EK, Gaumann A, Geissler EK, Adamski J, Haferkamp S, Mycielska ME. Cancer-associated cells release citrate to support tumour metastatic progression. Life Sci Alliance 2021; 4:e202000903. [PMID: 33758075 PMCID: PMC7994318 DOI: 10.26508/lsa.202000903] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
Citrate is important for lipid synthesis and epigenetic regulation in addition to ATP production. We have previously reported that cancer cells import extracellular citrate via the pmCiC transporter to support their metabolism. Here, we show for the first time that citrate is supplied to cancer by cancer-associated stroma (CAS) and also that citrate synthesis and release is one of the latter's major metabolic tasks. Citrate release from CAS is controlled by cancer cells through cross-cellular communication. The availability of citrate from CAS regulated the cytokine profile, metabolism and features of cellular invasion. Moreover, citrate released by CAS is involved in inducing cancer progression especially enhancing invasiveness and organ colonisation. In line with the in vitro observations, we show that depriving cancer cells of citrate using gluconate, a specific inhibitor of pmCiC, significantly reduced the growth and metastatic spread of human pancreatic cancer cells in vivo and muted stromal activation and angiogenesis. We conclude that citrate is supplied to tumour cells by CAS and citrate uptake plays a significant role in cancer metastatic progression.
Collapse
Affiliation(s)
- Konstantin Drexler
- Department of Dermatology, University Medical Centre, Regensburg, Germany
| | | | - Katrin Jordan
- Department of Surgery, University Medical Center, Regensburg, Germany
| | - Marianne Federlin
- Department of Conservative Dentistry and Periodontology, University Medical Center, Regensburg, Germany
| | - Vladimir M Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Anna Artati
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Christian Schmidl
- Regensburg Center for Interventional Immunology, Regensburg, Germany
| | - Gregor Madej
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Janina Tokarz
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Alexander Cecil
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Wolfgang Jagla
- Institute of Pathology, Kaufbeuren-Ravensburg, Kaufbeuren, Germany
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Thiha Aung
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
- Center of Plastic, Aesthetic, Hand and Reconstructive Surgery, University of Regensburg, Regensburg, Germany
| | - Christine Wagner
- Department of Surgery, University Medical Center, Regensburg, Germany
| | | | - Stefanie Heinke
- Department of Surgery, University Medical Center, Regensburg, Germany
| | - Evan H Stanton
- Department of Surgery, University Medical Center, Regensburg, Germany
| | - Barbara Schwertner
- Department of Dermatology, University Medical Centre, Regensburg, Germany
| | - Dania Riegel
- Regensburg Center for Interventional Immunology, Regensburg, Germany
| | - Christian H Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - Wolfgang Buchalla
- Department of Conservative Dentistry and Periodontology, University Medical Center, Regensburg, Germany
| | - Martin Proescholdt
- Department of Neurosurgery, University Hospital Regensburg, Regensburg, Germany
| | - Christoph A Klein
- Experimental Medicine and Therapy Research, University of Regensburg, Regensburg, Germany
| | - Mark Berneburg
- Department of Dermatology, University Medical Centre, Regensburg, Germany
| | - Hans J Schlitt
- Department of Surgery, University Medical Center, Regensburg, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine 1, Friedrich-Alexander-University Erlangen, Erlangen, Germany
| | - Christine Ziegler
- Department of Structural Biology, Institute of Biophysics and Physical Biochemistry, University of Regensburg, Regensburg, Germany
| | - Eric K Parkinson
- Centre for Immunobiology and Regenerative Medicine, Blizard Institute, Barts and The London School of Medicine and Dentistry, London, UK
| | - Andreas Gaumann
- Institute of Pathology, Kaufbeuren-Ravensburg, Kaufbeuren, Germany
| | - Edward K Geissler
- Department of Surgery, University Medical Center, Regensburg, Germany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
- Lehrstuhl für Experimentelle Genetik, Technische Universität München, Munich, Germany
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Maria E Mycielska
- Department of Surgery, University Medical Center, Regensburg, Germany
| |
Collapse
|
82
|
Schreiber S, Hammers CM, Kaasch AJ, Schraven B, Dudeck A, Kahlfuss S. Metabolic Interdependency of Th2 Cell-Mediated Type 2 Immunity and the Tumor Microenvironment. Front Immunol 2021; 12:632581. [PMID: 34135885 PMCID: PMC8201396 DOI: 10.3389/fimmu.2021.632581] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/23/2021] [Indexed: 12/13/2022] Open
Abstract
The function of T cells is critically dependent on their ability to generate metabolic building blocks to fulfil energy demands for proliferation and consecutive differentiation into various T helper (Th) cells. Th cells then have to adapt their metabolism to specific microenvironments within different organs during physiological and pathological immune responses. In this context, Th2 cells mediate immunity to parasites and are involved in the pathogenesis of allergic diseases including asthma, while CD8+ T cells and Th1 cells mediate immunity to viruses and tumors. Importantly, recent studies have investigated the metabolism of Th2 cells in more detail, while others have studied the influence of Th2 cell-mediated type 2 immunity on the tumor microenvironment (TME) and on tumor progression. We here review recent findings on the metabolism of Th2 cells and discuss how Th2 cells contribute to antitumor immunity. Combining the evidence from both types of studies, we provide here for the first time a perspective on how the energy metabolism of Th2 cells and the TME interact. Finally, we elaborate how a more detailed understanding of the unique metabolic interdependency between Th2 cells and the TME could reveal novel avenues for the development of immunotherapies in treating cancer.
