51
|
Swift J, Coruzzi GM. A matter of time - How transient transcription factor interactions create dynamic gene regulatory networks. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:75-83. [PMID: 27546191 DOI: 10.1016/j.bbagrm.2016.08.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/06/2016] [Accepted: 08/10/2016] [Indexed: 12/16/2022]
Abstract
Dynamic reprogramming of transcriptional networks enables cells to adapt to a changing environment. Thus, it is crucial not only to understand what gene targets are regulated by a transcription factor (TF) but also when. This review explores the way TFs function with respect to time, paying particular attention to discoveries made in plants - where coordinated, genome-wide responses to environmental change is crucial to the survival of these sessile organisms. We investigate the molecular mechanisms that mediate transient TF-DNA binding, and assess how these rapid and dynamic interactions translate to long-term temporal regulation of genomes. We also discuss how current molecular techniques can catch, and sometimes miss, transient TF-target interactions that underlie dynamic cellular responses. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
- Joseph Swift
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003, USA.
| | - Gloria M Coruzzi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003, USA
| |
Collapse
|
52
|
Desjardins CA, Naya FJ. The Function of the MEF2 Family of Transcription Factors in Cardiac Development, Cardiogenomics, and Direct Reprogramming. J Cardiovasc Dev Dis 2016; 3. [PMID: 27630998 PMCID: PMC5019174 DOI: 10.3390/jcdd3030026] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Proper formation of the mammalian heart requires precise spatiotemporal transcriptional regulation of gene programs in cardiomyocytes. Sophisticated regulatory networks have evolved to not only integrate the activities of distinct transcription factors to control tissue-specific gene programs but also, in many instances, to incorporate multiple members within these transcription factor families to ensure accuracy and specificity in the system. Unsurprisingly, perturbations in this elaborate transcriptional circuitry can lead to severe cardiac abnormalities. Myocyte enhancer factor–2 (MEF2) transcription factor belongs to the evolutionarily conserved cardiac gene regulatory network. Given its central role in muscle gene regulation and its evolutionary conservation, MEF2 is considered one of only a few core cardiac transcription factors. In addition to its firmly established role as a differentiation factor, MEF2 regulates wide variety of, sometimes antagonistic, cellular processes such as cell survival and death. Vertebrate genomes encode multiple MEF2 family members thereby expanding the transcriptional potential of this core transcription factor in the heart. This review highlights the requirement of the MEF2 family and their orthologs in cardiac development in diverse animal model systems. Furthermore, we describe the recently characterized role of MEF2 in direct reprogramming and genome-wide cardiomyocyte gene regulation. A thorough understanding of the regulatory functions of the MEF2 family in cardiac development and cardiogenomics is required in order to develop effective therapeutic strategies to repair the diseased heart.
Collapse
|
53
|
Becker K, Ziemons S, Lentz K, Freitag M, Kück U. Genome-Wide Chromatin Immunoprecipitation Sequencing Analysis of the Penicillium chrysogenum Velvet Protein PcVelA Identifies Methyltransferase PcLlmA as a Novel Downstream Regulator of Fungal Development. mSphere 2016; 1:e00149-16. [PMID: 27570838 PMCID: PMC4999599 DOI: 10.1128/msphere.00149-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 06/14/2016] [Indexed: 11/20/2022] Open
Abstract
Penicillium chrysogenum is the sole industrial producer of the β-lactam antibiotic penicillin, which is the most commonly used drug for treating bacterial infections. In P. chrysogenum and other filamentous fungi, secondary metabolism and morphogenesis are controlled by the highly conserved multisubunit velvet complex. Here we present the first chromatin immunoprecipitation next-generation sequencing (ChIP-seq) analysis of a fungal velvet protein, providing experimental evidence that a velvet homologue in P. chrysogenum (PcVelA) acts as a direct transcriptional regulator at the DNA level in addition to functioning as a regulator at the protein level in P. chrysogenum, which was previously described. We identified many target genes that are related to processes known to be dependent on PcVelA, e.g., secondary metabolism as well as asexual and sexual development. We also identified seven PcVelA target genes that encode putative methyltransferases. Yeast two-hybrid and bimolecular fluorescence complementation analyses showed that one of the putative methyltransferases, PcLlmA, directly interacts with PcVelA. Furthermore, functional characterization of PcLlmA demonstrated that this protein is involved in the regulation of conidiosporogenesis, pellet formation, and hyphal morphology, all traits with major biotechnological relevance. IMPORTANCE Filamentous fungi are of major interest for biotechnological and pharmaceutical applications. This is due mainly to their ability to produce a wide variety of secondary metabolites, many of which are relevant as antibiotics. One of the most prominent examples is penicillin, a β-lactam antibiotic that is produced on the industrial scale by fermentation of P. chrysogenum. In recent years, the multisubunit protein complex velvet has been identified as one of the key regulators of fungal secondary metabolism and development. However, until recently, only a little has been known about how velvet mediates regulation at the molecular level. To address this issue, we performed ChIP-seq (chromatin immunoprecipitation in combination with next-generation sequencing) on and follow-up analysis of PcVelA, the core component of the velvet complex in P. chrysogenum. We demonstrate direct involvement of velvet in transcriptional control and present the putative methyltransferase PcLlmA as a new downstream factor and interaction partner of PcVelA.
Collapse
Affiliation(s)
- Kordula Becker
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Sandra Ziemons
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Katharina Lentz
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon, USA
| | - Ulrich Kück
- Lehrstuhl für Allgemeine und Molekulare Botanik, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
54
|
Chen K, Lin G, Haelterman NA, Ho TSY, Li T, Li Z, Duraine L, Graham BH, Jaiswal M, Yamamoto S, Rasband MN, Bellen HJ. Loss of Frataxin induces iron toxicity, sphingolipid synthesis, and Pdk1/Mef2 activation, leading to neurodegeneration. eLife 2016; 5:e16043. [PMID: 27343351 PMCID: PMC4956409 DOI: 10.7554/elife.16043] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/24/2016] [Indexed: 12/22/2022] Open
Abstract
Mutations in Frataxin (FXN) cause Friedreich's ataxia (FRDA), a recessive neurodegenerative disorder. Previous studies have proposed that loss of FXN causes mitochondrial dysfunction, which triggers elevated reactive oxygen species (ROS) and leads to the demise of neurons. Here we describe a ROS independent mechanism that contributes to neurodegeneration in fly FXN mutants. We show that loss of frataxin homolog (fh) in Drosophila leads to iron toxicity, which in turn induces sphingolipid synthesis and ectopically activates 3-phosphoinositide dependent protein kinase-1 (Pdk1) and myocyte enhancer factor-2 (Mef2). Dampening iron toxicity, inhibiting sphingolipid synthesis by Myriocin, or reducing Pdk1 or Mef2 levels, all effectively suppress neurodegeneration in fh mutants. Moreover, increasing dihydrosphingosine activates Mef2 activity through PDK1 in mammalian neuronal cell line suggesting that the mechanisms are evolutionarily conserved. Our results indicate that an iron/sphingolipid/Pdk1/Mef2 pathway may play a role in FRDA.
Collapse
Affiliation(s)
- Kuchuan Chen
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Guang Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Nele A Haelterman
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Tammy Szu-Yu Ho
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Tongchao Li
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Zhihong Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Lita Duraine
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Brett H Graham
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
| | - Manish Jaiswal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Shinya Yamamoto
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, United States
| | - Matthew N Rasband
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, United States
| |
Collapse
|
55
|
Hidden Markov induced Dynamic Bayesian Network for recovering time evolving gene regulatory networks. Sci Rep 2015; 5:17841. [PMID: 26680653 PMCID: PMC4683538 DOI: 10.1038/srep17841] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/26/2015] [Indexed: 11/08/2022] Open
Abstract
Dynamic Bayesian Networks (DBN) have been widely used to recover gene regulatory relationships from time-series data in computational systems biology. Its standard assumption is ‘stationarity’, and therefore, several research efforts have been recently proposed to relax this restriction. However, those methods suffer from three challenges: long running time, low accuracy and reliance on parameter settings. To address these problems, we propose a novel non-stationary DBN model by extending each hidden node of Hidden Markov Model into a DBN (called HMDBN), which properly handles the underlying time-evolving networks. Correspondingly, an improved structural EM algorithm is proposed to learn the HMDBN. It dramatically reduces searching space, thereby substantially improving computational efficiency. Additionally, we derived a novel generalized Bayesian Information Criterion under the non-stationary assumption (called BWBIC), which can help significantly improve the reconstruction accuracy and largely reduce over-fitting. Moreover, the re-estimation formulas for all parameters of our model are derived, enabling us to avoid reliance on parameter settings. Compared to the state-of-the-art methods, the experimental evaluation of our proposed method on both synthetic and real biological data demonstrates more stably high prediction accuracy and significantly improved computation efficiency, even with no prior knowledge and parameter settings.
Collapse
|
56
|
Chechenova MB, Maes S, Cripps RM. Expression of the Troponin C at 41C Gene in Adult Drosophila Tubular Muscles Depends upon Both Positive and Negative Regulatory Inputs. PLoS One 2015; 10:e0144615. [PMID: 26641463 PMCID: PMC4671713 DOI: 10.1371/journal.pone.0144615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/20/2015] [Indexed: 12/05/2022] Open
Abstract
Most animals express multiple isoforms of structural muscle proteins to produce tissues with different physiological properties. In Drosophila, the adult muscles include tubular-type muscles and the fibrillar indirect flight muscles. Regulatory processes specifying tubular muscle fate remain incompletely understood, therefore we chose to analyze the transcriptional regulation of TpnC41C, a Troponin C gene expressed in the tubular jump muscles, but not in the fibrillar flight muscles. We identified a 300-bp promoter fragment of TpnC41C sufficient for the fiber-specific reporter expression. Through an analysis of this regulatory element, we identified two sites necessary for the activation of the enhancer. Mutations in each of these sites resulted in 70% reduction of enhancer activity. One site was characterized as a binding site for Myocyte Enhancer Factor-2. In addition, we identified a repressive element that prevents activation of the enhancer in other muscle fiber types. Mutation of this site increased jump muscle-specific expression of the reporter, but more importantly reporter expression expanded into the indirect flight muscles. Our findings demonstrate that expression of the TpnC41C gene in jump muscles requires integration of multiple positive and negative transcriptional inputs. Identification of the transcriptional regulators binding the cis-elements that we identified will reveal the regulatory pathways controlling muscle fiber differentiation.
Collapse
Affiliation(s)
- Maria B Chechenova
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, United States of America
| | - Sara Maes
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, United States of America
| | - Richard M Cripps
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, United States of America
| |
Collapse
|
57
|
Abstract
Immune responses and metabolic regulation are tightly coupled in all animals, but the underlying mechanistic connections are nowhere completely clear. In flies and in humans, prolonged or excessive immune activation can drive metabolic disruption and cause loss of metabolic stores. Conversely, disruptions of metabolic homeostasis, such as periods of malnutrition, can have significant impacts on immune function. We have recently identified the transcription factor MEF2 as a critical switch between anabolic and immune function in the adult Drosophila fat body. A conserved phosphorylation determines the affinity of MEF2 for the TATA-binding protein, effecting a choice between energy storage and immune function. The goal of this review is to place this molecular event in the broader context of metabolic-immune interaction in Drosophila, exploring what is and is not known about the ties between these 2 critical physiological functions.
