51
|
Yang H, Bao J, Qi Y, Zhao J, Hu Y, Wu W, Wu X, Zhong D, Huo D, Hou C. A disposable and sensitive non-enzymatic glucose sensor based on 3D graphene/Cu2O modified carbon paper electrode. Anal Chim Acta 2020; 1135:12-19. [DOI: 10.1016/j.aca.2020.08.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022]
|
52
|
Daryabeigi Zand A, Tabrizi AM, Heir AV. Co-application of biochar and titanium dioxide nanoparticles to promote remediation of antimony from soil by Sorghum bicolor: metal uptake and plant response. Heliyon 2020; 6:e04669. [PMID: 32802987 PMCID: PMC7419332 DOI: 10.1016/j.heliyon.2020.e04669] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/29/2020] [Accepted: 08/06/2020] [Indexed: 11/29/2022] Open
Abstract
Association of titanium dioxide nanoparticles (TiO2 NPs) and biochar (BC) to assist phytoremediation of Sb contaminated soil was investigated in this study. Seedlings of Sorghum bicolor were exposed to different regimes of TiO2 NPs (0, 100, 250 and 500 mg kg-1) and BC (0, 2.5% and 5%), separately and in combination, to investigate the effects on plant growth, Sb absorption and accumulation and physiological response of the plant in Sb contaminated soil. Co-application of TiO2 NPs and BC had positive effects on plant establishment and growth in contaminated soil. Greater accumulation of Sb in the shoots compared to the roots of S. bicolor was observed in all treatments. Application of BC increased immobilization of Sb in the soil. Using TiO2 NPs significantly increased accumulation capacity of S. bicolor for Sb with the greatest accumulation capacity of 1624.1 μg per pot achieved in "250 mg kg-1 TiO2 NPs+2.5% BC" treatment (P < 0.05). Association of TiO2 NPs and BC significantly increased chlorophyll a (Chl a) and chlorophyll b (Chl b) contents of S. bicolor compared to the TiO2 NPs-amended treatments. Results of this study presented a promising novel technique by combined application of TiO2 NPs and BC in phytoremediation of Sb contaminated soils. Co-application of TiO2 NPs and BC could reduce the required amounts of TiO2 NPs for successful phytoremediation of heavy metal polluted soils. Intelligent uses of plants in accompany with biochar and nanomaterials have great application prospects in dealing with soil remediation.
Collapse
Affiliation(s)
- Ali Daryabeigi Zand
- School of Environment, College of Engineering, University of Tehran, No. 25, Azin St., 141556135 Tehran, Iran
| | - Alireza Mikaeili Tabrizi
- Department of Environmental Sciences, Gorgan University of Agricultural Sciences & Natural Resources, Shahid Beheshti St., 4913815739 Golestan, Iran
| | - Azar Vaezi Heir
- School of Environment, College of Engineering, University of Tehran, No. 25, Azin St., 141556135 Tehran, Iran
| |
Collapse
|
53
|
Huang D, Li B, Ou J, Xue W, Li J, Li Z, Li T, Chen S, Deng R, Guo X. Megamerger of biosorbents and catalytic technologies for the removal of heavy metals from wastewater: Preparation, final disposal, mechanism and influencing factors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 261:109879. [PMID: 32148248 DOI: 10.1016/j.jenvman.2019.109879] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 11/09/2019] [Accepted: 11/16/2019] [Indexed: 06/10/2023]
Abstract
Heavy metal pollution, because of its high toxicity, non-biodegradability and biological enrichment, has been identified as a global aquatic ecosystems threat in recent decades. Due to the high efficiency, low cost, satisfactory recyclability, easy storage and separation, biosorbents have exhibited a promising prospect for heavy metals treatment in aqueous phase. This article comprehensively summarized different types of biosorbents derived from available low-cost raw materials such as agricultural and forestry wastes. The raw materials obtained are treated with conventional pretreatment or novel methods, which can greatly enhance the adsorption performance of the biosorbents. The suitable immobilization methods can not only further enhance the adsorption performance of the biosorbents, but also facilitate the process of separating the biosorbents from the wastewater. In addition, once biosorbents are put into large-scale use, the final disposal problems cannot be avoided. Therefore, it is necessary to review the currently accepted final disposal methods of biosorbents. Moreover, through the analysis of the adsorption and desorption mechanisms of biosorbents, it is not only beneficial to find the better methods to improve the adsorption performance of the biosorbents, but also better to explain the influencing factors of adsorption effect for biosorbents. Especially, different from many researches focused on biosorbents, this work highlighted the combination of biosorbents with catalytic technologies, which provided new ideas for the follow-up research direction of biosorbents. Finally, the purpose of this paper is to inject new impetus into the future development of biosorbents.
