51
|
He Z, Du X, Wu Y, Hua L, Wan L, Yan N. Simvastatin promotes endothelial dysfunction by activating the Wnt/β‑catenin pathway under oxidative stress. Int J Mol Med 2019; 44:1289-1298. [PMID: 31432100 PMCID: PMC6713427 DOI: 10.3892/ijmm.2019.4310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022] Open
Abstract
Atherosclerosis is a major pathogenic factor in patients with cardiovascular diseases, and endothelial dysfunction (ED) plays a primary role in its occurrence and development. Simvastatin is a lipid‑lowering drug, which is commonly used to prevent or treat risk factors of cardiovascular diseases with a significant anti‑atherogenic effect. However, its impact on endothelial cells under conditions of oxidative stress and broader mechanisms of action remain unclear. The present study evaluated the effect of simvastatin on human umbilical vein endothelial cells (HUVECs) under oxidative stress with H2O2, and the associated mechanisms. At a high dose (1 µM), simvastatin exacerbated H2O2‑induced endothelial cell dysfunction. Moreover, inhibition of the Wnt/β‑catenin pathway by salinomycin significantly suppressed the simvastatin‑associated HUVEC dysfunction. Western blot analysis further demonstrated that simvastatin promoted the phosphorylation of low‑density lipoprotein receptor‑related protein 6 (LRP6) and activated the Wnt/β‑catenin pathway. Simvastatin also activated endoplasmic reticulum (ER) stress, which was reversed by salinomycin treatment. Based on these results, it was hypothesized that simvastatin may promote ER stress by facilitating LRP6 phosphorylation and the subsequent activation of the Wnt/β‑catenin pathway, thereby enhancing H2O2‑induced ED. Therefore, high‑dose simvastatin treatment could have potential toxic side effects, indicating the need for close clinical management, monitoring and patient selection.
Collapse
Affiliation(s)
- Zhiqiang He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xinyue Du
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yifan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Lingyue Hua
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Linxi Wan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
52
|
Leth JM, Leth-Espensen KZ, Kristensen KK, Kumari A, Lund Winther AM, Young SG, Ploug M. Evolution and Medical Significance of LU Domain-Containing Proteins. Int J Mol Sci 2019; 20:ijms20112760. [PMID: 31195646 PMCID: PMC6600238 DOI: 10.3390/ijms20112760] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Proteins containing Ly6/uPAR (LU) domains exhibit very diverse biological functions and have broad taxonomic distributions in eukaryotes. In general, they adopt a characteristic three-fingered folding topology with three long loops projecting from a disulfide-rich globular core. The majority of the members of this protein domain family contain only a single LU domain, which can be secreted, glycolipid anchored, or constitute the extracellular ligand binding domain of type-I membrane proteins. Nonetheless, a few proteins contain multiple LU domains, for example, the urokinase receptor uPAR, C4.4A, and Haldisin. In the current review, we will discuss evolutionary aspects of this protein domain family with special emphasis on variations in their consensus disulfide bond patterns. Furthermore, we will present selected cases where missense mutations in LU domain-containing proteins leads to dysfunctional proteins that are causally linked to genesis of human disease.
Collapse
Affiliation(s)
- Julie Maja Leth
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Katrine Zinck Leth-Espensen
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Kristian Kølby Kristensen
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Anni Kumari
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Anne-Marie Lund Winther
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Michael Ploug
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
53
|
Novel Thienopyrimidine Derivative, RP-010, Induces β-Catenin Fragmentation and Is Efficacious against Prostate Cancer Cells. Cancers (Basel) 2019; 11:cancers11050711. [PMID: 31126091 PMCID: PMC6563099 DOI: 10.3390/cancers11050711] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/31/2022] Open
Abstract
Thienopyrimidines containing a thiophene ring fused to pyrimidine are reported to have a wide-spectrum of anticancer efficacy in vitro. Here, we report for the first time that thieno[3,2-d]pyrimidine-based compounds, also known as the RP series, have efficacy in prostate cancer cells. The compound RP-010 was efficacious against both PC-3 and DU145 prostate cancer (PC) cells (IC50 < 1 µM). The cytotoxicity of RP-010 was significantly lower in non-PC, CHO, and CRL-1459 cell lines. RP-010 (0.5, 1, 2, and 4 µM) arrested prostate cancer cells in G2 phase of the cell cycle, and induced mitotic catastrophe and apoptosis in both PC cell lines. Mechanistic studies suggested that RP-010 (1 and 2 µM) affected the wingless-type MMTV (Wnt)/β-catenin signaling pathway, in association with β-catenin fragmentation, while also downregulating important proteins in the pathway, including LRP-6, DVL3, and c-Myc. Interestingly, RP-010 (1 and 2 µM) induced nuclear translocation of the negative feedback proteins, Naked 1 and Naked 2, in the Wnt pathway. In addition, RP-010 (0.5, 1, 2 and 4 µM) significantly decreased the migration of PC cells in vitro. Finally, RP-010 did not produce significant toxic effects in zebrafish at concentrations of up to 6 µM. In conclusion, RP-010 may be an efficacious and relatively nontoxic anticancer compound for prostate cancer. Future mechanistic and in vivo efficacy studies are needed to optimize the hit compound RP-010 for lead optimization and clinical use.
Collapse
|
54
|
He Z, He X, Liu M, Hua L, Wang T, Liu Q, Chen L, Yan N. Simvastatin Attenuates H 2O 2-Induced Endothelial Cell Dysfunction by Reducing Endoplasmic Reticulum Stress. Molecules 2019; 24:molecules24091782. [PMID: 31071981 PMCID: PMC6539125 DOI: 10.3390/molecules24091782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/18/2022] Open
Abstract
Atherosclerosis is the pathological basis of cardiovascular disease, whilst endothelial dysfunction (ED) plays a primary role in the occurrence and development of atherosclerosis. Simvastatin has been shown to possess significant anti-atherosclerosis activity. In this study, we evaluated the protective effect of simvastatin on endothelial cells under oxidative stress and elucidated its underlying mechanisms. Simvastatin was found to attenuate H2O2-induced human umbilical vein endothelial cells (HUVECs) dysfunction and inhibit the Wnt/β-catenin pathway; however, when this pathway was activated by lithium chloride, endothelial dysfunction was clearly enhanced. Further investigation revealed that simvastatin did not alter the expression or phosphorylation of LRP6, but reduced intracellular cholesterol deposition and inhibited endoplasmic reticulum (ER) stress. Inducing ER stress with tunicamycin activated the Wnt/β-catenin pathway, whereas reducing ER stress with 4-phenylbutyric acid inhibited it. We hypothesize that simvastatin does not affect transmembrane signal transduction in the Wnt/β-catenin pathway, but inhibits ER stress by reducing intracellular cholesterol accumulation, which blocks intracellular signal transduction in the Wnt/β-catenin pathway and ameliorates endothelial dysfunction.
Collapse
Affiliation(s)
- Zhiqiang He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science; Nanchang University, Nanchang 330006, China.
| | - Xuanhong He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science; Nanchang University, Nanchang 330006, China.
| | - Menghan Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science; Nanchang University, Nanchang 330006, China.
| | - Lingyue Hua
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science; Nanchang University, Nanchang 330006, China.
| | - Tian Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science; Nanchang University, Nanchang 330006, China.
| | - Qian Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science; Nanchang University, Nanchang 330006, China.
| | - Lai Chen
- Laboratory Animal Research Center for Science and Technology, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Science; Nanchang University, Nanchang 330006, China.
| |
Collapse
|
55
|
Functional link between plasma membrane spatiotemporal dynamics, cancer biology, and dietary membrane-altering agents. Cancer Metastasis Rev 2019; 37:519-544. [PMID: 29860560 DOI: 10.1007/s10555-018-9733-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cell plasma membrane serves as a nexus integrating extra- and intracellular components, which together enable many of the fundamental cellular signaling processes that sustain life. In order to perform this key function, plasma membrane components assemble into well-defined domains exhibiting distinct biochemical and biophysical properties that modulate various signaling events. Dysregulation of these highly dynamic membrane domains can promote oncogenic signaling. Recently, it has been demonstrated that select membrane-targeted dietary bioactives (MTDBs) have the ability to remodel plasma membrane domains and subsequently reduce cancer risk. In this review, we focus on the importance of plasma membrane domain structural and signaling functionalities as well as how loss of membrane homeostasis can drive aberrant signaling. Additionally, we discuss the intricacies associated with the investigation of these membrane domain features and their associations with cancer biology. Lastly, we describe the current literature focusing on MTDBs, including mechanisms of chemoprevention and therapeutics in order to establish a functional link between these membrane-altering biomolecules, tuning of plasma membrane hierarchal organization, and their implications in cancer prevention.
