51
|
Agostini F, Pereyra L, Dale J, Yambire KF, Maglioni S, Schiavi A, Ventura N, Milosevic I, Raimundo N. Up-regulation of cholesterol synthesis by lysosomal defects requires a functional mitochondrial respiratory chain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583589. [PMID: 38496624 PMCID: PMC10942416 DOI: 10.1101/2024.03.06.583589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Mitochondria and lysosomes are two organelles that carry out both signaling and metabolic roles in the cells. Recent evidence has shown that mitochondria and lysosomes are dependent on one another, as primary defects in one cause secondary defects in the other. Nevertheless, the signaling consequences of primary mitochondrial malfunction and of primary lysosomal defects are not similar, despite in both cases there are impairments of mitochondria and of lysosomes. Here, we used RNA sequencing to obtain transcriptomes from cells with primary mitochondrial or lysosomal defects, to identify what are the global cellular consequences that are associated with malfunction of mitochondria or lysosomes. We used these data to determine what are the pathways that are affected by defects in both organelles, which revealed a prominent role for the cholesterol synthesis pathway. This pathway is transcriptionally up-regulated in cellular and mouse models of lysosomal defects and is transcriptionally down-regulated in cellular and mouse models of mitochondrial defects. We identified a role for post-transcriptional regulation of the transcription factor SREBF1, a master regulator of cholesterol and lipid biosynthesis, in models of mitochondrial respiratory chain deficiency. Furthermore, the retention of Ca 2+ in the lysosomes of cells with mitochondrial respiratory chain defects contributes to the differential regulation of the cholesterol synthesis pathway in the mitochondrial and lysosomal defects tested. Finally, we verified in vivo , using models of mitochondria-associated diseases in C. elegans , that normalization of lysosomal Ca 2+ levels results in partial rescue of the developmental arrest induced by the respiratory chain deficiency.
Collapse
|
52
|
Nunes MJ, Carvalho AN, Reis J, Costa D, Moutinho M, Mateus J, Mendes de Almeida R, Brito S, Risso D, Nunes S, Castro-Caldas M, Gama MJ, Rodrigues CMP, Xapelli S, Diógenes MJ, Cartier N, Chali F, Piguet F, Rodrigues E. Cholesterol redistribution triggered by CYP46A1 gene therapy improves major hallmarks of Niemann-Pick type C disease but is not sufficient to halt neurodegeneration. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166993. [PMID: 38142760 DOI: 10.1016/j.bbadis.2023.166993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023]
Abstract
Cholesterol 24-hydroxylase (CYP46A1) is an exclusively neuronal cytochrome P450 enzyme responsible for converting cholesterol into 24S-hydroxycholesterol, which serves as the primary pathway for eliminating cholesterol in the brain. We and others have shown that increased activity of CYP46A1 leads to reduced levels of cholesterol and has a positive effect on cognition. Therefore, we hypothesized that CYP46A1 could be a potential therapeutic target in Niemann-Pick type C (NPC) disease, a rare and fatal neurodegenerative disorder, characterized by cholesterol accumulation in endolysosomal compartments. Herein, we show that CYP46A1 ectopic expression, in cellular models of NPC and in Npc1tm(I1061T) mice by adeno-associated virus-mediated gene therapy improved NPC disease phenotype. Amelioration in functional, biochemical, molecular and neuropathological hallmarks of NPC disease were characterized. In vivo, CYP46A1 expression partially prevented weight loss and hepatomegaly, corrected the expression levels of genes involved in cholesterol homeostasis, and promoted a redistribution of brain cholesterol accumulated in late endosomes/lysosomes. Moreover, concomitant with the amelioration of cholesterol metabolism dysregulation, CYP46A1 attenuated microgliosis and lysosomal dysfunction in mouse cerebellum, favoring a pro-resolving phenotype. In vivo CYP46A1 ectopic expression improves important features of NPC disease and may represent a valid therapeutic approach to be used concomitantly with other drugs. However, promoting cholesterol redistribution does not appear to be enough to prevent Purkinje neuronal death in the cerebellum. This indicates that cholesterol buildup in neurons might not be the main cause of neurodegeneration in this human lipidosis.
Collapse
Affiliation(s)
- Maria João Nunes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Andreia Neves Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Reis
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Daniela Costa
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Miguel Moutinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana Mateus
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Rita Mendes de Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Brito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Daniela Risso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sofia Nunes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Margarida Castro-Caldas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Life Sciences, Faculty of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Maria João Gama
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria José Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Nathalie Cartier
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, APHP, University Hospital Pitié Salpêtrière, Paris, France
| | - Farah Chali
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, APHP, University Hospital Pitié Salpêtrière, Paris, France
| | - Françoise Piguet
- NeuroGenCell, INSERM U1127, Paris Brain Institute (ICM), Sorbonne University, CNRS, APHP, University Hospital Pitié Salpêtrière, Paris, France
| | - Elsa Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
53
|
Settembre C, Perera RM. Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nat Rev Mol Cell Biol 2024; 25:223-245. [PMID: 38001393 DOI: 10.1038/s41580-023-00676-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/26/2023]
Abstract
Every cell must satisfy basic requirements for nutrient sensing, utilization and recycling through macromolecular breakdown to coordinate programmes for growth, repair and stress adaptation. The lysosome orchestrates these key functions through the synchronised interplay between hydrolytic enzymes, nutrient transporters and signalling factors, which together enable metabolic coordination with other organelles and regulation of specific gene expression programmes. In this Review, we discuss recent findings on lysosome-dependent signalling pathways, focusing on how the lysosome senses nutrient availability through its physical and functional association with mechanistic target of rapamycin complex 1 (mTORC1) and how, in response, the microphthalmia/transcription factor E (MiT/TFE) transcription factors exert feedback regulation on lysosome biogenesis. We also highlight the emerging interactions of lysosomes with other organelles, which contribute to cellular homeostasis. Lastly, we discuss how lysosome dysfunction contributes to diverse disease pathologies and how inherited mutations that compromise lysosomal hydrolysis, transport or signalling components lead to multi-organ disorders with severe metabolic and neurological impact. A deeper comprehension of lysosomal composition and function, at both the cellular and organismal level, may uncover fundamental insights into human physiology and disease.
Collapse
Affiliation(s)
- Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| | - Rushika M Perera
- Department of Anatomy, University of California at San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California at San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|
54
|
Giamogante F, Barazzuol L, Maiorca F, Poggio E, Esposito A, Masato A, Napolitano G, Vagnoni A, Calì T, Brini M. A SPLICS reporter reveals [Formula: see text]-synuclein regulation of lysosome-mitochondria contacts which affects TFEB nuclear translocation. Nat Commun 2024; 15:1516. [PMID: 38374070 PMCID: PMC10876553 DOI: 10.1038/s41467-024-46007-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Mitochondrial and lysosomal activities are crucial to maintain cellular homeostasis: optimal coordination is achieved at their membrane contact sites where distinct protein machineries regulate organelle network dynamics, ions and metabolites exchange. Here we describe a genetically encoded SPLICS reporter for short- and long- juxtapositions between mitochondria and lysosomes. We report the existence of narrow and wide lysosome-mitochondria contacts differently modulated by mitophagy, autophagy and genetic manipulation of tethering factors. The overexpression of α-synuclein (α-syn) reduces the apposition of mitochondria/lysosomes membranes and affects their privileged Ca2+ transfer, impinging on TFEB nuclear translocation. We observe enhanced TFEB nuclear translocation in α-syn-overexpressing cells. We propose that α-syn, by interfering with mitochondria/lysosomes tethering impacts on local Ca2+ regulated pathways, among which TFEB mediated signaling, and in turn mitochondrial and lysosomal function. Defects in mitochondria and lysosome represent a common hallmark of neurodegenerative diseases: targeting their communication could open therapeutic avenues.
Collapse
Affiliation(s)
- Flavia Giamogante
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy
| | - Lucia Barazzuol
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy
| | | | - Elena Poggio
- Department of Biology (DIBIO), University of Padova, Padova, Italy
| | - Alessandra Esposito
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Anna Masato
- Department of Biology (DIBIO), University of Padova, Padova, Italy
- UK-Dementia Research Institute at UCL, University College London, London, UK
| | - Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
- Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Alessio Vagnoni
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Tito Calì
- Department of Biomedical Sciences (DSB), University of Padova, Padova, Italy.
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy.
- Study Center for Neurodegeneration (CESNE), University of Padova, Padova, Italy.
| | - Marisa Brini
- Department of Biology (DIBIO), University of Padova, Padova, Italy.
- Study Center for Neurodegeneration (CESNE), University of Padova, Padova, Italy.
- Department of Pharmaceutical and Pharmacological Sciences (DSF), University of Padova, Padova, Italy.
| |
Collapse
|
55
|
Caria I, Nunes MJ, Ciraci V, Carvalho AN, Ranito C, Santos SG, Gama MJ, Castro-Caldas M, Rodrigues CMP, Ruas JL, Rodrigues E. NPC1-like phenotype, with intracellular cholesterol accumulation and altered mTORC1 signaling in models of Parkinson's disease. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166980. [PMID: 38061599 DOI: 10.1016/j.bbadis.2023.166980] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
Disruption of brain cholesterol homeostasis has been implicated in neurodegeneration. Nevertheless, the role of cholesterol in Parkinson's Disease (PD) remains unclear. We have used N2a mouse neuroblastoma cells and primary cultures of mouse neurons and 1-methyl-4-phenylpyridinium (MPP+), a known mitochondrial complex I inhibitor and the toxic metabolite of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), known to trigger a cascade of events associated with PD neuropathological features. Simultaneously, we utilized other mitochondrial toxins, including antimycin A, oligomycin, and carbonyl cyanide chlorophenylhydrazone. MPP+ treatment resulted in elevated levels of total cholesterol and in a Niemann Pick type C1 (NPC1)-like phenotype characterized by accumulation of cholesterol in lysosomes. Interestingly, NPC1 mRNA levels were specifically reduced by MPP+. The decrease in NPC1 levels was also seen in midbrain and striatum from MPTP-treated mice and in primary cultures of neurons treated with MPP+. Together with the MPP+-dependent increase in intracellular cholesterol levels in N2a cells, we observed an increase in 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and a concomitant increase in the phosphorylated levels of mammalian target of rapamycin (mTOR). NPC1 knockout delayed cell death induced by acute mitochondrial damage, suggesting that transient cholesterol accumulation in lysosomes could be a protective mechanism against MPTP/MPP+ insult. Interestingly, we observed a negative correlation between NPC1 protein levels and disease stage, in human PD brain samples. In summary, MPP+ decreases NPC1 levels, elevates lysosomal cholesterol accumulation and alters mTOR signaling, adding to the existing notion that PD may rise from alterations in mitochondrial-lysosomal communication.
Collapse
Affiliation(s)
- Inês Caria
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Maria João Nunes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Viviana Ciraci
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Andreia Neves Carvalho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Catarina Ranito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Susana G Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Maria João Gama
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Margarida Castro-Caldas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Cecília M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Jorge L Ruas
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Elsa Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal; Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Portugal.
| |
Collapse
|
56
|
Maghe C, Trillet K, André-Grégoire G, Kerhervé M, Merlet L, Jacobs KA, Schauer K, Bidère N, Gavard J. The paracaspase MALT1 controls cholesterol homeostasis in glioblastoma stem-like cells through lysosome proteome shaping. Cell Rep 2024; 43:113631. [PMID: 38183651 DOI: 10.1016/j.celrep.2023.113631] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 11/27/2023] [Accepted: 12/13/2023] [Indexed: 01/08/2024] Open
Abstract
Glioblastoma stem-like cells (GSCs) compose a tumor-initiating and -propagating population remarkably vulnerable to variation in the stability and integrity of the lysosomal compartment. Previous work has shown that the expression and activity of the paracaspase MALT1 control GSC viability via lysosome abundance. However, the underlying mechanisms remain elusive. By combining RNA sequencing (RNA-seq) with proteome-wide label-free quantification, we now report that MALT1 repression in patient-derived GSCs alters the homeostasis of cholesterol, which accumulates in late endosomes (LEs)-lysosomes. This failure in cholesterol supply culminates in cell death and autophagy defects, which can be partially reverted by providing exogenous membrane-permeable cholesterol to GSCs. From a molecular standpoint, a targeted lysosome proteome analysis unraveled that Niemann-Pick type C (NPC) lysosomal cholesterol transporters are diluted when MALT1 is impaired. Accordingly, we found that NPC1/2 inhibition and silencing partially mirror MALT1 loss-of-function phenotypes. This supports the notion that GSC fitness relies on lysosomal cholesterol homeostasis.
