51
|
Zhao M, Rolandi M, Isseroff RR. Bioelectric Signaling: Role of Bioelectricity in Directional Cell Migration in Wound Healing. Cold Spring Harb Perspect Biol 2022; 14:a041236. [PMID: 36041786 PMCID: PMC9524286 DOI: 10.1101/cshperspect.a041236] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In wound healing, individual cells' behaviors coordinate movement toward the wound center to restore small or large barrier defects. The migration of epithelial cells as a continuous sheet structure is one of the most important processes by which the skin barrier is restored. How such multicellular and tissue level movement is initiated upon injury, coordinated during healing, and stopped when wounds healed has been a research focus for decades. When skin is wounded, the compromised epithelial barrier generates endogenous electric fields (EFs), produced by ion channels and maintained by cell junctions. These EFs are present across wounds, with the cathodal pole at the wound center. Epithelial cells detect minute EFs and migrate directionally in response to electrical signals. It has long been postulated that the naturally occurring EFs facilitate wound healing by guiding cell migration. It is not until recently that experimental evidence has shown that large epithelial sheets of keratinocytes or corneal epithelial cells respond to applied EFs by collective directional migration. Although some of the mechanisms of the collective cell migration are similar to those used by isolated cells, there are unique mechanisms that govern the coordinated movement of the cohesive sheet. We will review the understanding of wound EFs and how epithelial cells and other cells important to wound healing respond to the electric signals individually as well as collectively. Mounting evidence suggests that wound bioelectrical signaling is an important mechanism in healing. Critical understanding and proper exploitation of this mechanism will be important for better wound healing and regeneration.
Collapse
Affiliation(s)
- Min Zhao
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California 95817, USA
- Department of Dermatology, University of California, Davis, California 95616, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - R Rivkah Isseroff
- Department of Dermatology, University of California, Davis, California 95616, USA
| |
Collapse
|
52
|
László ZI, Lele Z. Flying under the radar: CDH2 (N-cadherin), an important hub molecule in neurodevelopmental and neurodegenerative diseases. Front Neurosci 2022; 16:972059. [PMID: 36213737 PMCID: PMC9539934 DOI: 10.3389/fnins.2022.972059] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/31/2022] [Indexed: 12/03/2022] Open
Abstract
CDH2 belongs to the classic cadherin family of Ca2+-dependent cell adhesion molecules with a meticulously described dual role in cell adhesion and β-catenin signaling. During CNS development, CDH2 is involved in a wide range of processes including maintenance of neuroepithelial integrity, neural tube closure (neurulation), confinement of radial glia progenitor cells (RGPCs) to the ventricular zone and maintaining their proliferation-differentiation balance, postmitotic neural precursor migration, axon guidance, synaptic development and maintenance. In the past few years, direct and indirect evidence linked CDH2 to various neurological diseases, and in this review, we summarize recent developments regarding CDH2 function and its involvement in pathological alterations of the CNS.
Collapse
Affiliation(s)
- Zsófia I. László
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
- Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, United Kingdom
| | - Zsolt Lele
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
53
|
Raeisi M, Saberivand M, Velaei K, Aghaei N, Rahimi-Farsi N, Kharrati-Shishavan H, Hassanzadeh D, Mehdizadeh A. Porcn as a novel therapeutic target in cancer therapy: A review. Cell Biol Int 2022; 46:1979-1991. [PMID: 35971741 DOI: 10.1002/cbin.11882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/06/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022]
Abstract
Wingless-related integration site (Wnt) signaling is one of the main oncogenic pathways in different malignancies. Therefore, targeting this pathway has been considered an exciting strategy in cancer treatment. Porcn is among the central enzymes in this pathway that has recently been considered for cancer-targeted therapy. As a membrane-bound O-acyltransferase, Porcn plays a critical role in wnt ligand palmitoylation and its subsequent secretion. In addition to Porcn's role in stem cell signaling and differentiation, recent findings have shown its role in developing and progressing colorectal, pancreatic, liver, head, and neck cancers. Developed small molecule inhibitors have also opened a promising window toward cancer treatment strategies. In this review, the structure and biological role of Porcn in different cancer-related signaling pathways and inhibitors used for inhibiting this enzyme are discussed.
Collapse
Affiliation(s)
- Mortaza Raeisi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Saberivand
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Kobra Velaei
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negar Aghaei
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Imam Sajjad Hospital, Tabriz, Iran
| | | | | | - Davoud Hassanzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Amir Mehdizadeh
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
54
|
Gustafson CM, Roffers-Agarwal J, Gammill LS. Chick cranial neural crest cells release extracellular vesicles that are critical for their migration. J Cell Sci 2022; 135:jcs260272. [PMID: 35635292 PMCID: PMC9270958 DOI: 10.1242/jcs.260272] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 01/09/2023] Open
Abstract
The content and activity of extracellular vesicles purified from cell culture media or bodily fluids have been studied extensively; however, the physiological relevance of exosomes within normal biological systems is poorly characterized, particularly during development. Although exosomes released by invasive metastatic cells alter migration of neighboring cells in culture, it is unclear whether cancer cells misappropriate exosomes released by healthy differentiated cells or reactivate dormant developmental programs that include exosome cell-cell communication. Using chick cranial neural fold cultures, we show that migratory neural crest cells, a developmentally critical cell type and model for metastasis, release and deposit CD63-positive 30-100 nm particles into the extracellular environment. Neural crest cells contain ceramide-rich multivesicular bodies and produce larger vesicles positive for migrasome markers as well. We conclude that neural crest cells produce extracellular vesicles including exosomes and migrasomes. When Rab27a plasma membrane docking is inhibited, neural crest cells become less polarized and rounded, leading to a loss of directional migration and reduced speed. These results indicate that neural crest cell exosome release is critical for migration.
Collapse
Affiliation(s)
- Callie M. Gustafson
- Departmentof Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Julaine Roffers-Agarwal
- Departmentof Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Laura S. Gammill
- Departmentof Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
55
|
Goto T, Michiue T, Shibuya H. ccr7 affects both morphogenesis and differentiation during early Xenopus embryogenesis. Dev Growth Differ 2022; 64:254-260. [PMID: 35581152 DOI: 10.1111/dgd.12790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 01/01/2023]
Abstract
Chemokines play important roles in early embryogenesis, including morphogenesis and cell differentiation, before the immune system is established. We characterized Xenopus laevis CC-type chemokine receptor 7 S (ccr7.S) to clarify its role during early development. ccr7 transcripts were detected ubiquitously in early embryos. Dorsal overexpression of ccr7.S inhibited gastrulation, and ccr7.S mRNA-injected embryos had short axes and widely opened neural folds. Because the Keller sandwich explants of the injected embryos elongated well, ccr7.S might affect cell migration, but not convergent extension movements. Ventral ccr7.S overexpression induced secondary axes and chrd.1 upregulation in gastrula-stage embryos. Animal cap assays showed increased expression of neural and cement gland marker genes at later stages. Ccr7.S knockdown reduced chrd.1 expression and inhibited gastrulation at the dorsal side. Our findings suggest that ccr7.S plays important roles in morphogenetic movement and cell differentiation.
Collapse
Affiliation(s)
- Toshiyasu Goto
- Department of Molecular Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tatsuo Michiue
- Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Shibuya
- Department of Molecular Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
56
|
Caballero D, Lima AC, Abreu CM, Neves NM, Correlo VM, Oliveira JM, Reis RL, Kundu SC. Quantifying protrusions as tumor-specific biophysical predictors of cancer invasion in in vitro tumor micro-spheroid models. IN VITRO MODELS 2022; 1:229-239. [PMID: 39871869 PMCID: PMC11756473 DOI: 10.1007/s44164-022-00020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/08/2022] [Accepted: 04/22/2022] [Indexed: 01/29/2025]
Abstract
An important hallmark in cancer research is the discovery of suitable features capable to reliably predict tumor invasiveness, and consequently, their metastatic potential at an early stage. Current methods are based on molecular biomarker screening and imaging that may not reveal the altered properties of tumor cells, being also labor-intensive and costly. Biophysical-based methodologies provide a new framework assessing-and even predicting-the invasion potential of tumors with improved accuracy. In particular, the stochastic fluctuations of cancer invasive protrusions can be used as a tumor-specific biophysical indicator of its aggressiveness. In this methodology, tumor micro-spheroids with different metastatic capabilities were employed as in vitro models to analyze protrusion activity. It is described the procedure for extracting the descriptive biophysical parameters characteristic of protrusion activity, which magnitude depends on the invasion capability of tumors. Next, a simple mathematical approach is employed to define a predictive index that correlates with tumor invasiveness. Overall, this innovative approach may provide a simple method for unveiling cancer invasiveness and complement existing diagnosis methodologies. Supplementary Information The online version contains supplementary material available at 10.1007/s44164-022-00020-1.
Collapse
Affiliation(s)
- D. Caballero
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - A. C. Lima
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - C. M. Abreu
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - N. M. Neves
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - V. M. Correlo
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - J. M. Oliveira
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - R. L. Reis
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| | - S. C. Kundu
- 3B’s Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence On Tissue Engineering and Regenerative Medicine, 4805-017 Barco, Guimarães, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal
| |
Collapse
|
57
|
Wu Y, Li W, Tang S, Liu C, Ji G, Wang F. Electrophysiological and pathological changes in the vastus medialis and vastus lateralis muscles after early patellar reduction and nerve growth factor injection in rabbits with patellar dislocation. J Orthop Surg Res 2022; 17:274. [PMID: 35570303 PMCID: PMC9107667 DOI: 10.1186/s13018-022-03170-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/09/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Patellar dislocation can cause a series of changes in the trochlear groove and patella. However, the influence of patellar dislocation on the medialis (VM) and vastus lateralis (VL) muscles and whether nerve growth factor (NGF) is beneficial to proprioceptive rehabilitation for patellar dislocation are unknown. The purpose of this study was to investigate the effects on VM and VL after the injection of NGF and early reduction in rabbits for patellar dislocation with electrophysiological and pathological analysis. METHODS Sixty 2-month-old rabbits were randomly divided into four groups (15 rabbits in each group). Rabbits in Group 1, Group 2, and Group 3 underwent patellar dislocation surgery, and rabbits in Group 4 underwent sham surgery. One month later, patellar reduction was performed in Groups 1 and 2. NGF was injected into the rabbits of Group 1. The electrophysiological and pathological changes in VM and VL were analyzed at 1 month and 3 months after patellar reduction. RESULTS The electrophysiological and pathological indices in Groups 1 and 2 were significantly different from those in Group 3 at 1 and 3 months after patellar reduction. There were significant differences between NGF injection Group 1 and Group 2 without NGF injection. There was no significant difference between Group 1 and Group 4 at 3 months after patellar reduction. CONCLUSIONS Patellar dislocation can cause abnormal electrophysiological and pathological effects on VM and VL. Patellar reduction should be performed as early as possible, and NGF injection may be beneficial to the rehabilitation of proprioception.
