51
|
Mattila P, Pap N, Järvenpää E, Kahala M, Mäkinen S. Underutilized Northern plant sources and technological aspects for recovering their polyphenols. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:125-169. [PMID: 34507641 DOI: 10.1016/bs.afnr.2021.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Consumers worldwide are increasingly interested in the authenticity and naturalness of products. At the same time, the food, agricultural and forest industries generate large quantities of sidestreams that are not effectively utilized. However, these raw materials are rich and inexpensive sources of bioactive compounds such as polyphenols. The exploitation of these raw materials increases income for producers and processors, while reducing transportation and waste management costs. Many Northern sidestreams and other underutilized raw materials are good sources of polyphenols. These include berry, apple, vegetable, softwood, and rapeseed sidestreams, as well as underutilized algae species. Berry sidestreams are especially good sources of various phenolic compounds. This chapter presents the properties of these raw materials, providing an overview of the techniques for refining these materials into functional polyphenol-rich ingredients. The focus is on economically and environmentally sound technologies suitable for the pre-treatment of the raw materials, the modification and recovery of the polyphenols, as well as the formulation and stabilization of the ingredients. For example, sprouting, fermentation, and enzyme technologies, as well as various traditional and novel extraction methods are discussed. Regarding the extraction technologies, this chapter focuses on safe and green technologies that do not use organic solvents. In addition, formulation and stabilization that aim to protect isolated polyphenols during storage and extend shelflife are reviewed. The formulated polyphenol-rich ingredients produced from underutilized renewable resources could be used as sustainable, active ingredients--for example, in food and nutraceutical industries.
Collapse
Affiliation(s)
- Pirjo Mattila
- Natural Resources Institute Finland (Luke), Turku, Finland.
| | - Nora Pap
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Eila Järvenpää
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Minna Kahala
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - Sari Mäkinen
- Natural Resources Institute Finland (Luke), Jokioinen, Finland
| |
Collapse
|
52
|
Sun Q, Wang N, Xu W, Zhou H. Genus Ribes Linn. (Grossulariaceae): A comprehensive review of traditional uses, phytochemistry, pharmacology and clinical applications. JOURNAL OF ETHNOPHARMACOLOGY 2021; 276:114166. [PMID: 33940086 DOI: 10.1016/j.jep.2021.114166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/14/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Ribes Linn., which belongs to the Grossulariaceae family, contains 160 species distributed mainly in temperate and cold regions of the Northern Hemisphere. There are 59 species in southwest, northwest and northeast China. Some species of Ribes have been used as traditional and local medicines for the treatment of glaucoma, cardiovascular disease, stomachache, hepatitis, hyperlipidemia, hypertension and other ailments. However, the data provided in recent years have not been collated and compared. AIM OF THE STUDY This review aims to summarize the current status of ethnopharmacological uses, phytochemistry, pharmacology, clinical applications, and pharmacokinetics of the genus Ribes to better understand the therapeutic potential of the genus Ribes in the future and hope to provide a relatively novel perspective for further clinical application on the genus. MATERIALS AND METHODS The literature on Ribes was collected through a series of scientific search engines including Elsevier, ACS, Springer, Web of Science, PubMed, Google Scholar, Baidu Scholar, Wiley, China National Knowledge Infrastructure (CNKI) and books. RESULTS Ribes species have been used for detoxification, glaucoma, cardiovascular disease, stomachache, hepatitis, hyperlipidemia, hypertension and other ailments. These plants mainly contain phenolic glycosides, flavonoids, proanthocyanidins, polysaccharides, etc. Most traditional uses are related to biological activity and have been confirmed by modern research. Pharmacological studies in vitro and in vivo revealed that the extracts and pure compounds possessed significant hypolipidemic, antioxidant, anti-inflammatory, antitumor, antibacterial, and antiviral activity, eyesight protection and other effects. CONCLUSIONS The traditional uses, phytochemistry, pharmacology, pharmacokinetics, and clinical applications described in this article explained that the Ribes species has numerous activities, and these findings will promote further action in the area of mechanism research. However, very few preclinical and clinical studies have focused on the toxicology and pharmacokinetics of crude extracts and pure compounds from the genus Ribes. Moreover, several clinical evidence to support the health benefits of Ribes plants. The development of new medicines based on Ribes species as ingredients may be restricted. The pharmacological activity, clinical efficacy and safety of Ribes species need to be verified by systematic and comprehensive preclinical studies and clinical trials.
Collapse
Affiliation(s)
- Qing Sun
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenhua Xu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China.
| | - Huakun Zhou
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, 810008, China; Key Laboratory of Restoration Ecology of Cold Area in Qinghai Province, Xining, Qinghai, 810008, China
| |
Collapse
|
53
|
Tian Y, Yang B. Phenolic compounds in Nordic berry species and their application as potential natural food preservatives. Crit Rev Food Sci Nutr 2021; 63:345-377. [PMID: 34251918 DOI: 10.1080/10408398.2021.1946673] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An increasing demand for natural food preservatives is raised by consumers. For Nordic berry species, abundance of phenolic compounds and potent activities of anti-oxidation and anti-bacteria enables a great potential as food preservatives. This review provides a systematic examination of current literature on phenolic profiles, anti-oxidative and anti-bacterial activities of various extracts of Nordic berry species, as well as the impact of various structure features of phenolics on the bioactivities. Special attention is placed on exploitation of leaves of berry species and pomaces after juice-pressing as side-streams of berry production and processing. The current progress and challenges in application of Nordic berry species as food preservatives are discussed. To fully explore the potential application of Nordic berry species in food industry and especially to valorize the side-streams of berry cultivation (leaves) and juice-pressing industry (pomaces), it is crucial to obtain extracts and fractions with targeted phenolic composition, which have high food preserving efficacy and minimal impact on sensory qualities of food products.
Collapse
Affiliation(s)
- Ye Tian
- Food Chemistry and Food Development, Department of Life Technologies, Faculty of Technology, University of Turku, Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, Faculty of Technology, University of Turku, Turku, Finland
| |
Collapse
|
54
|
Sun Q, Wang N, Xu W, Zhou H. Ribes himalense as potential source of natural bioactive compounds: Nutritional, phytochemical, and antioxidant properties. Food Sci Nutr 2021; 9:2968-2984. [PMID: 34136164 PMCID: PMC8194758 DOI: 10.1002/fsn3.2256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 02/03/2021] [Accepted: 03/14/2021] [Indexed: 11/18/2022] Open
Abstract
Ribes himalense Royle ex Decne. (family Saxifraaceae, subfamily Grossulariaceae, genus Ribes) is a wild berry fruit with illustrated health-promoting features, which widely distributed in Northwest China are deficiently exploited. This study aimed to assess the potential of a Ribes himalense as a source of natural bioactive compounds through characterizing its nutraceutical characteristics, phytochemicals properties, and antioxidant ability. Fresh berries were quantitatively analyzed for proximate composition, minerals, vitamins, amino acids, total polyphenols, total flavonoids, anthocyanins, procyanidin, and polysaccharides contents through China National Food Safety Standard; the characterization and identification of extracts of wild berries obtained with ethanol 30%, ethanol 50%, and ethanol 95% were firstly performed by UPLC-Triple-TOF-MS2. Furthermore, antioxidant activity of the ethanol extract was evaluated via different assay methods such as DPPH, ABTS, and FRAP. The results indicated that the most important bioactive composition was procyanidin (0.72%), polyphenols (0.49%), total flavonoids (0.38%), vitamin C (64.6 mg/100g FW), and K (218.44 mg/100 g FW), and a total of 95 compounds were detected with polyphenols, flavonoids, and proanthocyanidins as the dominant, and also ethanol extract possessed stronger antioxidant activity. These results suggested that Ribes himalense fruit has great potential in protecting human health, with the focus on the development of functional products.