Collapse
Affiliation(s)
- Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, 410082, PR China.
| | - Bo Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Jing Ou
- School of Design, Hunan University, Changsha, 410082, PR China
| | - Wenjing Xue
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Jing Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Zhihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Tao Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Rui Deng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Xueying Guo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
54
|
Liu Q, Sheng Y, Wang W, Li C, Zhao G. Remediation and its biological responses of Cd contaminated sediments using biochar and minerals with nanoscale zero-valent iron loading. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136650. [PMID: 32019026 DOI: 10.1016/j.scitotenv.2020.136650] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 12/27/2019] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
Remediation of Cd pollution in sediments is crucial for the safety of aquatic environments and human health. In this study, four effective, common, and low-cost remediation materials (zeolite, sepiolite, red mud (RM), and biochar (BC)) loaded with nanoscale zero-valent iron (nZVI) and themselves were employed to immobilize Cd in sediments. The effects of different materials on sediment properties, immobilization effectiveness, bacterial communities, enzyme activities, and dissolved organic matter (DOM) were investigated. Results showed that sediment properties were significantly changed by the addition of immobilization materials (P < 0.05). The geochemical fraction analysis showed that the labile Cd was partially transformed to the stable fraction after immobilization, with an 11-47% decrease in the acid-soluble fraction and a 50-1000% increase in the residual fraction. The Cd immobilization effectiveness peaked at the nZVI/RM and nZVI/BC treatments, and the Cd toxicity characteristic leaching procedure (TCLP) leachabilities decreased by 42% and 44%, respectively. The modified materials were more effective for immobilizing Cd than the raw materials owing to the presence of nZVI, and the Cd TCLP leachabilities with the modified materials decreased by 15%-22% compared with the raw material treatments. Immobilization-driven reduction of bioavailable Cd enhanced the richness and diversity of bacterial communities and enzyme activities. Moreover, the immobilization treatment promoted the Fe(III)-reducing process by increasing the Fe(III)-reducing bacteria (e.g. Geobacteraceae, Bacillus, and Clostridium), which are conducive to Cd immobilization. Additionally, the DOM composition presented more autogenetic characteristics in treated groups. BC (nZVI/BC) can be selected as the priority material for Cd immobilization in sediments due to higher immobilization effectiveness and lower adverse effects on sediments.
Collapse
Affiliation(s)
- Qunqun Liu
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yanqing Sheng
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.
| | - Wenjing Wang
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Changyu Li
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Zhao
- Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
55
|
Gholinejad B, Khashij S, Ghorbani F, Bandak I, Farajollahi A. Effects of lead ions on germination, initial growth, and physiological characteristics of Lolium perenne L. species and its bioaccumulation potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11155-11163. [PMID: 31960238 DOI: 10.1007/s11356-019-06766-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
The present study was conducted to investigate the responses of Lolium perenne L. species to lead ions. To do this, the effects of lead ions at five levels: control (blank), 250, 500, 750, and 1000 mg/kg or mg/L (depending on germination in the soil or petri dish) on the germination, initial growth, and physiological characteristics of Lolium perenne were investigated. The results showed that the difference between various lead concentrations was statistically significant at 1% confidence level in all of the germination, vegetative, and physiological characteristics. In addition, the results of translocation and stress factors indicated that there was a significant difference between the control treatment and the concentrations of 250, 500, 750, and 1000 mg/L of lead ions. Results show that the mean value of stress, which was 0.3196 in the control value, reached 0.4154 at the concentrations 1000 mg/L. Different levels of lead ions had significant effect on the estimated characteristics including germination percentage, seed vigor, germination index, chlorophyll a, chlorophyll b, carotenoids, root, and shoot. The average germination percentage in the control was 46.66%, which decreased by 5% at the highest lead concentration. In addition, the average of seed vigor, which was 34.06 in the control conditions, decreased to 0.72 at the highest lead concentration. Also, the chlorophyll a dropped from 0.5261 mg/g in the control conditions to 0.3149 mg/g. On the other hand, increase in lead ion concentration affected the physiological characteristics of Lolium perenne species. Results suggest that Lolium perenne is capable of accumulating lead and is well tolerant to lead in soil. Therefore, it is concluded that it can be used for sowing on lands which are polluted to this heavy metal (up to the concentration of 1000 mg/kg).