Collapse
Affiliation(s)
- Yu Wu
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, China
| | - Weifeng Li
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, China
| | - Shiyu Tang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, China
| | - Changli Liu
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, China
| | - Gang Ji
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, China
| | - Fei Wang
- Department of Orthopaedic Surgery, Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang, 050051, Hebei, China.
| |
Collapse
|
58
|
Alert R, Martínez-Calvo A, Datta SS. Cellular Sensing Governs the Stability of Chemotactic Fronts. PHYSICAL REVIEW LETTERS 2022; 128:148101. [PMID: 35476484 DOI: 10.1103/physrevlett.128.148101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
In contexts ranging from embryonic development to bacterial ecology, cell populations migrate chemotactically along self-generated chemical gradients, often forming a propagating front. Here, we theoretically show that the stability of such chemotactic fronts to morphological perturbations is determined by limitations in the ability of individual cells to sense and thereby respond to the chemical gradient. Specifically, cells at bulging parts of a front are exposed to a smaller gradient, which slows them down and promotes stability, but they also respond more strongly to the gradient, which speeds them up and promotes instability. We predict that this competition leads to chemotactic fingering when sensing is limited at too low chemical concentrations. Guided by this finding and by experimental data on E. coli chemotaxis, we suggest that the cells' sensory machinery might have evolved to avoid these limitations and ensure stable front propagation. Finally, as sensing of any stimuli is necessarily limited in living and active matter in general, the principle of sensing-induced stability may operate in other types of directed migration such as durotaxis, electrotaxis, and phototaxis.
Collapse
Affiliation(s)
- Ricard Alert
- Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzerstraße 38, 01187 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Alejandro Martínez-Calvo
- Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
59
|
Ipiña EP, Camley BA. Collective gradient sensing with limited positional information. Phys Rev E 2022; 105:044410. [PMID: 35590664 DOI: 10.1103/physreve.105.044410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Eukaryotic cells sense chemical gradients to decide where and when to move. Clusters of cells can sense gradients more accurately than individual cells by integrating measurements of the concentration made across the cluster. Is this gradient-sensing accuracy impeded when cells have limited knowledge of their position within the cluster, i.e., limited positional information? We apply maximum likelihood estimation to study gradient-sensing accuracy of a cluster of cells with finite positional information. If cells must estimate their location within the cluster, this lowers the accuracy of collective gradient sensing. We compare our results with a tug-of-war model where cells respond to the gradient by polarizing away from their neighbors without relying on their positional information. As the cell positional uncertainty increases, there is a trade-off where the tug-of-war model responds more accurately to the chemical gradient. However, for sufficiently large cell clusters or sufficiently shallow chemical gradients, the tug-of-war model will always be suboptimal to one that integrates information from all cells, even if positional uncertainty is high.
Collapse
Affiliation(s)
- Emiliano Perez Ipiña
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Brian A Camley
- Department of Physics & Astronomy and Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
60
|
Kummer D, Steinbacher T, Thölmann S, Schwietzer MF, Hartmann C, Horenkamp S, Demuth S, Peddibhotla SS, Brinkmann F, Kemper B, Schnekenburger J, Brandt M, Betz T, Liashkovich I, Kouzel IU, Shahin V, Corvaia N, Rottner K, Tarbashevich K, Raz E, Greune L, Schmidt MA, Gerke V, Ebnet K. A JAM-A-tetraspanin-αvβ5 integrin complex regulates contact inhibition of locomotion. J Biophys Biochem Cytol 2022; 221:213070. [PMID: 35293964 PMCID: PMC8931538 DOI: 10.1083/jcb.202105147] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/16/2021] [Accepted: 01/21/2022] [Indexed: 12/30/2022] Open
Abstract
Contact inhibition of locomotion (CIL) is a process that regulates cell motility upon collision with other cells. Improper regulation of CIL has been implicated in cancer cell dissemination. Here, we identify the cell adhesion molecule JAM-A as a central regulator of CIL in tumor cells. JAM-A is part of a multimolecular signaling complex in which tetraspanins CD9 and CD81 link JAM-A to αvβ5 integrin. JAM-A binds Csk and inhibits the activity of αvβ5 integrin-associated Src. Loss of JAM-A results in increased activities of downstream effectors of Src, including Erk1/2, Abi1, and paxillin, as well as increased activity of Rac1 at cell-cell contact sites. As a consequence, JAM-A-depleted cells show increased motility, have a higher cell-matrix turnover, and fail to halt migration when colliding with other cells. We also find that proper regulation of CIL depends on αvβ5 integrin engagement. Our findings identify a molecular mechanism that regulates CIL in tumor cells and have implications on tumor cell dissemination.
Collapse
Affiliation(s)
- Daniel Kummer
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany,Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany
| | - Tim Steinbacher
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Sonja Thölmann
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Mariel Flavia Schwietzer
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Christian Hartmann
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Simone Horenkamp
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Sabrina Demuth
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Swetha S.D. Peddibhotla
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Frauke Brinkmann
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Björn Kemper
- Biomedical Technology Center, Medical Faculty, University of Münster, Münster, Germany
| | - Jürgen Schnekenburger
- Biomedical Technology Center, Medical Faculty, University of Münster, Münster, Germany
| | - Matthias Brandt
- Institute-associated Research Group “Mechanics of Cellular Systems”, Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany
| | - Timo Betz
- Institute-associated Research Group “Mechanics of Cellular Systems”, Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany
| | - Ivan Liashkovich
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Ivan U. Kouzel
- Sars International Centre for Marine Molecular Biology University of Bergen Thormøhlensgt, Bergen, Norway
| | - Victor Shahin
- Institute of Physiology II, University of Münster, Münster, Germany
| | - Nathalie Corvaia
- Centre d’Immunologie Pierre Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Klemens Rottner
- Divison of Molecular Cell Biology, Zoological Institute, Technical University Braunschweig, Braunschweig, Germany,Molecular Cell Biology Group, Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Erez Raz
- Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany,Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, 48419 Münster, Germany
| | - Lilo Greune
- Institute of Infectiology, ZMBE, University of Münster, Münster, Germany
| | | | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany,Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, 48419 Münster, Germany
| | - Klaus Ebnet
- Institute-associated Research Group “Cell Adhesion and Cell Polarity”, Münster, Germany,Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany,Interdisciplinary Clinical Research Center (IZKF), University of Münster, Münster, Germany,Cells-in-Motion Cluster of Excellence (EXC 1003—CiM), University of Münster, 48419 Münster, Germany
| |
Collapse
|
61
|
Bhattacharjee T, Amchin DB, Alert R, Ott JA, Datta SS. Chemotactic smoothing of collective migration. eLife 2022; 11:e71226. [PMID: 35257660 PMCID: PMC8903832 DOI: 10.7554/elife.71226] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/24/2022] [Indexed: 12/24/2022] Open
Abstract
Collective migration-the directed, coordinated motion of many self-propelled agents-is a fascinating emergent behavior exhibited by active matter with functional implications for biological systems. However, how migration can persist when a population is confronted with perturbations is poorly understood. Here, we address this gap in knowledge through studies of bacteria that migrate via directed motion, or chemotaxis, in response to a self-generated nutrient gradient. We find that bacterial populations autonomously smooth out large-scale perturbations in their overall morphology, enabling the cells to continue to migrate together. This smoothing process arises from spatial variations in the ability of cells to sense and respond to the local nutrient gradient-revealing a population-scale consequence of the manner in which individual cells transduce external signals. Altogether, our work provides insights to predict, and potentially control, the collective migration and morphology of cellular populations and diverse other forms of active matter.
Collapse
Affiliation(s)
- Tapomoy Bhattacharjee
- The Andlinger Center for Energy and the Environment, Princeton UniversityPrincetonUnited States
| | - Daniel B Amchin
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Ricard Alert
- Lewis-Sigler Institute for Integrative Genomics, Princeton UniversityPrincetonUnited States
- Princeton Center for Theoretical Science, Princeton UniversityPrincetonUnited States
| | - Jenna Anne Ott
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| | - Sujit Sankar Datta
- Department of Chemical and Biological Engineering, Princeton UniversityPrincetonUnited States
| |
Collapse
|
62
|
Garg M. Emerging roles of epithelial-mesenchymal plasticity in invasion-metastasis cascade and therapy resistance. Cancer Metastasis Rev 2022; 41:131-145. [PMID: 34978017 DOI: 10.1007/s10555-021-10003-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
Strong association of cancer incidence and its progression with mortality highlights the need to decipher the cellular and molecular mechanisms that drive tumor cells to rapidly progress to metastatic disease and therapy resistance. Epithelial-mesenchymal plasticity (EMP) emerged as a key regulator of metastatic outgrowth. It allows neoplastic epithelial cells to delaminate from their neighbors either individually or collectively, traverse the extracellular matrix (ECM) barrier, enter into the circulation, and establish distal metastases. Plasticity between epithelial and mesenchymal states and the existence of hybrid epithelial/mesenchymal (E/M) phenotypes are increasingly being reported in different tumor contexts. Small subset of cancer cells with stemness called cancer stem cells (CSCs) exhibit plasticity, possess high tumorigenic potential, and contribute to high degree of tumoral heterogeneity. EMP characterized by the presence of dynamic intermediate states is reported to be influenced by (epi)genomic reprograming, growth factor signaling, inflammation, and low oxygen generated by tumor stromal microenvironment. EMP alters the genotypic and phenotypic characteristics of tumor cells/CSCs, disrupts tissue homeostasis, induces the reprogramming of angiogenic and immune recognition functions, and renders tumor cells to survive hostile microenvironments and resist therapy. The present review summarizes the roles of EMP in tumor invasion and metastasis and provides an update on therapeutic strategies to target the metastatic and refractory cancers.
Collapse
Affiliation(s)
- Minal Garg
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, Uttar Pradesh, India.
| |
Collapse
|
63
|
Hiraiwa T. Dynamic self-organization of migrating cells under constraints by spatial confinement and epithelial integrity. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2022; 45:16. [PMID: 35212814 PMCID: PMC8881282 DOI: 10.1140/epje/s10189-022-00161-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Understanding how migrating cells can establish both dynamic structures and coherent dynamics may provide mechanistic insights to study how living systems acquire complex structures and functions. Recent studies revealed that intercellular contact communication plays a crucial role for establishing cellular dynamic self-organization (DSO) and provided a theoretical model of DSO for migrating solitary cells in a free space. However, to apply those understanding to situations in living organisms, we need to know the role of cell-cell communication for tissue dynamics under spatial confinements and epithelial integrity. Here, we expand the previous numerical studies on DSO to migrating cells subjected spatial confinement and/or epithelial integrity. An epithelial monolayer is simulated by combining the model of cellular DSO and the cellular vertex model in two dimensions for apical integrity. Under confinement to a small space, theoretical models of both solitary and epithelial cells exhibit characteristic coherent dynamics, including apparent swirling. We also find that such coherent dynamics can allow the cells to overcome the strong constraint due to spatial confinement and epithelial integrity. Furthermore, we demonstrate how epithelial cell clusters behave without spatial confinement and find various cluster dynamics, including spinning, migration and elongation.
