51
|
Lamming DW, Bar-Peled L. Lysosome: The metabolic signaling hub. Traffic 2019; 20:27-38. [PMID: 30306667 PMCID: PMC6294686 DOI: 10.1111/tra.12617] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/17/2018] [Accepted: 10/07/2018] [Indexed: 12/27/2022]
Abstract
For the past five decades, the lysosome has been characterized as an unglamorous cellular recycling center. This notion has undergone a radical shift in the last 10 years, with new research revealing that this organelle serves as a major hub for metabolic signaling pathways. The discovery that master growth regulators, including the protein kinase mTOR (mechanistic target of rapamycin), make their home at the lysosomal surface has generated intense interest in the lysosome's key role in nutrient sensing and cellular homeostasis. The transcriptional networks required for lysosomal maintenance and function are just being unraveled and their connection to lysosome-based signaling pathways revealed. The catabolic and anabolic pathways that converge on the lysosome connect this organelle with multiple facets of cellular function; when these pathways are deregulated they underlie multiple human diseases, and promote cellular and organismal aging. Thus, understanding how lysosome-based signaling pathways function will not only illuminate the fascinating biology of this organelle but will also be critical in unlocking its therapeutic potentials.
Collapse
Affiliation(s)
- Dudley W. Lamming
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Liron Bar-Peled
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
52
|
Hashimoto Y, Shirane M, Nakayama KI. TMEM55B contributes to lysosomal homeostasis and amino acid-induced mTORC1 activation. Genes Cells 2018; 23:418-434. [DOI: 10.1111/gtc.12583] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 03/13/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Yutaka Hashimoto
- Department of Molecular and Cellular Biology; Medical Institute of Bioregulation; Kyushu University; Fukuoka Japan
| | - Michiko Shirane
- Department of Molecular and Cellular Biology; Medical Institute of Bioregulation; Kyushu University; Fukuoka Japan
- Department of Molecular Biology; Graduate School of Pharmaceutical Science; Nagoya City University; Nagoya Japan
| | - Keiichi I. Nakayama
- Department of Molecular and Cellular Biology; Medical Institute of Bioregulation; Kyushu University; Fukuoka Japan
| |
Collapse
|
53
|
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) coordinates cellular growth and metabolism with environmental inputs to ensure that cells grow only under favourable conditions. When active, mTORC1 stimulates biosynthetic pathways including protein, lipid and nucleotide synthesis and inhibits cellular catabolism through repression of the autophagic pathway, thereby promoting cell growth and proliferation. The recruitment of mTORC1 to the lysosomal surface has been shown to be essential for its activation. This finding has significantly enhanced our knowledge of mTORC1 regulation and has focused the attention of the field on the lysosome as a signalling hub which coordinates several homeostatic pathways. The intriguing localisation of mTORC1 to the cellular organelle that plays a crucial role in catabolism enables mTORC1 to feedback to autophagy and lysosomal biogenesis, thus leading mTORC1 to enact precise spatial and temporal control of cell growth. This review will cover the signalling interactions which take place on the surface of lysosomes and the cross-talk which exists between mTORC1 activity and lysosomal function.
Collapse
Affiliation(s)
- Yoana Rabanal-Ruiz
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| | - Viktor I Korolchuk
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE4 5PL, UK.
| |
Collapse
|
54
|
Gosavi P, Houghton FJ, McMillan PJ, Hanssen E, Gleeson PA. The Golgi ribbon in mammalian cells negatively regulates autophagy by modulating mTOR activity. J Cell Sci 2018; 131:jcs.211987. [PMID: 29361552 DOI: 10.1242/jcs.211987] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/20/2017] [Indexed: 12/25/2022] Open
Abstract
In vertebrates, individual Golgi stacks are joined into a compact ribbon structure; however, the relevance of a ribbon structure has been elusive. Here, we exploit the finding that the membrane tether of the trans-Golgi network, GCC88 (encoded by GCC1), regulates the balance between Golgi mini-stacks and the Golgi ribbon. Loss of Golgi ribbons in stable cells overexpressing GCC88 resulted in compromised mechanistic target of rapamycin (mTOR) signaling and a dramatic increase in LC3-II-positive autophagosomes, whereas RNAi-mediated depletion of GCC88 restored the Golgi ribbon and reduced autophagy. mTOR was absent from dispersed Golgi mini-stacks whereas recruitment of mTOR to lysosomes was unaffected. We show that the Golgi ribbon is a site for localization and activation of mTOR, a process dependent on the ribbon structure. We demonstrate a strict temporal sequence of fragmentation of Golgi ribbon, loss of Golgi mTOR and subsequent increased autophagy. Golgi ribbon fragmentation has been reported in various neurodegenerative diseases and we demonstrate the potential relevance of our findings in neuronal cells using a model of neurodegeneration. Overall, this study highlights a role for the Golgi ribbon in pathways central to cellular homeostasis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Prajakta Gosavi
