51
|
Amnuaylojaroen T, Parasin N. Pathogenesis of PM 2.5-Related Disorders in Different Age Groups: Children, Adults, and the Elderly. EPIGENOMES 2024; 8:13. [PMID: 38651366 PMCID: PMC11036283 DOI: 10.3390/epigenomes8020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/07/2024] [Accepted: 03/08/2024] [Indexed: 04/25/2024] Open
Abstract
The effects of PM2.5 on human health fluctuate greatly among various age groups, influenced by a range of physiological and immunological reactions. This paper compares the pathogenesis of the disease caused by PM2.5 in people of different ages, focusing on how children, adults, and the elderly are each susceptible to it because of differences in their bodies. Regarding children, exposure to PM2.5 is linked to many negative consequences. These factors consist of inflammation, oxidative stress, and respiratory problems, which might worsen pre-existing conditions and potentially cause neurotoxicity and developmental issues. Epigenetic changes can affect the immune system and make people more likely to get respiratory diseases. On the other hand, exposures during pregnancy can change how the cardiovascular and central nervous systems develop. In adults, the inhalation of PM2.5 is associated with a wide range of health problems. These include respiratory difficulties, reduced pulmonary function, and an increased susceptibility to illnesses such as asthma, chronic obstructive pulmonary disease (COPD), and lung cancer. In addition, exposure to PM2.5 induces systemic inflammation, cardiovascular diseases, insulin resistance, and neurotoxic consequences. Evident disturbances in the immune system and cognitive function demonstrate the broad impact of PM2.5. The elderly population is prone to developing respiratory and cardiovascular difficulties, which worsen their pre-existing health issues and raise the risk of cognitive decline and neurological illnesses. Having additional medical conditions, such as peptic ulcer disease, significantly increases the likelihood of being admitted to hospital.
Collapse
Affiliation(s)
- Teerachai Amnuaylojaroen
- School of Energy and Environment, University of Phayao, Phayao 56000, Thailand
- Atmospheric Pollution and Climate Research Unit, School of Energy and Environment, University of Phayao, Phayao 56000, Thailand
| | - Nichapa Parasin
- School of Allied Health Science, University of Phayao, Phayao 56000, Thailand;
| |
Collapse
|
52
|
Fonderson MS, van Meel ER, Bindels P, Bohnen A, Burdorf A, de Schepper E. Air pollution and childhood respiratory consultations in primary care: a systematic review. Arch Dis Child 2024; 109:297-303. [PMID: 38272647 PMCID: PMC10958259 DOI: 10.1136/archdischild-2023-326368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/04/2024] [Indexed: 01/27/2024]
Abstract
BACKGROUND Outdoor air pollution is a known risk factor for respiratory morbidity worldwide. Compared with the adult population, there are fewer studies that analyse the association between short-term exposure to air pollution and respiratory morbidity in children in primary care. OBJECTIVE To evaluate whether children in a primary care setting exposed to outdoor air pollutants during short-term intervals are at increased risk of respiratory diagnoses. METHODS A search in Medline, the Cochrane Library, Web of Science and Embase databases throughout March 2023. Percentage change or risk ratios with corresponding 95% CI for the association between air pollutants and respiratory diseases were retrieved from individual studies. Risk of bias assessment was conducted with the Newcastle-Ottawa Scale (NOS) for cohort or case-control studies and an adjusted NOS for time series studies. RESULTS From 1366 studies, 14 were identified as meeting the inclusion criteria. Most studies had intermediate or high quality. A meta-analysis was not conducted due to heterogeneity in exposure and health outcome. Overall, studies on short-term exposure to air pollutants (carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2) and particulate matter ≤10 µm (PM10)) were associated with increased childhood respiratory consultations in primary care. In general, exposure to ozone was associated with a reduction in respiratory consultations. CONCLUSIONS The evidence suggests CO, SO2, NO2, PM10 and PM2.5 are risk factors for respiratory diseases in children in primary care in the short term. However, given the heterogeneity of the studies, interpretation of these findings must be done with caution. PROSPERO REGISTRATION NUMBER CRD42022259279.
Collapse
Affiliation(s)
| | | | - Patrick Bindels
- General Practice, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Arthur Bohnen
- General Practice, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Alex Burdorf
- Public Health, Erasmus Medical Center, Rotterdam, The Netherlands
| | | |
Collapse
|
53
|
Yuan T, Zhang Z, Liu Q, Liu XT, Tao SQ, Yao CL. Cellulose nanofiber/MXene (Ti 3C 2T x)/liquid metal film as a highly performance and flexible electrode material for supercapacitors. Int J Biol Macromol 2024; 262:130119. [PMID: 38346617 DOI: 10.1016/j.ijbiomac.2024.130119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/27/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
In recent times, there has been significant interest in the utilization of cellulose nanofiber (CNF) films as the foundation for supercapacitors due to their three-dimensional structure, flexibility and eco-friendliness. An ultrasonic and vacuum filtration method was used to prepare a hybrid film consisting of MXene (Ti3C2Tx), CNF and liquid metal (LM). The combination of CNF and LM with MXene produces a porous structure with higher electrical conductivity, which facilitates the transportation of ions and electrons within the composition and confers the material with heightened electrochemical properties. The CNF/MXene/LM electrode has a significant area capacitance of 871.3 mF cm-2 at a current density of 5 mA cm-2. The hybrid film demonstrates excellent stability, maintaining a high conductivity of 546.4 S∙cm-1 and retaining 96.9 % capacitance after 2000 cycles at a current density of 10 mA cm-2. By utilizing the thin film as an electrode, a high-performance quasi-solid supercapacitor was fabricated, with a remarkably thin thickness of only 0.319 mm. Supercapacitors show exceptional electrical properties, including a surface-specific capacitance of 188.2 mF cm-2 at a current density of 5 mA cm-2. This study indicates that flexible electrodes made from cellulose nanofiber have extensive potential in the realm of supercapacitors.
Collapse
Affiliation(s)
- Tao Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Zhen Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Qian Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Xiu-Tong Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Shao-Qu Tao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Chun-Li Yao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
54
|
Balmes JR. Invited Perspective: Longitudinal Follow-up of a Household Air Pollution Trial in a Birth Cohort Yields an Impactful Finding. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:31306. [PMID: 38506829 PMCID: PMC10953815 DOI: 10.1289/ehp14480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/06/2024] [Accepted: 02/08/2024] [Indexed: 03/21/2024]
Affiliation(s)
- John R. Balmes
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
55
|
Yuan P, Qi G, Dai X, Chu X, Liu Z, Liu G, Shi X. Considerable impact of major air pollutants on hypertension in Guizhou province, southwest China. Chin Med J (Engl) 2024; 137:496-498. [PMID: 38245828 PMCID: PMC10876229 DOI: 10.1097/cm9.0000000000002949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Indexed: 01/22/2024] Open
Affiliation(s)
- Ping Yuan
- Department of Epidemiology and Health Statistics, School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Guojia Qi
- Department of Epidemiology and Health Statistics, School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Xiu Dai
- Department of Epidemiology and Health Statistics, School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Xiangyuan Chu
- Department of Epidemiology and Health Statistics, School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Zhijun Liu
- School of Management, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Guoqin Liu
- School of Management, Zunyi Medical University, Zunyi, Guizhou 563006, China
| | - Xiuquan Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563006, China
- Center for Injury Research and Policy & Center for Pediatric Trauma Research, The Research Institute at Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| |
Collapse
|
56
|
Munir M, Azab SM, I Bangdiwala S, Kurmi O, Doiron D, Brook J, Banfield L, de Souza RJ. Effects of ambient air pollution on obesity and ectopic fat deposition: a protocol for a systematic review and meta-analysis. BMJ Open 2024; 14:e080026. [PMID: 38365287 PMCID: PMC10875506 DOI: 10.1136/bmjopen-2023-080026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/26/2024] [Indexed: 02/18/2024] Open
Abstract
INTRODUCTION Globally, the prevalence of obesity tripled from 1975 to 2016. There is evidence that air pollution may contribute to the obesity epidemic through an increase in oxidative stress and inflammation of adipose tissue. However, the impact of air pollution on body weight at a population level remains inconclusive. This systematic review and meta-analysis will estimate the association of ambient air pollution with obesity, distribution of ectopic adipose tissue, and the incidence and prevalence of non-alcoholic fatty liver disease among adults. METHODS AND ANALYSIS The study will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines for conduct and reporting. The search will include the following databases: Ovid Medline, Embase, PubMed, Web of Science and Latin America and the Caribbean Literature on Health Sciences, and will be supplemented by a grey literature search. Each article will be independently screened by two reviewers, and relevant data will be extracted independently and in duplicate. Study-specific estimates of associations and their 95% Confidence Intervals will be pooled using a DerSimonian and Laird random-effects model, implemented using the RevMan software. The I2 statistic will be used to assess interstudy heterogeneity. The confidence in the body of evidence will be assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. ETHICS AND DISSEMINATION As per institutional policy, ethical approval is not required for secondary data analysis. In addition to being published in a peer-reviewed journal and presented at conferences, the results of the meta-analysis will be shared with key stakeholders, health policymakers and healthcare professionals. PROSPERO REGISTRATION NUMBER CRD42023423955.
Collapse
Affiliation(s)
- Mehnaz Munir
- Department of Global Health, McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada
| | - Sandi M Azab
- Department of Pharmacognosy, Alexandria University, Alexandria, Egypt
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Shrikant I Bangdiwala
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, Hamilton, Ontario, Canada
| | - Om Kurmi
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
- Faculty Research Centre for Healthcare and Communities, Institute of Health and Wellbeing, Coventry University, Coventry, UK
| | - Dany Doiron
- Respiratory Epidemiology and Clinical Research Unit, Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jeffrey Brook
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Laura Banfield
- Health Sciences Library, McMaster University, Hamilton, Ontario, Canada
| | - Russell J de Souza
- Population Health Research Institute, Hamilton, Ontario, Canada
- Department of Global Health & Department of Health Research Methods, Evidence, and Impact, McMaster University Faculty of Health Sciences, Hamilton, Ontario, Canada
| |
Collapse
|
57
|
Healy DR, Kårlund A, Mikkonen S, Puhakka S, Karhunen L, Kolehmainen M. Associations of low levels of air pollution with cardiometabolic outcomes and the role of diet quality in individuals with obesity. ENVIRONMENTAL RESEARCH 2024; 242:117637. [PMID: 37993047 DOI: 10.1016/j.envres.2023.117637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Exposure to air pollution is associated with adverse cardiometabolic health effects and increased mortality, even at low concentrations. Some of the biological mechanisms through which air pollution can affect cardiometabolic health overlap with health outcomes associated with diet quality and changes in diet. OBJECTIVE The objective of this study is to investigate associations of air pollutants at average concentrations below the World Health Organization, 2021 air quality guidelines with cardiometabolic outcomes. Furthermore, potential interaction between air pollutants and diet quality will be assessed. METHODS 82 individuals with obesity participated in a combined weight loss and weight loss maintenance study for a total of 33 weeks. A secondary analysis was conducted incorporating air pollution measurements. Data were analysed with linear mixed-effects models. RESULTS A total of 17 significant associations were observed for single pollutants with 10 cardiometabolic outcomes, predominantly related to blood lipids, hormones, and glucose regulation. Diet quality, as measured by the Baltic Sea Diet score, did not appear to mediate the association of air pollution with cardiometabolic outcomes, however, diet quality was observed to significantly modify the association of PM2.5 with total cholesterol, and the associations of NO and O3 with ghrelin. DISCUSSION These findings suggest that exposure to ambient air pollutants, especially particulate matter, at levels below World Health Organization, 2021 air quality guidelines, were associated with changes in cardiometabolic risk factors. Diet may be a personal-level approach for individuals to modify the impact of exposure to air pollution on cardiometabolic health.
Collapse
Affiliation(s)
- Darren R Healy
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Anna Kårlund
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland; Department of Life Technologies, University of Turku, FI-20014, Turku, Finland
| | - Santtu Mikkonen
- Department of Technical Physics, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Soile Puhakka
- Department of Medicine, University of Oulu, P.O. Box 8000, FI-90014, Oulu, Finland; Department of Sports and Exercise Medicine, Oulu Deaconess Institute Foundation sr., P. O. Box 365, 90100, Oulu, Finland
| | - Leila Karhunen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
58
|
Del Río SG, Plans-Beriso E, Ramis R, Ortolá R, Pastor R, Sotos-Prieto M, Castelló A, Requena RO, Moleón JJJ, Félix BMF, Muriel A, Miret M, Mateos JLA, Choi YH, Rodríguez-Artalejo F, Fernández-Navarro P, García-Esquinas E. Exposure to residential traffic and trajectories of unhealthy ageing: results from a nationally-representative cohort of older adults. Environ Health 2024; 23:15. [PMID: 38303067 PMCID: PMC10832178 DOI: 10.1186/s12940-024-01057-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Traffic exposure has been associated with biomarkers of increased biological ageing, age-related chronic morbidities, and increased respiratory, cardiovascular, and all-cause mortality. Whether it is associated with functional impairments and unhealthy ageing trajectories is unknown. METHODS Nationally representative population-based cohort with 3,126 community-dwelling individuals aged ≥60 years who contributed 8,291 biannual visits over a 10 year period. Unhealthy ageing was estimated with a deficit accumulation index (DAI) based on the number and severity of 52 health deficits, including 22 objectively-measured impairments in physical and cognitive functioning. Differences in DAI at each follow-up across quintiles of residential traffic density (RTD) at 50 and 100 meters, and closest distance to a petrol station, were estimated using flexible marginal structural models with inverse probability of censoring weights. Models were adjusted for sociodemographic and time-varying lifestyle factors, social deprivation index at the census tract and residential exposure to natural spaces. RESULTS At baseline, the mean (SD) age and DAI score of the participants were 69.0 (6.6) years and 17.02 (11.0) %, and 54.0% were women. The median (IQR) RTD at 50 and 100 meters were 77 (31-467) and 509 (182-1802) vehicles/day, and the mean (SD) distance to the nearest petrol station of 962 (1317) meters. The average increase in DAI (95%CI) for participants in quintiles Q2-Q5 (vs Q1) of RTD at 50 meters was of 1.51 (0.50, 2.53), 0.98 (-0.05, 2.01), 2.20 (1.18, 3.21) and 1.98 (0.90, 3.05), respectively. Consistent findings were observed at 100 meters. By domains, most of the deficits accumulated with increased RTD were of a functional nature, although RTD at 50 meters was also associated with worse self-reported health, increased vitality problems and higher incidence of chronic morbidities. Living closer to a petrol station was associated with a higher incidence of functional impairments and chronic morbidities. CONCLUSIONS Exposure to nearby residential traffic is associated with accelerated trajectories of unhealthy ageing. Diminishing traffic pollution should become a priority intervention for adding healthy years to life in the old age.
Collapse
Affiliation(s)
- Sergio Gómez Del Río
- Department of Preventive Medicine, Hospital Central de la Cruz Roja San José y Santa Adela, Madrid, Spain
| | - Elena Plans-Beriso
- Department of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
| | - Rebeca Ramis
- Department of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
- Consortium for Biomedical Research in Epidemiology, Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
| | - Rosario Ortolá
- Consortium for Biomedical Research in Epidemiology, Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
| | - Roberto Pastor
- Department of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
- Consortium for Biomedical Research in Epidemiology, Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
| | - Mercedes Sotos-Prieto
- Consortium for Biomedical Research in Epidemiology, Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, United States
- IMDEA-Food Institute (CEI UAM+CSIC), Madrid, Spain
| | - Adela Castelló
- Department of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain
- Consortium for Biomedical Research in Epidemiology, Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
| | - Rocío Olmedo Requena
- Consortium for Biomedical Research in Epidemiology, Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - José Juan Jiménez Moleón
- Consortium for Biomedical Research in Epidemiology, Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, University of Granada, Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, Granada, Spain
| | - Borja María Fernández Félix
- Consortium for Biomedical Research in Epidemiology, Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
- Clinical Biostatistics Unit, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
| | - Alfonso Muriel
- Consortium for Biomedical Research in Epidemiology, Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
- Clinical Biostatistics Unit, Hospital Ramón y Cajal (IRYCIS), Madrid, Spain
- Department of Nursery and Physiotherapy, Universidad de Alcalá, Madrid, Spain
| | - Marta Miret
- Department of Psychiatry, Universidad Autónoma de Madrid, Madrid, Spain
- Consortium for Biomedical Research in Mental Health (CIBER en Salud Mental - CIBERSAM), Madrid, Spain
| | - Jose Luis Ayuso Mateos
- Department of Psychiatry, Universidad Autónoma de Madrid, Madrid, Spain
- Consortium for Biomedical Research in Mental Health (CIBER en Salud Mental - CIBERSAM), Madrid, Spain
- Department of Psychiatry, Hospital Universitario de La Princesa, Madrid, Spain
| | - Yoon-Hyeong Choi
- School of Health and Environmental Science, College of Health Science, Korea University, Seoul, Korea
| | - Fernando Rodríguez-Artalejo
- Consortium for Biomedical Research in Epidemiology, Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- IMDEA-Food Institute (CEI UAM+CSIC), Madrid, Spain
| | - Pablo Fernández-Navarro
- Department of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.