Collapse
Affiliation(s)
- Bahram Gholinejad
- Department of Rangeland & Watershed Management, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran.
| | - Shima Khashij
- Rangeland Management, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
| | - Farshid Ghorbani
- Department of Environment, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
| | - Isa Bandak
- Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Asghar Farajollahi
- Faculty of Natural Resources, Gorgan University of Agriculture and Natural Resources, Golestan, Iran
| |
Collapse
|
56
|
Rai PK, Kim KH, Lee SS, Lee JH. Molecular mechanisms in phytoremediation of environmental contaminants and prospects of engineered transgenic plants/microbes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135858. [PMID: 31846820 DOI: 10.1016/j.scitotenv.2019.135858] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 05/06/2023]
Abstract
Concerns about emerging environmental contaminants have been growing along with industrialization and urbanization around the globe. Among various options for remediating these contaminants, phytotechnology is suggested as a feasible option to maintain the environmental sustainability. The recent advances in phytoremediation, genetic/molecular/omics/metabolic engineering, and nanotechnology are opening new paths for efficient treatment of emerging organic/inorganic contaminants. In this respect, elucidation of molecular mechanisms and genetic engineering of hyperaccumulator plants is expected to enhance remediation of environmental contaminants. This review was organized to offer valuable insights into the molecular mechanisms of phytoremediation and the prospects of transgenic hyperaccumulators with enhanced stress tolerance to diverse contaminants such as heavy metals and metalloids, xenobiotics, explosives, poly aromatic hydrocarbons (PAHs), petroleum hydrocarbons, pesticides, and nanoparticles. The roles of genoremediation and nanoparticles in augmenting the phytoremediation technology are also described in an interrelated framework with biotechnological prospects (e.g., plant molecular nano-farming). Finally, political debate on the preferential use of crops versus non-crop hyperaccumulators in genoremediation, limitations of transgenics in phytotechnologies, and their public acceptance issues are discussed in the policy framework.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Sang Soo Lee
- Department of Environmental Engineering, Yonsei University, Wonju 26494, Republic of Korea.
| | - Jin-Hong Lee
- Department of Environmental Engineering, Chungnam National University, Daejeon 34148, Republic of Korea
| |
Collapse
|
57
|
Lei L, Huang D, Zeng G, Cheng M, Jiang D, Zhou C, Chen S, Wang W. A fantastic two-dimensional MoS2 material based on the inert basal planes activation: Electronic structure, synthesis strategies, catalytic active sites, catalytic and electronics properties. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.213020] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
58
|
Yoon H, Kang YG, Chang YS, Kim JH. Effects of Zerovalent Iron Nanoparticles on Photosynthesis and Biochemical Adaptation of Soil-Grown Arabidopsis thaliana. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1543. [PMID: 31671607 PMCID: PMC6915611 DOI: 10.3390/nano9111543] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 01/21/2023]
Abstract
Nanoscale zerovalent iron (nZVI) is the most widely used nanomaterial for environmental remediation. The impacts of nZVI on terrestrial organisms have been recently reported, and in particular, plant growth was promoted by nZVI treatment in various concentrations. Therefore, it is necessary to investigate the detailed physiological and biochemical responses of plants toward nZVI treatment for agricultural application. Here, the effects of nZVI on photosynthesis and related biochemical adaptation of soil-grown Arabidopsis thaliana were examined. After treatment with 500 mg nZVI/kg soil, the plant biomass increased by 38% through enhanced photosynthesis, which was confirmed by the gas-exchange system, carbon isotope ratio and chlorophyll content analysis. Besides, the iron uptake of the plant increased in roots and leaves. The magnetic property measurements and transmission electron microscopy showed that the transformed particles were accumulated in parts of the plant tissues. The accumulation of carbohydrates such as glucose, sucrose and starch increased by the enhanced photosynthesis, and photosynthetic-related inorganic nutrients such as phosphorus, manganese and zinc maintained homeostasis, according to the increased iron uptake. These findings suggest that nZVI has additional or alternative benefits as a nano-fertilizer and a promoter of CO2 uptake in plants.
Collapse
Affiliation(s)
- Hakwon Yoon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
| | - Yu-Gyeong Kang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
| | - Yoon-Seok Chang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
| | - Jae-Hwan Kim
- Advanced Geo-materials R&D Department, Pohang Branch, Korea Institute of Geoscience and Mineral Resources (KIGAM), Pohang 37559, Korea.