Collapse
Affiliation(s)
- Marc Dionne
- a Centre for the Molecular and Cellular Biology of Inflammation; King's College London School of Medicine; London, United Kingdom
| |
Collapse
|
58
|
MacNeil LT, Pons C, Arda HE, Giese GE, Myers CL, Walhout AJM. Transcription Factor Activity Mapping of a Tissue-Specific in vivo Gene Regulatory Network. Cell Syst 2015; 1:152-162. [PMID: 26430702 DOI: 10.1016/j.cels.2015.08.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A wealth of physical interaction data between transcription factors (TFs) and DNA has been generated, but these interactions often do not have apparent regulatory consequences. Thus, equating physical interaction data with gene regulatory networks (GRNs) is problematic. Here, we comprehensively assay TF activity, rather than binding, to construct a network of gene regulatory interactions in the C. elegans intestine. By manually observing the in vivo tissue-specific knockdown of 921 TFs on a panel of 19 fluorescent transcriptional reporters, we identified a GRN of 411 interactions between 19 promoters and 177 TFs. This GRN shows only modest overlap with physical interactions, indicating that many regulatory interactions are indirect. We applied nested effects modeling to uncover information flow between TFs in the intestine that converges on a small set of physical TF-promoter interactions. We found numerous cell nonautonomous regulatory interactions, illustrating tissue-to-tissue communication. Altogether, our study illuminates the complexity of gene regulation in the context of a living animal.
Collapse
Affiliation(s)
- Lesley T MacNeil
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA ; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Carles Pons
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - H Efsun Arda
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA ; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gabrielle E Giese
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA
| | - Albertha J M Walhout
- Program in Systems Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA ; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
59
|
de Taffin M, Carrier Y, Dubois L, Bataillé L, Painset A, Le Gras S, Jost B, Crozatier M, Vincent A. Genome-Wide Mapping of Collier In Vivo Binding Sites Highlights Its Hierarchical Position in Different Transcription Regulatory Networks. PLoS One 2015. [PMID: 26204530 PMCID: PMC4512700 DOI: 10.1371/journal.pone.0133387] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Collier, the single Drosophila COE (Collier/EBF/Olf-1) transcription factor, is required in several developmental processes, including head patterning and specification of muscle and neuron identity during embryogenesis. To identify direct Collier (Col) targets in different cell types, we used ChIP-seq to map Col binding sites throughout the genome, at mid-embryogenesis. In vivo Col binding peaks were associated to 415 potential direct target genes. Gene Ontology analysis revealed a strong enrichment in proteins with DNA binding and/or transcription-regulatory properties. Characterization of a selection of candidates, using transgenic CRM-reporter assays, identified direct Col targets in dorso-lateral somatic muscles and specific neuron types in the central nervous system. These data brought new evidence that Col direct control of the expression of the transcription regulators apterous and eyes-absent (eya) is critical to specifying neuronal identities. They also showed that cross-regulation between col and eya in muscle progenitor cells is required for specification of muscle identity, revealing a new parallel between the myogenic regulatory networks operating in Drosophila and vertebrates. Col regulation of eya, both in specific muscle and neuronal lineages, may illustrate one mechanism behind the evolutionary diversification of Col biological roles.
Collapse
Affiliation(s)
- Mathilde de Taffin
- Centre de Biologie du Développement, UMR 5547 CNRS Université de Toulouse 3, 118 route de Narbonne, F-31062, Toulouse cedex 09, France
| | - Yannick Carrier
- Centre de Biologie du Développement, UMR 5547 CNRS Université de Toulouse 3, 118 route de Narbonne, F-31062, Toulouse cedex 09, France
| | - Laurence Dubois
- Centre de Biologie du Développement, UMR 5547 CNRS Université de Toulouse 3, 118 route de Narbonne, F-31062, Toulouse cedex 09, France
| | - Laetitia Bataillé
- Centre de Biologie du Développement, UMR 5547 CNRS Université de Toulouse 3, 118 route de Narbonne, F-31062, Toulouse cedex 09, France
| | - Anaïs Painset
- Centre de Biologie du Développement, UMR 5547 CNRS Université de Toulouse 3, 118 route de Narbonne, F-31062, Toulouse cedex 09, France
- Plate-forme bio-informatique Genotoul/MIA-T, INRA, Borde Rouge, 31326, Castanet-Tolosan, France
| | - Stéphanie Le Gras
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 67404, Illkirch, France
| | - Bernard Jost
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/Université de Strasbourg, 67404, Illkirch, France
| | - Michèle Crozatier
- Centre de Biologie du Développement, UMR 5547 CNRS Université de Toulouse 3, 118 route de Narbonne, F-31062, Toulouse cedex 09, France
| | - Alain Vincent
- Centre de Biologie du Développement, UMR 5547 CNRS Université de Toulouse 3, 118 route de Narbonne, F-31062, Toulouse cedex 09, France
- * E-mail:
| |
Collapse
|
60
|
Deconstructing the complexity of regulating common properties in different cell types: Lessons from the delilah gene. Dev Biol 2015; 403:180-91. [DOI: 10.1016/j.ydbio.2015.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/26/2015] [Accepted: 05/10/2015] [Indexed: 11/21/2022]
|
61
|
Katz Imberman S, Kolpakova A, Keren A, Bengal E. Myocyte enhancer factor 2D regulates ectoderm specification and adhesion properties of animal cap cells in the early Xenopus embryo. FEBS J 2015; 282:2930-47. [PMID: 26038288 DOI: 10.1111/febs.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/21/2015] [Accepted: 05/29/2015] [Indexed: 11/28/2022]
Abstract
In Xenopus, animal cap (AC) cells give rise to ectoderm and its derivatives: epidermis and the central nervous system. Ectoderm has long been considered a default pathway of embryonic development, with cells that are not under the influence of vegetal Nodal signaling adopting an ectodermal program of gene expression. In the present study, we describe the involvement of the animally-localized maternal transcription factor myocyte enhancer factor (Mef) 2D in regulating the identity of AC cells. We find that Mef2D is required for the formation of both ectodermal lineages: neural and epidermis. Gain and loss of function experiments indicate that Mef2D regulates early gastrula expression of key ectodermal/epidermal genes in the animal region. Mef2D controls the activity of zygotic bone morphogenetic protein (BMP) signaling known to dictate the epidermal differentiation program. Exogenous expression of Mef2D in vegetal blastomeres was sufficient to induce ectopic expression of ectoderm/epidermal genes in the vegetal half of the embryo, when Nodal signaling was inhibited. Depletion of Mef2D caused a loss of AC cell adhesion that was rescued by the expression of E-cadherin or bone morphogenetic protein 4. In addition, expression of Mef2D in the prospective endoderm caused unusual aggregation of vegetal cells with animal cells in vitro and inappropriate segregation to other germ layers in vivo. Mef2D cooperates with another animally-expressed transcription factor, FoxI1e. Together, they regulate the expression of genes encoding signaling proteins and the transcription factors that control the regional identity of animal cells. Therefore, we describe a new role for the animally-localized Mef2D protein in early ectoderm specification, which is similar to that of the vegetally-localized VegT in endoderm and mesoderm formation.
Collapse
Affiliation(s)
- Sandra Katz Imberman
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Alina Kolpakova
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Aviad Keren
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eyal Bengal
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
62
|
Brunetti TM, Fremin BJ, Cripps RM. Identification of singles bar as a direct transcriptional target of Drosophila Myocyte enhancer factor-2 and a regulator of adult myoblast fusion. Dev Biol 2015; 401:299-309. [PMID: 25797154 PMCID: PMC4424145 DOI: 10.1016/j.ydbio.2015.02.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 01/29/2015] [Accepted: 02/14/2015] [Indexed: 11/17/2022]
Abstract
In Drosophila, myoblast fusion is a conserved process in which founder cells (FCs) and fusion competent myoblasts (FCMs) fuse to form a syncytial muscle fiber. Mutants for the myogenic regulator Myocyte enhancer factor-2 (MEF2) show a failure of myoblast fusion, indicating that MEF2 regulates the fusion process. Indeed, chromatin immunoprecipitation studies show that several genes involved in myoblast fusion are bound by MEF2 during embryogenesis. Of these, the MARVEL domain gene singles bar (sing), is down-regulated in MEF2 knockdown pupae, and has five consensus MEF2 binding sites within a 9000-bp region. To determine if MEF2 is an essential and direct regulator of sing during pupal muscle development, we identified a 315-bp myoblast enhancer of sing. This enhancer was active during myoblast fusion, and mutation of two MEF2 sites significantly decreased enhancer activity. We show that lack of sing expression resulted in adult lethality and muscle loss, due to a failure of fusion during the pupal stage. Additionally, we sought to determine if sing was required in either FCs or FCMs to support fusion. Interestingly, knockdown of sing in either population did not significantly affect fusion, however, knockdown in both FCs and FCMs resulted in muscles with significantly reduced nuclei numbers, provisionally indicating that sing function is required in either cell type, but not both. Finally, we found that MEF2 regulated sing expression at the embryonic stage through the same 315-bp enhancer, indicating that sing is a MEF2 target at both critical stages of myoblast fusion. Our studies define for the first time how MEF2 directly controls fusion at multiple stages of the life cycle, and provide further evidence that the mechanisms of fusion characterized in Drosophila embryos is also used in the formation of the more complex adult muscles.
Collapse
Affiliation(s)
- Tonya M Brunetti
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Brayon J Fremin
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Richard M Cripps
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
63
|
Maartens AP, Brown NH. The many faces of cell adhesion during Drosophila muscle development. Dev Biol 2015; 401:62-74. [DOI: 10.1016/j.ydbio.2014.12.038] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 10/24/2022]
|
64
|
MEF2D drives photoreceptor development through a genome-wide competition for tissue-specific enhancers. Neuron 2015; 86:247-63. [PMID: 25801704 DOI: 10.1016/j.neuron.2015.02.038] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 01/30/2015] [Accepted: 02/20/2015] [Indexed: 11/20/2022]
Abstract
Organismal development requires the precise coordination of genetic programs to regulate cell fate and function. MEF2 transcription factors (TFs) play essential roles in this process but how these broadly expressed factors contribute to the generation of specific cell types during development is poorly understood. Here we show that despite being expressed in virtually all mammalian tissues, in the retina MEF2D binds to retina-specific enhancers and controls photoreceptor cell development. MEF2D achieves specificity by cooperating with a retina-specific factor CRX, which recruits MEF2D away from canonical MEF2 binding sites and redirects it to retina-specific enhancers that lack the consensus MEF2-binding sequence. Once bound to retina-specific enhancers, MEF2D and CRX co-activate the expression of photoreceptor-specific genes that are critical for retinal function. These findings demonstrate that broadly expressed TFs acquire specific functions through competitive recruitment to enhancers by tissue-specific TFs and through selective activation of these enhancers to regulate tissue-specific genes.