Collapse
Affiliation(s)
- Tetsuya Hiraiwa
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore, 117411.
- Universal Biology Institute, The University of Tokyo, Hongo, Tokyo, 113-0033, Japan.
| |
Collapse
|
64
|
Mierke CT. Viscoelasticity, Like Forces, Plays a Role in Mechanotransduction. Front Cell Dev Biol 2022; 10:789841. [PMID: 35223831 PMCID: PMC8864183 DOI: 10.3389/fcell.2022.789841] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Viscoelasticity and its alteration in time and space has turned out to act as a key element in fundamental biological processes in living systems, such as morphogenesis and motility. Based on experimental and theoretical findings it can be proposed that viscoelasticity of cells, spheroids and tissues seems to be a collective characteristic that demands macromolecular, intracellular component and intercellular interactions. A major challenge is to couple the alterations in the macroscopic structural or material characteristics of cells, spheroids and tissues, such as cell and tissue phase transitions, to the microscopic interferences of their elements. Therefore, the biophysical technologies need to be improved, advanced and connected to classical biological assays. In this review, the viscoelastic nature of cytoskeletal, extracellular and cellular networks is presented and discussed. Viscoelasticity is conceptualized as a major contributor to cell migration and invasion and it is discussed whether it can serve as a biomarker for the cells' migratory capacity in several biological contexts. It can be hypothesized that the statistical mechanics of intra- and extracellular networks may be applied in the future as a powerful tool to explore quantitatively the biomechanical foundation of viscoelasticity over a broad range of time and length scales. Finally, the importance of the cellular viscoelasticity is illustrated in identifying and characterizing multiple disorders, such as cancer, tissue injuries, acute or chronic inflammations or fibrotic diseases.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
65
|
Thölmann S, Seebach J, Otani T, Florin L, Schnittler H, Gerke V, Furuse M, Ebnet K. JAM-A interacts with α3β1 integrin and tetraspanins CD151 and CD9 to regulate collective cell migration of polarized epithelial cells. Cell Mol Life Sci 2022; 79:88. [PMID: 35067832 PMCID: PMC8784505 DOI: 10.1007/s00018-022-04140-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/22/2021] [Accepted: 01/10/2022] [Indexed: 01/23/2023]
Abstract
AbstractJunctional adhesion molecule (JAM)-A is a cell adhesion receptor localized at epithelial cell–cell contacts with enrichment at the tight junctions. Its role during cell–cell contact formation and epithelial barrier formation has intensively been studied. In contrast, its role during collective cell migration is largely unexplored. Here, we show that JAM-A regulates collective cell migration of polarized epithelial cells. Depletion of JAM-A in MDCK cells enhances the motility of singly migrating cells but reduces cell motility of cells embedded in a collective by impairing the dynamics of cryptic lamellipodia formation. This activity of JAM-A is observed in cells grown on laminin and collagen-I but not on fibronectin or vitronectin. Accordingly, we find that JAM-A exists in a complex with the laminin- and collagen-I-binding α3β1 integrin. We also find that JAM-A interacts with tetraspanins CD151 and CD9, which both interact with α3β1 integrin and regulate α3β1 integrin activity in different contexts. Mapping experiments indicate that JAM-A associates with α3β1 integrin and tetraspanins CD151 and CD9 through its extracellular domain. Similar to depletion of JAM-A, depletion of either α3β1 integrin or tetraspanins CD151 and CD9 in MDCK cells slows down collective cell migration. Our findings suggest that JAM-A exists with α3β1 integrin and tetraspanins CD151 and CD9 in a functional complex to regulate collective cell migration of polarized epithelial cells.
Collapse
Affiliation(s)
- Sonja Thölmann
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany
- Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
| | - Jochen Seebach
- Institute of Anatomy and Vascular Biology, University of Münster, Münster, Germany
- Cells-in-Motion Interfaculty Center, University of Münster, 48149, Münster, Germany
| | - Tetsuhisa Otani
- Division of Cell Structure, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi, Japan
| | - Luise Florin
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hans Schnittler
- Institute of Anatomy and Vascular Biology, University of Münster, Münster, Germany
- Cells-in-Motion Interfaculty Center, University of Münster, 48149, Münster, Germany
| | - Volker Gerke
- Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany
- Cells-in-Motion Interfaculty Center, University of Münster, 48149, Münster, Germany
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, National Institute of Natural Sciences, Okazaki, Aichi, Japan
| | - Klaus Ebnet
- Institute-Associated Research Group "Cell Adhesion and Cell Polarity", Institute of Medical Biochemistry, ZMBE, University of Münster, Von-Esmarch-Str. 56, 48149, Münster, Germany.
- Institute of Medical Biochemistry, ZMBE, University of Münster, Münster, Germany.
- Cells-in-Motion Interfaculty Center, University of Münster, 48149, Münster, Germany.
| |
Collapse
|
66
|
Cecchini A, Cornelison DDW. Eph/Ephrin-Based Protein Complexes: The Importance of cis Interactions in Guiding Cellular Processes. Front Mol Biosci 2022; 8:809364. [PMID: 35096972 PMCID: PMC8793696 DOI: 10.3389/fmolb.2021.809364] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Although intracellular signal transduction is generally represented as a linear process that transmits stimuli from the exterior of a cell to the interior via a transmembrane receptor, interactions with additional membrane-associated proteins are often critical to its success. These molecules play a pivotal role in mediating signaling via the formation of complexes in cis (within the same membrane) with primary effectors, particularly in the context of tumorigenesis. Such secondary effectors may act to promote successful signaling by mediating receptor-ligand binding, recruitment of molecular partners for the formation of multiprotein complexes, or differential signaling outcomes. One signaling family whose contact-mediated activity is frequently modulated by lateral interactions at the cell surface is Eph/ephrin (EphA and EphB receptor tyrosine kinases and their ligands ephrin-As and ephrin-Bs). Through heterotypic interactions in cis, these molecules can promote a diverse range of cellular activities, including some that are mutually exclusive (cell proliferation and cell differentiation, or adhesion and migration). Due to their broad expression in most tissues and their promiscuous binding within and across classes, the cellular response to Eph:ephrin interaction is highly variable between cell types and is dependent on the cellular context in which binding occurs. In this review, we will discuss interactions between molecules in cis at the cell membrane, with emphasis on their role in modulating Eph/ephrin signaling.
Collapse
Affiliation(s)
- Alessandra Cecchini
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - D. D. W. Cornelison
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- *Correspondence: D. D. W. Cornelison,
| |
Collapse
|
67
|
Shellard A, Mayor R. Collective durotaxis along a self-generated stiffness gradient in vivo. Nature 2021; 600:690-694. [PMID: 34880503 DOI: 10.1038/s41586-021-04210-x] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/02/2021] [Indexed: 02/07/2023]
Abstract
Collective cell migration underlies morphogenesis, wound healing and cancer invasion1,2. Most directed migration in vivo has been attributed to chemotaxis, whereby cells follow a chemical gradient3-5. Cells can also follow a stiffness gradient in vitro, a process called durotaxis3,4,6-8, but evidence for durotaxis in vivo is lacking6. Here we show that in Xenopus laevis the neural crest-an embryonic cell population-self-generates a stiffness gradient in the adjacent placodal tissue, and follows this gradient by durotaxis. The gradient moves with the neural crest, which is continually pursuing a retreating region of high substrate stiffness. Mechanistically, the neural crest induces the gradient due to N-cadherin interactions with the placodes and senses the gradient through cell-matrix adhesions, resulting in polarized Rac activity and actomyosin contractility, which coordinates durotaxis. Durotaxis synergizes with chemotaxis, cooperatively polarizing actomyosin machinery of the cell group to prompt efficient directional collective cell migration in vivo. These results show that durotaxis and dynamic stiffness gradients exist in vivo, and gradients of chemical and mechanical signals cooperate to achieve efficient directional cell migration.
Collapse
Affiliation(s)
- Adam Shellard
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London, UK.
| |
Collapse
|
68
|
Čada Š, Bryja V. Local Wnt signalling in the asymmetric migrating vertebrate cells. Semin Cell Dev Biol 2021; 125:26-36. [PMID: 34896020 DOI: 10.1016/j.semcdb.2021.11.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/27/2022]
Abstract
Wnt signalling is known to generate cellular asymmetry via Wnt/planar cell polarity pathway (Wnt/PCP). Wnt/PCP acts locally (i) to orient membrane polarity and asymmetric establishment of intercellular junctions via conserved set of PCP proteins most specifically represented by Vangl and Prickle, and (ii) to asymmetrically rearrange cytoskeletal structures via downstream effectors of Dishevelled (Dvl). This process is best described on stable phenotypes of epithelial cells. Here, however, we review the activity of Wnt signalling in migratory cells which experience the extensive rearrangements of cytoskeleton and consequently dynamic asymmetry, making the localised effects of Wnt signalling easier to distinguish. Firstly, we focused on migration of neuronal axons, which allows to study how the pre-existent cellular asymmetry can influence Wnt signalling outcome. Then, we reviewed the role of Wnt signalling in models of mesenchymal migration including neural crest, melanoma, and breast cancer cells. Last, we collected evidence for local Wnt signalling in amoeboid cells, especially lymphocytes. As the outcome of this review, we identify blank spots in our current understanding of this topic, propose models that synthesise the current observations and allow formulation of testable hypotheses for the future research.
Collapse
Affiliation(s)
- Štěpán Čada
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Vítězslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic; Department of Cytokinetics, Institute of Biophysics CAS, Královopolská 135, 61265 Brno, Czech Republic.
| |
Collapse
|
69
|
Wilkinson DG. Interplay of Eph-Ephrin Signalling and Cadherin Function in Cell Segregation and Boundary Formation. Front Cell Dev Biol 2021; 9:784039. [PMID: 34869386 PMCID: PMC8633894 DOI: 10.3389/fcell.2021.784039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
The segregation of distinct cell populations to form sharp boundaries is crucial for stabilising tissue organisation, for example during hindbrain segmentation in craniofacial development. Two types of mechanisms have been found to underlie cell segregation: differential adhesion mediated by cadherins, and Eph receptor and ephrin signalling at the heterotypic interface which regulates cell adhesion, cortical tension and repulsion. An interplay occurs between these mechanisms since cadherins have been found to contribute to Eph-ephrin-mediated cell segregation. This may reflect that Eph receptor activation acts through multiple pathways to decrease cadherin-mediated adhesion which can drive cell segregation. However, Eph receptors mainly drive cell segregation through increased heterotypic tension or repulsion. Cadherins contribute to cell segregation by antagonising homotypic tension within each cell population. This suppression of homotypic tension increases the difference with heterotypic tension triggered by Eph receptor activation, and it is this differential tension that drives cell segregation and border sharpening.