Collapse
|
56
|
Lu A, Wawro P, Morgens DW, Portela F, Bassik MC, Pfeffer SR. Genome-wide interrogation of extracellular vesicle biology using barcoded miRNAs. eLife 2018; 7:41460. [PMID: 30556811 PMCID: PMC6312402 DOI: 10.7554/elife.41460] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/17/2018] [Indexed: 01/05/2023] Open
Abstract
Extracellular vesicles mediate transfer of biologically active molecules between neighboring or distant cells, and these vesicles may play important roles in normal physiology and the pathogenesis of multiple disease states including cancer. However, the underlying molecular mechanisms of their biogenesis and release remain unknown. We designed artificially barcoded, exosomal microRNAs (bEXOmiRs) to monitor extracellular vesicle release quantitatively using deep sequencing. We then expressed distinct pairs of CRISPR guide RNAs and bEXOmiRs, enabling identification of genes influencing bEXOmiR secretion from Cas9-edited cells. This approach uncovered genes with unrecognized roles in multivesicular endosome exocytosis, including critical roles for Wnt signaling in extracellular vesicle release regulation. Coupling bEXOmiR reporter analysis with CRISPR-Cas9 screening provides a powerful and unbiased means to study extracellular vesicle biology and for the first time, to associate a nucleic acid tag with individual membrane vesicles.
Collapse
Affiliation(s)
- Albert Lu
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - Paulina Wawro
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - David W Morgens
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Fernando Portela
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, United States
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
57
|
Peng X, Emiliani F, Smallwood PM, Rattner A, Lei H, Sabbagh MF, Nathans J. Affinity capture of polyribosomes followed by RNAseq (ACAPseq), a discovery platform for protein-protein interactions. eLife 2018; 7:40982. [PMID: 30345971 PMCID: PMC6197854 DOI: 10.7554/elife.40982] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/02/2018] [Indexed: 02/05/2023] Open
Abstract
Defining protein-protein interactions (PPIs) is central to the biological sciences. Here, we present a novel platform - Affinity Capture of Polyribosomes followed by RNA sequencing (ACAPseq) - for identifying PPIs. ACAPseq harnesses the power of massively parallel RNA sequencing (RNAseq) to quantify the enrichment of polyribosomes based on the affinity of their associated nascent polypeptides for an immobilized protein 'bait'. This method was developed and tested using neonatal mouse brain polyribosomes and a variety of extracellular domains as baits. Of 92 baits tested, 25 identified one or more binding partners that appear to be biologically relevant; additional candidate partners remain to be validated. ACAPseq can detect binding to targets that are present at less than 1 part in 100,000 in the starting polyribosome preparation. One of the observed PPIs was analyzed in detail, revealing the mode of homophilic binding for Protocadherin-9 (PCDH9), a non-clustered Protocadherin family member.
Collapse
Affiliation(s)
- Xi Peng
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Francesco Emiliani
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Philip M Smallwood
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Hong Lei
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Mark F Sabbagh
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States.,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
58
|
Tang BL. Promoting axonal regeneration through exosomes: An update of recent findings on exosomal PTEN and mTOR modifiers. Brain Res Bull 2018; 143:123-131. [DOI: 10.1016/j.brainresbull.2018.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022]
|
59
|
Zhao Y, Ren J, Lu W, Harlos K, Jones EY. Structure of the Wnt signaling enhancer LYPD6 and its interactions with the Wnt coreceptor LRP6. FEBS Lett 2018; 592:3152-3162. [PMID: 30069874 DOI: 10.1002/1873-3468.13212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/12/2018] [Accepted: 07/27/2018] [Indexed: 01/10/2023]
Abstract
Ly6/urokinase-type plasminogen activator receptor (uPAR) (LU) domain containing 6 (LYPD6) is a Wnt signaling enhancer that promotes phosphorylation of the Wnt coreceptor low density lipoprotein receptor-related protein 6 (LRP6). It also binds the nicotinic acetylcholine receptor (nAChR). We report here the 1.25 Å resolution structure of the LYPD6 extracellular LU domain and map its interaction with LRP6 by mutagenesis and surface plasmon resonance. The LYPD6LU structure reveals a 'trifingered protein domain' fold with the middle fingertip bearing an 'NxI' motif, a tripeptide motif associated with LRP5/6 binding by Wnt inhibitors. Of the Ly6 protein family members, only LYPD6 has an NxI motif. Since mutations in the LYPD6 NxI motif abolish or severely reduce interaction with LRP6, our results indicate its key role in the interaction of LYPD6 with LRP6.
Collapse
Affiliation(s)
- Yuguang Zhao
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, UK
| | - Jingshan Ren
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, UK
| | - Weixian Lu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, UK
| | - Karl Harlos
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, UK
| | - Edith Yvonne Jones
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, UK
| |
Collapse
|
60
|
Antony J, Zanini E, Kelly Z, Tan TZ, Karali E, Alomary M, Jung Y, Nixon K, Cunnea P, Fotopoulou C, Paterson A, Roy-Nawathe S, Mills GB, Huang RYJ, Thiery JP, Gabra H, Recchi C. The tumour suppressor OPCML promotes AXL inactivation by the phosphatase PTPRG in ovarian cancer. EMBO Rep 2018; 19:embr.201745670. [PMID: 29907679 DOI: 10.15252/embr.201745670] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/14/2018] [Accepted: 05/23/2018] [Indexed: 01/22/2023] Open
Abstract
In ovarian cancer, the prometastatic RTK AXL promotes motility, invasion and poor prognosis. Here, we show that reduced survival caused by AXL overexpression can be mitigated by the expression of the GPI-anchored tumour suppressor OPCML Further, we demonstrate that AXL directly interacts with OPCML, preferentially so when AXL is activated by its ligand Gas6. As a consequence, AXL accumulates in cholesterol-rich lipid domains, where OPCML resides. Here, phospho-AXL is brought in proximity to the lipid domain-restricted phosphatase PTPRG, which de-phosphorylates the RTK/ligand complex. This prevents AXL-mediated transactivation of other RTKs (cMET and EGFR), thereby inhibiting sustained phospho-ERK signalling, induction of the EMT transcription factor Slug, cell migration and invasion. From a translational perspective, we show that OPCML enhances the effect of the phase II AXL inhibitor R428 in vitro and in vivo We therefore identify a novel mechanism by which two spatially restricted tumour suppressors, OPCML and PTPRG, coordinate to repress AXL-dependent oncogenic signalling.
Collapse
Affiliation(s)
- Jane Antony
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Elisa Zanini
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Zoe Kelly
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Evdoxia Karali
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Mohammad Alomary
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Youngrock Jung
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Katherine Nixon
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Paula Cunnea
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Christina Fotopoulou
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Andrew Paterson
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Sushmita Roy-Nawathe
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| | - Gordon B Mills
- Division of Basic Science Research, Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Department of Obstetrics and Gynecology, National University Health System, Singapore, Singapore
| | - Jean Paul Thiery
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore, Singapore.,Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Hani Gabra
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK .,Early Clinical Development, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | - Chiara Recchi
- Department of Surgery and Cancer, Ovarian Cancer Action Research Centre, Imperial College London, London, UK
| |
Collapse
|
61
|
Seferovic M, Sánchez-San Martín C, Tardif SD, Rutherford J, Castro ECC, Li T, Hodara VL, Parodi LM, Giavedoni L, Layne-Colon D, Tamhankar M, Yagi S, Martyn C, Reyes K, Suter MA, Aagaard KM, Chiu CY, Patterson JL. Experimental Zika Virus Infection in the Pregnant Common Marmoset Induces Spontaneous Fetal Loss and Neurodevelopmental Abnormalities. Sci Rep 2018; 8:6851. [PMID: 29717225 PMCID: PMC5931554 DOI: 10.1038/s41598-018-25205-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/17/2018] [Indexed: 11/28/2022] Open
Abstract
During its most recent outbreak across the Americas, Zika virus (ZIKV) was surprisingly shown to cause fetal loss and congenital malformations in acutely and chronically infected pregnant women. However, understanding the underlying pathogenesis of ZIKV congenital disease has been hampered by a lack of relevant in vivo experimental models. Here we present a candidate New World monkey model of ZIKV infection in pregnant marmosets that faithfully recapitulates human disease. ZIKV inoculation at the human-equivalent of early gestation caused an asymptomatic seroconversion, induction of type I/II interferon-associated genes and proinflammatory cytokines, and persistent viremia and viruria. Spontaneous pregnancy loss was observed 16-18 days post-infection, with extensive active placental viral replication and fetal neurocellular disorganization similar to that seen in humans. These findings underscore the key role of the placenta as a conduit for fetal infection, and demonstrate the utility of marmosets as a highly relevant model for studying congenital ZIKV disease and pregnancy loss.
Collapse
Affiliation(s)
- Maxim Seferovic
- Departments of Obstetrics and Gynecology, Molecular and Human Genetics, and Pathology and Laboratory Medicine at Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | | | - Suzette D Tardif
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Julienne Rutherford
- Department of Women, Children and Family Health Science, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Eumenia C C Castro
- Departments of Obstetrics and Gynecology, Molecular and Human Genetics, and Pathology and Laboratory Medicine at Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Tony Li
- Department of Laboratory Medicine, University of California, San Francisco, CA, 94143, USA
| | - Vida L Hodara
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Laura M Parodi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Luis Giavedoni
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Donna Layne-Colon
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Manasi Tamhankar
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA
| | - Shigeo Yagi
- California Department of Public Health, Richmond, CA, 94804, USA
| | - Calla Martyn
- Department of Laboratory Medicine, University of California, San Francisco, CA, 94143, USA
| | - Kevin Reyes
- Department of Laboratory Medicine, University of California, San Francisco, CA, 94143, USA
| | - Melissa A Suter
- Departments of Obstetrics and Gynecology, Molecular and Human Genetics, and Pathology and Laboratory Medicine at Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA
| | - Kjersti M Aagaard
- Departments of Obstetrics and Gynecology, Molecular and Human Genetics, and Pathology and Laboratory Medicine at Baylor College of Medicine and Texas Children's Hospital, Houston, TX, 77030, USA.
| | - Charles Y Chiu
- Department of Laboratory Medicine, University of California, San Francisco, CA, 94143, USA.
