51
|
Jan BL, Ahmad A, Khan A, Rehman MU, Alkharfy KM. Protective effect of chrysin, a flavonoid, on the genotoxic activity of carboplatin in mice. Drug Chem Toxicol 2021; 45:2146-2152. [PMID: 33829940 DOI: 10.1080/01480545.2021.1908752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Carboplatin is amongst the most commonly used anticancer drugs for the management of several human malignancies. However, it has displayed genotoxic properties against normal cells. Evaluation of natural products for their protective effects against chemotherapeutic drug induced toxicity has been growing in recent years. A naturally occurring flavonoid, chrysin, has strong antioxidant abilities and protects against DNA impairment. This study used multiple assays to evaluate the levels of damage to DNA in normal cells and to examine any possible protective role of chrysin against such damage. Male BALB/c mice were administered chrysin orally in two doses of 20 and 40 mg/kg for 10 consecutive days and then a single injection of carboplatin [90 mg/kg body weight (b.w.)] was administered intraperitoneally to induce carboplatin toxicity. 24 h after the carboplatin injection, mice were sacrificed. DNA damage was evaluated using several genotoxicity tests (8-Hydroxydeoxy-guanosine marker, comet assay, micronucleus test, and chromosomal aberration assay) to identify diverse types of damage to the DNA. The results suggest that pretreatment with chrysin significantly decreased the level of DNA damage caused by carboplatin probably due to its potent antioxidant traits. Therefore, chrysin can be considered to be developed as a chemoprotective agent against chemotherapy associated side-effects.
Collapse
Affiliation(s)
- Basit L Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Altaf Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Khalid M Alkharfy
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
52
|
The Affinity of Carboplatin to B-Vitamins and Nucleobases. Int J Mol Sci 2021; 22:ijms22073634. [PMID: 33807309 PMCID: PMC8037198 DOI: 10.3390/ijms22073634] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 11/17/2022] Open
Abstract
Platinum compounds have found wide application in the treatment of various types of cancer and carboplatin is one of the main platinum-based drugs used as antitumor agents. The anticancer activity of carboplatin arises from interacting with DNA and inducing programmed cell death. However, such interactions may occur with other chemical compounds, such as vitamins containing aromatic rings with lone-pair orbitals, which reduces the anti-cancer effect of carboplatin. The most important aspect of the conducted research was related to the evaluation of carboplatin affinity to vitamins from the B group and the potential impact of such interactions on the reduction of therapeutic capabilities of carboplatin in anticancer therapy. Realized computations, including estimation of Gibbs Free Energies, allowed for the identification of the most reactive molecule, namely vitamin B6 (pyridoxal phosphate). In this case, the computational estimations indicating carboplatin reactivity were confirmed by spectrophotometric measurements.
Collapse
|
53
|
Scoditti S, Dabbish E, Sicilia E. Is the cytotoxic activity of phenanthriplatin dependent on the specific size of the phenanthridine ligand π system? J Inorg Biochem 2021; 219:111447. [PMID: 33798829 DOI: 10.1016/j.jinorgbio.2021.111447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022]
Abstract
The monofunctional Pt(II) drug phenanthriplatin is a leading preclinical anticancer drug, whose main characteristic is the presence of the extended aromatic system of the phenanthridine ligand, which allows intercalation. Intercalation, in turn, induces DNA unwinding and facilitates DNA binding. Aiming at verifying to what extent the peculiar cytotoxic activity of phenanthriplatin depends on the specific size of the aromatic system, two phenanthriplatin derivatives have been designed increasing the number of the rings in the N-heterocyclic ligand, and their reactivity has been computationally investigated. Both quantum mechanical DFT computations and molecular dynamics (MD) simulations have been employed to investigate some of the aspects that are considered important for the activity of Pt(II) monofunctional complexes. In particular, the substitution of the chlorido ligand with water, subsequent interaction of the aquated complexes with guanine as a model, eventual deactivation by the model N-acetyl methionine as well as intercalation into, binding to and distortion of DNA have been examined. The outcomes of such analysis have been compared with the analogous ones for the phenanthriplatin complex in order to highlight how the addition of one more ring to the phenanthridine ligand and, eventually, its identity influence the reactivity and, consequently, the cytotoxic profile of the complexes.
Collapse
Affiliation(s)
- Stefano Scoditti
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Eslam Dabbish
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, Università della Calabria, 87036 Arcavacata di Rende (CS), Italy.
| |
Collapse
|
54
|
Chellan P, Avery VM, Duffy S, Land KM, Tam CC, Kim JH, Cheng LW, Romero-Canelón I, Sadler PJ. Bioactive half-sandwich Rh and Ir bipyridyl complexes containing artemisinin. J Inorg Biochem 2021; 219:111408. [PMID: 33826972 DOI: 10.1016/j.jinorgbio.2021.111408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 02/06/2023]
Abstract
Reaction of dihydroartemisinin (DHA) with 4-methyl-4'-carboxy-2,2'-bipyridine yielded the new ester derivative L1. Six novel organometallic half-sandwich chlorido Rh(III) and Ir(III) complexes (1-6) containing pentamethylcyclopentadienyl, (Cp*), tetramethylphenylcyclopentadienyl (Cpxph), or tetramethylbiphenylcyclopentadienyl (Cpxbiph), and N,N-chelated bipyridyl group of L1, have been synthesized and characterized. The complexes were screened for inhibitory activity against the Plasmodium falciparum 3D7 (sensitive), Dd2 (multi-drug resistant) and NF54 late stage gametocytes (LSGNF54), the parasite strain Trichomonas vaginalis G3, as well as A2780 (human ovarian carcinoma), A549 (human alveolar adenocarcinoma), HCT116 (human colorectal carcinoma), MCF7 (human breast cancer) and PC3 (human prostate cancer) cancer cell lines. They show nanomolar antiplasmodial activity, outperforming chloroquine and artemisinin. Their activities were also comparable to dihydroartemisinin. As anticancer agents, several of the complexes showed high inhibitory effects, with Ir(III) complex 3, containing the tetramethylbiphenylcyclopentadienyl ligand, having similar IC50 values (concentration for 50% of maximum inhibition of cell growth) as the clinical drug cisplatin (1.06-9.23 μM versus 0.24-7.2 μM, respectively). Overall, the iridium complexes (1-3) are more potent compared to the rhodium derivatives (4-6), and complex 3 emerges as the most promising candidate for future studies.
Collapse
Affiliation(s)
- Prinessa Chellan
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK
| | - Vicky M Avery
- Discovery Biology, Griffith University, Nathan, Queensland 4111, Australia
| | - Sandra Duffy
- Discovery Biology, Griffith University, Nathan, Queensland 4111, Australia
| | - Kirkwood M Land
- Department of Biological Sciences, University of the Pacific, Stockton, CA 95211, United States of America
| | - Christina C Tam
- Foodborne Toxin Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, United States of America
| | - Jong H Kim
- Foodborne Toxin Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, United States of America
| | - Luisa W Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, United States of America
| | | | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| |
Collapse
|
55
|
|
56
|
Lenis-Rojas OA, Robalo MP, Tomaz AI, Fernandes AR, Roma-Rodrigues C, Teixeira RG, Marques F, Folgueira M, Yáñez J, Gonzalez AA, Salamini-Montemurri M, Pech-Puch D, Vázquez-García D, Torres ML, Fernández A, Fernández JJ. Half-Sandwich Ru( p-cymene) Compounds with Diphosphanes: In Vitro and In Vivo Evaluation As Potential Anticancer Metallodrugs. Inorg Chem 2021; 60:2914-2930. [PMID: 33570919 DOI: 10.1021/acs.inorgchem.0c02768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Ruthenium(II) complexes are currently considered attractive alternatives to the widely used platinum-based drugs. We present herein the synthesis and characterization of half-sandwich ruthenium compounds formulated as [Ru(p-cymene)(L)Cl][CF3SO3] (L = 1,1-bis(methylenediphenylphosphano)ethylene, 1; L = 1,1-bis(diphenylphosphano)ethylene, 2), which were characterized by elemental analysis, mass spectrometry, 1H and 31P{1H} NMR, UV-vis and IR spectroscopy, conductivity measurements and cyclic voltammetry. The molecular structures for both complexes were determined by single-crystal X-ray diffraction. Their cytotoxic activity was evaluated using the MTT assay against human tumor cells, namely ovarian (A2780) and breast (MCF7 and MDA-MB-231). Both complexes were active against breast adenocarcinoma cells, with complex 1 exhibiting a quite remarkable cytotoxicity in the submicromolar range. Interestingly, at concentrations equivalent to the IC50 values in the MCF7 cancer cells, complexes 1 and 2 presented lower cytotoxicity in normal human primary fibroblasts. The antiproliferative effects of 1 and 2 in MCF7 cells might be associated with the induction of reactive oxygen species (ROS), leading to a combined cell death mechanism via apoptosis and autophagy. Despite the fact that in vitro a partial intercalation between complexes and DNA was observed, no MCF7 cell cycle delay or arrest was observed, indicating that DNA might not be a direct target. Complexes 1 and 2 both exhibited a moderate to strong interaction with human serum albumin, suggesting that protein targets may be involved in their mode of action. Their acute toxicity was evaluated in the zebrafish model. Complex 1 (the most toxic of the two) exhibited a lethal toxicity LC50 value about 1 order of magnitude higher than any IC50 concentrations found for the cancer cell models used, highlighting its therapeutic relevance as a drug candidate in cancer chemotherapy.
Collapse
Affiliation(s)
- Oscar A Lenis-Rojas
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB, Av. da República, EAN, 2780-157 Oeiras, Portugal
| | - M Paula Robalo
- Área Departamental de Engenharia Química, ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal.,Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Isabel Tomaz
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1049-016 Lisboa, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Catarina Roma-Rodrigues
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Ricardo G Teixeira
- Centro de Química Estrutural and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1049-016 Lisboa, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologías Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139.7), 2695-066 Bobadela LRS, Portugal
| | - Mónica Folgueira
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Biology, Universidade da Coruña, 15008 A Coruña, Spain.,Department of Cell and Developmental Biology, University College London, Gower Street, London WC1 6BT, U.K
| | - Julián Yáñez
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Biology, Universidade da Coruña, 15008 A Coruña, Spain
| | - Anabel Alba Gonzalez
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Biology, Universidade da Coruña, 15008 A Coruña, Spain
| | - Martín Salamini-Montemurri
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Biology, Universidade da Coruña, 15008 A Coruña, Spain
| | - Dawrin Pech-Puch
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain.,Departamento de Biología Marina, Universidad Autónoma de Yucatán, Km. 15.5, carretera Mérida-Xmatkuil, A.P. 4-116 Itzimná, C.P. 97100, Mérida, Yucatán, Mexico
| | - Digna Vázquez-García
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - Margarita López Torres
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - Alberto Fernández
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - Jesús J Fernández
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| |
Collapse
|
57
|
Lord RM, Zegke M, Basri AM, Pask CM, McGowan PC. Rhodium(III) Dihalido Complexes: The Effect of Ligand Substitution and Halido Coordination on Increasing Cancer Cell Potency. Inorg Chem 2021; 60:2076-2086. [PMID: 33463147 DOI: 10.1021/acs.inorgchem.0c03704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This work presents the synthesis of eight new rhodium(III) dihalido complexes, [RhX2(L)(LH)] (where X = Cl or I), which incorporate two bidentate N-(3-halidophenyl)picolinamide ligands. The ligands have different binding modes in the complexes, whereby one is neutral and bound via N,N (LH) coordination, while the other is anionic and bound via N,O (L) coordination. The solid state and solution studies confirm multiple isomers are present when X = Cl; however, after a halide exchange with potassium iodide (X = I) the complexes exist exclusively as single stable trans isomers. NMR studies reveal the Rh(III) trans diiodido complexes remain stable in aqueous solution with no ligand exchange reported over 96 h. Chemosensitivity data against a range of cancer cell lines show two cytotoxic complexes, where L = N-(3-bromophenyl)picolinamide ligand. The results have been compared to the analogous Ru(III) complexes and overall highlight the Rh(III) trans diiodido complex to be ∼78× more cytotoxic than the analogous Rh(III) dichlorido complex, unlike the Ru(III) complexes which are equitoxic against all cell lines. Additionally, the Rh(III) trans diiodido complex is more selective toward cancerous cells, with selectivity index (SI) values >25-fold higher than cisplatin against colorectal carcinoma.