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Fiona J Houghton
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul J McMillan
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Biological Optical Microscopy Platform, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Eric Hanssen
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia.,Advanced Microscopy Facility, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Paul A Gleeson
- The Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
55
|
mTORC1 Inactivation Promotes Colitis-Induced Colorectal Cancer but Protects from APC Loss-Dependent Tumorigenesis. Cell Metab 2018; 27:118-135.e8. [PMID: 29275959 DOI: 10.1016/j.cmet.2017.11.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/21/2017] [Accepted: 11/15/2017] [Indexed: 01/17/2023]
Abstract
Dietary habits that can induce inflammatory bowel disease (IBD) are major colorectal cancer (CRC) risk factors, but mechanisms linking nutrients, IBD, and CRC are unknown. Using human data and mouse models, we show that mTORC1 inactivation-induced chromosomal instability impairs intestinal crypt proliferation and regeneration, CDK4/6 dependently. This triggers interleukin (IL)-6-associated reparative inflammation, inducing crypt hyper-proliferation, wound healing, and CRC. Blocking IL-6 signaling or reactivating mTORC1 reduces inflammation-induced CRC, so mTORC1 activation suppresses tumorigenesis in IBD. Conversely, mTORC1 inactivation is beneficial in APC loss-dependent CRC. Thus, IL-6 blockers or protein-rich-diet-linked mTORC1 activation may prevent IBD-associated CRC. However, abolishing mTORC1 can mitigate CRC in predisposed patients with APC mutations. Our work reveals mTORC1 oncogenic and tumor-suppressive roles in intestinal epithelium and avenues to optimized and personalized therapeutic regimens for CRC.
Collapse
|
56
|
mTORC1 as the main gateway to autophagy. Essays Biochem 2017; 61:565-584. [PMID: 29233869 PMCID: PMC5869864 DOI: 10.1042/ebc20170027] [Citation(s) in RCA: 400] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/19/2017] [Accepted: 10/20/2017] [Indexed: 12/16/2022]
Abstract
Cells and organisms must coordinate their metabolic activity with changes in their environment to ensure their growth only when conditions are favourable. In order to maintain cellular homoeostasis, a tight regulation between the synthesis and degradation of cellular components is essential. At the epicentre of the cellular nutrient sensing is the mechanistic target of rapamycin complex 1 (mTORC1) which connects environmental cues, including nutrient and growth factor availability as well as stress, to metabolic processes in order to preserve cellular homoeostasis. Under nutrient-rich conditions mTORC1 promotes cell growth by stimulating biosynthetic pathways, including synthesis of proteins, lipids and nucleotides, and by inhibiting cellular catabolism through repression of the autophagic pathway. Its close signalling interplay with the energy sensor AMP-activated protein kinase (AMPK) dictates whether the cell actively favours anabolic or catabolic processes. Underlining the role of mTORC1 in the coordination of cellular metabolism, its deregulation is linked to numerous human diseases ranging from metabolic disorders to many cancers. Although mTORC1 can be modulated by a number of different inputs, amino acids represent primordial cues that cannot be compensated for by any other stimuli. The understanding of how amino acids signal to mTORC1 has increased considerably in the last years; however this area of research remains a hot topic in biomedical sciences. The current ideas and models proposed to explain the interrelationship between amino acid sensing, mTORC1 signalling and autophagy is the subject of the present review.
Collapse
|
57
|
Cummings NE, Lamming DW. Regulation of metabolic health and aging by nutrient-sensitive signaling pathways. Mol Cell Endocrinol 2017; 455:13-22. [PMID: 27884780 PMCID: PMC5440210 DOI: 10.1016/j.mce.2016.11.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/07/2016] [Accepted: 11/19/2016] [Indexed: 01/20/2023]
Abstract
All organisms need to be capable of adapting to changes in the availability and composition of nutrients. Over 75 years ago, researchers discovered that a calorie restricted (CR) diet could significantly extend the lifespan of rats, and since then a CR diet has been shown to increase lifespan and healthspan in model organisms ranging from yeast to non-human primates. In this review, we discuss the effects of a CR diet on metabolism and healthspan, and highlight emerging evidence that suggests that dietary composition - the precise macronutrients that compose the diet - may be just as important as caloric content. In particular, we discuss recent evidence that suggests protein quality may influence metabolic health. Finally, we discuss key metabolic pathways which may influence the response to CR diets and altered macronutrient composition. Understanding the molecular mechanisms responsible for the effects of CR and dietary composition on health and longevity may allow the design of novel therapeutic approaches to age-related diseases.