Collapse
Affiliation(s)
- Simon Schreiber
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Achim J. Kaasch
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI-3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI-3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anne Dudeck
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI-3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sascha Kahlfuss
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation (GCI-3), Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
83
|
Kwiatkowska I, Hermanowicz JM, Przybyszewska-Podstawka A, Pawlak D. Not Only Immune Escape-The Confusing Role of the TRP Metabolic Pathway in Carcinogenesis. Cancers (Basel) 2021; 13:2667. [PMID: 34071442 PMCID: PMC8198784 DOI: 10.3390/cancers13112667] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The recently discovered phenomenon that cancer cells can avoid immune response has gained scientists' interest. One of the pathways involved in this process is tryptophan (TRP) metabolism through the kynurenine pathway (KP). Individual components involved in TRP conversion seem to contribute to cancerogenesis both through a direct impact on cancer cells and the modulation of immune cell functionality. Due to this fact, this pathway may serve as a target for immunotherapy and attempts are being made to create novel compounds effective in cancer treatment. However, the results obtained from clinical trials are not satisfactory, which raises questions about the exact role of KP elements in tumorigenesis. An increasing number of experiments reveal that TRP metabolites may either be tumor promoters and suppressors and this is why further research in this field is highly needed. The aim of this study is to present KP as a modulator of cancer development through multiple mechanisms and to point to its ambiguity, which may be a reason for failures in treatment based on the inhibition of tryptophan metabolism.
Collapse
Affiliation(s)
- Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | | | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
| |
Collapse
|
84
|
In vivo evidence: Repression of mucosal immune responses in mice with colon cancer following sustained administration of Streptococcus thermophiles. Saudi J Biol Sci 2021; 28:4751-4761. [PMID: 34354463 PMCID: PMC8324971 DOI: 10.1016/j.sjbs.2021.04.090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/20/2022] Open
Abstract
Probiotics have attracted considerable attention because of their ability to ameliorate disease and prevent cancer. In this study, we examined the immunomodulatory effects of a Streptococcus thermophilus probiotic on the intestinal mucosa azoxymethane-induced colon cancer. Sixty female mice were divided into four groups (n = 15 each). One group of untreated mice was used as a control (C group). Another mouse group was injected with azoxymethane once weekly for 8 weeks to induce colon cancer (CC group). Finally, two groups of mice were continuously treated twice per week from week 2 to 16 with either the Lactobacillus plantarum (Lac CC group) or S. thermophilus (Strep CC group) bacterial strain pre-and post-treatment as performed for the CC group. Remarkably, Tlr2, Ifng, Il4, Il13, Il10, and Tp53 transcription were significantly downregulated in the Strep CC intestinal mucosa group. Additionally, IL2 expression was decreased significantly in the Strep CC mouse serum, whereas TNFα was remarkably elevated compared to that in the CC, Lac CC, and untreated groups. This study suggested that Streptococcus thermophilus did not interrupt or hinder colon cancer development in mice when administered as a prophylactic.
Collapse
|
85
|
Parveen S, Lun S, Urbanowski ME, Cardin M, Shen J, Murphy JR, Bishai WR. Effective host-directed therapy for tuberculosis by targeted depletion of myeloid-derived suppressor cells and related cells using a diphtheria toxin-based fusion protein. J Infect Dis 2021; 224:1962-1972. [PMID: 33955457 DOI: 10.1093/infdis/jiab235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/28/2021] [Indexed: 11/12/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are present in elevated numbers in TB patients and have been found to be permissive for Mycobacterium tuberculosis (Mtb) proliferation. To determine whether depletion of MDSCs may improve host control of TB, we used a novel diphtheria toxin-based fusion protein known as DABIL-4 that targets and depletes IL-4-receptor positive cells. We show that DABIL-4 depletes both PMN-MDSCs and M-MDSC, increases IFNγ + T-cells, and reduces the lung bacillary burden in the mouse TB model. These results indicate that MDSC-depleting therapies targeting the IL-4 receptor are beneficial in TB and offer an avenue towards host-directed TB therapy.
Collapse
Affiliation(s)
- Sadiya Parveen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| | - Shichun Lun
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| | - Michael E Urbanowski
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| | - Mitchell Cardin
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| | - Jessica Shen
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| | - John R Murphy
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| | - William R Bishai
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, The United States of America
| |
Collapse
|
86
|
Parveen S, Siddharth S, Cheung LS, Kumar A, Shen J, Murphy JR, Sharma D, Bishai WR. Therapeutic targeting with DABIL-4 depletes myeloid suppressor cells in 4T1 triple-negative breast cancer model. Mol Oncol 2021; 15:1330-1344. [PMID: 33682324 PMCID: PMC8096791 DOI: 10.1002/1878-0261.12938] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/10/2021] [Accepted: 03/05/2021] [Indexed: 12/19/2022] Open
Abstract
In many solid tumors including triple-negative breast cancer (TNBC), upregulation of the interleukin-4 receptor (IL-4R) has been shown to promote cancer cell proliferation, apoptotic resistance, metastatic potential, and a Th2 response in the tumor microenvironment (TME). Since immunosuppressive cells in the TME and spleen including myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs) also express the IL-4R, we hypothesized that selective depletion of IL-4R-bearing cells in TNBC would result in the direct killing of tumor cells and the depletion of immunosuppressive cells and lead to an enhanced antitumor response. To selectively target IL-4R+ cells, we employed DABIL-4, a fusion protein toxin consisting of the catalytic and translocation domains of diphtheria toxin fused to murine IL-4. As anticipated, DABIL-4 has potent cytotoxic activity against TNBC cells both in vitro and in vivo. We demonstrate in the murine 4T1 TNBC model that DABIL-4 significantly reduces tumor growth, splenomegaly, and lung metastases. Importantly, we also show that the administration of DABIL-4 results in the selective depletion of MDSCs, TAMs, and regulatory T cells in treated mice, with a concomitant increase in IFN-γ+ CD8 effector T cells in the TME. Since the 4T1 antitumor activity of DABIL-4 was largely diminished in IL-4R knockout mice, we postulate that DABIL-4 functions primarily as an immunotherapeutic by the depletion of MDSCs, TAMs, and regulatory T cells. NanoString analysis of control and treated tumors confirmed and extended these observations by showing a marked decline of mRNA transcripts that are associated with tumorigenesis and metastasis. In conclusion, we demonstrate that DABIL-4 targeting of both tumor and immunosuppressive host cells likely represents a novel and effective treatment strategy for 4T1 TNBC and warrants further study.