- Consortium for Biomedical Research in Epidemiology, Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain.
| | - Esther García-Esquinas
- Department of Chronic Diseases, National Center for Epidemiology, Carlos III Institute of Health, Madrid, Spain.
- Consortium for Biomedical Research in Epidemiology, Public Health (CIBER en Epidemiología y Salud Pública - CIBERESP), Madrid, Spain.
| |
Collapse
|
59
|
Zheng J, Zhang H, Shi J, Li X, Zhang J, Zhang K, Gao Y, He J, Dai J, Wang J. Association of air pollution exposure with overweight or obesity in children and adolescents: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168589. [PMID: 37984657 DOI: 10.1016/j.scitotenv.2023.168589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Childhood overweight and obesity is a global problem. 38 million children under five years old were reported as being overweight/obese in 2019. However, current evidence regarding the effects of air pollution on children weight status remains scarce and inconsistent. This study aimed to determine the association between air pollutants and the weight status of children and adolescents. Four databases were searched up to August 9, 2023. Adjusted merged odds ratios (ORs), regression coefficients (β), and their 95 % confidence intervals (95 % CIs) were calculated and pooled. A total of 27 studies were included. The results showed that air pollutants had adverse effects on the body weight of children and adolescents. Exposure to PM1, PM2.5, PMcoarse, and PM10 were associated with increased risk of overweight/obesity, with pooled ORs (95 % CI) of 1.23 (1.09, 1.40), 1.18 (1.10, 1.28), 1.04 (1.03, 1.05) and 1.11 (1.06, 1.17) per 10 μg/m3 increment, respectively. Individuals with higher exposure levels to NOX, O3, SO2 and CO (per 10 μg/m3 increment) were associated with 12 %, 6 %, 28 % and 1 % increased odds of being overweight/obese, respectively. With respect to the level of body mass index, the pooled β (95 % CIs) for each 10 μg/m3 increase in PM1, PM2.5, PM10, and NOX exposure were 0.15 (0.12, 0.18), 0.11 (0.06, 0.16), 0.07 (0.03, 0.10), and 0.03 (0.01, 0.04), respectively. PM1 has relatively strong adverse effects on body weight status. The subgroup analysis revealed a significantly increase in the risk of overweight/obesity when the concentrations of PM2.5, PM10, and NO2 exceeded 35 μg/m3, 50 μg/m3, and 40 μg/m3, respectively. Exposure to PM2.5, PM10 and NOX increased the risk of overweight/obesity, especially in Asia. This study provides evidence of the association between air pollution and being overweight/obese in children and adolescents.
Collapse
Affiliation(s)
- Jingying Zheng
- School of Public Health, Jilin University, Changchun 130021, China
| | - Huiling Zhang
- School of Public Health, Jilin University, Changchun 130021, China
| | - Jianyang Shi
- School of Public Health, Jilin University, Changchun 130021, China
| | - Xin Li
- School of Public Health, Jilin University, Changchun 130021, China
| | - Jing Zhang
- School of Public Health, Jilin University, Changchun 130021, China
| | - Kunlun Zhang
- School of Public Health, Jilin University, Changchun 130021, China
| | - Yameng Gao
- School of Public Health, Jilin University, Changchun 130021, China
| | - Jingtong He
- School of Public Health, Jilin University, Changchun 130021, China
| | - Jianghong Dai
- School of Public Health, Xinjiang Medical University, Xinjiang 834000, China
| | - Juan Wang
- School of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
60
|
Gonçalves Soares A, Santos S, Seyve E, Nedelec R, Puhakka S, Eloranta AM, Mikkonen S, Yuan WL, Lawlor DA, Heron J, Vrijheid M, Lepeule J, Nieuwenhuijsen M, Fossati S, Jaddoe VW, Lakka T, Sebert S, Heude B, Felix JF, Elhakeem A, Timpson NJ. Prenatal Urban Environment and Blood Pressure Trajectories From Childhood to Early Adulthood. JACC. ADVANCES 2024; 3:100808. [PMID: 38939392 PMCID: PMC11198279 DOI: 10.1016/j.jacadv.2023.100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 06/29/2024]
Abstract
Background Prenatal urban environmental exposures have been associated with blood pressure in children. The dynamic of these associations across childhood and later ages is unknown. Objectives The purpose of this study was to assess associations of prenatal urban environmental exposures with blood pressure trajectories from childhood to early adulthood. Methods Repeated measures of systolic blood pressure (SBP) and diastolic blood pressure (DBP) were collected in up to 7,454 participants from a UK birth cohort. Prenatal urban exposures (n = 43) covered measures of noise, air pollution, built environment, natural spaces, traffic, meteorology, and food environment. An exposome-wide association study approach was used. Linear spline mixed-effects models were used to model associations of each exposure with trajectories of blood pressure. Replication was sought in 4 independent European cohorts (up to 9,261). Results In discovery analyses, higher humidity was associated with a faster increase (mean yearly change in SBP for an interquartile range increase in humidity: 0.29 mm Hg/y, 95% CI: 0.20-0.39) and higher temperature with a slower increase (mean yearly change in SBP per interquartile range increase in temperature: -0.17 mm Hg/y, 95% CI: -0.28 to -0.07) in SBP in childhood. Higher levels of humidity and air pollution were associated with faster increase in DBP in childhood and slower increase in adolescence. There was little evidence of an association of other exposures with change in SBP or DBP. Results for humidity and temperature, but not for air pollution, were replicated in other cohorts. Conclusions Replicated findings suggest that higher prenatal humidity and temperature could modulate blood pressure changes across childhood.
Collapse
Affiliation(s)
- Ana Gonçalves Soares
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Susana Santos
- The Generation R Study Group, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal
| | - Emie Seyve
- Inserm, CNRS, Institute for Advanced Biosciences, Grenoble Alpes University, Grenoble, France
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Rozenn Nedelec
- Faculty of Medicine, Research Unit of Population Health, University of Oulu, Oulu, Finland
| | - Soile Puhakka
- Faculty of Medicine, Research Unit of Population Health, University of Oulu, Oulu, Finland
- Department of Sports and Exercise Medicine, Oulu Deaconess Institute, Oulu, Finland
| | - Aino-Maija Eloranta
- Institute of Public Health and Clinical Nutrition, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Santtu Mikkonen
- Department of Technical Physics, University of Eastern Finland, Kuopio, Finland
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Wen Lun Yuan
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
- Singapore Institute for Clinical Sciences, Agency for Science, Technology, and Research (A∗STAR), Singapore, Singapore
| | - Deborah A. Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Jon Heron
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Martine Vrijheid
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Johanna Lepeule
- Inserm, CNRS, Institute for Advanced Biosciences, Grenoble Alpes University, Grenoble, France
| | - Mark Nieuwenhuijsen
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Serena Fossati
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Vincent W.V. Jaddoe
- The Generation R Study Group, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Timo Lakka
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Clinical Physiology and Nuclear Medicine, Kuopio University Hospital, Kuopio, Finland
- Foundation for Research in Health Exercise and Nutrition, Kuopio Research Institute of Exercise Medicine, Kuopio, Finland
| | - Sylvain Sebert
- Faculty of Medicine, Research Unit of Population Health, University of Oulu, Oulu, Finland
| | - Barbara Heude
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Center for Research in Epidemiology and StatisticS (CRESS), Paris, France
| | - Janine F. Felix
- The Generation R Study Group, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Pediatrics, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ahmed Elhakeem
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Nicholas J. Timpson
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
61
|
De Vita A, Belmusto A, Di Perna F, Tremamunno S, De Matteis G, Franceschi F, Covino M. The Impact of Climate Change and Extreme Weather Conditions on Cardiovascular Health and Acute Cardiovascular Diseases. J Clin Med 2024; 13:759. [PMID: 38337453 PMCID: PMC10856578 DOI: 10.3390/jcm13030759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
Climate change is widely recognized as one of the most significant challenges facing our planet and human civilization. Human activities such as the burning of fossil fuels, deforestation, and industrial processes release greenhouse gases into the atmosphere, leading to a warming of the Earth's climate. The relationship between climate change and cardiovascular (CV) health, mediated by air pollution and increased ambient temperatures, is complex and very heterogeneous. The main mechanisms underlying the pathogenesis of CV disease at extreme temperatures involve several regulatory pathways, including temperature-sympathetic reactivity, the cold-activated renin-angiotensin system, dehydration, extreme temperature-induced electrolyte imbalances, and heat stroke-induced systemic inflammatory responses. The interplay of these mechanisms may vary based on individual factors, environmental conditions, and an overall health background. The net outcome is a significant increase in CV mortality and a higher incidence of hypertension, type II diabetes mellitus, acute myocardial infarction (AMI), heart failure, and cardiac arrhythmias. Patients with pre-existing CV disorders may be more vulnerable to the effects of global warming and extreme temperatures. There is an urgent need for a comprehensive intervention that spans from the individual level to a systemic or global approach to effectively address this existential problem. Future programs aimed at reducing CV and environmental burdens should require cross-disciplinary collaboration involving physicians, researchers, public health workers, political scientists, legislators, and national leaders to mitigate the effects of climate change.
Collapse
Affiliation(s)
- Antonio De Vita
- Università Cattolica del Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.B.); (F.D.P.); (F.F.); (M.C.)
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Antonietta Belmusto
- Università Cattolica del Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.B.); (F.D.P.); (F.F.); (M.C.)
| | - Federico Di Perna
- Università Cattolica del Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.B.); (F.D.P.); (F.F.); (M.C.)
| | - Saverio Tremamunno
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Giuseppe De Matteis
- Department of Internal Medicine and Gastroenterology, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy;
| | - Francesco Franceschi
- Università Cattolica del Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.B.); (F.D.P.); (F.F.); (M.C.)
- Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
| | - Marcello Covino
- Università Cattolica del Cattolica del Sacro Cuore, 00168 Roma, Italy; (A.B.); (F.D.P.); (F.F.); (M.C.)
- Emergency Medicine, Fondazione Policlinico Universitario A. Gemelli, IRCCS, 00168 Roma, Italy
| |
Collapse
|
62
|
Gassel CJ, Andris W, Poli S, Bartz-Schmidt KU, Dimopoulos S, Wenzel DA. Incidence of central retinal artery occlusion peaks in winter season. Front Neurol 2024; 15:1342491. [PMID: 38318439 PMCID: PMC10839045 DOI: 10.3389/fneur.2024.1342491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Introduction Stroke incidence exhibits seasonal trends, with the highest occurrences observed during winter. This study investigates the incidence of central retinal artery occlusion (CRAO), a stroke equivalent of the retina, and explores its monthly and seasonal variations, as well as potential associations with weather and ambient air pollutants. Methods A retrospective search of medical records spanning 15 years (January 2008-December 2022) was conducted at the University Eye Hospital Tübingen, Germany, focusing on diagnosed cases of CRAO. Incidences were evaluated on a monthly and seasonal basis (winter, spring, summer, fall). Weather data (temperature, precipitation, atmospheric pressure) and concentrations of ambient air pollutants [fine particulate matter (PM2.5), coarse particulate matter (PM10), nitrogen dioxide (NO2), and ozone (O3)], were analyzed for a potential association with CRAO incidence. Results Out of 432 patients diagnosed with CRAO between 2008 and 2022, significantly varying incidences were observed monthly (p = 0.025) and seasonally (p = 0.008). The highest rates were recorded in February and winter, with the lowest rates in June and summer. Concentrations of NO2, PM2.5 and lower ambient air temperature (average, minimum, maximum) showed significant correlations with CRAO incidence. Discussion This comprehensive 15-year analysis reveals a pronounced winter peak in CRAO incidence, with the lowest occurrences in summer. Potential associations between CRAO incidence and ambient air pollutants and temperature underscore the importance of considering seasonal trends and call for further investigations to elucidate contributing factors, potentially leading to targeted preventive strategies and public health interventions.
Collapse
Affiliation(s)
- Caroline J. Gassel
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Wolfgang Andris
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Sven Poli
- Department of Neurology and Stroke, University Hospital Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University Hospital Tübingen, Tübingen, Germany
| | | | - Spyridon Dimopoulos
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Daniel A. Wenzel
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
63
|
Dwivedi S, Zehra F, Masih J, Gupta T, Lawrence A. Investigating the temporal dynamics of sub-micron particles and particle-bound transition metals in indoor air of a metropolitan city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:49. [PMID: 38227135 DOI: 10.1007/s10653-023-01786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/13/2023] [Indexed: 01/17/2024]
Abstract
The present study portrays an association between particle-bound transition metals and children's health. The indoor air quality of the urban metropolitan city households was monitored for four PM sizes, namely PM1.0-2.5, PM0.50-1.0, PM0.25-0.50 and PM<0.25, in major seasons observed in the city; summer and winter. Further transition/heavy metals, viz. Cr, Cu, Fe, Mn, Ni, Pb and Zn, were analysed in PM1-2.5 samples. In order to evaluate the effect, health risk assessment was performed using mathematical and computational model for assessing dermal exposure and dose estimation (multiple path particle dosimetry model version3.0). The study principally targeted the children aged 2-15 years for the health risk assessment. According to the results, for the largest particle size i.e. PM1.0-2.5 the highest deposition was in the head region (49.1%) followed by pulmonary (43.6%) and tracheobronchial region (7.2%), whereas, for the smallest particle size i.e. PM<0.25 the highest deposition was obtained in the pulmonary region (73.0%) followed by the head (13.6%) and TB region (13.2%). Also, the most imperilled group of children with highest dose accumulation was found to be children aged 8-9 years for all particle sizes. Moreover, the dermal exposure dose as evaluated was found to be preeminent for Ni, Zn and Pb. Besides, seasonal variation gesticulated towards elevated concentrations in winter relative to the summer season. Altogether, the study will provide a conception to the researchers in the fields mounting season-specific guidelines and mitigation approaches. Conclusively, the study commends future work focussing on defining the effects of other chemical components on particles and associated transition metal composition along with proper extenuation of the same.
Collapse
Affiliation(s)
- Samridhi Dwivedi
- Department of Chemistry, Isabella Thoburn College, Lucknow, India
| | - Farheen Zehra
- Department of Chemistry, Isabella Thoburn College, Lucknow, India
| | - Jamson Masih
- Department of Chemistry, Wilson College, Mumbai, India
| | - Tarun Gupta
- Department of Civil Engineering, Indian Institute of Technology, Kanpur, India
| | - Alfred Lawrence
- Department of Chemistry, Isabella Thoburn College, Lucknow, India.
| |
Collapse
|
64
|
Xu H, Liang X, Wang L, Wei J, Guo B, Zeng C, Feng S, Wang S, Yang X, Pan Y, Wang Z, Xie L, Reinhardt JD, Tang W, Zhao X. Role of metabolic risk factors in the relationship between ambient fine particulate matter and depressive symptoms: Evidence from a longitudinal population study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115839. [PMID: 38118332 DOI: 10.1016/j.ecoenv.2023.115839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/22/2023]
Abstract
BACKGROUND There is growing evidence indicating a connection between fine particulate matter (PM2.5) and depressive symptoms. Metabolic risk factors are critical determinants of depressive symptoms. However, the mediating role of these factors on the association between PM2.5 and depressive symptoms remains elusive. We aimed to investigate whether and to what extent metabolic risk factors mediated the link between long-term PM2.5 exposure and depressive symptoms. METHODS This study comprised 7794 individuals aged between 30 and 79 years who participated in two waves of the on-site surveys in the China Multi-Ethnic Cohort. Ambient PM2.5 concentrations were assessed utilizing a random forest method based on satellite data. We employed the Patient Health Questionnaire-9 to assess depressive symptoms at wave 2, and the overall as well as three sub-domain symptom scores (emotional, neurovegetative, and neurocognitive symptoms) were calculated. Three metabolic risk factors, including hypertension, diabetes, and dyslipidemia, were considered. Mediation analyses were conducted to assess the indirect effects of PM2.5 on depressive symptoms through metabolic risk factors. RESULTS We found a positive association between chronic exposure to ambient PM2.5 and overall depressive symptoms as well as the three sub-domains. In mediation analyses, metabolic risk factors partially mediated the associations of PM2.5 on depressive symptoms. The natural indirect effects (RR, 95% CI) of PM2.5 on overall, emotional, neurovegetative, and neurocognitive symptoms mediated through metabolic risk factors were 1.004(1.001, 1.007), 1.004 (1.001, 1.008), 1.004 (1.001, 1.007), and 1.003(0.999, 1.007), respectively. Larger indirect effects were found in elderly participants (mediated proportion, 29.3%), females (13.3%), and people who did not consume alcohol (19.6%). CONCLUSIONS Metabolic risk factors may act as mediators in the relationship between chronic PM2.5 exposure and depression. Treatment of metabolic risk factors may be an opportunity to reduce the burden of depression caused by long-term exposure to PM2.5.