Collapse
|
70
|
Canales Coutiño B, Mayor R. The mechanosensitive channel Piezo1 cooperates with semaphorins to control neural crest migration. Development 2021; 148:273523. [PMID: 34822717 PMCID: PMC8714065 DOI: 10.1242/dev.200001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/01/2021] [Indexed: 12/16/2022]
Abstract
Cells are permanently exposed to a multitude of different kinds of signals: however, how cells respond to simultaneous extracellular signals within a complex in vivo environment is poorly understood. Here, we studied the role of the mechanosensitive ion channel Piezo1 on the migration of the neural crest, a multipotent embryonic cell population. We identify that Piezo1 is required for the migration of Xenopus cephalic neural crest. We show that loss of Piezo1 promotes focal adhesion turnover and cytoskeletal dynamics by controlling Rac1 activity, leading to increased speed of migration. Moreover, overactivation of Rac1, due to Piezo1 inhibition, counteracts cell migration inhibitory signals by Semaphorin 3A and Semaphorin 3F, generating aberrant neural crest invasion in vivo. Thus, we find that, for directional migration in vivo, neural crest cells require a tight regulation of Rac1, by semaphorins and Piezo1. We reveal here that a balance between a myriad of signals through Rac1 dictates cell migration in vivo, a mechanism that is likely to be conserved in other cell migration processes. Summary: Neural crest directional and normal migration in vivo requires both chemical and mechanical regulation of Rac1 by Semaphorin 3A and Piezo1, respectively.
Collapse
Affiliation(s)
- Brenda Canales Coutiño
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
71
|
Bernadskaya YY, Yue H, Copos C, Christiaen L, Mogilner A. Supracellular organization confers directionality and mechanical potency to migrating pairs of cardiopharyngeal progenitor cells. eLife 2021; 10:e70977. [PMID: 34842140 PMCID: PMC8700272 DOI: 10.7554/elife.70977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022] Open
Abstract
Physiological and pathological morphogenetic events involve a wide array of collective movements, suggesting that multicellular arrangements confer biochemical and biomechanical properties contributing to tissue-scale organization. The Ciona cardiopharyngeal progenitors provide the simplest model of collective cell migration, with cohesive bilateral cell pairs polarized along the leader-trailer migration path while moving between the ventral epidermis and trunk endoderm. We use the Cellular Potts Model to computationally probe the distributions of forces consistent with shapes and collective polarity of migrating cell pairs. Combining computational modeling, confocal microscopy, and molecular perturbations, we identify cardiopharyngeal progenitors as the simplest cell collective maintaining supracellular polarity with differential distributions of protrusive forces, cell-matrix adhesion, and myosin-based retraction forces along the leader-trailer axis. 4D simulations and experimental observations suggest that cell-cell communication helps establish a hierarchy to align collective polarity with the direction of migration, as observed with three or more cells in silico and in vivo. Our approach reveals emerging properties of the migrating collective: cell pairs are more persistent, migrating longer distances, and presumably with higher accuracy. Simulations suggest that cell pairs can overcome mechanical resistance of the trunk endoderm more effectively when they are polarized collectively. We propose that polarized supracellular organization of cardiopharyngeal progenitors confers emergent physical properties that determine mechanical interactions with their environment during morphogenesis.
Collapse
Affiliation(s)
- Yelena Y Bernadskaya
- Center for Developmental Genetics, Department of Biology, New York UniversityNew YorkUnited States
| | - Haicen Yue
- Courant Institute of Mathematical Sciences and Department of Biology, New York UniversityNew YorkUnited States
| | - Calina Copos
- Mathematics and Computational Medicine, University of North Carolina at Chapel HillChapel HillUnited States
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York UniversityNew YorkUnited States
- Sars International Centre for Marine Molecular BiologyBergenNorway
- Department of Heart Disease, Haukeland University HospitalBergenNorway
| | - Alex Mogilner
- Courant Institute of Mathematical Sciences and Department of Biology, New York UniversityNew YorkUnited States
| |
Collapse
|
72
|
Bone Marrow-Derived Mesenchymal Stem Cells Migrate toward Hormone-Insensitive Prostate Tumor Cells Expressing TGF-β via N-Cadherin. Biomedicines 2021; 9:biomedicines9111572. [PMID: 34829800 PMCID: PMC8615076 DOI: 10.3390/biomedicines9111572] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
The prostate tumor microenvironment plays important roles in the metastasis and hormone-insensitive re-growth of tumor cells. Bone marrow-derived mesenchymal stem cells (BM-MSCs) are recruited into prostate tumors to facilitate tumor microenvironment formation. However, the specific intrinsic molecules mediating BM-MSCs’ migration to prostate tumors are unknown. BM-MSCs’ migration toward a conditioned medium (CM) of hormone-insensitive (PC3 and DU145) or hormone-sensitive (LNCaP) prostate tumor cells was investigated using a three-dimensional cell migration assay and a transwell migration assay. PC3 and DU145 expressed transforming growth factor-β (TGF-β), but LNCaP did not. Regardless of TGF-β expression, BM-MSCs migrated toward the CM of PC3, DU145, or LNCaP. The CM of PC3 or DU145 expressing TGF-β increased the phosphorylation of Smad2/3 in BM-MSCs. Inactivation of TGF-β signaling in BM-MSCs using TGF-β type 1 receptor (TGFBR1) inhibitors, SB505124, or SB431542 did not allow BM-MSCs to migrate toward the CM. The CM of PC3 or DU145 enhanced N-cadherin expression on BM-MSCs, but the LNCaP CM did not. SB505124, SB431542, and TGFBR1 knockdown prevented an increase in N-cadherin expression. N-cadherin knockdown inhibited the collective migration of BM-MSCs toward the PC3 CM. We identified N-cadherin as a mediator of BM-MSCs’ migration toward hormone-insensitive prostate tumor cells expressing TGF-β and introduced a novel strategy for controlling and re-engineering the prostate tumor microenvironment.
Collapse
|
73
|
Dolde X, Karreman C, Wiechers M, Schildknecht S, Leist M. Profiling of Human Neural Crest Chemoattractant Activity as a Replacement of Fetal Bovine Serum for In Vitro Chemotaxis Assays. Int J Mol Sci 2021; 22:ijms221810079. [PMID: 34576243 PMCID: PMC8468192 DOI: 10.3390/ijms221810079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/27/2022] Open
Abstract
Fetal bovine serum (FBS) is the only known stimulus for the migration of human neural crest cells (NCCs). Non-animal chemoattractants are desirable for the optimization of chemotaxis as-says to be incorporated in a test battery for reproductive and developmental toxicity. We con-firmed here in an optimized transwell assay that FBS triggers directed migration along a con-centration gradient. The responsible factor was found to be a protein in the 30–100 kDa size range. In a targeted approach, we tested a large panel of serum constituents known to be chem-otactic for NCCs in animal models (e.g., VEGF, PDGF, FGF, SDF-1/CXCL12, ephrins, endothelin, Wnt, BMPs). None of the corresponding human proteins showed any effect in our chemotaxis assays based on human NCCs. We then examined, whether human cells would produce any fac-tor able to trigger NCC migration in a broad screening approach. We found that HepG2 hepa-toma cells produced chemotaxis-triggering activity (CTA). Using chromatographic methods and by employing the NCC chemotaxis test as bioassay, the responsible protein was enriched by up to 5000-fold. We also explored human serum and platelets as a direct source, independent of any cell culture manipulations. A CTA was enriched from platelet lysates several thousand-fold. Its temperature and protease sensitivity suggested also a protein component. The capacity of this factor to trigger chemotaxis was confirmed by single-cell video-tracking analysis of migrating NCCs. The human CTA characterized here may be employed in the future for the setup of assays testing for the disturbance of directed NCC migration by toxicants.
Collapse
Affiliation(s)
- Xenia Dolde
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (X.D.); (C.K.); (M.W.)
| | - Christiaan Karreman
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (X.D.); (C.K.); (M.W.)
| | - Marianne Wiechers
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (X.D.); (C.K.); (M.W.)
| | - Stefan Schildknecht
- Department of Life Sciences, Albstadt-Sigmaringen University of Applied Sciences, 72488 Sigmaringen, Germany;
| | - Marcel Leist
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany; (X.D.); (C.K.); (M.W.)
- Correspondence: ; Tel.: +49-(0)7531-88-5037; Fax: +49-(0)7531-88-5039
| |
Collapse
|
74
|
Bischoff MC, Bogdan S. Collective cell migration driven by filopodia-New insights from the social behavior of myotubes. Bioessays 2021; 43:e2100124. [PMID: 34480489 DOI: 10.1002/bies.202100124] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 01/12/2023]
Abstract
Collective migration is a key process that is critical during development, as well as in physiological and pathophysiological processes including tissue repair, wound healing and cancer. Studies in genetic model organisms have made important contributions to our current understanding of the mechanisms that shape cells into different tissues during morphogenesis. Recent advances in high-resolution and live-cell-imaging techniques provided new insights into the social behavior of cells based on careful visual observations within the context of a living tissue. In this review, we will compare Drosophila testis nascent myotube migration with established in vivo model systems, elucidate similarities, new features and principles in collective cell migration.
Collapse
Affiliation(s)
- Maik C Bischoff
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University Marburg, Marburg, Germany
| | - Sven Bogdan
- Institute of Physiology and Pathophysiology, Department of Molecular Cell Physiology, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
75
|
Grund A, Till K, Giehl K, Borchers A. Ptk7 Is Dynamically Localized at Neural Crest Cell-Cell Contact Sites and Functions in Contact Inhibition of Locomotion. Int J Mol Sci 2021; 22:ijms22179324. [PMID: 34502237 PMCID: PMC8431534 DOI: 10.3390/ijms22179324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Neural crest (NC) cells are highly migratory cells that contribute to various vertebrate tissues, and whose migratory behaviors resemble cancer cell migration and invasion. Information exchange via dynamic NC cell-cell contact is one mechanism by which the directionality of migrating NC cells is controlled. One transmembrane protein that is most likely involved in this process is protein tyrosine kinase 7 (PTK7), an evolutionary conserved Wnt co-receptor that is expressed in cranial NC cells and several tumor cells. In Xenopus, Ptk7 is required for NC migration. In this study, we show that the Ptk7 protein is dynamically localized at cell-cell contact zones of migrating Xenopus NC cells and required for contact inhibition of locomotion (CIL). Using deletion constructs of Ptk7, we determined that the extracellular immunoglobulin domains of Ptk7 are important for its transient accumulation and that they mediate homophilic binding. Conversely, we found that ectopic expression of Ptk7 in non-NC cells was able to prevent NC cell invasion. However, deletion of the extracellular domains of Ptk7 abolished this effect. Thus, Ptk7 is sufficient at protecting non-NC tissue from NC cell invasion, suggesting a common role of PTK7 in contact inhibition, cell invasion, and tissue integrity.
Collapse
Affiliation(s)
- Anita Grund
- Faculty of Biology, Molecular Embryology, Philipps-University Marburg, D-35032 Marburg, Germany; (A.G.); (K.T.)
| | - Katharina Till
- Faculty of Biology, Molecular Embryology, Philipps-University Marburg, D-35032 Marburg, Germany; (A.G.); (K.T.)
| | - Klaudia Giehl
- Faculty of Medicine, Signal Transduction of Cellular Motility, Internal Medicine V, Justus-Liebig University Giessen, D-35392 Giessen, Germany;
| | - Annette Borchers
- Faculty of Biology, Molecular Embryology, Philipps-University Marburg, D-35032 Marburg, Germany; (A.G.); (K.T.)