- Department of Medicine/Infectious Diseases, University of California, San Francisco, CA, 94143, USA.
| | - Jean L Patterson
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, 78245, USA.
| |
Collapse
|
62
|
Lysophosphatidylcholine acyltransferase 3 deficiency impairs 3T3L1 cell adipogenesis through activating Wnt/β-catenin pathway. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:834-843. [PMID: 29673706 DOI: 10.1016/j.bbalip.2018.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 04/07/2018] [Accepted: 04/15/2018] [Indexed: 11/21/2022]
Abstract
Levels of polyunsaturated phosphatidylcholine (PC) influence plasma membrane structure and function. Phosphatidylcholine (PC) is synthesized de novo in the Kennedy pathway and then undergoes extensive deacylation/reacylation remodeling via Lands' cycle (non-Kennedy pathway). The reacylation is catalyzed by lysophosphatidylcholine acyltransferase (LPCAT), which adds a polyunsaturated fatty acid at the sn-2 position. Four LPCAT isoforms have been described to date, among which we found LPCAT3 to be the major isoform in adipose tissue, but its exact role in adipogenesis is unclear. In this study, we aimed to investigate whether LPCAT3 activity affects 3T3L1 cell adipogenic differentiation potential and its underline mechanism. Lentivirus-mediated LPCAT3 shRNA expression stably knocked down LPCAT3 in 3T3L1 preadipocytes and LPCAT3 deficiency dramatically reduced the levels of cellular polyunsaturated PCs. Importantly, we found that this deficiency activated the β-catenin dependent Wnt signaling pathway, which suppressed the expression of adipogenesis-related genes, thereby inhibiting 3T3L1 preadipocyte differentiation and lipid accumulation. Moreover, three different Wnt/β-catenin pathway inhibitors reversed the effect of LPCAP3 deficiency, suggesting that Wnt/β-catenin pathway activation is one of the causes for the observed phenotypes. To the best of our knowledge, we show here for the first time that PC remodeling is an important regulator of adipocyte differentiation.
Collapse
|
63
|
Tassew NG, Charish J, Shabanzadeh AP, Luga V, Harada H, Farhani N, D'Onofrio P, Choi B, Ellabban A, Nickerson PEB, Wallace VA, Koeberle PD, Wrana JL, Monnier PP. Exosomes Mediate Mobilization of Autocrine Wnt10b to Promote Axonal Regeneration in the Injured CNS. Cell Rep 2018; 20:99-111. [PMID: 28683327 DOI: 10.1016/j.celrep.2017.06.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/19/2017] [Accepted: 05/28/2017] [Indexed: 12/29/2022] Open
Abstract
Developing strategies that promote axonal regeneration within the injured CNS is a major therapeutic challenge, as axonal outgrowth is potently inhibited by myelin and the glial scar. Although regeneration can be achieved using the genetic deletion of PTEN, a negative regulator of the mTOR pathway, this requires inactivation prior to nerve injury, thus precluding therapeutic application. Here, we show that, remarkably, fibroblast-derived exosomes (FD exosomes) enable neurite growth on CNS inhibitory proteins. Moreover, we demonstrate that, upon treatment with FD exosomes, Wnt10b is recruited toward lipid rafts and activates mTOR via GSK3β and TSC2. Application of FD exosomes shortly after optic nerve injury promoted robust axonal regeneration, which was strongly reduced in Wnt10b-deleted animals. This work uncovers an intercellular signaling pathway whereby FD exosomes mobilize an autocrine Wnt10b-mTOR pathway, thereby awakening the intrinsic capacity of neurons for regeneration, an important step toward healing the injured CNS.
Collapse
Affiliation(s)
- Nardos G Tassew
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Krembil Discovery Tower, KDT-8-418, 60 Leonard Street, Toronto, ON M5T 2S8, Canada
| | - Jason Charish
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Krembil Discovery Tower, KDT-8-418, 60 Leonard Street, Toronto, ON M5T 2S8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Alireza P Shabanzadeh
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Krembil Discovery Tower, KDT-8-418, 60 Leonard Street, Toronto, ON M5T 2S8, Canada
| | - Valbona Luga
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 982 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Hidekiyo Harada
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Krembil Discovery Tower, KDT-8-418, 60 Leonard Street, Toronto, ON M5T 2S8, Canada
| | - Nahal Farhani
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Krembil Discovery Tower, KDT-8-418, 60 Leonard Street, Toronto, ON M5T 2S8, Canada
| | - Philippe D'Onofrio
- Department of Anatomy, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Brian Choi
- Department of Anatomy, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Ahmad Ellabban
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Krembil Discovery Tower, KDT-8-418, 60 Leonard Street, Toronto, ON M5T 2S8, Canada
| | - Philip E B Nickerson
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Krembil Discovery Tower, KDT-8-418, 60 Leonard Street, Toronto, ON M5T 2S8, Canada
| | - Valerie A Wallace
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Krembil Discovery Tower, KDT-8-418, 60 Leonard Street, Toronto, ON M5T 2S8, Canada; Department of Ophthalmology and Vision Science, Faculty of Medicine, University of Toronto, 340 College Street, Toronto, ON M5T 3A9, Canada
| | - Paulo D Koeberle
- Department of Anatomy, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Jeffrey L Wrana
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 982 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Philippe P Monnier
- Donald K. Johnson Eye Institute, Krembil Research Institute, University Health Network, Krembil Discovery Tower, KDT-8-418, 60 Leonard Street, Toronto, ON M5T 2S8, Canada; Department of Ophthalmology and Vision Science, Faculty of Medicine, University of Toronto, 340 College Street, Toronto, ON M5T 3A9, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
64
|
Vasilyeva NA, Loktyushov EV, Bychkov ML, Shenkarev ZO, Lyukmanova EN. Three-Finger Proteins from the Ly6/uPAR Family: Functional Diversity within One Structural Motif. BIOCHEMISTRY (MOSCOW) 2018. [PMID: 29523067 DOI: 10.1134/s0006297917130090] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The discovery in higher animals of proteins from the Ly6/uPAR family, which have structural homology with snake "three-finger" neurotoxins, has generated great interest in these molecules and their role in the functioning of the organism. These proteins have been found in the nervous, immune, endocrine, and reproductive systems of mammals. There are two types of the Ly6/uPAR proteins: those associated with the cell membrane by GPI-anchor and secreted ones. For some of them (Lynx1, SLURP-1, SLURP-2, Lypd6), as well as for snake α-neurotoxins, the target of action is nicotinic acetylcholine receptors, which are widely represented in the central and peripheral nervous systems, and in many other tissues, including epithelial cells and the immune system. However, the targets of most proteins from the Ly6/uPAR family and the mechanism of their action remain unknown. This review presents data on the structural and functional properties of the Ly6/uPAR proteins, which reveal a variety of functions within a single structural motif.
Collapse
Affiliation(s)
- N A Vasilyeva
- Lomonosov Moscow State University, Faculty of Biology, Moscow, 119991, Russia.
| | | | | | | | | |
Collapse
|
65
|
Bresson L, Faraldo MM, Di-Cicco A, Quintanilla M, Glukhova MA, Deugnier MA. Podoplanin regulates mammary stem cell function and tumorigenesis by potentiating Wnt/β-catenin signaling. Development 2018; 145:dev.160382. [PMID: 29361573 DOI: 10.1242/dev.160382] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/15/2018] [Indexed: 12/28/2022]
Abstract
Stem cells (SCs) drive mammary development, giving rise postnatally to an epithelial bilayer composed of luminal and basal myoepithelial cells. Dysregulation of SCs is thought to be at the origin of certain breast cancers; however, the molecular identity of SCs and the factors regulating their function remain poorly defined. We identified the transmembrane protein podoplanin (Pdpn) as a specific marker of the basal compartment, including multipotent SCs, and found Pdpn localized at the basal-luminal interface. Embryonic deletion of Pdpn targeted to basal cells diminished basal and luminal SC activity and affected the expression of several Wnt/β-catenin signaling components in basal cells. Moreover, Pdpn loss attenuated mammary tumor formation in a mouse model of β-catenin-induced breast cancer, limiting tumor-initiating cell expansion and promoting molecular features associated with mesenchymal-to-epithelial cell transition. In line with the loss-of-function data, we demonstrated that mechanistically Pdpn enhances Wnt/β-catenin signaling in mammary basal cells. Overall, this study uncovers a role for Pdpn in mammary SC function and, importantly, identifies Pdpn as a new regulator of Wnt/β-catenin signaling, a key pathway in mammary development and tumorigenesis.