Collapse
Affiliation(s)
- Clément Maghe
- Team SOAP, CRCI2NA, Nantes Université, INSERM, CNRS, Université d'Angers, 44000 Nantes, France; Equipe Labellisée Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Kilian Trillet
- Team SOAP, CRCI2NA, Nantes Université, INSERM, CNRS, Université d'Angers, 44000 Nantes, France; Equipe Labellisée Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Gwennan André-Grégoire
- Team SOAP, CRCI2NA, Nantes Université, INSERM, CNRS, Université d'Angers, 44000 Nantes, France; Equipe Labellisée Ligue Nationale Contre le Cancer, 75013 Paris, France; Institut de Cancérologie de l'Ouest (ICO), 44800 Saint-Herblain, France
| | - Mathilde Kerhervé
- Team SOAP, CRCI2NA, Nantes Université, INSERM, CNRS, Université d'Angers, 44000 Nantes, France; Equipe Labellisée Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Laura Merlet
- Team SOAP, CRCI2NA, Nantes Université, INSERM, CNRS, Université d'Angers, 44000 Nantes, France; Equipe Labellisée Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Kathryn A Jacobs
- Team SOAP, CRCI2NA, Nantes Université, INSERM, CNRS, Université d'Angers, 44000 Nantes, France; Equipe Labellisée Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Kristine Schauer
- Institut Gustave Roussy, Université Paris-Saclay, INSERM, CNRS, 94800 Villejuif, France
| | - Nicolas Bidère
- Team SOAP, CRCI2NA, Nantes Université, INSERM, CNRS, Université d'Angers, 44000 Nantes, France; Equipe Labellisée Ligue Nationale Contre le Cancer, 75013 Paris, France
| | - Julie Gavard
- Team SOAP, CRCI2NA, Nantes Université, INSERM, CNRS, Université d'Angers, 44000 Nantes, France; Equipe Labellisée Ligue Nationale Contre le Cancer, 75013 Paris, France; Institut de Cancérologie de l'Ouest (ICO), 44800 Saint-Herblain, France.
| |
Collapse
|
57
|
Kubala JM, Laursen KB, Schreiner R, Williams RM, van der Mijn JC, Crowley MJ, Mongan NP, Nanus DM, Heller DA, Gudas LJ. NDUFA4L2 reduces mitochondrial respiration resulting in defective lysosomal trafficking in clear cell renal cell carcinoma. Cancer Biol Ther 2023; 24:2170669. [PMID: 36722045 PMCID: PMC9897797 DOI: 10.1080/15384047.2023.2170669] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/23/2022] [Indexed: 02/02/2023] Open
Abstract
In clear cell renal cell carcinoma (ccRCC), activation of hypoxic signaling induces NADH dehydrogenase (ubiquinone) 1 alpha subcomplex, 4-like 2 (NDUFA4L2) expression. Over 90% of ccRCCs exhibit overexpression of NDUFA4L2, which we previously showed contributes to ccRCC proliferation and survival. The function of NDUFA4L2 in ccRCC has not been fully elucidated. NDUFA4L2 was reported to reduce mitochondrial respiration via mitochondrial complex I inhibition. We found that NDUFA4L2 expression in human ccRCC cells increases the extracellular acidification rate, indicative of elevated glycolysis. Conversely, NDUFA4L2 expression in non-cancerous kidney epithelial cells decreases oxygen consumption rate while increasing extracellular acidification rate, suggesting that a Warburg-like effect is induced by NDUFA4L2 alone. We performed mass-spectrometry (MS)-based proteomics of NDUFA4L2 associated complexes. Comparing RCC4-P (parental) ccRCC cells with RCC4 in which NDUFA4L2 is knocked out by CRISPR-Cas9 (RCC4-KO-643), we identified 3,215 proteins enriched in the NDUFA4L2 immunoprecipitates. Among the top-ranking pathways were "Metabolic Reprogramming in Cancer" and "Glycolysis Activation in Cancer (Warburg Effect)." We also show that NDUFA4L2 enhances mitochondrial fragmentation, interacts with lysosomes, and increases mitochondrial-lysosomal associations, as assessed by high-resolution fluorescence microscopy and live cell imaging. We identified 161 lysosomal proteins, including Niemann-Pick Disease Type C Intracellular Cholesterol Transporters 1 and 2 (NPC1, NPC2), that are associated with NDUFA4L2 in RCC4-P cells. RCC4-P cells have larger and decreased numbers of lysosomes relative to RCC4 NDUFA4L2 knockout cells. These findings suggest that NDUFA4L2 regulates mitochondrial-lysosomal associations and potentially lysosomal size and abundance. Consequently, NDUFA4L2 may regulate not only mitochondrial, but also lysosomal functions in ccRCC.
Collapse
Affiliation(s)
- Jaclyn M. Kubala
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | | | - Ryan Schreiner
- Division of Regenerative Medicine Research, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ryan M. Williams
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Biomedical Engineering, the City College of New York, New York, NY, USA
| | | | - Michael J. Crowley
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Nigel P. Mongan
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Faculty of Medicine and Health Sciences, Center for Cancer Sciences, University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - David M. Nanus
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Urology; New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Daniel A. Heller
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Physiology, Biophysics, and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | - Lorraine J. Gudas
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Department of Urology; New York Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
58
|
Lee YY, Ha J, Kim YS, Ramani S, Sung S, Gil ES, Choo OS, Jang JH, Choung YH. Abnormal Cholesterol Metabolism and Lysosomal Dysfunction Induce Age-Related Hearing Loss by Inhibiting mTORC1-TFEB-Dependent Autophagy. Int J Mol Sci 2023; 24:17513. [PMID: 38139347 PMCID: PMC10743727 DOI: 10.3390/ijms242417513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cholesterol is a risk factor for age-related hearing loss (ARHL). However, the effect of cholesterol on the organ of Corti during the onset of ARHL is unclear. We established a mouse model for the ARHL group (24 months, n = 12) and a young group (6 months, n = 12). Auditory thresholds were measured in both groups using auditory brainstem response (ABR) at frequencies of 8, 16, and 32 kHz. Subsequently, mice were sacrificed and subjected to histological analyses, including transmission electron microscopy (TEM), H&E, Sudan Black B (SBB), and Filipin staining, as well as biochemical assays such as IHC, enzymatic analysis, and immunoblotting. Additionally, mRNA extracted from both young and aged cochlea underwent RNA sequencing. To identify the mechanism, in vitro studies utilizing HEI-OC1 cells were also performed. RNA sequencing showed a positive correlation with increased expression of genes related to metabolic diseases, cholesterol homeostasis, and target of rapamycin complex 1 (mTORC1) signaling in the ARHL group as compared to the younger group. In addition, ARHL tissues exhibited increased cholesterol and lipofuscin aggregates in the organ of Corti, lateral walls, and spiral ganglion neurons. Autophagic flux was inhibited by the accumulation of damaged lysosomes and autolysosomes. Subsequently, we observed a decrease in the level of transcription factor EB (TFEB) protein, which regulates lysosomal biosynthesis and autophagy, together with increased mTORC1 activity in ARHL tissues. These changes in TFEB and mTORC1 expression were observed in a cholesterol-dependent manner. Treatment of ARHL mice with atorvastatin, a cholesterol synthesis inhibitor, delayed hearing loss by reducing the cholesterol level and maintaining lysosomal function and autophagy by inhibiting mTORC1 and activating TFEB. The above findings were confirmed using stress-induced premature senescent House Ear Institute organ of Corti 1 (HEI-OC1) cells. The findings implicate cholesterol in the pathogenesis of ARHL. We propose that atorvastatin could prevent ARHL by maintaining lysosomal function and autophagy by inhibiting mTORC1 and activating TFEB during the aging process.
Collapse
Affiliation(s)
- Yun Yeong Lee
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.Y.L.); (J.H.); (Y.S.K.); (S.R.); (S.S.); (J.H.J.)
| | - Jungho Ha
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.Y.L.); (J.H.); (Y.S.K.); (S.R.); (S.S.); (J.H.J.)
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Young Sun Kim
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.Y.L.); (J.H.); (Y.S.K.); (S.R.); (S.S.); (J.H.J.)
| | - Sivasubramanian Ramani
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.Y.L.); (J.H.); (Y.S.K.); (S.R.); (S.S.); (J.H.J.)
| | - Siung Sung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.Y.L.); (J.H.); (Y.S.K.); (S.R.); (S.S.); (J.H.J.)
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Eun Sol Gil
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.Y.L.); (J.H.); (Y.S.K.); (S.R.); (S.S.); (J.H.J.)
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| | - Oak-Sung Choo
- Department of Otorhinolaryngology-Head and Neck Surgery, Kangnam Sacred Heart Hospital, Hallym University College of Medicine, Seoul 07441, Republic of Korea;
| | - Jeong Hun Jang
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.Y.L.); (J.H.); (Y.S.K.); (S.R.); (S.S.); (J.H.J.)
| | - Yun-Hoon Choung
- Department of Otolaryngology, Ajou University School of Medicine, Suwon 16499, Republic of Korea; (Y.Y.L.); (J.H.); (Y.S.K.); (S.R.); (S.S.); (J.H.J.)
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 16499, Republic of Korea
| |
Collapse
|
59
|
Hertz E, Glasstetter LM, Chen Y, Sidransky E. New tools can propel research in lysosomal storage diseases. Mol Genet Metab 2023; 140:107729. [PMID: 37951057 DOI: 10.1016/j.ymgme.2023.107729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/13/2023]
Abstract
Historically, the clinical manifestations of lysosomal storage diseases offered an early glimpse into the essential digestive functions of the lysosome. However, it was only recently that the more subtle role of this organelle in the dynamic regulation of multiple cellular processes was appreciated. With the need for precise interrogation of lysosomal interplay in health and disease comes the demand for more sophisticated functional tools. This demand has recently been met with 1) induced pluripotent stem cell-derived models that recapitulate the disease phenotype in vitro, 2) methods for lysosome affinity purification coupled with downstream omics analysis that provide a high-resolution snapshot of lysosomal alterations, and 3) gene editing and CRISPR/Cas9-based functional genomic strategies that enable screening for genetic modifiers of the disease phenotype. These emerging methods have garnered much interest in the field of neurodegeneration, and their use in the field of metabolic disorders is now also steadily gaining momentum. Looking forward, these robust tools should accelerate basic science efforts to understand lysosomal dysfunction distal to substrate accumulation and provide translational opportunities to identify disease-modifying therapies.
Collapse
Affiliation(s)
- Ellen Hertz
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Logan M Glasstetter
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yu Chen
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Sidransky
- Molecular Neurogenetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
60
|
MacLeod CM, Yousufzai FAK, Spencer LT, Kim S, Rivera-Rosario LA, Barrera ZD, Walsh L, Krummenacher C, Carone B, Soto I. Trehalose enhances mitochondria deficits in human NPC1 mutant fibroblasts but disrupts mouse Purkinje cell dendritic growth ex vivo. PLoS One 2023; 18:e0294312. [PMID: 38033125 PMCID: PMC10688965 DOI: 10.1371/journal.pone.0294312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/29/2023] [Indexed: 12/02/2023] Open
Abstract
Lysosomes play important roles in catabolism, nutrient sensing, metabolic signaling, and homeostasis. NPC1 deficiency disrupts lysosomal function by inducing cholesterol accumulation that leads to early neurodegeneration in Niemann-Pick type C (NPC) disease. Mitochondria pathology and deficits in NPC1 deficient cells are associated with impaired lysosomal proteolysis and metabolic signaling. It is thought that activation of the transcription factor TFEB, an inducer of lysosome biogenesis, restores lysosomal-autophagy activity in lysosomal storage disorders. Here, we investigated the effect of trehalose, a TFEB activator, in the mitochondria pathology of NPC1 mutant fibroblasts in vitro and in mouse developmental Purkinje cells ex vivo. We found that in NPC1 mutant fibroblasts, serum starvation or/and trehalose treatment, both activators of TFEB, reversed mitochondria fragmentation to a more tubular mitochondrion. Trehalose treatment also decreased the accumulation of Filipin+ cholesterol in NPC1 mutant fibroblasts. However, trehalose treatment in cerebellar organotypic slices (COSCs) from wild-type and Npc1nmf164 mice caused mitochondria fragmentation and lack of dendritic growth and degeneration in developmental Purkinje cells. Our data suggest, that although trehalose successfully restores mitochondria length and decreases cholesterol accumulation in NPC1 mutant fibroblasts, in COSCs, Purkinje cells mitochondria and dendritic growth are negatively affected possibly through the overactivation of the TFEB-lysosomal-autophagy pathway.