Collapse
Affiliation(s)
- Nicole E Cummings
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI, USA; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
58
|
Abstract
During antibody affinity maturation, germinal center (GC) B cells cycle between affinity-driven selection in the light zone (LZ) and proliferation and somatic hypermutation in the dark zone (DZ). Although selection of GC B cells is triggered by antigen-dependent signals delivered in the LZ, DZ proliferation occurs in the absence of such signals. We show that positive selection triggered by T cell help activates the mechanistic target of rapamycin complex 1 (mTORC1), which promotes the anabolic program that supports DZ proliferation. Blocking mTORC1 prior to growth prevented clonal expansion, whereas blockade after cells reached peak size had little to no effect. Conversely, constitutively active mTORC1 led to DZ enrichment but loss of competitiveness and impaired affinity maturation. Thus, mTORC1 activation is required for fueling B cells prior to DZ proliferation rather than for allowing cell-cycle progression itself and must be regulated dynamically during cyclic re-entry to ensure efficient affinity-based selection.
Collapse
|
59
|
Linnemann AK, Blumer J, Marasco MR, Battiola TJ, Umhoefer HM, Han JY, Lamming DW, Davis DB. Interleukin 6 protects pancreatic β cells from apoptosis by stimulation of autophagy. FASEB J 2017; 31:4140-4152. [PMID: 28592636 DOI: 10.1096/fj.201700061rr] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/22/2017] [Indexed: 12/14/2022]
Abstract
IL-6 is a pleiotropic cytokine with complex roles in inflammation and metabolic disease. The role of IL-6 as a pro- or anti-inflammatory cytokine is still unclear. Within the pancreatic islet, IL-6 stimulates secretion of the prosurvival incretin hormone glucagon-like peptide 1 (GLP-1) by α cells and acts directly on β cells to stimulate insulin secretion in vitro Uncovering physiologic mechanisms promoting β-cell survival under conditions of inflammation and stress can identify important pathways for diabetes prevention and treatment. Given the established role of GLP-1 in promoting β-cell survival, we hypothesized that IL-6 may also directly protect β cells from apoptosis. Herein, we show that IL-6 robustly activates signal transducer and activator of transcription 3 (STAT3), a transcription factor that is involved in autophagy. IL-6 stimulates LC3 conversion and autophagosome formation in cultured β cells. In vivo IL-6 infusion stimulates a robust increase in lysosomes in the pancreas that is restricted to the islet. Autophagy is critical for β-cell homeostasis, particularly under conditions of stress and increased insulin demand. The stimulation of autophagy by IL-6 is regulated via multiple complementary mechanisms including inhibition of mammalian target of rapamycin complex 1 (mTORC1) and activation of Akt, ultimately leading to increases in autophagy enzyme production. Pretreatment with IL-6 renders β cells resistant to apoptosis induced by proinflammatory cytokines, and inhibition of autophagy with chloroquine prevents the ability of IL-6 to protect from apoptosis. Importantly, we find that IL-6 can activate STAT3 and the autophagy enzyme GABARAPL1 in human islets. We also see evidence of decreased IL-6 pathway signaling in islets from donors with type 2 diabetes. On the basis of our results, we propose direct stimulation of autophagy as a novel mechanism for IL-6-mediated protection of β cells from stress-induced apoptosis.-Linnemann, A. K., Blumer, J., Marasco, M. R., Battiola, T. J., Umhoefer, H. M., Han, J. Y., Lamming, D. W., Davis, D. B. Interleukin 6 protects pancreatic β cells from apoptosis by stimulation of autophagy.
Collapse
Affiliation(s)
- Amelia K Linnemann
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin, USA; .,Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; and
| | - Joseph Blumer
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Michelle R Marasco
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana, USA; and
| | - Therese J Battiola
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Heidi M Umhoefer
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jee Young Han
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dudley W Lamming
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin, USA.,William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Dawn Belt Davis
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, University of Wisconsin-Madison, Madison, Wisconsin, USA.,William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| |
Collapse
|
60
|
Lee PL, Jung SM, Guertin DA. The Complex Roles of Mechanistic Target of Rapamycin in Adipocytes and Beyond. Trends Endocrinol Metab 2017; 28:319-339. [PMID: 28237819 PMCID: PMC5682923 DOI: 10.1016/j.tem.2017.01.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 01/01/2023]
Abstract
Having healthy adipose tissue is essential for metabolic fitness. This is clear from the obesity epidemic, which is unveiling a myriad of comorbidities associated with excess adipose tissue including type 2 diabetes, cardiovascular disease, and cancer. Lipodystrophy also causes insulin resistance, emphasizing the importance of having a balanced amount of fat. In cells, the mechanistic target of rapamycin (mTOR) complexes 1 and 2 (mTORC1 and mTORC2, respectively) link nutrient and hormonal signaling with metabolism, and recent studies are shedding new light on their in vivo roles in adipocytes. In this review, we discuss how recent advances in adipose tissue and mTOR biology are converging to reveal new mechanisms that maintain healthy adipose tissue, and discuss ongoing mysteries of mTOR signaling, particularly for the less understood complex mTORC2.