Collapse
|
65
|
A cis-regulatory mutation in troponin-I of Drosophila reveals the importance of proper stoichiometry of structural proteins during muscle assembly. Genetics 2015; 200:149-65. [PMID: 25747460 DOI: 10.1534/genetics.115.175604] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/01/2015] [Indexed: 02/02/2023] Open
Abstract
Rapid and high wing-beat frequencies achieved during insect flight are powered by the indirect flight muscles, the largest group of muscles present in the thorax. Any anomaly during the assembly and/or structural impairment of the indirect flight muscles gives rise to a flightless phenotype. Multiple mutagenesis screens in Drosophila melanogaster for defective flight behavior have led to the isolation and characterization of mutations that have been instrumental in the identification of many proteins and residues that are important for muscle assembly, function, and disease. In this article, we present a molecular-genetic characterization of a flightless mutation, flightless-H (fliH), originally designated as heldup-a (hdp-a). We show that fliH is a cis-regulatory mutation of the wings up A (wupA) gene, which codes for the troponin-I protein, one of the troponin complex proteins, involved in regulation of muscle contraction. The mutation leads to reduced levels of troponin-I transcript and protein. In addition to this, there is also coordinated reduction in transcript and protein levels of other structural protein isoforms that are part of the troponin complex. The altered transcript and protein stoichiometry ultimately culminates in unregulated acto-myosin interactions and a hypercontraction muscle phenotype. Our results shed new insights into the importance of maintaining the stoichiometry of structural proteins during muscle assembly for proper function with implications for the identification of mutations and disease phenotypes in other species, including humans.
Collapse
|
66
|
The control operated by the cell cycle machinery on MEF2 stability contributes to the downregulation of CDKN1A and entry into S phase. Mol Cell Biol 2015; 35:1633-47. [PMID: 25733682 DOI: 10.1128/mcb.01461-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/23/2015] [Indexed: 02/06/2023] Open
Abstract
MEF2s are pleiotropic transcription factors (TFs) which supervise multiple cellular activities. During the cell cycle, MEF2s are activated at the G0/G1 transition to orchestrate the expression of the immediate early genes in response to growth factor stimulation. Here we show that, in human and murine fibroblasts, MEF2 activities are downregulated during late G1. MEF2C and MEF2D interact with the E3 ligase F-box protein SKP2, which mediates their subsequent degradation through the ubiquitin-proteasome system. The cyclin-dependent kinase 4 (CDK4)/cyclin D1 complex phosphorylates MEF2D on serine residues 98 and 110, and phosphorylation of these residues is an important determinant for SKP2 binding. Unscheduled MEF2 transcription during the cell cycle reduces cell proliferation, whereas its containment sustains DNA replication. The CDK inhibitor p21/CDKN1A gene is a MEF2 target gene required to exert this antiproliferative influence. MEF2C and MEF2D bind a region within the first intron of CDKN1A, presenting epigenetic markers of open chromatin. Importantly, H3K27 acetylation within this regulative region depends on the presence of MEF2D. We propose that following the initial engagement in the G0/G1 transition, MEF2C and MEF2D must be polyubiquitylated and degraded during G1 progression to diminish the transcription of the CDKN1A gene, thus favoring entry into S phase.
Collapse
|
67
|
Elwell JA, Lovato TL, Adams MM, Baca EM, Lee T, Cripps RM. The myogenic repressor gene Holes in muscles is a direct transcriptional target of Twist and Tinman in the Drosophila embryonic mesoderm. Dev Biol 2015; 400:266-76. [PMID: 25704510 DOI: 10.1016/j.ydbio.2015.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 01/14/2015] [Accepted: 02/10/2015] [Indexed: 11/19/2022]
Abstract
Understanding the regulatory circuitry controlling myogenesis is critical to understanding developmental mechanisms and developmentally-derived diseases. We analyzed the transcriptional regulation of a Drosophila myogenic repressor gene, Holes in muscles (Him). Previously, Him was shown to inhibit Myocyte enhancer factor-2 (MEF2) activity, and is expressed in myoblasts but not differentiating myotubes. We demonstrate that different phases of Him embryonic expression arises through the actions of different enhancers, and we characterize the enhancer required for its early mesoderm expression. This Him early mesoderm enhancer contains two conserved binding sites for the basic helix-loop-helix regulator Twist, and one binding site for the NK homeodomain protein Tinman. The sites for both proteins are required for enhancer activity in early embryos. Twist and Tinman activate the enhancer in tissue culture assays, and ectopic expression of either factor is sufficient to direct ectopic expression of a Him-lacZ reporter, or of the endogenous Him gene. Moreover, sustained expression of twist in the mesoderm up-regulates mesodermal Him expression in late embryos. Our findings provide a model to define mechanistically how Twist can both promotes myogenesis through direct activation of Mef2, and can place a brake on myogenesis, through direct activation of Him.
Collapse
Affiliation(s)
- Jennifer A Elwell
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - TyAnna L Lovato
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Melanie M Adams
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Erica M Baca
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Thai Lee
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Richard M Cripps
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| |
Collapse
|
68
|
Gene coexpression networks reveal key drivers of phenotypic divergence in porcine muscle. BMC Genomics 2015; 16:50. [PMID: 25651817 PMCID: PMC4328970 DOI: 10.1186/s12864-015-1238-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/12/2015] [Indexed: 01/12/2023] Open
Abstract
Background Domestication of the wild pig has led to obese and lean phenotype breeds, and evolutionary genome research has sought to identify the regulatory mechanisms underlying this phenotypic diversity. However, revealing the molecular mechanisms underlying muscle phenotype variation based on differentially expressed genes has proved to be difficult. To characterize the mechanisms regulating muscle phenotype variation under artificial selection, we aimed to provide an integrated view of genome organization by weighted gene coexpression network analysis. Results Our analysis was based on 20 publicly available next-generation sequencing datasets of lean and obese pig muscle generated from 10 developmental stages. The evolution of the constructed coexpression modules was examined using the genome resequencing data of 37 domestic pigs and 11 wild boars. Our results showed the regulation of muscle development might be more complex than had been previously acknowledged, and is regulated by the coordinated action of muscle, nerve and immunity related genes. Breed-specific modules that regulated muscle phenotype divergence were identified, and hundreds of hub genes with major roles in muscle development were determined to be responsible for key functional distinctions between breeds. Our evolutionary analysis showed that the role of changes in the coding sequence under positive selection in muscle phenotype divergence was minor. Conclusions Muscle phenotype divergence was found to be regulated by the divergence of coexpression network modules under artificial selection, and not by changes in the coding sequence of genes. Our results present multiple lines of evidence suggesting links between modules and muscle phenotypes, and provide insights into the molecular bases of genome organization in muscle development and phenotype variation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1238-5) contains supplementary material, which is available to authorized users.
Collapse
|
69
|
Estrella NL, Desjardins CA, Nocco SE, Clark AL, Maksimenko Y, Naya FJ. MEF2 transcription factors regulate distinct gene programs in mammalian skeletal muscle differentiation. J Biol Chem 2014; 290:1256-68. [PMID: 25416778 DOI: 10.1074/jbc.m114.589838] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Skeletal muscle differentiation requires precisely coordinated transcriptional regulation of diverse gene programs that ultimately give rise to the specialized properties of this cell type. In Drosophila, this process is controlled, in part, by MEF2, the sole member of an evolutionarily conserved transcription factor family. By contrast, vertebrate MEF2 is encoded by four distinct genes, Mef2a, -b, -c, and -d, making it far more challenging to link this transcription factor to the regulation of specific muscle gene programs. Here, we have taken the first step in molecularly dissecting vertebrate MEF2 transcriptional function in skeletal muscle differentiation by depleting individual MEF2 proteins in myoblasts. Whereas MEF2A is absolutely required for proper myoblast differentiation, MEF2B, -C, and -D were found to be dispensable for this process. Furthermore, despite the extensive redundancy, we show that mammalian MEF2 proteins regulate a significant subset of nonoverlapping gene programs. These results suggest that individual MEF2 family members are able to recognize specific targets among the entire cohort of MEF2-regulated genes in the muscle genome. These findings provide opportunities to modulate the activity of MEF2 isoforms and their respective gene programs in skeletal muscle homeostasis and disease.
Collapse
Affiliation(s)
- Nelsa L Estrella
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| | - Cody A Desjardins
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| | - Sarah E Nocco
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| | - Amanda L Clark
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| | - Yevgeniy Maksimenko
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| | - Francisco J Naya
- From the Department of Biology, Program in Cell and Molecular Biology, Boston University, Boston, Massachusetts 02215
| |
Collapse
|
70
|
Waardenberg AJ, Ramialison M, Bouveret R, Harvey RP. Genetic networks governing heart development. Cold Spring Harb Perspect Med 2014; 4:a013839. [PMID: 25280899 PMCID: PMC4208705 DOI: 10.1101/cshperspect.a013839] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Animal genomes contain a code for construction of the body plan from a fertilized egg. Understanding how genome information is deciphered to create the complex multilayered regulatory systems that drive organismal development, and which become altered in disease, is one of the greatest challenges in the biological sciences. The development of methods that effectively represent and communicate the complexity inherent in gene regulatory networks remains a major barrier. This review introduces the philosophy of systems biology and discusses recent progress in understanding the development of the heart at a systems biology level.
Collapse
Affiliation(s)
- Ashley J Waardenberg
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
| | - Mirana Ramialison
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia St. Vincent's Clinical School, University of New South Wales Medicine, Kensington, New South Wales 2052, Australia Stem Cells Australia, Melbourne Brain Centre, University of Melbourne, Victoria 3010, Australia
| | - Romaric Bouveret
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia St. Vincent's Clinical School, University of New South Wales Medicine, Kensington, New South Wales 2052, Australia
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia St. Vincent's Clinical School, University of New South Wales Medicine, Kensington, New South Wales 2052, Australia School of Biotechnology and Biomolecular Sciences, University of New South Wales Faculty of Science, New South Wales 2052, Australia Stem Cells Australia, Melbourne Brain Centre, University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
71
|
Caine C, Kasherov P, Silber J, Lalouette A. Mef2 interacts with the Notch pathway during adult muscle development in Drosophila melanogaster. PLoS One 2014; 9:e108149. [PMID: 25247309 PMCID: PMC4172597 DOI: 10.1371/journal.pone.0108149] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/03/2014] [Indexed: 12/22/2022] Open
Abstract
Myogenesis of indirect flight muscles (IFMs) in Drosophila melanogaster follows a well-defined cellular developmental scheme. During embryogenesis, a set of cells, the Adult Muscle Precursors (AMPs), are specified. These cells will become proliferating myoblasts during the larval stages which will then give rise to the adult IFMs. Although the cellular aspect of this developmental process is well studied, the molecular biology behind the different stages is still under investigation. In particular, the interactions required during the transition from proliferating myoblasts to differentiated myoblasts ready to fuse to the muscle fiber. It has been previously shown that the Notch pathway is active in proliferating myoblasts, and that this pathway is inhibited in developing muscle fibers. Furthermore, the Myocyte Enhancing Factor 2 (Mef2), Vestigial (Vg) and Scalloped (Sd) transcription factors are necessary for IFM development and that Vg is required for Notch pathway repression in differentiating fibers. Here we examine the interactions between Notch and Mef2 and mechanisms by which the Notch pathway is inhibited during differentiation. We show that Mef2 is capable of inhibiting the Notch pathway in non myogenic cells. A previous screen for Mef2 potential targets identified Delta a component of the Notch pathway. Dl is expressed in Mef2 and Sd-positive developing fibers. Our results show that Mef2 and possibly Sd regulate a Dl enhancer specifically expressed in the developing IFMs and that Mef2 is required for Dl expression in developing IFMs.