Collapse
Affiliation(s)
- Collin M. MacLeod
- Department of Biology, Providence College, Providence, RI, United States of America
| | - Fawad A. K. Yousufzai
- Department of Biological & Biomedical Sciences, Rowan University, Glassboro, NJ, United States of America
| | - Liam T. Spencer
- Department of Biology, Providence College, Providence, RI, United States of America
| | - Sarah Kim
- Department of Biological & Biomedical Sciences, Rowan University, Glassboro, NJ, United States of America
| | | | - Zerian D. Barrera
- Department of Biological & Biomedical Sciences, Rowan University, Glassboro, NJ, United States of America
| | - Lindsay Walsh
- Department of Biology, Providence College, Providence, RI, United States of America
| | - Claude Krummenacher
- Department of Biological & Biomedical Sciences, Rowan University, Glassboro, NJ, United States of America
| | - Benjamin Carone
- Department of Biological & Biomedical Sciences, Rowan University, Glassboro, NJ, United States of America
| | - Ileana Soto
- Department of Biology, Providence College, Providence, RI, United States of America
| |
Collapse
|
61
|
Lee D, Hong JH. Niemann-Pick Disease Type C (NPDC) by Mutation of NPC1 and NPC2: Aberrant Lysosomal Cholesterol Trafficking and Oxidative Stress. Antioxidants (Basel) 2023; 12:2021. [PMID: 38136141 PMCID: PMC10740957 DOI: 10.3390/antiox12122021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Cholesterol trafficking is initiated by the endocytic pathway and transported from endo/lysosomes to other intracellular organelles. Deficiencies in cholesterol-sensing and binding proteins NPC1 and NPC2 induce accumulation in lysosomes and the malfunction of trafficking to other organelles. Each organelle possesses regulatory factors to induce cholesterol trafficking. The mutation of NPC1 and NPC2 genes induces Niemann-Pick disease type C (NPDC), which is a hereditary disease and causes progressive neurodegeneration, developmental disability, hypotonia, and ataxia. Oxidative stress induces damage in NPDC-related intracellular organelles. Although studies on the relationship between NPDC and oxidation are relatively rare, several studies have reported the therapeutic potential of antioxidants in treating NPDC. Investigating antioxidant drugs to relieve oxidative stress and cholesterol accumulation is suggested to be a powerful tool for developing treatments for NPDC. Understanding NPDC provides challenging issues in understanding the oxidative stress-lysosome metabolism of the lipid axis. Thus, we elucidated the relationship between complexes of intracellular organelles and NPDC to develop our knowledge and suggested potential antioxidant reagents for NPDC therapy.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Department of Health Sciences & Technology, GAIHST, Gachon University, 155 Getbeolro, Yeonsu-gu, Incheon 21999, Republic of Korea;
| |
Collapse
|
62
|
Navyasree KV, Ramesh ST, Umasankar PK. Cholesterol regulates insulin-induced mTORC1 signaling. J Cell Sci 2023; 136:jcs261402. [PMID: 37921368 DOI: 10.1242/jcs.261402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023] Open
Abstract
The rapid activation of the crucial kinase mechanistic target of rapamycin complex-1 (mTORC1) by insulin is key to cell growth in mammals, but the regulatory factors remain unclear. Here, we demonstrate that cholesterol plays a crucial role in the regulation of insulin-stimulated mTORC1 signaling. The rapid progression of insulin-induced mTORC1 signaling declines in sterol-depleted cells and restores in cholesterol-repleted cells. In insulin-stimulated cells, cholesterol promotes recruitment of mTORC1 onto lysosomes without affecting insulin-induced dissociation of the TSC complex from lysosomes, thereby enabling complete activation of mTORC1. We also show that under prolonged starvation conditions, cholesterol coordinates with autophagy to support mTORC1 reactivation on lysosomes thereby restoring insulin-responsive mTORC1 signaling. Furthermore, we identify that fibroblasts from individuals with Smith-Lemli-Opitz Syndrome (SLOS) and model HeLa-SLOS cells, which are deficient in cholesterol biosynthesis, exhibit defects in the insulin-mTORC1 growth axis. These defects are rescued by supplementation of exogenous cholesterol or by expression of constitutively active Rag GTPase, a downstream activator of mTORC1. Overall, our findings propose novel signal integration mechanisms to achieve spatial and temporal control of mTORC1-dependent growth signaling and their aberrations in disease.
Collapse
Affiliation(s)
- Kolaparamba V Navyasree
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India
- PhD Program, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shikha T Ramesh
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India
- PhD Program, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Perunthottathu K Umasankar
- Intracellular Trafficking Laboratory, Transdisciplinary Biology Research Program, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India
| |
Collapse
|
63
|
Lee H, Cho S, Kim MJ, Park YJ, Cho E, Jo YS, Kim YS, Lee JY, Thoudam T, Woo SH, Lee SI, Jeon J, Lee YS, Suh BC, Yoon JH, Go Y, Lee IK, Seo J. ApoE4-dependent lysosomal cholesterol accumulation impairs mitochondrial homeostasis and oxidative phosphorylation in human astrocytes. Cell Rep 2023; 42:113183. [PMID: 37777962 DOI: 10.1016/j.celrep.2023.113183] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 08/07/2023] [Accepted: 09/13/2023] [Indexed: 10/03/2023] Open
Abstract
Recent developments in genome sequencing have expanded the knowledge of genetic factors associated with late-onset Alzheimer's disease (AD). Among them, genetic variant ε4 of the APOE gene (APOE4) confers the greatest disease risk. Dysregulated glucose metabolism is an early pathological feature of AD. Using isogenic ApoE3 and ApoE4 astrocytes derived from human induced pluripotent stem cells, we find that ApoE4 increases glycolytic activity but impairs mitochondrial respiration in astrocytes. Ultrastructural and autophagy flux analyses show that ApoE4-induced cholesterol accumulation impairs lysosome-dependent removal of damaged mitochondria. Acute treatment with cholesterol-depleting agents restores autophagic activity, mitochondrial dynamics, and associated proteomes, and extended treatment rescues mitochondrial respiration in ApoE4 astrocytes. Taken together, our study provides a direct link between ApoE4-induced lysosomal cholesterol accumulation and abnormal oxidative phosphorylation.
Collapse
Affiliation(s)
- Hyein Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Sukhee Cho
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Mi-Jin Kim
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 41944, South Korea
| | - Yeo Jin Park
- Korean Medicine Life Science, University of Science and Technology, Daejeon 34054, South Korea; Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, South Korea
| | - Eunji Cho
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, South Korea
| | - Yeon Suk Jo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea; Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, South Korea
| | - Yong-Seok Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Jung Yi Lee
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University School of Medicine, Daegu 41944, South Korea
| | - Themis Thoudam
- Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu 41944, South Korea
| | - Seung-Hwa Woo
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Se-In Lee
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Juyeong Jeon
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Young-Sam Lee
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Byung-Chang Suh
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea
| | - Jong Hyuk Yoon
- Neurodegenerative Disease Research Group, Korea Brain Research Institute, Daegu 41062, South Korea
| | - Younghoon Go
- Korean Medicine-Application Center, Korea Institute of Oriental Medicine, Daegu 41062, South Korea.
| | - In-Kyu Lee
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu 41944, South Korea; Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University School of Medicine, Daegu 41944, South Korea; Research Institute of Aging and Metabolism, Kyungpook National University School of Medicine, Daegu 41944, South Korea.
| | - Jinsoo Seo
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, South Korea.
| |
Collapse
|
64
|
Miyoshi K, Hishinuma E, Matsukawa N, Shirasago Y, Watanabe M, Sato T, Sato Y, Kumondai M, Kikuchi M, Koshiba S, Fukasawa M, Maekawa M, Mano N. Global Proteomics for Identifying the Alteration Pathway of Niemann-Pick Disease Type C Using Hepatic Cell Models. Int J Mol Sci 2023; 24:15642. [PMID: 37958627 PMCID: PMC10648601 DOI: 10.3390/ijms242115642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Niemann-Pick disease type C (NPC) is an autosomal recessive disorder with progressive neurodegeneration. Although the causative genes were previously identified, NPC has unclear pathophysiological aspects, and patients with NPC present various symptoms and onset ages. However, various novel biomarkers and metabolic alterations have been investigated; at present, few comprehensive proteomic alterations have been reported in relation to NPC. In this study, we aimed to elucidate proteomic alterations in NPC and perform a global proteomics analysis for NPC model cells. First, we developed two NPC cell models by knocking out NPC1 using CRISPR/Cas9 (KO1 and KO2). Second, we performed a label-free (LF) global proteomics analysis. Using the LF approach, more than 300 proteins, defined as differentially expressed proteins (DEPs), changed in the KO1 and/or KO2 cells, while the two models shared 35 DEPs. As a bioinformatics analysis, the construction of a protein-protein interaction (PPI) network and an enrichment analysis showed that common characteristic pathways such as ferroptosis and mitophagy were identified in the two model cells. There are few reports of the involvement of NPC in ferroptosis, and this study presents ferroptosis as an altered pathway in NPC. On the other hand, many other pathways and DEPs were previously suggested to be associated with NPC, supporting the link between the proteome analyzed here and NPC. Therapeutic research based on these results is expected in the future.
Collapse
Affiliation(s)
- Keitaro Miyoshi
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Eiji Hishinuma
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan; (E.H.)
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan
| | - Naomi Matsukawa
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan
| | - Yoshitaka Shirasago
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masahiro Watanabe
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Toshihiro Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Yu Sato
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Masaki Kumondai
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Masafumi Kikuchi
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Seizo Koshiba
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan; (E.H.)
- Tohoku Medical Megabank Organization, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan
| | - Masayoshi Fukasawa
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Masamitsu Maekawa
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, 2-1 Seiryo-machi, Aoba-Ku, Sendai 980-8573, Japan; (E.H.)
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| | - Nariyasu Mano
- Faculty of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Graduate School of Pharmaceutical Sciences, Tohoku University, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
- Department of Pharmaceutical Sciences, Tohoku University Hospital, 1-1 Seiryo-machi, Aoba-Ku, Sendai 980-8574, Japan
| |
Collapse
|
65
|
Shi Q, Zhan T, Bi X, Ye BC, Qi N. Cholesterol-autoxidation metabolites in host defense against infectious diseases. Eur J Immunol 2023; 53:e2350501. [PMID: 37369622 DOI: 10.1002/eji.202350501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Cholesterol plays essential roles in biological processes, including cell membrane stability and myelin formation. Cholesterol can be metabolized to oxysterols by enzymatic or nonenzymatic ways. Nonenzymatic cholesterol metabolites, also called cholesterol-autoxidation metabolites, are formed dependent on the oxidation of reactive oxygen species (ROS) such as OH• or reactive nitrogen species, such as ONOO- . Cholesterol-autoxidation metabolites are abundantly produced in diseases such as inflammatory bowel disease and atherosclerosis, which are associated with oxidative stress. Recent studies have shown that cholesterol-autoxidation metabolites can further regulate the immune system. Here, we review the literature and summarize how cholesterol-autoxidation metabolites, such as 25-hydroxycholesterol (25-OHC), 7α/β-OHC, and 7-ketocholesterol, deal with the occurrence and development of infectious diseases through pattern recognition receptors, inflammasomes, ROS production, nuclear receptors, G-protein-coupled receptor 183, and lipid availability. In addition, we include the research regarding the roles of these metabolites in COVID-19 infection and discuss our viewpoints on the future research directions.
Collapse
Affiliation(s)
- Qiwen Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Tingzhu Zhan
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Xiaobao Bi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Bang-Ce Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Nan Qi
- State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
- Guangzhou Laboratory, Department of Basic Research, Guangzhou International Bio-Island, Guangzhou, Guangdong, China
| |
Collapse
|
66
|
Lin Y, Ran L, Du X, Yang H, Wu Y. Oxysterol-Binding Protein: new insights into lipid transport functions and human diseases. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159365. [PMID: 37455011 DOI: 10.1016/j.bbalip.2023.159365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Oxysterol-binding protein (OSBP) mediates lipid exchange between organelles at membrane contact sites, thereby regulating lipid dynamics and homeostasis. How OSBP's lipid transfer function impacts health and disease remain to be elucidated. In this review, we first summarize the structural characteristics and lipid transport functions of OSBP, and then focus on recent progresses linking OSBP with fatty liver disease, diabetes, lysosome-related diseases, cancer and viral infections, with the aim of discovering novel therapeutic strategies for common human diseases.
Collapse
Affiliation(s)
- Yani Lin
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250021, China
| | - Liyuan Ran
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250021, China; Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW 2052, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, the University of New South Wales, Sydney, NSW 2052, Australia.
| | - Yingjie Wu
- Shandong Provincial Hospital, School of Laboratory Animal & Shandong Laboratory Animal Center, Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250021, China; Institute for Genome Engineered Animal Models of Human Diseases, National Center of Genetically Engineered Animal Models for International Research, Dalian Medical University, Dalian, Liaoning 116044, China; Department of Molecular Pathobiology, New York University College of Dentistry, New York 10010, USA.
| |
Collapse
|
67
|
Nicastro R, Brohée L, Alba J, Nüchel J, Figlia G, Kipschull S, Gollwitzer P, Romero-Pozuelo J, Fernandes SA, Lamprakis A, Vanni S, Teleman AA, De Virgilio C, Demetriades C. Malonyl-CoA is a conserved endogenous ATP-competitive mTORC1 inhibitor. Nat Cell Biol 2023; 25:1303-1318. [PMID: 37563253 PMCID: PMC10495264 DOI: 10.1038/s41556-023-01198-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023]
Abstract
Cell growth is regulated by the mammalian/mechanistic target of rapamycin complex 1 (mTORC1), which functions both as a nutrient sensor and a master controller of virtually all biosynthetic pathways. This ensures that cells are metabolically active only when conditions are optimal for growth. Notably, although mTORC1 is known to regulate fatty acid biosynthesis, how and whether the cellular lipid biosynthetic capacity signals back to fine-tune mTORC1 activity remains poorly understood. Here we show that mTORC1 senses the capacity of a cell to synthesise fatty acids by detecting the levels of malonyl-CoA, an intermediate of this biosynthetic pathway. We find that, in both yeast and mammalian cells, this regulation is direct, with malonyl-CoA binding to the mTOR catalytic pocket and acting as a specific ATP-competitive inhibitor. When fatty acid synthase (FASN) is downregulated/inhibited, elevated malonyl-CoA levels are channelled to proximal mTOR molecules that form direct protein-protein interactions with acetyl-CoA carboxylase 1 (ACC1) and FASN. Our findings represent a conserved and unique homeostatic mechanism whereby impaired fatty acid biogenesis leads to reduced mTORC1 activity to coordinately link this metabolic pathway to the overall cellular biosynthetic output. Moreover, they reveal the existence of a physiological metabolite that directly inhibits the activity of a signalling kinase in mammalian cells by competing with ATP for binding.
Collapse
Affiliation(s)
- Raffaele Nicastro
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Laura Brohée
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
| | - Josephine Alba
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Julian Nüchel
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
| | - Gianluca Figlia
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
| | | | - Peter Gollwitzer
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
| | - Jesus Romero-Pozuelo
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg University, Heidelberg, Germany
- Unidad de Investigación Biomedica, Universidad Alfonso X El Sabio (UAX), Madrid, Spain
| | | | - Andreas Lamprakis
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany
| | - Stefano Vanni
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Aurelio A Teleman
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
- Heidelberg University, Heidelberg, Germany.
| | | | - Constantinos Demetriades
- Max Planck Institute for Biology of Ageing (MPI-AGE), Cologne, Germany.