Collapse
Affiliation(s)
- Huan Xu
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hongkong Polytechnic University, Chengdu, Sichuan, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xian Liang
- Chengdu Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Lei Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunmei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shiyu Feng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Songmei Wang
- School of Public Health, Kunming Medical University, Kunming, Yunnan, China
| | - Xianxian Yang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Yongyue Pan
- School of Medicine, Tibet University, Lhasa, Tibet, China
| | - Ziyun Wang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, China
| | - Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Jan D Reinhardt
- Institute for Disaster Management and Reconstruction, Sichuan University-The Hongkong Polytechnic University, Chengdu, Sichuan, China; Department of Rehabilitation Medicine, Jiangsu Province Hospital/Nanjing Medical University First Affiliated Hospital, Nanjing, China; Swiss Paraplegic Research, Nottwil, Switzerland; Faculty for Health and Medicine, University of Lucerne, Switzerland.
| | - Wenge Tang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China.
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
65
|
Tsai HH, Tantoh DM, Lu WY, Chen CY, Liaw YP. Cigarette smoking and PM 2.5 might jointly exacerbate the risk of metabolic syndrome. Front Public Health 2024; 11:1234799. [PMID: 38288423 PMCID: PMC10822970 DOI: 10.3389/fpubh.2023.1234799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
Background Cigarette smoking and particulate matter (PM) with aerodynamic diameter < 2.5 μm (PM2.5) are major preventable cardiovascular mortality and morbidity promoters. Their joint role in metabolic syndrome (MS) pathogenesis is unknown. We determined the risk of MS based on PM2.5 and cigarette smoking in Taiwanese adults. Methods The study included 126,366 Taiwanese between 30 and 70 years old with no personal history of cancer. The Taiwan Biobank (TWB) contained information on MS, cigarette smoking, and covariates, while the Environmental Protection Administration (EPA), Taiwan, contained the PM2.5 information. Individuals were categorized as current, former, and nonsmokers. PM2.5 levels were categorized into quartiles: PM2.5 ≤ Q1, Q1 < PM2.5 ≤ Q2, Q2 < PM2.5 ≤ Q3, and PM2.5 > Q3, corresponding to PM2.5 ≤ 27.137, 27.137 < PM2.5 ≤ 32.589, 32.589 < PM2.5 ≤ 38.205, and PM2.5 > 38.205 μg/m3. Results The prevalence of MS was significantly different according to PM2.5 exposure (p-value = 0.0280) and cigarette smoking (p-value < 0.0001). Higher PM2.5 levels were significantly associated with a higher risk of MS: odds ratio (OR); 95% confidence interval (CI) = 1.058; 1.014-1.104, 1.185; 1.134-1.238, and 1.149; 1.101-1.200 for 27.137 < PM2.5 ≤ 32.589, 32.589 < PM2.5 ≤ 38.205, and PM2.5 > 38.205 μg/m3, respectively. The risk of MS was significantly higher among former and current smokers with OR; 95% CI = 1.062; 1.008-1.118 and 1.531; 1.450-1.616, respectively, and a dose-dependent p-value < 0.0001. The interaction between both exposures regarding MS was significant (p-value = 0.0157). Stratification by cigarette smoking revealed a significant risk of MS due to PM2.5 exposure among nonsmokers: OR (95% CI) = 1.074 (1.022-1.128), 1.226 (1.166-1.290), and 1.187 (1.129-1.247) for 27.137 < PM2.5 ≤ 32.589, 32.589 < PM2.5 ≤ 38.205, and PM2.5 > 38.205 μg/m3, respectively. According to PM2.5 quartiles, current smokers had a higher risk of MS, regardless of PM2.5 levels (OR); 95% CI = 1.605; 1.444-1.785, 1.561; 1.409-1.728, 1.359; 1.211-1.524, and 1.585; 1.418-1.772 for PM2.5 ≤ 27.137, 27.137 < PM2.5 ≤ 32.589, 32.589 < PM2.5 ≤ 38.205, and PM2.5 > 38.205 μg/m3, respectively. After combining both exposures, the group, current smokers; PM2.5 > 38.205 μg/m3 had the highest odds (1.801; 95% CI =1.625-1.995). Conclusion PM2.5 and cigarette smoking were independently and jointly associated with a higher risk of MS. Stratified analyses revealed that cigarette smoking might have a much higher effect on MS than PM2.5. Nonetheless, exposure to both PM2.5 and cigarette smoking could compound the risk of MS.
Collapse
Affiliation(s)
- Hao-Hung Tsai
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan
- College of Medicine, Chung Shan Medical University, Taichung City, Taiwan
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, Taiwan
- Department of Medical Imaging, School of Medicine, Chung Shan Medical University, Taichung City, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chung Shan Medical University, Taichung City, Taiwan
| | - Disline Manli Tantoh
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, Taiwan
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
| | - Wen Yu Lu
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
| | - Chih-Yi Chen
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung City, Taiwan
| | - Yung-Po Liaw
- Department of Medical Imaging, Chung Shan Medical University Hospital, Taichung City, Taiwan
- Department of Public Health and Institute of Public Health, Chung Shan Medical University, Taichung City, Taiwan
| |
Collapse
|
66
|
Politis MD, Gutiérrez-Avila I, Just A, Pizano-Zárate ML, Tamayo-Ortiz M, Greenberg JH, Téllez-Rojo MM, Sanders AP, Rosa MJ. Recent ambient temperature and fine particulate matter (PM 2.5) exposure is associated with urinary kidney injury biomarkers in children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168119. [PMID: 37884142 PMCID: PMC10842020 DOI: 10.1016/j.scitotenv.2023.168119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/10/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Limited research has examined associations between exposure to ambient temperature, air pollution, and kidney function or injury during the preadolescent period. We examined associations between exposure to ambient temperature and particulate matter with aerodynamic diameter ≤ 2.5 μm (PM2.5) with preadolescent estimated glomerular filtration rate (eGFR) and urinary kidney injury biomarkers. METHODS Participants included 437 children without cardiovascular or kidney disease enrolled in the Programming Research in Obesity, Growth, Environment and Social Stressors birth cohort study in Mexico City. eGFR and urinary kidney injury biomarkers were assessed at 8-12 years. Validated satellite-based spatio-temporal models were used to estimate mean daily temperature and PM2.5 levels at each participant's residence 7- and 30-days prior to the date of visit. Linear regression and distributed lag nonlinear models (DLNM) were used to examine associations between daily mean temperature and PM2.5 exposure and kidney outcomes, adjusted for covariates. RESULTS In single linear regressions, higher seven-day average PM2.5 was associated with higher urinary alpha-1-microglobulin and eGFR. In DLNM analyses, higher temperature exposure in the seven days prior to date of visit was associated with a decrease in urinary cystatin C of -0.56 ng/mL (95 % confidence interval (CI): -1.08, -0.04) and in osteopontin of -0.08 ng/mL (95 % CI: -0.15, -0.001). PM2.5 exposure over the seven days prior to date of visit was associated with an increase in eGFR of 1.77 mL/min/1.73m2 (95 % CI: 0.55, 2.99) and urinary cystatin C of 0.19 ng/mL (95 % CI: 0.03, 0.35). CONCLUSIONS Recent exposure to ambient temperature and PM2.5 were associated with increased and decreased urinary kidney injury biomarkers that may reflect subclinical glomerular or tubular injury in children. Further research is required to assess environmental exposures and worsening subclinical kidney injury across development.
Collapse
Affiliation(s)
- Maria D Politis
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Iván Gutiérrez-Avila
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Allan Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Department of Epidemiology and Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI, United States
| | - María Luisa Pizano-Zárate
- Nutrition and Bioprogramming Coordination, National Institute of Perinatology, Mexico City, Mexico; UMF 4, South Delegation of the Federal District, Mexican Social Security Institute (IMSS), Mexico City, Mexico
| | - Marcela Tamayo-Ortiz
- Occupational Health Research Unit, Mexican Social Security Institute, Mexico City, Mexico; Department of Environmental Health Sciences, Mailman School of Public Health at Columbia University, New York, NY, United States
| | - Jason H Greenberg
- Department of Pediatrics, Section of Nephrology, Yale University School of Medicine, New Haven, CT, United States
| | - Martha M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Alison P Sanders
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Maria José Rosa
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
67
|
Gao K, Wang PX, Mei X, Yang T, Yu K. Untapped potential of gut microbiome for hypertension management. Gut Microbes 2024; 16:2356278. [PMID: 38825779 PMCID: PMC11152106 DOI: 10.1080/19490976.2024.2356278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
The gut microbiota has been shown to be associated with a range of illnesses and disorders, including hypertension, which is recognized as the primary factor contributing to the development of serious cardiovascular diseases. In this review, we conducted a comprehensive analysis of the progression of the research domain pertaining to gut microbiota and hypertension. Our primary emphasis was on the interplay between gut microbiota and blood pressure that are mediated by host and gut microbiota-derived metabolites. Additionally, we elaborate the reciprocal communication between gut microbiota and antihypertensive drugs, and its influence on the blood pressure of the host. The field of computer science has seen rapid progress with its great potential in the application in biomedical sciences, we prompt an exploration of the use of microbiome databases and artificial intelligence in the realm of high blood pressure prediction and prevention. We propose the use of gut microbiota as potential biomarkers in the context of hypertension prevention and therapy.
Collapse
Affiliation(s)
- Kan Gao
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Pu Xiu Wang
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xue Mei
- School of Pharmacy, Institute of Materia Medica, North Sichuan Medical College, Nanchang, Sichuan, China
| | - Tao Yang
- Department of Physiology and Pharmacology, Center for Hypertension and Precision Medicine, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH, USA
| | - Kai Yu
- Department of General Practice, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
68
|
Charchar FJ, Prestes PR, Mills C, Ching SM, Neupane D, Marques FZ, Sharman JE, Vogt L, Burrell LM, Korostovtseva L, Zec M, Patil M, Schultz MG, Wallen MP, Renna NF, Islam SMS, Hiremath S, Gyeltshen T, Chia YC, Gupta A, Schutte AE, Klein B, Borghi C, Browning CJ, Czesnikiewicz-Guzik M, Lee HY, Itoh H, Miura K, Brunström M, Campbell NR, Akinnibossun OA, Veerabhadrappa P, Wainford RD, Kruger R, Thomas SA, Komori T, Ralapanawa U, Cornelissen VA, Kapil V, Li Y, Zhang Y, Jafar TH, Khan N, Williams B, Stergiou G, Tomaszewski M. Lifestyle management of hypertension: International Society of Hypertension position paper endorsed by the World Hypertension League and European Society of Hypertension. J Hypertens 2024; 42:23-49. [PMID: 37712135 PMCID: PMC10713007 DOI: 10.1097/hjh.0000000000003563] [Citation(s) in RCA: 57] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 09/16/2023]
Abstract
Hypertension, defined as persistently elevated systolic blood pressure (SBP) >140 mmHg and/or diastolic blood pressure (DBP) at least 90 mmHg (International Society of Hypertension guidelines), affects over 1.5 billion people worldwide. Hypertension is associated with increased risk of cardiovascular disease (CVD) events (e.g. coronary heart disease, heart failure and stroke) and death. An international panel of experts convened by the International Society of Hypertension College of Experts compiled lifestyle management recommendations as first-line strategy to prevent and control hypertension in adulthood. We also recommend that lifestyle changes be continued even when blood pressure-lowering medications are prescribed. Specific recommendations based on literature evidence are summarized with advice to start these measures early in life, including maintaining a healthy body weight, increased levels of different types of physical activity, healthy eating and drinking, avoidance and cessation of smoking and alcohol use, management of stress and sleep levels. We also discuss the relevance of specific approaches including consumption of sodium, potassium, sugar, fibre, coffee, tea, intermittent fasting as well as integrated strategies to implement these recommendations using, for example, behaviour change-related technologies and digital tools.