Collapse
Affiliation(s)
- Rianne M Lord
- School of Chemistry, University of East Anglia, Norwich NR4 7JT, U.K
- School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, U.K
| | - Markus Zegke
- School of Chemistry and Biosciences, University of Bradford, Bradford BD7 1DP, U.K
| | - Aida M Basri
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | | | | |
Collapse
|
58
|
Oliveira ALL, Santos GGL, Espirito-Santo RF, Silva GSA, Evangelista AF, Silva DN, Soares MBP, Villarreal CF. Reestablishment of Redox Homeostasis in the Nociceptive Primary Afferent as a Mechanism of Antinociception Promoted by Mesenchymal Stem/Stromal Cells in Oxaliplatin-Induced Chronic Peripheral Neuropathy. Stem Cells Int 2021; 2021:8815206. [PMID: 33505472 PMCID: PMC7808808 DOI: 10.1155/2021/8815206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/23/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023] Open
Abstract
Painful neuropathy is a common adverse effect of oxaliplatin (OXL), a platinum-derivative chemotherapeutic agent. Oxidative stress and mitochondrial dysfunction are key factors contributing to the development of OXL-induced peripheral neuropathy (OIPN). Based on the antioxidant and antinociceptive properties of mesenchymal stem/stromal cells (MSC), the present study tested the hypothesis that MSC induce antinociceptive effects during OIPN by promoting regulation of redox environment and mitochondrial homeostasis in the nociceptive primary afferents. C57Bl/6 mice submitted to the OXL-chronic neuropathy induction protocol by repeated intravenous administration of OXL (1 mg/kg) were evaluated to determine the paw mechanical and thermal nociceptive thresholds using the von Frey filaments and cold plate tests, respectively. Two weeks after the neuropathy induction, mice were treated with bone marrow-derived MSC (1 × 106), vehicle, or gabapentin (GBP, 70 mg/kg). Four weeks later, mitochondrial morphology, gene expression profile, and oxidative stress markers in the sciatic nerve and dorsal root ganglia (DRG) were evaluated by transmission electron microscopy, RT-qPCR, and biochemical assays, respectively. OXL-treated mice presented behavioral signs of sensory neuropathy, such as mechanical allodynia and thermal hyperalgesia. The behavioral painful neuropathy was completely reverted by a single administration of MSC, while the daily treatment with GBP induced only a short-lived antinociceptive effect. The ultrastructural analysis of the sciatic nerve and DRG of OIPN mice revealed a high proportion of atypical mitochondria in both myelinated and unmyelinated fibers. Importantly, this mitochondrial atypia was strongly reduced in MSC-treated neuropathic mice. Moreover, MSC-treated neuropathic mice showed upregulation of Sod and Nrf2 mRNA in the sciatic nerve and DRG. In line with this result, MSC reduced markers of nitrosative stress and lipid peroxidation in the sciatic nerve and DRG from OIPN mice. Our data suggest that the reestablishment of redox homeostasis in the nociceptive primary afferents is a mechanism by which MSC transplantation reverts the OXL-induced chronic painful neuropathy.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniela N. Silva
- SENAI Institute of Innovation in Advanced Health Systems (ISI SAS), University Center SENAI/CIMATEC, 41650-010, Brazil
| | - Milena B. P. Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, 40296-710, Brazil
- SENAI Institute of Innovation in Advanced Health Systems (ISI SAS), University Center SENAI/CIMATEC, 41650-010, Brazil
- National Institute of Science and Technology for Regenerative Medicine (INCT-REGENERA), Rio de Janeiro, RJ, Brazil
| | - Cristiane Flora Villarreal
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, 40296-710, Brazil
- College of Pharmacy, Federal University of Bahia, 40170-290, Brazil
| |
Collapse
|
59
|
Kozak J, Forma A, Czeczelewski M, Kozyra P, Sitarz E, Radzikowska-Büchner E, Sitarz M, Baj J. Inhibition or Reversal of the Epithelial-Mesenchymal Transition in Gastric Cancer: Pharmacological Approaches. Int J Mol Sci 2020; 22:ijms22010277. [PMID: 33383973 PMCID: PMC7795012 DOI: 10.3390/ijms22010277] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) constitutes one of the hallmarks of carcinogenesis consisting in the re-differentiation of the epithelial cells into mesenchymal ones changing the cellular phenotype into a malignant one. EMT has been shown to play a role in the malignant transformation and while occurring in the tumor microenvironment, it significantly affects the aggressiveness of gastric cancer, among others. Importantly, after EMT occurs, gastric cancer patients are more susceptible to the induction of resistance to various therapeutic agents, worsening the clinical outcome of patients. Therefore, there is an urgent need to search for the newest pharmacological agents targeting EMT to prevent further progression of gastric carcinogenesis and potential metastases. Therapies targeted at EMT might be combined with other currently available treatment modalities, which seems to be an effective strategy to treat gastric cancer patients. In this review, we have summarized recent advances in gastric cancer treatment in terms of targeting EMT specifically, such as the administration of polyphenols, resveratrol, tangeretin, luteolin, genistein, proton pump inhibitors, terpenes, other plant extracts, or inorganic compounds.
Collapse
Affiliation(s)
- Joanna Kozak
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (M.C.)
| | - Marcin Czeczelewski
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (M.C.)
| | - Paweł Kozyra
- Student Research Group, Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, PL-20093 Lublin, Poland;
| | - Elżbieta Sitarz
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland;
| | - Elżbieta Radzikowska-Büchner
- Department of Plastic Surgery, Central Clinical Hospital of the Ministry of the Interior in Warsaw, 01-211 Warsaw, Poland;
| | - Monika Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
- Correspondence:
| |
Collapse
|
60
|
Li S, Khan MH, Wang X, Cai M, Zhang J, Jiang M, Zhang Z, Wen XA, Liang H, Yang F. Synthesis of a series of novel In(III) 2,6-diacetylpyridine bis(thiosemicarbazide) complexes: structure, anticancer function and mechanism. Dalton Trans 2020; 49:17207-17220. [PMID: 33201167 DOI: 10.1039/d0dt02266g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The anticancer function and anticancer mechanism of indium (In) complexes still remain mysterious to date. Furthermore, it is greatly challenging to design a multi-functional metal agent that not only kills cancer cells but also inhibits their invasion and metastasis. Thus, to develop novel next-generation anticancer metal agents, we designed and synthesized a series of novel In(iii) 2,6-diacetylpyridine bis(thiosemicarbazide) complexes (C1-C4) for the first time and then investigated their structure-activity relationships with human urinary bladder cancer (T-24) cells. In particular, C4 not only showed higher cytotoxicity to cancer cells and less toxicity toward normal cells relative to cisplatin but also inhibited cell invasion and metastasis of T-24 cells. Interestingly, C4 acted against T-24 cells exhibiting multiple mechanisms: (1) arresting the S-phase of cell cycle via regulation of cytokine kinases, (2) activating the mitochondrial-mediated apoptosis, endoplasmic reticulum-stress-mediated cell death, PERK and c-Jun N-terminal kinase 1 (JNK) cell signaling pathways, and (3) inhibiting the expression of telomerase via the regulation of c-myc and h-TERT proteins. Our results suggested that C4 may be developed as a potential multi-functional and multi-targeting anticancer candidate.
Collapse
Affiliation(s)
- Shanhe Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Science and Technology of China, Guangxi Normal University, Guilin, Guangxi, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Katukam V, Rupula K, Rao Beedu S. Synthesis and characterisation of novel biopolymer stabilised organic Pt-nanocomposite: assessment of its antioxidant and antitumour properties. IET Nanobiotechnol 2020; 14:889-898. [PMID: 33399123 PMCID: PMC8676258 DOI: 10.1049/iet-nbt.2020.0069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 07/30/2020] [Accepted: 08/19/2020] [Indexed: 11/19/2022] Open
Abstract
Green synthesis of organic Pt-nanocomposite was accomplished using carboplatin as a precursor and novel biopolymer - gum kondagogu (GK) as a reducing agent. The synthesised GK stabilised organic Pt-nanocomposite (GKCPt NC) was characterised by different analytical techniques such as ultraviolet-visible spectroscopy, nanoparticle analyser, scanning electron microscopy and energy dispersive X-ray analysis, X-ray diffraction (XRD), Fourier-transform infrared spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and inductively coupled plasma optical emission spectrophotometer. The XRD pattern established the amorphous nature of GKCPt NC. TEM analysis revealed the homogeneous, monodisperse and spherical nature, with Pt metal size of 3.08 ± 0.62 nm. The binding energy at 71.2 and 74.6 eV show the presence of metallic platinum, Pt(0) confirmed by XPS studies. Further, in vitro radical scavenging and antitumour activity of GKCPt NC have been investigated. In comparison to GK and carboplatin, GKCPt NC showed superior 1, 1-diphenyl-2-picrylhydrazyle activity of 87.82%, whereas 2, 2-azinobis-(3-ethylbenzthinzoline-6-sulphonic acid) activity was 38.50%, respectively. In vitro studies of the antitumour property of GK, GKCPt NC and carboplatin were evaluated by potato disc tumour bioassay model. The efficacy of synthesised GKCPt NC concentration (IC50) on tumour inhibition was found to be 2.04-fold lower as compared to carboplatin. Overall, the synthesised GKCPt NC shows both antitumour and antioxidant properties when compared to the original drug - carboplatin and might have promising applications in cancer therapy.
Collapse
Affiliation(s)
- Vani Katukam
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad 500 007, Telangana State, India
| | - Karuna Rupula
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad 500 007, Telangana State, India
| | - Sashidhar Rao Beedu
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad 500 007, Telangana State, India.
| |
Collapse
|
62
|
Sun G, Li Z, He Z, Wang W, Wang S, Zhang X, Cao J, Xu P, Wang H, Huang X, Xia Y, Lv J, Xuan Z, Jiang T, Fang L, Yang J, Zhang D, Xu H, Xu Z. Circular RNA MCTP2 inhibits cisplatin resistance in gastric cancer by miR-99a-5p-mediated induction of MTMR3 expression. J Exp Clin Cancer Res 2020; 39:246. [PMID: 33198772 PMCID: PMC7670601 DOI: 10.1186/s13046-020-01758-w] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/01/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Cisplatin (CDDP) is the first-line chemotherapy for gastric cancer (GC). The poor prognosis of GC patients is partially due to the development of CDDP resistance. Circular RNAs (circRNAs) are a subclass of noncoding RNAs that function as microRNA (miRNA) sponges. The role of circRNAs in CDDP resistance in GC has not been evaluated. METHODS RNA sequencing was used to identify the differentially expressed circRNAs between CDDP-resistant and CDDP-sensitive GC cells. qRT-PCR was used to detect the expression of circMCTP2 in GC tissues. The effects of circMCTP2 on CDDP resistance were investigated in vitro and in vivo. Pull-down assays and luciferase reporter assays were performed to confirm the interactions among circMCTP2, miR-99a-5p, and myotubularin-related protein 3 (MTMR3). The protein expression levels of MTMR3 were detected by western blotting. Autophagy was evaluated by confocal microscopy and transmission electron microscopy (TEM). RESULTS CircMCTP2 was downregulated in CDDP-resistant GC cells and tissues compared to CDDP-sensitive GC cells and tissues. A high level of circMCTP2 was found to be a favorable factor for the prognosis of patients with GC. CircMCTP2 inhibited proliferation while promoting apoptosis of CDDP-resistant GC cells in response to CDDP treatment. CircMCTP2 was also found to reduce autophagy in CDDP-resistant GC cells. MiR-99a-5p was verified to be sponged by circMCTP2. Inhibition of miR-99a-5p could sensitize GC cells to CDDP. MTMR3 was confirmed to be a direct target of miR-99a-5p. Knockdown of MTMR3 reversed the effects of circMCTP2 on the proliferation, apoptosis and autophagy of CDDP-resistant GC cells. CircMCTP2 was also confirmed to inhibit CDDP resistance in vivo in a nude mouse xenograft model. CONCLUSIONS CircMCTP2 sensitizes GC to CDDP through the upregulation of MTMR3 by sponging miR-99a-5p. Overexpression of CircMCTP2 could be a new therapeutic strategy for counteracting CDDP resistance in GC.
Collapse
Affiliation(s)
- Guangli Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Zhongyuan He
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Weizhi Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Sen Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Xing Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Jiacheng Cao
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Penghui Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Haixiao Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Xiaoxu Huang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Yiwen Xia
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Jialun Lv
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Zhe Xuan
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Tianlu Jiang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Lang Fang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Jing Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Diancai Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu province, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu province, China.
| |
Collapse
|
63
|
Guan R, Xie L, Ji L, Chao H. Phosphorescent Iridium(III) Complexes for Anticancer Applications. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000754] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐Sen University 510275 Guangzhou P. R. China
| | - Lina Xie
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐Sen University 510275 Guangzhou P. R. China
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐Sen University 510275 Guangzhou P. R. China
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry Sun Yat‐Sen University 510275 Guangzhou P. R. China
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule School of Chemistry and Chemical Engineering Hunan University of Science and Technology 400201 Xiangtan P. R. China
| |
Collapse
|
64
|
Yu C, Wang Z, Sun Z, Zhang L, Zhang W, Xu Y, Zhang JJ. Platinum-Based Combination Therapy: Molecular Rationale, Current Clinical Uses, and Future Perspectives. J Med Chem 2020; 63:13397-13412. [PMID: 32813515 DOI: 10.1021/acs.jmedchem.0c00950] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platinum drugs are common in chemotherapy, but their clinical applications have been limited due to drug resistance and severe toxic effects. The combination of platinum drugs with other drugs with different mechanisms of anticancer action, especially checkpoint inhibitors, is increasingly popular. This combination is the leading strategy to improve the therapeutic efficiency and minimize the side effects of platinum drugs. In this review, we focus on the mechanistic basis of the combinations of platinum-based drugs with other drugs to inspire the development of more promising platinum-based combination regimens in clinical trials as well as novel multitargeting platinum drugs overcoming drug resistance and toxicities resulting from current platinum drugs.