Collapse
Affiliation(s)
- Charlotte Caine
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Petar Kasherov
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Joël Silber
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Alexis Lalouette
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
72
|
Wales S, Hashemi S, Blais A, McDermott JC. Global MEF2 target gene analysis in cardiac and skeletal muscle reveals novel regulation of DUSP6 by p38MAPK-MEF2 signaling. Nucleic Acids Res 2014; 42:11349-62. [PMID: 25217591 PMCID: PMC4191398 DOI: 10.1093/nar/gku813] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
MEF2 plays a profound role in the regulation of transcription in cardiac and skeletal muscle lineages. To define the overlapping and unique MEF2A genomic targets, we utilized ChIP-exo analysis of cardiomyocytes and skeletal myoblasts. Of the 2783 and 1648 MEF2A binding peaks in skeletal myoblasts and cardiomyocytes, respectively, 294 common binding sites were identified. Genomic targets were compared to differentially expressed genes in RNA-seq analysis of MEF2A depleted myogenic cells, revealing two prominent genetic networks. Genes largely associated with muscle development were down-regulated by loss of MEF2A while up-regulated genes reveal a previously unrecognized function of MEF2A in suppressing growth/proliferative genes. Several up-regulated (Tprg, Mctp2, Kitl, Prrx1, Dusp6) and down-regulated (Atp1a2, Hspb7, Tmem182, Sorbs2, Lmod3) MEF2A target genes were chosen for further investigation. Interestingly, siRNA targeting of the MEF2A/D heterodimer revealed a somewhat divergent role in the regulation of Dusp6, a MAPK phosphatase, in cardiac and skeletal myogenic lineages. Furthermore, MEF2D functions as a p38MAPK-dependent repressor of Dusp6 in myoblasts. These data illustrate that MEF2 orchestrates both common and non-overlapping programs of signal-dependent gene expression in skeletal and cardiac muscle lineages.
Collapse
Affiliation(s)
- Stephanie Wales
- Department of Biology, York University, 4700 Keele Street Toronto, Ontario, M3J 1P3 Canada Muscle Health Research Centre (MHRC), York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3 Canada Centre for Research on Biomolecular Interactions (CRBI), 4700 Keele Street, Toronto, Ontario, M3J 1P3 Canada
| | - Sara Hashemi
- Department of Biology, York University, 4700 Keele Street Toronto, Ontario, M3J 1P3 Canada Muscle Health Research Centre (MHRC), York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3 Canada Centre for Research on Biomolecular Interactions (CRBI), 4700 Keele Street, Toronto, Ontario, M3J 1P3 Canada
| | - Alexandre Blais
- Ottawa Institute of Systems Biology, University of Ottawa, Health Sciences Campus, 451 Smyth Road, Ottawa, Ontario, K1H 8M5 Canada
| | - John C McDermott
- Department of Biology, York University, 4700 Keele Street Toronto, Ontario, M3J 1P3 Canada Muscle Health Research Centre (MHRC), York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3 Canada Centre for Research on Biomolecular Interactions (CRBI), 4700 Keele Street, Toronto, Ontario, M3J 1P3 Canada Centre for Research in Mass Spectrometry (CRMS), York University, 4700 Keele Street, Toronto, Ontario, M3J 1P3 Canada
| |
Collapse
|
73
|
Ciglar L, Girardot C, Wilczyński B, Braun M, Furlong EEM. Coordinated repression and activation of two transcriptional programs stabilizes cell fate during myogenesis. Development 2014; 141:2633-43. [PMID: 24961800 PMCID: PMC4146391 DOI: 10.1242/dev.101956] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Molecular models of cell fate specification typically focus on the activation of specific lineage programs. However, the concurrent repression of unwanted transcriptional networks is also essential to stabilize certain cellular identities, as shown in a number of diverse systems and phyla. Here, we demonstrate that this dual requirement also holds true in the context of Drosophila myogenesis. By integrating genetics and genomics, we identified a new role for the pleiotropic transcriptional repressor Tramtrack69 in myoblast specification. Drosophila muscles are formed through the fusion of two discrete cell types: founder cells (FCs) and fusion-competent myoblasts (FCMs). When tramtrack69 is removed, FCMs appear to adopt an alternative muscle FC-like fate. Conversely, ectopic expression of this repressor phenocopies muscle defects seen in loss-of-function lame duck mutants, a transcription factor specific to FCMs. This occurs through Tramtrack69-mediated repression in FCMs, whereas Lame duck activates a largely distinct transcriptional program in the same cells. Lineage-specific factors are therefore not sufficient to maintain FCM identity. Instead, their identity appears more plastic, requiring the combination of instructive repressive and activating programs to stabilize cell fate.
Collapse
Affiliation(s)
- Lucia Ciglar
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Charles Girardot
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Bartek Wilczyński
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Martina Braun
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| | - Eileen E M Furlong
- European Molecular Biology Laboratory, Genome Biology Unit, Heidelberg 69117, Germany
| |
Collapse
|
74
|
Luo W, Wu H, Ye Y, Li Z, Hao S, Kong L, Zheng X, Lin S, Nie Q, Zhang X. The transient expression of miR-203 and its inhibiting effects on skeletal muscle cell proliferation and differentiation. Cell Death Dis 2014; 5:e1347. [PMID: 25032870 PMCID: PMC4123083 DOI: 10.1038/cddis.2014.289] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/01/2014] [Accepted: 06/03/2014] [Indexed: 01/08/2023]
Abstract
Previous studies have shown that miR-203 is a skin-specific microRNA (miRNA) with a profound role in skin cell differentiation. However, emerging microarray and deep sequencing data revealed that miR-203 is also expressed in embryonic skeletal muscle and myoblasts. In this study, we found that miR-203 was transiently upregulated in chicken embryos on days 10 to 16 (E10-E16) and was sharply downregulated and even not expressed after E16 in chicken embryonic skeletal muscle. Histological profiles and weight variations of embryo skeletal muscle revealed that miR-203 expression is correlated with muscle development. In vitro experiments showed that miR-203 exhibited downregulated expression during myoblast differentiation into myotubes. miR-203 overexpression inhibited myoblast proliferation and differentiation, whereas its loss-of-function increased myoblast proliferation and differentiation. During myogenesis, miR-203 can target and inhibit the expression of c-JUN and MEF2C, which were important for cell proliferation and muscle development, respectively. The overexpression of c-JUN significantly promoted myoblast proliferation. Conversely, knockdown of c-JUN by siRNA suppressed myoblast proliferation. In addition, the knockdown of MEF2C by siRNA significantly inhibited myoblast differentiation. Altogether, these data not only suggested that the expression of miR-203 is transitory during chicken skeletal muscle development but also showed a novel role of miR-203 in inhibiting skeletal muscle cell proliferation and differentiation by repressing c-JUN and MEF2C, respectively.
Collapse
Affiliation(s)
- W Luo
- 1] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China [2] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - H Wu
- 1] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China [2] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Y Ye
- Department of Veterinary Biomedicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Z Li
- 1] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China [2] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - S Hao
- 1] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China [2] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - L Kong
- 1] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China [2] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - X Zheng
- 1] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China [2] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - S Lin
- Department of Animal Science, College of Life Science, Foshan University, Foshan, Guangdong 528231, China
| | - Q Nie
- 1] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China [2] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - X Zhang
- 1] Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, and Key Lab of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642, China [2] Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
75
|
Refki PN, Armisén D, Crumière AJJ, Viala S, Khila A. Emergence of tissue sensitivity to Hox protein levels underlies the evolution of an adaptive morphological trait. Dev Biol 2014; 392:441-53. [PMID: 24886828 PMCID: PMC4111901 DOI: 10.1016/j.ydbio.2014.05.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 11/16/2022]
Abstract
Growth control scales morphological attributes and, therefore, provides a critical contribution to the evolution of adaptive traits. Yet, the genetic mechanisms underlying growth in the context of specific ecological adaptations are poorly understood. In water striders, adaptation to locomotion on the water surface is associated with allometric and functional changes in thoracic appendages, such that T2-legs, used as propelling oars, are longer than T3-legs, used as steering rudders. The Hox gene Ubx establishes this derived morphology by elongating T2-legs but shortening T3-legs. Using gene expression assays, RNAi knockdown, and comparative transcriptomics, we demonstrate that the evolution of water surface rowing as a novel means of locomotion is associated with the evolution of a dose-dependent promoting-repressing effect of Ubx on leg growth. In the water strider Limnoporus dissortis, T3-legs express six to seven times higher levels of Ubx compared to T2-legs. Ubx RNAi shortens T2-legs and the severity of this phenotype increases with increased depletion of Ubx protein. Conversely, Ubx RNAi lengthens T3-legs but this phenotype is partially rescued when Ubx protein is further depleted. This dose-dependent effect of Ubx on leg growth is absent in non-rowing relatives that retain the ancestral relative leg length. We also show that the spatial patterns of expression of dpp, wg, hh, egfr, dll, exd, hth, and dac are unchanged in Ubx RNAi treatments. This indicates that the dose-dependent opposite effect of Ubx on T2- and T3-legs operates without any apparent effect on the spatial expression of major leg patterning genes. Our data suggest that scaling of adaptive allometries can evolve through changes in the levels of expression of Hox proteins early during ontogeny, and in the sensitivity of the tissues that express them, without any major effects on pattern formation. Ubx is generally expressed at higher levels in T3- relative to T2-legs in semi-aquatic insects. It is only in the derived Gerridae where the high levels of Ubx result in reduced T3-leg length. In the Gerridae, the response of leg tissues to Ubx levels is bimodal. Changes in Ubx regulation and function have evolved in Limnoporus without disrupting patterning hierarchies. Changes in Hox protein levels and emergence of tissue sensitivity to these levels can shape adaptive morphological traits.
