51
|
Abstract
Myelin is a key evolutionary specialization and adaptation of vertebrates formed by the plasma membrane of glial cells, which insulate axons in the nervous system. Myelination not only allows rapid and efficient transmission of electric impulses in the axon by decreasing capacitance and increasing resistance but also influences axonal metabolism and the plasticity of neural circuits. In this review, we will focus on Schwann cells, the glial cells which form myelin in the peripheral nervous system. Here, we will describe the main extrinsic and intrinsic signals inducing Schwann cell differentiation and myelination and how myelin biogenesis is achieved. Finally, we will also discuss how the study of human disorders in which molecules and pathways relevant for myelination are altered has enormously contributed to the current knowledge on myelin biology.
Collapse
Affiliation(s)
- Alessandra Bolino
- Human Inherited Neuropathies Unit, Institute of Experimental Neurology INSPE, Division of Neuroscience, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
52
|
Shimizu T, Murakoshi H, Matsumoto H, Ichino K, Hattori A, Ueno S, Ishida A, Tajiri N, Hida H. Tension Sensor Based on Fluorescence Resonance Energy Transfer Reveals Fiber Diameter-Dependent Mechanical Factors During Myelination. Front Cell Neurosci 2021; 15:685044. [PMID: 34408628 PMCID: PMC8364977 DOI: 10.3389/fncel.2021.685044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/13/2021] [Indexed: 11/15/2022] Open
Abstract
Oligodendrocytes (OLs) form a myelin sheath around neuronal axons to increase conduction velocity of action potential. Although both large and small diameter axons are intermingled in the central nervous system (CNS), the number of myelin wrapping is related to the axon diameter, such that the ratio of the diameter of the axon to that of the entire myelinated-axon unit is optimal for each axon, which is required for exerting higher brain functions. This indicates there are unknown axon diameter-dependent factors that control myelination. We tried to investigate physical factors to clarify the mechanisms underlying axon diameter-dependent myelination. To visualize OL-generating forces during myelination, a tension sensor based on fluorescence resonance energy transfer (FRET) was used. Polystyrene nanofibers with varying diameters similar to neuronal axons were prepared to investigate biophysical factors regulating the OL-axon interactions. We found that higher tension was generated at OL processes contacting larger diameter fibers compared with smaller diameter fibers. Additionally, OLs formed longer focal adhesions (FAs) on larger diameter axons and shorter FAs on smaller diameter axons. These results suggest that OLs respond to the fiber diameter and activate mechanotransduction initiated at FAs, which controls their cytoskeletal organization and myelin formation. This study leads to the novel and interesting idea that physical factors are involved in myelin formation in response to axon diameter.
Collapse
Affiliation(s)
- Takeshi Shimizu
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hideji Murakoshi
- Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan.,Department of Physiological Sciences, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Hidetoshi Matsumoto
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Meguro, Japan
| | - Kota Ichino
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Meguro, Japan
| | - Atsunori Hattori
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Shinya Ueno
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akimasa Ishida
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Naoki Tajiri
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hideki Hida
- Department of Neurophysiology and Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
53
|
Dysregulation of myelin synthesis and actomyosin function underlies aberrant myelin in CMT4B1 neuropathy. Proc Natl Acad Sci U S A 2021; 118:2009469118. [PMID: 33653949 DOI: 10.1073/pnas.2009469118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Charcot-Marie-Tooth type 4B1 (CMT4B1) is a severe autosomal recessive demyelinating neuropathy with childhood onset, caused by loss-of-function mutations in the myotubularin-related 2 (MTMR2) gene. MTMR2 is a ubiquitously expressed catalytically active 3-phosphatase, which in vitro dephosphorylates the 3-phosphoinositides PtdIns3P and PtdIns(3,5)P 2, with a preference for PtdIns(3,5)P 2 A hallmark of CMT4B1 neuropathy are redundant loops of myelin in the nerve termed myelin outfoldings, which can be considered the consequence of altered growth of myelinated fibers during postnatal development. How MTMR2 loss and the resulting imbalance of 3'-phosphoinositides cause CMT4B1 is unknown. Here we show that MTMR2 by regulating PtdIns(3,5)P 2 levels coordinates mTORC1-dependent myelin synthesis and RhoA/myosin II-dependent cytoskeletal dynamics to promote myelin membrane expansion and longitudinal myelin growth. Consistent with this, pharmacological inhibition of PtdIns(3,5)P 2 synthesis or mTORC1/RhoA signaling ameliorates CMT4B1 phenotypes. Our data reveal a crucial role for MTMR2-regulated lipid turnover to titrate mTORC1 and RhoA signaling thereby controlling myelin growth.
Collapse
|
54
|
Melo PN, Souza da Silveira M, Mendes Pinto I, Relvas JB. Morphofunctional programming of microglia requires distinct roles of type II myosins. Glia 2021; 69:2717-2738. [PMID: 34329508 DOI: 10.1002/glia.24067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 11/05/2022]
Abstract
The ramified morphology of microglia and the dynamics of their membrane protrusions are essential for their functions in central nervous system development, homeostasis, and disease. Although their ability to change and control shape critically depends on the actin and actomyosin cytoskeleton, the underlying regulatory mechanisms remain largely unknown. In this study, we systematically analyzed the actomyosin cytoskeleton and regulators downstream of the small GTPase RhoA in the control of microglia shape and function. Our results reveal that (i) Myh9 controls cortical tension levels and affects microglia protrusion formation, (ii) cofilin-mediated maintenance of actin turnover regulates microglia protrusion extension, and (iii) Myh10 influences microglia inflammatory activation. Overall we uncover molecular pathways that regulate microglia morphology and identify type-II myosins as important regulators of microglia biology with differential roles in the control of cell shape (Myh9) and functions (Myh10).
Collapse
Affiliation(s)
- Pedro Neves Melo
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal.,Graduate Programme in Areas of Basic and Applied Biology (GABBA), Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Mariana Souza da Silveira
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal.,Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Inês Mendes Pinto
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal.,Life Sciences, International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - João Bettencourt Relvas
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.,Department of Biomedicine, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
55
|
Ghelman J, Grewing L, Windener F, Albrecht S, Zarbock A, Kuhlmann T. SKAP2 as a new regulator of oligodendroglial migration and myelin sheath formation. Glia 2021; 69:2699-2716. [PMID: 34324225 DOI: 10.1002/glia.24066] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
Oligodendroglial progenitor cells (OPCs) are highly proliferative and migratory cells, which differentiate into complex myelin forming and axon ensheathing mature oligodendrocytes during myelination. Recent studies indicate that the oligodendroglial cell population is heterogeneous on transcriptional and functional level depending on the location in the central nervous system. Here, we compared intrinsic properties of OPC from spinal cord and brain on functional and transcriptional level. Spinal cord OPC demonstrated increased migration as well as differentiation capacity. Moreover, transcriptome analysis revealed differential expression of several genes between both OPC populations. In spinal cord OPC, we confirmed upregulation of SKAP2, a cytoplasmatic adaptor protein known for its implication in cytoskeletal remodeling and migration in other cell types. Recent findings suggest that actin dynamics determine not only oligodendroglial migration, but also differentiation: Whereas actin polymerization is important for process extension, actin destabilization and depolymerization is required for myelin sheath formation. Downregulation or complete lack of SKAP2 in OPC resulted in reduced migration and impaired morphological maturation in oligodendrocytes. In contrast, overexpression of SKAP2 as well as constitutively active SKAP2 increased OPC migration suggesting that SKAP2 function is dependent on activation by phosphorylation. Furthermore, lack of SKAP2 enhanced the positive effect on OPC migration after integrin activation suggesting that SKAP2 acts as modulator of integrin dependent migration. In summary, we demonstrate the presence of intrinsic differences between spinal cord and brain OPC and identified SKAP2 as a new regulator of oligodendroglial migration and sheath formation.
Collapse
Affiliation(s)
- Julia Ghelman
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| | - Laureen Grewing
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| | - Farina Windener
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| | - Stefanie Albrecht
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care, and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
56
|
Ru X, Gao L, Zhou J, Li Q, Zuo S, Chen Y, Liu Z, Feng H. Secondary White Matter Injury and Therapeutic Targets After Subarachnoid Hemorrhage. Front Neurol 2021; 12:659740. [PMID: 34335439 PMCID: PMC8319471 DOI: 10.3389/fneur.2021.659740] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/11/2021] [Indexed: 01/19/2023] Open
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) is one of the special stroke subtypes with high mortality and mobility. Although the mortality of SAH has decreased by 50% over the past two decades due to advances in neurosurgery and management of neurocritical care, more than 70% of survivors suffer from varying degrees of neurological deficits and cognitive impairments, leaving a heavy burden on individuals, families, and the society. Recent studies have shown that white matter is vulnerable to SAH, and white matter injuries may be one of the causes of long-term neurological deficits caused by SAH. Attention has recently focused on the pivotal role of white matter injury in the pathophysiological processes after SAH, mainly related to mechanical damage caused by increased intracerebral pressure and the metabolic damage induced by blood degradation and hypoxia. In the present review, we sought to summarize the pathophysiology processes and mechanisms of white matter injury after SAH, with a view to providing new strategies for the prevention and treatment of long-term cognitive dysfunction after SAH.
Collapse
Affiliation(s)
- Xufang Ru
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Ling Gao
- Department of General Practice, Audio-Visual Education Center, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiru Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiang Li
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Shilun Zuo
- Department of Neurology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yujie Chen
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhi Liu
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hua Feng
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Neurosurgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.,Chongqing Key Laboratory of Precision Neuromedicine and Neuroregenaration, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
57
|
Binamé F, Pham-Van LD, Bagnard D. Manipulating oligodendrocyte intrinsic regeneration mechanism to promote remyelination. Cell Mol Life Sci 2021; 78:5257-5273. [PMID: 34019104 PMCID: PMC11073109 DOI: 10.1007/s00018-021-03852-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
In demyelinated lesions, astrocytes, activated microglia and infiltrating macrophages secrete several factors regulating oligodendrocyte precursor cells' behaviour. What appears to be the initiation of an intrinsic mechanism of myelin repair is only leading to partial recovery and inefficient remyelination, a process worsening over the course of the disease. This failure is largely due to the concomitant accumulation of inhibitory cues in and around the lesion sites opposing to growth promoting factors. Here starts a complex game of interactions between the signalling pathways controlling oligodendrocytes migration or differentiation. Receptors of positive or negative cues are modulating Ras, PI3K or RhoGTPases pathways acting on oligodendrocyte cytoskeleton remodelling. From the description of this intricate signalling network, this review addresses the extent to which the modulation of the global response to inhibitory cues may pave the route towards novel therapeutic approaches for myelin repair.