Collapse
Affiliation(s)
- Qing Sun
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- University of Chinese Academy of SciencesBeijingChina
| | - Na Wang
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- University of Chinese Academy of SciencesBeijingChina
| | - Wenhua Xu
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
| | - Huakun Zhou
- Northwest Institute of Plateau BiologyChinese Academy of SciencesXiningChina
- Key laboratory of Restoration Ecology of Cold Area in Qinghai ProvinceXiningChina
| |
Collapse
|
55
|
Pap N, Reshamwala D, Korpinen R, Kilpeläinen P, Fidelis M, Furtado MM, Sant'Ana AS, Wen M, Zhang L, Hellström J, Marnilla P, Mattila P, Sarjala T, Yang B, Lima ADS, Azevedo L, Marjomäki V, Granato D. Toxicological and bioactivity evaluation of blackcurrant press cake, sea buckthorn leaves and bark from Scots pine and Norway spruce extracts under a green integrated approach. Food Chem Toxicol 2021; 153:112284. [PMID: 34044082 DOI: 10.1016/j.fct.2021.112284] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
Aqueous extracts from blackcurrant press cake (BC), Norway spruce bark (NS), Scots pine bark (SP), and sea buckthorn leaves (SB) were obtained using maceration and pressurized hot water and tested for their bioactivities. Maceration provided the extraction of higher dry matter contents, including total phenolics (TPC), anthocyanins, and condensed tannins, which also impacted higher antioxidant activity. NS and SB extracts presented the highest mean values of TPC and antioxidant activity. Individually, NS extract presented high contents of proanthocyanidins, resveratrol, and some phenolic acids. In contrast, SB contained a high concentration of ellagitannins, ellagic acid, and quercetin, explaining the antioxidant activity and antibacterial effects. SP and BC extracts had the lowest TPC and antioxidant activity. However, BC had strong antiviral efficacy, whereas SP can be considered a potential ingredient to inhibit α-amylase. Except for BC, the other extracts decreased reactive oxygen species (ROS) generation in HCT8 and A549 cells. Extracts did not inhibit the production of TNF-alpha in lipopolysaccharide-stimulated THP-1 macrophages but inhibited the ROS generation during the THP-1 cell respiratory burst. The recovery of antioxidant compounds from these by-products is incentivized for high value-added applications.
Collapse
Affiliation(s)
- Nora Pap
- Biorefinery and Bioproducts, Natural Resources Institute Finland (Luke), FI-31600, Jokioinen, Finland.
| | - Dhanik Reshamwala
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Risto Korpinen
- Biorefinery and Bioproducts, Natural Resources Institute Finland (Luke), FI-02150, Espoo, Finland
| | - Petri Kilpeläinen
- Biorefinery and Bioproducts, Natural Resources Institute Finland (Luke), FI-02150, Espoo, Finland
| | - Marina Fidelis
- Food Processing and Quality, Natural Resources Institute Finland (Luke), FI-02150, Espoo, Finland
| | - Marianna M Furtado
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Mingchun Wen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Liang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, 230036, China
| | - Jarkko Hellström
- Food Processing and Quality, Natural Resources Institute Finland (Luke), FI-31600, Jokioinen, Finland
| | - Pertti Marnilla
- Food Processing and Quality, Natural Resources Institute Finland (Luke), FI-31600, Jokioinen, Finland
| | - Pirjo Mattila
- Food Processing and Quality, Natural Resources Institute Finland (Luke), FI- 20520, Turku, Finland
| | - Tytti Sarjala
- Biomass Characterization and Properties, Natural Resources Institute Finland (Luke), FI-39700, Parkano, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Biochemistry, University of Turku, 20014, Turku, Finland
| | - Amanda Dos Santos Lima
- Department of Food, Faculty of Nutrition, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 714, 37130-000, Alfenas, Brazil
| | - Luciana Azevedo
- Department of Food, Faculty of Nutrition, Federal University of Alfenas, Rua Gabriel Monteiro da Silva, 714, 37130-000, Alfenas, Brazil
| | - Varpu Marjomäki
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Daniel Granato
- Food Processing and Quality, Natural Resources Institute Finland (Luke), FI-02150, Espoo, Finland.
| |
Collapse
|
56
|
Szołtysik M, Kucharska AZ, Dąbrowska A, Zięba T, Bobak Ł, Chrzanowska J. Effect of Two Combined Functional Additives on Yoghurt Properties. Foods 2021; 10:1159. [PMID: 34064052 PMCID: PMC8224028 DOI: 10.3390/foods10061159] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/11/2021] [Accepted: 05/19/2021] [Indexed: 11/16/2022] Open
Abstract
The aim of the research was the analysis of yoghurts enriched with blue honeysuckle berries dry polyphenolic extract and new preparation of resistant starch. The additives were introduced individually at concentration 0.1% (w/v) and in mixture at final concentration of 0.1 and 0.2% of both components. Yogurt microflora, pH, and its physicochemical and antioxidant properties were examined over 14 days of storage under refrigerated conditions. Studies showed that both substances can be successfully used in yoghurt production. Yoghurt microflora es. S. thermophilus and Lb. delbrueckii subsp. bulgaricus counts appeared to be higher in samples supplemented with these additives comparing to control yoghurt by 3-8%. More stimulating effect on their growth, especially on S. thermophilus, revealed resistant starch. Addition of this polysaccharide improved also the rheological properties of yogurts, which showed higher viscosity than samples produced without it. Addition of honeysuckle berries preparation significantly influenced the yogurts' color, giving them deep purple color, and their antioxidant potential. During storage, contents of anthocyanin and iridoid compounds were decreasing, but antioxidant activity in the products remained stable.
Collapse
Affiliation(s)
- Marek Szołtysik
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| | - Alicja Z. Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland;
| | - Anna Dąbrowska
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| | - Tomasz Zięba
- Department of Food Storage and Technology, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland;
| | - Łukasz Bobak
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| | - Józefa Chrzanowska
- Department of Functional Food Products Development, Wrocław University of Environmental and Life Sciences, Chełmońskiego Str. 37, 51-640 Wrocław, Poland; (A.D.); (Ł.B.); (J.C.)
| |
Collapse
|
57
|
Kong Y, Yan T, Tong Y, Deng H, Tan C, Wan M, Wang M, Meng X, Wang Y. Gut Microbiota Modulation by Polyphenols from Aronia melanocarpa of LPS-Induced Liver Diseases in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3312-3325. [PMID: 33688735 DOI: 10.1021/acs.jafc.0c06815] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Aronia melanocarpa polyphenols (AMPs) can alleviate the degree of liver diseases in rats. However, the mechanism by which this is achieved through gut microbiota modulation remains unclear. Here, a rich-polyphenol extract of A. melanocarpa (AMPs) was used to treat lipopolysaccharide (LPS)-induced liver diseases in rats. To gain insights into the anti-LPS-induced liver disease, liver function index, expression of apoptosis proteins, inflammatory factors, and activation of inflammatory signaling pathways were determined with western blot analysis, immunohistochemistry, and 16S rRNA sequencing or quantitative real-time polymerase chain reaction (qRT-PCR). After AMPs treatment, the gut microbiota composition was modulated, promoting the intestinal barrier function by increasing the expression of intestinal epithelial cell tight junction proteins to reduce the LPS content in serum. The expression levels of inflammatory factors interleukin 6 (IL-6), interleukin 1β (IL-1β), tumor necrosis factor α (TNF-α), and related mRNAs were reduced. These results showed that AMPs, as a bioactive substance, could enhance the intestinal barrier function and modulate the gut microbiota of LPS-induced liver diseases.