- Correspondence: ; Tel.: +49-6421-2826587
| |
Collapse
|
76
|
Khataee H, Czirok A, Neufeld Z. Contact inhibition of locomotion generates collective cell migration without chemoattractants in an open domain. Phys Rev E 2021; 104:014405. [PMID: 34412289 DOI: 10.1103/physreve.104.014405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/15/2021] [Indexed: 11/07/2022]
Abstract
Neural crest cells are embryonic stem cells that migrate throughout embryos and, at different target locations, give rise to the formation of a variety of tissues and organs. The directional migration of the neural crest cells is experimentally described using a process referred to as contact inhibition of locomotion, by which cells redirect their movement upon the cell-cell contacts. However, it is unclear how the migration alignment is affected by the motility properties of the cells. Here, we theoretically model the migration alignment as a function of the motility dynamics and interaction of the cells in an open domain with a channel geometry. The results indicate that by increasing the influx rate of the cells into the domain a transition takes place from random movement to an organized collective migration, where the migration alignment is maximized and the migration time is minimized. This phase transition demonstrates that the cells can migrate efficiently over long distances without any external chemoattractant information about the direction of migration just based on local interactions with each other. The analysis of the dependence of this transition on the characteristic properties of cellular motility shows that the cell density determines the coordination of collective migration whether the migration domain is open or closed. In the open domain, this density is determined by a feedback mechanism between the flux and order parameter, which characterises the alignment of collective migration. The model also demonstrates that the coattraction mechanism proposed earlier is not necessary for collective migration and a constant flux of cells moving into the channel is sufficient to produce directed movement over arbitrary long distances.
Collapse
Affiliation(s)
- Hamid Khataee
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Andras Czirok
- Department of Biological Physics, Eotvos University, Budapest, 1053, Hungary.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Zoltan Neufeld
- School of Mathematics and Physics, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
77
|
Balaraju AK, Hu B, Rodriguez JJ, Murry M, Lin F. Glypican 4 regulates planar cell polarity of endoderm cells by controlling the localization of Cadherin 2. Development 2021; 148:dev199421. [PMID: 34131730 PMCID: PMC8313861 DOI: 10.1242/dev.199421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/09/2021] [Indexed: 11/20/2022]
Abstract
Noncanonical Wnt/planar cell polarity (Wnt/PCP) signaling has been implicated in endoderm morphogenesis. However, the underlying cellular and molecular mechanisms of this process are unclear. We found that, during convergence and extension (C&E) in zebrafish, gut endodermal cells are polarized mediolaterally, with GFP-Vangl2 enriched at the anterior edges. Endoderm cell polarity is lost and intercalation is impaired in the absence of glypican 4 (gpc4), a heparan-sulfate proteoglycan that promotes Wnt/PCP signaling, suggesting that this signaling is required for endodermal cell polarity. Live imaging revealed that endoderm C&E is accomplished by polarized cell protrusions and junction remodeling, which are impaired in gpc4-deficient endodermal cells. Furthermore, in the absence of gpc4, Cadherin 2 expression on the endodermal cell surface is increased as a result of impaired Rab5c-mediated endocytosis, which partially accounts for the endodermal defects in these mutants. These findings indicate that Gpc4 regulates endodermal planar cell polarity during endoderm C&E by influencing the localization of Cadherin 2. Thus, our study uncovers a new mechanism by which Gpc4 regulates planar cell polarity and reveals the role of Wnt/PCP signaling in endoderm morphogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
78
|
What we can learn from embryos to understand the mesenchymal-to-epithelial transition in tumor progression. Biochem J 2021; 478:1809-1825. [PMID: 33988704 DOI: 10.1042/bcj20210083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Epithelial plasticity involved the terminal and transitional stages that occur during epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET), both are essential at different stages of early embryonic development that have been co-opted by cancer cells to undergo tumor metastasis. These processes are regulated at multiple instances, whereas the post-transcriptional regulation of key genes mediated by microRNAs is gaining major attention as a common and conserved pathway. In this review, we focus on discussing the latest findings of the cellular and molecular basis of the less characterized process of MET during embryonic development, with special attention to the role of microRNAs. Although we take in consideration the necessity of being cautious when extrapolating the obtained evidence, we propose some commonalities between early embryonic development and cancer progression that can shed light into our current understanding of this complex event and might aid in the design of specific therapeutic approaches.
Collapse
|
79
|
Choi S, Yu J, Kim W, Park KS. N-cadherin mediates the migration of bone marrow-derived mesenchymal stem cells toward breast tumor cells. Theranostics 2021; 11:6786-6799. [PMID: 34093853 PMCID: PMC8171089 DOI: 10.7150/thno.59703] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/21/2021] [Indexed: 12/18/2022] Open
Abstract
Rationale: Bone marrow-derived mesenchymal stem cells (BM-MSCs) recruited into breast tumors regulate the behavior of tumor cells via various mechanisms and affect clinical outcomes. Although signaling molecules, such as transforming growth factor β (TGF-β), are known to transmit signals between BM-MSCs and breast tumor cells for recruiting BM-MSCs, it is unclear which specific intrinsic molecules involved in cell motility mediate the migration of BM-MSCs into breast tumor. It is also unclear as to how specific intrinsic molecules contribute to the migration. Methods: Conditioned medium (CM) from breast tumor cells (MCF-7 and MDA-MB-231) that simulates breast tumor secreting TGF-β was used to examine the migration of BM-MSCs into breast tumors. A three-dimensional migration assay was performed to investigate the collective migration of BM-MSCs, maintaining cell-cell adhesion, toward breast tumor cells. Results: N-cadherin formed adherens junction-like structures on the intercellular borders of BM-MSCs, and TGF-β increased the expression of N-cadherin on these borders. Knockdown of Smad4 impaired the TGF-β-mediated increase in N-cadherin expression in BM-MSCs, but inhibitors of non-canonical TGF-β pathways, such as extracellular signal-regulated kinases, Akt, and p38, did not affect it. siRNA-mediated knockdown of N-cadherin and Smad4 impaired the migration of BM-MSCs in response to TGF-β. Conditioned medium from breast tumor cells also enhanced the expression of N-cadherin in BM-MSCs, but inactivation of TGF-β type 1 receptor (TGFBR1) with SB505124 and TGFBR1 knockdown abolished the increase in N-cadherin expression. BM-MSCs collectively migrated toward CM from MDA-MB-231 in vitro while maintaining cell-cell adhesion through N-cadherin. Knockdown of N-cadherin abolished the migration of BM-MSCs toward the CM from breast tumor cells. Conclusion: In the present study, we identified N-cadherin, an intrinsic transmembrane molecule in adherens junction-like structures, on BM-MSCs as a mediator for the migration of these cells toward breast tumor. The expression of N-cadherin increases on the intercellular borders of BM-MSCs through the TGF-β canonical signaling and they collectively migrate in response to breast tumor cells expressing TGF-β via N-cadherin-dependent cell-cell adhesion. We, herein, introduce a novel promising strategy for controlling and re-engineering the breast tumor microenvironment.
Collapse
Affiliation(s)
- Sanghyuk Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jinyeong Yu
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Wootak Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ki-Sook Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
- East-West Medical Research Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
80
|
Parmar B, Verma U, Khaire K, Danes D, Balakrishnan S. Inhibition of Cyclooxygenase-2 Alters Craniofacial Patterning during Early Embryonic Development of Chick. J Dev Biol 2021; 9:16. [PMID: 33922791 PMCID: PMC8167724 DOI: 10.3390/jdb9020016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/17/2021] [Accepted: 04/20/2021] [Indexed: 12/22/2022] Open
Abstract
A recent study from our lab revealed that the inhibition of cyclooxygenase-2 (COX-2) exclusively reduces the level of PGE2 (Prostaglandin E2) among prostanoids and hampers the normal development of several structures, strikingly the cranial vault, in chick embryos. In order to unearth the mechanism behind the deviant development of cranial features, the expression pattern of various factors that are known to influence cranial neural crest cell (CNCC) migration was checked in chick embryos after inhibiting COX-2 activity using etoricoxib. The compromised level of cell adhesion molecules and their upstream regulators, namely CDH1 (E-cadherin), CDH2 (N-cadherin), MSX1 (Msh homeobox 1), and TGF-β (Transforming growth factor beta), observed in the etoricoxib-treated embryos indicate that COX-2, through its downstream effector PGE2, regulates the expression of these factors perhaps to aid the migration of CNCCs. The histological features and levels of FoxD3 (Forkhead box D3), as well as PCNA (Proliferating cell nuclear antigen), further consolidate the role of COX-2 in the migration and survival of CNCCs in developing embryos. The results of the current study indicate that COX-2 plays a pivotal role in orchestrating craniofacial structures perhaps by modulating CNCC proliferation and migration during the embryonic development of chicks.
Collapse
Affiliation(s)
| | | | | | | | - Suresh Balakrishnan
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Gujarat 390002, India; (B.P.); (U.V.); (K.K.); (D.D.)
| |
Collapse
|
81
|
Artinger KB, Monsoro-Burq AH. Neural crest multipotency and specification: power and limits of single cell transcriptomic approaches. Fac Rev 2021; 10:38. [PMID: 34046642 PMCID: PMC8130411 DOI: 10.12703/r/10-38] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The neural crest is a unique population of multipotent cells forming in vertebrate embryos. Their vast cell fate potential enables the generation of a diverse array of differentiated cell types in vivo. These include, among others, connective tissue, cartilage and bone of the face and skull, neurons and glia of the peripheral nervous system (including enteric nervous system), and melanocytes. Following migration, these derivatives extensively populate multiple germ layers. Within the competent neural border ectoderm, an area located at the junction between the neural and non-neural ectoderm during embryonic development, neural crest cells form in response to a series of inductive secreted cues including BMP, Wnt, and FGF signals. As cells become progressively specified, they express transcriptional modules conducive with their stage of fate determination or cell state. Those sequential states include the neural border state, the premigratory neural crest state, the epithelium-to-mesenchyme transitional state, and the migratory state to end with post-migratory and differentiation states. However, despite the extensive knowledge accumulated over 150 years of neural crest biology, many key questions remain open, in particular the timing of neural crest lineage determination, the control of potency during early developmental stages, and the lineage relationships between different subpopulations of neural crest cells. In this review, we discuss the recent advances in understanding early neural crest formation using cutting-edge high-throughput single cell sequencing approaches. We will discuss how this new transcriptomic data, from 2017 to 2021, has advanced our knowledge of the steps in neural crest cell lineage commitment and specification, the mechanisms driving multipotency, and diversification. We will then discuss the questions that remain to be resolved and how these approaches may continue to unveil the biology of these fascinating cells.
