51
|
Zhou CQ, Ka W, Zhang HJ, Li YL, Gao P, Long RJ, Yang SW, Wang JL. RNA-Seq Analysis of the Key Long Noncoding RNAs and mRNAs Related to the Regulation of Acute Heat Stress in Rainbow Trout. Animals (Basel) 2022; 12:ani12030325. [PMID: 35158649 PMCID: PMC8833469 DOI: 10.3390/ani12030325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 01/14/2023] Open
Abstract
Simple Summary At present, climate warming is a very serious environmental problem. A sudden and large increase or decrease in temperature is likely to cause stress response in animals. Rainbow trout is a kind of cultured cold-water fish, which is very sensitive to high temperature. Therefore, it is very vulnerable to heat waves during production. The current study found that the behavior, antioxidant capacity, and natural immune function of rainbow trout under acute heat stress were significantly enhanced in the early stages of stress response, but its anti-stress ability decreased with an increase in stress intensity and duration. Transcriptome sequencing and bioinformatics analysis showed that some non-coding RNAs could competitively bind to target genes, and jointly participate in metabolism, apoptosis, and the immune regulation of rainbow trout under stress environments. In conclusion, our study can lay a theoretical foundation for the breeding of heat-resistant rainbow trout varieties. Abstract As the global climate warms, more creatures are threatened by high temperatures, especially cold-water fish such as rainbow trout. Evidence has demonstrated that long noncoding RNAs (lncRNAs) play a pivotal role in regulating heat stress in animals, but we have little understanding of this regulatory mechanism. The present study aimed to identify potential key lncRNAs involved in regulating acute heat stress in rainbow trout. lncRNA and mRNA expression profiles of rainbow trout head kidney were analyzed via high-throughput RNA sequencing, which exhibited that 1256 lncRNAs (802 up-regulation, 454 down-regulation) and 604 mRNAs (353 up-regulation, 251 down-regulation) were differentially expressed. These differentially expressed genes were confirmed to be primarily associated with immune regulation, apoptosis, and metabolic process signaling pathways through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis and coding-noncoding co-expression network analysis. These results suggested that 18 key lncRNA-mRNA pairs are essential in regulating acute heat stress in rainbow trout. Overall, these analyses showed the effects of heat stress on various physiological functions in rainbow trout at the transcriptome level, providing a theoretical basis for improving the production and breeding of rainbow trout and the selection of new heat-resistant varieties.
Collapse
Affiliation(s)
- Chang-Qing Zhou
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Grassland Agriculture Engineering Center, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (C.-Q.Z.); (P.G.)
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Wei Ka
- Gansu Fishery Research Institute, Lanzhou 730000, China;
| | - Hui-Jun Zhang
- Gansu Agriculture Technology College, Lanzhou 730000, China; (H.-J.Z.); (Y.-L.L.)
| | - Ya-Lan Li
- Gansu Agriculture Technology College, Lanzhou 730000, China; (H.-J.Z.); (Y.-L.L.)
| | - Pan Gao
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Grassland Agriculture Engineering Center, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (C.-Q.Z.); (P.G.)
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Rui-Jun Long
- School of Life Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Shun-Wen Yang
- Gansu Fishery Research Institute, Lanzhou 730000, China;
- Correspondence: (S.-W.Y.); (J.-L.W.)
| | - Jian-Lin Wang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Grassland Agriculture Engineering Center, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China; (C.-Q.Z.); (P.G.)
- Correspondence: (S.-W.Y.); (J.-L.W.)
| |
Collapse
|
52
|
Benavides A, Gutiérrez D, Epuyao N, Modak B, Imarai M, Valenzuela B. Alpinone: A positive regulator molecule of immune antiviral response in Atlantic salmon kidney cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104262. [PMID: 34543663 DOI: 10.1016/j.dci.2021.104262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Alpinone is a flavonoid obtained from the resinous exudate of Heliotropium huascoense. This flavonoid shows antiviral activity against the infectious salmon anemia virus (ISAV), which causes severe disease in farmed Atlantic salmon. Here, we aim to elucidate mechanisms underlying the antiviral effects of the flavonoid. In this regard, we evaluated whether Alpinone can act upregulating the pattern-recognition receptor genes, i.e., the RIG-I-like, TLR3, and TLR9 genes, and the genes of the downstream signaling pathways. Transcriptional expression of the genes was analyzed using real-time PCR after 8, 24, and 48 h treatment of salmon kidney adherent cells with 15 μg/mL of Alpinone. First, we showed that Alpinone induced IFNa expression in the kidney adherent cells, indicating that this type of salmon cells is in part responsible for the effects previously reported in vivo. Upregulation of the IFN-induced myxovirus resistance (Mx) gene was also observed in the head kidney cells in response to the treatment. Overexpression reached a maximum level at 24 h post-treatment. Interestingly, Alpinone also induced upregulation of the cytosolic receptors of ssRNA, named Retinoic acid-inducible gene I (RIG-I) and Melanoma Differentiation-Associated protein 5 (MDA5), but there were no effects on the transcriptional expression of the TLR3 and TLR9 endosomal receptors. In addition, Alpinone upregulated the expression of genes encoding the main components of the RIG-I/MDA5 signaling pathways, such as the mitochondrial antiviral-signaling protein (MAVS), TNF Receptor Associated Factor 3 (TRAF3), TANK-binding kinase 1 (TBK1), I-kappaB kinase ε (IKKε), the transcription factors IRF-3, and IRF7. The increased expression of all these genes is consistent with the upregulation of IFNa and Mx mRNAs. Because BX795 completely prevents Alpinone-dependent upregulation of IFNa and IRF3, the flavonoid targets seem to be upstream of the kinases TBK1 and IKKε. Altogether, this study contributes to elucidating the mechanisms involved in Alpinone antiviral activity in fish. Alpinone can be used to counteract virus mechanisms of evasion where the onset of interferon-mediated response is prevented or delayed.
Collapse
Affiliation(s)
- Almendra Benavides
- Natural Product Chemistry Laboratory, Aquatic Biotechnology Center, Chemistry and Biology Faculty, Environmental Sciences Department, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile.
| | - Daniela Gutiérrez
- Natural Product Chemistry Laboratory, Aquatic Biotechnology Center, Chemistry and Biology Faculty, Environmental Sciences Department, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile.
| | - Nadia Epuyao
- Natural Product Chemistry Laboratory, Aquatic Biotechnology Center, Chemistry and Biology Faculty, Environmental Sciences Department, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile.
| | - Brenda Modak
- Natural Product Chemistry Laboratory, Aquatic Biotechnology Center, Chemistry and Biology Faculty, Environmental Sciences Department, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile.
| | - Mónica Imarai
- Immunology Laboratory, Aquatic Biotechnology Center, Biology Department, Chemistry and Biology Faculty, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile.
| | - Beatriz Valenzuela
- Natural Product Chemistry Laboratory, Aquatic Biotechnology Center, Chemistry and Biology Faculty, Environmental Sciences Department, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile.
| |
Collapse
|
53
|
Fu Z, Qin JG, Ma Z, Yu G. Acute acidification stress weakens the head kidney immune function of juvenile Lates calcarifer. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 225:112712. [PMID: 34478980 DOI: 10.1016/j.ecoenv.2021.112712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/03/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Acidized water environment can impact many physiological processes of aquatic animals. The response of the head kidney to acidification, especially the immune response, is of great significance to health. This study analyzed the histological and transcriptional changes under different acidification levels (C group, pH 8.1; P group, pH 7.4; E group, pH 3.5) in the short term (12 h, 36 h and 60 h) in the head kidney of juvenile L. calcarifer. The results showed that the acidification of the water environment caused tissue damage to the head kidney of L. calcarifer, and the damage appeared earlier and was stronger in the extreme pH group. The transcriptional response of L. calcarifer head kidney increased with the increase of acidification level. The two treatments transcriptional responses showed different trends in terms of time. After KEGG function enrichment, with the increase of stimulation time, the proportion of down-regulated pathways was increasing, and the types of pathway enrichment at different acidification levels were quite different at the initial stage. At 12 h, the first category in the P group with the most significant number of pathways was 'Metabolism', and the first category in the E group with the largest number of pathways was 'Human Diseases'. At 60 h, the enrichment pathways of the two groups were highly overlapping in immune-related pathways, which contained 26 common DEGs. They had a dominant expression pattern. In the P group, the expression level decreased with time. In the E group, the down-regulation degree of expression level at 12 h reached the level of the P group at 60 h, and the expression level remained low until 60 h. Through the correlation network, interferon regulatory factor 7 (IRF7), Tripartite motif containing-21 (TRIM21), Signal transducer and activator of transcription 1 (STAT1) and Signal transducer and activator of transcription 3 (STAT3) were found to have the most correlation with other genes. In this study, juvenile L. calcarifer showed different coping strategies to different levels of acute acidification stress, but all of them resulted in the extensive weakening of head kidney immune function.
Collapse
Affiliation(s)
- Zhengyi Fu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou 510300, China; Sanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Jian G Qin
- College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Zhenhua Ma
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou 510300, China; Sanya Tropical Fisheries Research Institute, Sanya 572018, China.
| | - Gang Yu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya 572018, China; Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou 510300, China; Sanya Tropical Fisheries Research Institute, Sanya 572018, China.
| |
Collapse
|
54
|
Histopathology of head kidney tissues in challenged rohu, Labeo rohita Hamilton after vaccinating with Aeromonas hydrophila antigens. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100025. [DOI: 10.1016/j.fsirep.2021.100025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 11/21/2022] Open
|
55
|
Wang X, Zhang R, Liu L, Ma G, Zhu H. An IL-1β homologue induced inflammation and antibacterial immune defense in Siberian sturgeon (Acipenser baeri). FISH & SHELLFISH IMMUNOLOGY 2021; 118:283-293. [PMID: 34537337 DOI: 10.1016/j.fsi.2021.08.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Interleukin-1β is a key pro-inflammatory cytokine functioning in initiation of inflammatory responses against bacterial- and viral-infections. In the present study, a putative IL-1β counterpart was identified from Siberian sturgeon (Acipenser baeri) and designated as AbIL-1β. The Abil-1β cDNA sequence consists of 1130 bp with an open reading frame (ORF) of 585 bp, which encodes a 194 amino acid (aa) protein. Multiple amino acid sequence alignment revealed that a possible mature peptide could start at Leu18, although no cut site for ICE (IL-1β converting enzyme) enzyme was present in Siberian sturgeon IL-1β. Even if AbIL-1β shares a relative low identity (33.6%) with another sturgeon type II IL-1β gene from Acipenser dabryanus, they still clustered together in phylogenetic tree. Endogenous Abil-1β was highly expressed in brain, blood, head kidney and spleen of healthy Siberian sturgeon, and remarkably up regulated in head kidney, spleen, and liver upon Aeromonas hydrophila (A.h) challenge. Consistently, in vitro stimulation test using heat-killed A.h and LPS significantly increased Abil-1β transcripts of primary spleen cells. To investigate the bactericidal capability of AbIL-1β, recombinant AbIL-1β (rAbIL-1β) was generated by prokaryotes. Pre-injection of rAbIL-1β reduced the bacterial load in sturgeon spleen after A.h infection. Further, rAbIL-1β was served as feed additive and demonstrated to enhance hybrid sturgeon's defense against A.h infection by increased expressional levels of immune-related genes (IL-1β, IL-6, IL-8, IgM and MHCIIβ), elevated activities of serum lysosome, ACH50, and MPO, as well as higher percent survival. In summary, the current results suggested that AbIL-1β functions in immune regulation and could improve sturgeon's resistance to bacterial infection.