Collapse
Affiliation(s)
- Peter L Lee
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Su Myung Jung
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
61
|
Kalaitzidis D, Lee D, Efeyan A, Kfoury Y, Nayyar N, Sykes DB, Mercier FE, Papazian A, Baryawno N, Victora GD, Neuberg D, Sabatini DM, Scadden DT. Amino acid-insensitive mTORC1 regulation enables nutritional stress resilience in hematopoietic stem cells. J Clin Invest 2017; 127:1405-1413. [PMID: 28319048 DOI: 10.1172/jci89452] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/24/2017] [Indexed: 01/08/2023] Open
Abstract
The mTOR pathway is a critical determinant of cell persistence and growth wherein mTOR complex 1 (mTORC1) mediates a balance between growth factor stimuli and nutrient availability. Amino acids or glucose facilitates mTORC1 activation by inducing RagA GTPase recruitment of mTORC1 to the lysosomal outer surface, enabling activation of mTOR by the Ras homolog Rheb. Thereby, RagA alters mTORC1-driven growth in times of nutrient abundance or scarcity. Here, we have evaluated differential nutrient-sensing dependence through RagA and mTORC1 in hematopoietic progenitors, which dynamically drive mature cell production, and hematopoietic stem cells (HSC), which provide a quiescent cellular reserve. In nutrient-abundant conditions, RagA-deficient HSC were functionally unimpaired and upregulated mTORC1 via nutrient-insensitive mechanisms. RagA was also dispensable for HSC function under nutritional stress conditions. Similarly, hyperactivation of RagA did not affect HSC function. In contrast, RagA deficiency markedly altered progenitor population function and mature cell output. Therefore, RagA is a molecular mechanism that distinguishes the functional attributes of reactive progenitors from a reserve stem cell pool. The indifference of HSC to nutrient sensing through RagA contributes to their molecular resilience to nutritional stress, a characteristic that is relevant to organismal viability in evolution and in modern HSC transplantation approaches.
Collapse
|
62
|
González A, Hall MN. Nutrient sensing and TOR signaling in yeast and mammals. EMBO J 2017; 36:397-408. [PMID: 28096180 DOI: 10.15252/embj.201696010] [Citation(s) in RCA: 541] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 01/13/2023] Open
Abstract
Coordinating cell growth with nutrient availability is critical for cell survival. The evolutionarily conserved TOR (target of rapamycin) controls cell growth in response to nutrients, in particular amino acids. As a central controller of cell growth, mTOR (mammalian TOR) is implicated in several disorders, including cancer, obesity, and diabetes. Here, we review how nutrient availability is sensed and transduced to TOR in budding yeast and mammals. A better understanding of how nutrient availability is transduced to TOR may allow novel strategies in the treatment for mTOR-related diseases.
Collapse
|
63
|
Amick J, Roczniak-Ferguson A, Ferguson SM. C9orf72 binds SMCR8, localizes to lysosomes, and regulates mTORC1 signaling. Mol Biol Cell 2016; 27:3040-3051. [PMID: 27559131 PMCID: PMC5063613 DOI: 10.1091/mbc.e16-01-0003] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/19/2016] [Indexed: 12/18/2022] Open
Abstract
C9orf72 interacts strongly with SMCR8 and depends on this interaction for its stability. Lysosomes are major sites of C9orf72 subcellular localization, and abnormal lysosome morphology is seen in its absence. Defects are found in the regulation of the lysosome-localized mTORC1 signaling pathway in C9orf72 KO cells. Hexanucleotide expansion in an intron of the C9orf72 gene causes amyotrophic lateral sclerosis and frontotemporal dementia. However, beyond bioinformatics predictions that suggested structural similarity to folliculin, the Birt-Hogg-Dubé syndrome tumor suppressor, little is known about the normal functions of the C9orf72 protein. To address this problem, we used genome-editing strategies to investigate C9orf72 interactions, subcellular localization, and knockout (KO) phenotypes. We found that C9orf72 robustly interacts with SMCR8 (a protein of previously unknown function). We also observed that C9orf72 localizes to lysosomes and that such localization is negatively regulated by amino acid availability. Analysis of C9orf72 KO, SMCR8 KO, and double-KO cell lines revealed phenotypes that are consistent with a function for C9orf72 at lysosomes. These include abnormally swollen lysosomes in the absence of C9orf72 and impaired responses of mTORC1 signaling to changes in amino acid availability (a lysosome-dependent process) after depletion of either C9orf72 or SMCR8. Collectively these results identify strong physical and functional interactions between C9orf72 and SMCR8 and support a lysosomal site of action for this protein complex.