Collapse
Affiliation(s)
- Fadi J. Charchar
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
- Department of Physiology, University of Melbourne, Melbourne, Australia
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Priscilla R. Prestes
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Charlotte Mills
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | - Siew Mooi Ching
- Department of Family Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang
- Department of Medical Sciences, School of Medical and Live Sciences, Sunway University, Bandar Sunway, Selangor, Malaysia
| | - Dinesh Neupane
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, USA
| | - Francine Z. Marques
- Hypertension Research Laboratory, School of Biological Sciences, Monash University
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne
| | - James E. Sharman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Liffert Vogt
- Department of Internal Medicine, Section Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | - Louise M. Burrell
- Department of Medicine, University of Melbourne, Austin Health, Melbourne, Australia
| | - Lyudmila Korostovtseva
- Department of Hypertension, Almazov National Medical Research Centre, St Petersburg, Russia
| | - Manja Zec
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, USA
- Colorado Program for Musculoskeletal Research, Department of Orthopedics, University of Colorado Anschutz Medical Campus, Aurora, USA
| | - Mansi Patil
- Department of Nutrition and Dietetics, Asha Kiran JHC Hospital, Chinchwad
- Hypertension and Nutrition, Core Group of IAPEN India, India
| | - Martin G. Schultz
- Department of Internal Medicine, Section Nephrology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, The Netherlands
| | | | - Nicolás F. Renna
- Unit of Hypertension, Hospital Español de Mendoza, School of Medicine, National University of Cuyo, IMBECU-CONICET, Mendoza, Argentina
| | | | - Swapnil Hiremath
- Department of Medicine, University of Ottawa and the Ottawa Hospital, Ottawa, Canada
| | - Tshewang Gyeltshen
- Graduate School of Public Health, St. Luke's International University, Tokyo, Japan
| | - Yook-Chin Chia
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Selangor
- Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Abhinav Gupta
- Department of Medicine, Acharya Shri Chander College of Medical Sciences and Hospital, Jammu, India
| | - Aletta E. Schutte
- School of Population Health, University of New South Wales, The George Institute for Global Health, Sydney, New South Wales, Australia
- Hypertension in Africa Research Team, SAMRC Unit for Hypertension and Cardiovascular Disease, North-West University
- SAMRC Developmental Pathways for Health Research Unit, School of Clinical Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Britt Klein
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Claudio Borghi
- Department of Medical and Surgical Sciences, Faculty of Medicine, University of Bologna, Bologna, Italy
| | - Colette J. Browning
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Marta Czesnikiewicz-Guzik
- School of Medicine, Dentistry and Nursing-Dental School, University of Glasgow, UK
- Department of Periodontology, Prophylaxis and Oral Medicine; Jagiellonian University, Krakow, Poland
| | - Hae-Young Lee
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea
| | - Hiroshi Itoh
- Department of Internal Medicine (Nephrology, Endocrinology and Metabolism), Keio University, Tokyo
| | - Katsuyuki Miura
- NCD Epidemiology Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Mattias Brunström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Norm R.C. Campbell
- Libin Cardiovascular Institute, Department of Medicine, University of Calgary, Calgary, Canada
| | | | - Praveen Veerabhadrappa
- Kinesiology, Division of Science, The Pennsylvania State University, Reading, Pennsylvania
| | - Richard D. Wainford
- Department of Pharmacology and Experimental Therapeutics, The Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston
- Division of Cardiology, Emory University, Atlanta, USA
| | - Ruan Kruger
- Hypertension in Africa Research Team (HART), North-West University, Potchefstroom
- MRC Research Unit for Hypertension and Cardiovascular Disease, North-West University, Potchefstroom, South Africa
| | - Shane A. Thomas
- Health Innovation and Transformation Centre, Federation University Australia, Ballarat, Australia
| | - Takahiro Komori
- Division of Cardiovascular Medicine, Department of Medicine, Jichi Medical University School of Medicine, Tochigi, Japan
| | - Udaya Ralapanawa
- Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - Vikas Kapil
- William Harvey Research Institute, Centre for Cardiovascular Medicine and Devices, NIHR Barts Biomedical Research Centre, BRC, Faculty of Medicine and Dentistry, Queen Mary University London
- Barts BP Centre of Excellence, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Yan Li
- Department of Cardiovascular Medicine, Shanghai Institute of Hypertension, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai
| | - Yuqing Zhang
- Department of Cardiology, Fu Wai Hospital, Chinese Academy of Medical Sciences, Chinese Hypertension League, Beijing, China
| | - Tazeen H. Jafar
- Program in Health Services and Systems Research, Duke-NUS Medical School, Singapore
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| | - Nadia Khan
- Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Bryan Williams
- University College London (UCL), Institute of Cardiovascular Science, National Institute for Health Research (NIHR), UCL Hospitals Biomedical Research Centre, London, UK
| | - George Stergiou
- Hypertension Centre STRIDE-7, School of Medicine, Third Department of Medicine, Sotiria Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Maciej Tomaszewski
- Division of Cardiovascular Sciences, Faculty of Medicine, Biology and Health, University of Manchester
- Manchester Academic Health Science Centre, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
69
|
Zhu F, Yu H, Fan X, Ding Z, Wang Q, Zhou J. Particulate air pollution and cardiovascular disease mortality in Jiangsu Province, China: a time-series analysis between 2015 and 2021. Front Public Health 2023; 11:1218479. [PMID: 38174084 PMCID: PMC10761421 DOI: 10.3389/fpubh.2023.1218479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
Introduction Previous time-series studies have revealed a positive association between particulate matter (PM) and acute cardiovascular effects. However, the evidence mostly comes from developed countries and regions, while the majority of air-pollution-related deaths occur in developing countries. To assess the effect of short-term exposure to PM on daily cause-specific cardiovascular disease (CVD) mortality in Jiangsu Province, China, we investigated 1,417,773 CVD deaths from 2015 to 2021 in Jiangsu. Methods The city-specific association was estimated using generalized additive models with quasi-Poisson regression, and then, random effects meta-analysis was performed to estimate the pooled provincial-average associations between acute exposure to PM2.5 and PM10 and cardiovascular disease mortality. To test the independence of PM from gaseous pollutants, we fitted two-pollutant models. Mortality data were also stratified by sex, age, and region to investigate the modification of associations. The exposure-response (E-R) curve from each city was combined using meta-analysis to drive the provincial-level E-R curve. Results The results showed that each 10-μg/m3 increase in the PM2.5 concentration was associated with a 0.723% [95% confidence interval (CI): 0.512, 0.935] increase in daily total CVD mortality, a 0.669% (95% CI: 0.461, 0.878) increase in CHD mortality, a 0.758% (95% CI: 0.584, 0.931) increase in stroke mortality, a 0.512% (95% CI: 0.245, 0.780) increase in ICH mortality, and a 0.876% (95% CI: 0.637, 1.116) increase in CI mortality. The corresponding increases in daily mortality rates for the same increase in the PM10 concentration were 0.424% (95% CI: 0.293, 0.556), 0.415% (95% CI: 0.228, 0.602), 0.444% (95% CI: 0.330, 0.559), 0.276% (95% CI: 0.026, 0.526), and 0.510% (95% CI: 0.353, 0.667), respectively. The association between PM and total CVD mortality remained significant after adjusting for gaseous pollutants. Females, older adults and districts with lower average PM levels are more sensitive, especially for PM10. The E-R curve for PM on CVD mortality is steeper at lower concentrations and flattens out at higher concentrations. The estimates remained generally consistent in sensitivity analyses when excluding the data during the COVID-19 pandemic period. Discussion Our time-series study provides evidence of positive associations between acute exposure to PM2.5 and PM10 and total and cause-specific cardiovascular disease mortality in developing countries.
Collapse
Affiliation(s)
- Fangyu Zhu
- Department of Non-communicable Chronic Disease and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Hao Yu
- Department of Non-communicable Chronic Disease and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Xikang Fan
- Department of Non-communicable Chronic Disease and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Zhen Ding
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Qingqing Wang
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jinyi Zhou
- Department of Non-communicable Chronic Disease and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
70
|
Ranjdoost F, Ghaffari ME, Azimi F, Mohammadi A, Fouladi-Fard R, Fiore M. Association between air pollution and sudden sensorineural hearing loss (SSHL): A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2023; 239:117392. [PMID: 37838197 DOI: 10.1016/j.envres.2023.117392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/23/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Recent studies have indicated that air pollution (AP) has harmful effects on hearing and ear diseases such as Sudden Sensorineural Hearing Loss (SSHL). The purpose of this study was to evaluate the impact of exposure to AP on SSHL incidence. Valid electronic databases were searched to retrieve studies published until December 1, 2022, using appropriate keywords. The result of the search was 1146 studies, and after screening according to the defined criteria, in total 8 studies were obtained. The risk of bias (ROB) in the studies and their quality were assessed. Finally, the meta-analysis with a significance level of 5% was performed. The findings revealed that the mean level of SO2, CO, NO2, and PM10 in the patient group was more than that of the control group, and p-values were 0.879, 0.144, 0.077, and 0.138, respectively. There was an indirect relation between air pollutants and SSHL, and PM2.5 showed a significant effect (p < 0.05). Given the limited research and the use of different statistical methods, more research is suggested to confirm this association and to determine the mechanisms by which AP exposure may cause SSHL.
Collapse
Affiliation(s)
- Fatemeh Ranjdoost
- Research Center for Environmental Pollutants, Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, Iran.
| | - Mohammad-Ebrahim Ghaffari
- Department of Epidemiology and Biostatistics, Faculty of Health, Qom University of Medical Sciences, Qom, Iran.
| | - Faramarz Azimi
- Environmental Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Amir Mohammadi
- Social Determinants of Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran.
| | - Reza Fouladi-Fard
- Research Center for Environmental Pollutants, Department of Environmental Health Engineering, Faculty of Health, Qom University of Medical Sciences, Qom, Iran; Environmental Health Research Center, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Maria Fiore
- Department of Medical, Surgical and Advanced Technologies "G.F. Ingrassia", University of Catania, 87-95123, Catania, Italy.
| |
Collapse
|
71
|
Liu J, Zhao K, Qian T, Li X, Yi W, Pan R, Huang Y, Ji Y, Su H. Association between ambient air pollution and thyroid hormones levels: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166780. [PMID: 37660827 DOI: 10.1016/j.scitotenv.2023.166780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/12/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Growing studies have focused on the effects of ambient air pollution on thyroid hormones (THs), but the results were controversial. Therefore, a systematic review and meta-analysis was conducted by pooling current evidence on this association. METHODS Four databases were searched for studies examining the associations of particulate matter [diameter ≤10 μm (PM10) or ≤2.5 μm (PM2.5)] and gaseous [sulfur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO)] pollutants with THs levels. Random effects models were used to pool the changes in THs levels with increasing air pollutant concentrations. Subgroup analyses were constructed by region, design, sample size, pollutant concentrations, evaluated methods, and potential risk exposure windows. RESULTS A total of 14 studies covering 357,226 participants were included in this meta-analysis. The pooled results showed significant associations of exposure to PM2.5, PM10, NO2, SO2, and CO with decreases in free thyroxine (FT4) with percent changes (PC) ranging from -0.593 % to -3.925 %. PM2.5, NO2, and CO were negatively associated with levels of FT4/FT3 (PC: from -0.604 % to -2.975 %). In addition, results showed significant associations of PM2.5 with hypothyroxinemia and high thyroid-stimulating hormone (TSH). Subgroup analyses indicated that PM2.5 and NO2 were significantly associated with FT4 in studies of Chinese, and similar significant findings were found in studies of PM2.5 and FT4/FT3 in areas with higher concentrations of air pollutants and larger samples. PM2.5 exposure in the first trimester was found to be associated with lower FT4 levels in pregnant women. CONCLUSION Our findings suggest that exposure to air pollution is associated with changes in THs levels. Enhanced management of highly polluted areas, identification of harmful components and sources of PM, and protection from harmful exposures in early pregnancy may be of great public health importance for the population's thyroid function.
Collapse
Affiliation(s)
- Jintao Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Kefu Zhao
- Hefei Center for Disease Control and Prevention, Hefei, Anhui, China
| | - Tingting Qian
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Xuanxuan Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Weizhuo Yi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Rubing Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China
| | - Yuee Huang
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China
| | - Yifu Ji
- Anhui Mental Health Center, Hefei, Anhui, China.
| | - Hong Su
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, China.
| |
Collapse
|
72
|
Sun M, Li T, Sun Q, Ren X, Sun Z, Duan J. Associations of long-term particulate matter exposure with cardiometabolic diseases: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166010. [PMID: 37541522 DOI: 10.1016/j.scitotenv.2023.166010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/03/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND This review aimed to establish a holistic perspective of long-term PM exposure and cardiometabolic diseases, identify long-term PM-related cardiovascular and metabolic risk factors, and provide practical significance to preventative measures. METHOD A combination of computer and manual retrieval was used to search for keywords in PubMed (2903 records), Embase (2791 records), Web of Science (5488 records) and Cochrane Library (163 records). Finally, a total of 82 articles were considered in this meta-analysis. Stata 13.0 was accustomed to inspecting the studies' heterogeneity and calculating the combined effect value (RR) by selecting the matching models. The subgroup analysis, sensitivity analysis and publication bias tests were also performed. RESULTS Meta-analysis figured an association between PM and cardiometabolic diseases. PM2.5 (per 10 μg/m3 increase) boosted the risk of hypertension (RR = 1.14, 95 % CI: 1.09-1.19), coronary heart disease (CHD) (RR = 1.21, 95 % CI: 1.08-1.35), diabetes (RR = 1.16, 95 % CI: 1.11-1.21) and stroke (including ischemic stroke and hemorrhagic stroke). PM10 (per 10 μg/m3 increase) elevated the incidence of hypertension (RR = 1.11, 95 % CI: 1.07-1.16) and diabetes (RR = 1.26, 95 % CI: 1.08-1.47). PM1 (per 10 μg/m3 increase) exposure increased the risk of total dyslipidemia, yielding the RR of 1.10 (95 % CI: 1.01-1.18). Furthermore, the elderly, overweight and higher background pollutant level were potentially susceptible to related diseases. CONCLUSION There was a virtual connection between long-term exposure to PM and cardiometabolic diseases. PM2.5 or PM10 (per 10 μg/m3) increased the risk of hypertension, CHD, diabetes, stroke and dyslipidemia, causing cardiovascular "multimorbidity" in high-risk populations.
Collapse
Affiliation(s)
- Mengqi Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Tianyu Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Qinglin Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Xiaoke Ren
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, PR China.
| |
Collapse
|
73
|
Na S, Park JT, Kim S, Han J, Jung S, Kwak K. Association between ambient particulate matter levels and hypertension: results from the Korean Genome and Epidemiology Study. Ann Occup Environ Med 2023; 35:e51. [PMID: 38274360 PMCID: PMC10808086 DOI: 10.35371/aoem.2023.35.e51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/19/2023] [Accepted: 11/15/2023] [Indexed: 01/27/2024] Open
Abstract
Background Recently, there has been increasing worldwide concern about outdoor air pollution, especially particulate matter (PM), which has been extensively researched for its harmful effects on the respiratory system. However, sufficient research on its effects on cardiovascular diseases, such as hypertension, remains lacking. In this study, we examine the associations between PM levels and hypertension and hypothesize that higher PM concentrations are associated with elevated blood pressure. Methods A total of 133,935 adults aged ≥ 40 years who participated in the Korean Genome and Epidemiology Study were analyzed. Multiple linear regression analyses were conducted to investigate the short- (1-14 days), medium- (1 and 3 months), and long-term (1 and 2 years) impacts of PM on blood pressure. Logistic regression analyses were conducted to evaluate the medium- and long-term effects of PM on blood pressure elevation after adjusting for sex, age, body mass index, health-related lifestyle behaviors, and geographic areas. Results Using multiple linear regression analyses, both crude and adjusted models generated positive estimates, indicating an association with increased blood pressure, with all results being statistically significant, with the exception of PM levels over the long-term period (1 and 2 years) in non-hypertensive participants. In the logistic regression analyses on non-hypertensive participants, moderate PM10 (particulate matter with diameters < 10 μm) and PM2.5 (particulate matter with diameters < 2.5 μm) levels over the long-term period and all high PM10 and PM2.5 levels were statistically significant after adjusting for various covariates. Notably, high PM2.5 levels of the 1 year exhibited the highest odds ratio of 1.23 (95% confidence interval: 1.19-1.28) after adjustment. Conclusions These findings suggest that both short- and long-term exposure to PM is associated with blood pressure elevation.
Collapse
Affiliation(s)
- Sewhan Na
- Department of Occupational and Environmental Medicine, Korea University Ansan Hospital, Ansan, Korea
- Department of Environmental Health Sciences, Seoul National University Graduate School of Public Health, Seoul, Korea
| | - Jong-Tae Park
- Department of Occupational and Environmental Medicine, Korea University Ansan Hospital, Ansan, Korea
- Department of Occupational and Environmental Medicine, Korea University College of Medicine, Seoul, Korea
- Department of Environmental and Occupational Health, Korea University Graduate School of Public Health, Seoul, Korea
| | - Seungbeom Kim
- Department of Occupational and Environmental Medicine, Korea University Ansan Hospital, Ansan, Korea
| | - Jinwoo Han
- Department of Occupational and Environmental Medicine, Korea University Ansan Hospital, Ansan, Korea
| | - Saemi Jung
- Department of Occupational and Environmental Medicine, Pusan National University Yangsan Hospital, Yangsan, Korea
| | - Kyeongmin Kwak
- Department of Occupational and Environmental Medicine, Korea University Ansan Hospital, Ansan, Korea
- Department of Occupational and Environmental Medicine, Korea University College of Medicine, Seoul, Korea
- Department of Environmental and Occupational Health, Korea University Graduate School of Public Health, Seoul, Korea
| |
Collapse
|
74
|
Lin X, Cai M, Tan K, Liu E, Wang X, Song C, Wei J, Lin H, Pan J. Ambient particulate matter and in-hospital case fatality of acute myocardial infarction: A multi-province cross-sectional study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115731. [PMID: 38007949 DOI: 10.1016/j.ecoenv.2023.115731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
The acute myocardial infarction (AMI) outcomes have been extensively linked with ambient particulate matter (PM). However, whether a smaller particle has greater impact and the consequent attributable burden associated with PM of different sizes remain unclear. We conducted a multi-province cross-sectional study among AMI patients using the inpatient discharge datasets from four Chinese provinces (Shanxi, Sichuan, Guangxi, and Guangdong) from 2014 to 2019. Ambient PM exposure for each patient was assessed using the ChinaHighAirPollutants dataset. We employed the mixed-effects logistic regression models to evaluate the association of PM of different sizes (PM1, PM2.5, PM10) on in-hospital case fatality. The potential reducible fractions in in-hospital case fatality were estimated through counterfactual analyses. Of 177,749 participants, 125,501 (70.6 %) were male and the in-hospital case fatality rate was 4.9%. For short-term (7-day average) exposure, the odds ratios (ORs) for PM1, PM2.5, and PM10 (per 10 µg/m3) were 1.052 (95 % confidence interval [CI], 1.032-1.071), 1.026 (95 % CI, 1.014-1.037), and 1.016 (95% CI, 1.008-1.024), respectively. The estimated ORs for long-term exposure (annual average) were 1.303 (95 % CI, 1.252-1.356) for PM1, 1.209 (95 % CI, 1.178-1.241) for PM2.5, 1.157 (95 % CI, 1.134-1.181) for PM10. Short-term exposure to PM1 showed the highest potential reducible fraction (8.5 %, 95 % CI, 5.0-11.7 %), followed by PM2.5 and PM10, while the greatest potential reducible fraction of long-term exposure was observed in PM10 (30.9 %, 95 % CI, 27.2-34.4%), followed by PM2.5 and PM1. In summary, PM with smaller size had a more pronounced impact on in-hospital AMI case fatality, with PM1 exhibiting greater effects than PM2.5 and PM10. Substantial health benefits for AMI patients could be achieved by mitigating ambient PM exposure.