| |
Collapse
|
59
|
Vanzetto GV, Thomé A. Bibliometric study of the toxicology of nanoescale zero valent iron used in soil remediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:74-83. [PMID: 31146240 DOI: 10.1016/j.envpol.2019.05.092] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/02/2019] [Accepted: 05/17/2019] [Indexed: 05/28/2023]
Abstract
The application of nanoscale zero-valent iron is one of the most widely used remediation technologies; however, the potential environmental risks of this technology are largely unknown. In order to broaden the knowledge on this subject, the present work consists of a bibliometric study of all of publications related to the toxicity of zero-valent iron nanoparticles used in soil remediation available from the Scopus (Elsevier) and Web of Science (Thompson Reuters) databases. This study presents a temporal distribution of the publications, the most cited articles, the authors who have made the greatest contribution to the theme, and the institutions, countries, and scientific journals that have published the most on this subject. The use of bibliometrics has allowed for the visualization of a panorama of the publications, providing an appropriate analysis to guide new research towards an effective contribution to science by filling the existing gaps. In particular, the lack of studies in several countries reveals a promising area for the development of further research on this topic.
Collapse
|
60
|
Deng R, Huang D, Zeng G, Wan J, Xue W, Wen X, Liu X, Chen S, Li J, Liu C, Zhang Q. Decontamination of lead and tetracycline from aqueous solution by a promising carbonaceous nanocomposite: Interaction and mechanisms insight. BIORESOURCE TECHNOLOGY 2019; 283:277-285. [PMID: 30921580 DOI: 10.1016/j.biortech.2019.03.086] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/14/2019] [Accepted: 03/16/2019] [Indexed: 06/09/2023]
Abstract
Innovative carbonaceous nano-chlorapatites (CNClAPs) which originated from the pyrolyzation of the mixture of bamboo residues and chlorapatites varying from 400 °C to 600 °C were used to investigate the decontamination efficacy of lead (Pb2+) and tetracycline (TC) from wastewater. Rising pyrolytic temperature can highly improve the decontamination efficacy, of which CNClAP600 exhibited the most remarkable effects for Pb2+ and TC decontamination (90.37% for Pb2+ and 86.58% for TC at pH = 7). The kinetic, isotherm and characterization analysis demonstrated that the inner mechanisms for the decontamination of Pb2+ and TC involved precipitation, electrostatic interaction, hydrogen bonding, π-π interaction and pore filling. Experiment indicated that the enhancement and competitive adsorption resulted from the interaction between Pb2+ and TC could facilitate their joint decontamination under low concentrations. This research shed light on the management of coexisting heavy metals and organic matters contamination in wastewater by CNClAPs under different temperatures.
Collapse
Affiliation(s)
- Rui Deng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Jia Wan
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Wenjing Xue
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiaofeng Wen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Sha Chen
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Jing Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Caihong Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Qing Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| |
Collapse
|
61
|
Cai C, Zhao M, Yu Z, Rong H, Zhang C. Utilization of nanomaterials for in-situ remediation of heavy metal(loid) contaminated sediments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:205-217. [PMID: 30690355 DOI: 10.1016/j.scitotenv.2019.01.180] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 05/09/2023]
Abstract
Heavy metal(loid)s are toxic and non-biodegradable environmental pollutants. The contamination of sediments with heavy metal(loid)s has attracted increasing attention due to the negative environmental effects of heavy metal(loid)s and the development of new remediation techniques for metal(loid) contaminated sediments. As a result of rapid nanotechnology development, nanomaterials are also being increasingly utilized for the remediation of contaminated sediments due to their excellent capacity of immobilizing/adsorbing metal(loid) ions. This review summarizes recent studies that have used various nanomaterials such as nanoscale zero-valent iron (nZVI), stabilizer-modified nZVI, nano apatite based-materials including nano-hydroxyapatite particles (nHAp) and stabilized nano-chlorapatite (nCLAP), carbon nanotubes (CNTs), and titanium dioxide nanoparticles (TiO2 NPs) for the remediation of heavy metal(loid) contaminated sediments. We also review the analysis of potential mechanisms involved in the interaction of nanomaterials with metal(loid) ions. Subsequently, we discuss the factors affecting the nanoparticle-heavy metal(loid)s interaction, the environmental impacts resulting from the application of nanomaterials, the knowledge gaps, and potential future research.
Collapse
Affiliation(s)
- Caiyuan Cai
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Meihua Zhao
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Zhen Yu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Hongwei Rong
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| | - Chaosheng Zhang
- School of Civil Engineering, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
62
|
Zhu Y, Xu F, Liu Q, Chen M, Liu X, Wang Y, Sun Y, Zhang L. Nanomaterials and plants: Positive effects, toxicity and the remediation of metal and metalloid pollution in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:414-421. [PMID: 30690375 DOI: 10.1016/j.scitotenv.2019.01.234] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/19/2019] [Accepted: 01/19/2019] [Indexed: 05/24/2023]
Abstract
Currently, the pollution of metals and metalloids in the soil has attracted considerable attention. Phytoremediation is considered an environmentally friendly means of remediating pollution, but often takes a long time to perform. Therefore, the combination of plants and nanomaterials in environmental management has attracted the attention of many researchers because some nanomaterials can promote the germination of plant seeds and the growth of whole plants. However, when the concentration of nanomaterials is not controlled properly, certain toxicity will be produced. This paper reviews research on the combination of plant and nanomaterials for the remediation of contaminated environments, as well as on the effects of nanomaterials on plants.