Collapse
Affiliation(s)
- Joseph Amick
- Department of Cell Biology and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Agnes Roczniak-Ferguson
- Department of Cell Biology and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Shawn M Ferguson
- Department of Cell Biology and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
64
|
Chen JH, Huang C, Zhang B, Yin S, Liang J, Xu C, Huang Y, Cen LP, Ng TK, Zheng C, Zhang S, Chen H, Pang CP, Zhang M. Mutations of RagA GTPase in mTORC1 Pathway Are Associated with Autosomal Dominant Cataracts. PLoS Genet 2016; 12:e1006090. [PMID: 27294265 PMCID: PMC4905677 DOI: 10.1371/journal.pgen.1006090] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 05/09/2016] [Indexed: 01/15/2023] Open
Abstract
Cataracts are a significant public health problem with no proven methods for prevention. Discovery of novel disease mechanisms to delineate new therapeutic targets is of importance in cataract prevention and therapy. Herein, we report that mutations in the RagA GTPase (RRAGA), a key regulator of the mechanistic rapamycin complex 1 (mTORC1), are associated with autosomal dominant cataracts. We performed whole exome sequencing in a family with autosomal dominant juvenile-onset cataracts, and identified a novel p.Leu60Arg mutation in RRAGA that co-segregated with the disease, after filtering against the dbSNP database, and at least 123,000 control chromosomes from public and in-house exome databases. In a follow-up direct screening of RRAGA in another 22 families and 142 unrelated patients with congenital or juvenile-onset cataracts, RRAGA was found to be mutated in two unrelated patients (p.Leu60Arg and c.-16G>A respectively). Functional studies in human lens epithelial cells revealed that the RRAGA mutations exerted deleterious effects on mTORC1 signaling, including increased relocation of RRAGA to the lysosomes, up-regulated mTORC1 phosphorylation, down-regulated autophagy, altered cell growth or compromised promoter activity. These data indicate that the RRAGA mutations, associated with autosomal dominant cataracts, play a role in the disease by acting through disruption of mTORC1 signaling. A group of guanine nucleotide-binding molecules called Rag GTPases are known to play a crucial role in regulation of mTORC1 signaling cascade. In the current study, whole exome sequencing has led to the identification of the RagA GTPase (RRAGA) gene for cataracts and we proceeded to study properties of the RRAGA protein. We captured and sequenced the whole exome for four affected patients from a family with autosomal dominant juvenile-onset posterior cataracts, and found a novel rare mutation in RagA GTPase (RRAGA). To validate this finding, we then sequenced more families and patients, and observed RRAGA mutations in unrelated patients with related phenotypes, suggesting that RRAGA could be mutated in congenital and juvenile-onset cataracts. We further demonstrated supporting evidence that in human lens epithelial cells the RRAGA mutations exerted deleterious effects on relocation of RRAGA to the lysosomes, mTORC1 phosphorylation, autophagy and cell growth. This study gives important new insight into the roles of RRAGA and mTROC1 signaling in the etiology of cataracts.
Collapse
Affiliation(s)
- Jian-Huan Chen
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Chukai Huang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Bining Zhang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Shengjie Yin
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Jiajian Liang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Ciyan Xu
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Yuqiang Huang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Ling-Ping Cen
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Tsz-Kin Ng
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Ce Zheng
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Shaobin Zhang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Haoyu Chen
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
| | - Chi-Pui Pang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
- Department of Ophthalmology and Visual Sciences, the Chinese University of Hong Kong, Hong Kong, China
- * E-mail: (CPP); (MZ)
| | - Mingzhi Zhang
- Joint Shantou International Eye Center, Shantou University & the Chinese University of Hong Kong, Shantou, China
- * E-mail: (CPP); (MZ)
| |
Collapse
|
65
|
Abstract
Sestrins are highly conserved, stress-inducible proteins that inhibit target of rapamycin complex 1 (TORC1) signaling. After their transcriptional induction, both vertebrate and invertebrate Sestrins turn on the adenosine monophosphate (AMP)-activated protein kinase (AMPK), which activates the tuberous sclerosis complex (TSC), a key inhibitor of TORC1 activation. However, Sestrin overexpression, on occasion, can result in TORC1 inhibition even in AMPK-deficient cells. This effect has been attributed to Sestrin's ability to bind the TORC1-regulating GATOR2 protein complex, which was postulated to control trafficking of TORC1 to lysosomes. How the binding of Sestrins to GATOR2 is regulated and how it contributes to TORC1 inhibition are unknown. New findings suggest that the amino acid leucine specifically disrupts the association of Sestrin2 with GATOR2, thus explaining how leucine and related amino acids stimulate TORC1 activity. We discuss whether and how these findings fit what has already been learned about Sestrin-mediated TORC1 inhibition from genetic studies conducted in fruit flies and mammals.
Collapse
Affiliation(s)
- Jun Hee Lee
- Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Uhn-Soo Cho
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael Karin
- Departments of Pharmacology and Pathology, University of California, San Diego, School of Medicine, La Jolla, CA 92093-0723, USA.
| |
Collapse
|
66
|
Abstract
Cell metabolism and growth are matched to nutrient availability via the amino-acid-regulated mechanistic target of rapamycin complex 1 (mTORC1). Transporters have emerged as important amino acid sensors controlling mTOR recruitment and activation at the surface of multiple intracellular compartments. Classically, this has involved late endosomes and lysosomes, but now, in a recent twist, also the Golgi apparatus. Here we propose a model in which specific amino acids in assorted compartments activate different mTORC1 complexes, which may have distinct drug sensitivities and functions. We will discuss the implications of this for mTORC1 function in health and disease.