Collapse
Affiliation(s)
- Xiaowen Wang
- Beijing Fisheries Research Institute & Beijing Key Laboratory of Fishery Biotechnology, Beijing, 100068, People's Republic of China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, People's Republic of China
| | - Rong Zhang
- Beijing Fisheries Research Institute & Beijing Key Laboratory of Fishery Biotechnology, Beijing, 100068, People's Republic of China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, People's Republic of China
| | - Lili Liu
- Beijing Fisheries Research Institute & Beijing Key Laboratory of Fishery Biotechnology, Beijing, 100068, People's Republic of China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, People's Republic of China
| | - Guoqing Ma
- Beijing Fisheries Research Institute & Beijing Key Laboratory of Fishery Biotechnology, Beijing, 100068, People's Republic of China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, People's Republic of China
| | - Hua Zhu
- Beijing Fisheries Research Institute & Beijing Key Laboratory of Fishery Biotechnology, Beijing, 100068, People's Republic of China; National Freshwater Fisheries Engineering Technology Research Center, Beijing, 100068, People's Republic of China.
| |
Collapse
|
56
|
Liu JB, Chen K, Liu TB, Wang ZY, Wang L. Global transcriptome profiling reveals antagonizing response of head kidney of juvenile common carp exposed to glyphosate. CHEMOSPHERE 2021; 280:130823. [PMID: 34162096 DOI: 10.1016/j.chemosphere.2021.130823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/23/2021] [Accepted: 05/05/2021] [Indexed: 06/13/2023]
Abstract
Glyphosate (GLY) frequently detected in various water bodies has imposed a serious risk on fish. Head kidney of fish is an important defense organ, playing a vital part in antagonizing exogenous hazardous matter. The objective of this study was to characterize toxic mechanisms of GLY in head kidney of common carp based on transcriptome profiling. After 45-days exposure of GLY at environmentally relevant concentrations, juvenile common carp were used as experimental subjects to analyze how the head kidney responded to GLY. The transcriptome profiling identified 1381 different expressed genes (DEGs) between the control and exposure groups (5 and 50 mg/L). Functional analysis of DEGs substantiated over-representative pathways mainly involving cellular stress responses, cell proliferation and turnover, apoptosis, lipid metabolism, and innate immune processes in both treated groups compared with the control group. Predicted network of gene regulation indicated that GLY-induced tp53 played a vital role in linking a battery of signals. Furthermore, the expression of 10 candidate genes by qRT-PCR aligned with transcriptional profiling. In addition, western blotting analysis confirmed that GLY-induced apoptosis and cellular proliferation were closely involved in activating MAKP signaling pathway and lipid metabolism pathway in both treated groups. Collectively, these data demonstrate that head kidney of juvenile common carp mainly leverages upregulation of genes related to cell proliferation and turnover, apoptosis, and lipid metabolism to combat sub-chronic exposure of GLY. This study casts new understanding into the risk of GLY in aquatic animals.
Collapse
Affiliation(s)
- Jing-Bo Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Kai Chen
- New Drug Evaluation Center of Shandong Academy of Pharmaceutical Sciences, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Ji'nan City, Shandong Province, 250101, China
| | - Tian-Bin Liu
- New Drug Evaluation Center of Shandong Academy of Pharmaceutical Sciences, Shandong Academy of Pharmaceutical Sciences, 989 Xinluo Street, Ji'nan City, Shandong Province, 250101, China
| | - Zhen-Yong Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
57
|
Dang Z, Arena M, Kienzler A. Fish toxicity testing for identification of thyroid disrupting chemicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117374. [PMID: 34051580 DOI: 10.1016/j.envpol.2021.117374] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 05/03/2023]
Abstract
Identification of thyroid disrupting chemicals (TDCs), one of the most studied types of endocrine disruptors (EDs), is required according to EU regulations on industrial chemicals, pesticides, and biocides. Following that requirement, the use of fish as a unique non-mammalian model species for identification of EDs may be warranted. This study summarized and evaluated effects of TDCs on fish thyroid sensitive endpoints including thyroid hormones, thyroid related gene expression, immunostaining for thyroid follicles, eye size and pigmentation, swim bladder inflation as well as effects of TDCs on secondary sex characteristics, sex ratio, growth and reproduction. Changes in thyroid sensitive endpoints may reflect the balanced outcome of different processes of the thyroid cascade. Thyroid sensitive endpoints may also be altered by non-thyroid molecular or endocrine pathways as well as non-specific factors such as general toxicity, development, stress, nutrient, and the environmental factors like temperature and pH. Defining chemical specific effects on thyroid sensitive endpoints is important for identification of TDCs. Application of the AOP (adverse outcome pathway) concept could be helpful for defining critical events needed for testing and identification of TDCs in fish.
Collapse
Affiliation(s)
- ZhiChao Dang
- National Institute for Public Health and the Environment A. van Leeuwenhoeklaan, 93720, BA, Bilthoven, the Netherlands.
| | - Maria Arena
- European Food Safety Authority Via Carlo Magno 1/A, 43126, Parma, Italy
| | - Aude Kienzler
- European Food Safety Authority Via Carlo Magno 1/A, 43126, Parma, Italy
| |
Collapse
|
58
|
Naftaly AS, Pau S, White MA. Long-read RNA sequencing reveals widespread sex-specific alternative splicing in threespine stickleback fish. Genome Res 2021; 31:1486-1497. [PMID: 34131005 PMCID: PMC8327910 DOI: 10.1101/gr.274282.120] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 06/15/2021] [Indexed: 01/07/2023]
Abstract
Alternate isoforms are important contributors to phenotypic diversity across eukaryotes. Although short-read RNA-sequencing has increased our understanding of isoform diversity, it is challenging to accurately detect full-length transcripts, preventing the identification of many alternate isoforms. Long-read sequencing technologies have made it possible to sequence full-length alternative transcripts, accurately characterizing alternative splicing events, alternate transcription start and end sites, and differences in UTR regions. Here, we use Pacific Biosciences (PacBio) long-read RNA-sequencing (Iso-Seq) to examine the transcriptomes of five organs in threespine stickleback fish (Gasterosteus aculeatus), a widely used genetic model species. The threespine stickleback fish has a refined genome assembly in which gene annotations are based on short-read RNA sequencing and predictions from coding sequence of other species. This suggests some of the existing annotations may be inaccurate or alternative transcripts may not be fully characterized. Using Iso-Seq we detected thousands of novel isoforms, indicating many isoforms are absent in the current Ensembl gene annotations. In addition, we refined many of the existing annotations within the genome. We noted many improperly positioned transcription start sites that were refined with long-read sequencing. The Iso-Seq-predicted transcription start sites were more accurate and verified through ATAC-seq. We also detected many alternative splicing events between sexes and across organs. We found a substantial number of genes in both somatic and gonadal samples that had sex-specific isoforms. Our study highlights the power of long-read sequencing to study the complexity of transcriptomes, greatly improving genomic resources for the threespine stickleback fish.
Collapse
Affiliation(s)
- Alice S Naftaly
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| | - Shana Pau
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
- Department of Biology, University of Texas Arlington, Arlington, Texas 76019, USA
| | - Michael A White
- Department of Genetics, University of Georgia, Athens, Georgia 30602, USA
| |
Collapse
|
59
|
Developmental thyroid disruption causes long-term impacts on immune cell function and transcriptional responses to pathogen in a small fish model. Sci Rep 2021; 11:14496. [PMID: 34262125 PMCID: PMC8280131 DOI: 10.1038/s41598-021-93929-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/01/2021] [Indexed: 11/08/2022] Open
Abstract
Current evidence suggests thyroid hormones (THs) impact development of the immune system, but few studies have explored the connection between the thyroid and immune systems, especially in fish. This is important as some environmental contaminants disrupt TH homeostasis and may thus have negative impacts on the immune system. To determine the long-term consequences of early life stage (ELS) hypothyroidism on immune function, fathead minnows were exposed to the model thyroid hormone suppressant propylthiouracil (PTU) from < 1 to 30 days post hatch. Fish were transferred to clean water and raised to adulthood (5-7 months post hatch) at which time, several aspects of immune function were evaluated. Ex vivo assessment of immune cell function revealed significant decreases (1.2-fold) in the phagocytic cell activity of PTU-treated fish relative to the controls. Fish were also injected with Yersinia ruckeri to evaluate their in vivo immune responses across a suite of endpoints (i.e., transcriptomic analysis, leukocyte counts, spleen index, hematocrit, bacterial load and pathogen resistance). The transcriptomic response to infection was significantly different between control and PTU-treated fish, though no differences in bacterial load or pathogen resistance were noted. Overall, these results suggest that early life stage TH suppression causes long-term impacts on immune function at the molecular and cellular levels suggesting a key role for TH signaling in normal immune system development. This study lays the foundation for further exploration into thyroid-immune crosstalk in fish. This is noteworthy as disruption of the thyroid system during development, which can occur in response to chemicals present in the environment, may have lasting effects on immune function in adulthood.
Collapse
|
60
|
Trung NB, Nan FH, Wang IJ, Wu YC, Wen CM, Lee MC, Hang HT, Lee PT. Expression, signal transduction, and function analysis of TIRAP and TRIF in Nile tilapia (Oreochromis niloticus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103991. [PMID: 33387560 DOI: 10.1016/j.dci.2020.103991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/26/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
Toll/interleukin 1 receptor domain-containing adaptor protein (TIRAP) and toll/interleukin 1 receptor-domain-containing adapter-inducing interferon-β (TRIF) are crucial adaptors of signal transduction for the signaling pathways of toll-like receptors (TLRs). TIRAP and TRIF perform an essential function in an antimicrobial immune response; however, their function in Nile tilapia remains unknown. Herein, TIRAP and TRIF from Nile tilapia were identified and functionally characterized. Phylogenetic analysis showed that OnTIRAP and OnTRIF clustered with corresponding homologs from other fish species, with comparable gene structures to those of select vertebrate TIRAP and TRIF genes, respectively. The expression profiles of OnTIRAP and OnTRIF were broadly distributed in the ten tissues investigated, with high transcript levels noticed in immune organs. The transcription levels of OnTIRAP and OnTRIF were upregulated in response to bacterial and poly (I:C) challenges. GFP signals were only detected in the cytoplasmic region of fish cells transfected with OnTIRAP-GFP and OnTRIF-GFP expression plasmids. Moreover, overexpression of OnTIRAP and OnTRIF activated interferon-β (IFN-β) and activator protein 1 (AP1) reporters in HEK 293 cells. Activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) reporter was only observed in OnTRIF-overexpressing HEK 293 cells. Furthermore, the results of the co-immunoprecipitation analysis showed that OnTRIF, but not OnTIRAP, was recruited as an adaptor protein by OnTLR25. This study provides the first evidence on the functions of OnTIRAP and OnTRIF in the immune system of Nile tilapia against pathogens and may serve as the basis for further investigations on TLR signaling in fish.
Collapse
Affiliation(s)
- Nguyen Bao Trung
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan, ROC; College of Aquaculture and Fisheries, Can Tho University, Can Tho, Viet Nam
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan, ROC
| | - I-Jong Wang
- Institute of Zoology, College of Life Science, National Taiwan University, Taipei City, Taiwan, ROC
| | - Yu-Ching Wu
- Institute of Zoology, College of Life Science, National Taiwan University, Taipei City, Taiwan, ROC
| | - Chiu-Ming Wen
- Department of Life Sciences, National University of Kaohsiung, Kaohsiung, Taiwan, ROC
| | - Meng-Chou Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan, ROC; Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung City, Taiwan, ROC; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung City, Taiwan, ROC
| | - Ho Thi Hang
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan, ROC
| | - Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung City, Taiwan, ROC.
| |
Collapse
|
61
|
Choudhury C, Mazumder R, Biswas R, Sengupta M. Cadmium exposure induces inflammation through the canonical NF-κΒ pathway in monocytes/macrophages of Channa punctatus Bloch. FISH & SHELLFISH IMMUNOLOGY 2021; 110:116-126. [PMID: 33453382 DOI: 10.1016/j.fsi.2021.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/27/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
A vast range of research related to the toxicity of the heavy metal cadmium (Cd) has been carried out in a wide variety of fish species. However, Cd induced immunomodulation in monocytes/macrophages of Channa punctatus Bloch. has rarely been explored. The present study was designed to determine Cd induced immune response, role of NF-κB (nuclear factor kappa B) pathway and the subsequent downstream molecular responses in monocytes/macrophages of C. punctatus. Fish were sampled and acclimatized, with one group treated with cadmium chloride (CdCl2) (1.96 mg/L) and another kept as untreated control group, both under observation for 7 days. Exposure to CdCl2 was found to alter hematological profile of C. punctatus in addition to incurring histo-architectural damages in the HK (head kidney) and ultrastructural changes in the monocytes/macrophages. The innate immune potential was found to be significantly compromised as evident from decreased phagocytosis, intracellular killing, cell adhesion and reduced release of nitric oxide (NO) and myeloperoxidase (MPO) in Cd intoxicated group. Also Cd triggered ROS generation, reduced cellular NO levels by forming peroxynitrite along with the upregulated expression of the inflammatory marker iNOS (inducible nitric oxide synthase) in monocytes/macrophages, both at mRNA and protein levels, indicating inflammation. Inflammation is further verified from the upregulated expression of proinflammatory cytokines viz. TNF-α, IL-1β, IL-6, IL-12 along with a central inflammatory mediator NF-κΒ and downregulation of the anti-inflammatory cytokine IL-10, both at mRNA and protein levels. It can be concluded that, a sub-lethal exposure of Cd in C. punctatus for 7 days caused significant alterations in the hematological, histological and ultrastructural profile in monocytes/macrophages; impaired innate immune parameters, triggers ROS generation and inflammation as validated from the upregulated expression of NF-κΒ, iNOS, TNF-α, IL-1β, IL-6, IL-12 and IL-10 downregulation.