- University of Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.
| |
Collapse
|
68
|
Wang Z, Wang X, Chen Y, Wang C, Chen L, Jiang M, Liu X, Zhang X, Feng Y, Xu J. Loss and recovery of myocardial mitochondria in mice under different tail suspension time: Apoptosis and mitochondrial fission, fusion and autophagy. Exp Physiol 2023; 108:1189-1202. [PMID: 37565298 PMCID: PMC10988507 DOI: 10.1113/ep090518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
Long-term weightlessness in animals can cause changes in myocardial structure and function, in which mitochondria play an important role. Here, a tail suspension (TS) Kunming mouse (Mus musculus) model was used to simulate the effects of weightlessness on the heart. We investigated the effects of 2 and 4 weeks of TS (TS2 and TS4) on myocardial mitochondrial ultrastructure and oxidative respiratory function and on the molecular mechanisms of apoptosis and mitochondrial fission, autophagy and fusion-related signalling. Our study revealed significant changes in the ultrastructural features of cardiomyocytes in response to TS. The results showed: (1) mitochondrial swelling and disruption of cristae in TS2, but mitochondrial recovery and denser cristae in TS4; (2) an increase in the total number of mitochondria and number of sub-mitochondria in TS4; (3) no significant changes in the nuclear ultrastructure or DNA fragmentation among the two TS groups and the control group; (4) an increase in the bax/bcl-2 protein levels in the two TS groups, indicating increased activation of the bax-mediated apoptosis pathway; (5) no change in the phosphorylation ratio of dynamin-related protein 1 in the two TS groups; (6) an increase in the protein levels of optic atrophy 1 and mitofusin 2 in the two TS groups; and (7) in comparison to the TS2 group, an increase in the phosphorylation ratio of parkin and the ratio of LC3II to LC3I in TS4, suggesting an increase in autophagy. Taken together, these findings suggest that mitochondrial autophagy and fusion levels increased after 4 weeks of TS, leading to a restoration of the bax-mediated myocardial apoptosis pathway observed after 2 weeks of TS. NEW FINDINGS: What is the central question of this study? What are the effects of 2 and 4 weeks of tail suspension on myocardial mitochondrial ultrastructure and oxidative respiratory function and on the molecular mechanisms of apoptosis and mitochondrial fission, autophagy and fusion-related signalling? What is the main finding and its importance? Increased mitochondrial autophagy and fusion levels after 4 weeks of tail suspension help to reshape the morphology and increase the number of myocardial mitochondria.
Collapse
Affiliation(s)
- Zhe Wang
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Xing‐Chen Wang
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Ya‐Fei Chen
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Chuan‐Li Wang
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Le Chen
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Ming‐Yue Jiang
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Xi‐Wei Liu
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Xiao‐Xuan Zhang
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Yong‐Zhen Feng
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Jin‐Hui Xu
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| |
Collapse
|
69
|
Wang Y, Wang Q, Chen L, Li B. The lysosome-phagosome pathway mediates immune regulatory mechanisms in Mesocentrotus nudus against Vibrio coralliilyticus infection. FISH & SHELLFISH IMMUNOLOGY 2023; 139:108864. [PMID: 37277051 DOI: 10.1016/j.fsi.2023.108864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/20/2023] [Accepted: 05/29/2023] [Indexed: 06/07/2023]
Abstract
Sea urchins are a popular model species for studying invertebrate diseases. The immune regulatory mechanisms of the sea urchin Mesocentrotus nudus during pathogenic infection are currently unknown. This study aimed to reveal the potential molecular mechanisms of M. nudus during resistance to Vibrio coralliilyticus infection by integrative transcriptomic and proteomic analyses. Here, we identified a total of 135,868 unigenes and 4,351 proteins in the four infection periods of 0 h, 20 h, 60 h and 100 h in M. nudus. In the I20, I60 and I100 infection comparison groups, 10,861, 15,201 and 8,809 differentially expressed genes (DEGs) and 2,188, 2,386 and 2,516 differentially expressed proteins (DEPs) were identified, respectively. We performed an integrated comparative analysis of the transcriptome and proteome throughout the infection phase and found very a low correlation between transcriptome and proteome changes. KEGG pathway analysis revealed that most upregulated DEGs and DEPs were involved in immune strategies. Notably, "lysosome" and "phagosome" activated throughout the infection process, could be considered the two most important enrichment pathways at the mRNA and protein levels. The significant increase in phagocytosis of infected M. nudus coelomocytes further demonstrated that the lysosome-phagosome pathway played an important immunological role in M. nudus resistance to pathogenic infection. Key gene expression profiles and protein‒protein interaction analysis revealed that cathepsin family and V-ATPase family genes might be key bridges in the lysosome-phagosome pathway. In addition, the expression patterns of key immune genes were verified using qRT‒PCR, and the different expression trends of candidate genes reflected, to some extent, the regulatory mechanism of immune homeostasis mediated by the lysosome-phagosome pathway in M. nudus against pathogenic infection. This work will provide new insights into the immune regulatory mechanisms of sea urchins under pathogenic stress and help identify key potential genes/proteins for sea urchin immune responses.
Collapse
Affiliation(s)
- Yanxia Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; University of Chinese Academy of Science, Beijing, 10049, China
| | - Quanchao Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Linlin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Baoquan Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
70
|
Skorda A, Lauridsen AR, Wu C, Huang J, Mrackova M, Winther NI, Jank V, Sztupinszki Z, Strauss R, Bilgin M, Maeda K, Liu B, Luo Y, Jäättelä M, Kallunki T. Activation of invasion by oncogenic reprogramming of cholesterol metabolism via increased NPC1 expression and macropinocytosis. Oncogene 2023; 42:2495-2506. [PMID: 37420029 PMCID: PMC10421736 DOI: 10.1038/s41388-023-02771-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
Cancer cells are dependent on cholesterol, and they possess strictly controlled cholesterol homeostasis mechanisms. These allow them to smoothly switch between cholesterol synthesis and uptake to fulfill their needs and to adapt environmental changes. Here we describe a mechanism of how cancer cells employ oncogenic growth factor signaling to promote uptake and utilization of extracellular cholesterol via Myeloid Zinc Finger 1 (MZF1)-mediated Niemann Pick C1 (NPC1) expression and upregulated macropinocytosis. Expression of p95ErbB2, highly oncogenic, standard-treatment resistant form of ErbB2 mobilizes lysosomes and activates EGFR, invasion and macropinocytosis. This is connected to a metabolic shift from cholesterol synthesis to uptake due to macropinocytosis-enabled flow of extracellular cholesterol. NPC1 increase facilitates extracellular cholesterol uptake and is necessary for the invasion of ErbB2 expressing breast cancer spheroids and ovarian cancer organoids, indicating a regulatory role for NPC1 in the process. The ability to obtain cholesterol as a byproduct of increased macropinocytosis allows cancer cells to direct the resources needed for the energy-consuming cholesterol synthesis towards other activities such as invasion. These results demonstrate that macropinocytosis is not only an alternative energy source for cancer cells but also an efficient way to provide building material, such as cholesterol, for its macromolecules and membranes.
Collapse
Affiliation(s)
- Aikaterini Skorda
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Anna Røssberg Lauridsen
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Chengnan Wu
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Jinrong Huang
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Monika Mrackova
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Nuggi Ingholt Winther
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Vanessa Jank
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Zsofia Sztupinszki
- Translational Cancer Genomics, Danish Cancer Institute, Copenhagen, Denmark
| | - Robert Strauss
- Genome Integrity Group, Danish Cancer Institute, Copenhagen, Denmark
| | - Mesut Bilgin
- Lipidomics Core Facility, Danish Cancer Institute, Copenhagen, Denmark
| | - Kenji Maeda
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen, Denmark
| | - Bin Liu
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Institute, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tuula Kallunki
- Cancer Invasion and Resistance, Danish Cancer Institute, Strandboulevarden 49, 2100, Copenhagen, Denmark.
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
71
|
Berquez M, Chen Z, Festa BP, Krohn P, Keller SA, Parolo S, Korzinkin M, Gaponova A, Laczko E, Domenici E, Devuyst O, Luciani A. Lysosomal cystine export regulates mTORC1 signaling to guide kidney epithelial cell fate specialization. Nat Commun 2023; 14:3994. [PMID: 37452023 PMCID: PMC10349091 DOI: 10.1038/s41467-023-39261-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 06/06/2023] [Indexed: 07/18/2023] Open
Abstract
Differentiation is critical for cell fate decisions, but the signals involved remain unclear. The kidney proximal tubule (PT) cells reabsorb disulphide-rich proteins through endocytosis, generating cystine via lysosomal proteolysis. Here we report that defective cystine mobilization from lysosomes through cystinosin (CTNS), which is mutated in cystinosis, diverts PT cells towards growth and proliferation, disrupting their functions. Mechanistically, cystine storage stimulates Ragulator-Rag GTPase-dependent recruitment of mechanistic target of rapamycin complex 1 (mTORC1) and its constitutive activation. Re-introduction of CTNS restores nutrient-dependent regulation of mTORC1 in knockout cells, whereas cell-permeant analogues of L-cystine, accumulating within lysosomes, render wild-type cells resistant to nutrient withdrawal. Therapeutic mTORC1 inhibition corrects lysosome and differentiation downstream of cystine storage, and phenotypes in preclinical models of cystinosis. Thus, cystine serves as a lysosomal signal that tailors mTORC1 and metabolism to direct epithelial cell fate decisions. These results identify mechanisms and therapeutic targets for dysregulated homeostasis in cystinosis.
Collapse
Affiliation(s)
- Marine Berquez
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland
| | - Zhiyong Chen
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland
| | | | - Patrick Krohn
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland
| | | | - Silvia Parolo
- Fondazione The Microsoft Research University of Trento-Centre for Computational and Systems Biology (COSBI), 38068, Rovereto, Italy
| | - Mikhail Korzinkin
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong, Hong Kong SAR, China
| | - Anna Gaponova
- Insilico Medicine Hong Kong Ltd., Hong Kong Science and Technology Park, Hong Kong, Hong Kong SAR, China
| | - Endre Laczko
- Functional Genomics Center Zurich, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Enrico Domenici
- Fondazione The Microsoft Research University of Trento-Centre for Computational and Systems Biology (COSBI), 38068, Rovereto, Italy
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland.
- Institute for Rare Diseases, UCLouvain Medical School, 1200, Brussels, Belgium.
| | - Alessandro Luciani
- Institute of Physiology, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
72
|
Mubariz F, Saadin A, Lingenfelter N, Sarkar C, Banerjee A, Lipinski MM, Awad O. Deregulation of mTORC1-TFEB axis in human iPSC model of GBA1-associated Parkinson's disease. Front Neurosci 2023; 17:1152503. [PMID: 37332877 PMCID: PMC10272450 DOI: 10.3389/fnins.2023.1152503] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/02/2023] [Indexed: 06/20/2023] Open
Abstract
Mutations in the GBA1 gene are the single most frequent genetic risk factor for Parkinson's disease (PD). Neurodegenerative changes in GBA1-associated PD have been linked to the defective lysosomal clearance of autophagic substrates and aggregate-prone proteins. To elucidate novel mechanisms contributing to proteinopathy in PD, we investigated the effect of GBA1 mutations on the transcription factor EB (TFEB), the master regulator of the autophagy-lysosomal pathway (ALP). Using PD patients' induced-pluripotent stem cells (iPSCs), we examined TFEB activity and regulation of the ALP in dopaminergic neuronal cultures generated from iPSC lines harboring heterozygous GBA1 mutations and the CRISPR/Cas9-corrected isogenic controls. Our data showed a significant decrease in TFEB transcriptional activity and attenuated expression of many genes in the CLEAR network in GBA1 mutant neurons, but not in the isogenic gene-corrected cells. In PD neurons, we also detected increased activity of the mammalian target of rapamycin complex1 (mTORC1), the main upstream negative regulator of TFEB. Increased mTORC1 activity resulted in excess TFEB phosphorylation and decreased nuclear translocation. Pharmacological mTOR inhibition restored TFEB activity, decreased ER stress and reduced α-synuclein accumulation, indicating improvement of neuronal protiostasis. Moreover, treatment with the lipid substrate reducing compound Genz-123346, decreased mTORC1 activity and increased TFEB expression in the mutant neurons, suggesting that mTORC1-TFEB alterations are linked to the lipid substrate accumulation. Our study unveils a new mechanism contributing to PD susceptibility by GBA1 mutations in which deregulation of the mTORC1-TFEB axis mediates ALP dysfunction and subsequent proteinopathy. It also indicates that pharmacological restoration of TFEB activity could be a promising therapeutic approach in GBA1-associated neurodegeneration.