Collapse
Affiliation(s)
- Deborah C I Goberdhan
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK.
| | - Clive Wilson
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | - Adrian L Harris
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| |
Collapse
|
67
|
Marsan E, Ishida S, Schramm A, Weckhuysen S, Muraca G, Lecas S, Liang N, Treins C, Pende M, Roussel D, Le Van Quyen M, Mashimo T, Kaneko T, Yamamoto T, Sakuma T, Mahon S, Miles R, Leguern E, Charpier S, Baulac S. Depdc5 knockout rat: A novel model of mTORopathy. Neurobiol Dis 2016; 89:180-9. [PMID: 26873552 DOI: 10.1016/j.nbd.2016.02.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/07/2016] [Indexed: 12/23/2022] Open
Abstract
DEP-domain containing 5 (DEPDC5), encoding a repressor of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, has recently emerged as a major gene mutated in familial focal epilepsies and focal cortical dysplasia. Here we established a global knockout rat using TALEN technology to investigate in vivo the impact of Depdc5-deficiency. Homozygous Depdc5(-/-) embryos died from embryonic day 14.5 due to a global growth delay. Constitutive mTORC1 hyperactivation was evidenced in the brains and in cultured fibroblasts of Depdc5(-/-) embryos, as reflected by enhanced phosphorylation of its downstream effectors S6K1 and rpS6. Consistently, prenatal treatment with mTORC1 inhibitor rapamycin rescued the phenotype of Depdc5(-/-) embryos. Heterozygous Depdc5(+/-) rats developed normally and exhibited no spontaneous electroclinical seizures, but had altered cortical neuron excitability and firing patterns. Depdc5(+/-) rats displayed cortical cytomegalic dysmorphic neurons and balloon-like cells strongly expressing phosphorylated rpS6, indicative of mTORC1 upregulation, and not observed after prenatal rapamycin treatment. These neuropathological abnormalities are reminiscent of the hallmark brain pathology of human focal cortical dysplasia. Altogether, Depdc5 knockout rats exhibit multiple features of rodent models of mTORopathies, and thus, stand as a relevant model to study their underlying pathogenic mechanisms.
Collapse
Affiliation(s)
- Elise Marsan
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Saeko Ishida
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Adrien Schramm
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Sarah Weckhuysen
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Giuseppe Muraca
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Sarah Lecas
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Ning Liang
- Institut Necker-Enfants Malades, CS 61431, Paris, France; INSERM, U1151, F-75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Caroline Treins
- Institut Necker-Enfants Malades, CS 61431, Paris, France; INSERM, U1151, F-75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Mario Pende
- Institut Necker-Enfants Malades, CS 61431, Paris, France; INSERM, U1151, F-75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Delphine Roussel
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Michel Le Van Quyen
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Tomoji Mashimo
- Institute of Experimental Animal Sciences, Graduate School of Medicine, Osaka University, Suita 565-0871, Japan
| | - Takehito Kaneko
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Séverine Mahon
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Richard Miles
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Eric Leguern
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Department of Genetics, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France
| | - Stéphane Charpier
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France
| | - Stéphanie Baulac
- INSERM, U1127, ICM, F-75013 Paris, France; CNRS, UMR 7225, ICM, F-75013 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, F-75013 Paris, France; Department of Genetics, Pitié-Salpêtrière Hospital, Public Hospital Network of Paris, Paris, France.
| |
Collapse
|
68
|
Shen K, Sidik H, Talbot WS. The Rag-Ragulator Complex Regulates Lysosome Function and Phagocytic Flux in Microglia. Cell Rep 2016; 14:547-559. [PMID: 26774477 PMCID: PMC4731305 DOI: 10.1016/j.celrep.2015.12.055] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/24/2015] [Accepted: 12/09/2015] [Indexed: 01/07/2023] Open
Abstract
Microglia are resident macrophages of the CNS that are essential for phagocytosis of apoptotic neurons and weak synapses during development. We show that RagA and Lamtor4, two components of the Rag-Ragulator complex, are essential regulators of lysosomes in microglia. In zebrafish lacking RagA function, microglia exhibit an expanded lysosomal compartment, but they are unable to properly digest apoptotic neuronal debris. Previous biochemical studies have placed the Rag-Ragulator complex upstream of mTORC1 activation in response to cellular nutrient availability. Nonetheless, RagA and mTOR mutant zebrafish have distinct phenotypes, indicating that the Rag-Ragulator complex has functions independent of mTOR signaling. Our analysis reveals an essential role of the Rag-Ragulator complex in proper lysosome function and phagocytic flux in microglia.