Collapse
Affiliation(s)
- Xiaojun Lin
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; West China-PUMC C.C. Chen Institute of Health, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China
| | - Miao Cai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, Zhongshan 2nd road, Yuexiu District, Guangzhou, Guangdong 510080, China
| | - Kun Tan
- Health Information Center of Sichuan Province, No. 39, Wangjiaguai Street, Chengdu, Sichuan 610041, China
| | - Echu Liu
- Department of Health Management and Policy, College for Public Health and Social Justice, Saint Louis University, St. Louis, MO 63103, USA
| | - Xiuli Wang
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; West China-PUMC C.C. Chen Institute of Health, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China
| | - Chao Song
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; Institute for Healthy Cities and West China Research Center for Rural Health Development, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; West China-PUMC C.C. Chen Institute of Health, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA.
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, No. 74, Zhongshan 2nd road, Yuexiu District, Guangzhou, Guangdong 510080, China.
| | - Jay Pan
- HEOA Group, West China School of Public Health and West China Fourth Hospital, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; West China-PUMC C.C. Chen Institute of Health, Sichuan University, No. 16, Section 3, Ren Min Nan Road, Chengdu, Sichuan 610041, China; China Center for South Asian Studies, Sichuan University, No.24 South Section I, Yihuan Road, Chengdu, Sichuan 610065, China.
| |
Collapse
|
75
|
Wright KN, Melnyk AI, Emont J, Van Dis J. Sustainability in Obstetrics and Gynecology. Obstet Gynecol 2023; 142:1341-1346. [PMID: 37944151 DOI: 10.1097/aog.0000000000005435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023]
Abstract
Current practices in the U.S. health care industry drive climate change. This review summarizes the vast research on the negative health effects of the climate crisis on patients as relevant to obstetrics and gynecology. We further propose solutions to decarbonize operating rooms, labor and delivery units, and nurseries and neonatal intensive care units through evidence-based reduction in our single-use supply, energy, and water, as well as anesthetic gases and appropriate waste sorting.
Collapse
Affiliation(s)
- Kelly N Wright
- Division of Minimally Invasive Gynecologic Surgery, Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, Los Angeles, California; the Division of Urogynecology and Pelvic Reconstructive Surgery, Department of Obstetrics, Gynecology, and Reproductive Sciences, Pittsburgh, Pennsylvania; and the Department of Obstetrics and Gynecology, Columbia University Medical Center, and NewYork-Presbyterian Hospital, New York, and the Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, New York
| | | | | | | |
Collapse
|
76
|
Krittanawong C, Qadeer YK, Hayes RB, Wang Z, Thurston GD, Virani S, Lavie CJ. PM 2.5 and cardiovascular diseases: State-of-the-Art review. INTERNATIONAL JOURNAL OF CARDIOLOGY. CARDIOVASCULAR RISK AND PREVENTION 2023; 19:200217. [PMID: 37869561 PMCID: PMC10585625 DOI: 10.1016/j.ijcrp.2023.200217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 10/24/2023]
Abstract
Air pollution, especially exposure to particulate matter 2.5 (PM2.5), has been associated with an increase in morbidity and mortality around the world. Specifically, it seems that PM2.5 promotes the development of cardiovascular risk factors such as hypertension and atherosclerosis, while being associated with an increased risk of cardiovascular diseases, including myocardial infarction (MI), stroke, heart failure, and arrhythmias. In this review, we seek to elucidate the pathophysiological mechanisms by which exposure to PM2.5 can result in adverse cardiovascular outcomes, in addition to understanding the link between exposure to PM2.5 and cardiovascular events. It is hypothesized that PM2.5 functions via 3 mechanisms: increased oxidative stress, activation of the inflammatory pathway of the immune system, and stimulation of the autonomic nervous system which ultimately promote endothelial dysfunction, atherosclerosis, and systemic inflammation that can thus lead to cardiovascular events. It is important to note that the various cardiovascular associations of PM2.5 differ regarding the duration of exposure (short vs long) to PM2.5, the source of PM2.5, and regulations regarding air pollution in the area where PM2.5 is prominent. Current strategies to reduce PM2.5 exposure include personal strategies such as avoiding high PM2.5 areas such as highways or wearing masks outdoors, to governmental policies restricting the amount of PM2.5 produced by organizations. This review, by highlighting the significant impact between PM2.5 exposure and cardiovascular health will hopefully bring awareness and produce significant change regarding dealing with PM2.5 levels worldwide.
Collapse
Affiliation(s)
| | | | - Richard B. Hayes
- Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Zhen Wang
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
- Division of Health Care Policy and Research, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - George D. Thurston
- Department of Environmental Medicine, New York University School of Medicine, Tuxedo, New York, USA
| | - Salim Virani
- Section of Cardiology, Baylor College of Medicine, Houston, TX, USA
- The Aga Khan University, Karachi, Pakistan
| | - Carl J. Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School, The University of Queensland School of Medicine, New Orleans, LA, USA
| |
Collapse
|
77
|
Wang T, Han Y, Chen X, Chen W, Li H, Wang Y, Qiu X, Gong J, Li W, Zhu T. Particulate Air Pollution and Blood Pressure: Signaling by the Arachidonate Metabolism. Hypertension 2023; 80:2687-2696. [PMID: 37869894 DOI: 10.1161/hypertensionaha.123.21410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Short-term exposure to ambient particulate matter (PM) can raise blood pressure, but the underlying mechanisms are unclear. We explored whether arachidonate metabolites serve as biological intermediates in PM-associated prohypertensive changes. METHODS This panel study recruited 110 adults aged 50 to 65 years living in Beijing, China. The participants' blood pressure, arterial stiffness, and cardiac and endothelial function were measured up to 7 times. The serum concentrations of arachidonate metabolites were quantified by targeted lipidomics. Ambient concentrations of fine PM (PM2.5), black carbon, and accumulation mode particles were continuously monitored at a station and their associations with the health indicators were evaluated. RESULTS Interquartile range increases in 25 to 96-hour-lag exposure to PM2.5, black carbon, and accumulation mode particles were associated with significant increases in systolic blood pressure (brachial: 0.8-3.2 mm Hg; central: 0.7-2.8 mm Hg) and diastolic blood pressure (brachial, 0.5-1.5 mm Hg; central, 0.5-1.6 mm Hg). At least 1 pollutant was associated with increases in augmentation pressure and heart rate and decreases in reactive hyperemia index and ejection time. The serum concentrations of arachidonate were significantly increased by 3.3% to 14.6% in association with PM exposure, which mediated 9% of the PM-associated increases in blood pressure. The levels of eicosanoids from the cytochrome P450, cyclooxygenase, and lipoxygenase pathways changed with PM exposure, and those from the cytochrome pathway significantly mediated the association between PM exposure and blood pressure. CONCLUSIONS Short-term exposure to particulate air pollution was associated with a prohypertensive change in adults, which was in part mediated by alteration of arachidonate metabolism.
Collapse
Affiliation(s)
- Teng Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
- School of Health Policy and Management, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing (T.W.)
| | - Yiqun Han
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
- Environmental Research Group, MRC Centre for Environment and Health, Imperial College London, United Kingdom (Y.H.)
| | - Xi Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
- GRiC, Shenzhen Institute of Building Research Co., Ltd., China (X.C.)
| | - Wu Chen
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles (W.C.)
| | - Haonan Li
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
| | - Yanwen Wang
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China (Y.W.)
| | - Xinghua Qiu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
| | - Jicheng Gong
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
| | - Weiju Li
- Peking University Hospital (W.L.), Peking University, Beijing, China
| | - Tong Zhu
- BIC-ESAT and SKL-ESPC, College of Environmental Sciences and Engineering (T.W., Y.H., X.C., W.C., H.L., Y.W., X.Q., J.G., T.Z.), Peking University, Beijing, China
| |
Collapse
|
78
|
Liang X, Liang L, Fan Y. Two-sample mendelian randomization analysis investigates ambient fine particulate matter's impact on cardiovascular disease development. Sci Rep 2023; 13:20129. [PMID: 37978283 PMCID: PMC10656567 DOI: 10.1038/s41598-023-46816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023] Open
Abstract
PM2.5, a key component of air pollution, significantly threatens public health. Cardiovascular disease is increasingly associated with air pollution, necessitating more research. This study used a meticulous two-sample Mendelian randomization (MR) approach to investigate the potential causal link between elevated PM2.5 levels and 25 types of cardiovascular diseases. Data sourced from the UK Biobank, focusing on individuals of European ancestry, underwent primary analysis using Inverse Variance Weighting. Additional methods such as MR-Egger, weighted median, Simple mode, and Weighted mode provided support. Sensitivity analyses assessed instrument variable heterogeneity, pleiotropy, and potential weak instrument variables. The study revealed a causal link between PM2.5 exposure and higher diagnoses of Atherosclerotic heart disease (primary or secondary, OR [95% CI] 1.0307 [1.0103-1.0516], p-value = 0.003 and OR [95% CI] 1.0179 [1.0028-1.0333], p-value = 0.0202) and Angina pectoris (primary or secondary, OR [95% CI] 1.0303 [1.0160-1.0449], p-value = 3.04e-05 and OR [95% CI] 1.0339 [1.0081-1.0603], p-value = 0.0096). Additionally, PM2.5 exposure increased the likelihood of diagnoses like Other forms of chronic ischaemic heart disease (secondary, OR [95% CI] 1.0193 [1.0042-1.0346], p-value = 0.0121), Essential hypertension (secondary, OR [95% CI] 1.0567 [1.0142-1.1010], p-value = 0.0085), Palpitations (OR [95% CI] 1.0163 [1.0071-1.0257], p-value = 5e-04), and Stroke (OR [95% CI] 1.0208 [1.0020-1.0401], p-value = 0.0301). Rigorous sensitivity analyses confirmed these significant findings' robustness and validity. Our study revealed the causal effect between higher PM2.5 concentrations and increased cardiovascular disease risks. This evidence is vital for policymakers and healthcare providers, urging targeted interventions to reduce PM2.5 levels.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lianjing Liang
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yuchao Fan
- Department of Anesthesiology, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of the University of Electronic Science and Technology of China, No. 55, Section 4, Renmin South Road, Chengdu, 610041, Sichuan Province, China.
| |
Collapse
|
79
|
Mallah MA, Soomro T, Ali M, Noreen S, Khatoon N, Kafle A, Feng F, Wang W, Naveed M, Zhang Q. Cigarette smoking and air pollution exposure and their effects on cardiovascular diseases. Front Public Health 2023; 11:967047. [PMID: 38045957 PMCID: PMC10691265 DOI: 10.3389/fpubh.2023.967047] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 06/26/2023] [Indexed: 12/05/2023] Open
Abstract
Cardiovascular disease (CVD) has no socioeconomic, topographical, or sex limitations as reported by the World Health Organization (WHO). The significant drivers of CVD are cardio-metabolic, behavioral, environmental, and social risk factors. However, some significant risk factors for CVD (e.g., a pitiable diet, tobacco smoking, and a lack of physical activities), have also been linked to an elevated risk of cardiovascular disease. Lifestyles and environmental factors are known key variables in cardiovascular disease. The familiarity with smoke goes along with the contact with the environment: air pollution is considered a source of toxins that contribute to the CVD burden. The incidence of myocardial infarction increases in males and females and may lead to fatal coronary artery disease, as confirmed by epidemiological studies. Lipid modification, inflammation, and vasomotor dysfunction are integral components of atherosclerosis development and advancement. These aspects are essential for the identification of atherosclerosis in clinical investigations. This article aims to show the findings on the influence of CVD on the health of individuals and human populations, as well as possible pathology and their involvement in smoking-related cardiovascular diseases. This review also explains lifestyle and environmental factors that are known to contribute to CVD, with indications suggesting an affiliation between cigarette smoking, air pollution, and CVD.
Collapse
Affiliation(s)
| | - Tahmina Soomro
- Department of Sociology, Shah Abdul Latif University, Khairpur, Pakistan
| | - Mukhtiar Ali
- Department of Chemical Engineering, Quaid-e-Awam University of Engineering, Science and Technology, Nawabshah, Sindh, Pakistan
| | - Sobia Noreen
- Department of Pharmaceutics Technology, Institute of Pharmacy, University of Innsbruck, Insbruck, Austria
| | - Nafeesa Khatoon
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Akriti Kafle
- School of Nursing, Zhengzhou University, Zhengzhou, China
| | - Feifei Feng
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wei Wang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Muhammad Naveed
- Department of Physiology and Pharmacology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH, United States
| | - Qiao Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
80
|
Doheny BM, Inglis JJ, Boll KA, Lunos S, Surapaneni VL. Short animated video increases knowledge and perceived comfort in clinical counseling on inequitable health impacts of air pollution among interprofessional health learners and clinicians. BMC MEDICAL EDUCATION 2023; 23:858. [PMID: 37953249 PMCID: PMC10642052 DOI: 10.1186/s12909-023-04785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Air pollution is a major health risk contributing to global morbidity and mortality, yet clinicians do not routinely engage in counseling patients on this topic. Clinicians cite their lack of education as a common barrier. We developed a two-minute animated video on mitigating air pollution health risks and evaluated the efficacy of this video as an educational tool. METHODS In March-June 2021, a convenience sample of Minnesota interprofessional health learners and clinicians viewed the video and completed an electronic survey that assessed pre-/post-video intervention changes in (a) didactic and clinically applied knowledge on health impacts of air pollution, (b) perceived comfort in identifying at-risk patients and counseling them on relevant preventive health behaviors, (c) intentions/barriers to counseling patients, (d) beliefs and attitudes related to the health harms of air pollution, and (e) perceptions of the overall acceptability of the intervention. RESULTS The 218 participants included learners and clinicians in medicine, nursing, and advanced practice provision. Respondents' knowledge scores and self-reported level of comfort in identifying high-risk patients and counseling them on preventative health behaviors increased significantly pre-/post-intervention. The video also effectively altered participants' misperceptions about the health impacts of air pollution. While less than half of participants (43.6%) reported they intended to engage in counseling patients as a result of watching the video, 52.3% indicated they might do so. Lack of time during clinical encounters and lack of training were reported as persistent barriers to engaging in this counseling. Overall, participants found the video to be an effective educational tool, indicating that they wanted their colleagues and patients to watch the video and would like to see further short, animated videos on other environmental health topics. CONCLUSIONS A two-minute animated educational video significantly improved knowledge of inequitable health impacts of air pollution and improved perceived comfort in identifying and counseling at-risk patients among health professional learners and clinicians regardless of profession, level of training, or pre-intervention knowledge level. Academic health professional training programs and health systems should consider adopting this modality as a tool for educating learners, clinicians, and patients on environmental health risks.
Collapse
Affiliation(s)
- Brenna M Doheny
- Department of Family Medicine and Biobehavioral Health, University of Minnesota Medical School, Duluth campus, 1035 University Drive, Duluth, MN, 55812-3031, USA.
| | - Jack J Inglis
- Hennepin Healthcare, 701 Park Avenue, MN, Minneapolis, 55415, USA
| | - Karly A Boll
- Hennepin Healthcare, 701 Park Avenue, MN, Minneapolis, 55415, USA
| | - Scott Lunos
- Biostatistical Design and Analysis Center, Clinical and Translational Science Institute, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
81
|
Yang C, Jiang J, Zhou J, Hitosug M, Wang Z. Traffic safety and public health in China - Past knowledge, current status, and future directions. ACCIDENT; ANALYSIS AND PREVENTION 2023; 192:107272. [PMID: 37683567 DOI: 10.1016/j.aap.2023.107272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/08/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
Transportation-related harms have developed into a social disease, threatening public safety and health in China. We aimed to increase the global understanding of traffic safety and public health in China from past knowledge, current status, and future directions by collecting, collating, and analyzing the Chinese traffic incidents reported in the published literature. A systematic search of China National Knowledge Infrastructure, Weipu, and published articles referenced in PubMed, Web of Science and ProQuest between January 1, 1988 and April 30, 2023 was performed. China encountered the first recorded traffic accident as early as three thousand years ago in the Shang Dynasty. An increase in vehicle capacity and velocity increased the traffic risks during the transition from rickshaws and livestock to motor vehicles in varying traffic environments. Humans are not only the decisive factor of a large number of vehicles, traffic routes, and environmental variables, but also the victims at the end and starting point of traffic accidents. Injuries (mechanical force, burns) and diseases (traffic-related air pollution, noise) caused by traffic activities not only threaten public health, but also cause risks to safe driving. Analysis of traffic activities and biomarkers promotes the treatment of traffic injuries in ethology and medicine. China prepared for the construction of healthy transportation in the "decade of road safety" toward an estimation of worldwide road traffic injuries in 2030. Improvement of traffic safety concerning public health under the "Outline of the National Comprehensive Three-dimensional Transportation Network Planning" in China will propel the realization of worldwide traffic environmental advancement.