Collapse
Affiliation(s)
- Fahad Mubariz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Afsoon Saadin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Nicholas Lingenfelter
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Chinmoy Sarkar
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Aditi Banerjee
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Marta M. Lipinski
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Ola Awad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
73
|
Van Acker ZP, Perdok A, Hellemans R, North K, Vorsters I, Cappel C, Dehairs J, Swinnen JV, Sannerud R, Bretou M, Damme M, Annaert W. Phospholipase D3 degrades mitochondrial DNA to regulate nucleotide signaling and APP metabolism. Nat Commun 2023; 14:2847. [PMID: 37225734 DOI: 10.1038/s41467-023-38501-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/04/2023] [Indexed: 05/26/2023] Open
Abstract
Phospholipase D3 (PLD3) polymorphisms are linked to late-onset Alzheimer's disease (LOAD). Being a lysosomal 5'-3' exonuclease, its neuronal substrates remained unknown as well as how a defective lysosomal nucleotide catabolism connects to AD-proteinopathy. We identified mitochondrial DNA (mtDNA) as a major physiological substrate and show its manifest build-up in lysosomes of PLD3-defective cells. mtDNA accretion creates a degradative (proteolytic) bottleneck that presents at the ultrastructural level as a marked abundance of multilamellar bodies, often containing mitochondrial remnants, which correlates with increased PINK1-dependent mitophagy. Lysosomal leakage of mtDNA to the cytosol activates cGAS-STING signaling that upregulates autophagy and induces amyloid precursor C-terminal fragment (APP-CTF) and cholesterol accumulation. STING inhibition largely normalizes APP-CTF levels, whereas an APP knockout in PLD3-deficient backgrounds lowers STING activation and normalizes cholesterol biosynthesis. Collectively, we demonstrate molecular cross-talks through feedforward loops between lysosomal nucleotide turnover, cGAS-STING and APP metabolism that, when dysregulated, result in neuronal endolysosomal demise as observed in LOAD.
Collapse
Affiliation(s)
- Zoë P Van Acker
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Anika Perdok
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Ruben Hellemans
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Katherine North
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Inge Vorsters
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Cedric Cappel
- Laboratory for Molecular Cell Biology and Transgenic Research, Institute of Biochemistry, Christian-Albrechts-University Kiel, Otto-Hahn-Platz 9, Kiel, Germany
| | - Jonas Dehairs
- Laboratory of Lipid Metabolism & Cancer, Department of Oncology, KU Leuven, B-3000, Leuven, Belgium
| | - Johannes V Swinnen
- Laboratory of Lipid Metabolism & Cancer, Department of Oncology, KU Leuven, B-3000, Leuven, Belgium
| | - Ragna Sannerud
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Marine Bretou
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium
| | - Markus Damme
- Laboratory for Molecular Cell Biology and Transgenic Research, Institute of Biochemistry, Christian-Albrechts-University Kiel, Otto-Hahn-Platz 9, Kiel, Germany
| | - Wim Annaert
- Laboratory for Membrane Trafficking, VIB Center for Brain & Disease Research, Herestraat 49, box 602, Leuven, Belgium.
- Department of Neurosciences, KU Leuven, Herestraat 49, box 602, Leuven, Belgium.
| |
Collapse
|
74
|
Chen Y, Xu Y, Zhao H, Zhou Y, Zhang J, Lei J, Wu L, Zhou M, Wang J, Yang S, Zhang X, Yan G, Li Y. Myeloid-derived suppressor cells deficient in cholesterol biosynthesis promote tumor immune evasion. Cancer Lett 2023; 564:216208. [PMID: 37150500 DOI: 10.1016/j.canlet.2023.216208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
Cancer immunotherapy targeting myeloid-derived suppressor cells (MDSCs) is one of the most promising anticancer strategies. Metabolic reprogramming is vital for MDSC activation, however, the regulatory mechanisms of cholesterol metabolic reprogramming in MDSCs remains largely unexplored. Using the receptor-interacting protein kinase 3 (RIPK3)-deficient MDSC model, a previously established tumor-infiltrating MDSC-like model, we found that the cholesterol accumulation was significantly decreased in these cells. Moreover, the phosphorylated AKT-mTORC1 signaling was reduced, and downstream SREBP2-HMGCR-mediated cholesterol synthesis was blunted. Interestingly, cholesterol deficiency profoundly elevated the immunosuppressive activity of MDSCs. Mechanistically, cholesterol elimination induced nuclear accumulation of LXRβ, thereby promoting LXRβ-RXRα heterodimer binding of a novel composite element in the promoter of Arg1. Furthermore, itraconazole enhanced the immunosuppressive activity of MDSCs to boost tumor growth by suppressing the RIPK3-AKT-mTORC1 pathway and impeding cholesterol synthesis. Our findings demonstrate that RIPK3 deficiency leads to cholesterol abrogation in MDSCs, which facilitates tumor-infiltrating MDSC activation, and highlight the therapeutic potential of targeting cholesterol synthesis to overcome tumor immune evasion.
Collapse
Affiliation(s)
- Yu Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yanquan Xu
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yu Zhou
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jiangang Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Juan Lei
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Mingyue Zhou
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jingchun Wang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Shuai Yang
- Department of Pathology, The 958th Hospital, Southwest Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Xiao Zhang
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, Tibet Autonomous Region, 857000, China
| | - Guifang Yan
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China; Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
75
|
Muraleedharan A, Vanderperre B. The endo-lysosomal system in Parkinson's disease: expanding the horizon. J Mol Biol 2023:168140. [PMID: 37148997 DOI: 10.1016/j.jmb.2023.168140] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease, and its prevalence is increasing with age. A wealth of genetic evidence indicates that the endo-lysosomal system is a major pathway driving PD pathogenesis with a growing number of genes encoding endo-lysosomal proteins identified as risk factors for PD, making it a promising target for therapeutic intervention. However, detailed knowledge and understanding of the molecular mechanisms linking these genes to the disease are available for only a handful of them (e.g. LRRK2, GBA1, VPS35). Taking on the challenge of studying poorly characterized genes and proteins can be daunting, due to the limited availability of tools and knowledge from previous literature. This review aims at providing a valuable source of molecular and cellular insights into the biology of lesser-studied PD-linked endo-lysosomal genes, to help and encourage researchers in filling the knowledge gap around these less popular genetic players. Specific endo-lysosomal pathways discussed range from endocytosis, sorting, and vesicular trafficking to the regulation of membrane lipids of these membrane-bound organelles and the specific enzymatic activities they contain. We also provide perspectives on future challenges that the community needs to tackle and propose approaches to move forward in our understanding of these poorly studied endo-lysosomal genes. This will help harness their potential in designing innovative and efficient treatments to ultimately re-establish neuronal homeostasis in PD but also other diseases involving endo-lysosomal dysfunction.
Collapse
Affiliation(s)
- Amitha Muraleedharan
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois and Biological Sciences Department, Université du Québec à Montréal
| | - Benoît Vanderperre
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois and Biological Sciences Department, Université du Québec à Montréal
| |
Collapse
|
76
|
Kim S, Ochoa K, Melli SE, Yousufzai FAK, Barrera ZD, Williams AA, McIntyre G, Delgado E, Bolish JN, Macleod CM, Boghos M, Lens HP, Ramos AG, Wilson VB, Maloney K, Padron ZM, Khan AH, Blanco RE, Soto I. Disruptive lysosomal-metabolic signaling and neurodevelopmental deficits that precede Purkinje cell loss in a mouse model of Niemann-Pick Type-C disease. Sci Rep 2023; 13:5665. [PMID: 37024714 PMCID: PMC10079843 DOI: 10.1038/s41598-023-32971-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 04/05/2023] [Indexed: 04/08/2023] Open
Abstract
Purkinje cell (PC) loss occurs at an early age in patients and animal models of Niemann-Pick Type C (NPC), a lysosomal storage disease caused by mutations in the Npc1 or Npc2 genes. Although degeneration of PCs occurs early in NPC, little is known about how NPC1 deficiency affects the postnatal development of PCs. Using the Npc1nmf164 mouse model, we found that NPC1 deficiency significantly affected the postnatal development of PC dendrites and synapses. The developing dendrites of Npc1nmf164 PCs were significantly deficient in mitochondria and lysosomes. Furthermore, anabolic (mTORC1) and catabolic (TFEB) signaling pathways were not only perturbed but simultaneously activated in NPC1-deficient PCs, suggesting a loss of metabolic balance. We also found that mice with conditional heterozygous deletion of the Phosphatase and Tensin Homolog Deleted on Chromosome 10 gene (Pten-cHet), an inhibitor of mTORC1, showed similar early dendritic alterations in PCs to those found in Npc1-deficient mice. However, in contrast to Npc1nmf164 mice, Pten-cHet mice exhibited the overactivation of the mTORC1 pathway but with a strong inhibition of TFEB signaling, along with no dendritic mitochondrial reductions by the end of their postnatal development. Our data suggest that disruption of the lysosomal-metabolic signaling in PCs causes dendritic and synaptic developmental deficits that precede and promote their early degeneration in NPC.
Collapse
Affiliation(s)
- Sarah Kim
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Kathleen Ochoa
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Sierra E Melli
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Fawad A K Yousufzai
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Zerian D Barrera
- Department of Biological Science, Rowan University, Glassboro, NJ, USA
| | - Aela A Williams
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, USA
| | - Gianna McIntyre
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Esteban Delgado
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - James N Bolish
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, USA
| | | | - Mary Boghos
- Department of Biology, Providence College, Providence, RI, USA
| | - Hayden P Lens
- Department of Biology, Providence College, Providence, RI, USA
| | - Alex G Ramos
- Department of Biology, Providence College, Providence, RI, USA
| | - Vincent B Wilson
- Department of Biological Science, Rowan University, Glassboro, NJ, USA
| | - Kelly Maloney
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Zachary M Padron
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Amaal H Khan
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ, USA
| | - Rosa E Blanco
- The Institute of Neurobiology, University of Puerto Rico, San Juan, PR, USA
| | - Ileana Soto
- Department of Biology, Providence College, Providence, RI, USA.
| |
Collapse
|
77
|
Lin JX, Xu CY, Wu XM, Che L, Li TY, Mo SM, Guo DB, Lin ZN, Lin YC. Rab7a-mTORC1 signaling-mediated cholesterol trafficking from the lysosome to mitochondria ameliorates hepatic lipotoxicity induced by aflatoxin B1 exposure. CHEMOSPHERE 2023; 320:138071. [PMID: 36754296 DOI: 10.1016/j.chemosphere.2023.138071] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/10/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Aflatoxin B1 (AFB1) is a common contaminant in many foodstuffs and is considered a public health concern worldwide due to its hepatotoxicity caused by lipid metabolism disorders. However, the molecular mechanism underlying AFB1-induced lipotoxicity-dependent liver injury via regulating cholesterol metabolism remains unclear. We established a cholesterol trafficking disorder-mediated hepatic lipotoxicity model with AFB1 mixture exposure in vitro (HepaRG and HepG2 cells, 1.6 μM for 36 h) and in vivo (C57BL/6 mice, 3 mg kg-1, i.g., every other day for 6 weeks). In vitro, the interaction between lysosomal Niemann-Pick type C1 (NPC1) protein and mitochondrial translocator protein (TSPO) regulated lipotoxicity induced by AFB1 mixture exposure, including lysosomal membrane permeabilization and mitochondria-dependent necroptosis. Moreover, the downregulation of lysosomal Ras-associated protein 7a (Rab7a) enhanced the mammalian target of rapamycin complex 1 (mTORC1)-mediated disorders of cholesterol trafficking from the lysosome to mitochondria. Furthermore, cholesterol trafficking disorder-mediated hepatic lipotoxicity induced by the low-dose level of AFB1 exposure was relieved by genetic or pharmaceutic activation of Rab7a to inhibit mTORC1 in vitro and ex vivo. In vivo, mTORC1 inhibitor (Torin1, 4 mg kg-1, i.p., every other day for 3 weeks) alleviated the cholesterol trafficking disorder-mediated hepatic lipotoxicity via upregulating the molecular machinery of lysosomes and mitochondria contact mediated by NPC1 and TSPO interaction in the low dose of AFB1 exposure. Altogether, our data suggested a novel mechanism that lysosomal Rab7a-mTORC1 signaling determined the cholesterol trafficking regulated by NPC1-TSPO from the lysosome to mitochondria, which promoted hepatic lipotoxicity via lysosomal quality control and mitochondria-dependent necroptosis signaling pathways in chemical mixture exposure.
Collapse
Affiliation(s)
- Jin-Xian Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chi-Yu Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xin-Mou Wu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Lin Che
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Ting-Yu Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Su-Min Mo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Dong-Bei Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zhong-Ning Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Yu-Chun Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
78
|
Pandey MK. Exploring Pro-Inflammatory Immunological Mediators: Unraveling the Mechanisms of Neuroinflammation in Lysosomal Storage Diseases. Biomedicines 2023; 11:biomedicines11041067. [PMID: 37189685 DOI: 10.3390/biomedicines11041067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Lysosomal storage diseases are a group of rare and ultra-rare genetic disorders caused by defects in specific genes that result in the accumulation of toxic substances in the lysosome. This excess accumulation of such cellular materials stimulates the activation of immune and neurological cells, leading to neuroinflammation and neurodegeneration in the central and peripheral nervous systems. Examples of lysosomal storage diseases include Gaucher, Fabry, Tay–Sachs, Sandhoff, and Wolman diseases. These diseases are characterized by the accumulation of various substrates, such as glucosylceramide, globotriaosylceramide, ganglioside GM2, sphingomyelin, ceramide, and triglycerides, in the affected cells. The resulting pro-inflammatory environment leads to the generation of pro-inflammatory cytokines, chemokines, growth factors, and several components of complement cascades, which contribute to the progressive neurodegeneration seen in these diseases. In this study, we provide an overview of the genetic defects associated with lysosomal storage diseases and their impact on the induction of neuro-immune inflammation. By understanding the underlying mechanisms behind these diseases, we aim to provide new insights into potential biomarkers and therapeutic targets for monitoring and managing the severity of these diseases. In conclusion, lysosomal storage diseases present a complex challenge for patients and clinicians, but this study offers a comprehensive overview of the impact of these diseases on the central and peripheral nervous systems and provides a foundation for further research into potential treatments.