Collapse
Affiliation(s)
- Peter Nagui Refki
- Institut de Génomique Fonctionnelle de Lyon, CNRS-UMR5242, Ecole Normale Supérieure de Lyon, 46 Allée d׳Italie, 69364 Lyon Cedex 07, France; Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - David Armisén
- Institut de Génomique Fonctionnelle de Lyon, CNRS-UMR5242, Ecole Normale Supérieure de Lyon, 46 Allée d׳Italie, 69364 Lyon Cedex 07, France
| | - Antonin Jean Johan Crumière
- Institut de Génomique Fonctionnelle de Lyon, CNRS-UMR5242, Ecole Normale Supérieure de Lyon, 46 Allée d׳Italie, 69364 Lyon Cedex 07, France; Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - Séverine Viala
- Institut de Génomique Fonctionnelle de Lyon, CNRS-UMR5242, Ecole Normale Supérieure de Lyon, 46 Allée d׳Italie, 69364 Lyon Cedex 07, France
| | - Abderrahman Khila
- Institut de Génomique Fonctionnelle de Lyon, CNRS-UMR5242, Ecole Normale Supérieure de Lyon, 46 Allée d׳Italie, 69364 Lyon Cedex 07, France.
| |
Collapse
|
76
|
Prange KHM, Singh AA, Martens JHA. The genome-wide molecular signature of transcription factors in leukemia. Exp Hematol 2014; 42:637-50. [PMID: 24814246 DOI: 10.1016/j.exphem.2014.04.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 04/22/2014] [Accepted: 04/23/2014] [Indexed: 01/08/2023]
Abstract
Transcription factors control expression of genes essential for the normal functioning of the hematopoietic system and regulate development of distinct blood cell types. During leukemogenesis, aberrant regulation of transcription factors such as RUNX1, CBFβ, MLL, C/EBPα, SPI1, GATA, and TAL1 is central to the disease. Here, we will discuss the mechanisms of transcription factor deregulation in leukemia and how in recent years next-generation sequencing approaches have helped to elucidate the molecular role of many of these aberrantly expressed transcription factors. We will focus on the complexes in which these factors reside, the role of posttranslational modification of these factors, their involvement in setting up higher order chromatin structures, and their influence on the local epigenetic environment. We suggest that only comprehensive knowledge on all these aspects will increase our understanding of aberrant gene expression in leukemia as well as open new entry points for therapeutic intervention.
Collapse
Affiliation(s)
- Koen H M Prange
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Abhishek A Singh
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
77
|
Bargiela A, Llamusi B, Cerro-Herreros E, Artero R. Two enhancers control transcription of Drosophila muscleblind in the embryonic somatic musculature and in the central nervous system. PLoS One 2014; 9:e93125. [PMID: 24667536 PMCID: PMC3965525 DOI: 10.1371/journal.pone.0093125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/01/2014] [Indexed: 12/19/2022] Open
Abstract
The phylogenetically conserved family of Muscleblind proteins are RNA-binding factors involved in a variety of gene expression processes including alternative splicing regulation, RNA stability and subcellular localization, and miRNA biogenesis, which typically contribute to cell-type specific differentiation. In humans, sequestration of Muscleblind-like proteins MBNL1 and MBNL2 has been implicated in degenerative disorders, particularly expansion diseases such as myotonic dystrophy type 1 and 2. Drosophila muscleblind was previously shown to be expressed in embryonic somatic and visceral muscle subtypes, and in the central nervous system, and to depend on Mef2 for transcriptional activation. Genomic approaches have pointed out candidate gene promoters and tissue-specific enhancers, but experimental confirmation of their regulatory roles was lacking. In our study, luciferase reporter assays in S2 cells confirmed that regions P1 (515 bp) and P2 (573 bp), involving the beginning of exon 1 and exon 2, respectively, were able to initiate RNA transcription. Similarly, transgenic Drosophila embryos carrying enhancer reporter constructs supported the existence of two regulatory regions which control embryonic expression of muscleblind in the central nerve cord (NE, neural enhancer; 830 bp) and somatic (skeletal) musculature (ME, muscle enhancer; 3.3 kb). Both NE and ME were able to boost expression from the Hsp70 heterologous promoter. In S2 cell assays most of the ME enhancer activation could be further narrowed down to a 1200 bp subregion (ME.3), which contains predicted binding sites for the Mef2 transcription factor. The present study constitutes the first characterization of muscleblind enhancers and will contribute to a deeper understanding of the transcriptional regulation of the gene.
Collapse
Affiliation(s)
- Ariadna Bargiela
- Translational Genomics Group, Department of Genetics, University of Valencia, Valencia, Spain
- INCLIVA Health Research Institute, Valencia, Spain
| | - Beatriz Llamusi
- Translational Genomics Group, Department of Genetics, University of Valencia, Valencia, Spain
- INCLIVA Health Research Institute, Valencia, Spain
| | - Estefanía Cerro-Herreros
- Translational Genomics Group, Department of Genetics, University of Valencia, Valencia, Spain
- INCLIVA Health Research Institute, Valencia, Spain
| | - Ruben Artero
- Translational Genomics Group, Department of Genetics, University of Valencia, Valencia, Spain
- INCLIVA Health Research Institute, Valencia, Spain
- * E-mail:
| |
Collapse
|
78
|
Bailey T, Krajewski P, Ladunga I, Lefebvre C, Li Q, Liu T, Madrigal P, Taslim C, Zhang J. Practical guidelines for the comprehensive analysis of ChIP-seq data. PLoS Comput Biol 2013; 9:e1003326. [PMID: 24244136 PMCID: PMC3828144 DOI: 10.1371/journal.pcbi.1003326] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mapping the chromosomal locations of transcription factors, nucleosomes, histone modifications, chromatin remodeling enzymes, chaperones, and polymerases is one of the key tasks of modern biology, as evidenced by the Encyclopedia of DNA Elements (ENCODE) Project. To this end, chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) is the standard methodology. Mapping such protein-DNA interactions in vivo using ChIP-seq presents multiple challenges not only in sample preparation and sequencing but also for computational analysis. Here, we present step-by-step guidelines for the computational analysis of ChIP-seq data. We address all the major steps in the analysis of ChIP-seq data: sequencing depth selection, quality checking, mapping, data normalization, assessment of reproducibility, peak calling, differential binding analysis, controlling the false discovery rate, peak annotation, visualization, and motif analysis. At each step in our guidelines we discuss some of the software tools most frequently used. We also highlight the challenges and problems associated with each step in ChIP-seq data analysis. We present a concise workflow for the analysis of ChIP-seq data in Figure 1 that complements and expands on the recommendations of the ENCODE and modENCODE projects. Each step in the workflow is described in detail in the following sections.
Collapse
Affiliation(s)
- Timothy Bailey
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- * E-mail: (TB); (PM)
| | - Pawel Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Istvan Ladunga
- Department of Statistics, Beadle Center, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Celine Lefebvre
- Inserm U981, Cancer Institute Gustave Roussy, Villejuif, France
| | - Qunhua Li
- Department of Statistics, Penn State University, University Park, Pennsylvania, United States of America
| | - Tao Liu
- Department of Biochemistry, University at Buffalo, Buffalo, New York, United States of America
| | - Pedro Madrigal
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
- * E-mail: (TB); (PM)
| | - Cenny Taslim
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
| | - Jie Zhang
- Department of Biomedical Informatics, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
79
|
Transcriptional networks regulating the costamere, sarcomere, and other cytoskeletal structures in striated muscle. Cell Mol Life Sci 2013; 71:1641-56. [PMID: 24218011 DOI: 10.1007/s00018-013-1512-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 10/27/2013] [Accepted: 10/30/2013] [Indexed: 10/26/2022]
Abstract
Structural abnormalities in striated muscle have been observed in numerous transcription factor gain- and loss-of-function phenotypes in animal and cell culture model systems, indicating that transcription is important in regulating the cytoarchitecture. While most characterized cytoarchitectural defects are largely indistinguishable by histological and ultrastructural criteria, analysis of dysregulated gene expression in each mutant phenotype has yielded valuable information regarding specific structural gene programs that may be uniquely controlled by each of these transcription factors. Linking the formation and maintenance of each subcellular structure or subset of proteins within a cytoskeletal compartment to an overlapping but distinct transcription factor cohort may enable striated muscle to control cytoarchitectural function in an efficient and specific manner. Here we summarize the available evidence that connects transcription factors, those with established roles in striated muscle such as MEF2 and SRF, as well as other non-muscle transcription factors, to the regulation of a defined cytoskeletal structure. The notion that genes encoding proteins localized to the same subcellular compartment are coordinately transcriptionally regulated may prompt rationally designed approaches that target specific transcription factor pathways to correct structural defects in muscle disease.
Collapse
|
80
|
A Cdx4-Sall4 regulatory module controls the transition from mesoderm formation to embryonic hematopoiesis. Stem Cell Reports 2013; 1:425-36. [PMID: 24286030 PMCID: PMC3841246 DOI: 10.1016/j.stemcr.2013.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 12/26/2022] Open
Abstract
Deletion of caudal/cdx genes alters hox gene expression and causes defects in posterior tissues and hematopoiesis. Yet, the defects in hox gene expression only partially explain these phenotypes. To gain deeper insight into Cdx4 function, we performed chromatin immunoprecipitation sequencing (ChIP-seq) combined with gene-expression profiling in zebrafish, and identified the transcription factor spalt-like 4 (sall4) as a Cdx4 target. ChIP-seq revealed that Sall4 bound to its own gene locus and the cdx4 locus. Expression profiling showed that Cdx4 and Sall4 coregulate genes that initiate hematopoiesis, such as hox, scl, and lmo2. Combined cdx4/sall4 gene knockdown impaired erythropoiesis, and overexpression of the Cdx4 and Sall4 target genes scl and lmo2 together rescued the erythroid program. These findings suggest that auto- and cross-regulation of Cdx4 and Sall4 establish a stable molecular circuit in the mesoderm that facilitates the activation of the blood-specific program as development proceeds. Cdx4 and Sall4 bind to each other’s genomic loci Cdx4 and Sall4 coregulate genes responsible for the mesoderm-to-blood transition Scl and Lmo2 overexpression rescues blood defects in cdx4/sall4 double morphants
Collapse
|
81
|
Choi J, Jang H, Kim H, Lee JH, Kim ST, Cho EJ, Youn HD. Modulation of lysine methylation in myocyte enhancer factor 2 during skeletal muscle cell differentiation. Nucleic Acids Res 2013; 42:224-34. [PMID: 24078251 PMCID: PMC3874188 DOI: 10.1093/nar/gkt873] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Myocyte enhancer factor 2 (MEF2) is a family of transcription factors that regulates many processes, including muscle differentiation. Due to its many target genes, MEF2D requires tight regulation of transcription activity over time and by location. Epigenetic modifiers have been suggested to regulate MEF2-dependent transcription via modifications to histones and MEF2. However, the modulation of MEF2 activity by lysine methylation, an important posttranslational modification that alters the activities of transcription factors, has not been studied. We report the reversible lysine methylation of MEF2D by G9a and LSD1 as a regulatory mechanism of MEF2D activity and skeletal muscle differentiation. G9a methylates lysine-267 of MEF2D and represses its transcriptional activity, but LSD1 counteracts it. This residue is highly conserved between MEF2 members in mammals. During myogenic differentiation of C2C12 mouse skeletal muscle cells, the methylation of MEF2D by G9a decreased, on which MEF2D-dependent myogenic genes were upregulated. We have also identified lysine-267 as a methylation/demethylation site and demonstrate that the lysine methylation state of MEF2D regulates its transcriptional activity and skeletal muscle cell differentiation.