Collapse
Affiliation(s)
- Chunqiu Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhibin Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zeren Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lei Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Wanwan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yungen Xu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Jing-Jing Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.,Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
65
|
The HMGB1-2 Ovarian Cancer Interactome. The Role of HMGB Proteins and Their Interacting Partners MIEN1 and NOP53 in Ovary Cancer and Drug-Response. Cancers (Basel) 2020; 12:cancers12092435. [PMID: 32867128 PMCID: PMC7564582 DOI: 10.3390/cancers12092435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
High mobility group box B (HMGB) proteins are overexpressed in different types of cancers such as epithelial ovarian cancers (EOC). We have determined the first interactome of HMGB1 and HMGB2 in epithelial ovarian cancer (the EOC-HMGB interactome). Libraries from the SKOV-3 cell line and a primary transitional cell carcinoma (TCC) ovarian tumor were tested by the Yeast Two Hybrid (Y2H) approach. The interactome reveals proteins that are related to cancer hallmarks and their expression is altered in EOC. Moreover, some of these proteins have been associated to survival and prognosis of patients. The interaction of MIEN1 and NOP53 with HMGB2 has been validated by co-immunoprecipitation in SKOV-3 and PEO1 cell lines. SKOV-3 cells were treated with different anti-tumoral drugs to evaluate changes in HMGB1, HMGB2, MIEN1 and NOP53 gene expression. Results show that combined treatment of paclitaxel and carboplatin induces a stronger down-regulation of these genes in comparison to individual treatments. Individual treatment with paclitaxel or olaparib up-regulates NOP53, which is expressed at lower levels in EOC than in non-cancerous cells. On the other hand, bevacizumab diminishes the expression of HMGB2 and NOP53. This study also shows that silencing of these genes affects cell-viability after drug exposure. HMGB1 silencing causes loss of response to paclitaxel, whereas silencing of HMGB2 slightly increases sensitivity to olaparib. Silencing of either HMGB1 or HMGB2 increases sensitivity to carboplatin. Lastly, a moderate loss of response to bevacizumab is observed when NOP53 is silenced.
Collapse
|
66
|
FLOX (5-fluorouracil + leucovorin + oxaliplatin) chemotherapy for colorectal cancer leads to long-term orofacial neurotoxicity: a STROBE-guided longitudinal prospective study. Int J Clin Oncol 2020; 25:2066-2074. [PMID: 32761281 DOI: 10.1007/s10147-020-01757-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Colorectal carcinoma (CRC) is widely treated by chemotherapy based on an intensely neurotoxic drug: oxaliplatin (OXL). We objective to evaluate prospectively the orofacial neurotoxicity during FLOX (fluorouracil + leucovorin + OXL) chemotherapy. METHODS So, 46 patients with CRC were prospectively evaluated during FLOX chemotherapy by 3 cycles (C) of 6 weeks (W) each. We weekly applied the orofacial section of the Acute and Chronic Neuropathy Questionnaire of Common Toxicity Criteria for Adverse Events of the National Cancer Institute of the United States of America (Oxaliplatin-specific neurotoxicity scale). Patients were asked the following concerning the severity (scores 0-5) of orofacial symptoms: jaw pain, eyelids drooping, throat discomfort, ear pain, tingling in mouth, difficulty with speech, burning or discomfort of the eyes, loss of any vision, feeling shock/pain down back and problems breathing. We summed the scores (0-50) and evaluated the clinicopathological data. Friedman/Dunn, Chi square and multinomial regression logistic tests were used (SPSS 20.0, p < 0.05). RESULTS There was a significant increase in sum of orofacial neurotoxicity from baseline to C1.W3, C2.W1 and C3.W5 (p < 0.001) due increase in scores of jaw pain (p < 0.001), eyelids drooping (p = 0.034), throat discomfort (p < 0.001), ear pain (p = 0.034), tingling in mouth (p = 0.015), burning/discomfort of your eyes (p < 0.001), loss of any vision (p < 0.001), feeling shock/pain down back (p < 0.001), problems with breathing (p = 0.045), but not difficulty with speech (p = 0.087). Women (p = 0.021) and young patients (p = 0.027) had significant higher prevalence of orofacial neurotoxicity. CONCLUSIONS FLOX-related orofacial neurotoxicity begins acutely and remains long term with increased incidence in women and younger patients.
Collapse
|
67
|
Antitumor Activity of Pt(II), Ru(III) and Cu(II) Complexes. Molecules 2020; 25:molecules25153492. [PMID: 32751963 PMCID: PMC7435640 DOI: 10.3390/molecules25153492] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/25/2022] Open
Abstract
Metal complexes are currently potential therapeutic compounds. The acquisition of resistance by cancer cells or the effective elimination of cancer-affected cells necessitates a constant search for chemical compounds with specific biological activities. One alternative option is the transition metal complexes having potential as antitumor agents. Here, we present the current knowledge about the application of transition metal complexes bearing nickel(II), cobalt(II), copper(II), ruthenium(III), and ruthenium(IV). The cytotoxic properties of the above complexes causing apoptosis, autophagy, DNA damage, and cell cycle inhibition are described in this review.
Collapse
|
68
|
Li F, Song X, Li X, Zhang X, Feng X, Wang L, Xu L, Luo J, Zhu B, Ren W, Yu H, Yu Y. Lgr5 maintains stemness and regulates cell property in nasopharyngeal carcinoma through Wnt/β-catenin signaling pathway. Stem Cell Res 2020; 47:101916. [PMID: 32721896 DOI: 10.1016/j.scr.2020.101916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 05/28/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a common malignant tumor in Southern China and Southeast Asia. In this study, we found that Leucine rich repeat containing G protein-coupled receptor 5 (Lgr5) was highly expressed in NPC tissues and marked NPC stem cells. Lgr5high tumors showed differential transcriptional landscape compared to Lgr5not high tumors. Lgr5 expression was associated with the clinicopathologic features in NPC and was able to regulate the stemness and viability of NPC cell line CNE1 and HNE1. Meanwhile, the migration, invasion and epithelial-mesenchymal transition (EMT) was modulated by Lgr5 via Wnt/β-catenin signaling pathway. Furthermore, Lgr5 could regulate the sensitivity of NPC cells to chemotherapy drugs. Xenografted tumors from Lgr5-overexpressed CNE1 cells showed stronger tumor forming capacity and higher expression level of stem cell markers. Thus, we characterized previously unidentified role of Lgr5 in NPC cells, potential serving as a NPC stem cell biomarker and a therapeutic target against NPC.
Collapse
Affiliation(s)
- Fangqi Li
- School of Life Sciences, Shanghai University, Shanghai 200444 China
| | - Xiaole Song
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical, Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031 China
| | - Xuewen Li
- School of Life Sciences, Shanghai University, Shanghai 200444 China
| | - Xiujuan Zhang
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical, Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031 China
| | - Xiaoyu Feng
- School of Life Sciences, Shanghai University, Shanghai 200444 China
| | - Li Wang
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical, Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031 China
| | - Lun Xu
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical, Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031 China
| | - Jiqin Luo
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical, Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031 China
| | - Bijun Zhu
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical, Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031 China
| | - Wenwen Ren
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical, Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031 China.
| | - Hongmeng Yu
- School of Life Sciences, Shanghai University, Shanghai 200444 China.
| | - Yiqun Yu
- School of Life Sciences, Shanghai University, Shanghai 200444 China; Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical, Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031 China.
| |
Collapse
|
69
|
Chellan P, Sadler PJ. Enhancing the Activity of Drugs by Conjugation to Organometallic Fragments. Chemistry 2020; 26:8676-8688. [PMID: 32452579 PMCID: PMC7496994 DOI: 10.1002/chem.201904699] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/12/2020] [Indexed: 12/22/2022]
Abstract
Resistance to chemotherapy is a current clinical problem, especially in the treatment of microbial infections and cancer. One strategy to overcome this is to make new derivatives of existing drugs by conjugation to organometallic fragments, either by an appropriate linker, or by direct coordination of the drug to a metal. We illustrate this with examples of conjugated organometallic metallocene sandwich and half-sandwich complexes, RuII and OsII arene, and RhIII and IrIII cyclopentadienyl half-sandwich complexes. Ferrocene conjugates are particularly promising. The ferrocene-chloroquine conjugate ferroquine is in clinical trials for malaria treatment, and a ferrocene-tamoxifen derivative (a ferrocifen) seems likely to enter anticancer trails soon. Several other examples illustrate that organometallic conjugation can restore the activity of drugs to which resistance has developed.
Collapse
Affiliation(s)
- Prinessa Chellan
- Department of Chemistry and Polymer ScienceStellenbosch University7600Matieland, Western CapeSouth Africa
| | - Peter J. Sadler
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| |
Collapse
|
70
|
Odachowski M, Marschner C, Blom B. A review on 1,1-bis(diphenylphosphino)methane bridged homo- and heterobimetallic complexes for anticancer applications: Synthesis, structure, and cytotoxicity. Eur J Med Chem 2020; 204:112613. [PMID: 32784095 DOI: 10.1016/j.ejmech.2020.112613] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/14/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022]
Abstract
Herein, we review developments in synthesis, structure, and biological (anti-cancer) activities of 1,1-bis(diphenylphosphino)methane (dppm) bridged homo- and heterobimetallic systems of the type LmM(μ2-dppm)M'Ln (M and M' are transition metals which may be different or the same and Ln,m are co-ligands) since the first such reported bimetallic system in 1987 until the present time (2020). As the simplest diphosphine, dppm enables facile formation of bimetallic complexes, where, given the short spacer between the PPh2 groups, close spatial proximity of the metal centres is ensured. We concentrate on complexes bearing no M-M interaction and contrast biological activities of these complexes with mononuclear counterparts and positive control agents such as cisplatin, in an attempt to elucidate patterns in the biological activities of these complexes.
Collapse
Affiliation(s)
- Matylda Odachowski
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Kapoenstraat 2, PO Box 616, 6200, MD, Maastricht, the Netherlands
| | - Christoph Marschner
- Institut für Anorganische Chemie, Technische Universität Graz, Stremayrgasse 9, A-8010, Graz, Austria
| | - Burgert Blom
- Maastricht Science Programme, Faculty of Science and Engineering, Maastricht University, Kapoenstraat 2, PO Box 616, 6200, MD, Maastricht, the Netherlands.
| |
Collapse
|
71
|
Hirakawa T, Bowler DR, Miyazaki T, Morikawa Y, Truflandier LA. Blue moon ensemble simulation of aquation free energy profiles applied to mono and bifunctional platinum anticancer drugs. J Comput Chem 2020; 41:1973-1984. [DOI: 10.1002/jcc.26367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Teruo Hirakawa
- Department of Precision EngineeringGraduate School of Engineering, Osaka University Suita Osaka Japan
- Institut des Sciences Moléculaires (ISM), Université Bordeaux Talence Cedex France
| | - David R. Bowler
- Department of Physics & AstronomyUniversity College London (UCL) London United Kingdom
- London Centre for Nanotechnology, UCL London United Kingdom
- International Centre for Materials Nanoarchitechtonics (WPI‐MANA), National Institute for Materials Science (NIMS) Tsukuba Ibaraki Japan
| | - Tsuyoshi Miyazaki
- International Centre for Materials Nanoarchitechtonics (WPI‐MANA), National Institute for Materials Science (NIMS) Tsukuba Ibaraki Japan
| | - Yoshitada Morikawa
- Department of Precision EngineeringGraduate School of Engineering, Osaka University Suita Osaka Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University Kyoto Japan
- Research Center for Ultra‐Precision Science and TechnologyGraduate School of Engineering, Osaka University Suita Osaka Japan
| | - Lionel A. Truflandier
- Department of Precision EngineeringGraduate School of Engineering, Osaka University Suita Osaka Japan
- Institut des Sciences Moléculaires (ISM), Université Bordeaux Talence Cedex France
| |
Collapse
|
72
|
Wen X, Liu S, Sheng J, Cui M. Recent advances in the contribution of noncoding RNAs to cisplatin resistance in cervical cancer. PeerJ 2020; 8:e9234. [PMID: 32523813 PMCID: PMC7263300 DOI: 10.7717/peerj.9234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer (CC) remains a major disease burden on the female population worldwide. Chemotherapy with cisplatin (cis-diamminedichloroplatinum (II); CDDP) and related drugs are the main treatment option for CC; however, their efficacy is limited by the development of drug resistance. Noncoding RNAs (ncRNAs) have been found to play critical roles in numerous physiological and pathological cellular processes, including drug resistance of cancer cells. In this review, we describe some of the ncRNAs, including miRNAs, lncRNAs and circRNAs, that are involved in the sensitivity/resistance of CC to CDDP-based chemotherapy and discuss their mechanisms of action. We also describe some ncRNAs that could be therapeutic targets to improve the sensitivity of CC to CDDP-based chemotherapy.