Collapse
Affiliation(s)
- Chohelee Choudhury
- Department of Biotechnology, Assam University, Silchar, Assam, 788011, India
| | - Ritwik Mazumder
- Department of Economics, Assam University, Silchar, Assam, 788011, India
| | - Rajib Biswas
- Department of Pathology, Silchar Medical College, Silchar, Assam, 788014, India
| | - Mahuya Sengupta
- Department of Biotechnology, Assam University, Silchar, Assam, 788011, India.
| |
Collapse
|
62
|
Kim CH, Kim EJ, Nam YK. Superoxide Dismutase Multigene Family from a Primitive Chondrostean Sturgeon, Acipenser baerii: Molecular Characterization, Evolution, and Antioxidant Defense during Development and Pathogen Infection. Antioxidants (Basel) 2021; 10:232. [PMID: 33546486 PMCID: PMC7913737 DOI: 10.3390/antiox10020232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/16/2022] Open
Abstract
Three distinct superoxide dismutases (SODs)-copper/zinc-SOD (SOD1), manganese-SOD (SOD2), and extracellular copper/zinc-SOD (SOD3)-were identified from a primitive chondrostean fish, Acipenser baerii, enabling the comparison of their transcriptional regulation patterns during development, prelarval ontogeny, and immune stimulation. Each A. baerii SOD isoform (AbSOD) shared conserved structural features with its vertebrate orthologs; however, phylogenetic analyses hypothesized a different evolutionary history for AbSOD3 relative to AbSOD1 and AbSOD2 in the vertebrate lineage. The AbSOD isoforms showed different tissue distribution patterns; AbSOD1 was predominantly expressed in most tissues. The expression of the AbSOD isoforms showed isoform-dependent dynamic modulation according to embryonic development and prelarval ontogenic behaviors. Prelarval microinjections revealed that lipopolysaccharide only induced AbSOD3 expression, while Aeromonas hydrophila induced the expression of AbSOD2 and AbSOD3. In fingerlings, the transcriptional response of each AbSOD isoform to bacterial infection was highly tissue-specific, and the three isoforms exhibited different response patterns within a given tissue type; AbSOD3 was induced the most sensitively, and its induction was the most pronounced in the kidneys and skin. Collectively, these findings suggest isoform-dependent roles for the multigene SOD family in antioxidant defenses against the oxidative stress associated with development and immune responses in these endangered sturgeon fish.
Collapse
Affiliation(s)
| | | | - Yoon Kwon Nam
- Department of Marine Bio-Materials and Aquaculture, College of Fisheries Sciences, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Korea; (C.-H.K.); (E.J.K.)
| |
Collapse
|
63
|
Bjørgen H, Koppang EO. Anatomy of teleost fish immune structures and organs. Immunogenetics 2021; 73:53-63. [PMID: 33426583 PMCID: PMC7862538 DOI: 10.1007/s00251-020-01196-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/23/2020] [Indexed: 12/13/2022]
Abstract
The function of a tissue is determined by its construction and cellular composition. The action of different genes can thus only be understood properly when seen in the context of the environment in which they are expressed and function. We now experience a renaissance in morphological research in fish, not only because, surprisingly enough, large structures have remained un-described until recently, but also because improved methods for studying morphological characteristics in combination with expression analysis are at hand. In this review, we address anatomical features of teleost immune tissues. There are approximately 30,000 known teleost fish species and only a minor portion of them have been studied. We aim our review at the Atlantic salmon (Salmo salar) and other salmonids, but when applicable, we also present information from other species. Our focus is the anatomy of the kidney, thymus, spleen, the interbranchial lymphoid tissue (ILT), the newly discovered salmonid cloacal bursa and the naso-pharynx associated lymphoid tissue (NALT).
Collapse
Affiliation(s)
- Håvard Bjørgen
- Section of Anatomy, The Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, Oslo, Norway
| | - Erling Olaf Koppang
- Section of Anatomy, The Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ullevålsveien 72, Oslo, Norway.
| |
Collapse
|
64
|
Shanaka KASN, Madushani KP, Madusanka RK, Tharuka MDN, Sellaththurai S, Yang H, Jung S, Lee J. Transcription profile, NF-ĸB promoter activation, and antiviral activity of Amphiprion clarkii Akirin-2. FISH & SHELLFISH IMMUNOLOGY 2021; 108:14-23. [PMID: 33259930 DOI: 10.1016/j.fsi.2020.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Animal defense system constitutes a series of distinct mechanisms that specifically defend against microbial invasion. Understanding these complex biological mechanisms is of paramount importance for implementing disease prevention strategies. In this study, the transcription factor, Akirin-2 was identified from ornamental fish Amphiprion clarkii and its involvement in immune response was characterized. A. clarkii Akirin-2 (AcAkirin-2) was identified as a highly conserved protein with two nuclear localization signals. In-vitro localization analysis in fathead minnow cells revealed that AcAkirin-2 is strictly localized to the nucleus. With regard to tissue-specific expression without immune challenge, AcAkirin-2 expression was highest in the brain and lowest in the liver. Immune challenge experiments revealed that AcAkirin-2 expression was the strongest in response to poly I:C. Overexpression of AcAkirin-2 alone did not enhanced NF-ĸB activity significantly in HEK293T cells; however, it significantly enhanced NF-ĸB activity in the presence of poly I:C. AcAkirin-2-mediated expression of antiviral genes was analyzed using qPCR in mullet kidney cells and plaque assay was performed to decipher the involvement of AcAkirin-2 in antiviral immunity. AcAkirin-2 overexpression significantly enhanced the expression of Viperin but not of Mx. Plaque assays revealed the ability of AcAkirin-2 to enervate VHSV titers. Taken together, this study unveiled the involvement of AcAkirin-2 in NF-ĸB-mediated transcription of antiviral genes.
Collapse
Affiliation(s)
- K A S N Shanaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - K P Madushani
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Rajamanthrilage Kasun Madusanka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - M D Neranjan Tharuka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Sarithaa Sellaththurai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Hyerim Yang
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
65
|
Mokhtar DM. Histological and Ultrastructural Studies of the Unique Hemopoietic-Endocrine Organ of the Grass Carp, Ctenopharyngodon idella (Valenciennes, 1844). MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:1264-1273. [PMID: 33046165 DOI: 10.1017/s1431927620024575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Specific features of the immunohistochemical and ultrastructural organization of the hemopoietic head-kidney (HK) in adult Ctenopharyngodon idella (Valenciennes, 1844) were investigated using light and transmission electron microscopy. The HK of grass carp possessed all developmental stages of leucocytes and erythrocytes, as well as dendritic cells and epithelial reticular cells. The rodlet cells were expressed α-smooth muscle actin (SMA). In addition, macrophages were the most numerous cells in the HK, which aggregated into structures called melanomacrophage centers (MMCs). On contrary, the chromaffin and interrenal cells (ICs) were mixed and organized into large anastomosing cords, which lined the posterior cardinal veins of the HK, and associated with many blood capillaries. The ICs displayed the characteristic features of steroid-producing cells. Three types of chromaffin cells: adrenaline, noradrenaline, and small granule-containing cells were observed in the HK. Glial fibrillary acidic protein (GFAP)-positive sustentacular cells were marked among the chromaffin cells. Hemopoietic cells, immune cells, MMCs, rodlet cells, in addition to three types of chromaffin cells and one type of interrenal cells in the HK were correlated with the functional significance of the fish concerned.
Collapse
Affiliation(s)
- Doaa M Mokhtar
- Department of Anatomy and Histology, Faculty of Veterinary Medicine, Assiut University, Assiut71526, Egypt
| |
Collapse
|
66
|
Love RC, Osachoff HL, Kennedy CJ. Short communication: Tissue-specific transcript expression of P-glycoprotein isoforms abcb1a and abcb1b in rainbow trout (Oncorhynchus mykiss) following induction with clotrimazole. Comp Biochem Physiol B Biochem Mol Biol 2020; 252:110538. [PMID: 33227421 DOI: 10.1016/j.cbpb.2020.110538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 01/21/2023]
Abstract
P-glycoprotein (P-gp) plays a pivotal role in cellular defense, aimed at reducing xenobiotic accumulation. As a member of the ABC family of proteins, expression of this protein confers the multixenobiotic resistant (MXR) phenotype in aquatic organisms, including fish. To identify tissues protected by or contributing to the elimination of xenobiotics via P-gp, tissue-specific P-gp isoforms abcb1a and abcb1b transcript expression were measured in rainbow trout (Oncorhynchus mykiss). Tissues investigated included the proximal and distal intestines, liver, head kidney, gills, gonads, and 5 regions of the brain: olfactory lobe, cerebrum, optic lobe, cerebellum and medulla. Abcb1a transcript was more widely expressed across tissues and generally showed higher transcript expression than abcb1b. Deviation from this trend occurred in the gills, cerebrum and head kidney, where transcript levels were relatively equal between abcb1a and abcb1b. Intestinal tissues had greater abcb1a expression than abcb1b (3 orders of magnitude). Abcb1b was absent from liver tissue indicating that abcb1a is relied upon for hepatic defense. This study suggests that abcb1b acts to protect sensitive organs from compounds in the systemic circulation (brain and gonad), whereas abcb1a acts primarily in an elimination role in organs such as liver and intestine. To determine if P-gp induction alters transcript responses, the antifungal mammalian Pregnane-X-Receptor (PXR) agonist clotrimazole (CTZ) was used. CTZ-treated rainbow trout showed significantly increased abcb1b transcript expression in the optic lobe and distal intestine, providing evidence that trout PXR exhibits a similar substrate base as mammalian PXR, albeit selectively in regions of the brain and intestine.
Collapse
Affiliation(s)
- Ryan C Love
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Heather L Osachoff
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada
| | - Christopher J Kennedy
- Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia V5A 1S6, Canada.
| |
Collapse
|
67
|
Gendron RL, Paradis H, Ahmad R, Kao K, Boyce D, Good WV, Kumar S, Vasquez I, Cao T, Hossain A, Chakraborty S, Valderrama K, Santander J. CD10 + Cells and IgM in Pathogen Response in Lumpfish ( Cyclopterus lumpus) Eye Tissues. Front Immunol 2020; 11:576897. [PMID: 33329544 PMCID: PMC7714965 DOI: 10.3389/fimmu.2020.576897] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/22/2020] [Indexed: 11/30/2022] Open
Abstract
Lumpfish (Cyclopterus lumpus), a North Atlantic "cleaner" fish, is utilized to biocontrol salmon louse (Lepeophtheirus salmonis) in Atlantic salmon (Salmo salar) farms. Lumpfish require excellent vision to scan for and eat louse on salmon skin. The lumpfish eye immune response to infectious diseases has not been explored. We examined the ocular response to a natural parasite infection in wild lumpfish and to an experimental bacterial infection in cultured lumpfish. Cysts associated with natural myxozoan infection in the ocular scleral cartilage of wild adult lumpfish harbored cells expressing cluster of differentiation 10 (CD10) and immunoglobulin M (IgM). Experimental Vibrio anguillarum infection, which led to exophthalmos and disorganization of the retinal tissues was associated with disruption of normal CD10 expression, CD10+ cellular infiltration and IgM expression. We further describe the lumpfish CD10 orthologue and characterize the lumpfish scleral skeleton in the context of myxozoan scleral cysts. We propose that lumpfish develop an intraocular response to pathogens, exemplified herein by myxozoan and V. anguillarum infection involving novel CD10+ cells and IgM+ cells to contain and mitigate damage to eye structures. This work is the first demonstration of CD10 and IgM expressing cells in a novel ocular immune system component in response to disease in a teleost.
Collapse
Affiliation(s)
- Robert L. Gendron
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Hélène Paradis
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Raahyma Ahmad
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Kenneth Kao
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University, St. John’s, NL, Canada
| | - Danny Boyce
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - William V. Good
- Smith Kettlewell Eye Research Institute, San Francisco, CA, United States
| | - Surendra Kumar
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Katherinne Valderrama
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Lab, Department of Ocean Sciences, Memorial University, St. John’s, NL, Canada
| |
Collapse
|
68
|
Park Y, Zhang Q, Wiegertjes GF, Fernandes JMO, Kiron V. Adherent Intestinal Cells From Atlantic Salmon Show Phagocytic Ability and Express Macrophage-Specific Genes. Front Cell Dev Biol 2020; 8:580848. [PMID: 33178695 PMCID: PMC7593592 DOI: 10.3389/fcell.2020.580848] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/22/2020] [Indexed: 12/16/2022] Open
Abstract
Our knowledge of the intestinal immune system of fish is rather limited compared to mammals. Very little is known about the immune cells including the phagocytic cells in fish intestine. Hence, employing imaging flow cytometry and RNA sequencing, we studied adherent cells isolated from healthy Atlantic salmon. Phagocytic activity and selected gene expression of adherent cells from the distal intestine (adherent intestinal cells, or AIC) were compared with those from head kidney (adherent kidney cells, or AKC). Phagocytic activity of the two cell types was assessed based on the uptake of Escherichia coli BioParticlesTM. AIC showed phagocytic ability but the phagocytes were of different morphology compared to AKC. Transcriptomic analysis revealed that AIC expressed genes associated with macrophages, T cells, and endothelial cells. Heatmap analysis of selected genes indicated that the adherent cells from the two organs had apparently higher expression of macrophage-related genes. We believe that the adherent intestinal cells have phagocytic characteristics and high expression of genes commonly associated with macrophages. We envisage the possibilities for future studies on enriched populations of adherent intestinal cells.