Collapse
Affiliation(s)
- Kristin B Artinger
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Aurora, CO, USA
| | - Anne H Monsoro-Burq
- Université Paris-Saclay, Faculté des Sciences d'Orsay, France
- Institut Curie, INSERM U1021, CNRS UMR3347, Orsay, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
82
|
Espina JA, Marchant CL, Barriga EH. Durotaxis: the mechanical control of directed cell migration. FEBS J 2021; 289:2736-2754. [PMID: 33811732 PMCID: PMC9292038 DOI: 10.1111/febs.15862] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/23/2021] [Accepted: 04/01/2021] [Indexed: 11/28/2022]
Abstract
Directed cell migration is essential for cells to efficiently migrate in physiological and pathological processes. While migrating in their native environment, cells interact with multiple types of cues, such as mechanical and chemical signals. The role of chemical guidance via chemotaxis has been studied in the past, the understanding of mechanical guidance of cell migration via durotaxis remained unclear until very recently. Nonetheless, durotaxis has become a topic of intensive research and several advances have been made in the study of mechanically guided cell migration across multiple fields. Thus, in this article we provide a state of the art about durotaxis by discussing in silico, in vitro and in vivo data. We also present insights on the general mechanisms by which cells sense, transduce and respond to environmental mechanics, to then contextualize these mechanisms in the process of durotaxis and explain how cells bias their migration in anisotropic substrates. Furthermore, we discuss what is known about durotaxis in vivo and we comment on how haptotaxis could arise from integrating durotaxis and chemotaxis in native environments.
Collapse
Affiliation(s)
- Jaime A Espina
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Cristian L Marchant
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| | - Elias H Barriga
- Mechanisms of Morphogenesis Lab, Gulbenkian Institute of Science (IGC), Oeiras, Portugal
| |
Collapse
|
83
|
Ozawa M, Hiver S, Yamamoto T, Shibata T, Upadhyayula S, Mimori-Kiyosue Y, Takeichi M. Adherens junction regulates cryptic lamellipodia formation for epithelial cell migration. J Cell Biol 2021; 219:152072. [PMID: 32886101 PMCID: PMC7659716 DOI: 10.1083/jcb.202006196] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Collective migration of epithelial cells plays crucial roles in various biological processes such as cancer invasion. In migrating epithelial sheets, leader cells form lamellipodia to advance, and follower cells also form similar motile apparatus at cell-cell boundaries, which are called cryptic lamellipodia (c-lamellipodia). Using adenocarcinoma-derived epithelial cells, we investigated how c-lamellipodia form and found that they sporadically grew from around E-cadherin-based adherens junctions (AJs). WAVE and Arp2/3 complexes were localized along the AJs, and silencing them not only interfered with c-lamellipodia formation but also prevented follower cells from trailing the leaders. Disruption of AJs by removing αE-catenin resulted in uncontrolled c-lamellipodia growth, and this was brought about by myosin II activation and the resultant contraction of AJ-associated actomyosin cables. Additional observations indicated that c-lamellipodia tended to grow at mechanically weak sites of the junction. We conclude that AJs not only tie cells together but also support c-lamellipodia formation by recruiting actin regulators, enabling epithelial cells to undergo ordered collective migration.
Collapse
Affiliation(s)
- Masayuki Ozawa
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Sylvain Hiver
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Takaki Yamamoto
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Srigokul Upadhyayula
- Advanced Bioimaging Center, Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA
| | - Yuko Mimori-Kiyosue
- Laboratory for Molecular and Cellular Dynamics, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Masatoshi Takeichi
- Laboratory for Cell Adhesion and Tissue Patterning, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
84
|
Karmakar R. State of the art of bacterial chemotaxis. J Basic Microbiol 2021; 61:366-379. [PMID: 33687766 DOI: 10.1002/jobm.202000661] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/09/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Bacterial chemotaxis is a biased movement of bacteria toward the beneficial chemical gradient or away from a toxic chemical gradient. This movement is achieved by sensing a chemical gradient by chemoreceptors. In most of the chemotaxis studies, Escherichia coli has been used as a model organism. E. coli have about 4-6 flagella on their surfaces, and the motility is achieved by rotating the flagella. Each flagellum has reversible flagellar motors at its base, which rotate the flagella in counterclockwise and clockwise directions to achieve "run" and "tumble." The chemotaxis of bacteria is regulated by a network of interacting proteins. The sensory signal is processed and transmitted to the flagellar motor by cytoplasmic proteins. Bacterial chemotaxis plays an important role in many biological processes such as biofilm formation, quorum sensing, bacterial pathogenesis, and host infection. Bacterial chemotaxis can be applied for bioremediation, horizontal gene transfer, drug delivery, or maybe some other industry in near future. This review contains an overview of bacterial chemotaxis, recent findings of the physiological importance of bacterial chemotaxis in other biological processes, and the application of bacterial chemotaxis.
Collapse
Affiliation(s)
- Richa Karmakar
- Department of Physics, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
85
|
Roy U, Mugler A. Intermediate adhesion maximizes migration velocity of multicellular clusters. Phys Rev E 2021; 103:032410. [PMID: 33862697 DOI: 10.1103/physreve.103.032410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Collections of cells exhibit coherent migration during morphogenesis, cancer metastasis, and wound healing. In many cases, bigger clusters split, smaller subclusters collide and reassemble, and gaps continually emerge. The connections between cell-level adhesion and cluster-level dynamics, as well as the resulting consequences for cluster properties such as migration velocity, remain poorly understood. Here we investigate collective migration of one- and two-dimensional cell clusters that collectively track chemical gradients using a mechanism based on contact inhibition of locomotion. We develop both a minimal description based on the lattice gas model of statistical physics and a more realistic framework based on the cellular Potts model which captures cell shape changes and cluster rearrangement. In both cases, we find that cells have an optimal adhesion strength that maximizes cluster migration speed. The optimum negotiates a tradeoff between maintaining cell-cell contact and maintaining configurational freedom, and we identify maximal variability in the cluster aspect ratio as a revealing signature. Our results suggest a collective benefit for intermediate cell-cell adhesion.
Collapse
Affiliation(s)
- Ushasi Roy
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Andrew Mugler
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, USA
- Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
86
|
Mehta AS, Ha P, Zhu K, Li S, Ting K, Soo C, Zhang X, Zhao M. Physiological electric fields induce directional migration of mammalian cranial neural crest cells. Dev Biol 2021; 471:97-105. [PMID: 33340512 PMCID: PMC7856271 DOI: 10.1016/j.ydbio.2020.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022]
Abstract
During neurulation, cranial neural crest cells (CNCCs) migrate long distances from the neural tube to their terminal site of differentiation. The pathway traveled by the CNCCs defines the blueprint for craniofacial construction, abnormalities of which contribute to three-quarters of human birth defects. Biophysical cues like naturally occurring electric fields (EFs) have been proposed to be one of the guiding mechanisms for CNCC migration from the neural tube to identified position in the branchial arches. Such endogenous EFs can be mimicked by applied EFs of physiological strength that has been reported to guide the migration of amphibian and avian neural crest cells (NCCs), namely galvanotaxis or electrotaxis. However, the behavior of mammalian NCCs in external EFs has not been reported. We show here that mammalian CNCCs migrate towards the anode in direct current (dc) EFs. Reversal of the field polarity reverses the directedness. The response threshold was below 30 mV/mm and the migration directedness and displacement speed increased with increase in field strength. Both CNCC line (O9-1) and primary mouse CNCCs show similar galvanotaxis behavior. Our results demonstrate for the first time that the mammalian CNCCs respond to physiological EFs by robust directional migration towards the anode in a voltage-dependent manner.
Collapse
Affiliation(s)
- Abijeet Singh Mehta
- Department of Ophthalmology & Vision Science, Institute for Regenerative Cures, Center for Neuroscience, University of California at Davis, School of Medicine, Suite 1630, Room 1617, 2921 Stockton Blvd., Sacramento, CA, 95817, USA; Department of Dermatology, University of California, Davis, CA, USA
| | - Pin Ha
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Kan Zhu
- Department of Ophthalmology & Vision Science, Institute for Regenerative Cures, Center for Neuroscience, University of California at Davis, School of Medicine, Suite 1630, Room 1617, 2921 Stockton Blvd., Sacramento, CA, 95817, USA; Department of Dermatology, University of California, Davis, CA, USA
| | - ShiYu Li
- Department of Ophthalmology & Vision Science, Institute for Regenerative Cures, Center for Neuroscience, University of California at Davis, School of Medicine, Suite 1630, Room 1617, 2921 Stockton Blvd., Sacramento, CA, 95817, USA; Department of Dermatology, University of California, Davis, CA, USA
| | - Kang Ting
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, CA, USA
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, CA, 90095, USA
| | - Xinli Zhang
- Section of Orthodontics, Division of Growth and Development, School of Dentistry, University of California, Los Angeles, CA, USA.
| | - Min Zhao
- Department of Ophthalmology & Vision Science, Institute for Regenerative Cures, Center for Neuroscience, University of California at Davis, School of Medicine, Suite 1630, Room 1617, 2921 Stockton Blvd., Sacramento, CA, 95817, USA; Department of Dermatology, University of California, Davis, CA, USA.
| |
Collapse
|
87
|
Brückner DB, Arlt N, Fink A, Ronceray P, Rädler JO, Broedersz CP. Learning the dynamics of cell-cell interactions in confined cell migration. Proc Natl Acad Sci U S A 2021; 118:e2016602118. [PMID: 33579821 PMCID: PMC7896326 DOI: 10.1073/pnas.2016602118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The migratory dynamics of cells in physiological processes, ranging from wound healing to cancer metastasis, rely on contact-mediated cell-cell interactions. These interactions play a key role in shaping the stochastic trajectories of migrating cells. While data-driven physical formalisms for the stochastic migration dynamics of single cells have been developed, such a framework for the behavioral dynamics of interacting cells still remains elusive. Here, we monitor stochastic cell trajectories in a minimal experimental cell collider: a dumbbell-shaped micropattern on which pairs of cells perform repeated cellular collisions. We observe different characteristic behaviors, including cells reversing, following, and sliding past each other upon collision. Capitalizing on this large experimental dataset of coupled cell trajectories, we infer an interacting stochastic equation of motion that accurately predicts the observed interaction behaviors. Our approach reveals that interacting noncancerous MCF10A cells can be described by repulsion and friction interactions. In contrast, cancerous MDA-MB-231 cells exhibit attraction and antifriction interactions, promoting the predominant relative sliding behavior observed for these cells. Based on these experimentally inferred interactions, we show how this framework may generalize to provide a unifying theoretical description of the diverse cellular interaction behaviors of distinct cell types.