Collapse
Affiliation(s)
- Fabien Binamé
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France
| | - Lucas D Pham-Van
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France
| | - Dominique Bagnard
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France.
| |
Collapse
|
58
|
Marinval N, Chew SY. Mechanotransduction assays for neural regeneration strategies: A focus on glial cells. APL Bioeng 2021; 5:021505. [PMID: 33948526 PMCID: PMC8088332 DOI: 10.1063/5.0037814] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/19/2021] [Indexed: 01/22/2023] Open
Abstract
Glial cells are mechanosensitive, and thus, engineered systems have taken a step forward to design mechanotransduction platforms in order to impart diverse mechanical stresses to cells. Mechanical strain encountered in the central nervous system can arise from diverse mechanisms, such as tissue reorganization, fluid flow, and axon growth, as well as pathological events including axon swelling or mechanical trauma. Biomechanical relevance of the in vitro mechanical testing requires to be placed in line with the physiological and mechanical changes in central nervous tissues that occur during the progression of neurodegenerative diseases. Mechanotransduction signaling utilized by glial cells and the recent approaches intended to model altered microenvironment adapted to pathological context are discussed in this review. New insights in systems merging substrate's stiffness and topography should be considered for further glial mechanotransduction studies, while testing platforms for drug discoveries promise great advancements in pharmacotherapy. Potential leads and strategies for clinical outcomes are expected to be developed following the exploration of these glial mechanosensitive signaling pathways.
Collapse
Affiliation(s)
- Nicolas Marinval
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459
| | - Sing Yian Chew
- Author to whom correspondence should be addressed: . Tel.: +65 6316 8812. Fax: +65 6794 7553
| |
Collapse
|
59
|
Morris AD, Kucenas S. A Novel Lysolecithin Model for Visualizing Damage in vivo in the Larval Zebrafish Spinal Cord. Front Cell Dev Biol 2021; 9:654583. [PMID: 34095120 PMCID: PMC8173112 DOI: 10.3389/fcell.2021.654583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 04/15/2021] [Indexed: 12/05/2022] Open
Abstract
Background: Lysolecithin is commonly used to induce demyelinating lesions in the spinal cord and corpus callosum of mammalian models. Although these models and clinical patient samples are used to study neurodegenerative diseases, such as multiple sclerosis (MS), they do not allow for direct visualization of disease-related damage in vivo. To overcome this limitation, we created and characterized a focal lysolecithin injection model in zebrafish that allows us to investigate the temporal dynamics underlying lysolecithin-induced damage in vivo. Results: We injected lysolecithin into 4-6 days post-fertilization (dpf) zebrafish larval spinal cords and, coupled with in vivo, time-lapse imaging, observed hallmarks consistent with mammalian models of lysolecithin-induced demyelination, including myelinating glial cell loss, myelin perturbations, axonal sparing, and debris clearance. Conclusion: We have developed and characterized a lysolecithin injection model in zebrafish that allows us to investigate myelin damage in a living, vertebrate organism. This model may be a useful pre-clinical screening tool for investigating the safety and efficacy of novel therapeutic compounds that reduce damage and/or promote repair in neurodegenerative disorders, such as MS.
Collapse
Affiliation(s)
- Angela D. Morris
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, United States
| | - Sarah Kucenas
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, United States
- Department of Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
60
|
Protein Kinase C Activation Drives a Differentiation Program in an Oligodendroglial Precursor Model through the Modulation of Specific Biological Networks. Int J Mol Sci 2021; 22:ijms22105245. [PMID: 34063504 PMCID: PMC8156399 DOI: 10.3390/ijms22105245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 02/03/2023] Open
Abstract
Protein kinase C (PKC) activation induces cellular reprogramming and differentiation in various cell models. Although many effectors of PKC physiological actions have been elucidated, the molecular mechanisms regulating oligodendrocyte differentiation after PKC activation are still unclear. Here, we applied a liquid chromatography–mass spectrometry (LC–MS/MS) approach to provide a comprehensive analysis of the proteome expression changes in the MO3.13 oligodendroglial cell line after PKC activation. Our findings suggest that multiple networks that communicate and coordinate with each other may finally determine the fate of MO3.13 cells, thus identifying a modular and functional biological structure. In this work, we provide a detailed description of these networks and their participating components and interactions. Such assembly allows perturbing each module, thus describing its physiological significance in the differentiation program. We applied this approach by targeting the Rho-associated protein kinase (ROCK) in PKC-activated cells. Overall, our findings provide a resource for elucidating the PKC-mediated network modules that contribute to a more robust knowledge of the molecular dynamics leading to this cell fate transition.
Collapse
|
61
|
Bénardais K, Delfino G, Samama B, Devys D, Antal MC, Ghandour MS, Boehm N. BBS4 protein has basal body/ciliary localization in sensory organs but extra-ciliary localization in oligodendrocytes during human development. Cell Tissue Res 2021; 385:37-48. [PMID: 33860840 DOI: 10.1007/s00441-021-03440-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 02/18/2021] [Indexed: 10/25/2022]
Abstract
Bardet-Biedl syndrome protein 4 (BBS4) localization has been studied in human embryos/fetuses from Carnegie stage 15 to 37 gestational weeks in neurosensory organs and brain, underlying the major clinical signs of BBS. We observed a correlation between the differentiation of the neurosensory cells (hair cells, photoreceptors, olfactory neurons) and the presence of a punctate BBS4 immunostaining in their apical cytoplasm. In the brain, BBS4 was localized in oligodendrocytes and myelinated tracts. In individual myelinated fibers, BBS4 immunolabelling was discontinuous, predominantly at the periphery of the myelin sheath. BBS4 immunolabelling was confirmed in postnatal developing white matter tracts in mouse as well as in mouse oligodendrocytes cultures. In neuroblasts/neurons, BBS4 was only present in reelin-expressing Cajal-Retzius cells. Our results show that BBS4, a protein of the BBSome, has both basal body/ciliary localization in neurosensory organs but extra-ciliary localization in oligodendrocytes. The presence of BBS4 in developing oligodendrocytes and myelin described in the present paper might attribute a new role to this protein, requiring further investigation in the field of myelin formation.
Collapse
Affiliation(s)
- K Bénardais
- ICube Laboratory, UMR 7357, Team IMIS, Strasbourg, France. .,Institut d'Histologie, Service Central de Microscopie Electronique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France. .,Fédération de Médecine Translationnelle de Strasbourg FMTS, Strasbourg, France. .,Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| | - G Delfino
- ICube Laboratory, UMR 7357, Team IMIS, Strasbourg, France.,Institut d'Histologie, Service Central de Microscopie Electronique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France
| | - B Samama
- ICube Laboratory, UMR 7357, Team IMIS, Strasbourg, France.,Institut d'Histologie, Service Central de Microscopie Electronique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg FMTS, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - D Devys
- Fédération de Médecine Translationnelle de Strasbourg FMTS, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique Et de Biologie Moléculaire Et Cellulaire IGBMC, UMR7104, Centre National de La Recherche Scientifique (CNRS, Illkirch, France
| | - M C Antal
- ICube Laboratory, UMR 7357, Team IMIS, Strasbourg, France.,Institut d'Histologie, Service Central de Microscopie Electronique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg FMTS, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - M S Ghandour
- ICube Laboratory, UMR 7357, Team IMIS, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg FMTS, Strasbourg, France
| | - N Boehm
- ICube Laboratory, UMR 7357, Team IMIS, Strasbourg, France.,Institut d'Histologie, Service Central de Microscopie Electronique, Faculté de Médecine, Université de Strasbourg, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg FMTS, Strasbourg, France.,Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
62
|
Fletcher JL, Makowiecki K, Cullen CL, Young KM. Oligodendrogenesis and myelination regulate cortical development, plasticity and circuit function. Semin Cell Dev Biol 2021; 118:14-23. [PMID: 33863642 DOI: 10.1016/j.semcdb.2021.03.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022]
Abstract
During cortical development and throughout adulthood, oligodendrocytes add myelin internodes to glutamatergic projection neurons and GABAergic inhibitory neurons. In addition to directing node of Ranvier formation, to enable saltatory conduction and influence action potential transit time, oligodendrocytes support axon health by communicating with axons via the periaxonal space and providing metabolic support that is particularly critical for healthy ageing. In this review we outline the timing of oligodendrogenesis in the developing mouse and human cortex and describe the important role that oligodendrocytes play in sustaining and modulating neuronal function. We also provide insight into the known and speculative impact that myelination has on cortical axons and their associated circuits during the developmental critical periods and throughout life, particularly highlighting their life-long role in learning and remembering.
Collapse
Affiliation(s)
- Jessica L Fletcher
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Kalina Makowiecki
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Carlie L Cullen
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Kaylene M Young
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.
| |
Collapse
|
63
|
Balestri S, Del Giovane A, Sposato C, Ferrarelli M, Ragnini-Wilson A. The Current Challenges for Drug Discovery in CNS Remyelination. Int J Mol Sci 2021; 22:ijms22062891. [PMID: 33809224 PMCID: PMC8001072 DOI: 10.3390/ijms22062891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
The myelin sheath wraps around axons, allowing saltatory currents to be transmitted along neurons. Several genetic, viral, or environmental factors can damage the central nervous system (CNS) myelin sheath during life. Unless the myelin sheath is repaired, these insults will lead to neurodegeneration. Remyelination occurs spontaneously upon myelin injury in healthy individuals but can fail in several demyelination pathologies or as a consequence of aging. Thus, pharmacological intervention that promotes CNS remyelination could have a major impact on patient’s lives by delaying or even preventing neurodegeneration. Drugs promoting CNS remyelination in animal models have been identified recently, mostly as a result of repurposing phenotypical screening campaigns that used novel oligodendrocyte cellular models. Although none of these have as yet arrived in the clinic, promising candidates are on the way. Many questions remain. Among the most relevant is the question if there is a time window when remyelination drugs should be administrated and why adult remyelination fails in many neurodegenerative pathologies. Moreover, a significant challenge in the field is how to reconstitute the oligodendrocyte/axon interaction environment representative of healthy as well as disease microenvironments in drug screening campaigns, so that drugs can be screened in the most appropriate disease-relevant conditions. Here we will provide an overview of how the field of in vitro models developed over recent years and recent biological findings about how oligodendrocytes mature after reactivation of their staminal niche. These data have posed novel questions and opened new views about how the adult brain is repaired after myelin injury and we will discuss how these new findings might change future drug screening campaigns for CNS regenerative drugs.
Collapse
|
64
|
Miyamoto Y, Torii T, Terao M, Takada S, Tanoue A, Katoh H, Yamauchi J. Rnd2 differentially regulates oligodendrocyte myelination at different developmental periods. Mol Biol Cell 2021; 32:769-787. [PMID: 33596091 PMCID: PMC8108512 DOI: 10.1091/mbc.e20-05-0332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In the CNS, oligodendrocyte precursor cells differentiate into oligodendrocytes to wrap their plasma membranes around neuronal axons, generating mature neural networks with myelin sheaths according to spatial and temporal patterns. While myelination is known to be one of the most dynamic cell morphological changes, the overall intrinsic and extrinsic molecular cues controlling myelination remain to be fully clarified. Here, we describe the biphasic roles of Rnd2, an atypical branch of the Rho family GTPase, in oligodendrocyte myelination during development and after maturation in mice. Compared with littermate controls, oligodendrocyte-specific Rnd2 knockout mice exhibit decreased myelin thickness at the onset of myelination but increased myelin thickness in the later period. Larger proportions of Rho kinase and its substrate Mbs, the signaling unit that negatively regulates oligodendrocyte myelination, are phosphorylated at the onset of myelination, while their smaller proportions are phosphorylated in the later period. In addition, we confirm the biphasic role of Rnd2 through experiments with oligodendrocyte-specific Rnd2 transgenic mice. We conclude that Rnd2 positively regulates myelination in the early myelinating period and negatively regulates myelination in the later period. This unique modulator thus plays different roles depending on the myelination period.