Collapse
Affiliation(s)
- Youngjin Park
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Qirui Zhang
- Division of Clinical Genetics, Lund University, Lund, Sweden
| | - Geert F Wiegertjes
- Aquaculture and Fisheries Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
69
|
Shwe A, Østbye TKK, Krasnov A, Ramberg S, Andreassen R. Characterization of Differentially Expressed miRNAs and Their Predicted Target Transcripts during Smoltification and Adaptation to Seawater in Head Kidney of Atlantic Salmon. Genes (Basel) 2020; 11:genes11091059. [PMID: 32911670 PMCID: PMC7565298 DOI: 10.3390/genes11091059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/14/2022] Open
Abstract
Smoltification and early seawater phase are critical developmental periods with physiological and biochemical changes in Atlantic salmon that facilitates survival in saltwater. MicroRNAs (miRNAs) are known to have important roles in development, but whether any miRNAs are involved in regulation of gene expression during smoltification and the adaption to seawater is largely unknown. Here, small RNA sequencing of materials from head kidney before, during smoltification and post seawater transfer were used to study expression dynamics of miRNAs, while microarray analysis was applied to study mRNA expression dynamics. Comparing all timepoints, 71 miRNAs and 2709 mRNAs were identified as differentially expressed (DE). Hierarchical clustering analysis of the DE miRNAs showed three major clusters with characteristic expression changes. Eighty-one DE mRNAs revealed negatively correlated expression patterns to DE miRNAs in Cluster I and III. Furthermore, 42 of these mRNAs were predicted as DE miRNA targets. Gene enrichment analysis of negatively correlated target genes showed they were enriched in gene ontology groups hormone biosynthesis, stress management, immune response, and ion transport. The results strongly indicate that post-transcriptional regulation of gene expression by miRNAs is important in smoltification and sea water adaption, and this study identifies several putative miRNA-target pairs for further functional studies.
Collapse
Affiliation(s)
- Alice Shwe
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet‒Oslo Metropolitan University, N-0130 Oslo, Norway; (A.S.); (S.R.)
| | - Tone-Kari Knutsdatter Østbye
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), Postboks 210, NO-1431 Ås, Norway; (T.-K.K.Ø.); (A.K.)
| | - Aleksei Krasnov
- Nofima (Norwegian Institute of Food, Fisheries and Aquaculture Research), Postboks 210, NO-1431 Ås, Norway; (T.-K.K.Ø.); (A.K.)
| | - Sigmund Ramberg
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet‒Oslo Metropolitan University, N-0130 Oslo, Norway; (A.S.); (S.R.)
| | - Rune Andreassen
- Department of Life Science and Health, Faculty of Health Sciences, OsloMet‒Oslo Metropolitan University, N-0130 Oslo, Norway; (A.S.); (S.R.)
- Correspondence: ; Tel.: +47-6723-627-4
| |
Collapse
|
70
|
Lee PT, Ho TH, Nguyen BT, Lin YL, Chiu PY. Expression profile, subcellular localization and signaling pathway analysis of fish-specific TLR25 in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2020; 104:141-154. [PMID: 32502612 DOI: 10.1016/j.fsi.2020.05.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
The Nile tilapia (Oreochromis niloticus) is one of the major food fish species produced in tropical and subtropical regions. However, this industry has been facing significant challenges from microbial infections. Understanding how hosts initiate immune responses against invading microbes is the first requirement for addressing disease outbreak prevention and disease resistance. Toll-like receptors (TLRs) are a family of evolutionarily conserved proteins that can recognize pathogen-associated molecular patterns (PAMPs). They thus play an essential role in innate immunity. TLR25 is a newly identified fish-specific member of the TLR1 subfamily. In this study, we investigate the molecular and functional characteristics of O. niloticus TLR25 (OnTLR25) via tissue expression patterns, gene expression modulation after challenge with bacteria and TLR ligands, subcellular localization in human and fish cells, and the signaling pathways TLR25 may induce. Transcriptional levels of OnTLR25 are high in immune-related organs such as the spleen and head kidney, and are increased following bacterial challenges. In addition, we show that OnTLR25 preferentially localizes to the intracellular compartment in transfected tilapia head kidney (THK) cell line. Furthermore, overexpression of the truncated form of OnTLR25 in THK cell line induced the expression of proinflammatory cytokines, such as tumor necrosis factor α, interleukin (IL)-1β, IL-8, IL-12a, and interferon-d2.13. Combined, our results suggest that TLR25 is likely to play an important role in the antimicrobial responses of the innate immune system of Nile tilapia.
Collapse
Affiliation(s)
- Po-Tsang Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
| | - Thi Hang Ho
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Bao Trung Nguyen
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan; College of Aquaculture and Fisheries, Can Tho University, Viet Nam
| | - Yu-Lin Lin
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Po-Yu Chiu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
71
|
Langova V, Vales K, Horka P, Horacek J. The Role of Zebrafish and Laboratory Rodents in Schizophrenia Research. Front Psychiatry 2020; 11:703. [PMID: 33101067 PMCID: PMC7500259 DOI: 10.3389/fpsyt.2020.00703] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is a severe disorder characterized by positive, negative and cognitive symptoms, which are still not fully understood. The development of efficient antipsychotics requires animal models of a strong validity, therefore the aims of the article were to summarize the construct, face and predictive validity of schizophrenia models based on rodents and zebrafish, to compare the advantages and disadvantages of these models, and to propose future directions in schizophrenia modeling and indicate when it is reasonable to combine these models. The advantages of rodent models stem primarily from the high homology between rodent and human physiology, neurochemistry, brain morphology and circuitry. The advantages of zebrafish models stem in the high fecundity, fast development and transparency of the embryo. Disadvantages of both models originate in behavioral repertoires not allowing specific symptoms to be modeled, even when the models are combined. Especially modeling the verbal component of certain positive, negative and cognitive symptoms is currently impossible.
Collapse
Affiliation(s)
- Veronika Langova
- Translational Neuroscience, National Institute of Mental Health, Prague, Czechia
- Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Karel Vales
- Translational Neuroscience, National Institute of Mental Health, Prague, Czechia
| | - Petra Horka
- Institute for Environmental Studies, Faculty of Science, Charles University, Prague, Czechia
| | - Jiri Horacek
- Third Faculty of Medicine, Charles University, Prague, Czechia
- Brain Electrophysiology, National Institute of Mental Health, Prague, Czechia
| |
Collapse
|
72
|
Minich JJ, Power C, Melanson M, Knight R, Webber C, Rough K, Bott NJ, Nowak B, Allen EE. The Southern Bluefin Tuna Mucosal Microbiome Is Influenced by Husbandry Method, Net Pen Location, and Anti-parasite Treatment. Front Microbiol 2020; 11:2015. [PMID: 32983024 PMCID: PMC7476325 DOI: 10.3389/fmicb.2020.02015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
Aquaculture is the fastest growing primary industry worldwide. Marine finfish culture in open ocean net pens, or pontoons, is one of the largest growth areas and is currently the only way to rear high value fish such as bluefin tuna. Ranching involves catching wild juveniles, stocking in floating net pens and fattening for 4 to 8 months. Tuna experience several parasite-induced disease challenges in culture that can be mitigated by application of praziquantel (PZQ) as a therapeutic. In this study, we characterized the microbiome of ranched southern Bluefin Tuna, Thunnus maccoyii, across four anatomic sites (gill, skin, digesta, and anterior kidney) and evaluated environmental and pathological factors that influence microbiome composition, including the impact of PZQ treatment on microbiome stability. Southern bluefin tuna gill, skin, and digesta microbiome communities are unique and potentially influenced by husbandry practices, location of pontoon growout pens, and treatment with the antiparasitic PZQ. There was no significant relationship between the fish mucosal microbiome and incidence or abundance of adult blood fluke in the heart or fluke egg density in the gill. An enhanced understanding of microbiome diversity and function in high-value farmed fish species such as bluefin tuna is needed to optimize fish health and improve aquaculture yield. Comparison of the bluefin tuna microbiome to other fish species, including Seriola lalandi (yellowtail kingfish), a common farmed species from Australia, and Scomber japonicus (Pacific mackerel), a wild caught Scombrid relative of tuna, showed the two Scombrids had more similar microbial communities compared to other families. The finding that mucosal microbial communities are more similar in phylogenetically related fish species exposes an opportunity to develop mackerel as a model for tuna microbiome and parasite research.
Collapse
Affiliation(s)
- Jeremiah J. Minich
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Cecilia Power
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, Australia
| | - Michaela Melanson
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Rob Knight
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
| | - Claire Webber
- Australian Southern Bluefin Tuna Industry Association, Port Lincoln, SA, Australia
| | - Kirsten Rough
- Australian Southern Bluefin Tuna Industry Association, Port Lincoln, SA, Australia
| | - Nathan J. Bott
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, Australia
| | - Barbara Nowak
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Eric E. Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA, United States
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
73
|
Mu L, Yin X, Wu H, Han K, Guo Z, Ye J. MAp34 Regulates the Non-specific Cell Immunity of Monocytes/Macrophages and Inhibits the Lectin Pathway of Complement Activation in a Teleost Fish. Front Immunol 2020; 11:1706. [PMID: 32903484 PMCID: PMC7435015 DOI: 10.3389/fimmu.2020.01706] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/26/2020] [Indexed: 12/20/2022] Open
Abstract
The lectin pathway of the complement system is one of the main components of innate immunity, which plays a pivotal role in the defense against infectious microorganisms and maintains immune homeostasis. However, its control mechanisms remain unclear in teleost fish. In this study, we described the identification and functional characterization of a mannose-binding lectin associated protein MAp34 (OnMAp34) from Nile tilapia (Oreochromis niloticus) at molecular, cellular, and protein levels. The open reading frame (ORF) of OnMAp34 is 918 bp of nucleotide sequence encoding a polypeptide of 305 amino acids. The deduced amino acid sequence has three characteristic structures, including two C1r/C1s-Uegf-BMP domains (CUB) and one epidermal growth factor domain (EGF). Expression analysis revealed that the OnMAp34 was highly expressed in the liver and widely existed in other examined tissues. In addition, the mRNA and protein expression levels of OnMAp34 were remarkably altered upon infection with Streptococcus agalactiae and Aeromonas hydrophila in vivo and in vitro. Further, we found that the OnMAp34 could participate in the non-specific cellular immune defense, including the regulation of inflammation, migration, and enhancement of phagocytosis of monocytes/macrophages. Moreover, the OnMAp34 could compete with OnMASPs to combine OnMBL and inhibit the lectin pathway of complement activation. Overall, our results provide new insights into the understanding of MAp34 as a potent regulator in the lectin complement pathway and non-specific cell immunity in an early vertebrate.
Collapse
Affiliation(s)
- Liangliang Mu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Sciences, Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, China
| | - Xiaoxue Yin
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Sciences, Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, China
| | - Hairong Wu
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Sciences, Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, China
| | - Kailiang Han
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Sciences, Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, China
| | - Zheng Guo
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Sciences, Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, China
| | - Jianmin Ye
- Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Sciences, Institute of Modern Aquaculture Science and Engineering, South China Normal University, Guangzhou, China
| |
Collapse
|
74
|
Zhang XW, Yang CH, Xia XH, Pan XT, Jin ZY, Yu H, Zhang HW. A triple WAP domain containing protein acts in antibacterial immunity of weather loach, Misgurnus anguillicaudatus. FISH & SHELLFISH IMMUNOLOGY 2020; 103:277-284. [PMID: 32439510 DOI: 10.1016/j.fsi.2020.05.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Whey acidic protein domain (WAPD) occurs in a variety of proteins in animals and many of WAPD-containing proteins are involved in immunity. In the present study, a novel protein containing three WAPDs was identified from the weather loach, Misgurnus anguillicaudatus, designated as MaTWD. MaTWD share high identity with TWDs from fish but low identity with TWDs from other animal phyla. MaTWD transcripts mainly distributed in gills and head kidney responded to bacterial challenge with significant upregulation. In vitro assay with recombinant MaTWD protein revealed that MaTWD had antiprotease activity against bacterial proteases. Moreover, MaTWD exhibited bacterial binding capacity and antimicrobial activity. Most importantly, exogenous MaTWD protected loach against bacterial infection by reducing loach mortality. We infer that MaTWD participates in the antibacterial immunity of loach via its antiprotease and antimicrobial activities.