Collapse
Affiliation(s)
- Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, Cincinnati, OH 45229-3026, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267-0515, USA
| |
Collapse
|
79
|
Martins TS, Costa RS, Vilaça R, Lemos C, Teixeira V, Pereira C, Costa V. Iron Limitation Restores Autophagy and Increases Lifespan in the Yeast Model of Niemann-Pick Type C1. Int J Mol Sci 2023; 24:6221. [PMID: 37047194 PMCID: PMC10094029 DOI: 10.3390/ijms24076221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Niemann-Pick type C1 (NPC1) is an endolysosomal transmembrane protein involved in the export of cholesterol and sphingolipids to other cellular compartments such as the endoplasmic reticulum and plasma membrane. NPC1 loss of function is the major cause of NPC disease, a rare lysosomal storage disorder characterized by an abnormal accumulation of lipids in the late endosomal/lysosomal network, mitochondrial dysfunction, and impaired autophagy. NPC phenotypes are conserved in yeast lacking Ncr1, an orthologue of human NPC1, leading to premature aging. Herein, we performed a phosphoproteomic analysis to investigate the effect of Ncr1 loss on cellular functions mediated by the yeast lysosome-like vacuoles. Our results revealed changes in vacuolar membrane proteins that are associated mostly with vesicle biology (fusion, transport, organization), autophagy, and ion homeostasis, including iron, manganese, and calcium. Consistently, the cytoplasm to vacuole targeting (Cvt) pathway was increased in ncr1∆ cells and autophagy was compromised despite TORC1 inhibition. Moreover, ncr1∆ cells exhibited iron overload mediated by the low-iron sensing transcription factor Aft1. Iron deprivation restored the autophagic flux of ncr1∆ cells and increased its chronological lifespan and oxidative stress resistance. These results implicate iron overload on autophagy impairment, oxidative stress sensitivity, and cell death in the yeast model of NPC1.
Collapse
Affiliation(s)
- Telma S. Martins
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Rafaela S. Costa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Rita Vilaça
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Carolina Lemos
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Vitor Teixeira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Clara Pereira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Vítor Costa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
80
|
Wang L, Klionsky DJ, Shen HM. The emerging mechanisms and functions of microautophagy. Nat Rev Mol Cell Biol 2023; 24:186-203. [PMID: 36097284 DOI: 10.1038/s41580-022-00529-z] [Citation(s) in RCA: 227] [Impact Index Per Article: 113.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2022] [Indexed: 02/08/2023]
Abstract
'Autophagy' refers to an evolutionarily conserved process through which cellular contents, such as damaged organelles and protein aggregates, are delivered to lysosomes for degradation. Different forms of autophagy have been described on the basis of the nature of the cargoes and the means used to deliver them to lysosomes. At present, the prevailing categories of autophagy in mammalian cells are macroautophagy, microautophagy and chaperone-mediated autophagy. The molecular mechanisms and biological functions of macroautophagy and chaperone-mediated autophagy have been extensively studied, but microautophagy has received much less attention. In recent years, there has been a growth in research on microautophagy, first in yeast and then in mammalian cells. Here we review this form of autophagy, focusing on selective forms of microautophagy. We also discuss the upstream regulatory mechanisms, the crosstalk between macroautophagy and microautophagy, and the functional implications of microautophagy in diseases such as cancer and neurodegenerative disorders in humans. Future research into microautophagy will provide opportunities to develop novel interventional strategies for autophagy- and lysosome-related diseases.
Collapse
Affiliation(s)
- Liming Wang
- School of Biomedical Sciences, Hunan University, Changsha, China
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Han-Ming Shen
- Faculty of Health Sciences, Ministry of Education Frontiers Science Center for Precision Oncology, University of Macau, Macau, China. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
81
|
Pfrieger FW. The Niemann-Pick type diseases – A synopsis of inborn errors in sphingolipid and cholesterol metabolism. Prog Lipid Res 2023; 90:101225. [PMID: 37003582 DOI: 10.1016/j.plipres.2023.101225] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Disturbances of lipid homeostasis in cells provoke human diseases. The elucidation of the underlying mechanisms and the development of efficient therapies represent formidable challenges for biomedical research. Exemplary cases are two rare, autosomal recessive, and ultimately fatal lysosomal diseases historically named "Niemann-Pick" honoring the physicians, whose pioneering observations led to their discovery. Acid sphingomyelinase deficiency (ASMD) and Niemann-Pick type C disease (NPCD) are caused by specific variants of the sphingomyelin phosphodiesterase 1 (SMPD1) and NPC intracellular cholesterol transporter 1 (NPC1) or NPC intracellular cholesterol transporter 2 (NPC2) genes that perturb homeostasis of two key membrane components, sphingomyelin and cholesterol, respectively. Patients with severe forms of these diseases present visceral and neurologic symptoms and succumb to premature death. This synopsis traces the tortuous discovery of the Niemann-Pick diseases, highlights important advances with respect to genetic culprits and cellular mechanisms, and exposes efforts to improve diagnosis and to explore new therapeutic approaches.
Collapse
|
82
|
Bar-Peled L, Lamming DW. mTOR gets greasy: lysosomal sensing of cholesterol. Cell Res 2023; 33:189-190. [PMID: 36284233 PMCID: PMC9977915 DOI: 10.1038/s41422-022-00740-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Liron Bar-Peled
- MGH Cancer Center and Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
- William S. Middleton Memorial Veterans Hospital, Madison, WI, USA.
| |
Collapse
|
83
|
Ganji R, Paulo JA, Xi Y, Kline I, Zhu J, Clemen CS, Weihl CC, Purdy JG, Gygi SP, Raman M. The p97-UBXD8 complex regulates ER-Mitochondria contact sites by altering membrane lipid saturation and composition. Nat Commun 2023; 14:638. [PMID: 36746962 PMCID: PMC9902492 DOI: 10.1038/s41467-023-36298-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/25/2023] [Indexed: 02/08/2023] Open
Abstract
The intimate association between the endoplasmic reticulum (ER) and mitochondrial membranes at ER-Mitochondria contact sites (ERMCS) is a platform for critical cellular processes, particularly lipid synthesis. How contacts are remodeled and the impact of altered contacts on lipid metabolism remains poorly understood. We show that the p97 AAA-ATPase and its adaptor ubiquitin-X domain adaptor 8 (UBXD8) regulate ERMCS. The p97-UBXD8 complex localizes to contacts and its loss increases contacts in a manner that is dependent on p97 catalytic activity. Quantitative proteomics and lipidomics of ERMCS demonstrates alterations in proteins regulating lipid metabolism and a significant change in membrane lipid saturation upon UBXD8 deletion. Loss of p97-UBXD8 increased membrane lipid saturation via SREBP1 and the lipid desaturase SCD1. Aberrant contacts can be rescued by unsaturated fatty acids or overexpression of SCD1. We find that the SREBP1-SCD1 pathway is negatively impacted in the brains of mice with p97 mutations that cause neurodegeneration. We propose that contacts are exquisitely sensitive to alterations to membrane lipid composition and saturation.
Collapse
Affiliation(s)
- Rakesh Ganji
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Yuecheng Xi
- Department of Immunobiology, BIO5 Institute, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Ian Kline
- Department of Immunobiology, BIO5 Institute, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Jiang Zhu
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
- Ilumina Inc., San Diego, CA, USA
| | - Christoph S Clemen
- Institute of Aerospace Medicine, German Aerospace Center, Cologne, Germany
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Conrad C Weihl
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - John G Purdy
- Department of Immunobiology, BIO5 Institute, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Steve P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Malavika Raman
- Department of Developmental Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
84
|
Fiorenza MT, La Rosa P, Canterini S, Erickson RP. The Cerebellum in Niemann-Pick C1 Disease: Mouse Versus Man. CEREBELLUM (LONDON, ENGLAND) 2023; 22:102-119. [PMID: 35040097 PMCID: PMC7617266 DOI: 10.1007/s12311-021-01347-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 02/01/2023]
Abstract
Selective neuronal vulnerability is common to most degenerative disorders, including Niemann-Pick C (NPC), a rare genetic disease with altered intracellular trafficking of cholesterol. Purkinje cell dysfunction and loss are responsible for cerebellar ataxia, which is among the prevailing neurological signs of the NPC disease. In this review, we focus on some questions that are still unresolved. First, we frame the cerebellar vulnerability in the context of the extended postnatal time length by which the development of this structure is completed in mammals. In line with this thought, the much later development of cerebellar symptoms in humans is due to the later development and/or maturation of the cerebellum. Hence, the occurrence of developmental events under a protracted condition of defective intracellular cholesterol mobilization hits the functional maturation of the various cell types generating the ground of increased vulnerability. This is particularly consistent with the high cholesterol demand required for cell proliferation, migration, differentiation, and synapse formation/remodeling. Other major questions we address are why the progression of Purkinje cells loss is always from the anterior to the posterior lobes and why cerebellar defects persist in the mouse model even when genetic manipulations can lead to nearly normal survival.
Collapse
Affiliation(s)
- Maria Teresa Fiorenza
- Division of Neuroscience, Department of Psychology, University La Sapienza, Rome, Italy.
- IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00179, Rome, Italy.
| | - Piergiorgio La Rosa
- Division of Neuroscience, Department of Psychology, University La Sapienza, Rome, Italy
| | - Sonia Canterini
- Division of Neuroscience, Department of Psychology, University La Sapienza, Rome, Italy
| | - Robert P Erickson
- Department of Pediatrics, University of Arizona School of Medicine, Tucson, AZ, 85724-5073, USA.
| |
Collapse
|
85
|
Huynh C, Ryu J, Lee J, Inoki A, Inoki K. Nutrient-sensing mTORC1 and AMPK pathways in chronic kidney diseases. Nat Rev Nephrol 2023; 19:102-122. [PMID: 36434160 DOI: 10.1038/s41581-022-00648-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 11/27/2022]
Abstract
Nutrients such as glucose, amino acids and lipids are fundamental sources for the maintenance of essential cellular processes and homeostasis in all organisms. The nutrient-sensing kinases mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) are expressed in many cell types and have key roles in the control of cell growth, proliferation, differentiation, metabolism and survival, ultimately contributing to the physiological development and functions of various organs, including the kidney. Dysregulation of these kinases leads to many human health problems, including cancer, neurodegenerative diseases, metabolic disorders and kidney diseases. In the kidney, physiological levels of mTOR and AMPK activity are required to support kidney cell growth and differentiation and to maintain kidney cell integrity and normal nephron function, including transport of electrolytes, water and glucose. mTOR forms two functional multi-protein kinase complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Hyperactivation of mTORC1 leads to podocyte and tubular cell dysfunction and vulnerability to injury, thereby contributing to the development of chronic kidney diseases, including diabetic kidney disease, obesity-related kidney disease and polycystic kidney disease. Emerging evidence suggests that targeting mTOR and/or AMPK could be an effective therapeutic approach to controlling or preventing these diseases.
Collapse
Affiliation(s)
- Christopher Huynh
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jaewhee Ryu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jooho Lee
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ayaka Inoki
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
86
|
Schultz ML, Schache KJ, Azaria RD, Kuiper EQ, Erwood S, Ivakine EA, Farhat NY, Porter FD, Pathmasiri KC, Cologna SM, Uhler MD, Lieberman AP. Species-specific differences in NPC1 protein trafficking govern therapeutic response in Niemann-Pick type C disease. JCI Insight 2022; 7:e160308. [PMID: 36301667 PMCID: PMC9746915 DOI: 10.1172/jci.insight.160308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/26/2022] [Indexed: 01/12/2023] Open
Abstract
The folding and trafficking of transmembrane glycoproteins are essential for cellular homeostasis and are compromised in many diseases. In Niemann-Pick type C disease, a lysosomal disorder characterized by impaired intracellular cholesterol trafficking, the transmembrane glycoprotein NPC1 misfolds due to disease-causing missense mutations. While mutant NPC1 has emerged as a robust target for proteostasis modulators, drug development efforts have been unsuccessful in mouse models. Here, we demonstrated unexpected differences in trafficking through the medial Golgi between mouse and human I1061T-NPC1, a common disease-causing mutant. We established that these distinctions are governed by differences in the NPC1 protein sequence rather than by variations in the endoplasmic reticulum-folding environment. Moreover, we demonstrated direct effects of mutant protein trafficking on the response to small molecules that modulate the endoplasmic reticulum-folding environment by affecting Ca++ concentration. Finally, we developed a panel of isogenic human NPC1 iNeurons expressing WT, I1061T-, and R934L-NPC1 and demonstrated their utility in testing these candidate therapeutics. Our findings identify important rules governing mutant NPC1's response to proteostatic modulators and highlight the importance of species- and mutation-specific responses for therapy development.
Collapse
Affiliation(s)
- Mark L. Schultz
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kylie J. Schache
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ruth D. Azaria
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Esmée Q. Kuiper
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Steven Erwood
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Molecular Genetics and
| | - Evgueni A. Ivakine
- Program in Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Y. Farhat
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Department of Health and Human Services, Bethesda, Maryland, USA
| | - Forbes D. Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Department of Health and Human Services, Bethesda, Maryland, USA
| | | | | | - Michael D. Uhler
- Michigan Neuroscience Institute and
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrew P. Lieberman
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
87
|
Gaudioso Á, Silva TP, Ledesma MD. Models to study basic and applied aspects of lysosomal storage disorders. Adv Drug Deliv Rev 2022; 190:114532. [PMID: 36122863 DOI: 10.1016/j.addr.2022.114532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 08/05/2022] [Accepted: 09/04/2022] [Indexed: 01/24/2023]
Abstract
The lack of available treatments and fatal outcome in most lysosomal storage disorders (LSDs) have spurred research on pathological mechanisms and novel therapies in recent years. In this effort, experimental methodology in cellular and animal models have been developed, with aims to address major challenges in many LSDs such as patient-to-patient variability and brain condition. These techniques and models have advanced knowledge not only of LSDs but also for other lysosomal disorders and have provided fundamental insights into the biological roles of lysosomes. They can also serve to assess the efficacy of classical therapies and modern drug delivery systems. Here, we summarize the techniques and models used in LSD research, which include both established and recently developed in vitro methods, with general utility or specifically addressing lysosomal features. We also review animal models of LSDs together with cutting-edge technology that may reduce the need for animals in the study of these devastating diseases.