Collapse
Affiliation(s)
- Yanwen Kong
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Tingcai Yan
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuqi Tong
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Haotian Deng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Chang Tan
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Meizhi Wan
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Mingyue Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xianjun Meng
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Yuehua Wang
- College of Food Science, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| |
Collapse
|
58
|
Erşan S, Berning JC, Esquivel P, Jiménez VM, Carle R, May B, Schweiggert R, Steingass CB. Phytochemical and mineral composition of fruits and seeds of wild-growing Bactris guineensis (L.) H.E. Moore palms from Costa Rica. J Food Compost Anal 2020. [DOI: 10.1016/j.jfca.2020.103611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
59
|
Damerau A, Kakko T, Tian Y, Tuomasjukka S, Sandell M, Hopia A, Yang B. Effect of supercritical CO2 plant extract and berry press cakes on stability and consumer acceptance of frozen Baltic herring (Clupea harengus membras) mince. Food Chem 2020; 332:127385. [DOI: 10.1016/j.foodchem.2020.127385] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/01/2020] [Accepted: 06/17/2020] [Indexed: 01/07/2023]
|
60
|
Diversity of red, green and black cultivars of Chinese Toon [Toona sinensis (A. Juss.) Roem]: anthocyanins, flavonols and antioxidant activity. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00560-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
61
|
Mannochio-Russo H, Bueno PCP, Bauermeister A, de Almeida RF, Dorrestein PC, Cavalheiro AJ, Bolzani VS. Can Statistical Evaluation Tools for Chromatographic Method Development Assist in the Natural Products Workflow? A Case Study on Selected Species of the Plant Family Malpighiaceae. JOURNAL OF NATURAL PRODUCTS 2020; 83:3239-3249. [PMID: 33196207 DOI: 10.1021/acs.jnatprod.0c00495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Proper chromatographic methods may reduce the challenges inherent in analyzing natural product extracts, especially when utilizing hyphenated detection techniques involving mass spectrometry. As there are many variations one can introduce during chromatographic method development, this can become a daunting and time-consuming task. To reduce the number of runs and time needed, the use of instrumental automatization and commercial software to apply Quality by Design and statistical analysis automatically can be a valuable approach to investigate complex matrices. To evaluate this strategy in the natural products workflow, a mixture of nine species from the family Malpighiaceae was investigated. By this approach, the entire data collection and method development procedure (comprising screening, optimization, and robustness simulation) was accomplished in only 4 days, resulting in very low limits of detection and quantification. The analysis of the individual extracts also proved the efficiency of the use of a mixture of extracts for this workflow. Molecular networking and library searches were used to annotate a total of 61 compounds, including O-glycosylated flavonoids, C-glycosylated flavonoids, quinic/shikimic acid derivatives, sterols, and other phenols, which were efficiently separated by the method developed. These results support the potential of statistical tools for chromatographic method optimization as an efficient approach to reduce time and maximize resources, such as solvents, to get proper chromatographic conditions.
Collapse
Affiliation(s)
- Helena Mannochio-Russo
- NuBBE, Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), 14800-901, Araraquara, SP Brazil
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Paula Carolina P Bueno
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, Department of Physics and Chemistry, University of São Paulo, 14049-900, Ribeirão Preto, SP Brazil
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Anelize Bauermeister
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Biomedical Sciences Institute, University of São Paulo, 05508-900 São Paulo, SP Brazil
| | - Rafael Felipe de Almeida
- Department of Biological Sciences, Lamol Lab, Feira de Santana State University (UEFS), Feira de Santana, BA 44036-900, Brazil
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Alberto José Cavalheiro
- NuBBE, Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), 14800-901, Araraquara, SP Brazil
| | - Vanderlan S Bolzani
- NuBBE, Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), 14800-901, Araraquara, SP Brazil
| |
Collapse
|
62
|
Kelanne N, Yang B, Liljenbäck L, Laaksonen O. Phenolic Compound Profiles in Alcoholic Black Currant Beverages Produced by Fermentation with Saccharomyces and Non- Saccharomyces Yeasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10128-10141. [PMID: 32805115 PMCID: PMC7660742 DOI: 10.1021/acs.jafc.0c03354] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Alcoholic beverages with low ethanol contents were produced by fermenting black currant juice with Saccharomyces and non-Saccharomyces yeasts without added sugar. The effects of different yeasts on the phenolic compounds (anthocyanins, hydroxycinnamic acids, flavonols, and flavan-3-ols) and other selected constituents (the ethanol content, residual sugars, organic acids, and color) of the black currants were assessed. Single yeast-fermented beverages had higher ethanol contents (3.84-4.47%, v/v) than those produced by sequential fermentation. In general, the fermentation of black currant juice increased the contents of organic acids and flavonols, whereas anthocyanin contents decreased. All of the fermentations decreased the contents of glycosylated nitrile-containing hydroxycinnamic acids, resulting in higher contents of the corresponding aglycons. Fermentation with Saccharomyces bayanus resulted in lower anthocyanin and organic acid contents compared to the other yeasts. Sequential fermentations with Saccharomyces cerevisiae and Metschnikowia pulcherrima led to the highest total hydroxycinnamic acids and anthocyanins among all of the fermentations.
Collapse
|
63
|
Influence of enzymatic treatment on the chemical composition of lingonberry (Vaccinium vitis-idaea) juice. Food Chem 2020; 339:128052. [PMID: 33152863 DOI: 10.1016/j.foodchem.2020.128052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 08/14/2020] [Accepted: 09/05/2020] [Indexed: 11/22/2022]
Abstract
The effects of different enzymes, their dosages, and incubation times on juice yield and chemical composition of lingonberry juice were assessed. Nonvolatile composition including sugars, acids and phenolic compounds (anthocyanins, hydroxycinnamic acids, flavonols and flavan-3-ols) was analyzed using GC-FID, LC-DAD and LC-MS methods, whereas the volatile compound profile was examined using HS-SPME-GC-MS. Selection of the enzyme had a significant effect on the juice yield by increasing it from 70% without enzyme treatment up to 81%. Enzymes significantly increased the contents of most of the phenolic compounds in the juices but had little impact on the contents of sugars and acids. Heat treatment without enzyme addition also significantly affected the composition. Generally, increasing incubation time increased the contents of various phenolic compounds, especially flavan-3-ols and hydroxycinnamic acids, whereas the effects of dosage were mostly negligible. Enzyme treatment increased the contents of volatile compounds, regardless of dosage or incubation time.