Collapse
Affiliation(s)
- Ce Yang
- State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Research Institute of Traffic Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China.
| | - Jianxin Jiang
- State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Research Institute of Traffic Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Jihong Zhou
- State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Research Institute of Traffic Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China
| | - Masahito Hitosug
- Department of Legal Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Zhengguo Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Research Institute of Surgery, Research Institute of Traffic Medicine, Daping Hospital, Third Military Medical University, Chongqing 400042, PR China; International Traffic Medicine Association, Bloomfield Hills, MI, USA.
| |
Collapse
|
82
|
Chen Y, Zhao Y, Ran Z, Wang C, Wu Q, Li P, Jin T. Reply to "Comment on: Traffic-related organic and inorganic air pollution and risk of development of childhood asthma: A meta-analysis". ENVIRONMENTAL RESEARCH 2023; 236:116697. [PMID: 37487924 DOI: 10.1016/j.envres.2023.116697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Affiliation(s)
- Yunqian Chen
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Yizhuo Zhao
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China; School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, PR China
| | - Zheng Ran
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Chang Wang
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Qiong Wu
- Institute of Social Science Survey, Peking University, Beijing, 100871, PR China
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, 300384, PR China.
| | - Taosheng Jin
- Tianjin Key Laboratory of Urban Transport Emission Research, State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| |
Collapse
|
83
|
Wei J, Wang Y, Mo J, Fan C. One-year dataset of hourly air quality parameters from 100 air purifiers used in China residential buildings. Sci Data 2023; 10:715. [PMID: 37853016 PMCID: PMC10584929 DOI: 10.1038/s41597-023-02640-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023] Open
Abstract
Household air purifiers have been widely used as an effective approach to improving indoor air quality. Air purifiers can automatically record indoor air quality parameters, providing valuable data resources for in-depth data-driven analysis. This work presents a one-year hourly indoor air quality dataset collected by household air purifiers in 100 residential homes in 18 provinces across 4 different climate zones in China. The data were collected from July 1, 2021, to July 1, 2022. The concentrations of formaldehyde, PM2.5, TVOC, temperature, relative humidity, on/off status and the airflow rate of air purifiers during operations were recorded hourly. The data were carefully screened with possibly missing values imputed using chained equation-based methods if any. The dataset provides a comprehensive and detailed picture of the indoor air quality in residential buildings, enabling evaluations on the cleaning effect of air purifiers, the impact of outdoor climate change on indoor air quality, and the future trends in indoor human behavior.
Collapse
Affiliation(s)
- Jiaze Wei
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing, 100084, China
| | - Yan Wang
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing, 100084, China
| | - Jinhan Mo
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Department of Building Science, Tsinghua University, Beijing, 100084, China.
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China.
- Key Laboratory of Coastal Urban Resilient Infrastructures (Shenzhen University), Ministry of Education, Shenzhen, 518060, China.
- Key Laboratory of Eco Planning & Green Building (Tsinghua University), Ministry of Education, Beijing, 100084, China.
| | - Cheng Fan
- College of Civil and Transportation Engineering, Shenzhen University, Shenzhen, 518060, China.
- Key Laboratory of Coastal Urban Resilient Infrastructures (Shenzhen University), Ministry of Education, Shenzhen, 518060, China.
| |
Collapse
|
84
|
Hu S, Xu X, Li C, Zhang L, Xing X, He J, Guo P, Zhang J, Niu Y, Chen S, Zhang R, Liu F, Ma S, Zhang M, Guo F, Zhang M. Long-term exposure to ambient ozone at workplace is positively and non-linearly associated with incident hypertension and blood pressure: longitudinal evidence from the Beijing-Tianjin-Hebei medical examination cohort. BMC Public Health 2023; 23:2011. [PMID: 37845647 PMCID: PMC10577958 DOI: 10.1186/s12889-023-16932-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/07/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND There is limited longitudinal evidence on the hypertensive effects of long-term exposure to ambient O3. We investigated the association between long-term O3 exposure at workplace and incident hypertension, diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), and mean arterial pressure (MAP) in general working adults. METHODS We conducted a cohort study by recruiting over 30,000 medical examination attendees through multistage stratified cluster sampling. Participants completed a standard questionnaire and comprehensive medical examination. Three-year ambient O3 concentrations at each employed participant's workplace were estimated using a two-stage machine learning model. Mixed-effects Cox proportional hazards models and linear mixed-effects models were used to examine the effect of O3 concentrations on incident hypertension and blood pressure parameters, respectively. Generalized additive mixed models were used to explore non-linear concentration-response relationships. RESULTS A total of 16,630 hypertension-free working participants at baseline finished the follow-up. The mean (SD) O3 exposure was 45.26 (2.70) ppb. The cumulative incidence of hypertension was 7.11 (95% CI: 6.76, 7.47) per 100 person-years. Long-term O3 exposure was independently, positively and non-linearly associated with incident hypertension (Hazard ratios (95% CI) for Q2, Q3, and Q4 were 1.77 (1.34, 2.36), 2.06 (1.42, 3.00) and 3.43 (2.46, 4.79), respectively, as compared with the first quartile (Q1)), DBP (β (95% CI) was 0.65 (0.01, 1.30) for Q2, as compared to Q1), SBP (β (95% CI) was 2.88 (2.00, 3.77), 2.49 (1.36, 3.61) and 2.61 (1.64, 3.58) for Q2, Q3, and Q4, respectively), PP (β (95% CI) was 2.12 (1.36, 2.87), 2.03 (1.18, 2.87) and 2.14 (1.38, 2.90) for Q2, Q3, and Q4, respectively), and MAP (β (95% CI) was 1.39 (0.76, 2.02), 1.04 (0.24, 1.84) and 1.12 (0.43, 1.82) for Q2, Q3, and Q4, respectively). The associations were robust across sex, age, BMI, and when considering PM2.5 and NO2. CONCLUSIONS To our knowledge, this is the first cohort study in the general population that demonstrates the non-linear hypertensive effects of long-term O3 exposure. The findings are particularly relevant for policymakers and researchers involved in ambient pollution and public health, supporting the integration of reduction of ambient O3 into public health interventions.
Collapse
Affiliation(s)
- Songhua Hu
- School of Statistics and Data Science, Nankai University, Tianjin, China
- Big Data Center for Children's Medical Care, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Ximing Xu
- Big Data Center for Children's Medical Care, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Chunjun Li
- Tianjin Union Medical Center, Tianjin, China
| | - Li Zhang
- Tianjin First Central Hospital, Tianjin, China
| | - Xiaolong Xing
- School of Medicine, Nankai University, Tianjin, China
| | - Jiangshan He
- School of Medicine, Nankai University, Tianjin, China
| | - Pei Guo
- School of Medicine, Nankai University, Tianjin, China
| | - Jingbo Zhang
- Beijing Physical Examination Center, Beijing, China
| | - Yujie Niu
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, China
| | - Shuo Chen
- Beijing Physical Examination Center, Beijing, China
| | - Rong Zhang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, China
| | - Feng Liu
- Beijing Physical Examination Center, Beijing, China
| | - Shitao Ma
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, China
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, China
| | - Mianzhi Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Fenghua Guo
- School of Medicine, Nankai University, Tianjin, China
| | - Minying Zhang
- School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
85
|
Shen M, Li Y, Li S, Chen X, Zou B, Lu Y. Association of exposure to artificial light at night during adolescence with blood pressure in early adulthood. Chronobiol Int 2023; 40:1419-1426. [PMID: 37818634 DOI: 10.1080/07420528.2023.2266485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Artificial light at night (ALAN) is related to various diseases, such as cancer, obesity, and coronary heart disease. However, its impact on blood pressure in adolescents is not well understood. To investigate this, we conducted a cross-sectional study with a nationwide sample of college students in China, who were freshmen from four disperse universities during Sep. and Oct. 2018. Mean levels of ALAN at participants' residential addresses during 2013-2018 were estimated using time-varying satellite data. The association of the 6-y average of ALAN with blood pressure was estimated by using generalized linear mixed models. A total of 17 046 participants (18.2 ± 0.7 y of age, 46.79% female) from 2,412 counties and cities were included in the final analysis. After a full adjustment for potential confounders, ALAN was positively associated with systolic blood pressure (β = 0.20, p = 0.032) and pulse pressure (β = 0.28, p = 0.001), but there was no association between ALAN and diastolic blood pressure (β = -0.08, p = 0.213). In the sensitivity analysis, the results consistent with the main analysis were observed. The blood pressure of males and those with a BMI ≤24 kg/m2 were more susceptible to ALAN exposure. Our findings highlight the importance of ALAN management for blood pressure control, particularly among male and normal-weight individuals.
Collapse
Affiliation(s)
- Minxue Shen
- Department of Social Medicine and Health Management, Xiangya School of Public Health, Central South University, Changsha, China
| | - Yalan Li
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shenxin Li
- Department of Surveying and Remote Sensing Science, School of Geosciences and Info-physics, Central South University, Changsha, China
| | - Xiang Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Zou
- Department of Surveying and Remote Sensing Science, School of Geosciences and Info-physics, Central South University, Changsha, China
| | - Yao Lu
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha, China
- Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
86
|
Mahani MA, Karimvand AN, Naserifar N. Optimized hybrid dielectrophoretic microchip for separation of bioparticles. J Sep Sci 2023; 46:e2300257. [PMID: 37480169 DOI: 10.1002/jssc.202300257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Point-of-care diagnostics requires a smart separation of particles and/or cells. In this work, the multiorifice fluid fractionation as a passive method and dielectrophoresis-based actuator as an active tool are combined to offer a new device for size-based particle separation. The main objective of the combination of these two well-established techniques is to improve the performance of the multiorifice fluid fractionation by taking advantage of dielectrophoresis-based actuator for separating particles. Initially, by using numerical simulations, the effect of using dielectrophoresis-based actuator in multiorifice fluid fractionation on the separation of particles was investigated, and the size of the device was optimized by 25% compared to a device without dielectrophoresis-based actuator. Also, adding dielectrophoresis-based actuator to multiorifice fluid fractionation can extend the range of flow rates needed for separation. In the absence of dielectrophoresis-based actuator, the separation took place only when the flow rate is 100 μL/min, in the presence of dielectrophoresis-based actuator (20 Vp-p), the separation happened in flow rates ranging from 70 to 120 μL/min.
Collapse
Affiliation(s)
- Moheb Amir Mahani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | | - Naser Naserifar
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
87
|
Griggs S, Pignatiello G, Motairek I, Rieke J, Howard Q, Crawford SL, Rajagopalan S, Al-Kindi S, Hickman RL. Environmental exposures and blood pressure in adolescents and adults in the T1D exchange clinic registry. J Diabetes Complications 2023; 37:108594. [PMID: 37660429 PMCID: PMC10592032 DOI: 10.1016/j.jdiacomp.2023.108594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
AIMS To examine the associations between environmental determinants of health and blood pressure and whether age, sex, or race moderated the associations among 18,754 adolescents and adults from the type 1 diabetes (T1D) Exchange Clinic Registry. METHODS We used multivariable linear regression. Environmental determinants included exposure to ambient fine particulate matter (PM2.5, obtained from an integrated model), nitrogen dioxide (NO2), noise and light pollution, and the normalized difference vegetation index (NDVI, a marker of green space) at the ZIP code level of residence. RESULTS Higher exposure to PM2.5 and NO2, and lower NDVI, was associated with higher systolic and diastolic blood pressure, and higher light pollution exposure were similarly associated with higher diastolic blood pressure. These associations between environmental exposures and blood pressure remained significant after accounting for other covariates (age, sex, race/ethnicity, BMI, and T1D duration). With aging, the negative association between NDVI and blood pressure weakened. CONCLUSIONS These findings emphasize the significance of minimizing exposure to environmental pollutants, including PM2.5 and NO2, as well as ensuring access to areas with higher NDVI, to promote cardiovascular health in individuals with T1D.
Collapse
Affiliation(s)
- Stephanie Griggs
- Case Western Reserve University, Frances Payne Bolton School of Nursing, Cleveland, OH 44106, United States of America.
| | - Grant Pignatiello
- Case Western Reserve University, Frances Payne Bolton School of Nursing, Cleveland, OH 44106, United States of America; Case Western Reserve University, Frances Payne Bolton School of Nursing, United States of America.
| | - Issam Motairek
- Cardiovascular Phenomics Core, School of Medicine, Case Western Reserve University, United States of America.
| | - Jorden Rieke
- Case Western Reserve University, Frances Payne Bolton School of Nursing, Cleveland, OH 44106, United States of America; Case Western Reserve University, Frances Payne Bolton School of Nursing, United States of America.
| | - Quiana Howard
- Case Western Reserve University, Frances Payne Bolton School of Nursing, Cleveland, OH 44106, United States of America.
| | - Sybil L Crawford
- University of Massachusetts Chan Medical School, Tan Chingfen Graduate School of Nursing, Worcester, MA 01655, United States of America.
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, Case Western Reserve University, School of Medicine, United States of America.
| | - Sadeer Al-Kindi
- Center for Vascular Metabolic Disease, School of Medicine, United States of America.
| | - Ronald L Hickman
- Case Western Reserve University, Frances Payne Bolton School of Nursing, Cleveland, OH 44106, United States of America.
| |
Collapse
|
88
|
Duchesne J, Carrière I, Artero S, Brickman AM, Maller J, Meslin C, Chen J, Vienneau D, de Hoogh K, Jacquemin B, Berr C, Mortamais M. Ambient Air Pollution Exposure and Cerebral White Matter Hyperintensities in Older Adults: A Cross-Sectional Analysis in the Three-City Montpellier Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:107013. [PMID: 37878794 PMCID: PMC10599635 DOI: 10.1289/ehp12231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 09/28/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Growing epidemiological evidence suggests an adverse relationship between exposure to air pollutants and cognitive health, and this could be related to the effect of air pollution on vascular health. OBJECTIVE We aim to evaluate the association between air pollution exposure and a magnetic resonance imaging (MRI) marker of cerebral vascular burden, white matter hyperintensities (WMH). METHODS This cross-sectional analysis used data from the French Three-City Montpellier study. Randomly selected participants 65-80 years of age underwent an MRI examination to estimate their total and regional cerebral WMH volumes. Exposure to fine particulate matter (PM 2.5 ), nitrogen dioxide (NO 2 ), and black carbon (BC) at the participants' residential address during the 5 years before the MRI examination was estimated with land use regression models. Multinomial and binomial logistic regression assessed the associations between exposure to each of the three pollutants and categories of total and lobar WMH volumes. RESULTS Participants' (n = 582 ) median age at MRI was 70.7 years [interquartile range (IQR): 6.1], and 52% (n = 300 ) were women. Median exposure to air pollution over the 5 years before MRI acquisition was 24.3 (IQR: 1.7) μ g / m 3 for PM 2.5 , 48.9 (14.6) μ g / m 3 for NO 2 , and 2.66 (0.60) 10 - 5 / m for BC. We found no significant association between exposure to the three air pollutants and total WMH volume. We found that PM 2.5 exposure was significantly associated with higher risk of temporal lobe WMH burden [odds ratio (OR) for an IQR increase = 1.82 (95% confidence interval: 1.41, 2.36) for the second volume tercile, 2.04 (1.59, 2.61) for the third volume tercile, reference: first volume tercile]. Associations for other regional WMH volumes were inconsistent. CONCLUSION In this population-based study in older adults, PM 2.5 exposure was associated with increased risk of high WMH volume in the temporal lobe, strengthening the evidence on PM 2.5 adverse effect on the brain. Further studies looking at different markers of cerebrovascular damage are still needed to document the potential vascular effects of air pollution. https://doi.org/10.1289/EHP12231.