Collapse
Affiliation(s)
- Ángel Gaudioso
- Centro Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Teresa P Silva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | | |
Collapse
|
88
|
Fundamental roles for inter-organelle communication in aging. Biochem Soc Trans 2022; 50:1389-1402. [PMID: 36305642 PMCID: PMC9704535 DOI: 10.1042/bst20220519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
Abstract
Advances in public health have nearly doubled life expectancy over the last century, but this demographic shift has also changed the landscape of human illness. Today, chronic and age-dependent diseases dominate the leading causes of morbidity and mortality worldwide. Targeting the underlying molecular, genetic and cell biological drivers of the aging process itself appears to be an increasingly viable strategy for developing therapeutics against these diseases of aging. Towards this end, one of the most exciting developments in cell biology over the last decade is the explosion of research into organelle contact sites and related mechanisms of inter-organelle communication. Identification of the molecular mediators of inter-organelle tethering and signaling is now allowing the field to investigate the consequences of aberrant organelle interactions, which frequently seem to correlate with age-onset pathophysiology. This review introduces the major cellular roles for inter-organelle interactions, including the regulation of organelle morphology, the transfer of ions, lipids and other metabolites, and the formation of hubs for nutrient and stress signaling. We explore how these interactions are disrupted in aging and present findings that modulation of inter-organelle communication is a promising avenue for promoting longevity. Through this review, we propose that the maintenance of inter-organelle interactions is a pillar of healthy aging. Learning how to target the cellular mechanisms for sensing and controlling inter-organelle communication is a key next hurdle for geroscience.
Collapse
|
89
|
Ng MYW, Charsou C, Lapao A, Singh S, Trachsel-Moncho L, Schultz SW, Nakken S, Munson MJ, Simonsen A. The cholesterol transport protein GRAMD1C regulates autophagy initiation and mitochondrial bioenergetics. Nat Commun 2022; 13:6283. [PMID: 36270994 PMCID: PMC9586981 DOI: 10.1038/s41467-022-33933-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/05/2022] [Indexed: 12/25/2022] Open
Abstract
During autophagy, cytosolic cargo is sequestered into double-membrane vesicles called autophagosomes. The contributions of specific lipids, such as cholesterol, to the membranes that form the autophagosome, remain to be fully characterized. Here, we demonstrate that short term cholesterol depletion leads to a rapid induction of autophagy and a corresponding increase in autophagy initiation events. We further show that the ER-localized cholesterol transport protein GRAMD1C functions as a negative regulator of starvation-induced autophagy and that both its cholesterol transport VASt domain and membrane binding GRAM domain are required for GRAMD1C-mediated suppression of autophagy initiation. Similar to its yeast orthologue, GRAMD1C associates with mitochondria through its GRAM domain. Cells lacking GRAMD1C or its VASt domain show increased mitochondrial cholesterol levels and mitochondrial oxidative phosphorylation, suggesting that GRAMD1C may facilitate cholesterol transfer at ER-mitochondria contact sites. Finally, we demonstrate that expression of GRAMD family proteins is linked to clear cell renal carcinoma survival, highlighting the pathophysiological relevance of cholesterol transport proteins.
Collapse
Affiliation(s)
- Matthew Yoke Wui Ng
- grid.5510.10000 0004 1936 8921Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway ,grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - Chara Charsou
- grid.5510.10000 0004 1936 8921Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway ,grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - Ana Lapao
- grid.5510.10000 0004 1936 8921Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway ,grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - Sakshi Singh
- grid.5510.10000 0004 1936 8921Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway ,grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - Laura Trachsel-Moncho
- grid.5510.10000 0004 1936 8921Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway ,grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway
| | - Sebastian W. Schultz
- grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital Montebello, 0379 Oslo, Norway
| | - Sigve Nakken
- grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Montebello, 0379 Oslo, Norway
| | - Michael J. Munson
- grid.5510.10000 0004 1936 8921Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway ,grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway ,grid.418151.80000 0001 1519 6403Present Address: Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anne Simonsen
- grid.5510.10000 0004 1936 8921Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway ,grid.5510.10000 0004 1936 8921Centre for Cancer Cell Reprogramming, Institute of Clinical Medicine, University of Oslo, 0450 Oslo, Norway ,grid.55325.340000 0004 0389 8485Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital Montebello, 0379 Oslo, Norway
| |
Collapse
|
90
|
Berardi DE, Bock-Hughes A, Terry AR, Drake LE, Bozek G, Macleod KF. Lipid droplet turnover at the lysosome inhibits growth of hepatocellular carcinoma in a BNIP3-dependent manner. SCIENCE ADVANCES 2022; 8:eabo2510. [PMID: 36223464 PMCID: PMC9555787 DOI: 10.1126/sciadv.abo2510] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/23/2022] [Indexed: 05/12/2023]
Abstract
Hepatic steatosis is a major etiological factor in hepatocellular carcinoma (HCC), but factors causing lipid accumulation leading to HCC are not understood. We identify BNIP3 (a mitochondrial cargo receptor) as an HCC suppressor that mitigates against lipid accumulation to attenuate tumor cell growth. Targeted deletion of Bnip3 decreased tumor latency and increased tumor burden in a mouse model of HCC. This was associated with increased lipid in bnip3-/- HCC at early stages of disease, while lipid did not accumulate until later in tumorigenesis in wild-type mice, as Bnip3 expression was attenuated. Low BNIP3 expression in human HCC similarly correlated with increased lipid content and worse prognosis than HCC expressing high BNIP3. BNIP3 suppressed HCC cell growth by promoting lipid droplet turnover at the lysosome in a manner dependent on BNIP3 binding LC3. We have termed this process "mitolipophagy" because it involves the coordinated autophagic degradation of lipid droplets with mitochondria.
Collapse
Affiliation(s)
- Damian E. Berardi
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| | - Althea Bock-Hughes
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
- The Committee on Molecular Metabolism and Nutrition, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| | - Alexander R. Terry
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| | - Lauren E. Drake
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| | - Grazyna Bozek
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| | - Kay F. Macleod
- The Ben May Department for Cancer Research, The Gordon Center for Integrative Sciences, W-338, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
- The Committee on Molecular Metabolism and Nutrition, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
- The Committee on Cancer Biology, The University of Chicago, 929 E 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
91
|
Amantadine and Rimantadine Inhibit Hepatitis A Virus Replication through the Induction of Autophagy. J Virol 2022; 96:e0064622. [PMID: 36040176 PMCID: PMC9517723 DOI: 10.1128/jvi.00646-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hepatitis A virus (HAV) infection is a major cause of acute viral hepatitis worldwide. Furthermore, HAV causes acute liver failure or acute-on-chronic liver failure. However, no potent anti-HAV drugs are currently available in the clinical situations. There have been some reports that amantadine, a broad-spectrum antiviral, suppresses HAV replication in vitro. Therefore, we examined the effects of amantadine and rimantadine, derivates of adamantane, on HAV replication, and investigated the mechanisms of these drugs. In the present study, we evaluated the effects of amantadine and rimantadine on HAV HM175 genotype IB subgenomic replicon replication and HAV HA11-1299 genotype IIIA replication in cell culture infection systems. Amantadine and rimantadine significantly inhibited HAV replication at the post-entry stage in Huh7 cells. HAV infection inhibited autophagy by suppressing the autophagy marker light chain 3 and reducing number of lysosomes. Proteomic analysis on HAV-infected Huh7 cells treated by amantadine and rimantadine revealed the changes of the expression levels in 42 of 373 immune response-related proteins. Amantadine and rimantadine inhibited HAV replication, partially through the enhancement of autophagy. Taken together, our results suggest a novel mechanism by which HAV replicates along with the inhibition of autophagy and that amantadine and rimantadine inhibit HAV replication by enhancing autophagy. IMPORTANCE Amantadine, a nonspecific antiviral medication, also effectively inhibits HAV replication. Autophagy is an important cellular mechanism in several virus-host cell interactions. The results of this study provide evidence indicating that autophagy is involved in HAV replication and plays a role in the HAV life cycle. In addition, amantadine and its derivative rimantadine suppress HAV replication partly by enhancing autophagy at the post-entry phase of HAV infection in human hepatocytes. Amantadine may be useful for the control of acute HAV infection by inhibiting cellular autophagy pathways during HAV infection processes.
Collapse
|
92
|
Shin HR, Citron YR, Wang L, Tribouillard L, Goul CS, Stipp R, Sugasawa Y, Jain A, Samson N, Lim CY, Davis OB, Castaneda-Carpio D, Qian M, Nomura DK, Perera RM, Park E, Covey DF, Laplante M, Evers AS, Zoncu R. Lysosomal GPCR-like protein LYCHOS signals cholesterol sufficiency to mTORC1. Science 2022; 377:1290-1298. [PMID: 36007018 PMCID: PMC10023259 DOI: 10.1126/science.abg6621] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Lysosomes coordinate cellular metabolism and growth upon sensing of essential nutrients, including cholesterol. Through bioinformatic analysis of lysosomal proteomes, we identified lysosomal cholesterol signaling (LYCHOS, previously annotated as G protein-coupled receptor 155), a multidomain transmembrane protein that enables cholesterol-dependent activation of the master growth regulator, the protein kinase mechanistic target of rapamycin complex 1 (mTORC1). Cholesterol bound to the amino-terminal permease-like region of LYCHOS, and mutating this site impaired mTORC1 activation. At high cholesterol concentrations, LYCHOS bound to the GATOR1 complex, a guanosine triphosphatase (GTPase)-activating protein for the Rag GTPases, through a conserved cytoplasm-facing loop. By sequestering GATOR1, LYCHOS promotes cholesterol- and Rag-dependent recruitment of mTORC1 to lysosomes. Thus, LYCHOS functions in a lysosomal pathway for cholesterol sensing and couples cholesterol concentrations to mTORC1-dependent anabolic signaling.
Collapse
Affiliation(s)
- Hijai R. Shin
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Y. Rose Citron
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lei Wang
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Laura Tribouillard
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, G1R 3S3, Canada
| | - Claire S. Goul
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Robin Stipp
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Yusuke Sugasawa
- Department of Anesthesiology and Pain Medicine, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Aakriti Jain
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nolwenn Samson
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, G1R 3S3, Canada
| | - Chun-Yan Lim
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Oliver B. Davis
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - David Castaneda-Carpio
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Mingxing Qian
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Daniel K. Nomura
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Rushika M. Perera
- Department of Anatomy, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eunyong Park
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Douglas F. Covey
- Department of Developmental Biology and Biochemistry, Washington University School of Medicine, St Louis, MO 63110, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Mathieu Laplante
- Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, QC, G1R 3S3, Canada
| | - Alex S. Evers
- Department of Anesthesiology, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Developmental Biology and Biochemistry, Washington University School of Medicine, St Louis, MO 63110, USA
- The Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Innovative Genomics Initiative at the University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
93
|
Chen FW, Davies JP, Calvo R, Chaudhari J, Dolios G, Taylor MK, Patnaik S, Dehdashti J, Mull R, Dranchack P, Wang A, Xu X, Hughes E, Southall N, Ferrer M, Wang R, Marugan JJ, Ioannou YA. Activation of mitochondrial TRAP1 stimulates mitochondria-lysosome crosstalk and correction of lysosomal dysfunction. iScience 2022; 25:104941. [PMID: 36065186 PMCID: PMC9440283 DOI: 10.1016/j.isci.2022.104941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/27/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Fannie W. Chen
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Joanna P. Davies
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Raul Calvo
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Jagruti Chaudhari
- Cell Therapy and Cell Engineering Facility, Memorial Sloan Kettering Cancer Center, 1250 1st Avenue, New York, NY 10065, USA
| | - Georgia Dolios
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mercedes K. Taylor
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | - Samarjit Patnaik
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Jean Dehdashti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rebecca Mull
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Patricia Dranchack
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Amy Wang
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Xin Xu
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Emma Hughes
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Noel Southall
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Marc Ferrer
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
| | - Rong Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan J. Marugan
- Early Translation Branch, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, MD 20850, USA
- Corresponding author
| | - Yiannis A. Ioannou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Corresponding author
| |
Collapse
|
94
|
Zhang J, Liu X, Nie J, Shi Y. Restoration of mitophagy ameliorates cardiomyopathy in Barth syndrome. Autophagy 2022; 18:2134-2149. [PMID: 34985382 PMCID: PMC9466615 DOI: 10.1080/15548627.2021.2020979] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Barth syndrome (BTHS) is an X-linked genetic disorder caused by mutations in the TAFAZZIN/Taz gene which encodes a transacylase required for cardiolipin remodeling. Cardiolipin is a mitochondrial signature phospholipid that plays a pivotal role in maintaining mitochondrial membrane structure, respiration, mtDNA biogenesis, and mitophagy. Mutations in the TAFAZZIN gene deplete mature cardiolipin, leading to mitochondrial dysfunction, dilated cardiomyopathy, and premature death in BTHS patients. Currently, there is no effective treatment for this debilitating condition. In this study, we showed that TAFAZZIN deficiency caused hyperactivation of MTORC1 signaling and defective mitophagy, leading to accumulation of autophagic vacuoles and dysfunctional mitochondria in the heart of Tafazzin knockdown mice, a rodent model of BTHS. Consequently, treatment of TAFAZZIN knockdown mice with rapamycin, a potent inhibitor of MTORC1, not only restored mitophagy, but also mitigated mitochondrial dysfunction and dilated cardiomyopathy. Taken together, these findings identify MTORC1 as a novel therapeutic target for BTHS, suggesting that pharmacological restoration of mitophagy may provide a novel treatment for BTHS.Abbreviations: BTHS: Barth syndrome; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; CL: cardiolipin; EIF4EBP1/4E-BP1: eukaryotic translation initiation factor 4E binding protein 1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; KD: knockdown; KO: knockout; LAMP1: lysosomal-associated membrane protein 1; LV: left ventricle; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MEFs: mouse embryonic fibroblasts; MTORC1: mechanistic target of rapamycin kinase complex 1; OCR: oxygen consumption rate; PE: phosphatidylethanolamine; PIK3C3/VPS34: phosphatidylinositol 3-kinase catalytic subunit type 3; PINK1: PTEN induced putative kinase 1; PRKN/Parkin: parkin RBR E3 ubiquitin protein ligase; qRT-PCR: quantitative real-time polymerase chain reaction; RPS6KB/S6K: ribosomal protein S6 kinase beta; SQSTM1/p62: sequestosome 1; TLCL: tetralinoleoyl cardiolipin; WT: wild-type.