Collapse
Affiliation(s)
- Yi Zhu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Fang Xu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Qin Liu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Xianli Liu
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China.
| | - Yanyan Wang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Yan Sun
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Lili Zhang
- School of Environmental Science & Engineering, Hubei Polytechnic University, Huangshi 435003, PR China
| |
Collapse
|
63
|
Mokarram-Kashtiban S, Hosseini SM, Tabari Kouchaksaraei M, Younesi H. The impact of nanoparticles zero-valent iron (nZVI) and rhizosphere microorganisms on the phytoremediation ability of white willow and its response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:10776-10789. [PMID: 30778927 DOI: 10.1007/s11356-019-04411-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 01/28/2019] [Indexed: 05/23/2023]
Abstract
Soil contaminated with heavy metals (HMs) is a serious problem throughout the world that threatens all living organisms in the soil. Therefore, large-scale remediation is necessary. This study investigated a new combination of remediation techniques on heavy metal contaminated soil, phytoremediation, and soil amendment with nano-sized zero-valent iron (nZVI) and rhizosphere microorganisms. White willow (Salix alba L.) was grown for 160 days in pots containing Pb, Cu, and Cd and amended with 0, 150, and 300 (mg kg-1) of nZVI and rhizosphere microorganisms, including the arbuscular mycorrhizal fungus (AMF), Rhizophagus irregularis, and the plant growth promoting rhizobacteria (PGPR), Pseudomonas fluorescens. The results showed that inoculation with PGPR and AMF, particularly dual inoculation, improved plant growth as well as the physiological and biochemical parameters of white willow, and increased the bioconcentration factor (BCF) of Pb, Cu, and Cd. The low dose of nZVI significantly increased the root length and the leaf area of the seedlings and increased the BCF of Cd. In contrast, the high dose of nZVI had negative effects on the seedlings growth and the BCF of Pb and Cu, about - 32% and - 63%, respectively. Our results demonstrate that nZVI at low doses can improve plant performance in a phytoremediation context and that the use of beneficial rhizosphere microorganisms can minimize nZVI stress in plants and make them less susceptible to stress even under high dose conditions.
Collapse
Affiliation(s)
| | - Seyed Mohsen Hosseini
- Department of Forestry, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran.
| | | | - Habibollah Younesi
- Department of Environmental Science, Faculty of Natural Resources, Tarbiat Modares University, Noor, Iran
| |
Collapse
|
64
|
Huang D, Chen S, Zeng G, Gong X, Zhou C, Cheng M, Xue W, Yan X, Li J. Artificial Z-scheme photocatalytic system: What have been done and where to go? Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.12.013] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
65
|
Liu X, Huang D, Lai C, Qin L, Zeng G, Xu P, Li B, Yi H, Zhang M. Peroxidase-Like Activity of Smart Nanomaterials and Their Advanced Application in Colorimetric Glucose Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900133. [PMID: 30908899 DOI: 10.1002/smll.201900133] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/20/2019] [Indexed: 05/27/2023]
Abstract
Diabetes is a dominating health issue with 425 million people suffering from the disease worldwide and 4 million deaths each year. To avoid further complications, the diabetic patient blood glucose level should be strictly monitored despite there being no cure for diabetes. Colorimetric biosensing has attracted significant attention because of its low cost, simplicity, and practicality. Recently, some nanomaterials have been found that possess unexpected peroxidase-like activity, and great advances have been made in fabricating colorimetric glucose biosensors based on the peroxidase-like activity of these nanomaterials using glucose oxidase. Compared with natural horseradish peroxidase, the nanomaterials exhibit flexibility in structure design and composition, and have easy separation and storage, high stability, simple preparation, and tunable catalytic activity. To highlight the significant progress in the field of nanomaterial-based peroxidase-like activity, this work discusses the various smart nanomaterials that mimic horseradish peroxidase and its mechanism and development history, and the applications in colorimetric glucose biosensors. Different approaches for tunable peroxidase-like activity of nanomaterials are summarized, such as size, morphology, and shape; surface modification and coating; and metal doping and alloy. Finally, the conclusion and challenges facing peroxidase-like activity of nanomaterials and future directions are discussed.