Collapse
Affiliation(s)
- Yuki Miyamoto
- Department of Pharmacology, Setagaya, Tokyo 157-8535, Japan.,Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0355, Japan
| | - Tomohiro Torii
- Laboratory of Ion Channel Pathophysiology, Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Miho Terao
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Shuji Takada
- Department of Systems BioMedicine, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | - Akito Tanoue
- Department of Pharmacology, Setagaya, Tokyo 157-8535, Japan
| | - Hironori Katoh
- Laboratory of Molecular Neurobiology, Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan
| | - Junji Yamauchi
- Department of Pharmacology, Setagaya, Tokyo 157-8535, Japan.,Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0355, Japan
| |
Collapse
|
65
|
Kamen Y, Pivonkova H, Evans KA, Káradóttir RT. A Matter of State: Diversity in Oligodendrocyte Lineage Cells. Neuroscientist 2021; 28:144-162. [PMID: 33567971 DOI: 10.1177/1073858420987208] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oligodendrocyte precursor cells (OPCs) give rise to oligodendrocytes which myelinate axons in the central nervous system. Although classically thought to be a homogeneous population, OPCs are reported to have different developmental origins and display regional and temporal diversity in their transcriptome, response to growth factors, and physiological properties. Similarly, evidence is accumulating that myelinating oligodendrocytes display transcriptional heterogeneity. Analyzing this reported heterogeneity suggests that OPCs, and perhaps also myelinating oligodendrocytes, may exist in different functional cell states. Here, we review the evidence indicating that OPCs and oligodendrocytes are diverse, and we discuss the implications of functional OPC states for myelination in the adult brain and for myelin repair.
Collapse
Affiliation(s)
- Yasmine Kamen
- Wellcome-Medical Research Council Cambridge Stem Cell Institute & Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Helena Pivonkova
- Wellcome-Medical Research Council Cambridge Stem Cell Institute & Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Kimberley A Evans
- Wellcome-Medical Research Council Cambridge Stem Cell Institute & Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Ragnhildur T Káradóttir
- Wellcome-Medical Research Council Cambridge Stem Cell Institute & Department of Veterinary Medicine, University of Cambridge, Cambridge, UK.,Department of Physiology, BioMedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
66
|
Demyanenko SV, Uzdensky A. LIM kinase inhibitor T56-LIMKi protects mouse brain from photothrombotic stroke. Brain Inj 2021; 35:490-500. [PMID: 33523710 DOI: 10.1080/02699052.2021.1879397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Primary Objective: In an ischemic stroke, the damage spreads from the infarction core to surrounding tissues. The present work was aimed at the search of effective neuroprotectors that restrict injury propagation. Research Design: We studied possible protective effects of inhibitors of protein kinases LIMK2 (T56-LIMKi), DYRK1A (harmine), and tryptophan hydroxylase (4-chlorophenylalanine) on infarction size and morphology of peri-infarct area after photothrombotic stroke (a model of ischemic stroke) in mouse brain. Methods and Procedures: Photothrombotic stroke was induced by laser irradiation of mouse cortex after administration of photosensitizer Bengal Rose, which does not penetrate cells and remains in blood vessels. Under light exposure, it induces vessel occlusion. Infarct volume and histological changes in the cerebral cortex were evaluated 3, 7 and 14 days after photothrombotic impact. Main Outcomes and Results: Harmine and 4-chlorophenylalanine did not influence infarct volume and morphology of peri-infarct area in the mouse brain cortex after photothrombotic stroke. However, LIMK2 inhibitor T56-LIMKi significantly reduced infarct volume 7 and 14 days after photothrombotic stroke. It also increased the percent of normochromic neurons and decreased the fraction of altered cortical cells (hypochromic, hyperchromic and pyknotic neurons). Conclusions: T56-LIMK2i may be considered as a promising anti-stroke agent.
Collapse
Affiliation(s)
- Svetlana V Demyanenko
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| | - Anatoly Uzdensky
- Laboratory of Molecular Neuroscience, Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
67
|
PAK1 Positively Regulates Oligodendrocyte Morphology and Myelination. J Neurosci 2021; 41:1864-1877. [PMID: 33478987 DOI: 10.1523/jneurosci.0229-20.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 02/06/2023] Open
Abstract
The actin cytoskeleton is crucial for oligodendrocyte differentiation and myelination. Here we show that p21-activated kinase 1 (PAK1), a well-known actin regulator, promotes oligodendrocyte morphologic change and myelin production in the CNS. A combination of in vitro and in vivo models demonstrated that PAK1 is expressed throughout the oligodendrocyte lineage with highest expression in differentiated oligodendrocytes. Inhibiting PAK1 early in oligodendrocyte development decreased oligodendrocyte morphologic complexity and altered F-actin spreading at the tips of oligodendrocyte progenitor cell processes. Constitutively activating AKT in oligodendrocytes in male and female mice, which leads to excessive myelin wrapping, increased PAK1 expression, suggesting an impact of PAK1 during active myelin wrapping. Furthermore, constitutively activating PAK1 in oligodendrocytes in zebrafish led to an increase in myelin internode length while inhibiting PAK1 during active myelination decreased internode length. As myelin parameters influence conduction velocity, these data suggest that PAK1 may influence communication within the CNS. These data support a model in which PAK1 is a positive regulator of CNS myelination.SIGNIFICANCE STATEMENT Myelin is a critical component of the CNS that provides metabolic support to neurons and also facilitates communication between cells in the CNS. Recent data demonstrate that actin dynamics drives myelin wrapping, but how actin is regulated during myelin wrapping is unknown. The authors investigate the role of the cytoskeletal modulator PAK1 during differentiation and myelination by oligodendrocytes, the myelinating cells of the CNS. They demonstrate that PAK1 promotes oligodendrocyte differentiation and myelination by modulating the cytoskeleton and thereby internode length, thus playing a critical role in the function of the CNS.
Collapse
|
68
|
Yergert KM, Doll CA, O’Rouke R, Hines JH, Appel B. Identification of 3' UTR motifs required for mRNA localization to myelin sheaths in vivo. PLoS Biol 2021; 19:e3001053. [PMID: 33439856 PMCID: PMC7837478 DOI: 10.1371/journal.pbio.3001053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 01/26/2021] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
Myelin is a specialized membrane produced by oligodendrocytes that insulates and supports axons. Oligodendrocytes extend numerous cellular processes, as projections of the plasma membrane, and simultaneously wrap multiple layers of myelin membrane around target axons. Notably, myelin sheaths originating from the same oligodendrocyte are variable in size, suggesting local mechanisms regulate myelin sheath growth. Purified myelin contains ribosomes and hundreds of mRNAs, supporting a model that mRNA localization and local protein synthesis regulate sheath growth and maturation. However, the mechanisms by which mRNAs are selectively enriched in myelin sheaths are unclear. To investigate how mRNAs are targeted to myelin sheaths, we tested the hypothesis that transcripts are selected for myelin enrichment through consensus sequences in the 3' untranslated region (3' UTR). Using methods to visualize mRNA in living zebrafish larvae, we identified candidate 3' UTRs that were sufficient to localize mRNA to sheaths and enriched near growth zones of nascent membrane. We bioinformatically identified motifs common in 3' UTRs from 3 myelin-enriched transcripts and determined that these motifs are required and sufficient in a context-dependent manner for mRNA transport to myelin sheaths. Finally, we show that 1 motif is highly enriched in the myelin transcriptome, suggesting that this sequence is a global regulator of mRNA localization during developmental myelination.
Collapse
Affiliation(s)
- Katie M. Yergert
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Caleb A. Doll
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Rebecca O’Rouke
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jacob H. Hines
- Department of Biology, Winona State University, Winona, Minnesota, United States of America
| | - Bruce Appel
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|
69
|
Huntemer-Silveira A, Patil N, Brickner MA, Parr AM. Strategies for Oligodendrocyte and Myelin Repair in Traumatic CNS Injury. Front Cell Neurosci 2021; 14:619707. [PMID: 33505250 PMCID: PMC7829188 DOI: 10.3389/fncel.2020.619707] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
A major consequence of traumatic brain and spinal cord injury is the loss of the myelin sheath, a cholesterol-rich layer of insulation that wraps around axons of the nervous system. In the central nervous system (CNS), myelin is produced and maintained by oligodendrocytes. Damage to the CNS may result in oligodendrocyte cell death and subsequent loss of myelin, which can have serious consequences for functional recovery. Demyelination impairs neuronal function by decelerating signal transmission along the axon and has been implicated in many neurodegenerative diseases. After a traumatic injury, mechanisms of endogenous remyelination in the CNS are limited and often fail, for reasons that remain poorly understood. One area of research focuses on enhancing this endogenous response. Existing techniques include the use of small molecules, RNA interference (RNAi), and monoclonal antibodies that target specific signaling components of myelination for recovery. Cell-based replacement strategies geared towards replenishing oligodendrocytes and their progenitors have been utilized by several groups in the last decade as well. In this review article, we discuss the effects of traumatic injury on oligodendrocytes in the CNS, the lack of endogenous remyelination, translational studies in rodent models promoting remyelination, and finally human clinical studies on remyelination in the CNS after injury.
Collapse
Affiliation(s)
| | - Nandadevi Patil
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Megan A. Brickner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Ann M. Parr
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
70
|
Shaw JC, Crombie GK, Palliser HK, Hirst JJ. Impaired Oligodendrocyte Development Following Preterm Birth: Promoting GABAergic Action to Improve Outcomes. Front Pediatr 2021; 9:618052. [PMID: 33634057 PMCID: PMC7901941 DOI: 10.3389/fped.2021.618052] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/12/2021] [Indexed: 11/21/2022] Open
Abstract
Preterm birth is associated with poor long-term neurodevelopmental and behavioral outcomes, even in the absence of obvious brain injury at the time of birth. In particular, behavioral disorders characterized by inattention, social difficulties and anxiety are common among children and adolescents who were born moderately to late preterm (32-37 weeks' gestation). Diffuse deficits in white matter microstructure are thought to play a role in these poor outcomes with evidence suggesting that a failure of oligodendrocytes to mature and myelinate axons is responsible. However, there remains a major knowledge gap over the mechanisms by which preterm birth interrupts normal oligodendrocyte development. In utero neurodevelopment occurs in an inhibitory-dominant environment due to the action of placentally derived neurosteroids on the GABAA receptor, thus promoting GABAergic inhibitory activity and maintaining the fetal behavioral state. Following preterm birth, and the subsequent premature exposure to the ex utero environment, this action of neurosteroids on GABAA receptors is greatly reduced. Coinciding with a reduction in GABAergic inhibition, the preterm neonatal brain is also exposed to ex utero environmental insults such as periods of hypoxia and excessive glucocorticoid concentrations. Together, these insults may increase levels of the excitatory neurotransmitter glutamate in the developing brain and result in a shift in the balance of inhibitory: excitatory activity toward excitatory. This review will outline the normal development of oligodendrocytes, how it is disrupted under excitation-dominated conditions and highlight how shifting the balance back toward an inhibitory-dominated environment may improve outcomes.