Collapse
Affiliation(s)
- David B Brückner
- Arnold Sommerfeld Center for Theoretical Physics, Department of Physics, Ludwig-Maximilian-University Munich, D-80333 Munich, Germany
- Center for NanoScience, Ludwig-Maximilian-University Munich, D-80333 Munich, Germany
| | - Nicolas Arlt
- Arnold Sommerfeld Center for Theoretical Physics, Department of Physics, Ludwig-Maximilian-University Munich, D-80333 Munich, Germany
- Center for NanoScience, Ludwig-Maximilian-University Munich, D-80333 Munich, Germany
| | - Alexandra Fink
- Center for NanoScience, Ludwig-Maximilian-University Munich, D-80333 Munich, Germany
- Faculty of Physics, Ludwig-Maximilian-University, D-80539 Munich, Germany
| | - Pierre Ronceray
- Center for the Physics of Biological Function, Princeton University, Princeton, NJ 08544
| | - Joachim O Rädler
- Center for NanoScience, Ludwig-Maximilian-University Munich, D-80333 Munich, Germany;
- Faculty of Physics, Ludwig-Maximilian-University, D-80539 Munich, Germany
| | - Chase P Broedersz
- Arnold Sommerfeld Center for Theoretical Physics, Department of Physics, Ludwig-Maximilian-University Munich, D-80333 Munich, Germany;
- Center for NanoScience, Ludwig-Maximilian-University Munich, D-80333 Munich, Germany
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
88
|
Grimsley-Myers CM, Isaacson RH, Cadwell CM, Campos J, Hernandes MS, Myers KR, Seo T, Giang W, Griendling KK, Kowalczyk AP. VE-cadherin endocytosis controls vascular integrity and patterning during development. J Cell Biol 2021; 219:151601. [PMID: 32232465 PMCID: PMC7199849 DOI: 10.1083/jcb.201909081] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/10/2020] [Accepted: 02/28/2020] [Indexed: 12/18/2022] Open
Abstract
Tissue morphogenesis requires dynamic intercellular contacts that are subsequently stabilized as tissues mature. The mechanisms governing these competing adhesive properties are not fully understood. Using gain- and loss-of-function approaches, we tested the role of p120-catenin (p120) and VE-cadherin (VE-cad) endocytosis in vascular development using mouse mutants that exhibit increased (VE-cadGGG/GGG) or decreased (VE-cadDEE/DEE) internalization. VE-cadGGG/GGG mutant mice exhibited reduced VE-cad-p120 binding, reduced VE-cad levels, microvascular hemorrhaging, and decreased survival. By contrast, VE-cadDEE/DEE mutants exhibited normal vascular permeability but displayed microvascular patterning defects. Interestingly, VE-cadDEE/DEE mutant mice did not require endothelial p120, demonstrating that p120 is dispensable in the context of a stabilized cadherin. In vitro, VE-cadDEE mutant cells displayed defects in polarization and cell migration that were rescued by uncoupling VE-cadDEE from actin. These results indicate that cadherin endocytosis coordinates cell polarity and migration cues through actin remodeling. Collectively, our results indicate that regulated cadherin endocytosis is essential for both dynamic cell movements and establishment of stable tissue architecture.
Collapse
Affiliation(s)
| | - Robin H Isaacson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - Chantel M Cadwell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - Jazmin Campos
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - Marina S Hernandes
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Kenneth R Myers
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - Tadahiko Seo
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - William Giang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA
| | - Kathy K Griendling
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Andrew P Kowalczyk
- Department of Cell Biology, Department of Dermatology, and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
89
|
Foster D, Frost-LaPlante B, Victor C, Restrepo JM. Gradient sensing via cell communication. Phys Rev E 2021; 103:022405. [PMID: 33735979 DOI: 10.1103/physreve.103.022405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 01/25/2021] [Indexed: 01/23/2023]
Abstract
Experimental evidence lends support to the conjecture that cell-to-cell communication plays a role in the gradient sensing of chemical species by certain chains of cells. Models have been formulated to explore this idea. For cells with no identifiable sensing structure, Mugler et al. [Proc. Natl. Acad. Sci. (U.S.A.) 113, E689 (2016)10.1073/pnas.1509597112] have defined a particular local excitation, global inhibition (LEGI) model that pits nearest-neighbor communication against local reactions in a noisy environment to suggest how this sensing capability might arise in a physical system. In this study, we generalize the nearest-neighbor communication mechanism in the aforementioned LEGI model in order to explore the extent to which the gradient sensing characteristics depend on the parametrization of the communication itself, as well as on the cell size, the radius of influence of neighboring cells, and the influence of the background noise. Using our generalization and a collection of particular candidate communication models, we find that the precision of gradient sensing is indeed sensitive to the particular communication model, and we derive physical and analytic explanations for these results. The framework established and the associated results should prove useful in understanding the appropriateness of particular cell-to-cell communication models in gradient sensing studies.
Collapse
Affiliation(s)
- Dallas Foster
- Department of Mathematics, Oregon State University, Corvallis, Oregon 97331, USA
| | - Brian Frost-LaPlante
- Department of Electrical Engineering, Columbia University, New York, New York 10027, USA
| | - Collin Victor
- Department of Mathematics, University of Nebraska at Lincoln, Lincoln, Nebraska 68588, USA
| | - Juan M Restrepo
- Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA and Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
90
|
Yang H, Kuo YH, Smith ZI, Spangler J. Targeting cancer metastasis with antibody therapeutics. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1698. [PMID: 33463090 DOI: 10.1002/wnan.1698] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/23/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022]
Abstract
Cancer metastasis, the spread of disease from a primary to a distal site through the circulatory or lymphatic systems, accounts for over 90% of all cancer related deaths. Despite significant progress in the field of cancer therapy in recent years, mortality rates remain dramatically higher for patients with metastatic disease versus those with local or regional disease. Although there is clearly an urgent need to develop drugs that inhibit cancer spread, the overwhelming majority of anticancer therapies that have been developed to date are designed to inhibit tumor growth but fail to address the key stages of the metastatic process: invasion, intravasation, circulation, extravasation, and colonization. There is growing interest in engineering targeted therapeutics, such as antibody drugs, that inhibit various steps in the metastatic cascade. We present an overview of antibody therapeutic approaches, both in the pipeline and in the clinic, that disrupt the essential mechanisms that underlie cancer metastasis. These therapies include classes of antibodies that indirectly target metastasis, including anti-integrin, anticadherin, and immune checkpoint blocking antibodies, as well as monoclonal and bispecific antibodies that are specifically designed to interrupt disease dissemination. Although few antimetastatic antibodies have achieved clinical success to date, there are many promising candidates in various stages of development, and novel targets and approaches are constantly emerging. Collectively, these efforts will enrich our understanding of the molecular drivers of metastasis, and the new strategies that arise promise to have a profound impact on the future of cancer therapeutic development. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Huilin Yang
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yun-Huai Kuo
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zion I Smith
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jamie Spangler
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
91
|
A globin-family protein, Cytoglobin 1, is involved in the development of neural crest-derived tissues and organs in zebrafish. Dev Biol 2021; 472:1-17. [PMID: 33358912 DOI: 10.1016/j.ydbio.2020.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 11/23/2022]
Abstract
The zebrafish is an excellent model animal that is amenable to forward genetics approaches. To uncover unknown developmental regulatory mechanisms in vertebrates, we conducted chemical mutagenesis screening and identified a novel mutation, kanazutsi (kzt). This mutation is recessive, and its homozygotes are embryonic lethal. Mutant embryos suffered from a variety of morphological defects, such as head flattening, pericardial edema, circulation defects, disrupted patterns of melanophore distribution, dwarf eyes, a defective jaw, and extensive apoptosis in the head, which indicates that the main affected tissues are derived from neural crest cells (NCCs). The expression of tissue-specific markers in kzt mutants showed that the early specification of NCCs was normal, but their later differentiation was severely affected. The mutation was mapped to chromosome 3 by linkage analyses, near cytoglobin 1 (cygb1), the product of which is a globin-family respiratory protein. cygb1 expression was activated during somitogenesis in somites and cranial NCCs in wild-type embryos but was significantly downregulated in mutant embryos, despite the normal primary structure of the gene product. The kzt mutation was phenocopied by cygb1 knockdown with low-dose morpholino oligos and was partially rescued by cygb1 overexpression. Both severe knockdown and null mutation of cygb1, established by the CRISPR/Cas9 technique, resulted in far more severe defects at early stages. Thus, it is highly likely that the downregulation of cygb1 is responsible for many, if not all, of the phenotypes of the kzt mutation. These results reveal a requirement for globin family proteins in vertebrate embryos, particularly in the differentiation and subsequent development of NCCs.
Collapse
|
92
|
Hiraiwa T. Dynamic Self-Organization of Idealized Migrating Cells by Contact Communication. PHYSICAL REVIEW LETTERS 2020; 125:268104. [PMID: 33449791 DOI: 10.1103/physrevlett.125.268104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
This Letter investigates what forms of cellular dynamic self-organization are caused through intercellular contact communication based on a theoretical model in which migrating cells perform contact following and contact inhibition and attraction of locomotion. Tuning those strengths causes varieties of dynamic patterns. This further includes a novel form of collective migration, snakelike dynamic assembly. Scrutinizing this pattern reveals that cells in this state can accurately respond to an external directional cue but have no spontaneous global polar order.
Collapse
Affiliation(s)
- Tetsuya Hiraiwa
- Mechanobiology Institute, National University of Singapore, 117411, Singapore and Universal Biology Institute, The University of Tokyo, Hongo, Tokyo 113-0033, Japan
| |
Collapse
|
93
|
Schwenty-Lara J, Pauli S, Borchers A. Using Xenopus to analyze neurocristopathies like Kabuki syndrome. Genesis 2020; 59:e23404. [PMID: 33351273 DOI: 10.1002/dvg.23404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 11/08/2022]
Abstract
Neurocristopathies are human congenital syndromes that arise from defects in neural crest (NC) development and are typically associated with malformations of the craniofacial skeleton. Genetic analyses have been very successful in identifying pathogenic mutations, however, model organisms are required to characterize how these mutations affect embryonic development thereby leading to complex clinical conditions. The African clawed frog Xenopus laevis provides a broad range of in vivo and in vitro tools allowing for a detailed characterization of NC development. Due to the conserved nature of craniofacial morphogenesis in vertebrates, Xenopus is an efficient and versatile system to dissect the morphological and cellular phenotypes as well as the signaling events leading to NC defects. Here, we review a set of techniques and resources how Xenopus can be used as a disease model to investigate the pathogenesis of Kabuki syndrome and neurocristopathies in a wider sense.
Collapse
Affiliation(s)
- Janina Schwenty-Lara
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany
| | - Silke Pauli
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-University Marburg, Marburg, Germany
| |
Collapse
|
94
|
Nagai T, Ishikawa T, Minami Y, Nishita M. Tactics of cancer invasion: solitary and collective invasion. J Biochem 2020; 167:347-355. [PMID: 31926018 DOI: 10.1093/jb/mvaa003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Much attention has been paid on the mechanism of cancer invasion from the viewpoint of the behaviour of individual cancer cells. On the other hand, histopathological analyses of specimens from cancer patients and of cancer invasion model animals have revealed that cancer cells often exhibit collective invasion, characterized by sustained cell-to-cell adhesion and polarized invasion as cell clusters. Interestingly, it has recently become evident that during collective invasion of cancer cells, the cells localized at invasion front (leader cells) and the cells following them (follower cells) exhibit distinct cellular characteristics, and that there exist the cells expressing representative proteins related to both epithelial and mesenchymal properties simultaneously, designated as hybrid epithelial-to-mesenchymal transition (EMT)-induced cells, in cancer tissue. Furthermore, the findings that cells adopted in hybrid EMT state form clusters and show collective invasion in vitro emphasize an importance of hybrid EMT-induced cells in collective cancer invasion. In this article, we overview recent findings of the mechanism underlying collective invasion of cancer cells and discuss the possibility of controlling cancer invasion and metastasis by targeting this process.