Collapse
Affiliation(s)
- Xin Wen
- The Second Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Shui Liu
- The Second Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Jiyao Sheng
- The Second Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| | - Manhua Cui
- The Second Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
73
|
Abstract
Platinum compounds are anti-cancer drugs and can bind to canonical purine bases, mainly guanine, found within double helical DNA. Platinum compounds can be transferred directly to pathologically altered sites in a specific and site-oriented manner by nanocarriers as potential nanocarriers for carboplatin. Two types of nanostructures were used as potential nanocarriers for carboplatin, the first were functionalized C60 fullerene molecules and the second were rhombellanes. The analyzed nanostructures show considerable symmetry, which affects the affinity of the studied nanocarriers and ligands. Thus symmetry of nanostructures affects the distribution of binding groups on their surface. After the docking procedure, analysis of structural properties revealed many interesting features. In all described cases, binding affinities of complexes of platinum compounds with functionalized fullerene C60 are higher compared with affinities of complexes of platinum compounds with rhombellane structures. All platinum compounds easily create complexes with functionalized fullerene C60, CID_16156307, and at the same time show the highest binding affinity. The binding affinities of lobaplatin and heptaplatin are higher compared with oxaliplatin and nedaplatin. The high value of binding affinity and equilibrium constant K is correlated with creation of strong and medium hydrogen bonds or is correlated with forming a hydrogen bond network. The performed investigations enabled finding nanocarriers for lobaplatin, heptaplatin, oxaliplatin and nedaplatin molecules.
Collapse
|
74
|
Carcelli M, Tegoni M, Bartoli J, Marzano C, Pelosi G, Salvalaio M, Rogolino D, Gandin V. In vitro and in vivo anticancer activity of tridentate thiosemicarbazone copper complexes: Unravelling an unexplored pharmacological target. Eur J Med Chem 2020; 194:112266. [PMID: 32248006 DOI: 10.1016/j.ejmech.2020.112266] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 12/17/2022]
Abstract
Certain metal complexes can have a great antitumor activity, as the use of cisplatin in therapy has been demonstrating for the past fifty years. Copper complexes, in particular, have attracted much attention as an example of anticancer compounds based on an endogenous metal. In this paper we present the synthesis and the activity of a series of copper(II) complexes with variously substituted salicylaldehyde thiosemicarbazone ligands. The in vitro activity of both ligands and copper complexes was assessed on a panel of cell lines (HCT-15, LoVo and LoVo oxaliplatin resistant colon carcinoma, A375 melanoma, BxPC3 and PSN1 pancreatic adenocarcinoma, BCPAP thyroid carcinoma, 2008 ovarian carcinoma, HEK293 non-transformed embryonic kidney), highlighting remarkable activity of the metal complexes, in some cases in the low nanomolar range. The copper(II) complexes were also screened, with good results, against 3D spheroids of colon (HCT-15) and pancreatic (PSN1) cancer cells. Detailed investigations on the mechanism of action of the copper(II) complexes are also reported: they are able to potently inhibit Protein Disulfide Isomerase, a copper-binding protein, that is recently emerging as a new therapeutic target for cancer treatment. Good preliminary results obtained in C57BL mice indicate that this series of metal-based compounds could be a very promising weapon in the fight against cancer.
Collapse
Affiliation(s)
- Mauro Carcelli
- Dipartimento di Scienze Chimiche, Della Vita e della Sostenibilità Ambientale and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, Università di Parma, Parco Area Delle Scienze 11/A, 43124, Parma, Italy
| | - Matteo Tegoni
- Dipartimento di Scienze Chimiche, Della Vita e della Sostenibilità Ambientale and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, Università di Parma, Parco Area Delle Scienze 11/A, 43124, Parma, Italy
| | - Jennifer Bartoli
- Dipartimento di Scienze Chimiche, Della Vita e della Sostenibilità Ambientale and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, Università di Parma, Parco Area Delle Scienze 11/A, 43124, Parma, Italy
| | - Cristina Marzano
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Giorgio Pelosi
- Dipartimento di Scienze Chimiche, Della Vita e della Sostenibilità Ambientale and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, Università di Parma, Parco Area Delle Scienze 11/A, 43124, Parma, Italy
| | - Marika Salvalaio
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131, Padova, Italy
| | - Dominga Rogolino
- Dipartimento di Scienze Chimiche, Della Vita e della Sostenibilità Ambientale and Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici, Università di Parma, Parco Area Delle Scienze 11/A, 43124, Parma, Italy.
| | - Valentina Gandin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131, Padova, Italy.
| |
Collapse
|
75
|
Mohamed HA, Shepherd S, William N, Blundell HA, Das M, Pask CM, Lake BRM, Phillips RM, Nelson A, Willans CE. Silver(I) N-Heterocyclic Carbene Complexes Derived from Clotrimazole: Antiproliferative Activity and Interaction with an Artificial Membrane-Based Biosensor. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Heba A. Mohamed
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Samantha Shepherd
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Nicola William
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Helen A. Blundell
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Madhurima Das
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Christopher M. Pask
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Benjamin R. M. Lake
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | - Roger M. Phillips
- School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, U.K
| | - Andrew Nelson
- School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, U.K
| | | |
Collapse
|
76
|
Bakalova AG, Buyukliev RT, Nikolova RP, Shivachev BL, Mihaylova RA, Konstantinov SM. Synthesis, Spectroscopic Properties, Crystal Structure And Biological Evaluation of New Platinum Complexes with 5-methyl-5-(2-thiomethyl)ethyl Hydantoin. Anticancer Agents Med Chem 2020; 19:1243-1252. [PMID: 30767754 DOI: 10.2174/1871520619666190214103345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 01/25/2023]
Abstract
BACKGROUND The accidental discovery of Cisplatin's growth-inhibiting properties a few decades ago led to the resurgence of interest in metal-based chemotherapeutics. A number of well-discussed factors such as severe systemic toxicity and unfavourable physicochemical properties further limit the clinical application of the platinating agents. Great efforts have been undertaken in the development of alternative platinum derivatives with an extended antitumor spectrum and amended toxicity profile as compared to the reference drug cisplatin. The rational design of conventional platinum analogues and the re-evaluation of the empirically derived "structure- activity" relationships allowed for the synthesis of platinum complexes with great diversity in structural characteristics, biochemical stability and antitumor properties. METHODS The new compounds have been studied by elemental analyses, IR, NMR and mass spectral analyses. The structures of the organic compound and one of the new mixed/ammine Pt(II) complexes were studied by X-ray diffraction analysis. The cytotoxic effects of the compounds were studied vs. the referent antineoplastic agent cisplatin against four human tumour cell lines using the standard MTT-dye reduction assay for cell viability. The most promising complex 3 was investigated for acute toxicity in male and female H-albino-mice models. RESULTS A new organic compound (5-methyl-5-(2-thiomethyl)ethyl hydantoin) L bearing both S- and Ncoordinating sites and three novel platinum complexes, 1, 2 and 3 were synthesized and studied. Spectral and structural characterization concluded monodentate S-driven coordination of the ligand L to the metal center in complexes 1 and 2, whereas the same was acted as a bidentate N,S-chelator in complex 3. Ligand L crystallizes in the tetragonal space group I41/a (No 88) with one molecule per asymmetric unit. While complex 3 crystallizes in the monoclinic space group P21/c (No 14) with one molecule per asymmetric unit. In the same complex 3, the platinum ion coordinates an L ligand, a chloride ion and an ammonia molecule. In the in vitro experiments, the tested L and complexes 1 and 2 exhibited negligible cytotoxic activity in all tumor models. Accordingly, complex 3 is twice as potent as cisplatin in the HT-29 cells and is at least as active as cisplatin on the MDA-MB-231 breast cancer cell line. In the in vivo toxicity estimation of complex 3 no signs of common toxicity were observed. CONCLUSION The Pt(II)-bidentate complex 3 exhibited significant cytotoxic potential equaling or surpassing that of the reference drug cisplatin in all the tested tumor models. Negligible anticancer activity on the screened tumor types has been shown by the ligand L and its Pt(II) and Pt(IV) complexes 1 and 2, respectively. Our study on the acute toxicity of the most active complex 3 proved it to be non-toxic in mice models.
Collapse
Affiliation(s)
- Adriana G Bakalova
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, Dunav -2 Street, 1000 Sofia, Bulgaria
| | - Rossen T Buyukliev
- Department of Chemistry, Faculty of Pharmacy, Medical University of Sofia, Dunav -2 Street, 1000 Sofia, Bulgaria
| | - Rositsa P Nikolova
- Institute of Mineralogy and Crystallography, Bulgarian Academy of Science, Acad. G. Bonchev Street, 107 bl, 1113 Sofia, Bulgaria
| | - Boris L Shivachev
- Institute of Mineralogy and Crystallography, Bulgarian Academy of Science, Acad. G. Bonchev Street, 107 bl, 1113 Sofia, Bulgaria
| | - Rositsa A Mihaylova
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Dunav-2 Street, 1000 Sofia, Bulgaria
| | - Spiro M Konstantinov
- Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Dunav-2 Street, 1000 Sofia, Bulgaria
| |
Collapse
|
77
|
Zhang J, Jiang H, Xie T, Zheng J, Tian Y, Li R, Wang B, Lin J, Xu A, Huang X, Yuan Y. Differential Expression and Alternative Splicing of Transcripts Associated With Cisplatin-Induced Chemoresistance in Nasopharyngeal Carcinoma. Front Genet 2020; 11:52. [PMID: 32161615 PMCID: PMC7052373 DOI: 10.3389/fgene.2020.00052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/17/2020] [Indexed: 12/29/2022] Open
Abstract
Radiotherapy and adjuvant cisplatin (DDP) chemotherapy are standard administrations applied to treat nasopharyngeal carcinoma (NPC). However, the molecular changes and functions of DDP in NPC chemo-resistance remain poorly understood. In the present study, transcriptomic sequencing between 5-8F and 5-8F/DDP cells was performed to identify differential expression and alternative splicing (AS) characteristics in DDP-resistant NPC cells. Transcriptomic profiling identified 1,757 upregulated genes and 1,473 downregulated differentially expressed genes (DEGs). Bioinformatic analysis revealed that these DEGs were associated with or participated in important biological regulatory functions in NPC. Validation of 20 significant DEGs using quantitative real-time reverse transcription PCR showed that the expression patterns of 17 mRNAs were in accordance with the sequencing data. Intron retention was identified as the major AS event in chemoresistant cells. Furthermore, the expression level of matrix metalloproteinase 1 (MMP1), which was one of the most upregulated mRNAs in the chemoresistant cell lines, was significantly associated with the migration, invasion, and proliferation of NPC cells in vitro. Our study revealed that dysregulated genes and AS-mediated DDP chemoresistance might play important roles in NPC development and progression. Targeting aberrantly expressed genes might clarify the pathogenesis of NPC and contribute to developing new therapeutic strategies for NPC.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| | - Huali Jiang
- Department of Cardiovascularology, the Affiliated Donghua Hospital of Sun Yat-sen University, Dongguan, China
| | - Tao Xie
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| | - Jieling Zheng
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yunhong Tian
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| | - Rong Li
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| | - Baiyao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| | - Jie Lin
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| | - Anan Xu
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| | - Xiaoting Huang
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| | - Yawei Yuan
- Department of Radiation Oncology, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Disease, Guangzhou, China
| |
Collapse
|
78
|
Choi CH, Chung JY, Kang JH, Paik ES, Lee YY, Park W, Byeon SJ, Chung EJ, Kim BG, Hewitt SM, Bae DS. Chemoradiotherapy response prediction model by proteomic expressional profiling in patients with locally advanced cervical cancer. Gynecol Oncol 2020; 157:437-443. [PMID: 32107047 DOI: 10.1016/j.ygyno.2020.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Resistance to chemo-radiation therapy is a substantial obstacle that compromises treatment of advanced cervical cancer. The objective of this study was to investigate if a proteomic panel associated with radioresistance could predict survival of patients with locally advanced cervical cancer. METHODS A total of 181 frozen tissue samples were prospectively obtained from patients with locally advanced cervical cancer before chemoradiation. Expression levels of 22 total and phosphorylated proteins were evaluated using well-based reverse phase protein arrays. Selected proteins were validated with western blotting analysis and immunohistochemistry. Performances of models were internally and externally validated. RESULTS Unsupervised clustering stratified patients into three major groups with different overall survival (OS, P = 0.001) and progression-free survival (PFS, P = 0.003) based on detection of BCL2, HER2, CD133, CAIX, and ERCC1. Reverse-phase protein array results significantly correlated with western blotting results (R2 = 0.856). The C-index of model was higher than clinical model in the prediction of OS (C-index: 0.86 and 0.62, respectively) and PFS (C-index: 0.82 and 0.64, respectively). The Kaplan-Meier survival curve showed a dose-dependent prognostic significance of risk score for PFS and OS. Multivariable Cox proportional hazard model confirmed that the risk score was an independent predictor of PFS (HR: 1.6; 95% CI: 1.4-1.9; P < 0.001) and OS (HR: 2.1; 95% CI: 1.7-2.5; P < 0.001). CONCLUSION A proteomic panel of BCL2, HER2, CD133, CAIX, and ERCC1 independently predicted survival in locally advanced cervical cancer patients. This prediction model can help identify chemoradiation responsive tumors and improve prediction for clinical outcome of cervical cancer patients.