Collapse
|
64
|
Liu S, Marsol-Vall A, Laaksonen O, Kortesniemi M, Yang B. Characterization and Quantification of Nonanthocyanin Phenolic Compounds in White and Blue Bilberry ( Vaccinium myrtillus) Juices and Wines Using UHPLC-DAD-ESI-QTOF-MS and UHPLC-DAD. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7734-7744. [PMID: 32609509 PMCID: PMC7497633 DOI: 10.1021/acs.jafc.0c02842] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 05/22/2023]
Abstract
The nonanthocyanin phenolic compounds in juice and wine produced from fruits of white bilberry, a nonpigmented mutant of Vaccinium myrtillus, and blue bilberry (pigmented variety) were analyzed using liquid chromatography with a diode array detector (LC-DAD) and LC-DAD-electrospray ionization-quadrapole/time of flight hybrid mass spectrometry (ESI-QTOF-MS). On the basis of elution order, UV-vis spectra, accurate mass data, and fragmentation pattern and standards, 42 compounds including 22 phenolic acids, 15 flavonols, and 5 flavan-3-ols, were identified in juices and wines prepared from the two bilberry varieties. The levels of most individual nonanthocyanin phenolic compounds in white bilberry products were significantly lower than those in pigmented ones. In bilberry juices, phenolic acids were the most predominant, accounting for approximately 80% of total phenolic content, with p-coumaroyl monotropeins and caffeic acid hexoside being the major phenolic acids. After fermentation, the total contents of phenolic acids, flavonols, and nonanthocyanin phenolic compounds significantly increased, while the content of total flavan-3-ols decreased significantly. p-Coumaroyl monotropeins still dominated in the wine products, while caffeic acid content showed dramatic elevation with the significant drop of caffeic acid hexoside.
Collapse
|
65
|
Coimbra AT, Luís ÂFS, Batista MT, Ferreira SMP, Duarte APC. Phytochemical Characterization, Bioactivities Evaluation and Synergistic Effect of Arbutus unedo and Crataegus monogyna Extracts with Amphotericin B. Curr Microbiol 2020; 77:2143-2154. [DOI: 10.1007/s00284-020-02125-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022]
|
66
|
Effects of germination and kilning on the phenolic compounds and nutritional properties of quinoa (Chenopodium quinoa) and kiwicha (Amaranthus caudatus). J Cereal Sci 2020. [DOI: 10.1016/j.jcs.2020.102996] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
67
|
Caffeoylquinic acids from aronia juice inhibit both dipeptidyl peptidase IV and α-glucosidase activities. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109544] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
68
|
Zhou J, Yang Q, Zhu X, Lin T, Hao D, Xu J. Antioxidant activities of Clerodendrum cyrtophyllum Turcz leaf extracts and their major components. PLoS One 2020; 15:e0234435. [PMID: 32574221 PMCID: PMC7310832 DOI: 10.1371/journal.pone.0234435] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/25/2020] [Indexed: 11/18/2022] Open
Abstract
This study was designed to investigate the antioxidant properties of the extracts and subfractions of various polarities from Clerodendrum cyrtophyllum Turcz leaves and the related phenolic compound profiles. The ethyl acetate fraction (EAF) showed the most potent radical-scavenging activity for DPPH radicals, ABTS radicals, and superoxide anion (O2·-) radicals as well as the highest reducing power of the fractions tested; the n-butyl alcohol fraction (BAF) was the most effective in scavenging hydroxyl radical (OH·), and the dichloromethane fraction (DMF) exhibited the highest ferrous ion chelating activity. Twelve phenolic components were identified from the EAF of C. cyrtophyllum. Additionally, acteoside (1) was found to be a major component (0.803 g, 0.54%) and show DPPH and ABTS radical scavenging activities with IC50 values of 79.65±3.4 and 23.00±1.5 μg/ml, indicating it is principally responsible for the significant total antioxidant effect of C. cyrtophyllum. Our work offers a theoretical basis for further utilization of C. cyrtophyllum as a potential source of natural, green antioxidants derived from plants.
Collapse
Affiliation(s)
- Jing Zhou
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, P. R. China
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou, P. R. China
| | - Qi Yang
- School of Ecology and Environment, Hainan University, Haikou, P. R. China
| | - Xiaochen Zhu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, P. R. China
| | - Tong Lin
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, P. R. China
| | - Dongdong Hao
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, P. R. China
| | - Jing Xu
- Key Laboratory of Advanced Materials of Tropical Island Resources of Ministry of Education, School of Chemical Engineering and Technology, Hainan University, Haikou, P. R. China
- School of Life and Pharmaceutical Sciences, Hainan University, Haikou, P. R. China
- * E-mail:
| |
Collapse
|
69
|
Valanciene E, Jonuskiene I, Syrpas M, Augustiniene E, Matulis P, Simonavicius A, Malys N. Advances and Prospects of Phenolic Acids Production, Biorefinery and Analysis. Biomolecules 2020; 10:E874. [PMID: 32517243 PMCID: PMC7356249 DOI: 10.3390/biom10060874] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 12/20/2022] Open
Abstract
Biotechnological production of phenolic acids is attracting increased interest due to their superior antioxidant activity, as well as other antimicrobial, dietary, and health benefits. As secondary metabolites, primarily found in plants and fungi, they are effective free radical scavengers due to the phenolic group available in their structure. Therefore, phenolic acids are widely utilised by pharmaceutical, food, cosmetic, and chemical industries. A demand for phenolic acids is mostly satisfied by utilising chemically synthesised compounds, with only a low quantity obtained from natural sources. As an alternative to chemical synthesis, environmentally friendly bio-based technologies are necessary for development in large-scale production. One of the most promising sustainable technologies is the utilisation of microbial cell factories for biosynthesis of phenolic acids. In this paper, we perform a systematic comparison of the best known natural sources of phenolic acids. The advances and prospects in the development of microbial cell factories for biosynthesis of these bioactive compounds are discussed in more detail. A special consideration is given to the modern production methods and analytics of phenolic acids.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Naglis Malys
- Bioprocess Research Centre, Faculty of Chemical Technology, Kaunas University of Technology, Radvilėnų pl. 19, Kaunas LT-50254, Lithuania; (E.V.); (I.J.); (M.S.); (E.A.); (P.M.); (A.S.)
| |
Collapse
|
70
|
Chemical Composition and Biological Activities of the Nord-West Romanian Wild Bilberry (Vaccinium myrtillus L. ) and Lingonberry (Vaccinium vitis-idaea L. ) Leaves. Antioxidants (Basel) 2020; 9:antiox9060495. [PMID: 32517130 PMCID: PMC7346130 DOI: 10.3390/antiox9060495] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/26/2020] [Accepted: 06/03/2020] [Indexed: 12/29/2022] Open
Abstract
This study was performed to evaluate and compare the in vitro antioxidant, antimicrobial, and antimutagenic activities, and the polyphenolic content of the Nord-West Romanian wild bilberry (Vaccinium myrtillus L.) and lingonberry (Vaccinium vitis-idaea L.) leaves from three different natural habitats (Smida, Turda, Borsa). In the case of both species, the flavanols level was higher in Smida habitat (altitude 1100 m), whereas quercetin derivates were more abundant in Borsa habitat (altitude 850 m). The bilberry leaf extracts contained in the highest amounts the feruloylquinic acid (59.65 ± 0.44 mg/g for Borsa habitat) and rutin (49.83 ± 0.63 mg/g for Borsa habitat), and showed relevant 2,2-diphenyl-1-picrylhydrazyl (DPPH) antioxidant activity (271.65 mM Trolox/100 g plant material for Borsa habitat, 262.77 mM Trolox/100 g plant material for Smida habitat, and 320.83 mM Trolox/100 g plant material for Turda habitat), for all the three extracts. Gallocatechin was the dominant flavanol in lingonberry species, with the highest amount being registered for Smida habitat (46.81 ± 0.3 mg/g), revealing a DPPH antioxidant activity of 251.49 mM Trolox/100 g plant material. The results obtained in the antimicrobial tests showed that the best inhibitory effect among bilberry species was attributed to the Turda (altitude 436 m) and Smida locations, against both Gram-positive and Gram-negative bacterial strains. For lingonberry, the differences in habitat did not influence the antibacterial effect, but the antifungal effect, only in the case of Candida zeylanoides. A strong antimutagenic effect was registered by the bilberry leaves toward Salmonella typhimurium TA100. Our study may be able to provide a better understanding of the correlation between natural habitat conditions and the accumulation of secondary metabolites and their related bioactivities in studied leaves.