Collapse
Affiliation(s)
- Jeanne Duchesne
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| | - Isabelle Carrière
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| | - Sylvaine Artero
- Institute of Functional Genomics (IGF), University of Montpellier, CNRS, Inserm, Montpellier, France
| | - Adam M. Brickman
- Taub Institute for Research in Alzheimer’s Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, New York, USA
| | - Jerome Maller
- Monash Alfred Psychiatry Research Centre, Melbourne, Victoria, Australia
- General Electric Healthcare, Richmond, Victoria, Australia
| | - Chantal Meslin
- Centre for Mental Health Research, Australian National University, Canberra, Australia
| | - Jie Chen
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, the Netherlands
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Bénédicte Jacquemin
- Irset Institut de Recherche en Santé, Environnement et Travail, UMR-S 1085, Inserm, University of Rennes, EHESP, Rennes, France
| | - Claudine Berr
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| | - Marion Mortamais
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, Montpellier, France
| |
Collapse
|
89
|
Zou Z, Yoshimura Y, Yamanishi Y, Oki S. Elucidating disease-associated mechanisms triggered by pollutants via the epigenetic landscape using large-scale ChIP-Seq data. Epigenetics Chromatin 2023; 16:34. [PMID: 37743474 PMCID: PMC10518938 DOI: 10.1186/s13072-023-00510-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Despite well-documented effects on human health, the action modes of environmental pollutants are incompletely understood. Although transcriptome-based approaches are widely used to predict associations between chemicals and disorders, the molecular cues regulating pollutant-derived gene expression changes remain unclear. Therefore, we developed a data-mining approach, termed "DAR-ChIPEA," to identify transcription factors (TFs) playing pivotal roles in the action modes of pollutants. METHODS Large-scale public ChIP-Seq data (human, n = 15,155; mouse, n = 13,156) were used to predict TFs that are enriched in the pollutant-induced differentially accessible genomic regions (DARs) obtained from epigenome analyses (ATAC-Seq). The resultant pollutant-TF matrices were then cross-referenced to a repository of TF-disorder associations to account for pollutant modes of action. We subsequently evaluated the performance of the proposed method using a chemical perturbation data set to compare the outputs of the DAR-ChIPEA and our previously developed differentially expressed gene (DEG)-ChIPEA methods using pollutant-induced DEGs as input. We then adopted the proposed method to predict disease-associated mechanisms triggered by pollutants. RESULTS The proposed approach outperformed other methods using the area under the receiver operating characteristic curve score. The mean score of the proposed DAR-ChIPEA was significantly higher than that of our previously described DEG-ChIPEA (0.7287 vs. 0.7060; Q = 5.278 × 10-42; two-tailed Wilcoxon rank-sum test). The proposed approach further predicted TF-driven modes of action upon pollutant exposure, indicating that (1) TFs regulating Th1/2 cell homeostasis are integral in the pathophysiology of tributyltin-induced allergic disorders; (2) fine particulates (PM2.5) inhibit the binding of C/EBPs, Rela, and Spi1 to the genome, thereby perturbing normal blood cell differentiation and leading to immune dysfunction; and (3) lead induces fatty liver by disrupting the normal regulation of lipid metabolism by altering hepatic circadian rhythms. CONCLUSIONS Highlighting genome-wide chromatin change upon pollutant exposure to elucidate the epigenetic landscape of pollutant responses outperformed our previously described method that focuses on gene-adjacent domains only. Our approach has the potential to reveal pivotal TFs that mediate deleterious effects of pollutants, thereby facilitating the development of strategies to mitigate damage from environmental pollution.
Collapse
Affiliation(s)
- Zhaonan Zou
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, 53 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yuka Yoshimura
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, 53 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yoshihiro Yamanishi
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8602, Japan
| | - Shinya Oki
- Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, 53 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
90
|
Faridi S, Allen RW, Brook RD, Yousefian F, Hassanvand MS, Carlsten C. An updated systematic review and meta-analysis on portable air cleaners and blood pressure: Recommendations for users and manufacturers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115227. [PMID: 37421892 DOI: 10.1016/j.ecoenv.2023.115227] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/10/2023]
Abstract
Fine particulate matter (PM2.5) air pollution is a leading contributor to the global burden of cardiovascular disease (CVD). One important underlying mechanism is an increase in blood pressure (BP). A growing number of studies have reported a beneficial effect of portable air cleaners (PACs) on systolic and diastolic BP; SBP and DBP. We conducted an updated systematic review and meta-analysis of studies using true versus sham mode filtration reporting the effects on BP. Of 214 articles identified up to February 5, 2023, seventeen (from China, USA, Canada, South Korea and Denmark) enrolling approximately 880 participants (484 female) met the inclusion criteria for meta-analyses. Aside from studies conducted in China, research on PACs and BP has been conducted in relatively low pollution settings. Mean indoor PM2.5 concentrations during the active and sham mode purification were 15.9 and 41.2 µg/m3, respectively. The mean efficiency of PACs against indoor PM2.5 was 59.8 % (ranging from 23 % to 82 %). True mode filtration was associated with a pooled mean difference of - 2.35 mmHg (95 % confidence interval [CI]: - 4.5, - 0.2) and - 0.81 mmHg (95 % CI: - 1.86, 0.24) in SBP and DBP, respectively. After removing the studies with high risk of bias, the magnitude of the pooled benefits on SBP and DBP increased to - 3.62 mmHg (95 % CI: - 6.69, - 0.56) and - 1.35 mmHg (95 % CI: - 2.29, - 0.41), respectively. However, there are several barriers to the use of PACs, specifically in low- and middle-income countries (LMICs), such as the initial purchase cost and filter replacements. There may be several avenues to help overcome these economic burdens and improve cost effectiveness, such as implementing government or other subsidized programs to distribute PACs targeting vulnerable and higher-risk individuals. We propose that environmental health researchers and healthcare providers should be better trained to educate the public regarding the use of PACs to reduce the impacts of PM2.5 on cardiometabolic diseases globally.
Collapse
Affiliation(s)
- Sasan Faridi
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Ryan W Allen
- Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Fatemeh Yousefian
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Christopher Carlsten
- Air Pollution Exposure Lab and Legacy for Airway Health, Vancouver Coastal Health Research Institute and University of British Columbia, Vancouver, Canada.
| |
Collapse
|
91
|
Zheng D, Yang Q, Wu J, Tian H, Ji Z, Chen L, Cai J, Li Z, Chen Y. Research trends on the relationship between air pollution and cardiovascular diseases in 2013-2022 - A scientometric analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:93800-93816. [PMID: 37523085 DOI: 10.1007/s11356-023-28938-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Exposure to air pollution is linked with an elevated risk of cardiovascular diseases (CVDs) and CVDs-related mortality. However, there is a shortage of scientometric analysis on this topic. Therefore, we propose a scientometric study to explore research hotspots and directions in this topical field over the past decade. We used the core collection of Web of Science (WoS) to obtain relevant publications and analyzed them using Excel, the Bibliometix R-package, CiteSpace, and VOSviewer. The study covered various aspects such as annual publications, highly cited papers, co-cited references, journals, authors, countries, organizations, and keywords. Research on air pollution and CVDs has remarkable increase over the past decade, with notable researchers including Kan H, Brook RD, Peters A, and Schwartz J. The 3144 articles were published by 4448 institutions in 131 countries/regions. The leading countries were the USA and China, and the most published journal was Environmental Research. Mortality, hospital admissions, oxidative stress, inflammation, long-term exposure, fine particulate matter, and PM2.5 are the top areas that merit further investigation and hold significant potential for advancing our understanding of the complex relationship between air pollution and CVDs.
Collapse
Affiliation(s)
- Daitian Zheng
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, No.69 North Dongxia Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Qiuping Yang
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, No.69 North Dongxia Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Jinyao Wu
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, No.69 North Dongxia Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Huiting Tian
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, No.69 North Dongxia Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Zeqi Ji
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, No.69 North Dongxia Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Lingzhi Chen
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, No.69 North Dongxia Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Jiehui Cai
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, No.69 North Dongxia Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Zhiyang Li
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, No.69 North Dongxia Road, Shantou, Guangdong, 515041, People's Republic of China
| | - Yexi Chen
- Department of Thyroid, Breast and Hernia Surgery, General Surgery, The Second Affiliated Hospital of Shantou University Medical College, No.69 North Dongxia Road, Shantou, Guangdong, 515041, People's Republic of China.
| |
Collapse
|
92
|
Xia W, Guo X, Xie P, Feng L, Wu B, Gao J, Ma S, Liu H, Sun C, Qu G, Sun Y. Associations of nickel exposure with diabetes: evidence from observational studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100233-100247. [PMID: 37612551 DOI: 10.1007/s11356-023-29423-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
The results of environmental epidemiological studies regarding the relationship between human exposure to nickel and the risk of diabetes remain controversial. Therefore, we performed a meta-analysis to investigate the relationship between nickel exposure and diabetes. PubMed, Web of Science, and Embase electronic databases were thoroughly searched from their inception to May 2023 to obtain relevant studies. The random-effects model was employed to determine pooled odds ratios (ORs) and 95% confidence intervals (CIs). Stratified and sensitivity analyses were also performed. Cochran Q test and I2 statistic were employed to assess heterogeneity between studies. Begg's and Egger's tests were employed to evaluate publication bias. The indicated studies were evaluated using the ROBINS-E risk of bias tool. The dose-response relationship between nickel in urine and diabetes risk was estimated by restricted cubic spline. A total of 12 studies with 30,018 participants were included in this study. In this meta-analysis, comparing the highest vs. lowest levels of nickel exposure, the pooled ORs for diabetes were 1.42 (95% confidence interval 1.14-1.78) for urine and 1.03 (0.57-1.86) for blood, respectively. A linear relationship between urinary nickel and diabetes risk was discovered in the dose-response analysis (P nonlinearity = 0.6198). Each 1 µg/L increase of urinary nickel, the risk of diabetes increased by 7% (OR = 1.07, 95% CI 1.04-1.10). The risk of diabetes was positively correlated with urine nickel exposure, whereas the risk was not significantly correlated with blood nickel. In the future, more high-quality prospective studies are needed to validate this conclusion.
Collapse
Affiliation(s)
- Weihang Xia
- Department of Epidemiology and Health Statistics, School of Public, Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public, Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Peng Xie
- Department of Epidemiology and Health Statistics, School of Public, Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Linya Feng
- Department of Epidemiology and Health Statistics, School of Public, Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Birong Wu
- Department of Epidemiology and Health Statistics, School of Public, Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Juan Gao
- Department of Epidemiology and Health Statistics, School of Public, Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Shaodi Ma
- Department of Epidemiology and Health Statistics, School of Public, Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Haixia Liu
- Department of Epidemiology and Health Statistics, School of Public, Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Chenyu Sun
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, Anhui, People's Republic of China
| | - Guangbo Qu
- Department of Epidemiology and Health Statistics, School of Public, Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public, Health Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
93
|
Cao M, Zheng C, Zhou H, Wang X, Chen Z, Zhang L, Cao X, Tian Y, Han X, Liu H, Liu Y, Xue T, Wang Z, Guan T. Air pollution attenuated the benefits of physical activity on blood pressure: Evidence from a nationwide cross-sectional study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115345. [PMID: 37572623 DOI: 10.1016/j.ecoenv.2023.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/14/2023]
Abstract
INTRODUCTION Although physical activity (PA) has multiple health benefits, the inhaled dose of fine particulate matter (PM2.5) during PA may increase. The trade-off between harmful effects of PM2.5 exposure and protective effects of PA remain unclear. Our study aims to examine the joint effects of PA and PM2.5 exposure on blood pressure (BP) in Chinese adults. METHODS A total of 203,108 adults aged ≥ 18 years from the China Hypertension Survey study (2012-2015) were included. Individual-level PA was assessed as minutes of metabolic equivalent tasks per week (MET-min/week). The average weekly PM2.5 exposures were estimated by using a spatial resolution of 10 km, integrating multiple data sources, including monitoring values, satellite measurements and model simulations. BP was measured with a professional portable BP monitor. Generalized linear regressions were used to estimate joint associations and to further explore two-dimensional nonlinear associations. RESULTS The median PA and 4-week PM2.5 average exposures were 3213.0 MET-min/week and 47.8 μg/m3, respectively. PA was negatively associated with BP, while PM2.5 exposure was positively with BP. The associations between PA and systolic BP were significantly modified by PM2.5 exposure (Pinteraction < 0.001). Compared with inactive participants under low PM2.5 exposure, those with highest level of PA under low PM2.5 exposure had a 0.90 (95 % CI: 0.53, 1.26) mmHg decrease in systolic BP, whereas they had a 0.48 (95 % CI: 0.07, 0.89) mmHg increase under high PM2.5 exposure. When PM2.5 exposure was approximately > 25 μg/m3, the joint exposure to total PA and PM2.5 was associated with an increase in systolic BP. CONCLUSIONS The benefits of PA on BP were counteracted by high PM2.5 levels.
Collapse
Affiliation(s)
- Man Cao
- School of Health Policy and Management, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Congyi Zheng
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Haoqi Zhou
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xin Wang
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zuo Chen
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Linfeng Zhang
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xue Cao
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yixin Tian
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xueyan Han
- School of Health Policy and Management, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hengyi Liu
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yuanli Liu
- School of Health Policy and Management, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Tao Xue
- Institute of Reproductive and Child Health/National Health Commission Key Laboratory of Reproductive Health and Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Zengwu Wang
- Division of Prevention and Community Health, National Center for Cardiovascular Disease, National Clinical Research Center of Cardiovascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Tianjia Guan
- School of Health Policy and Management, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
94
|
Huang K, Yu D, Fang H, Ju L, Piao W, Guo Q, Xu X, Wei X, Yang Y, Zhao L. Association of fine particulate matter and its constituents with hypertension: the modifying effect of dietary patterns. Environ Health 2023; 22:55. [PMID: 37553681 PMCID: PMC10411005 DOI: 10.1186/s12940-023-01000-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/19/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Studies have shown that nutritional supplements could reduce the adverse effects induced by air pollution. However, whether dietary patterns can modify the association of long-term exposure to fine particulate matter (PM2.5) and its constituents with hypertension defined by the 2017 ACC/AHA guideline has not been evaluated. METHODS We included 47,501 Chinese adults from a nationwide cross-sectional study. PM2.5 and five constituents were estimated by satellite-based random forest models. Dietary approaches to stop hypertension (DASH) and alternative Mediterranean diet (AMED) scores were calculated for each participant. Interactions between dietary patterns and air pollution were examined by adding a multiplicative interaction term to logistic models. RESULTS Long-term exposure to PM2.5 and its constituents was associated with an increased risk of hypertension and stage 1-2 hypertension. The DASH and AMED scores significantly modified these associations, as individuals with higher scores had a significantly lower risk of air pollution-related hypertension and stage 1-2 hypertension (P-interaction < 0.05), except for interaction between PM2.5, sulfate, nitrate, ammonium, and AMED score on stage 1 hypertension. For each IQR increase in PM2.5, participants with the lowest DASH and AMED quintiles had hypertension risk with ORs (95%CI) of 1.20 (1.10, 1.30) and 1.19 (1.09, 1.29), whereas those with the highest DASH and AMED quintiles had lower risks with 0.98 (0.91, 1.05) and 1.04 (0.97, 1.11). The stratified analysis found modification effect was more prominent in the < 65 years age group. Consuming more fresh vegetables, fruits, whole grains, and dairy would reduce the risk of hypertension caused by PM2.5 and its constituents. CONCLUSIONS Dietary patterns rich in antioxidants can reduce long-term exposure to PM2.5 and its constituents-induced hypertension defined by the 2017 ACC/AHA guideline, especially in young and middle-aged individuals. Compared to the Mediterranean diet, the DASH diet offers superior dietary guidance to prevent stage 1 hypertension caused by air pollution.
Collapse
Affiliation(s)
- Kun Huang
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Dongmei Yu
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
- NHC Key Laboratory of Trace Element Nutrition, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Hongyun Fang
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
- NHC Key Laboratory of Trace Element Nutrition, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Lahong Ju
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Wei Piao
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
- NHC Key Laboratory of Trace Element Nutrition, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Qiya Guo
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Xiaoli Xu
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Xiaoqi Wei
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Yuxiang Yang
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China
| | - Liyun Zhao
- National Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing, 100050, China.