Collapse
Affiliation(s)
- Chel Hun Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea; Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Joon-Yong Chung
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Jun Hyeok Kang
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - E Sun Paik
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Yoo-Young Lee
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Won Park
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sun-Ju Byeon
- Department of Pathology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA
| | - Byoung-Gie Kim
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Stephen M Hewitt
- Experimental Pathology Laboratory, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, USA.
| | - Duk-Soo Bae
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
79
|
Hain BA, Jude B, Xu H, Smuin DM, Fox EJ, Elfar JC, Waning DL. Zoledronic Acid Improves Muscle Function in Healthy Mice Treated with Chemotherapy. J Bone Miner Res 2020; 35:368-381. [PMID: 31614017 DOI: 10.1002/jbmr.3890] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/18/2019] [Accepted: 10/05/2019] [Indexed: 12/20/2022]
Abstract
Carboplatin is a chemotherapy drug used to treat solid tumors but also causes bone loss and muscle atrophy and weakness. Bone loss contributes to muscle weakness through bone-muscle crosstalk, which is prevented with the bisphosphonate zoledronic acid (ZA). We treated mice with carboplatin in the presence or absence of ZA to assess the impact of bone resorption on muscle. Carboplatin caused loss of body weight, muscle mass, and bone mass, and also led to muscle weakness as early as 7 days after treatment. Mice treated with carboplatin and ZA lost body weight and muscle mass but did not lose bone mass. In addition, muscle function in mice treated with ZA was similar to control animals. We also used the anti-TGFβ antibody (1D11) to prevent carboplatin-induced bone loss and showed similar results to ZA-treated mice. We found that atrogin-1 mRNA expression was increased in muscle from mice treated with carboplatin, which explained muscle atrophy. In mice treated with carboplatin for 1 or 3 days, we did not observe any bone or muscle loss, or muscle weakness. In addition, reduced caloric intake in the carboplatin treated mice did not cause loss of bone or muscle mass, or muscle weakness. Our results show that blocking carboplatin-induced bone resorption is sufficient to prevent skeletal muscle weakness and suggests another benefit to bone therapy beyond bone in patients receiving chemotherapy. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Brian A Hain
- Department of Cellular and Molecular Physiology, The Penn State College of Medicine, Hershey, PA, USA
| | - Baptiste Jude
- Department of Cellular and Molecular Physiology, The Penn State College of Medicine, Hershey, PA, USA
| | - Haifang Xu
- Department of Cellular and Molecular Physiology, The Penn State College of Medicine, Hershey, PA, USA
| | - Dallas M Smuin
- Department of Orthopaedics and Rehabilitation, The Penn State College of Medicine, Hershey, PA, USA
| | - Edward J Fox
- Department of Orthopaedics and Rehabilitation, The Penn State College of Medicine, Hershey, PA, USA.,Center for Orthopaedic Research and Translational Science, Hershey, PA, USA
| | - John C Elfar
- Department of Orthopaedics and Rehabilitation, The Penn State College of Medicine, Hershey, PA, USA.,Center for Orthopaedic Research and Translational Science, Hershey, PA, USA
| | - David L Waning
- Department of Cellular and Molecular Physiology, The Penn State College of Medicine, Hershey, PA, USA.,Center for Orthopaedic Research and Translational Science, Hershey, PA, USA.,Penn State Cancer Institute, Hershey, PA, USA
| |
Collapse
|
80
|
Tan MX, Wang ZF, Qin QP, Zou BQ, Liang H. Complexes of oxoplatin with rhein and ferulic acid ligands as platinum(iv) prodrugs with high anti-tumor activity. Dalton Trans 2020; 49:1613-1619. [PMID: 31942585 DOI: 10.1039/c9dt04594e] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We herein designed two new PtIV prodrugs of oxoplatin (cis,cis,cis-[PtCl2(NH3)2(OH)2]), [PtIVCl2(NH3)2(O2C-FA)2] (Pt-2) and [PtIVCl2(NH3)2(O2C-RH)2] (Pt-3), by conjugating with ferulic acid (FA-COOH) and rhein (RH-COOH) which have well-known biological activities. Three other Pt(iv) complexes of [PtIVCl2(NH3)2(O2C-BA)2] (Pt-1), [PtIVCl2(NH3)2(O2C-CA)2] (Pt-4) and [PtIVCl2(NH3)2(O2C-TCA)2] (Pt-5) (where BA-COOH = benzoic acid, CA-COOH = crotonic acid and TCA-COOH = trans-cinnamic acid) were also prepared for the comparative study. Like most PtIV prodrug complexes, the cytotoxicity of Pt-3 containing the biologically active rhein (RH-COOH) ligand against lung carcinoma (A549 and A549/DDP) cells was higher than those of Pt-1, Pt-2, Pt-4, cisplatin and Pt-5. Moreover, the cytotoxicity of Pt-3 in HL-7702 normal cells was lower than those of PtIV derivatives bearing BA-COOH, FA-COOH, TCA-COOH and CA-COOH ligands. The highly efficacious Pt-2 and Pt-3 were found to accumulate strongly in the A549/DDP cells, with the prodrug Pt-3 showing highest levels of penetration into the mitochondria. The prodrug Pt-3 effectively entered the A549/DDP cells and caused mitochondrial damage, significantly greater than Pt-2. In addition, the prodrug Pt-3 exhibited higher antitumor efficacy (inhibition rates (IR) = 67.45%) than Pt-2 (28.12%) and cisplatin (33.05%) in the A549/DDP xenograft mouse model. Thus, the prodrug Pt-3 containing the rhein (RH-COOH) ligand is a promising candidate drug targeting the mitochondria.
Collapse
Affiliation(s)
- Ming-Xiong Tan
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Zhen-Feng Wang
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China.
| | - Qi-Pin Qin
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, PR China. and State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| | - Bi-Qun Zou
- Department of Chemistry, Guilin Normal College, 9 Feihu Road, Gulin 541001, China.
| | - Hong Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, PR China.
| |
Collapse
|
81
|
Li J, Liu R, Jiang J, Liang X, Huang L, Huang G, Chen H, Pan L, Ma Z. Zinc(II) Terpyridine Complexes: Substituent Effect on Photoluminescence, Antiproliferative Activity, and DNA Interaction. Molecules 2019; 24:molecules24244519. [PMID: 31835555 PMCID: PMC6943603 DOI: 10.3390/molecules24244519] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 02/07/2023] Open
Abstract
A series of ZnCl2 complexes (compounds 1–10) with 4′-(substituted-phenyl)-2,2′:6′,2′′-terpyridine that bears hydrogen (L1), p-methyl (L2), p-methoxy (L3), p-phenyl (L4), p-tolyl (L5), p-hydroxyl (L6), m-hydroxyl (L7), o-hydroxyl (L8), p-carboxyl (L9), or p-methylsulfonyl (L10) were prepared and then characterized by 1H NMR, electrospray mass-spectra (ESI-MS), IR, elemental analysis, and single crystal X-ray diffraction. In vitro cytotoxicity assay was used to monitor the antiproliferative activities against tumor cells. Absorption spectroscopy, fluorescence titration, circular dichroism spectroscopy, and molecular modeling studied the DNA interactions. All of the compounds display interesting photoluminescent properties and different maximal emission peaks due to the difference of the substituent groups. The cell viability studies indicate that the compounds have excellent antiproliferative activity against four human carcinoma cell lines, A549, Bel-7402, MCF-7, and Eca-109, with the lowest IC50 values of 0.33 (10), 0.66 (6), 0.37 (7), and 1.05 (7) μM, respectively. The spectrophotometric results reveal that the compounds have strong affinity binding with DNA as intercalator and induce DNA conformational transition. Molecular docking studies indicate that the binding is contributed by the π…π stacking and hydrogen bonds, providing an order of nucleotide sequence binding selectivity as ATGC > ATAT > GCGC. These compounds intercalate into the base pairs of the DNA of the tumor cells to affect their replication and transcription, and the process is supposed to play an important role in the anticancer mechanism.
Collapse
Affiliation(s)
- Jiahe Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (J.L.); (R.L.); (J.J.); (X.L.); (L.H.)
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Rongping Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (J.L.); (R.L.); (J.J.); (X.L.); (L.H.)
| | - Jinzhang Jiang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (J.L.); (R.L.); (J.J.); (X.L.); (L.H.)
| | - Xing Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (J.L.); (R.L.); (J.J.); (X.L.); (L.H.)
| | - Ling Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (J.L.); (R.L.); (J.J.); (X.L.); (L.H.)
| | - Gang Huang
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530004, Guangxi, China;
| | - Hailan Chen
- School of Animal Science and Technology, Guangxi University, Nanning 530004, Guangxi, China
- Correspondence: (H.C.); (L.P.); (Z.M.)
| | - Lixia Pan
- National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530004, Guangxi, China;
- Correspondence: (H.C.); (L.P.); (Z.M.)
| | - Zhen Ma
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, China; (J.L.); (R.L.); (J.J.); (X.L.); (L.H.)
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Correspondence: (H.C.); (L.P.); (Z.M.)
| |
Collapse
|
82
|
Swanepoel B, Nitulescu GM, Olaru OT, Venables L, van de Venter M. Anti-Cancer Activity of a 5-Aminopyrazole Derivative Lead Compound (BC-7) and Potential Synergistic Cytotoxicity with Cisplatin against Human Cervical Cancer Cells. Int J Mol Sci 2019; 20:ijms20225559. [PMID: 31703393 PMCID: PMC6888365 DOI: 10.3390/ijms20225559] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/24/2019] [Accepted: 11/06/2019] [Indexed: 12/15/2022] Open
Abstract
The use of some very well-known chemotherapeutic agents, such as cisplatin, is limited by toxicity in normal tissues and the development of drug resistance. In order to address drug resistance and the side-effects of anti-cancer agents, recent research has focused on finding novel combinations of anti-cancer agents with non-overlapping mechanisms of action. The cytotoxic effect of the synthetic 5-aminopyrazole derivative N-[[3-(4-bromophenyl)-1H-pyrazol-5-yl]-carbamothioyl]-4-chloro-benzamide (BC-7) was evaluated by the bis-Benzamide H 33342 trihydrochloride/propidium iodide (Hoechst 33342/PI) dual staining method against HeLa, MeWo, HepG2, Vero, and MRHF cell lines. Quantitative fluorescence image analysis was used for the elucidation of mechanism of action and synergism with cisplatin in HeLa cells. BC-7 displayed selective cytotoxicity towards HeLa cells (IC50 65.58 ± 8.40 μM) and induced apoptosis in a mitochondrial- and caspase dependent manner. This was most likely preceded by cell cycle arrest in the early M phase and the onset of mitotic catastrophe. BC-7 increased the cytotoxic effect of cisplatin in a synergistic manner with combination index (CI) values less than 0.9 accompanied by highly favourable dose reduction indices. Therefore, the results obtained support the implication that BC-7 has potential anti-cancer properties and that combinations of BC-7 with cisplatin should be further investigated for potential clinical applications.