Collapse
Affiliation(s)
- Xigui Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Bisheng Li
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| | - Mingming Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Changsha, Hunan, 410082, China
| |
Collapse
|
66
|
Zhou WH, Liu F, Yi S, Chen YZ, Geng X, Zheng C. Simultaneous stabilization of Pb and improvement of soil strength using nZVI. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:877-884. [PMID: 30257228 DOI: 10.1016/j.scitotenv.2018.09.146] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 06/08/2023]
Abstract
This study demonstrates the feasibility of nanoscale Zero-Valent Iron (nZVI) for simultaneous stabilization of Pb and improvement of soil strength via batch experiments. The soil samples were prepared using slurry and pre-consolidation method at nZVI doses of 0.2%, 1%, 5%, and 10% (by dry weight). The physicochemical and geotechnical properties of Pb-contaminated soil treated by nZVI were analyzed. The results indicate that the contamination of Pb(II) resulted in a notable reduction in the undrained shear strength of soil from 16.85 kPa to 7.25 kPa. As expected, the Pb in exchangeable and carbonate-bound fractions decreased significantly with the increasing doses of nZVI. Meanwhile, the undrained shear strength of Pb-contaminated soil enhanced substantially as the increase of nZVI, from 25.83 kPa (0.2% nZVI treatment) to 69.33 kPa (10% nZVI treatment). An abundance of bubbles, generated from the oxidation of nZVI, was recorded. The mechanisms for simultaneous stabilization of Pb and soil improvement primarily include: 1) the precipitation and transformation of Pb-/Fe-hydrated oxides on the soil particles and their induced bounding effects; 2) the increased drainage capability of soil as the occupation of nZVI aggregates and bubbles in the macropores space and 3) the lower soil density derived from the increase in microbubbles retained in the soil. This study is provided to facilitate the application of nZVI in the redevelopment of contaminated soil.
Collapse
Affiliation(s)
- Wan-Huan Zhou
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Fuming Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China; Shenzhen Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen, China
| | - Shuping Yi
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China; Shenzhen Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen, China.
| | - Yong-Zhan Chen
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Xueyu Geng
- Geotechnical Engineering School of Engineering, The University of Warwick, Coventry, UK
| | - Chunmiao Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China; Shenzhen Key Laboratory of Soil and Groundwater Pollution Control, Shenzhen, China
| |
Collapse
|
67
|
Liu X, Huang D, Lai C, Zeng G, Qin L, Wang H, Yi H, Li B, Liu S, Zhang M, Deng R, Fu Y, Li L, Xue W, Chen S. Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chem Soc Rev 2019; 48:5266-5302. [DOI: 10.1039/c9cs00299e] [Citation(s) in RCA: 386] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Recent advances in covalent organic frameworks (COFs) as a smart sensing material are summarized and highlighted.
Collapse
|
68
|
Wang RZ, Huang DL, Zhang C, Liu YG, Zeng GM, Lai C, Gong XM, Cheng M, Wan J, Zhang Q. Insights into the effect of chemical treatment on the physicochemical characteristics and adsorption behavior of pig manure-derived biochars. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:1962-1972. [PMID: 30460656 DOI: 10.1007/s11356-018-3772-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/15/2018] [Indexed: 06/09/2023]
Abstract
Chemical treatment could improve the adsorption performance of biochars (BC). In order to deal with Pb(II) pollution, four types of biochars including unmodified, acid-treated, alkali-treated, and magnetic-treated pig manure-derived biochars (PBCs) were prepared. The effect of chemical treatment on the physical property, chemical composition, and the adsorption behavior of biochars was compared. Magnetic and alkali treatment improved pore volume and specific surface areas, and the adsorption capacity and rates were enhanced. In contrast, the adsorption capacity of acid-treated BC decreased due to the significant decrease of ash content. The magnetic samples displayed the satisfactory absorption performance, which could achieve 99.8% removal efficiency within 15 min at a Pb(II) concentration of 50 mg/L. Considering its properties of excellent adsorption performance, fast reaction rate, and convenient recovery by an external magnetic field, magnetic biochar based on pig manure may provide an effective way to remove heavy metals and decrease the pig manure solid waste.
Collapse
Affiliation(s)
- Rong-Zhong Wang
- College of Environmental Science and Engineering, Hunan University, 410082, Changsha, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, 410082, Changsha, People's Republic of China
| | - Dan-Lian Huang
- College of Environmental Science and Engineering, Hunan University, 410082, Changsha, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, 410082, Changsha, People's Republic of China.