- NHC Key Laboratory of Trace Element Nutrition, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| |
Collapse
|
95
|
Liu J, Dai Y, Li R, Yuan J, Wang Q, Wang L. Does air pollution exposure affect semen quality? Evidence from a systematic review and meta-analysis of 93,996 Chinese men. Front Public Health 2023; 11:1219340. [PMID: 37601219 PMCID: PMC10435904 DOI: 10.3389/fpubh.2023.1219340] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Background Air pollution may impair male fertility, but it remains controversial whether air pollution affects semen quality until now. Objectives We undertake a meta-analysis to explore potential impacts of six pollutants exposure during the entire window (0-90 days prior to ejaculation) and critical windows (0-9, 10-14, and 70-90 days prior to ejaculation) on semen quality. Methods Seven databases were retrieved for original studies on the effects of six pollutants exposure for 90 days prior to ejaculation on semen quality. The search process does not limit the language and search date. We only included original studies that reported regression coefficients (β) with 95% confidence intervals (CIs). The β and 95% CIs were pooled using the DerSimonian-Laird random effect models. Results PM2.5 exposure was related with decreased total sperm number (10-14 lag days) and total motility (10-14, 70-90, and 0-90 lag days). PM10 exposure was related with reduced total sperm number (70-90 and 0-90 lag days) and total motility (0-90 lag days). NO2 exposure was related with reduced total sperm number (70-90 and 0-90 lag days). SO2 exposure was related with declined total motility (0-9, 10-14, 0-90 lag days) and total sperm number (0-90 lag days). Conclusion Air pollution affects semen quality making it necessary to limit exposure to air pollution for Chinese men. When implementing protective measures, it is necessary to consider the key period of sperm development.
Collapse
Affiliation(s)
- Junjie Liu
- Henan Human Sperm Bank, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanpeng Dai
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Runqing Li
- The Neonatal Screening Center in Henan Province, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiayi Yuan
- The Neonatal Screening Center in Henan Province, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Quanxian Wang
- Henan Human Sperm Bank, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Linkai Wang
- Henan Human Sperm Bank, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
96
|
Wu J, Li S, Duan J, Li Y, Wang J, Deng P, Meng C, Wang W, Yuan H, Lu Y, Shen M, Zhao Q. Association of joint exposure to various ambient air pollutants during adolescence with blood pressure in young adulthood. J Clin Hypertens (Greenwich) 2023; 25:708-714. [PMID: 37409562 PMCID: PMC10423767 DOI: 10.1111/jch.14685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/16/2023] [Accepted: 05/28/2023] [Indexed: 07/07/2023]
Abstract
The association of various air pollutants exposure during adolescence with blood pressure (BP) in young adulthood is uncertain. We intended to evaluate the long-term association of individual and joint air pollutants exposure during adolescence with BP in young adulthood. This cross-sectional study of incoming students was conducted in five geographically disperse universities in China during September and October 2018. Mean concentrations of particulate matter with diameters ≤2.5 μm (PM2.5 ), ≤10 μm (PM10 ), nitrogen dioxides (NO2 ), carbon monoxide (CO), sulfur dioxide (SO2 ), and ozone (O3 ) at participants' residential addresses during 2013-2018 were collected from the Chinese Air Quality Reanalysis dataset. Generalized linear mixed models (GLM) and quantile g-computation (QgC) models were utilized to estimate the association between individual and joint air pollutants exposure and systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse pressure (PP). A total of 16,242 participants were included in the analysis. The GLM analyses showed that PM2.5 , PM10 , NO2 , CO, and SO2 were significantly positively associated with SBP and PP, while O3 was positively associated with DBP. The QgC analyses indicated that long-term exposure to a mixture of the six air pollutants had a significant positive joint association with SBP and PP. In conclusion, air pollutant co-exposure during adolescence may influence BP in young adulthood. The findings of this study emphasized the impacts of multiple air pollutants interactions on potential health and the need of minimizing pollution exposures in the environment.
Collapse
Affiliation(s)
- Jingjing Wu
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Shenxin Li
- Department of Surveying and Remote Sensing Science, School of Geosciences and Info‐physicsCentral South UniversityChangshaChina
| | - Jingwen Duan
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Yalan Li
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Jie Wang
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Peizhi Deng
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Changjiang Meng
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Wei Wang
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Hong Yuan
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
- Health Management Center, The Third Xiangya HospitalCentral South UniversityChangshaChina
| | - Yao Lu
- Clinical Research Center, The Third Xiangya HospitalCentral South UniversityChangshaHunanChina
- Health Management Center, The Third Xiangya HospitalCentral South UniversityChangshaChina
- School of Life Course SciencesKing's College LondonLondonUK
| | - Minxue Shen
- Department of Social Medicine and Health Management, Xiangya School of Public HealthCentral South UniversityChangshaChina
| | - Qiuping Zhao
- Fuwai Central China Cardiovascular HospitalHeart Center of Henan Provincial People's HospitalZhengzhouChina
| |
Collapse
|
97
|
Ulusoy Ş, Özkan G, Varol G, Erdem Y, Derici Ü, Yılmaz R, Müge Değer S, Arınsoy T, Akpolat T. The Effect of Ambient Air Pollution on Office, Home, and 24-Hour Ambulatory Blood Pressure Measurements. Am J Hypertens 2023; 36:431-438. [PMID: 37058613 DOI: 10.1093/ajh/hpad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/26/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023] Open
Abstract
BACKGROUND Air pollution has recently been linked to a number of cardiovascular diseases, particularly hypertension (HT). In our study, we aimed to evaluate the association between air pollution and blood pressure (BP) and compare the relationship of BP measurement results obtained using different methods (office, home, and 24-hour ambulatory BP monitoring [ABPM]). METHODS This retrospective nested panel study performed with prospective Cappadocia cohort data investigated the relationships between particulate matter (PM) 10 and sulfur dioxide (SO2) and concurrent home, office, and 24-hour ABPM data at each control performed over a 2-year period. RESULTS A total of 327 patients in the Cappadocia cohort were included in this study. On the day of office blood pressure measurement, there was an increase of 1.36 mm Hg in systolic BP and 1.18 mm Hg in diastolic BP for every 10 µm/m3 rise in SO2 values. A mean 3-day 10 µm/m3 increase in SO2 was linked to an increase of 1.60 mm Hg in systolic BP and 1.33 mm Hg in diastolic BP. A 10 µm/m3 rise in mean SO2 on the day of 24-hour ABPM measurement was found to be associated with an increase of 1.3 mm Hg in systolic BP and 0.8 mm Hg in diastolic BP. SO2 and PM 10 had no effect on home measurements. CONCLUSION In conclusion, increased SO2 levels, during winter months in particular, can be associated with an elevation in office BP values. Our study findings show that air pollution in the setting in which BP is measured may be associated with the results.
Collapse
Affiliation(s)
- Şükrü Ulusoy
- Department of Nephrology, School of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Gülsüm Özkan
- Department of Nephrology, School of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Gamze Varol
- Department of Public Health, School of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Yunus Erdem
- Department of Nephrology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Ülver Derici
- Department of Nephrology, School of Medicine, Gazi University, Ankara, Turkey
| | - Rahmi Yılmaz
- Department of Nephrology, School of Medicine, Hacettepe University, Ankara, Turkey
| | - Serpil Müge Değer
- Department of Nephrology, School of Medicine, Dokuz Eylül University, İzmir, Turkey
| | - Turgay Arınsoy
- Department of Nephrology, School of Medicine, Gazi University, Ankara, Turkey
| | - T Akpolat
- Department of Nephrology, Istinye University Liv Hospital, Istanbul, Turkey
| |
Collapse
|
98
|
Wittkopp S, Anastasiou E, Hu J, Liu M, Langford AT, Brook RD, Gordon T, Thorpe LE, Newman JD. Portable Air Cleaners and Home Systolic Blood Pressure in Adults With Hypertension Living in New York City Public Housing. J Am Heart Assoc 2023; 12:e029697. [PMID: 37382099 PMCID: PMC10356071 DOI: 10.1161/jaha.123.029697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/23/2023] [Indexed: 06/30/2023]
Affiliation(s)
- Sharine Wittkopp
- Leon H. Charney Division of CardiologyNew York University, Grossman School of MedicineNew YorkNYUSA
| | - Elle Anastasiou
- Department of Population HealthNew York University, Grossman School of MedicineNew YorkNYUSA
| | - Jiyuan Hu
- Division of BiostatisticsNew York University, Grossman School of MedicineNew YorkNYUSA
| | - Mengling Liu
- Division of BiostatisticsNew York University, Grossman School of MedicineNew YorkNYUSA
| | - Aisha T. Langford
- Department of Population HealthNew York University, Grossman School of MedicineNew YorkNYUSA
| | - Robert D. Brook
- Division of Cardiovascular DiseasesWayne State UniversityDetroitMIUSA
| | - Terry Gordon
- Department of Environmental MedicineNew York University, Grossman School of MedicineNew YorkNYUSA
| | - Lorna E. Thorpe
- Department of Population HealthNew York University, Grossman School of MedicineNew YorkNYUSA
| | - Jonathan D. Newman
- Leon H. Charney Division of CardiologyNew York University, Grossman School of MedicineNew YorkNYUSA
| |
Collapse
|
99
|
Xu Z, Han Z, Wang J, Jin R, Li Z, Wu Z, Zhao Z, Lv S, Zhao X, Liu Y, Guo X, Tao L. Association Between Long-Term Exposure to Fine Particulate Matter Constituents and Progression of Cerebral Blood Flow Velocity in Beijing: Modifying Effect of Greenness. GEOHEALTH 2023; 7:e2023GH000796. [PMID: 37449300 PMCID: PMC10337285 DOI: 10.1029/2023gh000796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/23/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
Few studies have explored the effects of fine particulate matter (PM2.5) and its constituents on the progression of cerebral blood flow velocity (BFV) and the potential modifying role of greenness. In this study, we investigated the association of PM2.5 and its constituents, including sulfate (SO4 2-), nitrate (NO3 -), ammonium (NH4 +), organic matter (OM), and black carbon (BC), with the progression of BFV in the middle cerebral artery. Participants from the Beijing Health Management Cohort who underwent at least two transcranial Doppler sonography examinations during 2015-2020 were recruited. BFV change and BFV change rate were used to define the progression of cerebral BFV. Linear mixed effects models were employed to analyze the data, and the weighted quantile sum regression assessed the contribution of PM2.5 constituents. Additionally, greenness was examined as a modifier. Among the examined constituents, OM exhibited the strongest association with BFV progression. An interquartile range increase in PM2.5 and OM exposure concentrations was associated with a decrease of -16.519 cm/s (95% CI: -17.837, -15.201) and -15.403 cm/s (95% CI: -16.681, -14.126) in BFV change, and -10.369 cm/s/year (95% CI: -11.387, -9.352) and -9.615 cm/s/year (95% CI: -10.599, -8.632) in BFV change rate, respectively. Furthermore, stronger associations between PM2.5 and BFV progression were observed in individuals working in areas with lower greenness, those aged under 45 years, and females. In conclusion, reducing PM2.5 levels in the air, particularly the OM constituent, and enhancing greenness could potentially contribute to the protection of cerebrovascular health.
Collapse
Affiliation(s)
- Zongkai Xu
- Beijing Municipal Key Laboratory of Clinical EpidemiologyDepartment of Epidemiology and Health StatisticsSchool of Public HealthCapital Medical UniversityBeijingChina
| | - Ze Han
- Beijing Municipal Key Laboratory of Clinical EpidemiologyDepartment of Epidemiology and Health StatisticsSchool of Public HealthCapital Medical UniversityBeijingChina
| | - Jinqi Wang
- Beijing Municipal Key Laboratory of Clinical EpidemiologyDepartment of Epidemiology and Health StatisticsSchool of Public HealthCapital Medical UniversityBeijingChina
| | - Rui Jin
- Beijing Municipal Key Laboratory of Clinical EpidemiologyDepartment of Epidemiology and Health StatisticsSchool of Public HealthCapital Medical UniversityBeijingChina
| | - Zhiwei Li
- Beijing Municipal Key Laboratory of Clinical EpidemiologyDepartment of Epidemiology and Health StatisticsSchool of Public HealthCapital Medical UniversityBeijingChina
| | - Zhiyuan Wu
- Beijing Municipal Key Laboratory of Clinical EpidemiologyDepartment of Epidemiology and Health StatisticsSchool of Public HealthCapital Medical UniversityBeijingChina
- Center of Precision HealthSchool of Medical and Health SciencesEdith Cowan UniversityJoondalupWAAustralia
| | - Zemeng Zhao
- Beijing Municipal Key Laboratory of Clinical EpidemiologyDepartment of Epidemiology and Health StatisticsSchool of Public HealthCapital Medical UniversityBeijingChina
| | - Shiyun Lv
- Beijing Municipal Key Laboratory of Clinical EpidemiologyDepartment of Epidemiology and Health StatisticsSchool of Public HealthCapital Medical UniversityBeijingChina
| | - Xiaoyu Zhao
- Beijing Municipal Key Laboratory of Clinical EpidemiologyDepartment of Epidemiology and Health StatisticsSchool of Public HealthCapital Medical UniversityBeijingChina
| | - Yueruijing Liu
- Beijing Municipal Key Laboratory of Clinical EpidemiologyDepartment of Epidemiology and Health StatisticsSchool of Public HealthCapital Medical UniversityBeijingChina
| | - Xiuhua Guo
- Beijing Municipal Key Laboratory of Clinical EpidemiologyDepartment of Epidemiology and Health StatisticsSchool of Public HealthCapital Medical UniversityBeijingChina
| | - Lixin Tao
- Beijing Municipal Key Laboratory of Clinical EpidemiologyDepartment of Epidemiology and Health StatisticsSchool of Public HealthCapital Medical UniversityBeijingChina
| |
Collapse
|
100
|
Yuan C, Liu F, Huang K, Shen C, Li J, Liang F, Yang X, Cao J, Chen S, Hu D, Huang J, Liu Y, Lu X, Gu D. Association of Long-Term Exposure to Ambient Fine Particulate Matter with Atherosclerotic Cardiovascular Disease Incidence Varies across Populations with Different Predicted Risks: The China-PAR Project. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37368969 DOI: 10.1021/acs.est.3c01460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Previous studies have established a significant link between ambient fine particulate matter (PM2.5) exposure and atherosclerotic cardiovascular disease (ASCVD) incidence, but whether this association varies across populations with different predicted ASCVD risks was uncertain previously. We included 109,374 Chinese adults without ASCVD at baseline from the Prediction for Atherosclerotic Cardiovascular Disease Risk in China (China-PAR) project. We obtained PM2.5 data of participants' residential address from 2000 to 2015 using a satellite-based spatiotemporal model. Participants were classified into low-to-medium and high-risk groups according to the ASCVD 10-year and lifetime risk prediction scores. Hazard ratios (HRs) and 95% confidence intervals (CIs) for PM2.5 exposure-related incident ASCVD, as well as the multiplication and additive interaction, were calculated using stratified Cox proportional hazard models. The additive interaction between risk stratification and PM2.5 exposure was estimated by the synergy index (SI), the attributable proportion due to the interaction (API), and the relative excess risk due to interaction (RERI). Over the follow-up of 833,067 person-years, a total of 4230 incident ASCVD cases were identified. Each 10 μg/m3 increment of PM2.5 concentration was associated with 18% (HR: 1.18; 95% CI: 1.14-1.23) increased risk of ASCVD in the total population, and the association was more pronounced among individuals having a high predicted ASCVD risk than those having a low-to-medium risk, with the HR (95% CI) of 1.24 (1.19-1.30) and 1.11 (1.02-1.20) per 10 μg/m3 increment in PM2.5 concentration, respectively. The RERI, API, and SI were 1.22 (95% CI: 0.62-1.81), 0.22 (95% CI: 0.12-0.32), and 1.37 (95% CI: 1.16-1.63), respectively. Our findings demonstrate a significant synergistic effect on ASCVD between ASCVD risk stratification and PM2.5 exposure and highlight the potential health benefits of reducing PM2.5 exposure in Chinese, especially among those with high ASCVD risk.
Collapse
Affiliation(s)
- Chenxi Yuan
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Fangchao Liu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Keyong Huang
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Chong Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jianxin Li
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xueli Yang
- Tianjin Key Laboratory of Environment, Nutrition and Public Health; Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Jie Cao
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Shufeng Chen
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Dongsheng Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou 450001, China
- Department of Epidemiology and Health Statistics, School of Public Health, Shenzhen University Health Science Center, Shenzhen 518071, China
| | - Jianfeng Huang
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322 United States
| | - Xiangfeng Lu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
| | - Dongfeng Gu
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Key Laboratory of Cardiovascular Epidemiology, Chinese Academy of Medical Sciences, Beijing 100037, China
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|