Collapse
Affiliation(s)
- Jinmi Choi
- Department of Biomedical Sciences and Biochemistry and Molecular Biology, National Creative Research Center for Epigenome Reprogramming Network, Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul 110-799, Division of Cancer Biology, Research Institute, National Cancer Center, Goyang 410-769, Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, National Research Laboratory for Chromatin Dynamics, College of Pharmacy, Sungkyunkwan University, Suwon 440-746 and WCU Department of Molecular Medicine & Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul 110-799, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
82
|
Clark RI, Tan SWS, Péan CB, Roostalu U, Vivancos V, Bronda K, Pilátová M, Fu J, Walker DW, Berdeaux R, Geissmann F, Dionne MS. MEF2 is an in vivo immune-metabolic switch. Cell 2013; 155:435-47. [PMID: 24075010 PMCID: PMC3807682 DOI: 10.1016/j.cell.2013.09.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 07/08/2013] [Accepted: 09/05/2013] [Indexed: 01/13/2023]
Abstract
Infections disturb metabolic homeostasis in many contexts, but the underlying connections are not completely understood. To address this, we use paired genetic and computational screens in Drosophila to identify transcriptional regulators of immunity and pathology and their associated target genes and physiologies. We show that Mef2 is required in the fat body for anabolic function and the immune response. Using genetic and biochemical approaches, we find that MEF2 is phosphorylated at a conserved site in healthy flies and promotes expression of lipogenic and glycogenic enzymes. Upon infection, this phosphorylation is lost, and the activity of MEF2 changes—MEF2 now associates with the TATA binding protein to bind a distinct TATA box sequence and promote antimicrobial peptide expression. The loss of phosphorylated MEF2 contributes to loss of anabolic enzyme expression in Gram-negative bacterial infection. MEF2 is thus a critical transcriptional switch in the adult fat body between metabolism and immunity. Mef2 is required in Drosophila for immune function and storage of fat and glycogen MEF2 is phosphorylated in vivo at a conserved site (T20) to promote anabolism Infection reduces phospho-T20, allowing MEF2 to bind TBP and an immune TATA box MEF2 dephosphorylation leads to metabolic dysfunction in Gram-negative infection
Collapse
Affiliation(s)
- Rebecca I Clark
- Centre for the Molecular and Cellular Biology of Inflammation and Peter Gorer Department of Immunobiology, King's College London School of Medicine, London SE1 1UL, UK; Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Liang S, Knight M, Jolly ER. Polyethyleneimine mediated DNA transfection in schistosome parasites and regulation of the WNT signaling pathway by a dominant-negative SmMef2. PLoS Negl Trop Dis 2013; 7:e2332. [PMID: 23936566 PMCID: PMC3723562 DOI: 10.1371/journal.pntd.0002332] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 06/14/2013] [Indexed: 01/17/2023] Open
Abstract
Schistosomiasis is a serious global problem and the second most devastating parasitic disease following malaria. Parasitic worms of the genus Schistosoma are the causative agents of schistosomiasis and infect more than 240 million people worldwide. The paucity of molecular tools to manipulate schistosome gene expression has made an understanding of genetic pathways in these parasites difficult, increasing the challenge of identifying new potential drugs for treatment. Here, we describe the use of a formulation of polyethyleneimine (PEI) as an alternative to electroporation for the efficacious transfection of genetic material into schistosome parasites. We show efficient expression of genes from a heterologous CMV promoter and from the schistosome Sm23 promoter. Using the schistosome myocyte enhancer factor 2 (SmMef2), a transcriptional activator critical for myogenesis and other developmental pathways, we describe the development of a dominant-negative form of the schistosome Mef2. Using this mutant, we provide evidence that SmMef2 may regulate genes in the WNT pathway. We also show that SmMef2 regulates its own expression levels. These data demonstrate the use of PEI to facilitate effective transfection of nucleic acids into schistosomes, aiding in the study of schistosome gene expression and regulation, and development of genetic tools for the characterization of molecular pathways in these parasites.
Collapse
Affiliation(s)
- Shuang Liang
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Matty Knight
- Biomedical Research Institute, Rockville, Maryland, United States of America
| | - Emmitt R. Jolly
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
84
|
Sivachenko A, Li Y, Abruzzi KC, Rosbash M. The transcription factor Mef2 links the Drosophila core clock to Fas2, neuronal morphology, and circadian behavior. Neuron 2013; 79:281-92. [PMID: 23889933 PMCID: PMC3859024 DOI: 10.1016/j.neuron.2013.05.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2013] [Indexed: 12/01/2022]
Abstract
The transcription factor Mef2 regulates activity-dependent neuronal plasticity and morphology in mammals, and clock neurons are reported to experience activity-dependent circadian remodeling in Drosophila. We show here that Mef2 is required for this daily fasciculation-defasciculation cycle. Moreover, the master circadian transcription complex CLK/CYC directly regulates Mef2 transcription. ChIP-Chip analysis identified numerous Mef2 target genes implicated in neuronal plasticity, including the cell-adhesion gene Fas2. Genetic epistasis experiments support this transcriptional regulatory hierarchy, CLK/CYC- > Mef2- > Fas2, indicate that it influences the circadian fasciculation cycle within pacemaker neurons, and suggest that this cycle also contributes to circadian behavior. Mef2 therefore transmits clock information to machinery involved in neuronal remodeling, which contributes to locomotor activity rhythms.
Collapse
Affiliation(s)
- Anna Sivachenko
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454 USA
| | - Yue Li
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454 USA
| | - Katharine C. Abruzzi
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454 USA
| | - Michael Rosbash
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454 USA
| |
Collapse
|
85
|
Transcriptional regulation of mesoderm genes by MEF2D during early Xenopus development. PLoS One 2013; 8:e69693. [PMID: 23894525 PMCID: PMC3716644 DOI: 10.1371/journal.pone.0069693] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 06/12/2013] [Indexed: 12/21/2022] Open
Abstract
In Xenopus, specification of the three germ layers is one of the earliest developmental decisions occurring prior to gastrulation. The maternally-expressed vegetally-localized transcription factor VegT has a central role in cell autonomous specification of endoderm and in the generation of mesoderm-inducing signals. Yet, marginally-expressed transcription factors that cooperate with mesoderm-inducing signals are less investigated. Here we report that the transcription factors MEF2A and MEF2D are expressed in the animal hemisphere before mid-blastula transition. At the initiation of zygotic transcription, expression of MEF2D expands into the marginal region that gives rise to mesoderm. Knockdown of MEF2D delayed gastrulation movements, prevented embryo elongation at the subsequent tailbud stage and caused severe defects in axial tissues. At the molecular level, MEF2D knockdown reduced the expression of genes involved in mesoderm formation and patterning. We also report that MEF2D functions with FGF signaling in a positive feedback loop; each augments the expression of the other in the marginal region and both are necessary for mesodermal gene expression. One target of MEF2D is the Nodal-related 1 gene (Xnr1) that mediates some of MEF2D mesodermal activities. Chromatin immunoprecipitation analysis revealed that MEF2D associates with transcriptional regulatory sequences of the Xnr1 gene. Several MEF2 binding sites within the proximal promoter region of Xnr1 were identified by their in vitro association with MEF2D protein. The same promoter region was necessary but not sufficient to mediate MEF2D activity in a reporter gene assay. In sum, our results indicate that the MEF2D protein is a key transcription factor in the marginal zone acting in a positive feedback loop with FGF signaling that promotes mesoderm specification at late blastula stages.
Collapse
|
86
|
Nelson AC, Wardle FC. Conserved non-coding elements and cis regulation: actions speak louder than words. Development 2013; 140:1385-95. [PMID: 23482485 DOI: 10.1242/dev.084459] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
It is a truth (almost) universally acknowledged that conserved non-coding genomic sequences function in the cis regulation of neighbouring genes. But is this a misconception? The literature is strewn with examples of conserved non-coding sequences being able to drive reporter expression, but the extent to which such sequences are actually used endogenously in vivo is only now being rigorously explored using unbiased genome-scale approaches. Here, we review the emerging picture, examining the extent to which conserved non-coding sequences equivalently regulate gene expression in different species, or at different developmental stages, and how genomics approaches are revealing the relationship between sequence conservation and functional use of cis-regulatory elements.
Collapse
Affiliation(s)
- Andrew C Nelson
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, King's College London, Guy's Campus, London SE1 1UL, UK.
| | | |
Collapse
|
87
|
Galardi-Castilla M, Fernandez-Aguado I, Suarez T, Sastre L. Mef2A, a homologue of animal Mef2 transcription factors, regulates cell differentiation in Dictyostelium discoideum. BMC DEVELOPMENTAL BIOLOGY 2013; 13:12. [PMID: 23577638 PMCID: PMC3640940 DOI: 10.1186/1471-213x-13-12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 04/05/2013] [Indexed: 01/28/2023]
Abstract
Background Transcription factors from the MADS-box family play a relevant role in cell differentiation and development and include the animal SRF (serum response factor) and MEF2 (myocyte enhancer factor 2) proteins. The social amoeba Dictyostelium discoideum contains four genes coding for MADS-box transcription factors, two of these genes code for proteins that are more similar to SRF, and the other two code for proteins that are more similar to MEF2 animal factors. Results The biological function of one of the two genes that codes for MEF2-related proteins, a gene known as mef2A, is described in this article. This gene is expressed under the transcriptional control of two alternative promoters in growing cells, and its expression is induced during development in prespore cells. Mutant strains where the mef2A gene has been partially deleted were generated to study its biological function. The mutant strains showed reduced growth when feeding on bacteria and were able to develop and form fruiting bodies, but spore production was significantly reduced. A study of developmental markers showed that prespore cells differentiation was impaired in the mutant strains. When mutant and wild-type cells were set to develop in chimeras, mutant spores were underrepresented in the fruiting bodies. The mutant cells were also unable to form spores in vitro. In addition, mutant cells also showed a poor contribution to the formation of the tip-organizer and the upper region of slugs and culminant structures. In agreement with these observations, a comparison of the genes transcribed by mutant and wild-type strains during development indicated that prestalk gene expression was enhanced, while prespore gene expression decreased in the mef2A- strain. Conclusions Our data shows that mef2A plays a role in cell differentiation in D. discoideum and modulates the expression of prespore and prestalk genes.