Collapse
Affiliation(s)
- Sadiya Parveen
- Department of MedicineDivision of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Sumit Siddharth
- Department of OncologySidney Kimmel Comprehensive Cancer Center at Johns HopkinsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Laurene S. Cheung
- Department of MedicineDivision of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Alok Kumar
- Department of MedicineDivision of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Jessica Shen
- Department of MedicineDivision of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - John R. Murphy
- Department of MedicineDivision of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - Dipali Sharma
- Department of OncologySidney Kimmel Comprehensive Cancer Center at Johns HopkinsJohns Hopkins University School of MedicineBaltimoreMDUSA
| | - William R. Bishai
- Department of MedicineDivision of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreMDUSA
| |
Collapse
|
87
|
Nisar S, Yousuf P, Masoodi T, Wani NA, Hashem S, Singh M, Sageena G, Mishra D, Kumar R, Haris M, Bhat AA, Macha MA. Chemokine-Cytokine Networks in the Head and Neck Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22094584. [PMID: 33925575 PMCID: PMC8123862 DOI: 10.3390/ijms22094584] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are aggressive diseases with a dismal patient prognosis. Despite significant advances in treatment modalities, the five-year survival rate in patients with HNSCC has improved marginally and therefore warrants a comprehensive understanding of the HNSCC biology. Alterations in the cellular and non-cellular components of the HNSCC tumor micro-environment (TME) play a critical role in regulating many hallmarks of cancer development including evasion of apoptosis, activation of invasion, metastasis, angiogenesis, response to therapy, immune escape mechanisms, deregulation of energetics, and therefore the development of an overall aggressive HNSCC phenotype. Cytokines and chemokines are small secretory proteins produced by neoplastic or stromal cells, controlling complex and dynamic cell-cell interactions in the TME to regulate many cancer hallmarks. This review summarizes the current understanding of the complex cytokine/chemokine networks in the HNSCC TME, their role in activating diverse signaling pathways and promoting tumor progression, metastasis, and therapeutic resistance development.
Collapse
Affiliation(s)
- Sabah Nisar
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar; (S.N.); (S.H.); (M.H.)
| | - Parvaiz Yousuf
- Department of Zoology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India;
| | - Tariq Masoodi
- Department of Genomic Medicine, Genetikode 400102, India;
| | - Nissar A. Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal 191201, India;
| | - Sheema Hashem
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar; (S.N.); (S.H.); (M.H.)
| | - Mayank Singh
- Departmental of Medical Oncology, Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India;
| | | | - Deepika Mishra
- Centre for Dental Education and Research, Department of Oral Pathology and Microbiology, All India Institute of Medical Sciences, New Delhi 110029, India;
| | - Rakesh Kumar
- Centre for Advanced Research, School of Biotechnology and Indian Council of Medical Research, Shri Mata Vaishno Devi University, Katra 182320, India;
| | - Mohammad Haris
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar; (S.N.); (S.H.); (M.H.)
- Laboratory Animal Research Center, Qatar University, Doha 2713, Qatar
| | - Ajaz A. Bhat
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha 26999, Qatar; (S.N.); (S.H.); (M.H.)
- Correspondence: (A.A.B.); or (M.A.M.); Tel.: +974-40037703 (A.A.B.); +91-8082326900 (M.A.M.)
| | - Muzafar A. Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora 192122, India
- Correspondence: (A.A.B.); or (M.A.M.); Tel.: +974-40037703 (A.A.B.); +91-8082326900 (M.A.M.)
| |
Collapse
|
88
|
Argaw T, Marino MP, Timmons A, Eldridge L, Takeda K, Li P, Kwilas A, Ou W, Reiser J. In vivo targeting of lentiviral vectors pseudotyped with the Tupaia paramyxovirus H glycoprotein bearing a cell-specific ligand. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:670-680. [PMID: 34141822 PMCID: PMC8166926 DOI: 10.1016/j.omtm.2021.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/21/2021] [Indexed: 11/24/2022]
Abstract
Despite their exceptional capacity for transgene delivery ex vivo, lentiviral (LV) vectors have been slow to demonstrate clinical utility in the context of in vivo applications. Unresolved safety concerns related to broad LV vector tropism have limited LV vectors to ex vivo applications. Here, we report on a novel LV vector-pseudotyping strategy involving envelope glycoproteins of Tupaia paramyxovirus (TPMV) engineered to specifically target human cell-surface receptors. LV vectors pseudotyped with the TPMV hemagglutinin (H) protein bearing the interleukin (IL)-13 ligand in concert with the TPMV fusion (F) protein allowed efficient transduction of cells expressing the human IL-13 receptor alpha 2 (IL-13Rα2). Immunodeficient mice bearing orthotopically implanted human IL-13Rα2 expressing NCI-H1299 non-small cell lung cancer cells were injected intravenously with a single dose of LV vector pseudotyped with the TPMV H-IL-13 glycoprotein. Vector biodistribution was monitored using bioluminescence imaging of firefly luciferase transgene expression, revealing specific transduction of tumor tissue. A quantitative droplet digital PCR (ddPCR) analysis of lung tissue samples revealed a >15-fold increase in the tumor transduction in mice treated with LV vectors displaying IL-13 relative to those without IL-13. Our results show that TPMV envelope glycoproteins can be equipped with ligands to develop targeted LV vectors for in vivo applications.