Collapse
Affiliation(s)
- Kimberle Shen
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Harwin Sidik
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William S Talbot
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
69
|
Abstract
Rag small GTPases were identified as the sixth subfamily of Ras-related GTPases. Compelling evidence suggests that Rag heterodimer (RagA/B and RagC/D) plays an important role in amino acid signaling toward mechanistic target of rapamycin complex 1 (mTORC1), which is a central player in the control of cell growth in response to a variety of environmental cues, including growth factors, cellular energy/oxygen status, and amino acids. Upon amino acid stimulation, active Rag heterodimer (RagA/B(GTP)-RagC/D(GDP)) recruits mTORC1 to the lysosomal membrane where Rheb resides. In this review, we provide a current understanding on the amino acid-regulated cell growth control via Rag-mTORC1 with recently identified key players, including Ragulator, v-ATPase, and GATOR complexes. Moreover, the functions of Rag in physiological systems and in autophagy are discussed.
Collapse
|
70
|
Abstract
The evolutionarily conserved target of rapamycin complex 1 (TORC1) is a master regulator of cell growth and metabolism. In mammals, growth factors and cellular energy stimulate mTORC1 activity through inhibition of the TSC complex (TSC1-TSC2-TBC1D7), a negative regulator of mTORC1. Amino acids signal to mTORC1 independently of the TSC complex. Here, we review recently identified regulators that link amino acid sufficiency to mTORC1 activity and how mutations affecting these regulators cause human disease.
Collapse
|
71
|
Meijer AJ, Lorin S, Blommaart EF, Codogno P. Regulation of autophagy by amino acids and MTOR-dependent signal transduction. Amino Acids 2015; 47:2037-63. [PMID: 24880909 PMCID: PMC4580722 DOI: 10.1007/s00726-014-1765-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 05/12/2014] [Indexed: 01/05/2023]
Abstract
Amino acids not only participate in intermediary metabolism but also stimulate insulin-mechanistic target of rapamycin (MTOR)-mediated signal transduction which controls the major metabolic pathways. Among these is the pathway of autophagy which takes care of the degradation of long-lived proteins and of the elimination of damaged or functionally redundant organelles. Proper functioning of this process is essential for cell survival. Dysregulation of autophagy has been implicated in the etiology of several pathologies. The history of the studies on the interrelationship between amino acids, MTOR signaling and autophagy is the subject of this review. The mechanisms responsible for the stimulation of MTOR-mediated signaling, and the inhibition of autophagy, by amino acids have been studied intensively in the past but are still not completely clarified. Recent developments in this field are discussed.
Collapse
Affiliation(s)
- Alfred J Meijer
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands.
| | - Séverine Lorin
- UPRES EA4530, Université Paris-Sud, Faculté de Pharmacie, 5 rue Jean-Baptiste Clément, 92296, Châtenay-Malabry Cedex, France
| | - Edward F Blommaart
- Department of Medical Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | - Patrice Codogno
- INSERM U1151-CNRS UMR 8253, Université Paris Descartes, 14 rue Maria Helena Vieira Da Silva CS61431, 75993, Paris Cedex 14, France
| |
Collapse
|
72
|
Amino Acid Activation of mTORC1 by a PB1-Domain-Driven Kinase Complex Cascade. Cell Rep 2015; 12:1339-52. [PMID: 26279575 DOI: 10.1016/j.celrep.2015.07.045] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/08/2015] [Accepted: 07/23/2015] [Indexed: 12/24/2022] Open
Abstract
The mTORC1 complex is central to the cellular response to changes in nutrient availability. The signaling adaptor p62 contributes to mTORC1 activation in response to amino acids and interacts with TRAF6, which is required for the translocation of mTORC1 to the lysosome and the subsequent K63 polyubiquitination and activation of mTOR. However, the signal initiating these p62-driven processes was previously unknown. Here, we show that p62 is phosphorylated via a cascade that includes MEK3/6 and p38δ and is driven by the PB1-containing kinase MEKK3. This phosphorylation results in the recruitment of TRAF6 to p62, the ubiquitination and activation of mTOR, and the regulation of autophagy and cell proliferation. Genetic inactivation of MEKK3 or p38δ mimics that of p62 in that it leads to inhibited growth of PTEN-deficient prostate organoids. Analysis of human prostate cancer samples showed upregulation of these three components of the pathway, which correlated with enhanced mTORC1 activation.
Collapse
|
73
|
Ferguson SM. Beyond indigestion: emerging roles for lysosome-based signaling in human disease. Curr Opin Cell Biol 2015; 35:59-68. [PMID: 25950843 DOI: 10.1016/j.ceb.2015.04.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/16/2015] [Accepted: 04/19/2015] [Indexed: 01/01/2023]
Abstract
Lysosomes are becoming increasingly recognized as a hub that integrates diverse signals in order to control multiple aspects of cell physiology. This is illustrated by the discovery of a growing number of lysosome-localized proteins that respond to changes in growth factor and nutrient availability to regulate mTORC1 signaling as well as the identification of MiT/TFE transcription factors (MITF, TFEB and TFE3) as proteins that shuttle between lysosomes and the nucleus to elicit a transcriptional response to ongoing changes in lysosome status. These findings have been paralleled by advances in human genetics that connect mutations in genes involved in lysosomal signaling to a broad range of human illnesses ranging from cancer to neurological disease. This review summarizes these new discoveries at the interface between lysosome cell biology and human disease.