Collapse
Affiliation(s)
- Julia C Shaw
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Gabrielle K Crombie
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Hannah K Palliser
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jonathan J Hirst
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, NSW, Australia.,Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|
71
|
Moore S, Meschkat M, Ruhwedel T, Trevisiol A, Tzvetanova ID, Battefeld A, Kusch K, Kole MHP, Strenzke N, Möbius W, de Hoz L, Nave KA. A role of oligodendrocytes in information processing. Nat Commun 2020; 11:5497. [PMID: 33127910 PMCID: PMC7599337 DOI: 10.1038/s41467-020-19152-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Myelinating oligodendrocytes enable fast propagation of action potentials along the ensheathed axons. In addition, oligodendrocytes play diverse non-canonical roles including axonal metabolic support and activity-dependent myelination. An open question remains whether myelination also contributes to information processing in addition to speeding up conduction velocity. Here, we analyze the role of myelin in auditory information processing using paradigms that are also good predictors of speech understanding in humans. We compare mice with different degrees of dysmyelination using acute multiunit recordings in the auditory cortex, in combination with behavioral readouts. We find complex alterations of neuronal responses that reflect fatigue and temporal acuity deficits. We observe partially discriminable but similar deficits in well myelinated mice in which glial cells cannot fully support axons metabolically. We suggest a model in which myelination contributes to sustained stimulus perception in temporally complex paradigms, with a role of metabolically active oligodendrocytes in cortical information processing.
Collapse
Affiliation(s)
- Sharlen Moore
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- International Max Planck Research School for Neurosciences, Göttingen, Germany
- Göttingen Graduate Center for Neurosciences, Biophysics and Molecular Biosciences, Georg-August-Universität Göttingen, Göttingen, Germany
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, USA
| | - Martin Meschkat
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Andrea Trevisiol
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Iva D Tzvetanova
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Section of Pharmacology, School of Medicine, European University Cyprus, Nicosia, Cyprus
| | - Arne Battefeld
- Department of Axonal Signaling, Netherlands Institute for Neurosciences, Royal Netherlands Academy of Arts and Science, Amsterdam, The Netherlands
- Institut des Maladies Neurodégénératives, Université de Bordeaux, Bordeaux, France
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Maarten H P Kole
- Department of Axonal Signaling, Netherlands Institute for Neurosciences, Royal Netherlands Academy of Arts and Science, Amsterdam, The Netherlands
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, University of Utrecht, Utrecht, The Netherlands
| | - Nicola Strenzke
- Institute for Auditory Neuroscience, University Medical Center, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| | - Livia de Hoz
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany.
- Charité Medical University, Neuroscience Research Center, Berlin, Germany.
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, Göttingen, Germany
| |
Collapse
|
72
|
Won SY, Kwon S, Jeong HS, Chung KW, Choi B, Chang JW, Lee JE. Fibulin 5, a human Wharton's jelly-derived mesenchymal stem cells-secreted paracrine factor, attenuates peripheral nervous system myelination defects through the Integrin-RAC1 signaling axis. Stem Cells 2020; 38:1578-1593. [PMID: 33107705 PMCID: PMC7756588 DOI: 10.1002/stem.3287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 04/25/2023]
Abstract
In the peripheral nervous system (PNS), proper development of Schwann cells (SCs) contributing to axonal myelination is critical for neuronal function. Impairments of SCs or neuronal axons give rise to several myelin-related disorders, including dysmyelinating and demyelinating diseases. Pathological mechanisms, however, have been understood at the elementary level and targeted therapeutics has remained undeveloped. Here, we identify Fibulin 5 (FBLN5), an extracellular matrix (ECM) protein, as a key paracrine factor of human Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) to control the development of SCs. We show that co-culture with WJ-MSCs or treatment of recombinant FBLN5 promotes the proliferation of SCs through ERK activation, whereas FBLN5-depleted WJ-MSCs do not. We further reveal that during myelination of SCs, FBLN5 binds to Integrin and modulates actin remodeling, such as the formation of lamellipodia and filopodia, through RAC1 activity. Finally, we show that FBLN5 effectively restores the myelination defects of SCs in the zebrafish model of Charcot-Marie-Tooth (CMT) type 1, a representative demyelinating disease. Overall, our data propose human WJ-MSCs or FBLN5 protein as a potential treatment for myelin-related diseases, including CMT.
Collapse
Affiliation(s)
- So Yeon Won
- Department of Health Sciences and TechnologySamsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan UniversitySeoulSouth Korea
| | - Soojin Kwon
- Stem Cell & Regenerative Medicine Institute, Samsung Medical CenterSeoulSouth Korea
- Stem Cell Institute, ENCell Co. LtdSeoulSouth Korea
| | - Hui Su Jeong
- Department of Health Sciences and TechnologySamsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan UniversitySeoulSouth Korea
| | - Ki Wha Chung
- Department of Biological SciencesKongju National UniversityKongjuSouth Korea
| | - Byung‐Ok Choi
- Department of NeurologySungkyunkwan University School of MedicineSeoulSouth Korea
| | - Jong Wook Chang
- Stem Cell & Regenerative Medicine Institute, Samsung Medical CenterSeoulSouth Korea
- Stem Cell Institute, ENCell Co. LtdSeoulSouth Korea
| | - Ji Eun Lee
- Department of Health Sciences and TechnologySamsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan UniversitySeoulSouth Korea
- Samsung Biomedical Research Institute, Samsung Medical CenterSeoulSouth Korea
| |
Collapse
|
73
|
Adams KL, Dahl KD, Gallo V, Macklin WB. Intrinsic and extrinsic regulators of oligodendrocyte progenitor proliferation and differentiation. Semin Cell Dev Biol 2020; 116:16-24. [PMID: 34110985 DOI: 10.1016/j.semcdb.2020.10.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 12/14/2022]
Abstract
Oligodendrocytes are highly specialized glial cells, responsible for producing myelin in the central nervous system (CNS). The multi-stage process of oligodendrocyte development is tightly regulated to ensure proper lineage progression of oligodendrocyte progenitor cells (OPCs) to mature myelin producing oligodendrocytes. This developmental process involves complex interactions between several intrinsic signaling pathways that are modulated by an array of extrinsic factors. Understanding these regulatory processes is of crucial importance, as it may help to identify specific molecular targets both to enhance plasticity in the normal CNS and to promote endogenous recovery following injury or disease. This review describes two major regulators that play important functional roles in distinct phases of oligodendrocyte development: OPC proliferation and differentiation. Specifically, we highlight the roles of the extracellular astrocyte/radial glia-derived protein Endothelin-1 in OPC proliferation and the intracellular Akt/mTOR pathway in OPC differentiation. Lastly, we reflect on how recent advances in neuroscience and scientific technology will enable greater understanding into how intrinsic and extrinsic regulators interact to generate oligodendrocyte diversity.
Collapse
Affiliation(s)
- Katrina L Adams
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010, USA
| | - Kristin D Dahl
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC 20010, USA
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
74
|
Redondo-Morata L, Losada-Pérez P, Giannotti MI. Lipid bilayers: Phase behavior and nanomechanics. CURRENT TOPICS IN MEMBRANES 2020; 86:1-55. [PMID: 33837691 DOI: 10.1016/bs.ctm.2020.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lipid membranes are involved in many physiological processes like recognition, signaling, fusion or remodeling of the cell membrane or some of its internal compartments. Within the cell, they are the ultimate barrier, while maintaining the fluidity or flexibility required for a myriad of processes, including membrane protein assembly. The physical properties of in vitro model membranes as model cell membranes have been extensively studied with a variety of techniques, from classical thermodynamics to advanced modern microscopies. Here we review the nanomechanics of solid-supported lipid membranes with a focus in their phase behavior. Relevant information obtained by quartz crystal microbalance with dissipation monitoring (QCM-D) and atomic force microscopy (AFM) as complementary techniques in the nano/mesoscale interface is presented. Membrane morphological and mechanical characterization will be discussed in the framework of its phase behavior, phase transitions and coexistence, in simple and complex models, and upon the presence of cholesterol.
Collapse
Affiliation(s)
- Lorena Redondo-Morata
- Center for Infection and Immunity of Lille, INSERM U1019, CNRS UMR 8204, Lille, France
| | - Patricia Losada-Pérez
- Experimental Soft Matter and Thermal Physics (EST) Group, Department of Physics, Université Libre de Bruxelles, Brussels, Belgium
| | - Marina Inés Giannotti
- Biomedical Research Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain; Institut de Bioenginyeria de Catalunya (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; Departament de Ciència de Materials i Química Física, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|
75
|
Nakamura DS, Lin YH, Khan D, Gothié JDM, de Faria O, Dixon JA, McBride HM, Antel JP, Kennedy TE. Mitochondrial dynamics and bioenergetics regulated by netrin-1 in oligodendrocytes. Glia 2020; 69:392-412. [PMID: 32910475 DOI: 10.1002/glia.23905] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 01/01/2023]
Abstract
Mitochondria are dynamic organelles that produce energy and molecular precursors that are essential for myelin synthesis. Unlike in neurons, mitochondria in oligodendrocytes increase intracellular movement in response to glutamatergic activation and are more susceptible to oxidative stress than in astrocytes or microglia. The signaling pathways that regulate these cell type-specific mitochondrial responses in oligodendrocytes are not understood. Here, we visualized mitochondria migrating through thin cytoplasmic channels crossing myelin basic protein-positive compacted membranes and localized within paranodal loop cytoplasm. We hypothesized that local extracellular enrichment of netrin-1 might regulate the recruitment and function of paranodal proteins and organelles, including mitochondria. We identified rapid recruitment of mitochondria and paranodal proteins, including neurofascin 155 (NF155) and the netrin receptor deleted in colorectal carcinoma (DCC), to sites of contact between oligodendrocytes and netrin-1-coated microbeads in vitro. We provide evidence that Src-family kinase activation and Rho-associated protein kinase (ROCK) inhibition downstream of netrin-1 induces mitochondrial elongation, hyperpolarization of the mitochondrial inner membrane, and increases glycolysis. Our findings identify a signaling mechanism in oligodendrocytes that is sufficient to locally recruit paranodal proteins and regulate the subcellular localization, morphology, and function of mitochondria.