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, 410082, Changsha, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, 410082, Changsha, People's Republic of China
| | - Yun-Guo Liu
- College of Environmental Science and Engineering, Hunan University, 410082, Changsha, People's Republic of China.
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, 410082, Changsha, People's Republic of China.
| | - Guang-Ming Zeng
- College of Environmental Science and Engineering, Hunan University, 410082, Changsha, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, 410082, Changsha, People's Republic of China
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University, 410082, Changsha, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, 410082, Changsha, People's Republic of China
| | - Xiao-Min Gong
- College of Environmental Science and Engineering, Hunan University, 410082, Changsha, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, 410082, Changsha, People's Republic of China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, 410082, Changsha, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, 410082, Changsha, People's Republic of China
| | - Jia Wan
- College of Environmental Science and Engineering, Hunan University, 410082, Changsha, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, 410082, Changsha, People's Republic of China
| | - Qing Zhang
- College of Environmental Science and Engineering, Hunan University, 410082, Changsha, People's Republic of China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, 410082, Changsha, People's Republic of China
| |
Collapse
|
69
|
Wang H, Zeng Z, Xu P, Li L, Zeng G, Xiao R, Tang Z, Huang D, Tang L, Lai C, Jiang D, Liu Y, Yi H, Qin L, Ye S, Ren X, Tang W. Recent progress in covalent organic framework thin films: fabrications, applications and perspectives. Chem Soc Rev 2018; 48:488-516. [PMID: 30565610 DOI: 10.1039/c8cs00376a] [Citation(s) in RCA: 394] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As a newly emerging class of porous materials, covalent organic frameworks (COFs) have attracted much attention due to their intriguing structural merits (e.g., total organic backbone, tunable porosity and predictable structure). However, the insoluble and unprocessable features of bulk COF powder limit their applications. To overcome these limitations, considerable efforts have been devoted to exploring the fabrication of COF thin films with controllable architectures, which open the door for their novel applications. In this critical review, we aim to provide the recent advances in the fabrication of COF thin films not only supported on substrates but also as free-standing nanosheets via both bottom-up and top-down strategies. The bottom-up strategy involves solvothermal synthesis, interfacial polymerization, room temperature vapor-assisted conversion, and synthesis under continuous flow conditions; whereas, the top-down strategy involves solvent-assisted exfoliation, self-exfoliation, mechanical delamination, and chemical exfoliation. In addition, the applications of COF thin films including energy storage, semiconductor devices, membrane-separation, sensors, and drug delivery are summarized. Finally, to accelerate further research, a personal perspective covering their synthetic strategies, mechanisms and applications is presented.
Collapse
Affiliation(s)
- Han Wang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China.
| | - Zhuotong Zeng
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, P. R. China.
| | - Piao Xu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China.
| | - Lianshan Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellent in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China.
| | - Rong Xiao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Changsha 410011, P. R. China.
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellent in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China.
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China.
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China.
| | - Cui Lai
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China.
| | - Danni Jiang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China.
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China.
| | - Huan Yi
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China.
| | - Lei Qin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China.
| | - Shujing Ye
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China.
| | - Xiaoya Ren
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China.
| | - Wangwang Tang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P. R. China.
| |
Collapse
|
70
|
Chen L, Ni R, Yuan T, Yue Q, Gao B. Removal of tridecane dicarboxylic acid in water by nanoscale Fe 0/Cu 0 bimetallic composites. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 164:219-225. [PMID: 30118955 DOI: 10.1016/j.ecoenv.2018.08.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
In this study, nanoscale zerovalent Fe0/Cu0 bimetallic composites were synthesized by liquid-phase reduction of Fe(II)/Cu(II) and applied for decomposition of tridecane dicarboxylic acid (DC13). The removal performance of Fe0/Cu0 bimetallic composites for DC13 in terms of Fe/Cu ratios, addition amount, reaction time and initial pH were studied. The as-prepared nanoscale composites were characterized by a transmission electron micrographs (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), BET surface area, fourier transform infrared spectroscopy (FT-IR) and inductively coupled plasma-atomic emission spectrometry (ICP). Finally, the degradation mechanisms of DC13 utilizing the Fe0/Cu0 nanocomposites were investigated by using mass spectrumetry (MS). The results indicated that the Fe0/Cu0 bimetallic composites exerted a remarkable removal capacity for DC13 through the multiple reactions, e.g., coagulation, adsorption and •OH reduction in the Fe0/Cu0 system. XPS indicated that the Fe0/Cu0 reduction reaction of hydroxyl radicals (•OH) system played a significant role in degradation of DC13 and the LC-MS result suggested that DC13 was degraded into inorganic small molecules by •OH radicals generated from the corrosion of Fe0. The experimental results indicated that the nanoscale Fe0/Cu0 could be used as a potential material to remove DC13 because of its remarkable degradability.