Collapse
|
71
|
Bioactive Compounds and Antioxidant Capacity of Small Berries. Foods 2020; 9:foods9050623. [PMID: 32414083 PMCID: PMC7278679 DOI: 10.3390/foods9050623] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
The popularity of small berries has rapidly increased in Western countries given their antioxidant, anti-inflammatory, and antimicrobial activities and health-promoting properties. The aim of this study was to compare the fatty acid (FA) profile, phenolic compounds, and antioxidant capacity of extracts of 11 berries cultivated in the North West of Italy. Berry samples were extracted and evaluated for FA profile and total anthocyanin (TAC), total flavonoid contents (TFC), ferric-reducing antioxidant power (FRAP), and for their radical scavenging activities against 2,2′-diphenyl-1-picrylhydrazyl (DPPH•) radical. The main polyphenols of berry extracts were characterized by HPLC-DAD-UV-ESI HRMS in positive ion mode. Results showed that the highest TAC and TFC contents were recorded in black currants, blackberries, and blueberries. Maximum and minimum DPPH• radical scavenging activities, Trolox Equivalent Antioxidant Capacity, and FRAP measurements confirmed the same trend recorded for TAC and TFC values. HPLC-HRMS analyses highlight how blueberries and blackberries have the highest concentration in polyphenols. Palmitic, stearic, oleic, linoleic, α-linolenic, and γ-linolenic acids significantly differ between berries, with oleic and α-linolenic acid representing the most abundant FAs in raspberries. Among the berries investigated, results of phytochemical characterization suggest choosing black currants and blueberries as an excellent source of natural antioxidants for food and health purposes.
Collapse
|
72
|
Efenberger-Szmechtyk M, Nowak A, Czyżowska A, Kucharska AZ, Fecka I. Composition and Antibacterial Activity of Aronia melanocarpa (Michx.) Elliot, Cornus mas L. and Chaenomeles superba Lindl. Leaf Extracts. Molecules 2020; 25:molecules25092011. [PMID: 32344904 PMCID: PMC7248868 DOI: 10.3390/molecules25092011] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022] Open
Abstract
The purpose of this study was to investigate the composition of leaf extracts from Aronia melanocarpa, Chaenomeles superba, and Cornus mas, and their antimicrobial activity against typical spoilage-causing and pathogenic bacteria found in meat and meat products. The highest total phenolic content (TPC) was detected in C. superba extract, followed by C. mas and A. melanocarpa extracts. The antioxidant capacity of the extracts was measured by DPPH and ABTS assays. The lowest IC50 values were found for C. superba extract, followed by C. mas and A. melanocarpa extracts. LC-MS and HPLC analysis revealed that A. melanocarpa and C. superba extracts contained hydroxycinnamic acid derivatives and flavonoids (mainly flavonols). Hydroxycinnamic acid derivatives were detected in the C. mas extract, as well as flavonols, ellagitannins, and iridoids. The antibacterial activity of the plant extracts was tested against Gram-negative bacteria (Moraxella osloensis, Pseudomonas fragi, Acinetobacter baumanii, Escherichia coli, Enterobacter aerogenes, Salmonella enterica) and Gram-positive bacteria (Enterococcus faecium, Staphylococcus aureus, Brochothrix thermosphacta, Lactobacillus sakei, Listeria monocytogenes) using the microculture method. The extracts acted as bacteriostatic agents, decreasing the growth rate (µmax) and extending the lag phase (tlag). C. mas showed most potent antibacterial activity, as confirmed by principal component analysis (PCA).
Collapse
Affiliation(s)
- Magdalena Efenberger-Szmechtyk
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland; (A.N.); (A.C.)
- Correspondence: ; Tel.: +48-426313479
| | - Agnieszka Nowak
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland; (A.N.); (A.C.)
| | - Agata Czyżowska
- Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland; (A.N.); (A.C.)
| | - Alicja Z. Kucharska
- Department of Fruit, Vegetable and Plant Nutraceutical Technology, Wrocław University of Environmental and Life Science, Chełmońskiego 37, 51-630 Wrocław, Poland;
| | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Wrocław Medical University, Borowska 211A, 50-556 Wrocław, Poland;
| |
Collapse
|
73
|
Svečnjak L, Marijanović Z, Okińczyc P, Marek Kuś P, Jerković I. Mediterranean Propolis from the Adriatic Sea Islands as a Source of Natural Antioxidants: Comprehensive Chemical Biodiversity Determined by GC-MS, FTIR-ATR, UHPLC-DAD-QqTOF-MS, DPPH and FRAP Assay. Antioxidants (Basel) 2020; 9:E337. [PMID: 32326085 PMCID: PMC7222358 DOI: 10.3390/antiox9040337] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/12/2022] Open
Abstract
There is no systematic report about propolis chemical biodiversity from the Adriatic Sea islands affecting its antioxidant capacity. Therefore, the samples from the islands Krk, Rab, Pag, Biševo and Korčula were collected. Comprehensive methods were used to unlock their chemical biodiversity: headspace solid-phase microextraction (HS-SPME) and hydrodistillation (HD) followed by gas chromatography and mass spectrometry (GC-MS); Fourier transform mid-infrared spectroscopy (FT-MIR); ultra high performance liquid chromatography with diode array detector and quadrupole time-of-flight mass spectrometry (UHPLC-DAD-QqTOF-MS) and DPPH and FRAP assay. The volatiles variability enabled differentiation of the samples in 2 groups of Mediterranean propolis: non-poplar type (dominated by α-pinene) and polar type (characterized by cadinane type sesquiterpenes). Spectral variations (FT-MIR) associated with phenolics and other balsam-related components were significant among the samples. The UHPLC profiles allowed to track compounds related to the different botanical sources such as poplar (pinobanksin esters, esters and glycerides of phenolic acids, including prenyl derivatives), coniferous trees (labdane, abietane diterpenes) and Cistus spp. (clerodane and labdane diterpenes, methylated myricetin derivatives). The antioxidant potential determined by DPPH ranged 2.6-81.6 mg GAE/g and in FRAP assay 0.1-0.8 mmol Fe2+/g. The highest activity was observed for the samples of Populus spp. origin. The antioxidant potential and phenolic/flavonoid content was positively, significantly correlated.