Collapse
Affiliation(s)
- Diane S Nakamura
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Yun Hsuan Lin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Damla Khan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jean-David M Gothié
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Omar de Faria
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - James A Dixon
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Heidi M McBride
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jack P Antel
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
76
|
Montani L. Lipids in regulating oligodendrocyte structure and function. Semin Cell Dev Biol 2020; 112:114-122. [PMID: 32912639 DOI: 10.1016/j.semcdb.2020.07.016] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/17/2020] [Accepted: 07/29/2020] [Indexed: 12/15/2022]
Abstract
Oligodendrocytes enwrap central nervous system axons with myelin, a lipid enriched highly organized multi-layer membrane structure that allows for fast long-distance saltatory conduction of neuronal impulses. Myelin has an extremely high lipid content (∼80 % of its dry weight) and a peculiar lipid composition, with a 2:2:1 cholesterol:phospholipid:glycolipid ratio. Inherited neurodegenerative diseases of the lipids (caused by mutations in lipogenic enzymes) often present oligodendrocyte and/or myelin defects which contribute to the overall disease pathophysiology. These phenomena triggered an increasing number of studies over the functions lipid exert to shape and maintain myelin, and brought to the finding that lipids are more than only structural building blocks. They act as signaling molecules to drive proliferation and differentiation of oligodendrocyte progenitor cells, as well as proliferation of premyelinating oligodendrocytes, and their maturation into myelinating ones. Here, we summarize key findings in these areas, while presenting the main related human diseases. Despite many advances in the field, various questions remain open which we briefly discuss. This article is part of a special issue entitled "Role of Lipids in CNS Cell Physiology and Pathology".
Collapse
Affiliation(s)
- Laura Montani
- Institute of Molecular Health Sciences, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, CH-8093, Switzerland.
| |
Collapse
|
77
|
Hughes AN, Appel B. Microglia phagocytose myelin sheaths to modify developmental myelination. Nat Neurosci 2020; 23:1055-1066. [PMID: 32632287 PMCID: PMC7483351 DOI: 10.1038/s41593-020-0654-2] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 05/13/2020] [Indexed: 12/15/2022]
Abstract
During development, oligodendrocytes contact and wrap neuronal axons with myelin. Similarly to neurons and synapses, excess myelin sheaths are produced and selectively eliminated, but how elimination occurs is unknown. Microglia, the resident immune cells of the central nervous system, engulf surplus neurons and synapses. To determine whether microglia also prune myelin sheaths, we used zebrafish to visualize and manipulate interactions between microglia, oligodendrocytes, and neurons during development. We found that microglia closely associate with oligodendrocytes and specifically phagocytose myelin sheaths. By using a combination of optical, genetic, chemogenetic, and behavioral approaches, we reveal that neuronal activity bidirectionally balances microglial association with neuronal cell bodies and myelin phagocytosis in the optic tectum. Furthermore, multiple strategies to deplete microglia resulted in oligodendrocytes maintaining excessive and ectopic myelin. Our work reveals a neuronal activity-regulated role for microglia in modifying developmental myelin targeting by oligodendrocytes.
Collapse
Affiliation(s)
| | - Bruce Appel
- Department of Pediatrics, Section of Developmental Biology, University of Colorado, Aurora, CO, USA.
| |
Collapse
|
78
|
Jahn O, Siems SB, Kusch K, Hesse D, Jung RB, Liepold T, Uecker M, Sun T, Werner HB. The CNS Myelin Proteome: Deep Profile and Persistence After Post-mortem Delay. Front Cell Neurosci 2020; 14:239. [PMID: 32973451 PMCID: PMC7466725 DOI: 10.3389/fncel.2020.00239] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/07/2020] [Indexed: 12/14/2022] Open
Abstract
Myelin membranes are dominated by lipids while the complexity of their protein composition has long been considered to be low. However, numerous additional myelin proteins have been identified since. Here we revisit the proteome of myelin biochemically purified from the brains of healthy c56Bl/6N-mice utilizing complementary proteomic approaches for deep qualitative and quantitative coverage. By gel-free, label-free mass spectrometry, the most abundant myelin proteins PLP, MBP, CNP, and MOG constitute 38, 30, 5, and 1% of the total myelin protein, respectively. The relative abundance of myelin proteins displays a dynamic range of over four orders of magnitude, implying that PLP and MBP have overshadowed less abundant myelin constituents in initial gel-based approaches. By comparisons with published datasets we evaluate to which degree the CNS myelin proteome correlates with the mRNA and protein abundance profiles of myelin and oligodendrocytes. Notably, the myelin proteome displays only minor changes if assessed after a post-mortem delay of 6 h. These data provide the most comprehensive proteome resource of CNS myelin so far and a basis for addressing proteomic heterogeneity of myelin in mouse models and human patients with white matter disorders.
Collapse
Affiliation(s)
- Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Sophie B. Siems
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Kathrin Kusch
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Dörte Hesse
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ramona B. Jung
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Thomas Liepold
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Marina Uecker
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Hauke B. Werner
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
79
|
Spontaneous Local Calcium Transients Regulate Oligodendrocyte Development in Culture through Store-Operated Ca 2+ Entry and Release. eNeuro 2020; 7:ENEURO.0347-19.2020. [PMID: 32409508 PMCID: PMC7438061 DOI: 10.1523/eneuro.0347-19.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Oligodendrocytes (OLs) insulate axonal fibers for fast conduction of nerve impulses by wrapping axons of the CNS with compact myelin membranes. Differentiating OLs undergo drastic chances in cell morphology. Bipolar oligodendroglial precursor cells (OPCs) transform into highly ramified multipolar OLs, which then expand myelin membranes that enwrap axons. While significant progress has been made in understanding the molecular and genetic mechanisms underlying CNS myelination and its disruption in diseases, the cellular mechanisms that regulate OL differentiation are not fully understood. Here, we report that developing rat OLs in culture exhibit spontaneous Ca2+ local transients (sCaLTs) in their process arbors in the absence of neurons. Importantly, we find that the frequency of sCaLTs markedly increases as OLs undergo extensive process outgrowth and branching. We further show that sCaLTs are primarily generated through a combination of Ca2+ influx through store-operated Ca2+ entry (SOCE) and Ca2+ release from internal Ca2+ stores. Inhibition of sCaLTs impairs the elaboration and branching of OL processes, as well as substantially reduces the formation of large myelin sheets in culture. Together, our findings identify an important role for spontaneous local Ca2+ signaling in OL development.
Collapse
|
80
|
Domingues HS, Urbanski MM, Macedo-Ribeiro S, Almaktari A, Irfan A, Hernandez Y, Wang H, Relvas JB, Rubinstein B, Melendez-Vasquez CV, Pinto IM. Pushing myelination - developmental regulation of myosin expression drives oligodendrocyte morphological differentiation. J Cell Sci 2020; 133:jcs232264. [PMID: 32620697 PMCID: PMC7426197 DOI: 10.1242/jcs.232264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/24/2020] [Indexed: 01/26/2023] Open
Abstract
Oligodendrocytes are the central nervous system myelin-forming cells providing axonal electrical insulation and higher-order neuronal circuitry. The mechanical forces driving the differentiation of oligodendrocyte precursor cells into myelinating oligodendrocytes are largely unknown, but likely require the spatiotemporal regulation of the architecture and dynamics of the actin and actomyosin cytoskeletons. In this study, we analyzed the expression pattern of myosin motors during oligodendrocyte development. We report that oligodendrocyte differentiation is regulated by the synchronized expression and non-uniform distribution of several members of the myosin network, particularly non-muscle myosins 2B and 2C, which potentially operate as nanomechanical modulators of cell tension and myelin membrane expansion at different cell stages.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Helena Sofia Domingues
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Mateusz M Urbanski
- Department of Biological Sciences, Hunter College City University of New York, New York, NY 10065, USA
| | - Sandra Macedo-Ribeiro
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Amr Almaktari
- Department of Biological Sciences, Hunter College City University of New York, New York, NY 10065, USA
| | - Azka Irfan
- Department of Biological Sciences, Hunter College City University of New York, New York, NY 10065, USA
| | - Yamely Hernandez
- Department of Biological Sciences, Hunter College City University of New York, New York, NY 10065, USA
| | - Haibo Wang
- Department of Biological Sciences, Hunter College City University of New York, New York, NY 10065, USA
| | - João Bettencourt Relvas
- Instituto de Investigação e Inovação em Saúde (I3S), Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Boris Rubinstein
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Carmen V Melendez-Vasquez
- Department of Biological Sciences, Hunter College City University of New York, New York, NY 10065, USA
- The Graduate Center, City University of New York (CUNY), New York, NY 10016, USA
| | - Inês Mendes Pinto
- International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
| |
Collapse
|
81
|
Katanov C, Novak N, Vainshtein A, Golani O, Dupree JL, Peles E. N-Wasp Regulates Oligodendrocyte Myelination. J Neurosci 2020; 40:6103-6111. [PMID: 32601246 PMCID: PMC7406274 DOI: 10.1523/jneurosci.0912-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Oligodendrocyte myelination depends on actin cytoskeleton rearrangement. Neural Wiskott-Aldrich syndrome protein(N-Wasp) is an actin nucleation factor that promotes polymerization of branched actin filaments. N-Wasp activity is essential for myelin membrane wrapping by Schwann cells, but its role in oligodendrocytes and CNS myelination remains unknown. Here we report that oligodendrocytes-specific deletion of N-Wasp in mice of both sexes resulted in hypomyelination (i.e., reduced number of myelinated axons and thinner myelin profiles), as well as substantial focal hypermyelination reflected by the formation of remarkably long myelin outfolds. These myelin outfolds surrounded unmyelinated axons, neuronal cell bodies, and other myelin profiles. The latter configuration resulted in pseudo-multimyelin profiles that were often associated with axonal detachment and degeneration throughout the CNS, including in the optic nerve, corpus callosum, and the spinal cord. Furthermore, developmental analysis revealed that myelin abnormalities were already observed during the onset of myelination, suggesting that they are formed by aberrant and misguided elongation of the oligodendrocyte inner lip membrane. Our results demonstrate that N-Wasp is required for the formation of normal myelin in the CNS. They also reveal that N-Wasp plays a distinct role in oligodendrocytes compared with Schwann cells, highlighting a difference in the regulation of actin dynamics during CNS and PNS myelination.SIGNIFICANCE STATEMENT Myelin is critical for the normal function of the nervous system by facilitating fast conduction of action potentials. During the process of myelination in the CNS, oligodendrocytes undergo extensive morphological changes that involve cellular process extension and retraction, axonal ensheathment, and myelin membrane wrapping. Here we present evidence that N-Wasp, a protein regulating actin filament assembly through Arp2/3 complex-dependent actin nucleation, plays a critical role in CNS myelination, and its absence leads to several myelin abnormalities. Our data provide an important step into the understanding of the molecular mechanisms underlying CNS myelination.