Collapse
Affiliation(s)
- Takele Argaw
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Michael P. Marino
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Andrew Timmons
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Lindsey Eldridge
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Kazuyo Takeda
- Microscopy and Imaging Core Facility, Center for Biologics Evaluation and Research, FDA, Silver Spring, MD 20993, USA
| | - Pingjuan Li
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
- Vedere Bio, Inc., Cambridge, MA 02139, USA
| | - Anna Kwilas
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Wu Ou
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
| | - Jakob Reiser
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, US Food and Drug Administration (FDA), Silver Spring, MD 20993, USA
- Corresponding author: Jakob Reiser, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, FDA, 10903 New Hampshire Avenue, Building 52/72, Room 3106, Silver Spring, MD 20993, USA.
| |
Collapse
|
89
|
Associations of interleukin-4 and interleukin-4 receptor loci with esophageal squamous cell carcinoma susceptibility. Int Immunopharmacol 2021; 97:107659. [PMID: 33895482 DOI: 10.1016/j.intimp.2021.107659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 11/21/2022]
Abstract
Some functional polymorphisms in immune-regulating genes could affect the development of esophageal squamous cell carcinoma (ESCC). We enrolled 721 patients with ESCC and 1,208 healthy controls to explore the roles of rs2227282 (C > G) and rs2243283 (C > G) loci in the interleukin-4 (IL4) gene and rs1801275 loci in the interleukin-4 receptor (IL4R) gene for the occurrence of ESCC. As for IL4, the single nucleotide polymorphism rs2227282 (C > G) conferred an overall decreased risk for ESCC (adjusted P = 0.005, power = 0.816 in GG vs. CC genetic models). A stratification analysis of IL4 rs2227282 (C > G) and rs2243283 (C > G) and IL4R rs1801275 (A > G) loci with the ESCC risk revealed that the IL4 rs2243283 (C > G) polymorphism was a protective factor for the susceptibility to ESCC in some subgroups (women: power = 0.932 in CG vs. CC and 0.956 in CG/GG vs. CC; subjects aged ≥63 years: power = 0.844 in CG/GG vs. CC; never-smokers: power = 0.893 in CG vs. CC and 0.882 in CG/GG vs. CC; never-drinkers: power = 0.904 in CG vs. CC and 0.862 in CG/GG vs. CC). We also investigated the association of IL4 rs2227282 and rs2243283 and IL4R rs1801275 loci with the lymph node status. However, a null relationship was found. In conclusion, the present study highlighted that IL4 rs2227282 (C > G) and rs2243283 (C > G) loci are protective factors for the occurrence of ESCC.
Collapse
|
90
|
Cancer Stem Cells Are Possible Key Players in Regulating Anti-Tumor Immune Responses: The Role of Immunomodulating Molecules and MicroRNAs. Cancers (Basel) 2021; 13:cancers13071674. [PMID: 33918136 PMCID: PMC8037840 DOI: 10.3390/cancers13071674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary This review provides a critical overview of the state of the art of the characterization of the immunological profile of a rare component of the tumors, denominated cancer stem cells (CSCs) or cancer initiating cells (CICs). These cells are endowed with the ability to form and propagate tumors and resistance to therapies, including the most innovative approaches. These investigations contribute to understanding the mechanisms regulating the interaction of CSCs/CICs with the immune system and identifying novel therapeutic approaches to render these cells visible and susceptible to immune responses. Abstract Cancer cells endowed with stemness properties and representing a rare population of cells within malignant lesions have been isolated from tumors with different histological origins. These cells, denominated as cancer stem cells (CSCs) or cancer initiating cells (CICs), are responsible for tumor initiation, progression and resistance to therapies, including immunotherapy. The dynamic crosstalk of CSCs/CICs with the tumor microenvironment orchestrates their fate and plasticity as well as their immunogenicity. CSCs/CICs, as observed in multiple studies, display either the aberrant expression of immunomodulatory molecules or suboptimal levels of molecules involved in antigen processing and presentation, leading to immune evasion. MicroRNAs (miRNAs) that can regulate either stemness properties or their immunological profile, with in some cases dual functions, can provide insights into these mechanisms and possible interventions to develop novel therapeutic strategies targeting CSCs/CICs and reverting their immunogenicity. In this review, we provide an overview of the immunoregulatory features of CSCs/CICs including miRNA profiles involved in the regulation of the interplay between stemness and immunological properties.
Collapse
|
91
|
Investigation of IL-4, IL-10, and HVEM polymorphisms with esophageal squamous cell carcinoma: a case-control study involving 1929 participants. Biosci Rep 2021; 40:225960. [PMID: 32744314 PMCID: PMC7419785 DOI: 10.1042/bsr20193895] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 07/08/2020] [Accepted: 07/27/2020] [Indexed: 12/09/2022] Open
Abstract
It is believed that an individual’s hereditary factors may be involved in the development of esophageal cancer (EC). The present study recruited 721 esophageal squamous cell carcinoma (ESCC) cases and 1208 controls and explored the roles of single nucleotide polymorphisms (SNPs) in the interleukin-4 (IL-4), IL-10, and herpesvirus entry mediator (HVEM) genes in contributing to ESCC risk. IL-4, IL-10, and HVEM SNPs were analyzed by employing an SNPscan method. After adjustment for body mass index (BMI), smoking, drinking, age and gender, we identified that the rs2070874 T>C locus in IL-4 gene decreased the risk of ESCC (CC vs. TT: P=0.008; CC vs. TT/TC: P=0.010). After a stratified analysis, we suggested that the IL-4 rs2070874 T>C variants might be a protective factor for ESCC in male, ≥63 years old, never smoking, drinking and BMI < 24 kg/m2 subgroups. In addition, we identified that the rs2243263 G>C polymorphism in IL-4 gene was a risk factor for ESCC development in the BMI ≥ 24 kg/m2 subgroup (GC vs. GG: P=0.030 and GC/CC vs. GG: P=0.018). We identified an association of the IL-4 rs2070874 T>C SNP with the decreased susceptibility of ESCC in stage I/II subgroup. Finally, we found an association of the IL-10 rs1800872 T>G SNP with a worse differentiation (TG vs. TT: P=0.048 and GG/TG vs. TT: P=0.032). In conclusion, the findings indicate a potential importance of IL-4 rs2070874 T>C, IL-4 rs2243263 G>C and IL-10 rs1800872 T>G SNPs in the development of ESCC.