Collapse
Affiliation(s)
- Lidija Svečnjak
- Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia;
| | - Zvonimir Marijanović
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
| | - Piotr Okińczyc
- Department of Pharmacognosy and Herbal Medicines, Wrocław Medical University, ul. Borowska 211a, 50-556 Wrocław, Poland;
| | - Piotr Marek Kuś
- Department of Pharmacognosy and Herbal Medicines, Wrocław Medical University, ul. Borowska 211a, 50-556 Wrocław, Poland;
| | - Igor Jerković
- Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia;
| |
Collapse
|
74
|
Kozuka M, Yamane T, Imai M, Handa S, Takenaka S, Sakamoto T, Ishida T, Inui H, Yamamoto Y, Nakagaki T, Nakano Y. Isolation of HMG-CoA reductase inhibitors from aronia juice. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
75
|
Phytochemical Composition, Antioxidant and Antiproliferative Activities of Defatted Sea Buckthorn ( Hippophaë rhamnoides L.) Berry Pomace Fractions Consecutively Recovered by Pressurized Ethanol and Water. Antioxidants (Basel) 2020; 9:antiox9040274. [PMID: 32218308 PMCID: PMC7222216 DOI: 10.3390/antiox9040274] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022] Open
Abstract
This study aimed at valorisation of sea buckthorn pomace (SBP) for the production of extracts containing valuable bioactive compounds. For this purpose, SBP defatted by supercritical CO2 was subjected to consecutive fractionation with pressurized ethanol and water, which yielded 11.9% and 4.8% of extracts, respectively. The extracts were evaluated for their antioxidant potential, phytochemical composition and antiproliferative effects against cancer cells. Water extracts exhibited remarkably higher values in Folin-Ciocalteu assay of total phenolic content, oxygen radical absorbance capacity (ORAC), ABTS●+/DPPH● scavenging and cellular antioxidant activity (CAA) assays and more efficiently inhibited proliferation of HT29 cells at non-cytotoxic concentrations measured in non-tumoral Caco2 cells. Among 28 detected and 21 quantified phytochemicals, flavonols with the structures of isorhamnetin (five compounds), quercetin (three compounds), kaempferol (three compounds) glycosides and catechin (six compounds) were the most abundant in the extracts. In conclusion, the applied method of fractionation of SBP produces promising natural antioxidant complexes with antiproliferative properties that could find potential applications in nutraceuticals, functional foods and cosmeceuticals.
Collapse
|
76
|
Croton campestris A. St.-Hill Methanolic Fraction in a Chlorpyrifos-Induced Toxicity Model in Drosophila melanogaster: Protective Role of Gallic Acid. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3960170. [PMID: 32273942 PMCID: PMC7121785 DOI: 10.1155/2020/3960170] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/14/2020] [Indexed: 02/07/2023]
Abstract
Croton campestris A. St-Hill popularly known as "velame do campo" is a native species of the savannah from northeastern Brazil, being used in folk medicine due to its beneficial effects in the treatment of many diseases, inflammation, detoxification, gastritis, and syphilis; however, its potential use as an antidote against organophosphorus compound poisoning has not yet been shown. Here, the protective effect of the methanolic fraction of C. campestris A. St.-Hill (MFCC) in Drosophila melanogaster exposed to chlorpyrifos (CP) was investigated. Flies were exposed to CP and MFCC during 48 h through the diet. Following the treatments, parameters such as mortality, locomotor behavior, and oxidative stress markers were evaluated. Exposure of flies to CP induced significant impairments in survival and locomotor performance. In parallel, increased reactive oxygen species and lipoperoxidation occurred. In addition, the activity of acetylcholinesterase was inhibited by CP, and superoxide dismutase and glutathione S-transferase activity was induced. Treatment with MFCC resulted in a blockage of all CP-induced effects, with the exception of glutathione S-transferase. Among the major compounds found in MFCC, only gallic acid (GA) showed a protective role against CP while quercetin and caffeic acid alone were ineffective. When in combination, these compounds avoided the toxicity of CP at the same level as GA. As far as we know, this is the first study reporting the protective effect of MFCC against organophosphate toxicity in vivo and highlights the biotechnological potential of this fraction attributing a major role in mediating the observed effects to GA. Therefore, MFCC may be considered a promising source for the development of new therapeutic agents for the treatment of organophosphate intoxications.
Collapse
|
77
|
Characterization of Flavonoid Compounds in Common Swedish Berry Species. Foods 2020; 9:foods9030358. [PMID: 32204535 PMCID: PMC7143522 DOI: 10.3390/foods9030358] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 11/17/2022] Open
Abstract
Berries are considered an ideal source of polyphenols, especially from the flavonoid group. In this study, we examined the flavonoid content in 16 varieties of Swedish lingonberry, raspberry, blueberry, and strawberry. Nineteen flavonoids were simultaneously quantified using external standards. An additional 29 flavonoids were tentatively identified using MS as no standards were available. Quantification was done using HPLC-UV after optimization of chromatographic and extraction procedures. The method showed high linearity within the range of 2-100 μg/mL (correlation co-efficient >0.999), intra- and inter-day precision of 1.7-7.3% and average recovery above 84% for all compounds. Blueberries and lingonberries were found to contain higher contents of flavonoids (1100 mg/100 g dry weight) than raspberries and strawberries (500 mg/100 g dry weight). Anthocyanins were the dominant flavonoids in all berries. The tentatively characterized compounds contribute 18%, 29%, 61%, and 67% of the total flavonoid content in strawberries, lingonberries, raspberries, and blueberries, respectively. Overall, Swedish berries were shown to be good sources of polyphenols.
Collapse
|
78
|
Mäkinen S, Hellström J, Mäki M, Korpinen R, Mattila PH. Bilberry and Sea Buckthorn Leaves and Their Subcritical Water Extracts Prevent Lipid Oxidation in Meat Products. Foods 2020; 9:E265. [PMID: 32121661 PMCID: PMC7142906 DOI: 10.3390/foods9030265] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 01/09/2023] Open
Abstract
The aim of this study was to find new sustainable, Nordic natural antioxidant sources, develop subcritical water extraction (SWE) process for recovering the antioxidant compounds from the most potential raw materials, and to test their antioxidative effects in meat products. The antioxidant capacities of water and 50% ethanol (aq) extracts of 13 berry, grain, and horticultural plant materials as well as hexane/ethanol extracted stilbene fractions from pine heartwood and spruce inner bark were measured in hydrophilic and lipophilic systems. Tree, bilberry leaf (BL), and sea buckthorn leaf (SBL) extracts showed the highest antioxidant capacities. BL and SBL were selected for the development of SWE. The optimal conditions for recovering maximal antioxidative capacities were 110 °C/1 min for SBL and 120 °C/1 min for BL. Dried BL and SBL and the respective optimized subcritical water extracts were applied in chicken slices and pork sausage, and their ability to prevent lipid oxidation was evaluated during 8 and 20 days storage, respectively, at 6 °C. All tested plant ingredients effectively prevented lipid oxidation in the products compared to the control samples. Sensory acceptance of the plant ingredients was good, especially in the chicken product. To our knowledge, this is the first study to assess the antioxidant effects of SW extracted berry leaves in meat products.