Collapse
Affiliation(s)
- Christina Katanov
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Nurit Novak
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Anya Vainshtein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Jeffery L Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
82
|
Soares J, Araujo GRDS, Santana C, Matias D, Moura-Neto V, Farina M, Frases S, Viana NB, Romão L, Nussenzveig HM, Pontes B. Membrane Elastic Properties During Neural Precursor Cell Differentiation. Cells 2020; 9:E1323. [PMID: 32466390 PMCID: PMC7349228 DOI: 10.3390/cells9061323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 02/08/2023] Open
Abstract
Neural precursor cells differentiate into several cell types that display distinct functions. However, little is known about how cell surface mechanics vary during the differentiation process. Here, by precisely measuring membrane tension and bending modulus, we map their variations and correlate them with changes in neural precursor cell morphology along their distinct differentiation fates. Both cells maintained in culture as neural precursors as well as those plated in neurobasal medium reveal a decrease in membrane tension over the first hours of culture followed by stabilization, with no change in bending modulus. During astrocyte differentiation, membrane tension initially decreases and then increases after 72 h, accompanied by consolidation of glial fibrillary acidic protein expression and striking actin reorganization, while bending modulus increases following observed alterations. For oligodendrocytes, the changes in membrane tension are less abrupt over the first hours, but their values subsequently decrease, correlating with a shift from oligodendrocyte marker O4 to myelin basic protein expressions and a remarkable actin reorganization, while bending modulus remains constant. Oligodendrocytes at later differentiation stages show membrane vesicles with similar membrane tension but higher bending modulus as compared to the cell surface. Altogether, our results display an entire spectrum of how membrane elastic properties are varying, thus contributing to a better understanding of neural differentiation from a mechanobiological perspective.
Collapse
Affiliation(s)
- Juliana Soares
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (J.S.); (C.S.); (D.M.); (V.M.-N.); (M.F.); (L.R.)
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil;
| | - Glauber R. de S. Araujo
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (G.R.d.S.A.); (S.F.)
| | - Cintia Santana
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (J.S.); (C.S.); (D.M.); (V.M.-N.); (M.F.); (L.R.)
| | - Diana Matias
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (J.S.); (C.S.); (D.M.); (V.M.-N.); (M.F.); (L.R.)
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, RJ 20231-092, Brazil
| | - Vivaldo Moura-Neto
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (J.S.); (C.S.); (D.M.); (V.M.-N.); (M.F.); (L.R.)
- Instituto Estadual do Cérebro Paulo Niemeyer, Secretaria de Estado de Saúde, Rio de Janeiro, RJ 20231-092, Brazil
| | - Marcos Farina
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (J.S.); (C.S.); (D.M.); (V.M.-N.); (M.F.); (L.R.)
| | - Susana Frases
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (G.R.d.S.A.); (S.F.)
| | - Nathan B. Viana
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil;
- Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-942, Brazil
| | - Luciana Romão
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (J.S.); (C.S.); (D.M.); (V.M.-N.); (M.F.); (L.R.)
| | - H. Moysés Nussenzveig
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil;
- Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-942, Brazil
| | - Bruno Pontes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil; (J.S.); (C.S.); (D.M.); (V.M.-N.); (M.F.); (L.R.)
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil;
| |
Collapse
|
83
|
Weigel M, Wang L, Fu MM. Microtubule organization and dynamics in oligodendrocytes, astrocytes, and microglia. Dev Neurobiol 2020; 81:310-320. [PMID: 32324338 DOI: 10.1002/dneu.22753] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/16/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Though much is known about microtubule organization and microtubule-based transport in neurons, the development and function of microtubules in glia are more enigmatic. In this review, we provide an overview of the literature on microtubules in ramified brain cells, including oligodendrocytes, astrocytes, and microglia. We focus on normal cell biology-how structure relates to function in these cells. In oligodendrocytes, microtubules are important for extension of processes that contact axons and for elongating the myelin sheath. Recent studies demonstrate that new microtubules can form outside of the oligodendrocyte cell body off of Golgi outpost organelles. In astrocytes and microglia, changes in cell shape and ramification can be influenced by neighboring cells and the extracellular milieu. Finally, we highlight key papers implicating glial microtubule defects in neurological injury and disease and discuss how microtubules may contribute to invasiveness in gliomas. Thus, future research on the mechanisms underlying microtubule organization in normal glial cell function may yield valuable insights on neurological disease pathology.
Collapse
Affiliation(s)
- Maya Weigel
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lin Wang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Meng-Meng Fu
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
84
|
Sustentacular Cell Enwrapment of Olfactory Receptor Neuronal Dendrites: An Update. Genes (Basel) 2020; 11:genes11050493. [PMID: 32365880 PMCID: PMC7291085 DOI: 10.3390/genes11050493] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 12/12/2022] Open
Abstract
The pseudostratified olfactory epithelium (OE) may histologically appear relatively simple, but the cytological relations among its cell types, especially those between olfactory receptor neurons (ORNs) and olfactory sustentacular cells (OSCs), prove more complex and variable than previously believed. Adding to the complexity is the short lifespan, persistent neurogenesis, and continuous rewiring of the ORNs. Contrary to the common belief that ORN dendrites are mostly positioned between OSCs, recent findings indicate a sustentacular cell enwrapped configuration for a majority of mature ORN dendrites at the superficial layer of the OE. After vertically sprouting out from the borderlines between OSCs, most of the immature ORN dendrites undergo a process of sideways migration and terminal maturation to become completely invaginated into and enwrapped by OSCs. Trailing the course of the dendritic sideways migration is the mesodendrite (mesentery of the enwrapped dendrite) made of closely apposed, cell junction connected plasma membrane layers of neighboring folds of the host sustentacular cell. Only a minority of the mature ORN dendrites at the OE apical surface are found at the borderlines between OSCs (unwrapped). Below I give a brief update on the cytoarchitectonic relations between the ORNs and OSCs of the OE. Emphasis is placed on the enwrapment of ORN dendrites by OSCs, on the sideways migration of immature ORN dendrites after emerging from the OE surface, and on the terminal maturation of the ORNs. Functional implications of ORN dendrite enwrapment and a comparison with myelination or Remak’s bundling of axons or axodendrites in the central and peripheral nervous system are also discussed.
Collapse
|
85
|
de Jong CGHM, Gabius HJ, Baron W. The emerging role of galectins in (re)myelination and its potential for developing new approaches to treat multiple sclerosis. Cell Mol Life Sci 2020; 77:1289-1317. [PMID: 31628495 PMCID: PMC7113233 DOI: 10.1007/s00018-019-03327-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating and neurodegenerative disease of the central nervous system with unknown etiology. Currently approved disease-modifying treatment modalities are immunomodulatory or immunosuppressive. While the applied drugs reduce the frequency and severity of the attacks, their efficacy to regenerate myelin membranes and to halt disease progression is limited. To achieve such therapeutic aims, understanding biological mechanisms of remyelination and identifying factors that interfere with remyelination in MS can give respective directions. Such a perspective is given by the emerging functional profile of galectins. They form a family of tissue lectins, which are potent effectors in processes as diverse as adhesion, apoptosis, immune mediator release or migration. This review focuses on endogenous and exogenous roles of galectins in glial cells such as oligodendrocytes, astrocytes and microglia in the context of de- and (re)myelination and its dysregulation in MS. Evidence is arising for a cooperation among family members so that timed expression and/or secretion of galectins-1, -3 and -4 result in modifying developmental myelination, (neuro)inflammatory processes, de- and remyelination. Dissecting the mechanisms that underlie the distinct activities of galectins and identifying galectins as target or tool to modulate remyelination have the potential to contribute to the development of novel therapeutic strategies for MS.
Collapse
Affiliation(s)
- Charlotte G H M de Jong
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Hans-Joachim Gabius
- Institute of Physiological Chemistry, Faculty of Veterinary Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Wia Baron
- Department of Biomedical Sciences of Cells & Systems, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
86
|
High-Frequency Microdomain Ca 2+ Transients and Waves during Early Myelin Internode Remodeling. Cell Rep 2020; 26:182-191.e5. [PMID: 30605675 PMCID: PMC6316190 DOI: 10.1016/j.celrep.2018.12.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 11/09/2018] [Accepted: 12/07/2018] [Indexed: 11/25/2022] Open
Abstract
Ensheathment of axons by myelin is a highly complex and multi-cellular process. Cytosolic calcium (Ca2+) changes in the myelin sheath have been implicated in myelin synthesis, but the source of this Ca2+ and the role of neuronal activity is not well understood. Using one-photon Ca2+ imaging, we investigated myelin sheath formation in the mouse somatosensory cortex and found a high rate of spontaneous microdomain Ca2+ transients and large-amplitude Ca2+ waves propagating along the internode. The frequency of Ca2+ transients and waves rapidly declines with maturation and reactivates during remyelination. Unexpectedly, myelin microdomain Ca2+ transients occur independent of neuronal action potential generation or network activity but are nearly completely abolished when the mitochondrial permeability transition pores are blocked. These findings are supported by the discovery of mitochondria organelles in non-compacted myelin. Together, the results suggest that myelin microdomain Ca2+ signals are cell-autonomously driven by high activity of mitochondria during myelin remodeling. Developing myelin sheaths show high rates of calcium transients and calcium waves Myelin calcium transients are independent from neuronal activity Adaxonal and paranodal myelin contained mitochondria Calcium transients require opening of mitochondrial permeability transition pores
Collapse
|
87
|
Neuron-oligodendroglia interactions: Activity-dependent regulation of cellular signaling. Neurosci Lett 2020; 727:134916. [PMID: 32194135 DOI: 10.1016/j.neulet.2020.134916] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 12/31/2022]
Abstract
Oligodendrocyte lineage cells (oligodendroglia) and neurons engage in bidirectional communication throughout life to support healthy brain function. Recent work shows that changes in neuronal activity can modulate proliferation, differentiation, and myelination to support the formation and function of neural circuits. While oligodendroglia express a diverse collection of receptors for growth factors, signaling molecules, neurotransmitters and neuromodulators, our knowledge of the intracellular signaling pathways that are regulated by neuronal activity remains largely incomplete. Many of the pathways that modulate oligodendroglia behavior are driven by changes in intracellular calcium signaling, which may differentially affect cytoskeletal dynamics, gene expression, maturation, integration, and axonal support. Additionally, activity-dependent neuron-oligodendroglia communication plays an integral role in the recovery from demyelinating injuries. In this review, we summarize the modalities of communication between neurons and oligodendroglia and explore possible roles of activity-dependent calcium signaling in mediating cellular behavior and myelination.