Collapse
|
92
|
Pinheiro-Neto FR, Lopes EM, Acha BT, Gomes LDS, Dias WA, Reis Filho ACD, Leal BDS, Rodrigues DCDN, Silva JDN, Dittz D, Ferreira PMP, Almeida FRDC. α-Phellandrene exhibits antinociceptive and tumor-reducing effects in a mouse model of oncologic pain. Toxicol Appl Pharmacol 2021; 418:115497. [PMID: 33744277 DOI: 10.1016/j.taap.2021.115497] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/04/2021] [Accepted: 03/14/2021] [Indexed: 11/16/2022]
Abstract
Medical reports indicate a prevalence of pain in 50% of patients with cancer. In this context, this article investigated the antinociceptive activity of α-PHE using in vivo Sarcoma-180-induced hypernociception in mice to detail its mechanism(s) of antinociception under different conditions of treatment and tumor progression. Firsty, in vitro cytotoxic action was assessed using melanoma B-16/F-10 and S-180 murine cells and colorimetric MTT assays. For in vivo studies, acute treatment with α-PHE (6.25, 12.5, 25 and 50 mg/kg orally by gavage) was performed on the 1st day after S-180 inoculation. Subacute treatments were performed for 8 days starting on the next day (early protocol) or on day 8 after S-180 inoculation (late protocol). For all procedures, mechanical nociceptive evaluations were carried out by von Frey's technique in the subaxillary region peritumoral tissue (direct nociception) and in right legs of S-180-bearing mice (indirect nociception). α-PHE showed in vitro cytotoxic action on B-16/F-10 and S-180 (CI50 values of 436.0 and 217.9 μg/mL), inhibition of in vivo tumor growth (ranging from 47.3 to 82.7%) and decreased direct (peritumoral tissue in subaxillary region) and indirect (right leg) mechanical nociception in Sarcoma 180-bearing mice with early and advanced tumors under acute or subacute conditions of treatment especially at doses of 25 and 50 mg/kg. It improved serum levels of GSH as well as diminished systemic lipid peroxidation, blood cytokines (interleukin-1β, -4, -6, and tumor necrosis factor-α). Such outcomes highlight α-PHE as a promising lead compound that combines antinociceptive and antineoplasic properties. Its structural simplicity make it a cost-effective alternative, justifying further mechanistic investigations and the development of pharmaceutical formulations. Moreover, the protocols developed and standardized here make it possible to use Sarcoma-180 hypernociception model to evaluate the capacity of new antinociceptive molecules under conditions of cancer-related allodynia.
Collapse
Affiliation(s)
- Flaviano Ribeiro Pinheiro-Neto
- Posgraduate Program in Pharmacology, Federal University of Piaui, 64049-550 Teresina, Brazil; Department of Biochemistry and Pharmacology, Research Center of Medicinal Plants, Federal University of Piauí, 64049-550 Teresina, Brazil
| | - Everton Moraes Lopes
- Posgraduate Program in Pharmacology, Federal University of Piaui, 64049-550 Teresina, Brazil; Department of Biochemistry and Pharmacology, Research Center of Medicinal Plants, Federal University of Piauí, 64049-550 Teresina, Brazil
| | - Boris Timah Acha
- Posgraduate Program in Pharmacology, Federal University of Piaui, 64049-550 Teresina, Brazil; Department of Biochemistry and Pharmacology, Research Center of Medicinal Plants, Federal University of Piauí, 64049-550 Teresina, Brazil
| | - Laércio da Silva Gomes
- Posgraduate Program in Pharmacology, Federal University of Piaui, 64049-550 Teresina, Brazil; Department of Biochemistry and Pharmacology, Research Center of Medicinal Plants, Federal University of Piauí, 64049-550 Teresina, Brazil
| | - Willian Amorim Dias
- Posgraduate Program in Pharmacology, Federal University of Piaui, 64049-550 Teresina, Brazil; Department of Biochemistry and Pharmacology, Research Center of Medicinal Plants, Federal University of Piauí, 64049-550 Teresina, Brazil
| | - Antonio Carlos Dos Reis Filho
- Posgraduate Program in Pharmacology, Federal University of Piaui, 64049-550 Teresina, Brazil; Department of Biochemistry and Pharmacology, Research Center of Medicinal Plants, Federal University of Piauí, 64049-550 Teresina, Brazil
| | - Bianca de Sousa Leal
- Posgraduate Program in Pharmacology, Federal University of Piaui, 64049-550 Teresina, Brazil; Laboratory of Experimental Cancerology, Department of Biophysics and Physiology, Posgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64049-550 Teresina, Brazil
| | - Débora Caroline do Nascimento Rodrigues
- Laboratory of Experimental Cancerology, Department of Biophysics and Physiology, Posgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64049-550 Teresina, Brazil
| | - Jurandy do Nascimento Silva
- Laboratory of Experimental Cancerology, Department of Biophysics and Physiology, Posgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64049-550 Teresina, Brazil
| | - Dalton Dittz
- Department of Biochemistry and Pharmacology, Research Center of Medicinal Plants, Federal University of Piauí, 64049-550 Teresina, Brazil
| | - Paulo Michel Pinheiro Ferreira
- Posgraduate Program in Pharmacology, Federal University of Piaui, 64049-550 Teresina, Brazil; Laboratory of Experimental Cancerology, Department of Biophysics and Physiology, Posgraduate Program in Pharmaceutical Sciences, Federal University of Piauí, 64049-550 Teresina, Brazil.
| | - Fernanda Regina de Castro Almeida
- Posgraduate Program in Pharmacology, Federal University of Piaui, 64049-550 Teresina, Brazil; Department of Biochemistry and Pharmacology, Research Center of Medicinal Plants, Federal University of Piauí, 64049-550 Teresina, Brazil.