Collapse
Affiliation(s)
- Xiao-Wen Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Cong-Hui Yang
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xiao-Hua Xia
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Xin-Tong Pan
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Ze-Yu Jin
- College of Life Science, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Hao Yu
- Department of Nature Resources, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China
| | - Hong-Wei Zhang
- Department of Nature Resources, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China.
| |
Collapse
|
75
|
Ayyat MS, Ayyat AMN, Abd El-Latif KM, Hessein AAA, Al-Sagheer AA. Inorganic mercury and dietary safe feed additives enriched diet impacts on growth, immunity, tissue bioaccumulation, and disease resistance in Nile tilapia (Oreochromis niloticus). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 224:105494. [PMID: 32422488 DOI: 10.1016/j.aquatox.2020.105494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/12/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Little is known about the impacts of dietary exposure to inorganic mercury (Hg) for a long duration on the health indicators, growth, and disease resistance in Oreochromis niloticus. Accordingly, the current study was designed to assess the effects of Hg contaminated diets on blood biochemistry, growth, chemical composition, Hg bioaccumulation in the tissues, histopathology of liver and head kidneys, and disease resistance to Aeromonas hydrophila of O. niloticus. Also, the efficiency of citronella oil, geranium oil (GO), curcumin (CUR), Bacillus toyonensis (BT), and Bacillus subtilis (BS) as dietary supplements on reversing the negative impacts of Hg were assessed. A total of 240 tilapia fingerlings were assigned to eight dietary treatments fed on the basal diet (G1), G1 diet contaminated with 50 ppm Hg (G2), whereas the other groups fed the G2 diet and enriched with 400 mg CO (G3), 400 mg GO (G4), 200 mg CUR (G5), 7 × 107 cells BT (G6), 7 × 107 cells BS (G7), and 7 × 107 BT + BS/ kg diet (G8) for 16 weeks. The obtained results showed that fish fed on the G2 diet had significantly impaired growth performance indicators, blood parameters, and resistance to bacterial infection compared with fish in the control group. Additionally, distinct pathological perturbations in liver and head kidneys were observed. In contrast, fish groups G3 to G8 had a significant enhancement in the growth performance, Hg bioaccumulation in fish tissues, blood biochemistry, and resistance against A. hydrophila infection compared with fish in the G2 group. Maximum improvement was recorded in G5, G6, and G8. Conclusively, from both health and an economic point of view, these results suggested that several benefits might be gained by adding these additives, especially CUR, BT, and BT + BS, on growth enhancement and ameliorating Hg negative impacts in O. niloticus.
Collapse
Affiliation(s)
- Mohamed Salah Ayyat
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Ahmed Mohamed Nabil Ayyat
- Department of Fish Nutrition and Feed Technology, Central Laboratory for Aquaculture Research, Abassa, Abu Hammad, Sharkia, Egypt
| | | | - Amira A A Hessein
- Department of Fish Nutrition and Feed Technology, Central Laboratory for Aquaculture Research, Abassa, Abu Hammad, Sharkia, Egypt
| | - Adham A Al-Sagheer
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
76
|
Mokhtar DM. WITHDRAWN: Structural, ultrastructural, and immunohistochemical characteristics of the cell composition of the head kidney of grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2020:S1050-4648(20)30433-2. [PMID: 32619628 DOI: 10.1016/j.fsi.2020.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/18/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Doaa M Mokhtar
- Department of Anatomy and Histology, Faculty of Vet. Medicine, Assiut University, 71526, Egypt
| |
Collapse
|
77
|
Abstract
The number of fish as pets far exceeds the populations of any other companion animal. As our knowledge of aquatic animal species and aquatic animal medicine continues to expand, veterinary expertise is becoming more critical to the client, researcher, fisheries biologist, aquarist, farmer, and fish hobbyist. Similar to other vertebrates, fish are susceptible to infectious and noninfectious renal disease. This article compares vertebrate renal anatomy and physiology and highlights some renal disease examples.
Collapse
|
78
|
Martorell Ribera J, Nipkow M, Viergutz T, Brunner RM, Bochert R, Koll R, Goldammer T, Gimsa U, Rebl A. Early response of salmonid head-kidney cells to stress hormones and toll-like receptor ligands. FISH & SHELLFISH IMMUNOLOGY 2020; 98:950-961. [PMID: 31770645 DOI: 10.1016/j.fsi.2019.11.058] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 05/25/2023]
Abstract
The functional spectrum of the teleostean head kidney covers haematopoietic, immune and endocrine signalling pathways with physiological effects that are likely to conflict if activated at the same time. An in vivo experiment on the salmonid fish maraena whitefish (Coregonus maraena) revealed that the head kidney shows a remarkably strong response after injection of Aeromonas salmonicida within 48 h. In order to investigate the potential influence of endocrine signalling on the initiation of immune responses, we established a primary culture of head-kidney cells of maraena whitefish. For the characterisation of this model system, we used flow cytometry complemented with an extensive panel of immunological/haematological and stress-physiological/neuroendocrinological qPCR assays. More than one third of the cells expressed the characteristic signature of myeloid cells, while more than half of the cells expressed those genes typical for lymphocytes and monocytes. In parallel, we quantified the expression of genes encoding endocrine receptors and identified ADRA2D as by far the most highly expressed adrenergic-receptor gene in head-kidney cells. The stimulation of the head-kidney cells with toll-like receptor ligands induced the expression of typical immune genes (IL1B, CXCL8, TNF, SAA) after only 1 h. The incubation with the stress hormones cortisol, adrenaline and noradrenaline also had an immune-activating effect, though less pronounced. However, cortisol had the strongest suppressive effect on the stimulation-induced immune response, while adrenaline exerted a comparably weaker effect and noradrenaline was almost ineffective. Moreover, we found that cortisol reduced the expression of genes coding for adrenergic and some glucocorticoid receptors, while noradrenaline increased it. In conclusion, the primary head-kidney cells of maraena whitefish reflect the immunological and neuroendocrinological diversity of the entire organ. This in vitro system allowed thus identifying the correlative changes between the activities of hormones and immune factors in salmonid fish in order to contribute to a better understanding of the regulation circuit between stress and immune defence.
Collapse
Affiliation(s)
- Joan Martorell Ribera
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany; FBN, Institute of Behavioural Physiology, Psychophysiology Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Mareen Nipkow
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Torsten Viergutz
- FBN, Institute of Reproductive Biology, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Ronald M Brunner
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Ralf Bochert
- Research Station Aquaculture Born, Institute of Fisheries, Mecklenburg-Vorpommern Research Centre for Agriculture and Fisheries (LFA MV), Südstraße 8, 18375, Born/Darss, Germany
| | - Raphael Koll
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Tom Goldammer
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Ulrike Gimsa
- FBN, Institute of Behavioural Physiology, Psychophysiology Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| | - Alexander Rebl
- Leibniz Institute for Farm Animal Biology (FBN), Institute of Genome Biology, Fish Genetics Unit, Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
| |
Collapse
|
79
|
Qiao X, Li P, He J, Yu Z, Chen J, He L, Yu X, Lin H, Lu D, Zhang Y. Type F scavenger receptor expressed by endothelial cells (SREC)-II from Epinephelus coioides is a potential pathogen recognition receptor in the immune response to Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2020; 98:262-270. [PMID: 31899357 DOI: 10.1016/j.fsi.2019.12.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/24/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Scavenger receptors play a central role in defending against infectious diseases in mammals. However, the function of SRECII remains unknown in teleost fish. In this study, type F scavenger receptor expressed by endothelial cells-II (SRECII) cDNA sequence was first identified from Epinephelus coioides, named EcSRECII, which contained an N-terminal signal peptide, eight EGF/EGF-like cysteine-rich motifs and a C-terminal low-complexity region. The gene location maps revealed that EcSRECII has the conservation of synteny among selected species. Subcellular localization showed that EcSRECII was mainly located in the cytoplasm in HEK293T cells and GS cells. In healthy E. coioides, EcSRECII mRNA was highly expressed in spleen, skin, gill, thymus and head kidney. The relative EcSRECII mRNA expression after Vibrio parahaemolyticus infection was significantly up-regulated at 12 h in spleen, head kidney and thymus, but downregulated at 1 d in skin and reduced at 3 d and 1 w in spleen. Furthermore, overexpression of EcSRECII activated NF-κB and IFN-β signaling pathway in vitro. Taken together, these results indicated that EcSRECII could be as the potential pathogen recognition receptor for involving in bacterial infection by regulating innate immunity responses in E. coioides.
Collapse
Affiliation(s)
- Xifeng Qiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Pingchao Li
- Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, PR China
| | - Jianan He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Zeshu Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jiaxing Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Liangge He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Xue Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China; College of Ocean, Hainan University, Haikou, 570228, PR China
| | - Danqi Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China; Southern Marine Science and Engineering Guangdong Laboratory (ZhanJiang), Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| |
Collapse
|
80
|
Baldissera MD, Souza CF, Tavares GC, Valladão GMR, Da Silva AS, Antoniazzi A, Cunha MA, Baldisserotto B. Purinergic signaling and gene expression of purinoceptors in the head kidney of the silver catfish Rhamdia quelen experimentally infected by Flavobacterium columnare. Microb Pathog 2020; 142:104070. [PMID: 32081613 DOI: 10.1016/j.micpath.2020.104070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 01/21/2023]
Abstract
The head kidney is a lymphoid immune organ that plays a key role in the immune and inflammatory responses of teleost fish. It is associated with immunoglobulin G production and differentiation of B cells. The presence of a multi-enzymatic complex found anchored in the plasma membrane makes the head kidney an important purinergic-dependent tissue. Purinergic signaling has been associated with these responses under pathological conditions via regulation of extracellular adenosine triphosphate (ATP), the main damage molecular associated pattern agent released during bacterial infections. The aim of this study was to determine whether purinergic signaling is a pathway associated with impairment of immune responses in silver catfish (Rhamdia quelen) experimentally infected by Flavobacterium columnare, as well as to evaluate the role of P2 purine receptors in this response. Triphosphate diphosphohydrolase (NTPDase) activity in the head kidney was significantly lower in silver catfish experimentally-infected F. columnare 72 h post-infection (hpi) than in the control group, while no significant difference was observed with respect NTPDase activity on adenosine diphosphate, as well as on 5'-nucleotidase and adenosine deaminase activities. Extracellular ATP levels were significantly higher in the head kidney of experimentally-infected fish than in the control group at 72 hpi. Finally, p2ry11 and p2rx3 purine receptor levels were significantly higher in experimentally-infected fish than in the control group at 72 hpi. We conclude that purinergic signaling in the head kidney of silver catfish infected by F. columnare creates a pro-inflammatory profile that may contribute to impairment of immune and inflammatory responses via reduction of ATP hydrolysis and its accumulation in the extracellular milieu, accompanied by upregulation of p2ry11 and p2rx3 purine receptors, leading to pro-inflammatory status.
Collapse
Affiliation(s)
- Matheus D Baldissera
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - Carine F Souza
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Guilherme C Tavares
- Postgraduate Program in Aquaculture, Universidade Nilton Lins, Manaus, AM, Brazil
| | - Gustavo M R Valladão
- Postgraduate Program in Aquaculture, Universidade Nilton Lins, Manaus, AM, Brazil
| | - Aleksandro S Da Silva
- Department of Animal Science, Universidade do Estado de Santa Catarina, Chapecó, RS, Brazil
| | - Alfredo Antoniazzi
- Animal Reproduction Laboratory (BIOREP), Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Mauro A Cunha
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Bernardo Baldisserotto
- Department of Physiology and Pharmacology, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
81
|
Della Pelle G, Perà G, Belardinelli MC, Gerdol M, Felli M, Crognale S, Scapigliati G, Ceccacci F, Buonocore F, Porcelli F. Trematocine, a Novel Antimicrobial Peptide from the Antarctic Fish Trematomus bernacchii: Identification and Biological Activity. Antibiotics (Basel) 2020; 9:E66. [PMID: 32041161 PMCID: PMC7168153 DOI: 10.3390/antibiotics9020066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 01/02/2023] Open
Abstract
Antimicrobial peptides (AMPs) are short peptides active against a wide range of pathogens and, therefore, they are considered a useful alternative to conventional antibiotics. We have identified a new AMP in a transcriptome derived from the Antarctic fish Trematomus bernacchii. This peptide, named Trematocine, has been investigated for its expression both at the basal level and after in vivo immunization with an endemic Antarctic bacterium (Psychrobacter sp. TAD1). Results agree with the expected behavior of a fish innate immune component, therefore we decided to synthesize the putative mature sequence of Trematocine to determine the structure, the interaction with biological membranes, and the biological activity. We showed that Trematocine folds into a α-helical structure in the presence of both zwitterionic and anionic charged vesicles. We demonstrated that Trematocine has a highly specific interaction with anionic charged vesicles and that it can kill Gram-negative bacteria, possibly via a carpet like mechanism. Moreover, Trematocine showed minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values against selected Gram-positive and Gram-negative bacteria similar to other AMPs isolated from Antarctic fishes. The peptide is a possible candidate for a new drug as it does not show any haemolytic or cytotoxic activity against mammalian cells at the concentration needed to kill the tested bacteria.