Collapse
|
88
|
Mechanistic Target of Rapamycin Regulates the Oligodendrocyte Cytoskeleton during Myelination. J Neurosci 2020; 40:2993-3007. [PMID: 32139584 DOI: 10.1523/jneurosci.1434-18.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
During differentiation, oligodendrocyte precursor cells (OPCs) extend a network of processes that make contact with axons and initiate myelination. Recent studies revealed that actin polymerization is required for initiation of myelination whereas actin depolymerization promotes myelin wrapping. Here, we used primary OPCs in culture isolated from neonatal rat cortices of both sexes and young male and female mice with oligodendrocyte-specific deletion of mechanistic target of rapamycin (mTOR) to demonstrate that mTOR regulates expression of specific cytoskeletal targets and actin reorganization in oligodendrocytes during developmental myelination. Loss or inhibition of mTOR reduced expression of profilin2 and ARPC3, actin polymerizing factors, and elevated levels of active cofilin, which mediates actin depolymerization. The deficits in actin polymerization were revealed in reduced phalloidin and deficits in oligodendrocyte cellular branching complexity at the peak of morphologic differentiation and a delay in initiation of myelination. We further show a critical role for mTOR in expression and localization of myelin basic protein (Mbp) mRNA and MBP protein to the cellular processes where it is necessary at the myelin membrane for axon wrapping. Mbp mRNA transport deficits were confirmed by single molecule RNA FISH. Moreover, expression of the kinesin family member 1B, an Mbp mRNA transport protein, was reduced in CC1+ cells in the mTOR cKO and in mTOR inhibited oligodendrocytes undergoing differentiation in vitro These data support the conclusion that mTOR regulates both initiation of myelination and axon wrapping by targeting cytoskeletal reorganization and MBP localization to oligodendrocyte processes.SIGNIFICANCE STATEMENT Myelination is essential for normal CNS development and adult axon preservation and function. The mechanistic target of rapamycin (mTOR) signaling pathway has been implicated in promoting CNS myelination; however, there is a gap in our understanding of the mechanisms by which mTOR promotes developmental myelination through regulating specific downstream targets. Here, we present evidence that mTOR promotes the initiation of myelination through regulating specific cytoskeletal targets and cellular process expansion by oligodendrocyte precursor cells as well as expression and cellular localization of myelin basic protein.
Collapse
|
89
|
Bittern J, Pogodalla N, Ohm H, Brüser L, Kottmeier R, Schirmeier S, Klämbt C. Neuron-glia interaction in the Drosophila nervous system. Dev Neurobiol 2020; 81:438-452. [PMID: 32096904 DOI: 10.1002/dneu.22737] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
Animals are able to move and react in manifold ways to external stimuli. Thus, environmental stimuli need to be detected, information must be processed, and, finally, an output decision must be transmitted to the musculature to get the animal moving. All these processes depend on the nervous system which comprises an intricate neuronal network and many glial cells. Glial cells have an equally important contribution in nervous system function as their neuronal counterpart. Manifold roles are attributed to glia ranging from controlling neuronal cell number and axonal pathfinding to regulation of synapse formation, function, and plasticity. Glial cells metabolically support neurons and contribute to the blood-brain barrier. All of the aforementioned aspects require extensive cell-cell interactions between neurons and glial cells. Not surprisingly, many of these processes are found in all phyla executed by evolutionarily conserved molecules. Here, we review the recent advance in understanding neuron-glia interaction in Drosophila melanogaster to suggest that work in simple model organisms will shed light on the function of mammalian glial cells, too.
Collapse
Affiliation(s)
- Jonas Bittern
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Nicole Pogodalla
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Henrike Ohm
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Lena Brüser
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Rita Kottmeier
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Stefanie Schirmeier
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Christian Klämbt
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| |
Collapse
|
90
|
Brown TL, Macklin WB. The Actin Cytoskeleton in Myelinating Cells. Neurochem Res 2020; 45:684-693. [PMID: 30847860 PMCID: PMC6732044 DOI: 10.1007/s11064-019-02753-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022]
Abstract
Myelinating cells of both the peripheral and central nervous systems (CNSs) undergo dramatic cytoskeletal reorganization in order to differentiate and produce myelin. Myelinating oligodendrocytes in the CNS show a periodic actin pattern, demonstrating tight regulation of actin. Furthermore, recent data demonstrate that actin polymerization drives early cell differentiation and that actin depolymerization drives myelin wrapping. Dysregulation of the actin cytoskeleton in myelinating cells is seen in some disease states. This review highlights the cytoskeletal molecules that regulate differentiation of and myelination by cells of the PNS and CNS, informing our understanding of neural development, in particular myelination.
Collapse
Affiliation(s)
- Tanya L Brown
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, 80045, USA
- Cell Biology, Stem Cells, and Development Graduate Program, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Wendy B Macklin
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
91
|
Ronzano R, Thetiot M, Lubetzki C, Desmazieres A. Myelin Plasticity and Repair: Neuro-Glial Choir Sets the Tuning. Front Cell Neurosci 2020; 14:42. [PMID: 32180708 PMCID: PMC7059744 DOI: 10.3389/fncel.2020.00042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
The plasticity of the central nervous system (CNS) in response to neuronal activity has been suggested as early as 1894 by Cajal (1894). CNS plasticity has first been studied with a focus on neuronal structures. However, in the last decade, myelin plasticity has been unraveled as an adaptive mechanism of importance, in addition to the previously described processes of myelin repair. Indeed, it is now clear that myelin remodeling occurs along with life and adapts to the activity of neuronal networks. Until now, it has been considered as a two-part dialog between the neuron and the oligodendroglial lineage. However, other glial cell types might be at play in myelin plasticity. In the present review, we first summarize the key structural parameters for myelination, we then describe how neuronal activity modulates myelination and finally discuss how other glial cells could participate in myelinic adaptivity.
Collapse
Affiliation(s)
- Remi Ronzano
- Institut du Cerveau et de la Moelle épinière, Sorbonne Universités UPMC Université Paris 06, CNRS UMR7225-Inserm U1127, Paris, France
| | - Melina Thetiot
- Institut du Cerveau et de la Moelle épinière, Sorbonne Universités UPMC Université Paris 06, CNRS UMR7225-Inserm U1127, Paris, France
- Unit Zebrafish Neurogenetics, Department of Developmental & Stem Cell Biology, Institut Pasteur, CNRS, Paris, France
| | - Catherine Lubetzki
- Institut du Cerveau et de la Moelle épinière, Sorbonne Universités UPMC Université Paris 06, CNRS UMR7225-Inserm U1127, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, France
| | - Anne Desmazieres
- Institut du Cerveau et de la Moelle épinière, Sorbonne Universités UPMC Université Paris 06, CNRS UMR7225-Inserm U1127, Paris, France
| |
Collapse
|
92
|
Forbes TA, Goldstein EZ, Dupree JL, Jablonska B, Scafidi J, Adams KL, Imamura Y, Hashimoto-Torii K, Gallo V. Environmental enrichment ameliorates perinatal brain injury and promotes functional white matter recovery. Nat Commun 2020; 11:964. [PMID: 32075970 PMCID: PMC7031237 DOI: 10.1038/s41467-020-14762-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 01/31/2020] [Indexed: 12/14/2022] Open
Abstract
Hypoxic damage to the developing brain due to preterm birth causes many anatomical changes, including damage to the periventricular white matter. This results in the loss of glial cells, significant disruptions in myelination, and thereby cognitive and behavioral disabilities seen throughout life. Encouragingly, these neurological morbidities can be improved by environmental factors; however, the underlying cellular mechanisms remain unknown. We found that early and continuous environmental enrichment selectively enhances endogenous repair of the developing white matter by promoting oligodendroglial maturation, myelination, and functional recovery after perinatal brain injury. These effects require increased exposure to socialization, physical activity, and cognitive enhancement of surroundings-a complete enriched environment. Using RNA-sequencing, we identified oligodendroglial-specific responses to hypoxic brain injury, and uncovered molecular mechanisms involved in enrichment-induced recovery. Together, these results indicate that myelin plasticity induced by modulation of the neonatal environment can be targeted as a therapeutic strategy for preterm birth.
Collapse
Affiliation(s)
- Thomas A Forbes
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, 20010, USA.,Institute for Biomedical Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Evan Z Goldstein
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, 20010, USA
| | - Jeffrey L Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Beata Jablonska
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, 20010, USA.,Institute for Biomedical Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Joseph Scafidi
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, 20010, USA.,Institute for Biomedical Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Katrina L Adams
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, 20010, USA
| | - Yuka Imamura
- Institute for Personalized Medicine, Penn State University, College of Medicine, Hershey, PA, 17033, USA
| | - Kazue Hashimoto-Torii
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, 20010, USA
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC, 20010, USA. .,Institute for Biomedical Sciences, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
93
|
Abstract
Cells of the oligodendrocyte lineage express a wide range of Ca2+ channels and receptors that regulate oligodendrocyte progenitor cell (OPC) and oligodendrocyte formation and function. Here we define those key channels and receptors that regulate Ca2+ signaling and OPC development and myelination. We then discuss how the regulation of intracellular Ca2+ in turn affects OPC and oligodendrocyte biology in the healthy nervous system and under pathological conditions. Activation of Ca2+ channels and receptors in OPCs and oligodendrocytes by neurotransmitters converges on regulating intracellular Ca2+, making Ca2+ signaling a central candidate mediator of activity-driven myelination. Indeed, recent evidence indicates that localized changes in Ca2+ in oligodendrocytes can regulate the formation and remodeling of myelin sheaths and perhaps additional functions of oligodendrocytes and OPCs. Thus, decoding how OPCs and myelinating oligodendrocytes integrate and process Ca2+ signals will be important to fully understand central nervous system formation, health, and function.
Collapse
Affiliation(s)
- Pablo M Paez
- Department of Pharmacology and Toxicology and Hunter James Kelly Research Institute, Jacobs School of Medicine and Biomedical Sciences, The State University of New York, University at Buffalo, Buffalo, New York 14203, USA;
| | - David A Lyons
- Centre for Discovery Brain Sciences, Centre for Multiple Sclerosis Research, and Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh EH16 4SB, United Kingdom;
| |
Collapse
|
94
|
A Role of Microtubules in Oligodendrocyte Differentiation. Int J Mol Sci 2020; 21:ijms21031062. [PMID: 32033476 PMCID: PMC7037135 DOI: 10.3390/ijms21031062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022] Open
Abstract
Oligodendrocytes are specialized cells that myelinate axons in the central nervous system. Defects in oligodendrocyte function and failure to form or maintain myelin sheaths can cause a number of neurological disorders. Oligodendrocytes are differentiated from oligodendrocyte progenitor cells (OPCs), which extend several processes that contact, elaborate, and eventually wrap axonal segments to form multilayered myelin sheaths. These processes require extensive changes in the cytoarchitecture and must be regulated by reorganization of the cytoskeleton. Here, we established a simple protocol to isolate and differentiate mouse OPCs, and by using this method, we investigated a role of microtubules (MTs) in oligodendrocyte differentiation. Oligodendrocytes developed a complex network of MTs during differentiation, and treatment of differentiating oligodendrocytes with nanomolar concentrations of MT-targeting agents (MTAs) markedly affected oligodendrocyte survival and differentiation. We found that acute exposure to vincristine and nocodazole at early stages of oligodendrocyte differentiation markedly increased MT arborization and enhanced differentiation, whereas taxol and epothilone B treatment produced opposing outcomes. Furthermore, treatment of myelinating co-cultures of oligodendrocytes and neurons with nanomolar concentrations of MTAs at late stages of oligodendrocyte differentiation induced dysmyelination. Together, these results suggest that MTs play an important role in the survival, differentiation, and myelination of oligodendrocytes.