| |
Collapse
|
93
|
Chehrazi-Raffle A, Meza L, Alcantara M, Dizman N, Bergerot P, Salgia N, Hsu J, Ruel N, Salgia S, Malhotra J, Karczewska E, Kortylewski M, Pal S. Circulating cytokines associated with clinical response to systemic therapy in metastatic renal cell carcinoma. J Immunother Cancer 2021; 9:jitc-2020-002009. [PMID: 33688021 PMCID: PMC7944971 DOI: 10.1136/jitc-2020-002009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2020] [Indexed: 12/22/2022] Open
Abstract
Background Circulating cytokines and angiogenic factors have been associated with clinical outcomes in patients with metastatic renal cell carcinoma (RCC) receiving systemic therapy. However, none have yet examined cytokine concentrations in parallel cohorts receiving either immunotherapy or targeted therapy. Methods In this prospective correlative study, we enrolled 56 patients who were planned for treatment with either a vascular endothelial growth factor-tyrosine kinase inhibitor (VEGF-TKI) or immune checkpoint inhibitor (ICI). Eligibility requirements permitted any RCC histologic subtype, International Metastatic Renal Cell Carcinoma risk classification, and line of therapy. Immunologic profile was assessed at baseline and after 1 month on treatment using a Human Cytokine 30-plex protein assay (Invitrogen). Clinical benefit was defined as complete response, partial response, or stable disease ≥6 months per RECIST (Response Evaluation Criteria in Solid Tumors) V.1.1 criteria. Results Clinical benefit was similar between VEGF-TKI and ICI arms (65% vs 54%). Patients with clinical benefit from VEGF-TKIs had lower pretreatment levels of interleukin-6 (IL-6) (p=0.02), IL-1RA (p=0.03), and granulocyte colony-stimulating factor (CSF) (p=0.02). At 1 month, patients with clinical benefit from ICIs had higher levels of interferon-γ (IFN-γ) (p=0.04) and IL-12 (p=0.03). Among patients on VEGF-TKIs, those with clinical benefit had lower 1 month IL-13 (p=0.02) and granulocyte macrophage CSF (p=0.01) as well as higher 1 month VEGF (p=0.04) compared with patients with no clinical benefit. Conclusion For patients receiving VEGF-TKI or ICI therapy, distinct plasma cytokines were associated with clinical benefit. Our findings support additional investigation into plasma cytokines as biomarkers in metastatic RCC.
Collapse
Affiliation(s)
- Alexander Chehrazi-Raffle
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Luis Meza
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Marice Alcantara
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Nazli Dizman
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Paulo Bergerot
- Department of Medical Oncology, Cettro Cancer Center, Brasilia, Brazil
| | - Nicholas Salgia
- Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, Brazil
| | - JoAnn Hsu
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Nora Ruel
- Department of Computational and Quantitative Medicine, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Sabrina Salgia
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Jasnoor Malhotra
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Ewa Karczewska
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Marcin Kortylewski
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| | - Sumanta Pal
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California, USA
| |
Collapse
|
94
|
Kumar A, Bellayr IH, Singh HS, Puri RK. IL-13Rα2 gene expression is a biomarker of adverse outcome in patients with adrenocortical carcinoma. PLoS One 2021; 16:e0246632. [PMID: 33591997 PMCID: PMC7886164 DOI: 10.1371/journal.pone.0246632] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/24/2021] [Indexed: 11/29/2022] Open
Abstract
Adrenocortical carcinoma (ACC) is a rare but aggressive endocrine malignancy that usually results in a fatal outcome. To allow the better clinical management and reduce mortality, we searched for clinical and molecular markers that are reliable predictor of disease severity and clinical outcome in ACC patients. We determined a correlation between the overexpression of IL-13Rα2 and the clinical outcome in ACC patients using comprehensive data available in The Cancer Genome Atlas (TCGA) database. The dataset of 79 ACC subjects were divided into groups of low, medium, or high expression of IL-13Rα2 as determined by RNA-seq. These patients were also stratified by length of survival, overall survival, incidence of a new tumor event, incidence of metastasis, and production of excess hormones. We report a correlation between IL-13Rα2 expression and survival of subjects with ACC. High expression of IL-13Rα2 in ACC tumors was significantly associated with a lower patient survival rate and period of survival compared to low expression (p = 0.0084). In addition, high IL-13Rα2 expression was significantly associated with a higher incidence of new tumor events and excess hormone production compared to low or medium IL-13Rα2 expression. Within the cohort of patients that produced excess hormone, elevated IL-13Rα2 expression was significantly associated with a lower survival rate. Additionally, IL-13Rα1 had a potential relationship between transcript level and ACC survival. Our results and promising antitumor activity in preclinical models and trials indicate that IL-13Rα2 expression is an important prognostic biomarker of ACC disease outcome and a promising target for therapeutic treatment of ACC.
Collapse
Affiliation(s)
- Abhinav Kumar
- Division of Cellular and Gene Therapies, Tumor Vaccines and Biotechnology Branch, Center for Biologics and Evaluation Research, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Ian H. Bellayr
- Division of Cellular and Gene Therapies, Tumor Vaccines and Biotechnology Branch, Center for Biologics and Evaluation Research, US Food and Drug Administration, Silver Spring, Maryland, United States of America
| | - Hridaya S. Singh
- Department of Zoology, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| | - Raj K. Puri
- Division of Cellular and Gene Therapies, Tumor Vaccines and Biotechnology Branch, Center for Biologics and Evaluation Research, US Food and Drug Administration, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
95
|
Mathew D, Torres RM. Lysophosphatidic Acid Is an Inflammatory Lipid Exploited by Cancers for Immune Evasion via Mechanisms Similar and Distinct From CTLA-4 and PD-1. Front Immunol 2021; 11:531910. [PMID: 33584637 PMCID: PMC7873449 DOI: 10.3389/fimmu.2020.531910] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Immunological tolerance has evolved to curtail immune responses against self-antigens and prevent autoimmunity. One mechanism that contributes to immunological tolerance is the expression of inhibitory receptors by lymphocytes that signal to dampen immune responses during the course of an infection and to prevent immune-mediated collateral damage to the host. The understanding that tumors exploit these physiological mechanisms to avoid elimination has led to remarkable, but limited, success in the treatment of cancer through the use of biologics that interfere with the ability of cancers to suppress immune function. This therapy, based on the understanding of how T lymphocytes are normally activated and suppressed, has led to the development of therapeutic blocking antibodies, referred to as immune checkpoint blockade, which either directly or indirectly promote the activation of CD8 T cells to eradicate cancer. Here, we highlight the distinct signaling mechanisms, timing and location of inhibition used by the CTLA-4 and PD-1 inhibitory receptors compared to a novel inhibitory signaling axis comprised of the bioactive lipid, lysophosphatidic acid (LPA), signaling via the LPA5 receptor expressed by CD8 T cells. Importantly, abundant evidence indicates that an LPA-LPA5 signaling axis is also exploited by diverse cancers to suppress T cell activation and function. Clearly, a thorough molecular and biochemical understanding of how diverse T cell inhibitory receptors signal to suppress T cell antigen receptor signaling and function will be important to inform the choice of which complimentary checkpoint blockade modalities might be used for a given cancer.