Collapse
Affiliation(s)
- Laura Bresson
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, F-75248, France.,Université Paris Sud, Université Paris-Saclay, F-91405, Orsay, France.,Sorbonne Universités, UPMC Univ Paris 06, F-75005, Paris, France
| | - Marisa M Faraldo
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, F-75248, France.,INSERM, Paris, F-75013, France
| | - Amandine Di-Cicco
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, F-75248, France
| | - Miguel Quintanilla
- Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Marina A Glukhova
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, F-75248, France.,INSERM, Paris, F-75013, France
| | - Marie-Ange Deugnier
- Institut Curie, PSL Research University, CNRS, UMR144, Paris, F-75248, France .,INSERM, Paris, F-75013, France
| |
Collapse
|
66
|
Paramonov AS, Kulbatskii DS, Loktyushov EV, Tsarev AV, Dolgikh DA, Shenkarev ZO, Kirpichnikov MP, Lyukmanova EN. Recombinant production and structural studies of the human Lypd6 and Lypd6b proteins. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2018. [DOI: 10.1134/s1068162017060127] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
67
|
Ji D, Wang S, Li M, Zhang S, Li H. Involvement of Lypge in the formation of eye and pineal gland in zebrafish. Gene 2017; 642:491-497. [PMID: 29196253 DOI: 10.1016/j.gene.2017.11.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 11/19/2022]
Abstract
The proteins of Ly-6 (lymphocyte antigen-6) family are involved in the regulation of immunoreaction, cell migration and adhesion, and neuronal excitability. However, little is known about the function of Ly-6 proteins in embryogenesis. Herein, we identified a GPI anchored Ly-6 member named ly6 expressed in pineal gland and eye (lypge). Dynamic expression pattern of lypge was revealed by whole mount in situ hybridization. It was strikingly expressed in the pineal gland and cone photoreceptor, and its expression was regulated by orthodenticle homolog 5 (otx5) which has been shown to control the expression of many pineal genes. In addition, we demonstrated that lypge was rhythmically expressed in larvae from 4dpf on. Moreover, knockdown of lypge resulted in small head and small eye formed in zebrafish embryos. These suggest that Lypge is involved in the formation of the eye and pineal gland in early development of zebrafish.
Collapse
Affiliation(s)
- Dongrui Ji
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Evolution & Development, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Su Wang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Evolution & Development, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Mingyue Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Evolution & Development, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Evolution & Development, Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Hongyan Li
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; Laboratory for Evolution & Development, Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
68
|
Fuentes NR, Salinas ML, Kim E, Chapkin RS. Emerging role of chemoprotective agents in the dynamic shaping of plasma membrane organization. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2017; 1859:1668-1678. [PMID: 28342710 PMCID: PMC5501766 DOI: 10.1016/j.bbamem.2017.03.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/15/2017] [Accepted: 03/19/2017] [Indexed: 12/22/2022]
Abstract
In the context of an organism, epithelial cells by nature are designed to be the defining barrier between self and the outside world. This is especially true for the epithelial cells that form the lining of the digestive tract, which absorb nutrients and serve as a barrier against harmful substances. These cells are constantly bathed by a complex mixture of endogenous (bile acids, mucus, microbial metabolites) and exogenous (food, nutrients, drugs) bioactive compounds. From a cell biology perspective, this type of exposure would directly impact the plasma membrane, which consists of a myriad of complex lipids and proteins. The plasma membrane not only functions as a barrier but also as the medium in which cellular signaling complexes form and function. This property is mediated by the organization of the plasma membrane, which is exquisitely temporally (nanoseconds to minutes) and spatially (nanometers to micrometers) regulated. Since numerous bioactive compounds found in the intestinal lumen can directly interact with lipid membranes, we hypothesize that the dynamic reshaping of plasma membrane organization underlies the chemoprotective effect of select membrane targeted dietary bioactives (MTDBs). This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.
Collapse
Affiliation(s)
- Natividad R Fuentes
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA
| | - Michael L Salinas
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA
| | - Eunjoo Kim
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Department of Molecular and Cellular Medicine, Texas A&M University, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition & Complex Diseases, Texas A&M University, USA; Faculty of Toxicology, Texas A&M University, USA; Department of Nutrition & Food Science, Texas A&M University, USA; Center for Translational Environmental Health Research, Texas A&M University, USA.
| |
Collapse
|
69
|
Yamamoto H, Umeda D, Matsumoto S, Kikuchi A. LDL switches the LRP6 internalization route from flotillin dependent to clathrin dependent in hepatic cells. J Cell Sci 2017; 130:3542-3556. [PMID: 28821575 DOI: 10.1242/jcs.202135] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 08/14/2017] [Indexed: 12/26/2022] Open
Abstract
Low-density lipoprotein (LDL) receptor-related protein 6 (LRP6) was originally identified as a co-receptor of the Wnt signalling pathway and has been shown to be involved in LDL transport. In polarized hepatocytes, many apical proteins are sorted to the basolateral membrane and then internalized and transported to the apical bile canalicular membrane - a process known as transcytosis. We show that LRP6 is transcytosed to the apical membrane of polarized hepatic HepG2 cells via a flotillin-dependent manner in the absence of LDL. LRP6 formed a complex with Niemann-Pick type C1-like 1 (NPC1L1), which is localized to the bile canalicular membrane of the liver and is involved in cholesterol absorption from the bile. LRP6 was required for apical membrane localization of NPC1L1 in the absence of LDL. Clathrin-dependent LRP6 internalization occurred in the presence of LDL, which resulted in trafficking of LRP6 to the lysosome, thereby reducing apical sorting of LRP6 and NPC1L1. These results suggest that LRP6 endocytosis proceeds by two routes, depending on the presence of LDL, and that LRP6 controls the intracellular destination of NPC1L1 in hepatocytes.
Collapse
Affiliation(s)
- Hideki Yamamoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Daisuke Umeda
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shinji Matsumoto
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Akira Kikuchi
- Department of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
70
|
Sezgin E, Azbazdar Y, Ng XW, Teh C, Simons K, Weidinger G, Wohland T, Eggeling C, Ozhan G. Binding of canonical Wnt ligands to their receptor complexes occurs in ordered plasma membrane environments. FEBS J 2017. [PMID: 28626941 PMCID: PMC5599997 DOI: 10.1111/febs.14139] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
While the cytosolic events of Wnt/β‐catenin signaling (canonical Wnt signaling) pathway have been widely studied, only little is known about the molecular mechanisms involved in Wnt binding to its receptors at the plasma membrane. Here, we reveal the influence of the immediate plasma membrane environment on the canonical Wnt–receptor interaction. While the receptors are distributed both in ordered and disordered environments, Wnt binding to its receptors selectively occurs in more ordered membrane environments which appear to cointernalize with the Wnt‐receptor complex. Moreover, Wnt/β‐catenin signaling is significantly reduced when the membrane order is disturbed by specific inhibitors of certain lipids that prefer to localize at the ordered environments. Similarly, a reduction in Wnt signaling activity is observed in Niemann–Pick Type C disease cells where trafficking of ordered membrane lipid components to the plasma membrane is genetically impaired. We thus conclude that ordered plasma membrane environments are essential for binding of canonical Wnts to their receptor complexes and downstream signaling activity.
Collapse
Affiliation(s)
- Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Yagmur Azbazdar
- Izmir International Biomedicine and Genome Institute (iBG-izmir), Dokuz Eylul University, Izmir, Turkey.,Department of Medical Biology and Genetics, Dokuz Eylul University Medical School, Izmir, Turkey
| | - Xue W Ng
- Department of Chemistry and Center for BioImaging Sciences, National University of Singapore, Singapore
| | - Cathleen Teh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kai Simons
- Max Planck Institute of Cell Biology and Genetics, Dresden, Germany
| | - Gilbert Weidinger
- Institute of Biochemistry and Molecular Biology, Ulm University, Germany
| | - Thorsten Wohland
- Department of Chemistry and Center for BioImaging Sciences, National University of Singapore, Singapore
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, UK
| | - Gunes Ozhan
- Izmir International Biomedicine and Genome Institute (iBG-izmir), Dokuz Eylul University, Izmir, Turkey.,Department of Medical Biology and Genetics, Dokuz Eylul University Medical School, Izmir, Turkey
| |
Collapse
|
71
|
Sezgin E, Levental I, Mayor S, Eggeling C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat Rev Mol Cell Biol 2017; 18:361-374. [PMID: 28356571 PMCID: PMC5500228 DOI: 10.1038/nrm.2017.16] [Citation(s) in RCA: 1427] [Impact Index Per Article: 178.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cellular plasma membranes are laterally heterogeneous, featuring a variety of distinct subcompartments that differ in their biophysical properties and composition. A large number of studies have focused on understanding the basis for this heterogeneity and its physiological relevance. The membrane raft hypothesis formalized a physicochemical principle for a subtype of such lateral membrane heterogeneity, in which the preferential associations between cholesterol and saturated lipids drive the formation of relatively packed (or ordered) membrane domains that selectively recruit certain lipids and proteins. Recent studies have yielded new insights into this mechanism and its relevance in vivo, owing primarily to the development of improved biochemical and biophysical technologies.