Collapse
Affiliation(s)
- Bresler Swanepoel
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77000, Port Elizabeth 6031, South Africa; (B.S.); (L.V.); (M.v.d.V.)
| | - George Mihai Nitulescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
- Correspondence: or
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| | - Luanne Venables
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77000, Port Elizabeth 6031, South Africa; (B.S.); (L.V.); (M.v.d.V.)
| | - Maryna van de Venter
- Department of Biochemistry and Microbiology, Nelson Mandela University, P.O. Box 77000, Port Elizabeth 6031, South Africa; (B.S.); (L.V.); (M.v.d.V.)
| |
Collapse
|
83
|
Synthesis, DNA binding studies, and antiproliferative activity of novel Pt(II)-complexes with an L-alanyl-based ligand. J Inorg Biochem 2019; 203:110868. [PMID: 31837618 DOI: 10.1016/j.jinorgbio.2019.110868] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022]
Abstract
An artificial alanine-based amino acid {(S)-2-amino-3-[4-propyl-3-(thiophen-2-yl)-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-1-yl]propanoic acid, here named TioxAla}, bearing a substituted triazolyl-thione group on the side chain and able to bind RNA biomedical targets, was here chosen as a valuable scaffold for the synthesis of new platinum complexes with potential dual action owing to the concomitant presence of the metal centre and the amino acid moiety. Three new platinum complexes, obtained from the reaction of TioxAla with K2PtCl4, were characterized by mass spectrometry, nuclear magnetic resonance and UV-vis spectroscopy: one compound (Pt1, bis-{(S)-2-amino-3-[4-propyl-3-(thiophen-2-yl)-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-1-yl]propanoate-O,S} platinum(II)) consisted of two amino acid units coordinating the Pt(II) ion; the other two, Pt2 [potassium dichloro-{(S)-2-amino-3-[4-propyl-3-(thiophen-2-yl)-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-1-yl]propanoate (O,S)} platinum(II)] and Pt3 [potassium dichloro-{(S)-2-amino-3-[4-propyl-3-(thiophen-2-yl)-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-1-yl]propanoate (O,N)} platinum(II)], were isomers bearing one TioxAla unit, and two chlorides as Pt-ligands. Pt coordination involved preferentially the amino, carboxylic and thione functions of TioxAla. By preliminary antiproliferative assays, a moderate cytotoxic activity on cancer cells was observed only for Pt2 and Pt3, while no anticancer activity was found for both the chloride-free complex (Pt1) and TioxAla. This cytotoxicity, however lower than that of cisplatin, well correlated with the marked ability, here found only for Pt2 and Pt3 complexes, to bind DNA sequences either in random coil or in structured forms (duplex and G-quadruplex), as verified by spectroscopic and spectrometric analysis.
Collapse
|
84
|
Bi J, Areecheewakul S, Li Y, Yang S, Zhang Y, Ebeid K, Li L, Thiel KW, Zhang J, Dai D, Salem AK, Leslie KK, Meng X. MTDH/AEG-1 downregulation using pristimerin-loaded nanoparticles inhibits Fanconi anemia proteins and increases sensitivity to platinum-based chemotherapy. Gynecol Oncol 2019; 155:349-358. [PMID: 31477281 DOI: 10.1016/j.ygyno.2019.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/25/2019] [Accepted: 08/14/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Platinum compounds have been widely used as a primary treatment for many types of cancer. However, resistance is the major cause of therapeutic failure for patients with metastatic or recurrent disease, thus highlighting the need to identify novel factors driving resistance to Platinum compounds. Metadherin (MTDH, also known as AEG-1 and LYRIC), located in a frequently amplified region of chromosome 8, has been consistently associated with resistance to chemotherapeutic agents, though the precise mechanisms remain incompletely defined. METHODS The mRNA of FANCD2 and FANCI was pulled down by RNA-binding protein immunoprecipitation. Pristimerin-loaded nanoparticles were prepared using the nanoprecipitation method. Immunocompromised mice bearing patient-derived xenograft tumors were treated with pristimerin-loaded nanoparticles, cisplatin and a combination of the two. RESULTS MTDH, through its recently discovered role as an RNA binding protein, regulates expression of FANCD2 and FANCI, two components of the Fanconi anemia complementation group (FA) that play critical roles in interstrand crosslink damage induced by platinum compounds. Pristimerin, a quinonemethide triterpenoid extract from members of the Celastraceae family used to treat inflammation in traditional Chinese medicine, significantly decreased MTDH, FANCD2 and FANCI levels in cancer cells, thereby restoring sensitivity to platinum-based chemotherapy. Using a patient-derived xenograft model of endometrial cancer, we discovered that treatment with pristimerin in a novel nanoparticle formulation markedly inhibited tumor growth when combined with cisplatin. CONCLUSIONS MTDH is involved in post-transcriptional regulation of FANCD2 and FANCI. Pristimerin can increase sensitivity to platinum-based agents in tumors with MTDH overexpression by inhibiting the FA pathway.
Collapse
Affiliation(s)
- Jianling Bi
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Sudartip Areecheewakul
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Yujun Li
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Shujie Yang
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Yuping Zhang
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kareem Ebeid
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA
| | - Long Li
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kristina W Thiel
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Jun Zhang
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical / Cancer Centers, Kansas City, KS 66160
| | - Donghai Dai
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Kimberly K Leslie
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA; Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Xiangbing Meng
- Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; Department of Pathology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
85
|
Eskandari A, Kundu A, Ghosh S, Suntharalingam K. A Triangular Platinum(II) Multinuclear Complex with Cytotoxicity Towards Breast Cancer Stem Cells. Angew Chem Int Ed Engl 2019; 58:12059-12064. [DOI: 10.1002/anie.201905389] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Arvin Eskandari
- Department of ChemistryKing's College London London SE1 1DB UK
| | - Arunangshu Kundu
- Department of ChemistryGauhati University Guwahati Assam 781014 India
| | - Sushobhan Ghosh
- Department of ChemistryGauhati University Guwahati Assam 781014 India
| | | |
Collapse
|
86
|
Eskandari A, Kundu A, Ghosh S, Suntharalingam K. A Triangular Platinum(II) Multinuclear Complex with Cytotoxicity Towards Breast Cancer Stem Cells. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201905389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Arvin Eskandari
- Department of ChemistryKing's College London London SE1 1DB UK
| | - Arunangshu Kundu
- Department of ChemistryGauhati University Guwahati Assam 781014 India
| | - Sushobhan Ghosh
- Department of ChemistryGauhati University Guwahati Assam 781014 India
| | | |
Collapse
|
87
|
Kostrhunova H, Zajac J, Novohradsky V, Kasparkova J, Malina J, Aldrich-Wright JR, Petruzzella E, Sirota R, Gibson D, Brabec V. A Subset of New Platinum Antitumor Agents Kills Cells by a Multimodal Mechanism of Action Also Involving Changes in the Organization of the Microtubule Cytoskeleton. J Med Chem 2019; 62:5176-5190. [PMID: 31030506 DOI: 10.1021/acs.jmedchem.9b00489] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The substitution inert platinum agent [Pt(1 S,2 S-diaminocyclohexane)(5,6-dimethyl-1,10-phenanthroline)]2+ (56MeSS, 5) is a potent cytotoxic metallodrug. In contrast to conventional cisplatin or oxaliplatin, the mechanism of action (MoA) of 5 is fundamentally different. However, details of the mechanism by which the 5,6-dimethyl-1,10-phenanthroline ligand contributes to the cytotoxicity of 5 and its derivatives have not been sufficiently clarified so far. Here, we show that 5 and its Pt(IV) derivatives exhibit an intriguing potency in the triple-negative breast cancer cells MDA-MB-231. Moreover, we show that the Pt(IV) derivatives of 5 act by multimodal MoA resulting in the global biological effects, that is, they damage nuclear DNA, reduce the mitochondrial membrane potential, induce the epigenetic processes, and last but not least, the data provide evidence that changes in the organization of cytoskeleton networks are functionally important for 5 and its derivatives, in contrast to clinically used platinum cytostatics, to kill cancer cells.
Collapse
Affiliation(s)
- Hana Kostrhunova
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Juraj Zajac
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Vojtech Novohradsky
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Jana Kasparkova
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Jaroslav Malina
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Janice R Aldrich-Wright
- School of Science and Health , Western Sydney University , Penrith South DC 1797 , NSW , Australia
| | - Emanuele Petruzzella
- Institute for Drug Research, School of Pharmacy , The Hebrew University , Jerusalem 91120 , Israel
| | - Roman Sirota
- Institute for Drug Research, School of Pharmacy , The Hebrew University , Jerusalem 91120 , Israel
| | - Dan Gibson
- Institute for Drug Research, School of Pharmacy , The Hebrew University , Jerusalem 91120 , Israel
| | - Viktor Brabec
- Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| |
Collapse
|
88
|
Ghosh S. Cisplatin: The first metal based anticancer drug. Bioorg Chem 2019; 88:102925. [PMID: 31003078 DOI: 10.1016/j.bioorg.2019.102925] [Citation(s) in RCA: 1055] [Impact Index Per Article: 175.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 03/30/2019] [Accepted: 04/10/2019] [Indexed: 12/17/2022]
Abstract
Cisplatin or (SP-4-2)-diamminedichloridoplatinum(II) is one of the most potential and widely used drugs for the treatment of various solid cancers such as testicular, ovarian, head and neck, bladder, lung, cervical cancer, melanoma, lymphomas and several others. Cisplatin exerts anticancer activity via multiple mechanisms but its most acceptable mechanism involves generation of DNA lesions by interacting with purine bases on DNA followed by activation of several signal transduction pathways which finally lead to apoptosis. However, side effects and drug resistance are the two inherent challenges of cisplatin which limit its application and effectiveness. Reduction of drug accumulation inside cancer cells, inactivation of drug by reacting with glutathione and metallothioneins and faster repairing of DNA lesions are responsible for cisplatin resistance. To minimize cisplatin side effects and resistance, combination therapies are used and have proven more effective to defect cancers. This article highlights a systematic description on cisplatin which includes a brief history, synthesis, action mechanism, resistance, uses, side effects and modulation of side effects. It also briefly describes development of platinum drugs from very small cisplatin complex to very large next generation nanocarriers conjugated platinum complexes.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| |
Collapse
|
89
|
Wang D, Wang J, Huang H, Zhao Z, Gunatillake PA, Hao X. Brush-shaped RAFT polymer micelles as nanocarriers for a ruthenium (II) complex photodynamic anticancer drug. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
90
|
Reid P, Marcu LG, Olver I, Moghaddasi L, Staudacher AH, Bezak E. Diversity of cancer stem cells in head and neck carcinomas: The role of HPV in cancer stem cell heterogeneity, plasticity and treatment response. Radiother Oncol 2019; 135:1-12. [PMID: 31015153 DOI: 10.1016/j.radonc.2019.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 12/15/2022]
Abstract
Head and neck squamous cell carcinomas (HNSCC) resulting from oncogenic transformations following human papillomavirus (HPV) infection consistently demonstrate better treatment outcomes than HNSCC from other aetiologies. Squamous cell carcinoma of the oropharynx (OPSCC) shows the highest prevalence of HPV involvement at around 70-80%. While strongly prognostic, HPV status alone is not sufficient to predict therapy response or any potential dose de-escalation. Cancer stem cell (CSC) populations within these tumour types represent the most therapy-resistant cells and are the source of recurrence and metastases, setting a benchmark for tumour control. This review examines clinical and preclinical evidence of differences in response to treatment by the HPV statuses of HNSCC and the role played by CSCs in treatment resistance and their repopulation from non-CSCs. Evidence was collated from literature searches of PubMed, Scopus and Ovid for differential treatment response by HPV status and contribution by critical biomarkers including CSC fractions and chemo-radiosensitivity. While HPV and CSC are yet to fulfil promise as biomarkers of treatment response, understanding how HPV positive and negative aetiologies affect CSC response to treatment and tumour plasticity will facilitate their use for greater treatment individualisation.