Collapse
Affiliation(s)
- Giulia Della Pelle
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (G.D.P.); (G.P.); (M.C.B.); (M.F.); (S.C.); (G.S.); (F.P.)
| | - Giulia Perà
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (G.D.P.); (G.P.); (M.C.B.); (M.F.); (S.C.); (G.S.); (F.P.)
| | - Maria Cristina Belardinelli
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (G.D.P.); (G.P.); (M.C.B.); (M.F.); (S.C.); (G.S.); (F.P.)
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Trieste 34128, Italy;
| | - Martina Felli
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (G.D.P.); (G.P.); (M.C.B.); (M.F.); (S.C.); (G.S.); (F.P.)
| | - Silvia Crognale
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (G.D.P.); (G.P.); (M.C.B.); (M.F.); (S.C.); (G.S.); (F.P.)
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (G.D.P.); (G.P.); (M.C.B.); (M.F.); (S.C.); (G.S.); (F.P.)
| | - Francesca Ceccacci
- CNR—Institute for Biological Systems, Sede Secondaria di Roma-Meccanismi di Reazione, 00185 Rome, Italy;
| | - Francesco Buonocore
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (G.D.P.); (G.P.); (M.C.B.); (M.F.); (S.C.); (G.S.); (F.P.)
| | - Fernando Porcelli
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (G.D.P.); (G.P.); (M.C.B.); (M.F.); (S.C.); (G.S.); (F.P.)
| |
Collapse
|
82
|
Acute air exposure modulates the microRNA abundance in stress responsive tissues and circulating extracellular vesicles in rainbow trout (Oncorhynchus mykiss). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100661. [PMID: 32062572 DOI: 10.1016/j.cbd.2020.100661] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/13/2022]
Abstract
The hypothalamic-pituitary-interrenal axis is an important regulator of stress and metabolism in teleosts. Cortisol is secreted by the head kidney where it increases gluconeogenesis in the liver to increase circulating glucose levels. MicroRNAs (miRNAs) are small, non-coding RNA molecules that bind to the 3' untranslated region of specific mRNA to regulate their expression. MicroRNAs can also be secreted into circulation by association with extracellular vesicles (EVs) where they can influence the phenotype of other tissues. In this study, adult rainbow trout were exposed to a 3-minute acute air stress and allowed to recover for 1-, 3-, or 24-h to determine how miRNAs were altered. MicroRNAs measured in this study were chosen based on their high relative abundance in tissues that drive the stress response (miR-21a-3p, let-7a-5p, miR-143-3p) or their role in regulating DNA methylation (miR-29a-3p). In general, miRNAs increased in circulating EVs during the recovery period while decreasing in head kidney and liver at the same timepoints. Predicted targets for these miRNAs were analyzed using KEGG and DAVID functional enrichment analysis. Pathways involved in metabolism and cell signaling were predicted to be upregulated. Future studies can use these results to investigate how pathways are regulated after stress. Overall, our results indicate that miRNAs are regulated during teleost stress responses and could be supporting the cortisol-mediated changes that occur.
Collapse
|
83
|
Harjula SKE, Saralahti AK, Ojanen MJT, Rantapero T, Uusi-Mäkelä MIE, Nykter M, Lohi O, Parikka M, Rämet M. Characterization of immune response against Mycobacterium marinum infection in the main hematopoietic organ of adult zebrafish (Danio rerio). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103523. [PMID: 31626817 DOI: 10.1016/j.dci.2019.103523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 10/09/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Tuberculosis remains a major global health challenge. To gain information about genes important for defense against tuberculosis, we used a well-established tuberculosis model; Mycobacterium marinum infection in adult zebrafish. To characterize the immunological response to mycobacterial infection at 14 days post infection, we performed a whole-genome level transcriptome analysis using cells from kidney, the main hematopoietic organ of adult zebrafish. Among the upregulated genes, those associated with immune signaling and regulation formed the largest category, whereas the largest group of downregulated genes had a metabolic role. We also performed a forward genetic screen in adult zebrafish and identified a fish line with severely impaired survival during chronic mycobacterial infection. Based on transcriptome analysis, these fish have decreased expression of several immunological genes. Taken together, these results give new information about the genes involved in the defense against mycobacterial infection in zebrafish.
Collapse
Affiliation(s)
- Sanna-Kaisa E Harjula
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland.
| | - Anni K Saralahti
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland.
| | - Markus J T Ojanen
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland; Laboratory of Immunoregulation, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland.
| | - Tommi Rantapero
- Laboratory of Computational Biology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland.
| | - Meri I E Uusi-Mäkelä
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland.
| | - Matti Nykter
- Laboratory of Computational Biology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland.
| | - Olli Lohi
- Tampere Center for Child Health Research, Tampere University and Tays Cancer Center, Tampere University Hospital, FI-33014, Tampere University, Finland.
| | - Mataleena Parikka
- Laboratory of Infection Biology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland; Oral and Maxillofacial Unit, Tampere University Hospital, P.O. Box 2000, FI-33521, Tampere, Finland.
| | - Mika Rämet
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, FI-33014, Tampere University, Finland; Department of Pediatrics, Tampere University Hospital, P.O. Box 2000, FI-33521, Tampere, Finland; PEDEGO Research Unit, Medical Research Center Oulu, P.O. Box 8000, FI-90014, University of Oulu, Finland; Department of Children and Adolescents, Oulu University Hospital, P.O. Box 10, FI-90029, OYS, Finland.
| |
Collapse
|
84
|
Dettleff P, Hormazabal E, Aedo J, Fuentes M, Meneses C, Molina A, Valdes JA. Identification and Evaluation of Long Noncoding RNAs in Response to Handling Stress in Red Cusk-Eel (Genypterus chilensis) via RNA-seq. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:94-108. [PMID: 31748906 DOI: 10.1007/s10126-019-09934-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
The red cusk-eel (Genypterus chilensis) is a native species with strong potential to support Chilean aquaculture diversification. Under commercial conditions, fish are exposed to several stressors. To date, little is known about the mechanism involved in the stress response of red cusk-eel, and there is no information related to the regulation mediated by long noncoding RNAs (lncRNAs). The objective of this work was to identify for the first time the lncRNAs in the transcriptome of G. chilensis and to evaluate the differential expression levels of lncRNAs in the liver, head kidney, and skeletal muscle in response to handling stress. We used previously published transcriptome data to identify the lncRNAs by applying a series of filters based on annotation information in several databases to discard coding sequences. We identified a total of 14,614 putative lncRNAs in the transcriptome of red cusk-eel, providing a useful lncRNA reference resource to be used in future studies. We evaluated their differential expression in response to handling stress in the liver, head kidney, and skeletal muscle, identifying 112, 323, and 108 differentially expressed lncRNAs, respectively. The results suggest that handling stress in red cusk-eel generate an altered metabolic status in liver, altered immune response in head kidney, and skeletal muscle atrophy through an important coding and noncoding gene network. This is the first study that identifies lncRNAs in Genypterus genus and that evaluates the relation between handling stress and lncRNAs in teleost fish, thereby providing valuable information regarding noncoding responses to stress in Genypterus species.
Collapse
Affiliation(s)
- Phillip Dettleff
- Laboratory of Molecular Biotechnology, Faculty of Life Sciences, Andres Bello University, Republica 440, 8370186, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), 4070386, Concepción, Chile
| | - Elizabeth Hormazabal
- Laboratory of Molecular Biotechnology, Faculty of Life Sciences, Andres Bello University, Republica 440, 8370186, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), 4070386, Concepción, Chile
| | - Jorge Aedo
- Laboratory of Molecular Biotechnology, Faculty of Life Sciences, Andres Bello University, Republica 440, 8370186, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), 4070386, Concepción, Chile
| | - Marcia Fuentes
- Laboratory of Molecular Biotechnology, Faculty of Life Sciences, Andres Bello University, Republica 440, 8370186, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), 4070386, Concepción, Chile
| | - Claudio Meneses
- Plant Biotechnology Center, Andres Bello University, 8370186, Santiago, Chile
- FONDAP Center for Genome Regulation, Andres Bello University, 8370186, Santiago, Chile
| | - Alfredo Molina
- Laboratory of Molecular Biotechnology, Faculty of Life Sciences, Andres Bello University, Republica 440, 8370186, Santiago, Chile
- Interdisciplinary Center for Aquaculture Research (INCAR), 4070386, Concepción, Chile
- CIMARQ, Andres Bello University, Quintay, Chile
| | - Juan Antonio Valdes
- Laboratory of Molecular Biotechnology, Faculty of Life Sciences, Andres Bello University, Republica 440, 8370186, Santiago, Chile.
- Interdisciplinary Center for Aquaculture Research (INCAR), 4070386, Concepción, Chile.
- CIMARQ, Andres Bello University, Quintay, Chile.
| |
Collapse
|
85
|
Liu F, Wang T, Hu Y, Tian G, Secombes CJ, Wang T. Expansion of fish CCL20_like chemokines by genome and local gene duplication: Characterisation and expression analysis of 10 CCL20_like chemokines in rainbow trout (Oncorhynchus mykiss). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103502. [PMID: 31568810 DOI: 10.1016/j.dci.2019.103502] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Mammalian CCL20, or macrophage inflammatory protein-3α, can function as a homeostatic and inflammatory chemokine. In relation to the latter, it is responsible for the chemoattraction of lymphocytes and dendritic cells to mucosal immune sites under inflammatory and pathological conditions. CK1, CK8A and CK8B are rainbow trout (Oncorhynchus mykiss) CC chemokines that were reported previously to be phylogenetically related to mammalian CCL20. In the current study, an additional seven CCL20_L paralogues in rainbow trout are reported, that are divided into three subgroups and have been designated here as: CCL20_L1a (also referred to as CK1), CCL20_L1b1-2, CCL20_L2a (CK8A), CCL20_L2b (CK8B), CCL20_L3a, and CCL20_L3b1-4. Multiple CCL20_L genes were also identified in other salmonids that arose from both whole genome duplication and local gene duplication. Phylogenetic tree, homology and synteny analysis support that CCL20_L1-3 found in salmonids are also present in most teleosts arose from the 3 R whole genome duplication and in some species, local gene duplication. Like mammalian CCL20, rainbow trout CCL20_L molecules possess a high positive net charge with a pI of 9.34-10.16, that is reported to be important for antimicrobial activity. Rainbow trout CCL20_L paralogues are differentially expressed and in general highly expressed in mucosal tissues, such as gills, thymus and intestine. The expression levels of rainbow trout CCL20_L paralogues are increased during development and following PAMP/cytokine stimulation. For example, in RTS-11 cells CCL20_L3b1 and CCL20_L3b2 are highly up-regulated by LPS, Poly I:C, recombinant(r) IFNa and rIL-1β. Trout CCL20_L paralogues are also increased after Yersinia ruckeri infection or Poly I:C stimulation in vivo, with CCL20_L3b1 and CCL20_L3b2 again highly up-regulated. Overall, this is the first report of the complete CCL20 chemokine subfamily in rainbow trout, and the analysis of their expression and modulation in vitro and in vivo. These results suggest that teleosts possess divergent CCL20_L molecules that may have important roles in anti-viral/anti-bacterial defence and in mucosal immunity.
Collapse
Affiliation(s)
- Fuguo Liu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom
| | - Tingyu Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom
| | - Yehfang Hu
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom
| | - Guangming Tian
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom; School of Animal Science, Yangtze University, Jingzhou, 434020, PR China
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom.