Collapse
Affiliation(s)
- Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, 6431 Fannin Street, Houston, Texas 77030, USA
| | - Satyajit Mayor
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bellary Road, Bangalore 560065, India
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, UK
| |
Collapse
|
72
|
Schneider F, Waithe D, Clausen MP, Galiani S, Koller T, Ozhan G, Eggeling C, Sezgin E. Diffusion of lipids and GPI-anchored proteins in actin-free plasma membrane vesicles measured by STED-FCS. Mol Biol Cell 2017; 28:1507-1518. [PMID: 28404749 PMCID: PMC5449149 DOI: 10.1091/mbc.e16-07-0536] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 03/31/2017] [Accepted: 04/04/2017] [Indexed: 02/04/2023] Open
Abstract
Diffusion and interaction dynamics of molecules at the plasma membrane play an important role in cellular signaling and are suggested to be strongly associated with the actin cytoskeleton. Here we use superresolution STED microscopy combined with fluorescence correlation spectroscopy (STED-FCS) to access and compare the diffusion characteristics of fluorescent lipid analogues and GPI-anchored proteins (GPI-APs) in the live-cell plasma membrane and in actin cytoskeleton-free, cell-derived giant plasma membrane vesicles (GPMVs). Hindered diffusion of phospholipids and sphingolipids is abolished in the GPMVs, whereas transient nanodomain incorporation of ganglioside lipid GM1 is apparent in both the live-cell membrane and GPMVs. For GPI-APs, we detect two molecular pools in living cells; one pool shows high mobility with transient incorporation into nanodomains, and the other pool forms immobile clusters, both of which disappear in GPMVs. Our data underline the crucial role of the actin cortex in maintaining hindered diffusion modes of many but not all of the membrane molecules and highlight a powerful experimental approach to decipher specific influences on molecular plasma membrane dynamics.
Collapse
Affiliation(s)
- Falk Schneider
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
| | - Dominic Waithe
- Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX39DS, United Kingdom
| | - Mathias P Clausen
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
- MEMPHYS-Center for Biomembrane Physics, Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, 5230 Odense M, Denmark
| | - Silvia Galiani
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
| | - Thomas Koller
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
| | - Gunes Ozhan
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University Medical School, Inciralti-Balcova, 35340 Izmir, Turkey
- Department of Medical Biology and Genetics, Dokuz Eylul University Medical School, Inciralti-Balcova, 35340 Izmir, Turkey
| | - Christian Eggeling
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
- Wolfson Imaging Centre Oxford, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX39DS, United Kingdom
| | - Erdinc Sezgin
- MRC Human Immunology Unit, University of Oxford, Oxford OX39DS, United Kingdom
| |
Collapse
|
73
|
Villaseñor T, Madrid-Paulino E, Maldonado-Bravo R, Urbán-Aragón A, Pérez-Martínez L, Pedraza-Alva G. Activation of the Wnt Pathway by Mycobacterium tuberculosis: A Wnt-Wnt Situation. Front Immunol 2017; 8:50. [PMID: 28203237 PMCID: PMC5285348 DOI: 10.3389/fimmu.2017.00050] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/12/2017] [Indexed: 12/27/2022] Open
Abstract
Mycobacterium tuberculosis (M. tuberculosis), an intracellular pathogenic Gram-positive bacterium, is the cause of tuberculosis (TB), a major worldwide human infectious disease. The innate immune system is the first host defense against M. tuberculosis. The recognition of this pathogen is mediated by several classes of pattern recognition receptors expressed on the host innate immune cells, including Toll-like receptors, Nod-like receptors, and C-type lectin receptors like Dectin-1, the Mannose receptor, and DC-SIGN. M. tuberculosis interaction with any of these receptors activates multiple signaling pathways among which the protein kinase C, the MAPK, and the NFκB pathways have been widely studied. These pathways have been implicated in macrophage invasion, M. tuberculosis survival, and impaired immune response, thus promoting a successful infection and disease. Interestingly, the Wnt signaling pathway, classically regarded as a pathway involved in the control of cell proliferation, migration, and differentiation in embryonic development, has recently been involved in immunoregulatory mechanisms in infectious and inflammatory diseases, such as TB, sepsis, psoriasis, rheumatoid arthritis, and atherosclerosis. In this review, we present the current knowledge supporting a role for the Wnt signaling pathway during macrophage infection by M. tuberculosis and the regulation of the immune response against M. tuberculosis. Understanding the cross talk between different signaling pathways activated by M. tuberculosis will impact on the search for new therapeutic targets to fuel the rational design of drugs aimed to restore the immunological response against M. tuberculosis.
Collapse
Affiliation(s)
- Tomás Villaseñor
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca, Morelos , Mexico
| | - Edgardo Madrid-Paulino
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca, Morelos , Mexico
| | - Rafael Maldonado-Bravo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca, Morelos , Mexico
| | - Antonio Urbán-Aragón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca, Morelos , Mexico
| | - Leonor Pérez-Martínez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca, Morelos , Mexico
| | - Gustavo Pedraza-Alva
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México , Cuernavaca, Morelos , Mexico
| |
Collapse
|
74
|
Nilsson D, Pettersson M, Gustavsson P, Förster A, Hofmeister W, Wincent J, Zachariadis V, Anderlid BM, Nordgren A, Mäkitie O, Wirta V, Käller M, Vezzi F, Lupski JR, Nordenskjöld M, Lundberg ES, Carvalho CMB, Lindstrand A. Whole-Genome Sequencing of Cytogenetically Balanced Chromosome Translocations Identifies Potentially Pathological Gene Disruptions and Highlights the Importance of Microhomology in the Mechanism of Formation. Hum Mutat 2017; 38:180-192. [PMID: 27862604 PMCID: PMC5225243 DOI: 10.1002/humu.23146] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 11/01/2016] [Indexed: 11/07/2022]
Abstract
Most balanced translocations are thought to result mechanistically from nonhomologous end joining or, in rare cases of recurrent events, by nonallelic homologous recombination. Here, we use low-coverage mate pair whole-genome sequencing to fine map rearrangement breakpoint junctions in both phenotypically normal and affected translocation carriers. In total, 46 junctions from 22 carriers of balanced translocations were characterized. Genes were disrupted in 48% of the breakpoints; recessive genes in four normal carriers and known dominant intellectual disability genes in three affected carriers. Finally, seven candidate disease genes were disrupted in five carriers with neurocognitive disabilities (SVOPL, SUSD1, TOX, NCALD, SLC4A10) and one XX-male carrier with Tourette syndrome (LYPD6, GPC5). Breakpoint junction analyses revealed microhomology and small templated insertions in a substantive fraction of the analyzed translocations (17.4%; n = 4); an observation that was substantiated by reanalysis of 37 previously published translocation junctions. Microhomology associated with templated insertions is a characteristic seen in the breakpoint junctions of rearrangements mediated by error-prone replication-based repair mechanisms. Our data implicate that a mechanism involving template switching might contribute to the formation of at least 15% of the interchromosomal translocation events.
Collapse
Affiliation(s)
- Daniel Nilsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Science for Life Laboratory, Karolinska Institutet Science Park, 171 21 Solna, Sweden
| | - Maria Pettersson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Peter Gustavsson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Alisa Förster
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Wolfgang Hofmeister
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Josephine Wincent
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Vasilios Zachariadis
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
| | - Britt-Marie Anderlid
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Outi Mäkitie
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Children's Hospital, Helsinki University Central Hospital and University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Institute of Genetics, 00290 Helsinki, Finland
| | - Valtteri Wirta
- SciLifeLab, School of Biotechnology, KTH Royal Institute of Technology, 171 71 Stockholm, Sweden
| | - Max Käller
- SciLifeLab, School of Biotechnology, KTH Royal Institute of Technology, 171 71 Stockholm, Sweden
| | - Francesco Vezzi
- SciLifeLab, Department of Biochemistry and Biophysics, Stockholm University, 171 21 Stockholm, Sweden
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, 77030 Houston TX, USA
- Texas Children’s Hospital, 77030 Houston TX, USA
| | - Magnus Nordenskjöld
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Elisabeth Syk Lundberg
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Claudia M. B. Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, 77030 Houston TX, USA
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institutet, 171 76 Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, 171 76 Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
75
|
Plikus MV, Guerrero-Juarez CF, Ito M, Li YR, Dedhia PH, Zheng Y, Shao M, Gay DL, Ramos R, Hsi TC, Oh JW, Wang X, Ramirez A, Konopelski SE, Elzein A, Wang A, Supapannachart RJ, Lee HL, Lim CH, Nace A, Guo A, Treffeisen E, Andl T, Ramirez RN, Murad R, Offermanns S, Metzger D, Chambon P, Widgerow AD, Tuan TL, Mortazavi A, Gupta RK, Hamilton BA, Millar SE, Seale P, Pear WS, Lazar MA, Cotsarelis G. Regeneration of fat cells from myofibroblasts during wound healing. Science 2017; 355:748-752. [PMID: 28059714 DOI: 10.1126/science.aai8792] [Citation(s) in RCA: 423] [Impact Index Per Article: 52.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/19/2016] [Indexed: 12/14/2022]
Abstract
Although regeneration through the reprogramming of one cell lineage to another occurs in fish and amphibians, it has not been observed in mammals. We discovered in the mouse that during wound healing, adipocytes regenerate from myofibroblasts, a cell type thought to be differentiated and nonadipogenic. Myofibroblast reprogramming required neogenic hair follicles, which triggered bone morphogenetic protein (BMP) signaling and then activation of adipocyte transcription factors expressed during development. Overexpression of the BMP antagonist Noggin in hair follicles or deletion of the BMP receptor in myofibroblasts prevented adipocyte formation. Adipocytes formed from human keloid fibroblasts either when treated with BMP or when placed with human hair follicles in vitro. Thus, we identify the myofibroblast as a plastic cell type that may be manipulated to treat scars in humans.