Collapse
Affiliation(s)
- Tomoaki Nagai
- Department of Biochemistry, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Tomohiro Ishikawa
- Department of Life and Environmental System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | - Yasuhiro Minami
- Division of Cell Physiology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Michiru Nishita
- Department of Biochemistry, Fukushima Medical University School of Medicine, 1 Hikariga-oka, Fukushima 960-1295, Japan
| |
Collapse
|
95
|
Shellard A, Mayor R. Durotaxis: The Hard Path from In Vitro to In Vivo. Dev Cell 2020; 56:227-239. [PMID: 33290722 DOI: 10.1016/j.devcel.2020.11.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/21/2020] [Accepted: 11/17/2020] [Indexed: 01/21/2023]
Abstract
Durotaxis, the process by which cells follow gradients of extracellular mechanical stiffness, has been proposed as a mechanism driving directed migration. Despite the lack of evidence for its existence in vivo, durotaxis has become an active field of research, focusing on the mechanism by which cells respond to mechanical stimuli from the environment. In this review, we describe the technical and conceptual advances in the study of durotaxis in vitro, discuss to what extent the evidence suggests durotaxis may occur in vivo, and emphasize the urgent need for in vivo demonstration of durotaxis.
Collapse
Affiliation(s)
- Adam Shellard
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
96
|
Hashimoto K, Yamashita K, Enoyoshi K, Dahan X, Takeuchi T, Kori H, Gotoh M. The effects of coating culture dishes with collagen on fibroblast cell shape and swirling pattern formation. J Biol Phys 2020; 46:351-369. [PMID: 32860547 PMCID: PMC7719137 DOI: 10.1007/s10867-020-09556-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 08/10/2020] [Indexed: 12/11/2022] Open
Abstract
Motile human-skin fibroblasts form macroscopic swirling patterns when grown to confluence on a culture dish. In this paper, we investigate the effect of coating the culture-dish surface with collagen on the resulting pattern, using human-skin fibroblast NB1RGB cells as the model system. The presence of the collagen coating is expected to enhance the adherence of the fibroblasts to the dish surface, and thereby also enhance the traction that the fibroblasts have as they move. We find that, contrary to our initial expectation, the coating does not significantly affect the motility of the fibroblasts. Their eventual number density at confluence is also unaffected. However, the coherence length of cell orientation in the swirling pattern is diminished. We also find that the fibroblasts cultured in collagen-coated dishes are rounder in shape and shorter in perimeter, compared with those cultured in uncoated polystyrene or glass culture dishes. We hypothesise that the rounder cell-shape which weakens the cell-cell nematic contact interaction is responsible for the change in coherence length. A simple mathematical model of the migrating fibroblasts is constructed, which demonstrates that constant motility with weaker nematic interaction strength does indeed lead to the shortening of the coherence length.
Collapse
Affiliation(s)
- Kei Hashimoto
- Graduate School of Humanities and Sciences, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan
- Program for Leading Graduate Schools, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan
- Institute for Human Life Innovation, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan
| | - Kimiko Yamashita
- Graduate School of Humanities and Sciences, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan
- Program for Leading Graduate Schools, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan
- Physics Division, National Center for Theoretical Sciences, Hsinchu, Taiwan
- Department of Physics, National Tsing Hua University, Hsinchu, Taiwan
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Kanako Enoyoshi
- Graduate School of Humanities and Sciences, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan
- Program for Leading Graduate Schools, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan
| | - Xavier Dahan
- Program for Leading Graduate Schools, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan
- Institute for Excellence in Higher Education, Tohoku University, Sendai, Japan
| | - Tatsu Takeuchi
- Department of Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Hiroshi Kori
- Graduate School of Humanities and Sciences, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan.
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Japan.
| | - Mari Gotoh
- Institute for Human Life Innovation, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
97
|
Barriga EH, Theveneau E. In vivo Neural Crest Cell Migration Is Controlled by "Mixotaxis". Front Physiol 2020; 11:586432. [PMID: 33324240 PMCID: PMC7723832 DOI: 10.3389/fphys.2020.586432] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Directed cell migration is essential all along an individual's life, from embryogenesis to tissue repair and cancer metastasis. Thus, due to its biomedical relevance, directed cell migration is currently under intense research. Directed cell migration has been shown to be driven by an assortment of external biasing cues, ranging from gradients of soluble (chemotaxis) to bound (haptotaxis) molecules. In addition to molecular gradients, gradients of mechanical properties (duro/mechanotaxis), electric fields (electro/galvanotaxis) as well as iterative biases in the environment topology (ratchetaxis) have been shown to be able to direct cell migration. Since cells migrating in vivo are exposed to a challenging environment composed of a convolution of biochemical, biophysical, and topological cues, it is highly unlikely that cell migration would be guided by an individual type of "taxis." This is especially true since numerous molecular players involved in the cellular response to these biasing cues are often recycled, serving as sensor or transducer of both biochemical and biophysical signals. In this review, we confront literature on Xenopus cephalic neural crest cells with that of other cell types to discuss the relevance of the current categorization of cell guidance strategies. Furthermore, we emphasize that while studying individual biasing signals is informative, the hard truth is that cells migrate by performing a sort of "mixotaxis," where they integrate and coordinate multiple inputs through shared molecular effectors to ensure robustness of directed cell motion.
Collapse
Affiliation(s)
- Elias H. Barriga
- Mechanisms of Morphogenesis Lab, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Eric Theveneau
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
98
|
Activation of RAS Signalling is Associated with Altered Cell Adhesion in Phaeochromocytoma. Int J Mol Sci 2020; 21:ijms21218072. [PMID: 33138083 PMCID: PMC7663737 DOI: 10.3390/ijms21218072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Phaeochromocytomas and paragangliomas (PPGLs) are neuroendocrine catecholamine-producing tumours that may progress into inoperable metastatic disease. Treatment options for metastatic disease are limited, indicating a need for functional studies to identify pharmacologically targetable pathophysiological mechanisms, which require biologically relevant experimental models. Recently, a human progenitor phaeochromocytoma cell line named “hPheo1” was established, but its genotype has not been characterised. Performing exome sequencing analysis, we identified a KIF1B T827I mutation, and the oncogenic NRAS Q61K mutation. While KIF1B mutations are recurring somatic events in PPGLs, NRAS mutations have hitherto not been detected in PPGLs. Therefore, we aimed to assess its implications for the hPheo1 cell line, and possible relevance for the pathophysiology of PPGLs. We found that transient downregulation of NRAS in hPheo1 led to elevated expression of genes associated with cell adhesion, and enhanced adhesion to hPheo1 cells’ extracellular matrix. Analyses of previously published mRNA data from two independent PPGL patient cohorts (212 tissue samples) revealed a subcluster of PPGLs featuring hyperactivated RAS pathway-signalling and under-expression of cell adhesion-related gene expression programs. Thus, we conclude that NRAS activity in hPheo1 decreases adhesion to their own extracellular matrix and mirrors a transcriptomic RAS-signalling-related phenomenon in PPGLs.
Collapse
|
99
|
Olson HM, Nechiporuk AV. Lamellipodia-like protrusions and focal adhesions contribute to collective cell migration in zebrafish. Dev Biol 2020; 469:125-134. [PMID: 33096063 DOI: 10.1016/j.ydbio.2020.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 02/09/2023]
Abstract
Collective cell migration is a process where cohorts of cells exhibit coordinated migratory behavior. During individual and collective cellular migration, cells must extend protrusions to interact with the extracellular environment, sense chemotactic cues, and act as points of attachment. The mechanisms and regulators of protrusive behavior have been widely studied in individually migrating cells; however, how this behavior is regulated throughout collectives is not well understood. To address this, we used the zebrafish posterior lateral line primordium (pLLP) as a model. The pLLP is a cluster of ~150 cells that migrates along the zebrafish trunk, depositing groups of cells that will become sensory organs. To define protrusive behavior, we performed mosaic analysis to sparsely label pLLP cells with a transgene marking filamentous actin. This approach revealed an abundance of brush-like protrusions throughout the pLLP that orient in the direction of migration. Formation of these protrusions depends on the Arp2/3 complex, a regulator of dendritic actin. This argues that these brush-like protrusions are an in vivo example of lamellipodia. Mosaic analysis demonstrated that these lamellipodia-like protrusions are located in a close proximity to the overlying skin. Immunostaining revealed an abundance of focal adhesion complexes surrounding the pLLP. Disruption of these complexes specifically in pLLP cells led to impaired pLLP migration. Finally, we show that Erk signaling, a known regulator of focal adhesions, is required for proper formation of lamellipodia-like protrusions and pLLP migration. Altogether, our results suggest a model where the coordinated dynamics of lamellipodia-like protrusions, making contact with either the overlying skin or the extracellular matrix through focal adhesions, promotes migration of pLLP cells.
Collapse
Affiliation(s)
- Hannah M Olson
- Department Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, OR, USA; Neuroscience Graduate Program, Oregon Health & Science University, Portland, OR, USA
| | - Alex V Nechiporuk
- Department Cell, Developmental & Cancer Biology, Oregon Health & Science University, The Knight Cancer Institute, Portland, OR, USA.
| |
Collapse
|
100
|
George RM, Maldonado-Velez G, Firulli AB. The heart of the neural crest: cardiac neural crest cells in development and regeneration. Development 2020; 147:147/20/dev188706. [PMID: 33060096 DOI: 10.1242/dev.188706] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiac neural crest cells (cNCCs) are a migratory cell population that stem from the cranial portion of the neural tube. They undergo epithelial-to-mesenchymal transition and migrate through the developing embryo to give rise to portions of the outflow tract, the valves and the arteries of the heart. Recent lineage-tracing experiments in chick and zebrafish embryos have shown that cNCCs can also give rise to mature cardiomyocytes. These cNCC-derived cardiomyocytes appear to be required for the successful repair and regeneration of injured zebrafish hearts. In addition, recent work examining the response to cardiac injury in the mammalian heart has suggested that cNCC-derived cardiomyocytes are involved in the repair/regeneration mechanism. However, the molecular signature of the adult cardiomyocytes involved in this repair is unclear. In this Review, we examine the origin, migration and fates of cNCCs. We also review the contribution of cNCCs to mature cardiomyocytes in fish, chick and mice, as well as their role in the regeneration of the adult heart.
Collapse
Affiliation(s)
- Rajani M George
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Gabriel Maldonado-Velez
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| |
Collapse
|