Collapse
|
95
|
Makhija EP, Espinosa-Hoyos D, Jagielska A, Van Vliet KJ. Mechanical regulation of oligodendrocyte biology. Neurosci Lett 2020; 717:134673. [PMID: 31838017 PMCID: PMC12023767 DOI: 10.1016/j.neulet.2019.134673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 11/25/2019] [Accepted: 12/01/2019] [Indexed: 12/27/2022]
Abstract
Oligodendrocytes (OL) are a subset of glial cells in the central nervous system (CNS) comprising the brain and spinal cord. The CNS environment is defined by complex biochemical and biophysical cues during development and response to injury or disease. In the last decade, significant progress has been made in understanding some of the key biophysical factors in the CNS that modulate OL biology, including their key role in myelination of neurons. Taken together, those studies offer translational implications for remyelination therapies, pharmacological research, identification of novel drug targets, and improvements in methods to generate human oligodendrocyte progenitor cells (OPCs) and OLs from donor stem cells in vitro. This review summarizes current knowledge of how various physical and mechanical cues affect OL biology and its implications for disease, therapeutic approaches, and generation of human OPCs and OLs.
Collapse
Affiliation(s)
- Ekta P Makhija
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Critical Analytics for Manufacturing Personalized-Medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, 138602, Singapore
| | - Daniela Espinosa-Hoyos
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Anna Jagielska
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
| | - Krystyn J Van Vliet
- BioSystems & Micromechanics (BioSyM) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, Singapore 138602; Critical Analytics for Manufacturing Personalized-Medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research & Technology (SMART) CREATE, 138602, Singapore; Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA.
| |
Collapse
|
96
|
Torii T, Miyamoto Y, Yamauchi J. Cellular Signal-Regulated Schwann Cell Myelination and Remyelination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:3-22. [PMID: 31760634 DOI: 10.1007/978-981-32-9636-7_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Increasing studies have demonstrated multiple signaling molecules responsible for oligodendrocytes and Schwann cells development such as migration, differentiation, myelination, and axo-glial interaction. However, complicated roles in these events are still poorly understood. This chapter focuses on well established intracellular signaling transduction and recent topics that control myelination and are elucidated from accumulating evidences. The underlying molecular mechanisms, which involved in membrane trafficking through small GTPase Arf6 and its activator cytohesins, demonstrate the crosstalk between well established intracellular signaling transduction and a new finding signaling pathway in glial cells links to physiological phenotype and essential role in peripheral nerve system (PNS). Since Arf family proteins affect the expression levels of myelin protein zero (MPZ) and Krox20, which is a transcription factor regulatory factor in early developmental stages of Schwann cells, Arf proteins likely to be key regulator for Schwann cells development. Herein, we discuss how intracellular signaling transductions in Schwann cells associate with myelination in CNS and PNS.
Collapse
Affiliation(s)
- Tomohiro Torii
- Graduate School of Brain Science, Doshisha University, Kyotanabe-shi, Kyoto, Japan
| | - Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | - Junji Yamauchi
- Laboratory of Molecular Neuroscience and Neurology, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan.
| |
Collapse
|
97
|
Thomason EJ, Escalante M, Osterhout DJ, Fuss B. The oligodendrocyte growth cone and its actin cytoskeleton: A fundamental element for progenitor cell migration and CNS myelination. Glia 2019; 68:1329-1346. [PMID: 31696982 DOI: 10.1002/glia.23735] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023]
Abstract
Cells of the oligodendrocyte (OLG) lineage engage in highly motile behaviors that are crucial for effective central nervous system (CNS) myelination. These behaviors include the guided migration of OLG progenitor cells (OPCs), the surveying of local environments by cellular processes extending from differentiating and pre-myelinating OLGs, and during the process of active myelin wrapping, the forward movement of the leading edge of the myelin sheath's inner tongue along the axon. Almost all of these motile behaviors are driven by actin cytoskeletal dynamics initiated within a lamellipodial structure that is located at the tip of cellular OLG/OPC processes and is structurally as well as functionally similar to the neuronal growth cone. Accordingly, coordinated stoichiometries of actin filament (F-actin) assembly and disassembly at these OLG/OPC growth cones have been implicated in directing process outgrowth and guidance, and the initiation of myelination. Nonetheless, the functional importance of the OLG/OPC growth cone still remains to be fully understood, and, as a unique aspect of actin cytoskeletal dynamics, F-actin depolymerization and disassembly start to predominate at the transition from myelination initiation to myelin wrapping. This review provides an overview of the current knowledge about OLG/OPC growth cones, and it proposes a model in which actin cytoskeletal dynamics in OLG/OPC growth cones are a main driver for morphological transformations and motile behaviors. Remarkably, these activities, at least at the later stages of OLG maturation, may be regulated independently from the transcriptional gene expression changes typically associated with CNS myelination.
Collapse
Affiliation(s)
- Elizabeth J Thomason
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Miguel Escalante
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Donna J Osterhout
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
98
|
Thomas L, Pasquini LA. Galectin-3 Exerts a Pro-differentiating and Pro-myelinating Effect Within a Temporal Window Spanning Precursors and Pre-oligodendrocytes: Insights into the Mechanisms of Action. Mol Neurobiol 2019; 57:976-987. [PMID: 31654317 DOI: 10.1007/s12035-019-01787-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/12/2019] [Indexed: 11/29/2022]
Abstract
Oligodendrocytes (OLG) are the cells resident in the CNS responsible for myelination. OLG undergo a succession of morphological and molecular changes along several maturational stages. Galectin-3 (Gal-3) is a 25- to 35-KDa protein belonging to the family of carbohydrate-binding galectins, which bind to glycoconjugates containing β-galactosides. Gal-3 lacks a specific receptor and its binding is thus rather unspecific, as it depends on the cellular environment and the repertoire of glycomolecules at the time when Gal-3 is present. Our previous work revealed that recombinant Gal-3 (rGal-3)-treated OLG showed accelerated differentiation, evidenced by an increase in the number of mature cells to the detriment of immature ones and accelerated actin cytoskeleton dynamics. These changes were a consequence of rGal-3 influence on Akt, Erk 1/2, and β-catenin signaling pathways. Considering this previous evidence, the aim of this study was to identify the temporal window of rGal-3 action on the OLG lineage to induce OLG maturation by using specific single pulses of rGal-3 over the different maturational stages of OLG, and to unravel its main direct targets promoting OLG differentiation by mass spectrometry analysis. Our results reveal a key temporal window spanning between OPC and pre-OLG states in which rGal-3 action promotes OLG differentiation, and identify several targets for rGal-3 binding including proteins related to the cytoskeleton, signaling pathways, metabolism and intracellular trafficking, among others. These results highlight the relevance of Gal-3 in signaling pathways regulating oligodendroglial differentiation and support a potential therapeutic role for rGal-3 in demyelinating diseases such as multiple sclerosis.
Collapse
Affiliation(s)
- Laura Thomas
- Department of Biological Chemistry, School of Pharmacy and Biochemistry, Institute of Chemistry and Biological Physicochemistry (IQUIFIB), University of Buenos Aires and National Research Council (CONICET), Buenos Aires, Argentina
| | - Laura Andrea Pasquini
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, C1113, Buenos Aires, Argentina.
| |
Collapse
|
99
|
Djannatian M, Timmler S, Arends M, Luckner M, Weil MT, Alexopoulos I, Snaidero N, Schmid B, Misgeld T, Möbius W, Schifferer M, Peles E, Simons M. Two adhesive systems cooperatively regulate axon ensheathment and myelin growth in the CNS. Nat Commun 2019; 10:4794. [PMID: 31641127 PMCID: PMC6805957 DOI: 10.1038/s41467-019-12789-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/27/2019] [Indexed: 01/06/2023] Open
Abstract
Central nervous system myelin is a multilayered membrane produced by oligodendrocytes to increase neural processing speed and efficiency, but the molecular mechanisms underlying axonal selection and myelin wrapping are unknown. Here, using combined morphological and molecular analyses in mice and zebrafish, we show that adhesion molecules of the paranodal and the internodal segment work synergistically using overlapping functions to regulate axonal interaction and myelin wrapping. In the absence of these adhesive systems, axonal recognition by myelin is impaired with myelin growing on top of previously myelinated fibers, around neuronal cell bodies and above nodes of Ranvier. In addition, myelin wrapping is disturbed with the leading edge moving away from the axon and in between previously formed layers. These data show how two adhesive systems function together to guide axonal ensheathment and myelin wrapping, and provide a mechanistic understanding of how the spatial organization of myelin is achieved.
Collapse
Affiliation(s)
- Minou Djannatian
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Sebastian Timmler
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Martina Arends
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Manja Luckner
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Marie-Theres Weil
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Ioannis Alexopoulos
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Nicolas Snaidero
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Bettina Schmid
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
- Electron Microscopy Core Unit, Max Planck Institute of Experimental Medicine, 37075, Göttingen, Germany
| | - Martina Schifferer
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Elior Peles
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, Israel
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
- Max Planck Institute of Experimental Medicine, Göttingen, Germany.
| |
Collapse
|
100
|
Stadelmann C, Timmler S, Barrantes-Freer A, Simons M. Myelin in the Central Nervous System: Structure, Function, and Pathology. Physiol Rev 2019; 99:1381-1431. [PMID: 31066630 DOI: 10.1152/physrev.00031.2018] [Citation(s) in RCA: 394] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Oligodendrocytes generate multiple layers of myelin membrane around axons of the central nervous system to enable fast and efficient nerve conduction. Until recently, saltatory nerve conduction was considered the only purpose of myelin, but it is now clear that myelin has more functions. In fact, myelinating oligodendrocytes are embedded in a vast network of interconnected glial and neuronal cells, and increasing evidence supports an active role of oligodendrocytes within this assembly, for example, by providing metabolic support to neurons, by regulating ion and water homeostasis, and by adapting to activity-dependent neuronal signals. The molecular complexity governing these interactions requires an in-depth molecular understanding of how oligodendrocytes and axons interact and how they generate, maintain, and remodel their myelin sheaths. This review deals with the biology of myelin, the expanded relationship of myelin with its underlying axons and the neighboring cells, and its disturbances in various diseases such as multiple sclerosis, acute disseminated encephalomyelitis, and neuromyelitis optica spectrum disorders. Furthermore, we will highlight how specific interactions between astrocytes, oligodendrocytes, and microglia contribute to demyelination in hereditary white matter pathologies.
Collapse
Affiliation(s)
- Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Sebastian Timmler
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Alonso Barrantes-Freer
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| | - Mikael Simons
- Institute of Neuropathology, University Medical Center Göttingen , Göttingen , Germany ; Institute of Neuronal Cell Biology, Technical University Munich , Munich , Germany ; German Center for Neurodegenerative Diseases (DZNE), Munich , Germany ; Department of Neuropathology, University Medical Center Leipzig , Leipzig , Germany ; Munich Cluster of Systems Neurology (SyNergy), Munich , Germany ; and Max Planck Institute of Experimental Medicine, Göttingen , Germany
| |
Collapse
|