Collapse
Affiliation(s)
- Lishuo Chen
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Rui Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Tengjie Yuan
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Qinyan Yue
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
71
|
Martins GC, Penido ES, Alvarenga IFS, Teodoro JC, Bianchi ML, Guilherme LRG. Amending potential of organic and industrial by-products applied to heavy metal-rich mining soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:581-590. [PMID: 30031319 DOI: 10.1016/j.ecoenv.2018.07.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/04/2018] [Accepted: 07/10/2018] [Indexed: 06/08/2023]
Abstract
Mining activities promote the development of economies and societies, yet they cause environmental impacts that must be minimized so that their benefits overcome the likely risks. This study evaluated eco-friendly technologies based on the use of low-carbon footprint wastes and industrial by-products as soil amendments for the revegetation of Zn-mining areas. Our goal was to select adequate soil amendments that can be used to recover these areas, with a focus on low-cost materials. The amendments - limestone, sewage sludge, biochar, and composted food remains - were first characterized concerning their chemical composition and structural morphologies. Soil samples (Entisol, Oxisol, Technosol) from three different areas located inside an open-pit mine were later incubated for 60 days with increasing doses of each soil amendment, followed by cultivation with Andropogon gayanus, a native species. The amendments were able to change not only soil pH, but also the phytoavailable levels of Cd, Zn, and Pb. Limestone and biochar were the amendments that caused the highest pH values, reducing the phytoavailability of the metals. All amendments improved seed germination; however, the composted food remains presented low levels of germination, which could make the amendments unfeasible for revegetation efforts. Our findings showed that biochar, which is a by-product of the mining company, is the most suitable amendment to enhance revegetation efforts in the Zn-mining areas, not only because of its efficiency and cost, but also due to its low carbon footprint, which is currently the trend for any "green remediation" proposal.
Collapse
Affiliation(s)
- Gabriel Caixeta Martins
- Federal University of Lavras, Soil Science Department, 3037, 37200000 Lavras, Minas Gerais, Brazil; Vale Institute of Technology, 955 Boaventura da Silva Street, 66055090 Belém, Pará State, Brasil
| | - Evanise Silva Penido
- Federal University of Lavras, Chemistry Department, 3037, 37200000 Lavras, Minas Gerais, Brazil
| | | | | | - Maria Lucia Bianchi
- Federal University of Lavras, Chemistry Department, 3037, 37200000 Lavras, Minas Gerais, Brazil
| | | |
Collapse
|
72
|
Xue W, Peng Z, Huang D, Zeng G, Wan J, Xu R, Cheng M, Zhang C, Jiang D, Hu Z. Nanoremediation of cadmium contaminated river sediments: Microbial response and organic carbon changes. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:290-299. [PMID: 30041122 DOI: 10.1016/j.jhazmat.2018.07.062] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
Abstract
The application of nanomaterials to contaminated river sediments could induce important changes in the speciation of heavy metals with potential impacts on ecosystem. Here, rhamnolipid (RL)-stabilized nanoscale zero-valent iron (RNZVI) was conducted to test its potential performance in changing the mobility and speciation of cadmium (Cd) in river sediments, with consideration of the influences of microbial community and organic carbon (OC). Compared to NZVI, RNZVI was more effective in transforming labile Cd to stable fraction with a maximum residual concentration increasing by 11.37 mg/kg after 42 days of incubation. Bacterial community structure was tracked using high-throughput sequencing of 16S rRNA genes. Results indicated that the application of RNZVI changed the bacterial community structure and increased the relative abundance of Fe(III)-reducing bacteria, which could redistribute Fe combined Cd into a more stable Fe mineral phase. The contents of OC were gradually decreased and became stable, might resulting from OC bioavailability's being stimulated by RNZVI through changing the bacterial community composition. This study indicates that abiotic process (i.e., from reaction with NZVI) and biotic process fueled by RNZVI lead to the immobilization of Cd in river sediments.
Collapse
Affiliation(s)
- Wenjing Xue
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Zhiwei Peng
- Zoomlion Heavy Industry Science and Technology Co., Ltd., Changsha, 410013, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, 410082, PR China.
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, 410082, PR China.
| | - Jia Wan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Zoomlion Heavy Industry Science and Technology Co., Ltd., Changsha, 410013, PR China
| | - Rui Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Min Cheng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Chen Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Danni Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Zhengxun Hu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Hunan University, Changsha, 410082, PR China
| |
Collapse
|