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, United Kingdom.
| |
Collapse
|
86
|
Jalili M, Gerdol M, Greco S, Pallavicini A, Buonocore F, Scapigliati G, Picchietti S, Esteban MA, Rye M, Bones A. Differential Effects of Dietary Supplementation of Krill Meal, Soybean Meal, Butyrate, and Bactocell ® on the Gene Expression of Atlantic Salmon Head Kidney. Int J Mol Sci 2020; 21:E886. [PMID: 32019111 PMCID: PMC7037266 DOI: 10.3390/ijms21030886] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/28/2022] Open
Abstract
The head kidney is a key organ that plays a fundamental role in the regulation of the fish immune response and in the maintenance of endocrine homeostasis. Previous studies indicate that the supplementation of exogenous dietary components, such as krill meal (KM), soybean meal (SM), Bactocell® (BA), and butyrate (BU), can have a significant effect on the immune function of the head kidney. The aim of this study was to investigate the differential effect of these four dietary ingredients on the transcriptional profiles of the head kidney of the Atlantic salmon. This study revealed that just a small number of genes were responsive to the feeding regime after a long-term (12 weeks) treatment, and evidenced that the most significant alterations, both in terms of the number of affected genes and magnitude of changes in gene expression, were detectable in the BU- and KM-fed groups compared with controls, while the SM diet had a nearly negligible effect, and BA had no significant effects at all. Most of the differentially expressed genes were involved in the immune response and, in line with data previously obtained from pyloric caeca, major components of the complement system were significantly affected. These alterations were accompanied by an increase in the density of melanomacrophage centers in the KM- and SM-fed group and their reduction in the BU-fed group. While three types of dietary supplements (BU, KM, and SM) were able to produce a significant modulation of some molecular players of the immune system, the butyrate-rich diet was revealed as the one with the most relevant immune-stimulating properties in the head kidney. These preliminary results suggest that further investigations should be aimed towards the elucidation of the potential beneficial effects of butyrate and krill meal supplementation on farmed salmon health and growth performance.
Collapse
Affiliation(s)
- Mahsa Jalili
- Cell, Molecular Biology and Genomics Group, Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, NO-7034 Trondheim, Norway
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34100 Trieste, Italy
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, 34100 Trieste, Italy
| | | | - Francesco Buonocore
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Giuseppe Scapigliati
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Maria Angeles Esteban
- Cell Biology and Histology Department, Faculty of Biology, University of Murcia, 30100 Murcia, Spain;
| | - Morten Rye
- BioCore, Department of Clinical and Molecular Medicine, NTNU―Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| | - Atle Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Faculty of Natural Sciences, Norwegian University of Science and Technology, NO-7034 Trondheim, Norway
| |
Collapse
|
87
|
Koll R, Martorell Ribera J, Brunner RM, Rebl A, Goldammer T. Gene Profiling in the Adipose Fin of Salmonid Fishes Supports its Function as a Flow Sensor. Genes (Basel) 2019; 11:E21. [PMID: 31878086 PMCID: PMC7016824 DOI: 10.3390/genes11010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/13/2019] [Accepted: 12/17/2019] [Indexed: 11/16/2022] Open
Abstract
In stock enhancement and sea-ranching procedures, the adipose fin of hundreds of millions of salmonids is removed for marking purposes annually. However, recent studies proved the significance of the adipose fin as a flow sensor and attraction feature. In the present study, we profiled the specific expression of 20 neuron- and glial cell-marker genes in the adipose fin and seven other tissues (including dorsal and pectoral fin, brain, skin, muscle, head kidney, and liver) of the salmonid species rainbow trout Oncorhynchus mykiss and maraena whitefish Coregonusmaraena. Moreover, we measured the transcript abundance of genes coding for 15 mechanoreceptive channel proteins from a variety of mechanoreceptors known in vertebrates. The overall expression patterns indicate the presence of the entire repertoire of neurons, glial cells and receptor proteins on the RNA level. This quantification suggests that the adipose fin contains considerable amounts of small nerve fibers with unmyelinated or slightly myelinated axons and most likely mechanoreceptive potential. The findings are consistent for both rainbow trout and maraena whitefish and support a previous hypothesis about the innervation and potential flow sensory function of the adipose fin. Moreover, our data suggest that the resection of the adipose fin has a stronger impact on the welfare of salmonid fish than previously assumed.
Collapse
Affiliation(s)
- Raphael Koll
- Fish Genetics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (R.K.); (J.M.R.); (R.M.B.); (A.R.)
| | - Joan Martorell Ribera
- Fish Genetics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (R.K.); (J.M.R.); (R.M.B.); (A.R.)
| | - Ronald M. Brunner
- Fish Genetics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (R.K.); (J.M.R.); (R.M.B.); (A.R.)
| | - Alexander Rebl
- Fish Genetics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (R.K.); (J.M.R.); (R.M.B.); (A.R.)
| | - Tom Goldammer
- Fish Genetics Unit, Institute for Genome Biology, Leibniz Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany; (R.K.); (J.M.R.); (R.M.B.); (A.R.)
- Professorship for Molecular Biology and Fish Genetics, Faculty of Agriculture and Environmental Sciences, University of Rostock, 18055 Rostock, Germany
| |
Collapse
|
88
|
Mu L, Wu H, Han K, Wu L, Bian X, Li B, Guo Z, Yin X, Ye J. Molecular and functional characterization of a mannose-binding lectin/ficolin-associated protein (MAp44) from Nile tilapia (Oreochromis niloticus) involved in the immune response to bacterial infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 101:103438. [PMID: 31299190 DOI: 10.1016/j.dci.2019.103438] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 05/08/2019] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
The lectin pathway of the complement system has a pivotal role in the defense against infectious organisms. Mannose-binding lectin/ficolin-associated protein (MAp44), a multifunctional complement regulator, regulates the complement activation by competing with MASP-1, MASP-2 and MASP-3 for MBL and ficolin binding sites. In this study, we described the identification and functional characterization of a MAp44 homologue (OnMAp44) from Nile tilapia (Oreochromis niloticus) at molecular, cellular and protein levels. The open reading frame (ORF) of OnMAp44 is 1140 bp of nucleotide sequence encoding a polypeptide of 379 amino acids. The deduced amino acids sequence has four characteristic structures, including two C1r/C1s-Uegf-BMP domains (CUB), one epidermal growth factor domain (EGF) and one complement control protein domains (CCP). Expression analysis revealed that the OnMAp44 was highly expressed in liver, and widely existed in other examined tissues. In addition, the OnMAp44 expression was significantly up-regulated in spleen and head kidney following challenges with Streptococcus agalactiae and Aeromonas hydrophila. The up-regulations of OnMAp44 mRNA and protein expression were also observed in hepatocytes and monocytes/macrophages in vitro stimulation with S. agalactiae and A. hydrophila. Recombinant OnMAp44 protein was able to participate in the regulation of inflammation and migration reaction. Taken together, the results indicated that OnMAp44 was likely to involve in the immune response to bacterial infection in Nile tilapia.
Collapse
Affiliation(s)
- Liangliang Mu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Hairong Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Kailiang Han
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Liting Wu
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Xia Bian
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Bingxi Li
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Zheng Guo
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China
| | - Xiaoxue Yin
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China.
| | - Jianmin Ye
- Institute of Modern Aquaculture Science and Engineering, School of Life Sciences, South China Normal University, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangdong, 510631, PR China.
| |
Collapse
|
89
|
Marinho de Mello MM, de Fátima Pereira de Faria C, Zanuzzo FS, Urbinati EC. β-glucan modulates cortisol levels in stressed pacu (Piaractus mesopotamicus) inoculated with heat-killed Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2019; 93:1076-1083. [PMID: 31352115 DOI: 10.1016/j.fsi.2019.07.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 07/14/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
In this study, we show that β-glucan can modulate cortisol release in fish. We simulated a common situation in aquaculture: the transport of fish followed by contact with an opportunistic pathogen and observed what effect glucan had on the immune and stress response in these conditions. Pacu (Piaractus mesopotamicus) were fed with a diet containing β-glucan (0.1%) for 15 days prior to transport followed by an injection with heat-killed Aeromonas hydrophila. We sampled fish before transport, at arrival and at 3 and 24 h after bacterial injection. β-Glucans are used in aquaculture and have a known immunostimulatory effect, which was observed in this study. The results showed that β-glucan modulated the plasma cortisol levels differently by increasing these levels up to 24 h after transport and preventing the increase caused by bacterial inoculum injection. In addition, β-glucan enhanced the activity of the complement system at 24 h and reduced the monocytes and lymphocytes number in peripheral blood at 3 and 24 h after bacterial inoculation. Our results suggest that β-glucan modulated a bidirectional interaction between the stress and the immune responses. The modulation of cortisol levels and the immunostimulation by β-glucan at different moments in our study suggest the compound has a protective effect by avoiding higher levels of the hormone and improving resistance against bacterial infection in pacu. These results add evidence to support the use of β-glucan as an immunomodulator in the aquaculture industry.
Collapse
Affiliation(s)
- Mariana Maluli Marinho de Mello
- Universidade Estadual Paulista UNESP - Centro de Aquicultura, Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castelane, S/N - Vila Industrial, Jaboticabal, São Paulo, 14884-900, Brazil.
| | - Camila de Fátima Pereira de Faria
- Universidade Estadual Paulista UNESP - Centro de Aquicultura, Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castelane, S/N - Vila Industrial, Jaboticabal, São Paulo, 14884-900, Brazil.
| | - Fábio Sabbadin Zanuzzo
- Universidade Estadual Paulista UNESP - Centro de Aquicultura, Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castelane, S/N - Vila Industrial, Jaboticabal, São Paulo, 14884-900, Brazil.
| | - Elisabeth Criscuolo Urbinati
- Universidade Estadual Paulista UNESP - Centro de Aquicultura, Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castelane, S/N - Vila Industrial, Jaboticabal, São Paulo, 14884-900, Brazil; Universidade Estadual Paulista UNESP - Faculdade de Ciências Agrárias e Veterinárias, Campus de Jaboticabal, Via de Acesso Prof. Paulo Donato Castelane, S/N - Vila Industrial, Jaboticabal, São Paulo, 14884-900, Brazil.
| |
Collapse
|
90
|
Wei X, Ai K, Li H, Zhang Y, Li K, Yang J. Ancestral T Cells in Fish Require mTORC1-Coupled Immune Signals and Metabolic Programming for Proper Activation and Function. THE JOURNAL OF IMMUNOLOGY 2019; 203:1172-1188. [DOI: 10.4049/jimmunol.1900008] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/07/2019] [Indexed: 12/23/2022]
|
91
|
Physiological response and miRNA-mRNA interaction analysis in the head kidney of rainbow trout exposed to acute heat stress. J Therm Biol 2019; 83:134-141. [DOI: 10.1016/j.jtherbio.2019.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/10/2019] [Accepted: 05/19/2019] [Indexed: 01/01/2023]
|
92
|
Wei X, Zhao T, Zhang Y, Ai K, Li H, Yang J. Involvement of H-Ras in the adaptive immunity of Nile tilapia by regulating lymphocyte activation. FISH & SHELLFISH IMMUNOLOGY 2019; 89:281-289. [PMID: 30953781 DOI: 10.1016/j.fsi.2019.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/24/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
H-Ras is a guanosine triphosphatase (GTPase), which acts as a molecular switch and controls multiple important cellular processes including lymphocyte activation and function. However, regulatory mechanism of adaptive immune response by H-Ras remains unclear in non-mammalian animals. In the present study, we investigated the involvement of H-Ras in lymphocyte activation with a teleost model Oreochromis niloticus. H-Ras from O. niloticus (On-H-Ras) is highly conserved with those from other vertebrates. The mRNA of On-H-Ras showed a wide expression pattern in the lymphoid-tissues and with the highest level in liver. After Aeromonas hydrophila infection, transcription of On-H-Ras was significantly induced on day 8 but came back to basal level on day 16, suggesting that On-H-Ras potentially participated in primary response during the adaptive immunity. Furthermore, On-H-Ras mRNA was obviously up-regulated when leukocytes were activated by T lymphocyte mitogen PHA in vitro. Meanwhile, protein level of H-Ras was also augmented once leukocytes were stimulated with lymphocyte receptor signaling agonist PMA and ionomycin. More importantly, once Ras activity was inhibited by specific inhibitor, the up-regulation of lymphocyte activation marker CD122 was obviously impaired during lymphocyte activation process. Therefore, On-H-Ras regulated lymphocyte activation through both mRNA and protein level. Altogether, our results illustrated the involvement of H-Ras in teleost adaptive immunity via controlling lymphocyte activation, and thus provided a novel perspective to understand evolution of the lymphocyte-mediated adaptive immunity.