Collapse
Affiliation(s)
- Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, United States; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510, United States.
| |
Collapse
|
74
|
Sestrin2 inhibits mTORC1 through modulation of GATOR complexes. Sci Rep 2015; 5:9502. [PMID: 25819761 PMCID: PMC4377584 DOI: 10.1038/srep09502] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 03/10/2015] [Indexed: 01/13/2023] Open
Abstract
Sestrins are stress-inducible metabolic regulators that suppress a wide range of age- and obesity-associated pathologies, many of which are due to mTORC1 overactivation. Upon various stresses, the Sestrins inhibit mTORC1 activity through an indirect mechanism that is still unclear. GATORs are recently identified protein complexes that regulate the activity of RagB, a small GTPase essential for mTORC1 activation. GATOR1 is a GTPase activating protein (GAP) for RagB whereas GATOR2 functions as an inhibitor of GATOR1. However, how the GATORs are physiologically regulated is unknown. Here we show that Sestrin2 binds to GATOR2, and liberates GATOR1 from GATOR2-mediated inhibition. Released GATOR1 subsequently binds to and inactivates RagB, ultimately resulting in mTORC1 suppression. Consistent with this biochemical mechanism, genetic ablation of GATOR1 nullifies the mTORC1-inhibiting effect of Sestrin2 in both cell culture and Drosophila models. Collectively, we elucidate a new signaling cascade composed of Sestrin2-GATOR2-GATOR1-RagB that mediates stress-dependent suppression of mTORC1 activity.
Collapse
|
75
|
Abstract
mTOR, a serine/threonine kinase, is a master regulator of cellular metabolism. mTOR regulates cell growth and proliferation in response to a wide range of cues, and its signaling pathway is deregulated in many human diseases. mTOR also plays a crucial role in regulating autophagy. This Review provides an overview of the mTOR signaling pathway, the mechanisms of mTOR in autophagy regulation, and the clinical implications of mTOR inhibitors in disease treatment.
Collapse
|
76
|
Xu K, Liu P, Wei W. mTOR signaling in tumorigenesis. Biochim Biophys Acta Rev Cancer 2014; 1846:638-54. [PMID: 25450580 DOI: 10.1016/j.bbcan.2014.10.007] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/23/2014] [Accepted: 10/25/2014] [Indexed: 12/25/2022]
Abstract
mTOR (the mechanistic target of rapamycin) is an atypical serine/threonine kinase involved in regulating major cellular functions including growth and proliferation. Deregulation of the mTOR signaling pathway is one of the most commonly observed pathological alterations in human cancers. To this end, oncogenic activation of the mTOR signaling pathway contributes to cancer cell growth, proliferation and survival, highlighting the potential for targeting the oncogenic mTOR pathway members as an effective anti-cancer strategy. In order to do so, a thorough understanding of the physiological roles of key mTOR signaling pathway components and upstream regulators would guide future targeted therapies. Thus, in this review, we summarize available genetic mouse models for mTORC1 and mTORC2 components, as well as characterized mTOR upstream regulators and downstream targets, and assign a potential oncogenic or tumor suppressive role for each evaluated molecule. Together, our work will not only facilitate the current understanding of mTOR biology and possible future research directions, but more importantly, provide a molecular basis for targeted therapies aiming at key oncogenic members along the mTOR signaling pathway.
Collapse
Affiliation(s)
- Kai Xu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Pengda Liu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
77
|
Rag GTPases are cardioprotective by regulating lysosomal function. Nat Commun 2014; 5:4241. [PMID: 24980141 PMCID: PMC4100214 DOI: 10.1038/ncomms5241] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 05/28/2014] [Indexed: 12/17/2022] Open
Abstract
The Rag family proteins are Ras-like small GTPases that have a critical role in amino-acid-stimulated mTORC1 activation by recruiting mTORC1 to lysosome. Despite progress in the mechanistic understanding of Rag GTPases in mTORC1 activation, little is known about the physiological function of Rag GTPases in vivo. Here we show that loss of RagA and RagB (RagA/B) in cardiomyocytes results in hypertrophic cardiomyopathy and phenocopies lysosomal storage diseases, although mTORC1 activity is not substantially impaired in vivo. We demonstrate that despite upregulation of lysosomal protein expression by constitutive activation of the transcription factor EB (TFEB) in RagA/B knockout mouse embryonic fibroblasts, lysosomal acidification is compromised owing to decreased v-ATPase level in the lysosome fraction. Our study uncovers RagA/B GTPases as key regulators of lysosomal function and cardiac protection.
Collapse
|