Collapse
Affiliation(s)
- María Galardi-Castilla
- Instituto de Investigaciones Biomédicas de Madrid (Biomedical Research Institute of Madrid), CSIC/UAM, C/Arturo Duperier 4, 28029 Madrid, Spain
| | | | | | | |
Collapse
|
88
|
Ettensohn CA. Encoding anatomy: Developmental gene regulatory networks and morphogenesis. Genesis 2013; 51:383-409. [PMID: 23436627 DOI: 10.1002/dvg.22380] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/06/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Charles A. Ettensohn
- Department of Biological Sciences; Carnegie Mellon University; Pittsburgh; Pennsylvania
| |
Collapse
|
89
|
Jakobsen JS, Waage J, Rapin N, Bisgaard HC, Larsen FS, Porse BT. Temporal mapping of CEBPA and CEBPB binding during liver regeneration reveals dynamic occupancy and specific regulatory codes for homeostatic and cell cycle gene batteries. Genome Res 2013; 23:592-603. [PMID: 23403033 PMCID: PMC3613577 DOI: 10.1101/gr.146399.112] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dynamic shifts in transcription factor binding are central to the regulation of biological processes by allowing rapid changes in gene transcription. However, very few genome-wide studies have examined how transcription factor occupancy is coordinated temporally in vivo in higher animals. Here, we quantified the genome-wide binding patterns of two key hepatocyte transcription factors, CEBPA and CEBPB (also known as C/EBPalpha and C/EBPbeta), at multiple time points during the highly dynamic process of liver regeneration elicited by partial hepatectomy in mouse. Combining these profiles with RNA polymerase II binding data, we find three temporal classes of transcription factor binding to be associated with distinct sets of regulated genes involved in the acute phase response, metabolic/homeostatic functions, or cell cycle progression. Moreover, we demonstrate a previously unrecognized early phase of homeostatic gene expression prior to S-phase entry. By analyzing the three classes of CEBP bound regions, we uncovered mutually exclusive sets of sequence motifs, suggesting temporal codes of CEBP recruitment by differential cobinding with other factors. These findings were validated by sequential ChIP experiments involving a panel of central transcription factors and/or by comparison to external ChIP-seq data. Our quantitative investigation not only provides in vivo evidence for the involvement of many new factors in liver regeneration but also points to similarities in the circuitries regulating self-renewal of differentiated cells. Taken together, our work emphasizes the power of global temporal analyses of transcription factor occupancy to elucidate mechanisms regulating dynamic biological processes in complex higher organisms.
Collapse
Affiliation(s)
- Janus Schou Jakobsen
- The Finsen Laboratory, Faculty of Health Sciences, Rigshospitalet, DK-2100 Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
90
|
Voronova A, Coyne E, Al Madhoun A, Fair JV, Bosiljcic N, St-Louis C, Li G, Thurig S, Wallace VA, Wiper-Bergeron N, Skerjanc IS. Hedgehog signaling regulates MyoD expression and activity. J Biol Chem 2013; 288:4389-4404. [PMID: 23266826 PMCID: PMC3567689 DOI: 10.1074/jbc.m112.400184] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/12/2012] [Indexed: 11/06/2022] Open
Abstract
The inhibition of MyoD expression is important for obtaining muscle progenitors that can replenish the satellite cell niche during muscle repair. Progenitors could be derived from either embryonic stem cells or satellite cells. Hedgehog (Hh) signaling is important for MyoD expression during embryogenesis and adult muscle regeneration. To date, the mechanistic understanding of MyoD regulation by Hh signaling is unclear. Here, we demonstrate that the Hh effector, Gli2, regulates MyoD expression and associates with MyoD gene elements. Gain- and loss-of-function experiments in pluripotent P19 cells show that Gli2 activity is sufficient and required for efficient MyoD expression during skeletal myogenesis. Inhibition of Hh signaling reduces MyoD expression during satellite cell activation in vitro. In addition to regulating MyoD expression, Hh signaling regulates MyoD transcriptional activity, and MyoD activates Hh signaling in myogenic conversion assays. Finally, Gli2, MyoD, and MEF2C form a protein complex, which enhances MyoD activity on skeletal muscle-related promoters. We therefore link Hh signaling to the function and expression of MyoD protein during myogenesis in stem cells.
Collapse
Affiliation(s)
| | - Erin Coyne
- From the Department of Biochemistry, Microbiology, and Immunology and
| | - Ashraf Al Madhoun
- From the Department of Biochemistry, Microbiology, and Immunology and
- Pancreatic Islet Biology and Transplantation Unit, Dasman Diabetes Institute, Dasman 15462, Kuwait and
| | - Joel V. Fair
- From the Department of Biochemistry, Microbiology, and Immunology and
| | - Neven Bosiljcic
- From the Department of Biochemistry, Microbiology, and Immunology and
| | - Catherine St-Louis
- the Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa and
| | - Grace Li
- the Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa and
| | - Sherry Thurig
- From the Department of Biochemistry, Microbiology, and Immunology and
- Ottawa Hospital Research Institute, Ottawa K1H 8M5, Canada
| | - Valerie A. Wallace
- From the Department of Biochemistry, Microbiology, and Immunology and
- Ottawa Hospital Research Institute, Ottawa K1H 8M5, Canada
| | - Nadine Wiper-Bergeron
- the Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa and
| | - Ilona S. Skerjanc
- From the Department of Biochemistry, Microbiology, and Immunology and
| |
Collapse
|
91
|
Garcia MA, Alvarez MS, Sailem H, Bousgouni V, Sero J, Bakal C. Differential RNAi screening provides insights into the rewiring of signalling networks during oxidative stress. MOLECULAR BIOSYSTEMS 2013; 8:2605-13. [PMID: 22790786 DOI: 10.1039/c2mb25092f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reactive Oxygen Species (ROS) are a natural by-product of cellular growth and proliferation, and are required for fundamental processes such as protein-folding and signal transduction. However, ROS accumulation, and the onset of oxidative stress, can negatively impact cellular and genomic integrity. Signalling networks have evolved to respond to oxidative stress by engaging diverse enzymatic and non-enzymatic antioxidant mechanisms to restore redox homeostasis. The architecture of oxidative stress response networks during periods of normal growth, and how increased ROS levels dynamically reconfigure these networks are largely unknown. In order to gain insight into the structure of signalling networks that promote redox homeostasis we first performed genome-scale RNAi screens to identify novel suppressors of superoxide accumulation. We then infer relationships between redox regulators by hierarchical clustering of phenotypic signatures describing how gene inhibition affects superoxide levels, cellular viability, and morphology across different genetic backgrounds. Genes that cluster together are likely to act in the same signalling pathway/complex and thus make "functional interactions". Moreover we also calculate differential phenotypic signatures describing the difference in cellular phenotypes following RNAi between untreated cells and cells submitted to oxidative stress. Using both phenotypic signatures and differential signatures we construct a network model of functional interactions that occur between components of the redox homeostasis network, and how such interactions become rewired in the presence of oxidative stress. This network model predicts a functional interaction between the transcription factor Jun and the IRE1 kinase, which we validate in an orthogonal assay. We thus demonstrate the ability of systems-biology approaches to identify novel signalling events.
Collapse
Affiliation(s)
- Mar Arias Garcia
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London, UK.
| | | | | | | | | | | |
Collapse
|
92
|
Della Gaspera B, Armand AS, Lecolle S, Charbonnier F, Chanoine C. Mef2d acts upstream of muscle identity genes and couples lateral myogenesis to dermomyotome formation in Xenopus laevis. PLoS One 2012; 7:e52359. [PMID: 23300648 PMCID: PMC3534117 DOI: 10.1371/journal.pone.0052359] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 11/15/2012] [Indexed: 11/18/2022] Open
Abstract
Xenopus myotome is formed by a first medial and lateral myogenesis directly arising from the presomitic mesoderm followed by a second myogenic wave emanating from the dermomyotome. Here, by a series of gain and loss of function experiments, we showed that Mef2d, a member of the Mef2 family of MADS-box transcription factors, appeared as an upstream regulator of lateral myogenesis, and as an inducer of dermomyotome formation at the beginning of neurulation. In the lateral presomitic cells, we showed that Mef2d transactivates Myod expression which is necessary for lateral myogenesis. In the most lateral cells of the presomitic mesoderm, we showed that Mef2d and Paraxis (Tcf15), a member of the Twist family of transcription factors, were co-localized and activate directly the expression of Meox2, which acts upstream of Pax3 expression during dermomyotome formation. Cell tracing experiments confirm that the most lateral Meox2 expressing cells of the presomitic mesoderm correspond to the dermomyotome progenitors since they give rise to the most dorsal cells of the somitic mesoderm. Thus, Xenopus Mef2d couples lateral myogenesis to dermomyotome formation before somite segmentation. These results together with our previous works reveal striking similarities between dermomyotome and tendon formation in Xenopus: both develop in association with myogenic cells and both involve a gene transactivation pathway where one member of the Mef2 family, Mef2d or Mef2c, cooperates with a bHLH protein of the Twist family, Paraxis or Scx (Scleraxis) respectively. We propose that these shared characteristics in Xenopus laevis reflect the existence of a vertebrate ancestral mechanism which has coupled the development of the myogenic cells to the formation of associated tissues during somite compartmentalization.
Collapse
Affiliation(s)
- Bruno Della Gaspera
- Centre d'Etude de la Sensori-Motricité, UMR 8194 CNRS, Université Paris Descartes, Centre Universitaire des Saints-Pères, Paris, France.
| | | | | | | | | |
Collapse
|
93
|
Wilczynski B, Liu YH, Yeo ZX, Furlong EEM. Predicting spatial and temporal gene expression using an integrative model of transcription factor occupancy and chromatin state. PLoS Comput Biol 2012; 8:e1002798. [PMID: 23236268 PMCID: PMC3516547 DOI: 10.1371/journal.pcbi.1002798] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 10/08/2012] [Indexed: 12/31/2022] Open
Abstract
Precise patterns of spatial and temporal gene expression are central to metazoan complexity and act as a driving force for embryonic development. While there has been substantial progress in dissecting and predicting cis-regulatory activity, our understanding of how information from multiple enhancer elements converge to regulate a gene's expression remains elusive. This is in large part due to the number of different biological processes involved in mediating regulation as well as limited availability of experimental measurements for many of them. Here, we used a Bayesian approach to model diverse experimental regulatory data, leading to accurate predictions of both spatial and temporal aspects of gene expression. We integrated whole-embryo information on transcription factor recruitment to multiple cis-regulatory modules, insulator binding and histone modification status in the vicinity of individual gene loci, at a genome-wide scale during Drosophila development. The model uses Bayesian networks to represent the relation between transcription factor occupancy and enhancer activity in specific tissues and stages. All parameters are optimized in an Expectation Maximization procedure providing a model capable of predicting tissue- and stage-specific activity of new, previously unassayed genes. Performing the optimization with subsets of input data demonstrated that neither enhancer occupancy nor chromatin state alone can explain all gene expression patterns, but taken together allow for accurate predictions of spatio-temporal activity. Model predictions were validated using the expression patterns of more than 600 genes recently made available by the BDGP consortium, demonstrating an average 15-fold enrichment of genes expressed in the predicted tissue over a naïve model. We further validated the model by experimentally testing the expression of 20 predicted target genes of unknown expression, resulting in an accuracy of 95% for temporal predictions and 50% for spatial. While this is, to our knowledge, the first genome-wide approach to predict tissue-specific gene expression in metazoan development, our results suggest that integrative models of this type will become more prevalent in the future. Development is a complex process in which a single cell gives rise to a multi-cellular organism comprised of diverse cell types and well-organized tissues. This transformation requires tightly coordinated expression, both spatially and temporally, of hundreds to thousands of genes specific to any given tissue. To orchestrate these patterns, gene expression is regulated at multiple steps, from TF binding to cis-regulatory modules, general transcription factor and RNA polymerase II recruitment to promoters, chromatin remodeling, and three-dimensional looping interactions. Despite this level of complexity, the regulation of gene expression is typically modeled in the context of transcription factor binding and a single enhancer's activity as this is where the majority of experimental data is available. Recent advances in the measurement of chromatin modifications and insulator binding during embryogenesis provide new datasets that can be used for modeling gene expression. Here we use a Bayesian approach to integrate all three levels of information to combine the activity of multiple regulatory elements into a single model of a gene's expression, implementing an expectation maximization strategy to overcome the problem of missing data. Importantly, while the data for histone modifications and insulator binding represents merged signals from all cells in the embryo, the model can extract cell type specific and stage-specific predictions on gene expression for hundreds of genes of unknown expression.