Collapse
Affiliation(s)
- Maksim V Plikus
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA. .,Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Christian F Guerrero-Juarez
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Mayumi Ito
- The Ronald O. Perelman Department of Dermatology, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Yun Rose Li
- The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Priya H Dedhia
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying Zheng
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mengle Shao
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Denise L Gay
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,INSERM U967, Commissariat à L'énergie Atomique et aux Énergies Alternatives, Institut de Radiobiologie Cellulaire et Moléculaire 92265 Fontenay-aux-Roses Cedex, France
| | - Raul Ramos
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Tsai-Ching Hsi
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Ji Won Oh
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA.,Department of Anatomy, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Xiaojie Wang
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Amanda Ramirez
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Sara E Konopelski
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Arijh Elzein
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Anne Wang
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rarinthip June Supapannachart
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hye-Lim Lee
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Chae Ho Lim
- The Ronald O. Perelman Department of Dermatology, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Arben Nace
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amy Guo
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elsa Treffeisen
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas Andl
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 328116, USA
| | - Ricardo N Ramirez
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Rabi Murad
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim 61231, Germany
| | - Daniel Metzger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Université de Strasbourg, Illkirch 67404, France
| | - Pierre Chambon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, INSERM U964, Institut d'Etudes Avancées de l'Université de Strasbourg, Collège de France, Illkirch 67404, France
| | - Alan D Widgerow
- Center for Tissue Engineering, Department of Plastic Surgery, University of California, Irvine, Irvine, CA 92868, USA
| | - Tai-Lan Tuan
- The Saban Research Institute of Children's Hospital Los Angeles and Department of Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Ali Mortazavi
- Department of Developmental and Cell Biology, Sue and Bill Gross Stem Cell Research Center, Center for Complex Biological Systems, University of California, Irvine, Irvine, CA 92697, USA
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Bruce A Hamilton
- Departments of Medicine and Cellular and Molecular Medicine, Moores Cancer Center and Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sarah E Millar
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrick Seale
- The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Warren S Pear
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mitchell A Lazar
- The Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - George Cotsarelis
- Department of Dermatology, Kligman Laboratories, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
76
|
Lin MC, Chen SY, Tsai HM, He PL, Lin YC, Herschman H, Li HJ. PGE 2 /EP 4 Signaling Controls the Transfer of the Mammary Stem Cell State by Lipid Rafts in Extracellular Vesicles. Stem Cells 2016; 35:425-444. [PMID: 27506158 DOI: 10.1002/stem.2476] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/05/2016] [Accepted: 07/25/2016] [Indexed: 01/09/2023]
Abstract
Prostaglandin E2 (PGE2 )-initiated signaling contributes to stem cell homeostasis and regeneration. However, it is unclear how PGE2 signaling controls cell stemness. This study identifies a previously unknown mechanism by which PGE2 /prostaglandin E receptor 4 (EP4 ) signaling regulates multiple signaling pathways (e.g., PI3K/Akt signaling, TGFβ signaling, Wnt signaling, EGFR signaling) which maintain the basal mammary stem cell phenotype. A shift of basal mammary epithelial stem cells (MaSCs) from a mesenchymal/stem cell state to a non-basal-MaSC state occurs in response to prostaglandin E receptor 4 (EP4 ) antagonism. EP4 antagonists elicit release of signaling components, by controlling their trafficking into extracellular vesicles/exosomes in a lipid raft/caveolae-dependent manner. Consequently, EP4 antagonism indirectly inactivates, through induced extracellular vesicle/exosome release, pathways required for mammary epithelial stem cell homeostasis, e.g. canonical/noncanonical Wnt, TGFβ and PI3K/Akt pathways. EP4 antagonism causes signaling receptors and signaling components to shift from non-lipid raft fractions to lipid raft fractions, and to then be released in EP4 antagonist-induced extracellular vesicles/exosomes, resulting in the loss of the stem cell state by mammary epithelial stem cells. In contrast, luminal mammary epithelial cells can acquire basal stem cell properties following ingestion of EP4 antagonist-induced stem cell extracellular vesicles/exosomes, and can then form mammary glands. These findings demonstrate that PGE2 /EP4 signaling controls homeostasis of mammary epithelial stem cells through regulating extracellular vesicle/exosome release. Reprogramming of mammary epithelial cells can result from EP4 -mediated stem cell property transfer by extracellular vesicles/exosomes containing caveolae-associated proteins, between mammary basal and luminal epithelial cells. Stem Cells 2017;35:425-444.
Collapse
Affiliation(s)
- Meng-Chieh Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Shih-Yin Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ho-Min Tsai
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Pei-Lin He
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Yen-Chun Lin
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan.,Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Harvey Herschman
- Department of Molecular & Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA.,Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, California, USA
| | - Hua-Jung Li
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
77
|
Arvaniti M, Jensen MM, Soni N, Wang H, Klein AB, Thiriet N, Pinborg LH, Muldoon PP, Wienecke J, Imad Damaj M, Kohlmeier KA, Gondré-Lewis MC, Mikkelsen JD, Thomsen MS. Functional interaction between Lypd6 and nicotinic acetylcholine receptors. J Neurochem 2016; 138:806-20. [PMID: 27344019 PMCID: PMC5017906 DOI: 10.1111/jnc.13718] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 01/15/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) affect multiple physiological functions in the brain and their functions are modulated by regulatory proteins of the Lynx family. Here, we report for the first time a direct interaction of the Lynx protein LY6/PLAUR domain-containing 6 (Lypd6) with nAChRs in human brain extracts, identifying Lypd6 as a novel regulator of nAChR function. Using protein cross-linking and affinity purification from human temporal cortical extracts, we demonstrate that Lypd6 is a synaptically enriched membrane-bound protein that binds to multiple nAChR subtypes in the human brain. Additionally, soluble recombinant Lypd6 protein attenuates nicotine-induced hippocampal inward currents in rat brain slices and decreases nicotine-induced extracellular signal-regulated kinase phosphorylation in PC12 cells, suggesting that binding of Lypd6 is sufficient to inhibit nAChR-mediated intracellular signaling. We further show that perinatal nicotine exposure in rats (4 mg/kg/day through minipumps to dams from embryonic day 7 to post-natal day 21) significantly increases Lypd6 protein levels in the hippocampus in adulthood, which did not occur after exposure to nicotine in adulthood only. Our findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain, and that Lypd6 is dysregulated by nicotine exposure during early development. Regulatory proteins of the Lynx family modulate the function of nicotinic receptors (nAChRs). We report for the first time that the Lynx protein Lypd6 binds to nAChRs in human brain extracts, and that recombinant Lypd6 decreases nicotine-induced ERK phosphorylation and attenuates nicotine-induced hippocampal inward currents. Our findings suggest that Lypd6 is a versatile inhibitor of cholinergic signaling in the brain.
Collapse
Affiliation(s)
- Maria Arvaniti
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Majbrit M Jensen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Neeraj Soni
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Hong Wang
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington, District of Columbia, USA
| | - Anders B Klein
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Nathalie Thiriet
- Laboratory of Experimental and Clinical Neurosciences, University of Poitiers, Poitiers, France
| | - Lars H Pinborg
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark.,Epilepsy Clinic, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Pretal P Muldoon
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Jacob Wienecke
- Department of Nutrition, Exercise and Sport & Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Kristi A Kohlmeier
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Marjorie C Gondré-Lewis
- Laboratory for Neurodevelopment, Department of Anatomy, Howard University College of Medicine, Washington, District of Columbia, USA
| | - Jens D Mikkelsen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Morten S Thomsen
- Department of Drug Design & Pharmacology, University of Copenhagen, Copenhagen, Denmark. .,Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
78
|
Jiang X, Cong F. Novel Regulation of Wnt Signaling at the Proximal Membrane Level. Trends Biochem Sci 2016; 41:773-783. [PMID: 27377711 DOI: 10.1016/j.tibs.2016.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 02/06/2023]
Abstract
Wnt pathways are crucial for embryonic development and adult tissue homeostasis in all multicellular animals. Our understanding of Wnt signaling networks has grown increasingly complex. Recent studies have revealed many regulatory proteins that function at the proximal membrane level to fine-tune signaling output and enhance signaling specificity. These proteins regulate crucial points in Wnt signaling, including post-translational modification of Wnt proteins, regulation of Wnt receptor degradation, internalization of Wnt receptor complex, and specific ligand-receptor complex formation. Such regulators not only provide us with molecular details of Wnt regulation but also serve as potential targets for therapeutic intervention. In this review we highlight new insights into Wnt regulation at the plasma membrane, especially newly identified feedback regulators.