Collapse
Affiliation(s)
- Paul Reid
- School of Health Sciences, University of South Australia, Adelaide, Australia; Cancer Research Institute, University of South Australia, Adelaide, Australia.
| | - Loredana G Marcu
- School of Health Sciences, University of South Australia, Adelaide, Australia; Faculty of Science, University of Oradea, Romania
| | - Ian Olver
- Cancer Research Institute, University of South Australia, Adelaide, Australia
| | - Leyla Moghaddasi
- Department of Physics, University of Adelaide, Australia; Genesis Care, Department of Medical Physics, Adelaide, Australia
| | - Alexander H Staudacher
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, Australia; School of Medicine, University of Adelaide, Australia
| | - Eva Bezak
- School of Health Sciences, University of South Australia, Adelaide, Australia; Cancer Research Institute, University of South Australia, Adelaide, Australia; Department of Physics, University of Adelaide, Australia
| |
Collapse
|
91
|
Studies on the synthesis, characterization, cytotoxic activities and plasmid DNA binding of platinum(II) complexes having 2-subsituted benzimidazole ligands. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.01.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
92
|
Mandriota G, Di Corato R, Benedetti M, De Castro F, Fanizzi FP, Rinaldi R. Design and Application of Cisplatin-Loaded Magnetic Nanoparticle Clusters for Smart Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1864-1875. [PMID: 30580523 DOI: 10.1021/acsami.8b18717] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
One of the major challenges of drug delivery is the development of suitable carriers for therapeutic molecules. In this work, a novel nanoformulation based on superparamagnetic nanoclusters [magnetic nanocrystal clusters (MNCs)] is presented. In order to control the size of the nanoclusters and the density of magnetic cores, several parameters were evaluated and tuned. Then, MNCs were functionalized with a polydopamine layer (MNC@PDO) to improve their stability in aqueous solution, to increase density of functional groups and to obtain a nanosystem suitable for drug-controlled release. Finally, cisplatin was grafted on the surface of MNC@PDO to exploit the system as a magnetic field-guided anticancer delivery system. The biocompatibility of MNC@PDO and the cytotoxic effects of MNC@PDO-cisplatin complex were determined against human cervical cancer (HeLa) and human breast adenocarcinoma (MCF-7) cells. In vitro studies demonstrated that the MNC@PDO-cisplatin complexes inhibited the cellular proliferation by a dose-dependent effect. Therefore, by applying an external magnetic field, the released drug exerted its effect on a specific target area. In summary, the MNC@PDO nanosystem has a great potential to be used in targeted nanomedicine for the delivery of other drugs or biofunctional molecules.
Collapse
Affiliation(s)
- Giacomo Mandriota
- Dipartimento di Matematica e Fisica "Ennio De Giorgi" , University of Salento , Via Arnesano , 73100 Lecce , Italy
| | - Riccardo Di Corato
- Dipartimento di Matematica e Fisica "Ennio De Giorgi" , University of Salento , Via Arnesano , 73100 Lecce , Italy
- Center for Biomolecular Nanotechnologies (CBN) , Istituto Italiano di Tecnologia (IIT) , Via Barsanti , Arnesano, 73010 Lecce , Italy
| | - Michele Benedetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali , University of Salento , Via Monteroni , I-73100 Lecce , Italy
| | - Federica De Castro
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali , University of Salento , Via Monteroni , I-73100 Lecce , Italy
| | - Francesco P Fanizzi
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali , University of Salento , Via Monteroni , I-73100 Lecce , Italy
| | - Rosaria Rinaldi
- Dipartimento di Matematica e Fisica "Ennio De Giorgi" , University of Salento , Via Arnesano , 73100 Lecce , Italy
- Scuola Superiore ISUFI , University of Salento , Via Monteroni, University Campus , 73100 Lecce , Italy
| |
Collapse
|
93
|
Novakova O, Farrell NP, Brabec V. Translesion DNA synthesis across double-base lesions derived from cross-links of an antitumor trinuclear platinum compound: primer extension, conformational and thermodynamic studies. Metallomics 2019; 10:132-144. [PMID: 29242879 DOI: 10.1039/c7mt00266a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polynuclear platinum complexes represent a unique structural class of DNA-binding agents of biological significance. They contain at least two platinum coordinating units bridged by a linker, which means that the formation of double-base lesions (cross-links) in DNA is possible. Here, we show that the lead compound, bifunctional [{trans-PtCl(NH3)2}2μ-trans-Pt(NH3)2{H2N(CH2)6NH2}2]4+ (Triplatin or BBR3464), forms in DNA specific double-base lesions which affect the biophysical and biochemical properties of DNA in a way fundamentally different compared to the analogous double-base lesions formed by two adducts of monofunctional chlorodiethylenetriamineplatinum(ii) chloride (dienPt). We find concomitantly that translesion DNA synthesis by the model A-family polymerase, the exonuclease deficient Klenow fragment, across the double-base lesions derived from the intrastrand CLs of Triplatin was markedly less extensive than that across the two analogous monofunctional adducts of dienPt. Collectively, these data provide convincing support for the hypothesis that the central noncovalent tetraamine platinum linker of Triplatin, capable of hydrogen-bonding and electrostatic interactions with DNA and bridging the two platinum adducts, represents an important factor responsible for the markedly lowered tolerance of DNA double-base adducts of Triplatin by DNA polymerases.
Collapse
Affiliation(s)
- O Novakova
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, CZ-61265 Brno, Czech Republic.
| | | | | |
Collapse
|
94
|
West H, Coffey M, Wagner MJ, McLeod HL, Colley JP, Adams RA, Fleck O, Maughan TS, Fisher D, Kaplan RS, Harris R, Cheadle JP. Role for Nucleotide Excision Repair Gene Variants in Oxaliplatin-Induced Peripheral Neuropathy. JCO Precis Oncol 2018; 2:1-18. [PMID: 35135151 DOI: 10.1200/po.18.00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
PURPOSE Oxaliplatin forms part of routine treatment of advanced colorectal cancer; however, it often causes severe peripheral neuropathy, resulting in treatment discontinuation. We sought to determine the molecular and cellular mechanism underlying this toxicity. PATIENTS AND METHODS We exome resequenced blood DNA samples from nine patients with advanced colorectal cancer who had severe peripheral neuropathy associated with oxaliplatin (PNAO) within 12 weeks of treatment. We Sanger sequenced the ERCC4 and ERCC6 open reading frames in 63 patients with PNAO and carried out targeted genotyping in 1,763 patients without PNAO. We tested the functionality of ERCC4 variants using viability and DNA repair assays in Schizosaccharomyces pombe and human cell lines after exposure to oxaliplatin and ultraviolet light. RESULTS Exome resequencing identified one patient carrying a novel germline truncating mutation in the nucleotide excision repair (NER) gene ERCC4. This mutation was functionally associated with sensitivity to oxaliplatin (P = 3.5 × 10-2). We subsequently found that multiple rare ERCC4 nonsynonymous variants were over-represented in affected individuals (P = 7.7 × 10-3) and three of these were defective in the repair of ultraviolet light-induced DNA damage (P < 1 × 10-3). We validated a role for NER genes in PNAO by finding that multiple rare ERCC6 nonsynonymous variants were similarly over-represented in affected individuals (P = 2.4 × 10-8). Excluding private variants, 22.2% of patients (14 of 63 patients) with PNAO carried Pro379Ser or Glu875Gly in ERCC4 or Asp425Ala, Gly446Asp, or Ser797Cys in ERCC6, compared with 8.7% of unaffected patients (152 of 1,750 patients; odds ratio, 3.0; 95% CI, 1.6 to 5.6; P = 2.5 × 10-4). CONCLUSION Our study provides evidence for a role of NER genes in PNAO, together with mechanistic insights.
Collapse
Affiliation(s)
- Hannah West
- Hannah West, Michelle Coffey, James P. Colley, Richard A. Adams, Rebecca Harris, and Jeremy P. Cheadle, School of Medicine, Cardiff University, Cardiff; Oliver Fleck, North West Cancer Research Institute, Bangor University, Bangor; Timothy S. Maughan, Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford; David Fisher and Richard S. Kaplan, Medical Research Council Clinical Trials Unit, London, United Kingdom; Michael J. Wagner, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC; and Howard L. McLeod, DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL
| | - Michelle Coffey
- Hannah West, Michelle Coffey, James P. Colley, Richard A. Adams, Rebecca Harris, and Jeremy P. Cheadle, School of Medicine, Cardiff University, Cardiff; Oliver Fleck, North West Cancer Research Institute, Bangor University, Bangor; Timothy S. Maughan, Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford; David Fisher and Richard S. Kaplan, Medical Research Council Clinical Trials Unit, London, United Kingdom; Michael J. Wagner, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC; and Howard L. McLeod, DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL
| | - Michael J Wagner
- Hannah West, Michelle Coffey, James P. Colley, Richard A. Adams, Rebecca Harris, and Jeremy P. Cheadle, School of Medicine, Cardiff University, Cardiff; Oliver Fleck, North West Cancer Research Institute, Bangor University, Bangor; Timothy S. Maughan, Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford; David Fisher and Richard S. Kaplan, Medical Research Council Clinical Trials Unit, London, United Kingdom; Michael J. Wagner, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC; and Howard L. McLeod, DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL
| | - Howard L McLeod
- Hannah West, Michelle Coffey, James P. Colley, Richard A. Adams, Rebecca Harris, and Jeremy P. Cheadle, School of Medicine, Cardiff University, Cardiff; Oliver Fleck, North West Cancer Research Institute, Bangor University, Bangor; Timothy S. Maughan, Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford; David Fisher and Richard S. Kaplan, Medical Research Council Clinical Trials Unit, London, United Kingdom; Michael J. Wagner, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC; and Howard L. McLeod, DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL
| | - James P Colley
- Hannah West, Michelle Coffey, James P. Colley, Richard A. Adams, Rebecca Harris, and Jeremy P. Cheadle, School of Medicine, Cardiff University, Cardiff; Oliver Fleck, North West Cancer Research Institute, Bangor University, Bangor; Timothy S. Maughan, Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford; David Fisher and Richard S. Kaplan, Medical Research Council Clinical Trials Unit, London, United Kingdom; Michael J. Wagner, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC; and Howard L. McLeod, DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL
| | - Richard A Adams
- Hannah West, Michelle Coffey, James P. Colley, Richard A. Adams, Rebecca Harris, and Jeremy P. Cheadle, School of Medicine, Cardiff University, Cardiff; Oliver Fleck, North West Cancer Research Institute, Bangor University, Bangor; Timothy S. Maughan, Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford; David Fisher and Richard S. Kaplan, Medical Research Council Clinical Trials Unit, London, United Kingdom; Michael J. Wagner, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC; and Howard L. McLeod, DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL
| | - Oliver Fleck
- Hannah West, Michelle Coffey, James P. Colley, Richard A. Adams, Rebecca Harris, and Jeremy P. Cheadle, School of Medicine, Cardiff University, Cardiff; Oliver Fleck, North West Cancer Research Institute, Bangor University, Bangor; Timothy S. Maughan, Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford; David Fisher and Richard S. Kaplan, Medical Research Council Clinical Trials Unit, London, United Kingdom; Michael J. Wagner, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC; and Howard L. McLeod, DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL
| | - Timothy S Maughan
- Hannah West, Michelle Coffey, James P. Colley, Richard A. Adams, Rebecca Harris, and Jeremy P. Cheadle, School of Medicine, Cardiff University, Cardiff; Oliver Fleck, North West Cancer Research Institute, Bangor University, Bangor; Timothy S. Maughan, Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford; David Fisher and Richard S. Kaplan, Medical Research Council Clinical Trials Unit, London, United Kingdom; Michael J. Wagner, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC; and Howard L. McLeod, DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL
| | - David Fisher
- Hannah West, Michelle Coffey, James P. Colley, Richard A. Adams, Rebecca Harris, and Jeremy P. Cheadle, School of Medicine, Cardiff University, Cardiff; Oliver Fleck, North West Cancer Research Institute, Bangor University, Bangor; Timothy S. Maughan, Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford; David Fisher and Richard S. Kaplan, Medical Research Council Clinical Trials Unit, London, United Kingdom; Michael J. Wagner, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC; and Howard L. McLeod, DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL
| | - Richard S Kaplan
- Hannah West, Michelle Coffey, James P. Colley, Richard A. Adams, Rebecca Harris, and Jeremy P. Cheadle, School of Medicine, Cardiff University, Cardiff; Oliver Fleck, North West Cancer Research Institute, Bangor University, Bangor; Timothy S. Maughan, Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford; David Fisher and Richard S. Kaplan, Medical Research Council Clinical Trials Unit, London, United Kingdom; Michael J. Wagner, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC; and Howard L. McLeod, DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL
| | - Rebecca Harris
- Hannah West, Michelle Coffey, James P. Colley, Richard A. Adams, Rebecca Harris, and Jeremy P. Cheadle, School of Medicine, Cardiff University, Cardiff; Oliver Fleck, North West Cancer Research Institute, Bangor University, Bangor; Timothy S. Maughan, Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford; David Fisher and Richard S. Kaplan, Medical Research Council Clinical Trials Unit, London, United Kingdom; Michael J. Wagner, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC; and Howard L. McLeod, DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL
| | - Jeremy P Cheadle
- Hannah West, Michelle Coffey, James P. Colley, Richard A. Adams, Rebecca Harris, and Jeremy P. Cheadle, School of Medicine, Cardiff University, Cardiff; Oliver Fleck, North West Cancer Research Institute, Bangor University, Bangor; Timothy S. Maughan, Cancer Research UK/Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Oxford; David Fisher and Richard S. Kaplan, Medical Research Council Clinical Trials Unit, London, United Kingdom; Michael J. Wagner, Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina, Chapel Hill, NC; and Howard L. McLeod, DeBartolo Family Personalized Medicine Institute, Moffitt Cancer Center, Tampa, FL
| |
Collapse
|
95
|
Lenis-Rojas OA, Robalo MP, Tomaz AI, Carvalho A, Fernandes AR, Marques F, Folgueira M, Yáñez J, Vázquez-García D, López Torres M, Fernández A, Fernández JJ. RuII(p-cymene) Compounds as Effective and Selective Anticancer Candidates with No Toxicity in Vivo. Inorg Chem 2018; 57:13150-13166. [DOI: 10.1021/acs.inorgchem.8b01270] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Oscar A. Lenis-Rojas
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - M. Paula Robalo
- Área Departamental de Engenharia Química, ISEL-Instituto Superior de Engenharia de Lisboa, Instituto Politécnico de Lisboa, Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal
- Centro de Química Estrutural, Complexo 1, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Isabel Tomaz
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Andreia Carvalho
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Alexandra R. Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologías Nucleares (C2TN), Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 (km 139.7), 2695-066 Bobadela LRS, Portugal
| | - Mónica Folgueira
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Biology, Universidade da Coruña, 15008 A Coruña, Spain
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1 6BT, U.K
| | - Julián Yáñez
- Neurover Group, Centro de Investigacións Científicas Avanzadas (CICA) and Department of Biology, Universidade da Coruña, 15008 A Coruña, Spain
| | - Digna Vázquez-García
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - Margarita López Torres
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - Alberto Fernández
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| | - Jesús J. Fernández
- Departamento de Química & Centro de Investigaciones Científicas Avanzadas (CICA), Universidade da Coruña, 15008 A Coruña, Spain
| |
Collapse
|
96
|
Hernandez-Valencia J, Garcia-Villa E, Arenas-Hernandez A, Garcia-Mena J, Diaz-Chavez J, Gariglio P. Induction of p53 Phosphorylation at Serine 20 by Resveratrol Is Required to Activate p53 Target Genes, Restoring Apoptosis in MCF-7 Cells Resistant to Cisplatin. Nutrients 2018; 10:1148. [PMID: 30142917 PMCID: PMC6163170 DOI: 10.3390/nu10091148] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 01/15/2023] Open
Abstract
Resistance to cisplatin (CDDP) is a major cause of cancer treatment failure, including human breast cancer. The tumor suppressor protein p53 is a key factor in the induction of cell cycle arrest, DNA repair, and apoptosis in response to cellular stimuli. This protein is phosphorylated in serine 15 and serine 20 during DNA damage repair or in serine 46 to induce apoptosis. Resveratrol (Resv) is a natural compound representing a promising chemosensitizer for cancer treatment that has been shown to sensitize tumor cells through upregulation and phosphorylation of p53 and inhibition of RAD51. We developed a CDDP-resistant MCF-7 cell line variant (MCF-7R) to investigate the effect of Resv in vitro in combination with CDDP over the role of p53 in overcoming CDDP resistance in MCF-7R cells. We have shown that Resv induces sensitivity to CDDP in MCF-7 and MCF-7R cells and that the downregulation of p53 protein expression and inhibition of p53 protein activity enhances resistance to CDDP in both cell lines. On the other hand, we found that Resv induces serine 20 (S20) phosphorylation in chemoresistant cells to activate p53 target genes such as PUMA and BAX, restoring apoptosis. It also changed the ratio between BCL-2 and BAX, where BCL-2 protein expression was decreased and at the same time BAX protein was increased. Interestingly, Resv attenuates CDDP-induced p53 phosphorylation in serine 15 (S15) and serine 46 (S46) probably through dephosphorylation and deactivation of ATM. It also activates different kinases, such as CK1, CHK2, and AMPK to induce phosphorylation of p53 in S20, suggesting a novel mechanism of p53 activation and chemosensitization to CDDP.