Collapse
Affiliation(s)
- Jun Zhang
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Xueling Liu
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jia Nie
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Yuguang Shi
- Sam and Ann Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA,Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, People’s Republic of China,CONTACT Yuguang Shi Joe R. & Teresa Lozano Long Distinguished Chair in Metabolic Biology, Barshop Institute for Longevity and Aging Studies, Department of Pharmacology, University of Texas Health Science Center, San Antonio 4939 Charles Katz Drive, San Antonio, TX78229, USA
| |
Collapse
|
95
|
Grabowski GA, Mistry PK. Therapies for lysosomal storage diseases: Principles, practice, and prospects for refinements based on evolving science. Mol Genet Metab 2022; 137:81-91. [PMID: 35933791 DOI: 10.1016/j.ymgme.2022.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Gregory A Grabowski
- University of Cincinnati College of Medicine, Department of Pediatrics, Department of Molecular Genetics, Biochemistry and Microbiology, United States of America; Division of Human Genetics, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States of America.
| | - Pramod K Mistry
- Yale School of Medicine, Department of Medicine, Department of Pediatrics, Department of Cellular & Molecular Physiology, New Haven, CT, United States of America
| |
Collapse
|
96
|
Anderson J, Walker G, Pu J. BORC-ARL8-HOPS ensemble is required for lysosomal cholesterol egress through NPC2. Mol Biol Cell 2022; 33:ar81. [PMID: 35653304 PMCID: PMC9582633 DOI: 10.1091/mbc.e21-11-0595-t] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/16/2022] [Accepted: 05/24/2022] [Indexed: 11/11/2022] Open
Abstract
Lysosomes receive extracellular and intracellular cholesterol and redistribute it throughout the cell. Cholesterol egress from lysosomes is critical for cholesterol homeostasis, and its failure underlies the pathogenesis of genetic disorders such as Niemann-Pick C (NPC) disease. Here we report that the BLOC one-related complex (BORC)-ARL8-homotypic fusion and protein sorting (HOPS) ensemble is required for egress of free cholesterol from lysosomes and for storage of esterified cholesterol in lipid droplets. Depletion of BORC, ARL8, or HOPS does not alter the localization of the lysosomal transmembrane cholesterol transporter NPC1 to degradative compartments but decreases the association of the luminal transporter NPC2 and increases NPC2 secretion. BORC-ARL8-HOPS depletion also increases lysosomal degradation of cation-independent (CI)-mannose 6-phosphate (M6P) receptor (MPR), which normally sorts NPC2 to the endosomal-lysosomal system and then is recycled to the trans-Golgi network. These defects likely result from impaired HOPS-dependent fusion of endosomal-lysosomal organelles and an uncharacterized function of HOPS in CI-MPR recycling. Our study demonstrates that the BORC-ARL8-HOPS ensemble is required for cholesterol egress from lysosomes by enabling CI-MPR-dependent trafficking of NPC2 to the endosomal-lysosomal system.
Collapse
Affiliation(s)
- Jacob Anderson
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico, Albuquerque, NM 87131
| | - Gerard Walker
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Jing Pu
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, NM 87131
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico, Albuquerque, NM 87131
| |
Collapse
|
97
|
O’Neill KI, Kuo LW, Williams MM, Lind H, Crump LS, Hammond NG, Spoelstra NS, Caino MC, Richer JK. NPC1 Confers Metabolic Flexibility in Triple Negative Breast Cancer. Cancers (Basel) 2022; 14:3543. [PMID: 35884604 PMCID: PMC9319388 DOI: 10.3390/cancers14143543] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/07/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Triple-negative breast cancer (TNBC) often undergoes at least partial epithelial-to-mesenchymal transition (EMT) to facilitate metastasis. Identifying EMT-associated characteristics can reveal novel dependencies that may serve as therapeutic vulnerabilities in this aggressive breast cancer subtype. We found that NPC1, which encodes the lysosomal cholesterol transporter Niemann-Pick type C1 is highly expressed in TNBC as compared to estrogen receptor-positive (ER+) breast cancer, and is significantly elevated in high-grade disease. We demonstrated that NPC1 is directly targeted by microRNA-200c (miR-200c), a potent suppressor of EMT, providing a mechanism for its differential expression in breast cancer subtypes. The silencing of NPC1 in TNBC causes an accumulation of cholesterol-filled lysosomes, and drives decreased growth in soft agar and invasive capacity. Conversely, overexpression of NPC1 in an ER+ cell line increases invasion and growth in soft agar. We further identified TNBC cell lines as cholesterol auxotrophs, however, they do not solely depend on NPC1 for adequate cholesterol supply. The silencing of NPC1 in TNBC cell lines led to altered mitochondrial function and morphology, suppression of mTOR signaling, and accumulation of autophagosomes. A small molecule inhibitor of NPC1, U18666A, decreased TNBC proliferation and synergized with the chemotherapeutic drug, paclitaxel. This work suggests that NPC1 promotes aggressive characteristics in TNBC, and identifies NPC1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Kathleen I. O’Neill
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.I.O.); (L.-W.K.); (M.M.W.); (H.L.); (L.S.C.); (N.G.H.); (N.S.S.)
| | - Li-Wei Kuo
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.I.O.); (L.-W.K.); (M.M.W.); (H.L.); (L.S.C.); (N.G.H.); (N.S.S.)
| | - Michelle M. Williams
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.I.O.); (L.-W.K.); (M.M.W.); (H.L.); (L.S.C.); (N.G.H.); (N.S.S.)
| | - Hanne Lind
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.I.O.); (L.-W.K.); (M.M.W.); (H.L.); (L.S.C.); (N.G.H.); (N.S.S.)
| | - Lyndsey S. Crump
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.I.O.); (L.-W.K.); (M.M.W.); (H.L.); (L.S.C.); (N.G.H.); (N.S.S.)
| | - Nia G. Hammond
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.I.O.); (L.-W.K.); (M.M.W.); (H.L.); (L.S.C.); (N.G.H.); (N.S.S.)
| | - Nicole S. Spoelstra
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.I.O.); (L.-W.K.); (M.M.W.); (H.L.); (L.S.C.); (N.G.H.); (N.S.S.)
| | - M. Cecilia Caino
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Jennifer K. Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (K.I.O.); (L.-W.K.); (M.M.W.); (H.L.); (L.S.C.); (N.G.H.); (N.S.S.)
| |
Collapse
|
98
|
Linking Late Endosomal Cholesterol with Cancer Progression and Anticancer Drug Resistance. Int J Mol Sci 2022; 23:ijms23137206. [PMID: 35806209 PMCID: PMC9267071 DOI: 10.3390/ijms23137206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer cells undergo drastic metabolic adaptions to cover increased bioenergetic needs, contributing to resistance to therapies. This includes a higher demand for cholesterol, which often coincides with elevated cholesterol uptake from low-density lipoproteins (LDL) and overexpression of the LDL receptor in many cancers. This implies the need for cancer cells to accommodate an increased delivery of LDL along the endocytic pathway to late endosomes/lysosomes (LE/Lys), providing a rapid and effective distribution of LDL-derived cholesterol from LE/Lys to other organelles for cholesterol to foster cancer growth and spread. LDL-cholesterol exported from LE/Lys is facilitated by Niemann–Pick Type C1/2 (NPC1/2) proteins, members of the steroidogenic acute regulatory-related lipid transfer domain (StARD) and oxysterol-binding protein (OSBP) families. In addition, lysosomal membrane proteins, small Rab GTPases as well as scaffolding proteins, including annexin A6 (AnxA6), contribute to regulating cholesterol egress from LE/Lys. Here, we summarize current knowledge that links upregulated activity and expression of cholesterol transporters and related proteins in LE/Lys with cancer growth, progression and treatment outcomes. Several mechanisms on how cellular distribution of LDL-derived cholesterol from LE/Lys influences cancer cell behavior are reviewed, some of those providing opportunities for treatment strategies to reduce cancer progression and anticancer drug resistance.
Collapse
|
99
|
Baudot AD, Wang VMY, Leach JD, O’Prey J, Long JS, Paulus-Hock V, Lilla S, Thomson DM, Greenhorn J, Ghaffar F, Nixon C, Helfrich MH, Strathdee D, Pratt J, Marchesi F, Zanivan S, Ryan KM. Glycan degradation promotes macroautophagy. Proc Natl Acad Sci U S A 2022; 119:e2111506119. [PMID: 35737835 PMCID: PMC9245654 DOI: 10.1073/pnas.2111506119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
Macroautophagy promotes cellular homeostasis by delivering cytoplasmic constituents to lysosomes for degradation [Mizushima, Nat. Cell Biol. 20, 521-527 (2018)]. However, while most studies have focused on the mechanisms of protein degradation during this process, we report here that macroautophagy also depends on glycan degradation via the glycosidase, α-l-fucosidase 1 (FUCA1), which removes fucose from glycans. We show that cells lacking FUCA1 accumulate lysosomal glycans, which is associated with impaired autophagic flux. Moreover, in a mouse model of fucosidosis-a disease characterized by inactivating mutations in FUCA1 [Stepien et al., Genes (Basel) 11, E1383 (2020)]-glycan and autophagosome/autolysosome accumulation accompanies tissue destruction. Mechanistically, using lectin capture and mass spectrometry, we identified several lysosomal enzymes with altered fucosylation in FUCA1-null cells. Moreover, we show that the activity of some of these enzymes in the absence of FUCA1 can no longer be induced upon autophagy stimulation, causing retardation of autophagic flux, which involves impaired autophagosome-lysosome fusion. These findings therefore show that dysregulated glycan degradation leads to defective autophagy, which is likely a contributing factor in the etiology of fucosidosis.
Collapse
Affiliation(s)
- Alice D. Baudot
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Victoria M.-Y. Wang
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Josh D. Leach
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
- School of Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Jim O’Prey
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Jaclyn S. Long
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Viola Paulus-Hock
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Sergio Lilla
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - David M. Thomson
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - John Greenhorn
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Farah Ghaffar
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Colin Nixon
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Miep H. Helfrich
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Douglas Strathdee
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
| | - Judith Pratt
- Strathclyde Institute of Pharmacy and Biomedical Science, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Francesco Marchesi
- School of Veterinary Medicine, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Sara Zanivan
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Kevin M. Ryan
- Tumour Cell Death and Autophagy Laboratory, Cancer Research UK Beatson Institute, Glasgow G61 1BD, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| |
Collapse
|
100
|
Jain A, Zoncu R. Organelle transporters and inter-organelle communication as drivers of metabolic regulation and cellular homeostasis. Mol Metab 2022; 60:101481. [PMID: 35342037 PMCID: PMC9043965 DOI: 10.1016/j.molmet.2022.101481] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/14/2022] [Accepted: 03/21/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Spatial compartmentalization of metabolic pathways within membrane-separated organelles is key to the ability of eukaryotic cells to precisely regulate their biochemical functions. Membrane-bound organelles such as mitochondria, endoplasmic reticulum (ER) and lysosomes enable the concentration of metabolic precursors within optimized chemical environments, greatly accelerating the efficiency of both anabolic and catabolic reactions, enabling division of labor and optimal utilization of resources. However, metabolic compartmentalization also poses a challenge to cells because it creates spatial discontinuities that must be bridged for reaction cascades to be connected and completed. To do so, cells employ different methods to coordinate metabolic fluxes occurring in different organelles, such as membrane-localized transporters to facilitate regulated metabolite exchange between mitochondria and lysosomes, non-vesicular transport pathways via physical contact sites connecting the ER with both mitochondria and lysosomes, as well as localized regulatory signaling processes that coordinately regulate the activity of all these organelles. SCOPE OF REVIEW This review covers how cells use membrane transporters, membrane contact sites, and localized signaling pathways to mediate inter-organelle communication and coordinate metabolism. We also describe how disruption of inter-organelle communication is an emerging driver in a multitude of diseases, from cancer to neurodegeneration. MAJOR CONCLUSIONS Effective communication among organelles is essential to cellular health and function. Identifying the major molecular players involved in mediating metabolic coordination between organelles will further our understanding of cellular metabolism in health and lead us to design better therapeutics against dysregulated metabolism in disease.
Collapse
Affiliation(s)
- Aakriti Jain
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|