Collapse
Affiliation(s)
- Xiaomo Jiang
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Feng Cong
- Novartis Institutes for Biomedical Research, 181 Massachusetts Avenue, Cambridge, MA 02139, USA.
| |
Collapse
|
79
|
Organization, evolution and functions of the human and mouse Ly6/uPAR family genes. Hum Genomics 2016; 10:10. [PMID: 27098205 PMCID: PMC4839075 DOI: 10.1186/s40246-016-0074-2] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/14/2016] [Indexed: 01/08/2023] Open
Abstract
Members of the lymphocyte antigen-6 (Ly6)/urokinase-type plasminogen activator receptor (uPAR) superfamily of proteins are cysteine-rich proteins characterized by a distinct disulfide bridge pattern that creates the three-finger Ly6/uPAR (LU) domain. Although the Ly6/uPAR family proteins share a common structure, their expression patterns and functions vary. To date, 35 human and 61 mouse Ly6/uPAR family members have been identified. Based on their subcellular localization, these proteins are further classified as GPI-anchored on the cell membrane, or secreted. The genes encoding Ly6/uPAR family proteins are conserved across different species and are clustered in syntenic regions on human chromosomes 8, 19, 6 and 11, and mouse Chromosomes 15, 7, 17, and 9, respectively. Here, we review the human and mouse Ly6/uPAR family gene and protein structure and genomic organization, expression, functions, and evolution, and introduce new names for novel family members.
Collapse
|
80
|
Identification and expression of lypc, a novel dark-inducible member of Ly6 superfamily in zebrafish Danio rerio. Gene 2015; 574:69-75. [DOI: 10.1016/j.gene.2015.07.088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 06/26/2015] [Accepted: 07/28/2015] [Indexed: 02/05/2023]
|
81
|
Abstract
The ability to repair damaged or lost tissues varies significantly among vertebrates. The regenerative ability of the heart is clinically very relevant, because adult teleost fish and amphibians can regenerate heart tissue, but we mammals cannot. Interestingly, heart regeneration is possible in neonatal mice, but this ability is lost within 7 days after birth. In zebrafish and neonatal mice, lost cardiomyocytes are regenerated via proliferation of spared, differentiated cardiomyocytes. While some cardiomyocyte turnover occurs in adult mammals, the cardiomyocyte production rate is too low in response to injury to regenerate the heart. Instead, mammalian hearts respond to injury by remodeling of spared tissue, which includes cardiomyocyte hypertrophy. Wnt/β-catenin signaling plays important roles during vertebrate heart development, and it is re-activated in response to cardiac injury. In this review, we discuss the known functions of this signaling pathway in injured hearts, its involvement in cardiac fibrosis and hypertrophy, and potential therapeutic approaches that might promote cardiac repair after injury by modifying Wnt/β-catenin signaling. Regulation of cardiac remodeling by this signaling pathway appears to vary depending on the injury model and the exact stages that have been studied. Thus, conflicting data have been published regarding a potential role of Wnt/β-catenin pathway in promotion of fibrosis and cardiomyocyte hypertrophy. In addition, the Wnt inhibitory secreted Frizzled-related proteins (sFrps) appear to have Wnt-dependent and Wnt-independent roles in the injured heart. Thus, while the exact functions of Wnt/β-catenin pathway activity in response to injury still need to be elucidated in the non-regenerating mammalian heart, but also in regenerating lower vertebrates, manipulation of the pathway is essential for creation of therapeutically useful cardiomyocytes from stem cells in culture. Hopefully, a detailed understanding of the in vivo role of Wnt/β-catenin signaling in injured mammalian and non-mammalian hearts will also contribute to the success of current efforts towards developing regenerative therapies.
Collapse
Affiliation(s)
- Gunes Ozhan
- Izmir Biomedicine and Genome Center (iBG-izmir), Dokuz Eylul University, Inciralti-Balcova, 35340 Izmir, Turkey ; Department of Medical Biology and Genetics, Dokuz Eylul University Medical School, Inciralti-Balcova, 35340 Izmir, Turkey
| | - Gilbert Weidinger
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
82
|
Feng Q, Gao N. Keeping Wnt signalosome in check by vesicular traffic. J Cell Physiol 2015; 230:1170-80. [PMID: 25336320 DOI: 10.1002/jcp.24853] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/17/2014] [Indexed: 01/01/2023]
Abstract
Wg/Wnts are paracrine and autocrine ligands that activate distinct signaling pathways while being internalized through surface receptors. Converging and contrasting views are shaping our understanding of whether, where, and how endocytosis may modulate Wnt signaling. We gather considerable amount of evidences to elaborate the point that signal-receiving cells utilize distinct, flexible, and sophisticated vesicular trafficking mechanisms to keep Wnt signaling activity in check. Same molecules in a highly context-dependent fashion serve as regulatory hub for various signaling purposes: amplification, maintenance, inhibition, and termination. Updates are provided for the regulatory mechanisms related to the three critical cell surface complexes, Wnt-Fzd-LRP6, Dkk1-Kremen-LRP6, and R-spondin-LGR5-RNF43, which potently influence Wnt signaling. We pay particular attentions to how cells achieve sustained and delicate control of Wnt signaling strength by employing comprehensive aspects of vesicular trafficking.
Collapse
Affiliation(s)
- Qiang Feng
- Department of Biological Sciences, Rutgers University, Newark, New Jersey
| | | |
Collapse
|
83
|
Adaptive lipid packing and bioactivity in membrane domains. PLoS One 2015; 10:e0123930. [PMID: 25905447 PMCID: PMC4408024 DOI: 10.1371/journal.pone.0123930] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 03/09/2015] [Indexed: 01/10/2023] Open
Abstract
Lateral compositional and physicochemical heterogeneity is a ubiquitous feature of cellular membranes on various length scales, from molecular assemblies to micrometric domains. Segregated lipid domains of increased local order, referred to as rafts, are believed to be prominent features in eukaryotic plasma membranes; however, their exact nature (i.e. size, lifetime, composition, homogeneity) in live cells remains difficult to define. Here we present evidence that both synthetic and natural plasma membranes assume a wide range of lipid packing states with varying levels of molecular order. These states may be adapted and specifically tuned by cells during active cellular processes, as we show for stimulated insulin secretion. Most importantly, these states regulate both the partitioning of molecules between coexisting domains and the bioactivity of their constituent molecules, which we demonstrate for the ligand binding activity of the glycosphingolipid receptor GM1. These results confirm the complexity and flexibility of lipid-mediated membrane organization and reveal mechanisms by which this flexibility could be functionalized by cells.
Collapse
|
84
|
Haack F, Lemcke H, Ewald R, Rharass T, Uhrmacher AM. Spatio-temporal model of endogenous ROS and raft-dependent WNT/beta-catenin signaling driving cell fate commitment in human neural progenitor cells. PLoS Comput Biol 2015; 11:e1004106. [PMID: 25793621 PMCID: PMC4368204 DOI: 10.1371/journal.pcbi.1004106] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 12/31/2014] [Indexed: 02/03/2023] Open
Abstract
Canonical WNT/β-catenin signaling is a central pathway in embryonic development, but it is also connected to a number of cancers and developmental disorders. Here we apply a combined in-vitro and in-silico approach to investigate the spatio-temporal regulation of WNT/β-catenin signaling during the early neural differentiation process of human neural progenitors cells (hNPCs), which form a new prospect for replacement therapies in the context of neurodegenerative diseases. Experimental measurements indicate a second signal mechanism, in addition to canonical WNT signaling, being involved in the regulation of nuclear β-catenin levels during the cell fate commitment phase of neural differentiation. We find that the biphasic activation of β-catenin signaling observed experimentally can only be explained through a model that combines Reactive Oxygen Species (ROS) and raft dependent WNT/β-catenin signaling. Accordingly after initiation of differentiation endogenous ROS activates DVL in a redox-dependent manner leading to a transient activation of down-stream β-catenin signaling, followed by continuous auto/paracrine WNT signaling, which crucially depends on lipid rafts. Our simulation studies further illustrate the elaborate spatio-temporal regulation of DVL, which, depending on its concentration and localization, may either act as direct inducer of the transient ROS/β-catenin signal or as amplifier during continuous auto-/parcrine WNT/β-catenin signaling. In addition we provide the first stochastic computational model of WNT/β-catenin signaling that combines membrane-related and intracellular processes, including lipid rafts/receptor dynamics as well as WNT- and ROS-dependent β-catenin activation. The model’s predictive ability is demonstrated under a wide range of varying conditions for in-vitro and in-silico reference data sets. Our in-silico approach is realized in a multi-level rule-based language, that facilitates the extension and modification of the model. Thus, our results provide both new insights and means to further our understanding of canonical WNT/β-catenin signaling and the role of ROS as intracellular signaling mediator. Human neural progenitor cells offer the promising perspective of using in-vitro grown neural cell populations for replacement therapies in the context of neurodegenerative diseases, such as Parkinson’s or Huntington’s disease. However, to control hNPC differentiation within the scope of stem cell engineering, a thorough understanding of cell fate determination and its endogenous regulation is required. Here we investigate the spatio-temporal regulation of WNT/β-catenin signaling in the process of cell fate commitment in hNPCs, which has been reported to play a crucial role for the differentiation process of hNPCs. Based on a combined in-vitro and in-silico approach we demonstrate an elaborate interplay between endogenous ROS and lipid raft dependent WNT/beta-catenin signaling controlling the nuclear beta-catenin levels throughout the initial phase of neural differentiation. The stochastic multi-level computational model we derive from our experimental measurements adds to the family of existing WNT models, addressing major biochemical and spatial aspects of WNT/beta-catenin signaling that have not been considered in existing models so far. Cross validation studies manifest its predictive capability for other cells and cell lines rendering the model a suitable basis for further studies also in the context of embryonic development, developmental disorders and cancers.