Collapse
Affiliation(s)
| | - Raul M. Torres
- Department of Immunology & Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
96
|
Yan S, Wan G. Tumor-associated macrophages in immunotherapy. FEBS J 2021; 288:6174-6186. [PMID: 33492779 DOI: 10.1111/febs.15726] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/23/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages (TAMs) are essential components of the tumor microenvironment involved in the progression and metastasis of cancer. They are intimately involved in angiogenesis and immunosuppression in normal and malignant tissues, as well as pro-fibrotic activities. With the development of immunotherapy, eradication of cancer cells through activation of the innate immune system has achieved inspiring results, whereas only a handful of patients show a durable response. The tumor-suppressive environment has been investigated with respect to playing a vital role in cancer relapse. In this review, we uncover the heterogeneity of the origin of TAMs, as well as the functions of TAMs in tumor progression associated with intricate regulatory networks in the tumor microenvironment, aiming to inspire therapeutic insight for tumor immunotherapy.
Collapse
Affiliation(s)
- Shijia Yan
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Guohui Wan
- National-Local Joint Engineering Laboratory of Druggability and New Drug Evaluation, National Engineering Research Center for New Drug and Druggability (Cultivation), Guangdong Province Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
97
|
Possible Roles of Interleukin-4 and -13 and Their Receptors in Gastric and Colon Cancer. Int J Mol Sci 2021; 22:ijms22020727. [PMID: 33450900 PMCID: PMC7828336 DOI: 10.3390/ijms22020727] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 02/08/2023] Open
Abstract
Interleukin (IL)-4 and -13 are structurally and functionally related cytokines sharing common receptor subunits. They regulate immune responses and, moreover, are involved in the pathogenesis of a variety of human neoplasms. Three different receptors have been described for IL-4, but only IL-4 receptor type II (IL-4Rα/IL-13Rα1) is expressed in solid tumors. While IL-13 can also bind to three different receptors, IL-13 receptor type I (IL-4Rα/IL-13Rα1/IL-13Rα2) and type II (IL-4Rα/IL-13Rα1) are expressed in solid tumors. After receptor binding, IL-4 and IL-13 can mediate tumor cell proliferation, survival, and metastasis in gastric or colon cancer. This review summarizes the results about the role of IL-4/IL-13 and their receptors in gastric and colon cancer.
Collapse
|
98
|
Kim KM, Hussein UK, Park SH, Moon YJ, Zhang Z, Ahmed AG, Ahn AR, Park HS, Kim JR, Jang KY. Expression of IL4Rα and IL13Rα1 are associated with poor prognosis of soft-tissue sarcoma of the extremities, superficial trunk, and retroperitoneum. Diagn Pathol 2021; 16:2. [PMID: 33419470 PMCID: PMC7796579 DOI: 10.1186/s13000-020-01066-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 12/29/2020] [Indexed: 02/08/2023] Open
Abstract
Background IL4Rα and IL13Rα1 are constituents of the type II IL4 receptor. Recently, IL4Rα and IL13Rα1 were reported to have roles in cancer progression and suggested as potential prognostic markers. However, studies on IL4Rα and IL13Rα1 in soft-tissue sarcomas have been limited. Methods This study investigated the immunohistochemical expression of IL4Rα and IL13Rα1 in 89 soft-tissue sarcomas of the extremities, superficial trunk, and retroperitoneum. Immunohistochemical staining for IL4Rα and IL13Rα1 were scored according to a combination of staining intensity and staining area in tissue microarray samples. Positivity for the immunohistochemical expression of IL4Rα and IL13Rα1 were determined using receiver operating curve analysis. Statistical analysis was performed using regression analysis and a chi-square test. Results In human soft-tissue sarcomas, immunohistochemical expression of IL4Rα was significantly associated with IL13Rα1 expression. Nuclear and cytoplasmic expression of IL4Rα and IL13Rα1 were significantly associated with shorter survival of soft-tissue sarcoma patients in univariate analysis. Multivariate analysis indicated that nuclear expression of IL4Rα and IL13Rα1 were independent indicators of shorter overall survival (IL4Rα; p = 0.002, IL13Rα1; p = 0.016) and relapse-free survival (IL4Rα; p = 0.022, IL13Rα1; p < 0.001) of soft-tissue sarcoma patients. Moreover, the co-expression pattern of nuclear IL4Rα and IL13Rα1 was an independent indicator of shorter survival of soft-tissue sarcoma patients (overall survival; overall p < 0.001, relapse-free survival; overall p < 0.001). Conclusions This study suggests IL4Rα and IL13Rα1 are associated with the progression of soft-tissue sarcoma, and the expression of IL4Rα and IL13Rα1 might be novel prognostic indicators of soft-tissue sarcoma patients.