Collapse
Affiliation(s)
- Xiumei Wei
- State Key Laboratory of Estuarine and Coastal Research, Laboratory of Aquatic Comparative Immunology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Tianyu Zhao
- State Key Laboratory of Estuarine and Coastal Research, Laboratory of Aquatic Comparative Immunology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yu Zhang
- State Key Laboratory of Estuarine and Coastal Research, Laboratory of Aquatic Comparative Immunology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kete Ai
- State Key Laboratory of Estuarine and Coastal Research, Laboratory of Aquatic Comparative Immunology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Huiying Li
- State Key Laboratory of Estuarine and Coastal Research, Laboratory of Aquatic Comparative Immunology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jialong Yang
- State Key Laboratory of Estuarine and Coastal Research, Laboratory of Aquatic Comparative Immunology, School of Life Sciences, East China Normal University, Shanghai, 200241, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
93
|
Yin X, Mu L, Fu S, Wu L, Han K, Wu H, Bian X, Wei X, Guo Z, Wang A, Ye J. Expression and characterization of Nile tilapia (Oreochromis niloticus) secretory and membrane-bound IgM in response to bacterial infection. AQUACULTURE 2019; 508:214-222. [DOI: 10.1016/j.aquaculture.2019.03.058] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
94
|
Onoue T, Nishi G, Hikima JI, Sakai M, Kono T. Circadian oscillation of TNF-α gene expression regulated by clock gene, BMAL1 and CLOCK1, in the Japanese medaka (Oryzias latipes). Int Immunopharmacol 2019; 70:362-371. [DOI: 10.1016/j.intimp.2019.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/02/2019] [Accepted: 02/04/2019] [Indexed: 01/08/2023]
|
95
|
Allais L, Zhao C, Fu M, Hu J, Qin JG, Qiu L, Ma Z. Nutrition and water temperature regulate the expression of heat-shock proteins in golden pompano larvae (Trachinotus ovata, Limmaeus 1758). FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:485-497. [PMID: 30397841 DOI: 10.1007/s10695-018-0578-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 10/03/2018] [Indexed: 06/08/2023]
Abstract
Understanding fish larval development is of a great interest for aquaculture production efficiency. Identifying possible indicators of fish larvae stress could improve the production and limit the mortality rate that larval stage is subjected to. Heat-shock proteins (HSPs) and heat-shock factors (HSFs) are well known as indicators of response to many kinds of stressor (e.g., environmental, morphological, or pathological changes). In this study, golden pompano larvae were raised at different temperatures (23 °C, 26 °C, and 29 °C), as well as three different diets (Artemia nauplii unenriched, Artemia nauplii enriched with Nannochloropsis sp., and Artemia nauplii enriched with Algamac 3080), and the expression of HSP60, HSP70, HSF1, HSP2, and GRP94 were monitored. While stress genes were widely expressed in the larval tissues, HSP60 and HSP70 were principally from the gills and heart; HSF1 principally from the muscle, brain, and heart; and GRP94 principally from the head kidney and spleen. Golden pompano larvae were found to be more sensitive to thermal changes at later larval stage, and 29 °C was showed to likely be the best condition for golden pompano larval development. Nannochloropsis sp.-enriched Artemia nauplii treatment was found to be the most appropriate feed type with moderate relative expressions of HSP60, HSP70, HSF1, HSF2, and GRP94.
Collapse
Affiliation(s)
- Laetitia Allais
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Chao Zhao
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, People's Republic of China
| | - Mingjun Fu
- College of Life Science, Longyan University, Longyan, 364012, Fujian, China
| | - Jing Hu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, People's Republic of China
| | - Jian G Qin
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Lihua Qiu
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China
| | - Zhenhua Ma
- Tropical Aquaculture Research and Development Center, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Sanya, 572018, China.
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia.
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangzhou, 510300, People's Republic of China.
| |
Collapse
|
96
|
Niu J, Huang Y, Niu J, Wang Z, Tang J, Wang B, Lu Y, Cai J, Jian J. Characterization of Galectin-2 from Nile tilapia (Oreochromis niloticus) involved in the immune response to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2019; 87:737-743. [PMID: 30779996 DOI: 10.1016/j.fsi.2019.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
galectin-2 plays important roles in innate and adaptive immunity. In this study, galectin-2 (OnGal-2) was identified from Nile tilapia (Oreochromis niloticus). Its tissue distribution and expression patterns following bacterial infection were also investigated. OnGal-2 is widely distributed in various tissues of healthy tilapia. After Streptococcus agalactiae challenge, OnGal-2 expressions were significantly up-regulated in all tested tissues. Meanwhile, the recombinant OnGal-2 (rOnGal-2) protein showed strong agglutinating activities against both Gram-negative bacteria and Gram-positive bacteria. Moreover, rOnGal-2 could promote phagocytosis of macrophages. Taken together, the present study indicated that OnGal-2 might play roles in the immune responses of Nile tilapia against bacterial pathogens.
Collapse
Affiliation(s)
- Jinzhong Niu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Yu Huang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jimin Niu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Zhiwen Wang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China
| | - Jufen Tang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Bei Wang
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yishan Lu
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jia Cai
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Jichang Jian
- College of Fishery, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
97
|
Shkil F, Siomava N, Voronezhskaya E, Diogo R. Effects of hyperthyroidism in the development of the appendicular skeleton and muscles of zebrafish, with notes on evolutionary developmental pathology (Evo-Devo-Path). Sci Rep 2019; 9:5413. [PMID: 30931985 PMCID: PMC6443675 DOI: 10.1038/s41598-019-41912-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/20/2019] [Indexed: 12/17/2022] Open
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis plays a crucial role in the metabolism, homeostasis, somatic growth and development of teleostean fishes. Thyroid hormones regulate essential biological functions such as growth and development, regulation of stress, energy expenditure, tissue compound, and psychological processes. Teleost thyroid follicles produce the same thyroid hormones as in other vertebrates: thyroxin (T4) and triiodothyronine (T3), making the zebrafish a very useful model to study hypo- and hyperthyroidism in other vertebrate taxa, including humans. Here we investigate morphological changes in T3 hyperthyroid cases in the zebrafish to better understand malformations provoked by alterations of T3 levels. In particular, we describe musculoskeletal abnormalities during the development of the zebrafish appendicular skeleton and muscles, compare our observations with those recently done by us on the normal developmental of the zebrafish, and discuss these comparisons within the context of evolutionary developmental pathology (Evo-Devo-Path), including human pathologies.
Collapse
Affiliation(s)
- Fedor Shkil
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, ul. Vavilova 26, Moscow, 119334, Russia
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, pr. Leninskii 33, Moscow, 119071, Russia
| | - Natalia Siomava
- Department of Anatomy, Howard University College of Medicine, 520W Street NW, 20059, Washington, DC, USA
| | - Elena Voronezhskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, ul. Vavilova 26, Moscow, 119334, Russia
| | - Rui Diogo
- Department of Anatomy, Howard University College of Medicine, 520W Street NW, 20059, Washington, DC, USA.
| |
Collapse
|
98
|
Baumann L, Segner H, Ros A, Knapen D, Vergauwen L. Thyroid Hormone Disruptors Interfere with Molecular Pathways of Eye Development and Function in Zebrafish. Int J Mol Sci 2019; 20:E1543. [PMID: 30934780 PMCID: PMC6479403 DOI: 10.3390/ijms20071543] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/12/2019] [Accepted: 03/25/2019] [Indexed: 02/04/2023] Open
Abstract
The effects of thyroid hormone disrupting chemicals (THDCs) on eye development of zebrafish were investigated. We expected THDC exposure to cause transcriptional changes of vision-related genes, which find their phenotypic anchoring in eye malformations and dysfunction, as observed in our previous studies. Zebrafish were exposed from 0 to 5 days post fertilization (dpf) to either propylthiouracil (PTU), a thyroid hormone synthesis inhibitor, or tetrabromobisphenol-A (TBBPA), which interacts with thyroid hormone receptors. Full genome microarray analyses of RNA isolated from eye tissue revealed that the number of affected transcripts was substantially higher in PTU- than in TBBPA-treated larvae. However, multiple components of phototransduction (e.g., phosphodiesterase, opsins) were responsive to both THDC exposures. Yet, the response pattern for the gene ontology (GO)-class "sensory perception" differed between treatments, with over 90% down-regulation in PTU-exposed fish, compared to over 80% up-regulation in TBBPA-exposed fish. Additionally, the reversibility of effects after recovery in clean water for three days was investigated. Transcriptional patterns in the eyes were still altered and partly overlapped between 5 and 8 dpf, showing that no full recovery occurred within the time period investigated. However, pathways involved in repair mechanisms were significantly upregulated, which indicates activation of regeneration processes.
Collapse
Affiliation(s)
- Lisa Baumann
- Centre for Organismal Studies, Aquatic Ecology and Toxicology, University of Heidelberg, Im Neuenheimer Feld 504, 69120 Heidelberg, Germany.
| | - Helmut Segner
- Vetsuisse Faculty, Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland.
| | - Albert Ros
- Fischereiforschungsstelle LAZBW, Argenweg 50/1, 88085 Langenargen, Germany.
| | - Dries Knapen
- Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, University of Antwerp, Universiteitsplein 1, 2160 Wilrijk, Belgium.
| | - Lucia Vergauwen
- Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, Zebrafishlab, University of Antwerp, Universiteitsplein 1, 2160 Wilrijk, Belgium.
- Department of Biology, Systemic Physiological and Ecotoxicological Research (SPHERE), University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| |
Collapse
|
99
|
Eslamloo K, Ghorbani A, Xue X, Inkpen SM, Larijani M, Rise ML. Characterization and Transcript Expression Analyses of Atlantic Cod Viperin. Front Immunol 2019; 10:311. [PMID: 30894853 PMCID: PMC6414715 DOI: 10.3389/fimmu.2019.00311] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/06/2019] [Indexed: 12/29/2022] Open
Abstract
Viperin is a key antiviral effector in immune responses of vertebrates including the Atlantic cod (Gadus morhua). Using cloning, sequencing and gene expression analyses, we characterized the Atlantic cod viperin at the nucleotide and hypothetical amino acid levels, and its regulating factors were investigated. Atlantic cod viperin cDNA is 1,342 bp long, and its predicted protein contains 347 amino acids. Using in silico analyses, we showed that Atlantic cod viperin is composed of 5 exons, as in other vertebrate orthologs. In addition, the radical SAM domain and C-terminal sequences of the predicted Viperin protein are highly conserved among various species. As expected, Atlantic cod Viperin was most closely related to other teleost orthologs. Using computational modeling, we show that the Atlantic cod Viperin forms similar overall protein architecture compared to mammalian Viperins. qPCR revealed that viperin is a weakly expressed transcript during embryonic development of Atlantic cod. In adults, the highest constitutive expression of viperin transcript was found in blood compared with 18 other tissues. Using isolated macrophages and synthetic dsRNA (pIC) stimulation, we tested various immune inhibitors to determine the possible regulating pathways of Atlantic cod viperin. Atlantic cod viperin showed a comparable pIC induction to other well-known antiviral genes (e.g., interferon gamma and interferon-stimulated gene 15-1) in response to various immune inhibitors. The pIC induction of Atlantic cod viperin was significantly inhibited with 2-Aminopurine, Chloroquine, SB202190, and Ruxolitinib. Therefore, endosomal-TLR-mediated pIC recognition and signal transducers (i.e., PKR and p38 MAPK) downstream of the TLR-dependent pathway may activate the gene expression response of Atlantic cod viperin. Also, these results suggest that antiviral responses of Atlantic cod viperin may be transcriptionally regulated through the interferon-activated pathway.
Collapse
Affiliation(s)
- Khalil Eslamloo
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Atefeh Ghorbani
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Xi Xue
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Sabrina M Inkpen
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Mani Larijani
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew L Rise
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
100
|
Abstract
In the last decade, the concept of animal stress has been stressed thin to accommodate the effects of short-term changes in cell and tissue physiology, major behavioral syndromes in individuals and ecological disturbances in populations. Seyle's definition of stress as "the nonspecific (common) result of any demand upon the body" now encompasses homeostasis in a broader sense, including all the hierarchical levels in a networked biological system. The heterogeneity of stress responses thus varies within individuals, and stressors become multimodal in terms of typology, source and effects, as well as the responses that each individual elicits to cope with the disturbance. In fish, the time course of changes after stress strongly depends on several factors, including the stressful experiences in early life, the vertical transmission of stressful-prone phenotypes, the degree of individual phenotypic plasticity, the robustness and variety of the epigenetic network related to environmentally induced changes, and the intrinsic behavioral responses (individuality/personality) of each individual. The hierarchical heterogeneity of stress responses demands a code that may decrypt and simplify the analysis of both proximate and evolutionary causes of a particular stress phenotype. We propose an analytical framework, the stressotope, defined as an adaptive scenario dominated by common environmental selective pressures that elicit common multilevel acute stress-induced responses and produce a measurable allostatic load in the organism. The stressotope may constitute a blueprint of embedded interactions between stress-related variations in cell states, molecular mediators and systemic networks, a map of circuits that reflect the inherited and acquired stress responses in an ever-changing, microorganismal-loaded medium. Several features of the proposed model are discussed as a starting point to pin down the maximum common stress responses across immune-neuroendocrine relevant physiological levels and scenarios, including the characterization of behavioral responses, in fish.
Collapse
Affiliation(s)
- Joan Carles Balasch
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | |
Collapse
|