Collapse
Affiliation(s)
- Jorge Hernandez-Valencia
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Av. IPN No. 2508, Gustavo A. Madero, Ciudad de México 07360, Mexico.
| | - Enrique Garcia-Villa
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Av. IPN No. 2508, Gustavo A. Madero, Ciudad de México 07360, Mexico.
| | - Aquetzalli Arenas-Hernandez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Av. IPN No. 2508, Gustavo A. Madero, Ciudad de México 07360, Mexico.
| | - Jaime Garcia-Mena
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Av. IPN No. 2508, Gustavo A. Madero, Ciudad de México 07360, Mexico.
| | - Jose Diaz-Chavez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, UNAM/Instituto Nacional de Cancerología, Av. San Fernando No. 22, Sección XVI, Tlalpan, Ciudad de México 14080, Mexico.
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV-IPN), Av. IPN No. 2508, Gustavo A. Madero, Ciudad de México 07360, Mexico.
| |
Collapse
|
97
|
Cellular Pharmacology of Palladinum(III) Hematoporphyrin IX Complexes: Solution Stability, Antineoplastic and Apoptogenic Activity, DNA Binding, and Processing of DNA-Adducts. Int J Mol Sci 2018; 19:ijms19082451. [PMID: 30126243 PMCID: PMC6121444 DOI: 10.3390/ijms19082451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 08/11/2018] [Accepted: 08/12/2018] [Indexed: 11/24/2022] Open
Abstract
Two paramagnetic PdIII complexes of hematoporphyrin IX ((7,12-bis(1-hydroxyethyl)-3,8,13,17-tetramethyl-21H-23H-porphyn-2,18-dipropionic acid), Hp), namely a dinuclear one [PdIII2(Hp-3H)Cl3(H2O)5]·2PdCl2, Pd1 and a mononuclear metalloporphyrin type [PdIII(Hp-2H)Cl(H2O)]·H2O, Pd2 have been synthesized reproducibly and isolated as neutral compounds at different reaction conditions. Their structure and solution stability have been assayed by UV/Vis and EPR spectroscopy. The compounds researched have shown in vitro cell growth inhibitory effects at micromolar concentration against a panel of human tumor cell lines. A DNA fragmentation test in the HL-60 cell line has indicated that Pd1 causes comparable proapoptotic effects with regard to cisplatin but at substantially higher concentrations. Pd1 and cisplatin form intra-strand guanine bis-adducts as the palladium complex is less capable of forming DNA adducts. This demonstrates its cisplatin-dissimilar pharmacological profile. The test for efficient removal of DNA-adducts by the NER synthesis after modification of pBS plasmids with either cisplatin or Pd1 has manifested that the lesions induced by cisplatin are far better recognized and repaired compared those of Pd1. The study on the recognition and binding of the HMGB-1 protein to cisplatin or Pd1 modified DNA probes have shown that HMG proteins are less involved in the palladium agent cytotoxicity.
Collapse
|
98
|
Guan R, Chen Y, Zeng L, Rees TW, Jin C, Huang J, Chen ZS, Ji L, Chao H. Oncosis-inducing cyclometalated iridium(iii) complexes. Chem Sci 2018; 9:5183-5190. [PMID: 29997872 PMCID: PMC6000986 DOI: 10.1039/c8sc01142g] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/02/2018] [Indexed: 12/25/2022] Open
Abstract
Oncosis is a non-apoptotic form of programmed cell death (PCD), which differs from apoptosis in both morphological changes and inner pathways, and might hold the key to defeating a major obstacle in cancer therapy - drug-resistance, which is often a result of the intrinsic apoptosis resistance of tumours. However, despite the fact that the term "oncosis" was coined and used much earlier than apoptosis, little effort has been made to discover new drugs which can initiate this form of cell death, in comparison to drugs inducing apoptosis or any other type of PCD. So herein, we present the synthesis of a series of mitochondria-targeting cyclometalated Ir(iii) complexes, which activated the oncosis-specific protein porimin and calpain in cisplatin-resistant cell line A549R, and determined their cytotoxicity against a wide range of drug-resistant cancer types. To the best of our knowledge, these complexes are the very first metallo-components to induce oncosis in drug-resistant cancer cells.
Collapse
Affiliation(s)
- Ruilin Guan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
| | - Leli Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
- College of Pharmacy and Health Sciences , St. John's University , New York , NY 11439 , USA
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
| | - Chengzhi Jin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
| | - Juanjuan Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences , St. John's University , New York , NY 11439 , USA
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry , School of Chemistry , Sun Yat-Sen University , Guangzhou , 510275 , P. R. China .
- MOE Key Laboratory of Theoretical Organic Chemistry and Functional Molecule , School of Chemistry and Chemical Engineering , Hunan University of Science and Technology , Xiangtan , 400201 , P. R. China
| |
Collapse
|
99
|
Jurisevic M, Arsenijevic A, Pantic J, Gajovic N, Milovanovic J, Milovanovic M, Poljarevic J, Sabo T, Vojvodic D, Radosavljevic GD, Arsenijevic N. The organic ester O,O'-diethyl-( S,S)-ethylenediamine- N,N'-di-2-(3-cyclohexyl)propanoate dihydrochloride attenuates murine breast cancer growth and metastasis. Oncotarget 2018; 9:28195-28212. [PMID: 29963272 PMCID: PMC6021340 DOI: 10.18632/oncotarget.25610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/24/2018] [Indexed: 01/05/2023] Open
Abstract
Pharmacological treatment of cancer is mostly limited by drug-toxicity and resistance. It has been noticed that new organic ester ligand, O,O’-diethyl-(S,S)-ethylenediamine-N,N’-di-2-(3-cyclohexyl)propanoate dihydrochloride (named DE-EDCP) showed effective cytotoxic capacities against several human and mouse cancer cell lines. However, its effects on tumor growth and metastasis are unexplored. The aim of present study was to examine the ability of DE-EDCP to inhibit 4T1 murine breast cancer growth and progression and to explore possible molecular mechanisms. DE-EDCP exhibited significant tumoricidal activity on human and murine breast cancer cell lines. Further, marked reduction of murine breast cancer growth and progression by DE-EDCP was shown. DE-EDCP exhibits fewer side-effects compared to cisplatin as a conventional chemotherapeutic. Results obtained from in vivo and in vitro experiments indicate that DE-EDCP induces apoptosis and inhibits proliferation of 4T1 cells. DE-EDCP increases percentage of 4T1 cells in late apoptosis, expression of pro-apoptotic Bax and caspase-3, while decreases expression of anti-apoptotic Bcl-2. DE-EDCP treatment increased the percentage of TUNEL-positive nuclei and reduced Ki-67 expression in breast cancer tissue. DE-EDCP decreased expression of cyclin D3 and Ki-67, increased expression of cyclin-dependent kinase inhibitors p16, p21 and p27 and arrested 4T1 cells in G0/G1 cell cycle phase. Expression of STAT3 and downstream regulated molecules, NANOG and SOX2, was reduced in 4T1 cells after DE-EDCP treatment. In conclusion, DE-EDCP impairs breast cancer growth and progression by triggering cancer cell death and inhibition of cancer cell proliferation. DE-EDCP might be of interest in the development of the new anticancer agent.
Collapse
Affiliation(s)
- Milena Jurisevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Pantic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Gajovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Histology and Embryology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | | | - Tibor Sabo
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Danilo Vojvodic
- Institute of Medical Research, Faculty of Medicine, Military Medical Academy, Belgrade, Serbia
| | - Gordana D Radosavljevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
100
|
Tadini-Buoninsegni F, Sordi G, Smeazzetto S, Natile G, Arnesano F. Effect of cisplatin on the transport activity of P II-type ATPases. Metallomics 2018. [PMID: 28636017 DOI: 10.1039/c7mt00100b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cisplatin (cis-diamminedichlorido-Pt(ii)) is extensively used as a chemotherapeutic agent against various types of tumors. However, cisplatin administration causes serious side effects, including nephrotoxicity, ototoxicity and neurotoxicity. It has been shown that cisplatin can interact with P-type ATPases, e.g., Cu+-ATPases (ATP7A and ATP7B) and Na+,K+-ATPase. Cisplatin-induced inhibition of Na+,K+-ATPase has been related to the nephrotoxic effect of the drug. To investigate the inhibitory effects of cisplatin on the pumping activity of PII-type ATPases, electrical measurements were performed on sarcoplasmic reticulum Ca2+-ATPase (SERCA) and Na+,K+-ATPase embedded in vesicles/membrane fragments adsorbed on a solid-supported membrane. We found that cisplatin inhibits SERCA and Na+,K+-ATPase only when administered without a physiological reducing agent (GSH); in contrast, inhibition was also observed in the case of Cu+-ATPases in the presence of 1 mM GSH. Our results indicate that cisplatin is a much stronger inhibitor of SERCA (with an IC50 value of 1.3 μM) than of Na+,K+-ATPase (with an IC50 value of 11.1 μM); moreover, cisplatin inhibition of Na+,K+-ATPase is reversible, whereas it is irreversible in the case of SERCA. In the absence of a physiological substrate, while Cu+-ATPases are able to translocate cisplatin, SERCA and Na+,K+-ATPase do not perform ATP-dependent cisplatin displacement.
Collapse
|