Collapse
Affiliation(s)
- Fiete Haack
- Modeling and Simulation Group, Institute of Computer Science, University of Rostock, Rostock, Germany
- * E-mail:
| | - Heiko Lemcke
- Live Cell Imaging Center, Institute of Biological Sciences, University of Rostock, Rostock, Germany
- Reference and Translation Center for Cardiac Stem Cell Therapy (RTC), University Medical Center Rostock, Rostock, Germany
| | - Roland Ewald
- Modeling and Simulation Group, Institute of Computer Science, University of Rostock, Rostock, Germany
| | - Tareck Rharass
- Live Cell Imaging Center, Institute of Biological Sciences, University of Rostock, Rostock, Germany
- Electrochemical Signaling in Development and Disease, Max-Delbrück-Center for Molecular Medicine (MDC) Berlin-Buch, Berlin-Buch, Germany
| | - Adelinde M. Uhrmacher
- Modeling and Simulation Group, Institute of Computer Science, University of Rostock, Rostock, Germany
| |
Collapse
|
85
|
Singh V, Holla S, Ramachandra SG, Balaji KN. WNT-inflammasome signaling mediates NOD2-induced development of acute arthritis in mice. THE JOURNAL OF IMMUNOLOGY 2015; 194:3351-60. [PMID: 25717000 DOI: 10.4049/jimmunol.1402498] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In addition to its role in innate immunity, the intracellular pathogen sensor nucleotide-binding oligomerization domain 2 (NOD2) has been implicated in various inflammatory disorders, including the development of acute arthritis. However, the molecular mechanisms involved in the development of NOD2-responsive acute arthritis are not clear. In this study, we demonstrate that NOD2 signals to a cellular protein, Ly6/PLAUR domain-containing protein 6, in a receptor-interacting protein kinase 2-TGF-β-activated kinase 1-independent manner to activate the WNT signaling cascade. Gain- or loss-of-function of the WNT signaling pathway in an in vivo experimental mouse arthritis model or in vitro systems established the role for WNT-responsive X-linked inhibitor of apoptosis during the development of acute arthritis. Importantly, WNT-stimulated X-linked inhibitor of apoptosis mediates the activation of inflammasomes. The subsequent caspase-1 activation and IL-1β secretion together contribute to the phenotypic character of the inflammatory condition of acute arthritis. Thus, identification of a role for WNT-mediated inflammasome activation during NOD2 stimulation serves as a paradigm to understand NOD2-associated inflammatory disorders and develop novel therapeutics.
Collapse
Affiliation(s)
- Vikas Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India; and
| | - Sahana Holla
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India; and
| | | | | |
Collapse
|
86
|
Walker MP, Stopford CM, Cederlund M, Fang F, Jahn C, Rabinowitz AD, Goldfarb D, Graham DM, Yan F, Deal AM, Fedoriw Y, Richards KL, Davis IJ, Weidinger G, Damania B, Major MB. FOXP1 potentiates Wnt/β-catenin signaling in diffuse large B cell lymphoma. Sci Signal 2015; 8:ra12. [PMID: 25650440 DOI: 10.1126/scisignal.2005654] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transcription factor FOXP1 (forkhead box protein P1) is a master regulator of stem and progenitor cell biology. In diffuse large B cell lymphoma (DLBCL), copy number amplifications and chromosomal translocations result in overexpression of FOXP1. Increased abundance of FOXP1 in DLBCL is a predictor of poor prognosis and resistance to therapy. We developed a genome-wide, mass spectrometry-coupled, gain-of-function genetic screen, which revealed that FOXP1 potentiates β-catenin-dependent, Wnt-dependent gene expression. Gain- and loss-of-function studies in cell models and zebrafish confirmed that FOXP1 was a general and conserved enhancer of Wnt signaling. In a Wnt-dependent fashion, FOXP1 formed a complex with β-catenin, TCF7L2 (transcription factor 7-like 2), and the acetyltransferase CBP [CREB (adenosine 3',5'-monophosphate response element-binding protein)-binding protein], and this complex bound the promoters of Wnt target genes. FOXP1 promoted the acetylation of β-catenin by CBP, and acetylation was required for FOXP1-mediated potentiation of β-catenin-dependent transcription. In DLBCL, we found that FOXP1 promoted sensitivity to Wnt pathway inhibitors, and knockdown of FOXP1 or blocking β-catenin transcriptional activity slowed xenograft tumor growth. These data connect excessive FOXP1 with β-catenin-dependent signal transduction and provide a molecular rationale for Wnt-directed therapy in DLBCL.
Collapse
Affiliation(s)
- Matthew P Walker
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Charles M Stopford
- Division of Microbiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27516-7361, USA
| | - Maria Cederlund
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Fang Fang
- Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Christopher Jahn
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Alex D Rabinowitz
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Dennis Goldfarb
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3175, USA
| | - David M Graham
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Feng Yan
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Allison M Deal
- UNC Lineberger Comprehensive Cancer Center Biostatistics Core Facility, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Yuri Fedoriw
- Department of Pathology and Laboratory, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Kristy L Richards
- Division of Hematology/Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27516-7361, USA
| | - Ian J Davis
- Carolina Center for Genome Sciences, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA
| | - Gilbert Weidinger
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Blossom Damania
- Division of Microbiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27516-7361, USA
| | - Michael B Major
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7295, USA. Division of Microbiology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27516-7361, USA.
| |
Collapse
|
87
|
Demars MP, Morishita H. Cortical parvalbumin and somatostatin GABA neurons express distinct endogenous modulators of nicotinic acetylcholine receptors. Mol Brain 2014; 7:75. [PMID: 25359633 PMCID: PMC4228157 DOI: 10.1186/s13041-014-0075-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 10/17/2014] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Inhibition from GABAergic interneurons in brain circuits is a critical component of cognitive function. This inhibition is regulated through a diverse network of neuromodulation. A number of recent studies suggest that one of the major regulators of interneuron function is nicotinic acetylcholinergic transmission and dysregulation of both systems is common in psychiatric conditions. However, how nicotinic modulation impacts specific subpopulations of diverse GABAergic interneurons remains in question. One potential way of conferring specificity to the convergence of GABAergic and nicotinic signaling is through the expression of a unique family of nicotinic acetycholine receptor modulators, the Lynx family. The present study sought to identify members of the Lynx family enriched in cortical interneurons and to elucidate subpopulations of GABAergic neurons that express unique nicotinic modulators. RESULTS We utilize double fluorescence in situ hybridization to examine the interneuronal expression of the Lynx family in adult mouse visual cortex. We find that two of the Lynx family members, Lynx1 and Lypd6, are enriched in interneuron populations in cortex. Nearly all parvalbumin interneurons express Lynx1 but we did not detect Lypd6 in this population. Conversely, in somatostatin interneurons Lypd6 was found in a subset localized to deep cortical layers but no somatostatin neurons show detectable levels of Lynx1. Using a combination of genetic and viral manipulations we further show that a subpopulation of deep-layer cortico-cortical long-range somatostatin neurons also express Lypd6. CONCLUSIONS This work shows that distinct subpopulations of GABAergic interneurons express unique Lynx family members. The pattern of expression of Lynx family members within interneurons places them in a unique position to potentially regulate the convergence of GABAergic and nicotinic systems, dysfunction of which are characteristic of psychiatric disorders.
Collapse
Affiliation(s)
- Michael P Demars
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| | - Hirofumi Morishita
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1230, New York, NY, 10029, USA. .,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
88
|
Luz M, Spannl-Müller S, Özhan G, Kagermeier-Schenk B, Rhinn M, Weidinger G, Brand M. Dynamic association with donor cell filopodia and lipid-modification are essential features of Wnt8a during patterning of the zebrafish neuroectoderm. PLoS One 2014; 9:e84922. [PMID: 24427298 PMCID: PMC3888416 DOI: 10.1371/journal.pone.0084922] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 11/20/2013] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Wnt proteins are conserved signaling molecules that regulate pattern formation during animal development. Many Wnt proteins are post-translationally modified by addition of lipid adducts. Wnt8a provides a crucial signal for patterning the anteroposterior axis of the developing neural plate in vertebrates. However, it is not clear how this protein propagates from its source, the blastoderm margin, to the target cells in the prospective neural plate, and how lipid-modifications might influence Wnt8a propagation and activity. RESULTS We have dynamically imaged biologically active, fluorescently tagged Wnt8a in living zebrafish embryos. We find that Wnt8a localizes to membrane-associated, punctate structures in live tissue. In Wnt8a expressing cells, these puncta are found on filopodial cellular processes, from where the protein can be released. In addition, Wnt8a is found colocalized with Frizzled receptor-containing clusters on signal receiving cells. Combining in vitro and in vivo assays, we compare the roles of conserved Wnt8a residues in cell and non-cell-autonomous signaling activity and secretion. Non-signaling Wnt8 variants show these residues can regulate Wnt8a distribution in producing cell membranes and filopodia as well as in the receiving tissue. CONCLUSIONS Together, our results show that Wnt8a forms dynamic clusters found on filopodial donor cell and on signal receiving cell membranes. Moreover, they demonstrate a differential requirement of conserved residues in Wnt8a protein for distribution in producing cells and receiving tissue and signaling activity during neuroectoderm patterning.
Collapse
Affiliation(s)
- Marta Luz
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Stephanie Spannl-Müller
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Günes Özhan
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | | | - Muriel Rhinn
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Gilbert Weidinger
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|