Collapse
Affiliation(s)
- Sari Mäkinen
- Natural Resources Institute Finland, Production Systems, Humppilantie 7, 31600 Jokioinen, Finland; (S.M.); (J.H.); (M.M.)
| | - Jarkko Hellström
- Natural Resources Institute Finland, Production Systems, Humppilantie 7, 31600 Jokioinen, Finland; (S.M.); (J.H.); (M.M.)
| | - Maarit Mäki
- Natural Resources Institute Finland, Production Systems, Humppilantie 7, 31600 Jokioinen, Finland; (S.M.); (J.H.); (M.M.)
| | - Risto Korpinen
- Natural Resources Institute Finland, Production Systems, Tietotie 2, 02150 Espoo, Finland;
| | - Pirjo H. Mattila
- Natural Resources Institute Finland, Production Systems, Itäinen Pitkäkatu 4, 20250 Turku, Finland
| |
Collapse
|
79
|
Cerulli A, Napolitano A, Masullo M, Hošek J, Pizza C, Piacente S. Chestnut shells (Italian cultivar “Marrone di Roccadaspide” PGI): Antioxidant activity and chemical investigation with in depth LC-HRMS/MSn rationalization of tannins. Food Res Int 2020; 129:108787. [DOI: 10.1016/j.foodres.2019.108787] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022]
|
80
|
Pariyani R, Kortesniemi M, Liimatainen J, Sinkkonen J, Yang B. Untargeted metabolic fingerprinting reveals impact of growth stage and location on composition of sea buckthorn (Hippophaë rhamnoides) leaves. J Food Sci 2020; 85:364-373. [PMID: 31976552 DOI: 10.1111/1750-3841.15025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 02/06/2023]
Abstract
Sea buckthorn (Hippophaë rhamnoides) is increasingly cultivated to produce raw materials for food and nutraceuticals. There is little knowledge on composition of sea buckthorn leaves (SBLs) and the key factors influencing the composition. This research aims to unravel the metabolic profile of SBLs and the effects of cultivar, location and stage of growth, and climatic conditions on the metabolic profile of SBLs. Leaves of two sea buckthorn cultivars grown in the south and north of Finland during two consecutive growth seasons were studied using untargeted nuclear magnetic resonance (NMR) metabolomics. The highest variance in the metabolic profile was linked to the growth stage, wherein leaves from the first 7 weeks of harvest were characterized with higher abundance of polyphenols, while relatively higher abundance of carbohydrates and sugars was observed in the later weeks. The growth location attributed for the second highest variation, wherein the north-south comparison identified fatty acids and sugars as discriminatory metabolites, and the potential association of metabolome to natural abiotic stressors was revealed. An inverse correlation between carbohydrate/sugar content as well as fatty acids of higher carbon chain length with the temperature variables was evident. The supervised chemometric models with high sensitivity and specificity classified and predicted the samples based on growth stage and location, and cultivar. Nontargeted NMR-metabolomics revealed the metabolic profile of SBLs and their variation associated with various biotic and abiotic factors. Cultivar and growth stage are key factors to consider when harvesting SBLs for use in food and nutraceuticals. PRACTICAL APPLICATION: Globally, sea buckthorn cultivation has been rapidly increasing due to the known health-promoting benefits of the berries and leaves of the plant. The current research obtained new comprehensive information on the compositional profile of sea buckthorn leaves as well as the impact of major contributory factors, such as cultivars, the advancement of growth stage, geographical location, and weather parameters. The findings of this research provide new knowledge and guidance for plant breeding, cultivation and commercial utilization of sea buckthorn leaves as raw materials for food, feed, and nutraceuticals.
Collapse
Affiliation(s)
- Raghunath Pariyani
- Food Chemistry and Food Development, Dept. of Biochemistry, Univ. of Turku, FI-20014, Turku, Finland
| | - Maaria Kortesniemi
- Food Chemistry and Food Development, Dept. of Biochemistry, Univ. of Turku, FI-20014, Turku, Finland
| | - Jaana Liimatainen
- Food Chemistry and Food Development, Dept. of Biochemistry, Univ. of Turku, FI-20014, Turku, Finland.,Dept. of Food and Nutrition, Univ. of Helsinki, P.O. Box 66 FI-00014, Finland
| | - Jari Sinkkonen
- Instrument Centre, Dept. of Chemistry, Univ. of Turku, FI-20014, Turku, Finland
| | - Baoru Yang
- Food Chemistry and Food Development, Dept. of Biochemistry, Univ. of Turku, FI-20014, Turku, Finland
| |
Collapse
|
81
|
Pires TCSP, Caleja C, Santos-Buelga C, Barros L, Ferreira IC. Vaccinium myrtillus L. Fruits as a Novel Source of Phenolic Compounds with Health Benefits and Industrial Applications - A Review. Curr Pharm Des 2020; 26:1917-1928. [PMID: 32183662 PMCID: PMC7403651 DOI: 10.2174/1381612826666200317132507] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/08/2020] [Indexed: 12/21/2022]
Abstract
Consumers' demand for healthier foods with functional properties has had a clear influence on the food industry and in this sense, they have been attaching natural sources of bioactive ingredients into food products. Vaccinium myrtillus L. (bilberry) is known to be a functional food, presenting its fruits in the form of a small dark blueberry. This coloration is due to its high content in anthocyanin, being also associated with bilberries' beneficial health effects. In the bilberry industry, there is a very high annual loss of this fruit due to the less aesthetic shape or appearance, in which they cannot be considered suitable for sale and are therefore disposed of as biological waste. Therefore, it is of great importance to valorize this fruit and this review aimed to completely characterize the fruits of V. myrtillus in order to comprehend the relationship between their consumption and the beneficial effects regarding consumer's health. Thus, this review provides a description of the nutritional and bioactive compounds present in bilberry fruits, followed by their beneficial health effects. An overview of the natural pigments present in these fruits was also explored, focusing particularly in the anthocyanins composition, which represents the most widely studied class of bioactive compounds of V. myrtillus fruits. Finally, industrial applications of these fruits and by-products, as an efficient approach to the production of value-added products with economical and environmental impact, were also discussed. In general, V. myrtillus is a rich source of micronutrients and phytochemical compounds, such as organic acids, sugars, vitamins, fibers and phenolic compounds (anthocyanin and non-anthocyanin compounds), with nutritional and functional properties, that justify the growing interest in these berries, not only for food applications, but also in the pharmaceutical industry.
Collapse
Affiliation(s)
| | | | | | - Lillian Barros
- Address correspondence to these authors at the Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Tel: +351273303219; Fax: +351273325405; E-mail: ; Tel: +351273303285; Fax: +351273325405; E-mail:
| | - Isabel C.F.R. Ferreira
- Address correspondence to these authors at the Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Tel: +351273303219; Fax: +351273325405; E-mail: ; Tel: +351273303285; Fax: +351273325405; E-mail:
| |
Collapse
|
82
|
Jimenez-Lopez C, Fraga-Corral M, Carpena M, García-Oliveira P, Echave J, Pereira AG, Lourenço-Lopes C, Prieto MA, Simal-Gandara J. Agriculture waste valorisation as a source of antioxidant phenolic compounds within a circular and sustainable bioeconomy. Food Funct 2020; 11:4853-4877. [DOI: 10.1039/d0fo00937g] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Agro-food industrial waste is currently being accumulated, pushing scientists to find recovery strategies to obtain bioactive compounds within a circular bioeconomy. Target phenolic compounds have shown market potential by means of optimization extraction techniques.