Collapse
Affiliation(s)
- Bartek Wilczynski
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Institute of Informatics, University of Warsaw, Warsaw, Poland
- * E-mail: (BW); (EEMF)
| | - Ya-Hsin Liu
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Zhen Xuan Yeo
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Eileen E. M. Furlong
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- * E-mail: (BW); (EEMF)
| |
Collapse
|
94
|
Integrative analysis of the zinc finger transcription factor Lame duck in the Drosophila myogenic gene regulatory network. Proc Natl Acad Sci U S A 2012. [PMID: 23184988 DOI: 10.1073/pnas.1210415109] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Contemporary high-throughput technologies permit the rapid identification of transcription factor (TF) target genes on a genome-wide scale, yet the functional significance of TFs requires knowledge of target gene expression patterns, cooperating TFs, and cis-regulatory element (CRE) structures. Here we investigated the myogenic regulatory network downstream of the Drosophila zinc finger TF Lame duck (Lmd) by combining both previously published and newly performed genomic data sets, including ChIP sequencing (ChIP-seq), genome-wide mRNA profiling, cell-specific expression patterns of putative transcriptional targets, analysis of histone mark signatures, studies of TF cooccupancy by additional mesodermal regulators, TF binding site determination using protein binding microarrays (PBMs), and machine learning of candidate CRE motif compositions. Our findings suggest that Lmd orchestrates an extensive myogenic regulatory network, a conclusion supported by the identification of Lmd-dependent genes, histone signatures of Lmd-bound genomic regions, and the relationship of these features to cell-specific gene expression patterns. The heterogeneous cooccupancy of Lmd-bound regions with additional mesodermal regulators revealed that different transcriptional inputs are used to mediate similar myogenic gene expression patterns. Machine learning further demonstrated diverse combinatorial motif patterns within tissue-specific Lmd-bound regions. PBM analysis established the complete spectrum of Lmd DNA binding specificities, and site-directed mutagenesis of Lmd and additional newly discovered motifs in known enhancers demonstrated the critical role of these TF binding sites in supporting full enhancer activity. Collectively, these findings provide insights into the transcriptional codes regulating muscle gene expression and offer a generalizable approach for similar studies in other systems.
Collapse
|
95
|
Chen Z, Liang S, Zhao Y, Han Z. miR-92b regulates Mef2 levels through a negative-feedback circuit during Drosophila muscle development. Development 2012; 139:3543-52. [PMID: 22899845 DOI: 10.1242/dev.082719] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mef2 is the key transcription factor for muscle development and differentiation in Drosophila. It activates hundreds of downstream target genes, including itself. Precise control of Mef2 levels is essential for muscle development as different Mef2 protein levels activate distinct sets of muscle genes, but how this is achieved remains unclear. Here, we have identified a novel heart- and muscle-specific microRNA, miR-92b, which is activated by Mef2 and subsequently downregulates Mef2 through binding to its 3'UTR, forming a negative regulatory circuit that fine-tunes the level of Mef2. Deletion of miR-92b caused abnormally high Mef2 expression, leading to muscle defects and lethality. Blocking miR-92b function using microRNA sponge techniques also increased Mef2 levels and caused muscle defects similar to those seen with the miR-92b deletion. Additionally, overexpression of miR-92b reduced Mef2 levels and caused muscle defects similar to those seen in Mef2 RNAi, and Mef2 overexpression led to reversal of these defects. Our results suggest that the negative feedback circuit between miR-92b and Mef2 efficiently maintains the stable expression of both components that is required for homeostasis during Drosophila muscle development.
Collapse
Affiliation(s)
- Zhimin Chen
- Department of Internal Medicine, Division of Molecular Medicine and Genetics, University of Michigan Medical School, 109 Zina Pitcher Place, 4029 BSRB, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
96
|
Spitz F, Furlong EEM. Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 2012; 13:613-26. [PMID: 22868264 DOI: 10.1038/nrg3207] [Citation(s) in RCA: 1501] [Impact Index Per Article: 115.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Developmental progression is driven by specific spatiotemporal domains of gene expression, which give rise to stereotypically patterned embryos even in the presence of environmental and genetic variation. Views of how transcription factors regulate gene expression are changing owing to recent genome-wide studies of transcription factor binding and RNA expression. Such studies reveal patterns that, at first glance, seem to contrast with the robustness of the developmental processes they encode. Here, we review our current knowledge of transcription factor function from genomic and genetic studies and discuss how different strategies, including extensive cooperative regulation (both direct and indirect), progressive priming of regulatory elements, and the integration of activities from multiple enhancers, confer specificity and robustness to transcriptional regulation during development.
Collapse
Affiliation(s)
- François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany.
| | | |
Collapse
|
97
|
Bar-Joseph Z, Gitter A, Simon I. Studying and modelling dynamic biological processes using time-series gene expression data. Nat Rev Genet 2012; 13:552-64. [PMID: 22805708 DOI: 10.1038/nrg3244] [Citation(s) in RCA: 319] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Biological processes are often dynamic, thus researchers must monitor their activity at multiple time points. The most abundant source of information regarding such dynamic activity is time-series gene expression data. These data are used to identify the complete set of activated genes in a biological process, to infer their rates of change, their order and their causal effects and to model dynamic systems in the cell. In this Review we discuss the basic patterns that have been observed in time-series experiments, how these patterns are combined to form expression programs, and the computational analysis, visualization and integration of these data to infer models of dynamic biological systems.
Collapse
Affiliation(s)
- Ziv Bar-Joseph
- Lane Center for Computational Biology and Machine Learning Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA.
| | | | | |
Collapse
|
98
|
Herrmann C, Van de Sande B, Potier D, Aerts S. i-cisTarget: an integrative genomics method for the prediction of regulatory features and cis-regulatory modules. Nucleic Acids Res 2012; 40:e114. [PMID: 22718975 PMCID: PMC3424583 DOI: 10.1093/nar/gks543] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The field of regulatory genomics today is characterized by the generation of high-throughput data sets that capture genome-wide transcription factor (TF) binding, histone modifications, or DNAseI hypersensitive regions across many cell types and conditions. In this context, a critical question is how to make optimal use of these publicly available datasets when studying transcriptional regulation. Here, we address this question in Drosophila melanogaster for which a large number of high-throughput regulatory datasets are available. We developed i-cisTarget (where the 'i' stands for integrative), for the first time enabling the discovery of different types of enriched 'regulatory features' in a set of co-regulated sequences in one analysis, being either TF motifs or 'in vivo' chromatin features, or combinations thereof. We have validated our approach on 15 co-expressed gene sets, 21 ChIP data sets, 628 curated gene sets and multiple individual case studies, and show that meaningful regulatory features can be confidently discovered; that bona fide enhancers can be identified, both by in vivo events and by TF motifs; and that combinations of in vivo events and TF motifs further increase the performance of enhancer prediction.
Collapse
Affiliation(s)
- Carl Herrmann
- TAGC - Inserm U1090 and Aix-Marseille Université, Campus de Luminy, 13288 Marseille, France.
| | | | | | | |
Collapse
|
99
|
Pallavi SK, Ho DM, Hicks C, Miele L, Artavanis-Tsakonas S. Notch and Mef2 synergize to promote proliferation and metastasis through JNK signal activation in Drosophila. EMBO J 2012; 31:2895-907. [PMID: 22580825 PMCID: PMC3395089 DOI: 10.1038/emboj.2012.129] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 04/02/2012] [Indexed: 12/31/2022] Open
Abstract
Genetic analyses in Drosophila revealed a synergy between Notch and the pleiotropic transcription factor Mef2 (myocyte enhancer factor 2), which profoundly influences proliferation and metastasis. We show that these hyperproliferative and invasive Drosophila phenotypes are attributed to upregulation of eiger, a member of the tumour necrosis factor superfamily of ligands, and the consequent activation of Jun N-terminal kinase signalling, which in turn triggers the expression of the invasive marker MMP1. Expression studies in human breast tumour samples demonstrate correlation between Notch and Mef2 paralogues and support the notion that Notch-MEF2 synergy may be significant for modulating human mammary oncogenesis.
Collapse
Affiliation(s)
- S K Pallavi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | |
Collapse
|
100
|
Yáñez-Cuna JO, Dinh HQ, Kvon EZ, Shlyueva D, Stark A. Uncovering cis-regulatory sequence requirements for context-specific transcription factor binding. Genome Res 2012; 22:2018-30. [PMID: 22534400 PMCID: PMC3460196 DOI: 10.1101/gr.132811.111] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The regulation of gene expression is mediated at the transcriptional level by enhancer regions that are bound by sequence-specific transcription factors (TFs). Recent studies have shown that the in vivo binding sites of single TFs differ between developmental or cellular contexts. How this context-specific binding is encoded in the cis-regulatory DNA sequence has, however, remained unclear. We computationally dissect context-specific TF binding sites in Drosophila, Caenorhabditis elegans, mouse, and human and find distinct combinations of sequence motifs for partner factors, which are predictive and reveal specific motif requirements of individual binding sites. We predict that TF binding in the early Drosophila embryo depends on motifs for the early zygotic TFs Vielfaltig (also known as Zelda) and Tramtrack. We validate experimentally that the activity of Twist-bound enhancers and Twist binding itself depend on Vielfaltig motifs, suggesting that Vielfaltig is more generally important for early transcription. Our finding that the motif content can predict context-specific binding and that the predictions work across different Drosophila species suggests that characteristic motif combinations are shared between sites, revealing context-specific motif codes (cis-regulatory signatures), which appear to be conserved during evolution. Taken together, this study establishes a novel approach to derive predictive cis-regulatory motif requirements for individual TF binding sites and enhancers. Importantly, the method is generally applicable across different cell types and organisms to elucidate cis-regulatory sequence determinants and the corresponding trans-acting factors from the increasing number of tissue- and cell-type-specific TF binding studies.
Collapse
|