Collapse
Affiliation(s)
- Kyoung Min Kim
- Department of Pathology, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Usama Khamis Hussein
- Department of Pathology, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea.,Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - See-Hyoung Park
- Department of Bio and Chemical Engineering, Hongik University, Sejong, Republic of Korea
| | - Young Jae Moon
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea.,Department of Biochemistry and Molecular Biology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Zhongkai Zhang
- Department of Orthopedic Surgery, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea
| | - Asmaa Gamal Ahmed
- Department of Pathology, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea.,Faculty of Postgraduate Studies and Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Ae-Ri Ahn
- Department of Pathology, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Ho Sung Park
- Department of Pathology, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea.,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea
| | - Jung Ryul Kim
- Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea. .,Department of Orthopedic Surgery, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea.
| | - Kyu Yun Jang
- Department of Pathology, Jeonbuk National University Medical School, 567 Baekje-daero, Dukjin-gu, Jeonju, 54896, Republic of Korea. .,Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical, Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, Republic of Korea.
| |
Collapse
|
99
|
Freire MS, Oliveira NG, Lima SMF, Porto WF, Martins DCM, Silva ON, Chaves SB, Sousa MV, Ricart CAO, Castro MS, Fontes W, Franco OL, Rezende TMB. IL-4 absence triggers distinct pathways in apical periodontitis development. J Proteomics 2020; 233:104080. [PMID: 33338687 DOI: 10.1016/j.jprot.2020.104080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/17/2020] [Accepted: 12/12/2020] [Indexed: 12/18/2022]
Abstract
Dental pulp is a specialized tissue able to respond to infectious processes. Nevertheless, infection progress and root canal colonization trigger an immune-inflammatory response in tooth-surrounding tissues, leading to apical periodontitis and bone tissue destruction, further contributing to tooth loss. In order to shed some light on the effects of IL-4 on periradicular pathology development modulation, microtomographic, histological and proteomic analyses were performed using 60 mice, 30 wild type and 30 IL-4-/-. For that, 5 animals were used for microtomographic and histological analysis, and another 5 for proteomic analysis for 0, 7 and 21 days with/without pulp exposure. The periapical lesions were established in WT and IL-4-/- mice without statistical differences in their volume, and the value of p < 0.05 was adopted as significant in microtomographic and histological analyses. Regarding histological analysis, IL-4-/- mice show aggravation of pulp inflammation compared to WT. By using proteomic analysis, we have identified 32 proteins with increased abundance and 218 proteins with decreased abundance in WT animals after 21 days of pulp exposure, compared to IL-4-/- animals. However, IL-4-/- mice demonstrated faster development of apical periodontitis. These animals developed a compensatory mechanism to overcome IL-4 absence, putatively based on the identification of upregulated proteins related to immune system signaling pathways. Significance: IL-4 might play a protective role in diseases involving bone destruction and its activity may contribute to host protection, mainly due to its antiosteoclastogenic action.
Collapse
Affiliation(s)
- Mirna S Freire
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade de Brasília, Brasília, DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Curso de Odontologia, Centro Universitário do Planalto Central Apparecido dos Santos, UNICEPLAC, Brasília, DF, Brazil
| | - Nelson G Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Stella M F Lima
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Curso de Odontologia, Universidade Católica de Brasília, UCB, Brasília, DF, Brazil
| | - William F Porto
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Porto Reports, Brasília, DF, Brazil
| | - Danilo C M Martins
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | - Osmar N Silva
- Programa de Pós-graduacao em Ciências Farmacêuticas. Centro Universitário de Anápolis - UniEVANGELICA, Anápolis, GO, Brazil
| | - Sacha B Chaves
- Departamento de nanotecnologia, Universidade de Brasília, Brazil
| | - Marcelo V Sousa
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brazil
| | - Carlos A O Ricart
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brazil
| | - Mariana S Castro
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brazil
| | - Wagner Fontes
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brazil
| | - Octavio L Franco
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade de Brasília, Brasília, DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade de Brasília, UnB, Brasília, DF, Brazil; Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil.
| | - Taia M B Rezende
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Curso de Odontologia, Universidade Católica de Brasília, UCB, Brasília, DF, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade de Brasília, UnB, Brasília, DF, Brazil.
| |
Collapse
|
100
|
Raza G, Yunus FUN, Mangukiya HB, Merugu SB, Mashausi DS, Zeling W, Negi H, Zhou B, Roy D, Wu Z, Li D. A novel target anti-interleukin-13 receptor subunit alpha-2 monoclonal antibody inhibits tumor growth and metastasis in lung cancer. Int Immunopharmacol 2020; 90:107155. [PMID: 33243603 DOI: 10.1016/j.intimp.2020.107155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023]
Abstract
IL13Rα2 shows high expression in different types of tumors and can be a target for cancer therapy in humans due to its poor prognosis. The aim of our study is to characterize and investigate the effect of interleukin-13 receptor subunit alpha-2monoclonal antibody mAb15D8 on lung cancer cells in vitro and in vivo by blocking its specific epitope in IL13Rα2 antigen. The mAb15D8 blocking epitope was analyzed through the mutagenesis of IL13Rα2 and confirmed with western blot. We found that the IL13Rα2 epitope recognized by mAb15D8 antibody is a new binding site localized in the fibronectin-III domain-1 of IL13Rα2 antigen. Moreover, the mAb15D8 obviously reduced cell proliferation, migration of H460, A549, SKOV3, and B16F10 cells. Treatment with mAb15D8 significantly reduced the H460 xenograft tumor formation and growth in nude mice and inhibited B16F10 tumor metastasis and increased survival in C57BL/6 mice. Pharmacokinetic and toxicological analysis demonstrated the safety of mAb15D8 as a potential therapeutic agent. We developed a novel mouse monoclonal antibody against IL13Rα2 which binds to specific epitope on IL13Rα2 antigen. In vivo treatment with the antibody significantly reduced tumor growth and lung metastasis and prolonged survival. These results suggest mAb15D8 antibody as a potential therapeutic agent for cancer therapy.
Collapse
Affiliation(s)
- Ghulam Raza
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Fakhar-Un-Nisa Yunus
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; Department of Zoology, Lahore College for Women University, Pakistan.
| | | | | | | | - Wang Zeling
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Hema Negi
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Bingjie Zhou
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Debmalya Roy
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenghua Wu
- People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Dawei Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China; Engineering Research Center of Cell and Therapeutic Antibody of Ministry of Education, Shanghai Jiao Tong University, China.
| |
Collapse
|