Collapse
Affiliation(s)
- C. Jimenez-Lopez
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - M. Fraga-Corral
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - M. Carpena
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - P. García-Oliveira
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - J. Echave
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - A. G. Pereira
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - C. Lourenço-Lopes
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - M. A. Prieto
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| | - J. Simal-Gandara
- Nutrition and Bromatology Group
- Analytical and Food Chemistry Department
- Faculty of Food Science and Technology
- University of Vigo
- E-32004 Ourense
| |
Collapse
|
83
|
Black Chokeberry Aronia melanocarpa L .-A Qualitative Composition, Phenolic Profile and Antioxidant Potential. Molecules 2019; 24:molecules24203710. [PMID: 31619015 PMCID: PMC6832535 DOI: 10.3390/molecules24203710] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/02/2019] [Accepted: 10/09/2019] [Indexed: 11/18/2022] Open
Abstract
Black chokeberry (Aronia melnocarpa) is a source of many bioactive compounds with a wide spectrum of health-promoting properties. Fresh, unprocessed chokeberry fruits are rarely consumed due to their astringent taste, but they are used in the food industry for the production of juices, nectars, syrups, jams, preserves, wines, tinctures, fruit desserts, jellies, fruit teas and dietary supplements. Polyphenols are biofactors that determine the high bioactivity of chokeberries, some of the richest sources of polyphenols, which include anthocyanins, proanthocyanidins, flavonols, flavanols, proanthocyanidins, and phenolic acids. Chokeberry fruit and products have great antioxidant and health-promoting potential as they reduce the occurrence of free radicals. This publication reviewed the scientific research regarding the phenolic compounds and the antioxidant potential of chokeberry fruits, products and isolated compounds. These findings may be crucial in future research concerning chokeberry based functional food products. Chokeberry fruits can be considered as promising component of designed food with enhanced antioxidant potential. However, like other plants and medicinal products of natural origin, black chokeberry requires extensive studies to determine its antioxidant potential, safety and mechanisms of action.
Collapse
|
84
|
Skalski B, Kontek B, Rolnik A, Olas B, Stochmal A, Żuchowski J. Anti-Platelet Properties of Phenolic Extracts from the Leaves and Twigs of Elaeagnus rhamnoides (L.) A. Nelson. Molecules 2019; 24:molecules24193620. [PMID: 31597284 PMCID: PMC6803833 DOI: 10.3390/molecules24193620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/02/2019] [Accepted: 10/04/2019] [Indexed: 12/30/2022] Open
Abstract
Sea buckthorn (Elaeagnus rhamnoides (L.) A. Nelson) is a small tree or bush. It belongs to the Elaeagnaceae family, and has been used for many years in traditional medicine in both Europe and Asia. However, there is no data on the effect of sea buckthorn leaves and twigs on the properties of blood platelets. The aim of the study was to analyze the biological activity of phenolic extracts from leaves and twigs of sea buckthorn in blood platelets in vitro. Two sets of extracts were used: (1) phenolic compounds from twigs and (2) phenolic compounds from leaves. Their biological effects on human blood platelets were studied by blood platelet adhesion, platelet aggregation, arachidonic acid metabolism and the generation of superoxide anion. Cytotoxicity was also evaluated against platelets. The action of extracts from sea buckthorn twigs and leaves was compared to activities of the phenolic extract (a commercial product from the berries of Aronia melanocarpa (Aronox®) with antioxidative and antiplatelet properties. This study is the first to demonstrate that extracts from sea buckthorn leaves and twigs are a source of bioactive compounds which may be used for the prophylaxis and treatment of cardiovascular pathologies associated with blood platelet hyperactivity. Both leaf and twig extracts were found to display anti-platelet activity in vitro. Moreover, the twig extract (rich in proanthocyanidins) displayed better anti-platelet potential than the leaf extract or aronia extract.
Collapse
Affiliation(s)
- Bartosz Skalski
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 90-236 Łódź, Poland.
| | - Bogdan Kontek
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 90-236 Łódź, Poland.
| | - Agata Rolnik
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 90-236 Łódź, Poland.
| | - Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Łódź, 90-236 Łódź, Poland.
| | - Anna Stochmal
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland.
| | - Jerzy Żuchowski
- Department of Biochemistry, Institute of Soil Science and Plant Cultivation, State Research Institute, 24-100 Puławy, Poland.
| |
Collapse
|
85
|
Broholm SL, Gramsbergen SM, Nyberg NT, Jäger AK, Staerk D. Potential of Sorbus berry extracts for management of type 2 diabetes: Metabolomics investigation of 1H NMR spectra, α-amylase and α-glucosidase inhibitory activities, and in vivo anti-hyperglycaemic activity of S. norvegica. JOURNAL OF ETHNOPHARMACOLOGY 2019; 242:112061. [PMID: 31283956 DOI: 10.1016/j.jep.2019.112061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/18/2019] [Accepted: 07/04/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Berries of Sorbus species have been used to treat type 2 diabetes in many regions in Europe. AIMS OF THE STUDY To investigate the inhibitory activity of berry extract of Sorbus on the digestive enzymes α-amylase and α-glucosidase, two important targets for management of blood glucose for type 2 diabetics. Furthermore, to test the anti-hyperglycaemic potential of S. norvegica berry extract in vivo. MATERIALS AND METHODS 70% acetone berry extracts of 16 Sorbus species were tested in vitro for inhibition of α-amylase and α-glucosidase. Single berry extracts were analysed by 1H-NMR spectroscopy and principal component analysis to evaluate the chemical profiles of the extracts. The anti-hyperglycaemic effect was evaluated in an oral starch tolerance test in STZ-treated C57BL/6 mice. RESULTS The lowest IC50 values against α-amylase and α-glucosidase were obtained with the Sorbus species belonging to the subspecies Aria, which have simple leaves compared to pinnately compound leaves of the other Sorbus species. Species belonging to subspecies Aria grouped together and away from the other Sorbus species in the score plot, indicating a difference in chemistry. Both the carbohydrate- and polyphenol-fraction contributed to the enzyme inhibition. Extract of the most active species, S. norvegica, had anti-hyperglycaemic activity, at a level 36 times lower than clinically used acarbose, corresponding to a needed daily dose of 900 mg extract. CONCLUSIONS Sorbus species of subspecies Aria have the potential to be used for management of type 2 diabetes.
Collapse
Affiliation(s)
- Sofie L Broholm
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Simone M Gramsbergen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Nils T Nyberg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Anna K Jäger
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
86
|
Impact of cyclodextrin treatment on composition and sensory properties of lingonberry (Vaccinium vitis-idaea) juice. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108295] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
87
|
Barros HD, Baseggio AM, Angolini CF, Pastore GM, Cazarin CB, Marostica-Junior MR. Influence of different types of acids and pH in the recovery of bioactive compounds in Jabuticaba peel (Plinia cauliflora). Food Res Int 2019; 124:16-26. [DOI: 10.1016/j.foodres.2019.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 12/18/2018] [Accepted: 01/07/2019] [Indexed: 12/20/2022]
|
88
|
Kamble DB, Singh R, Rani S, Pratap D. Physicochemical properties, in vitro digestibility and structural attributes of okara‐enriched functional pasta. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14232] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Dinkar B. Kamble
- National Institute of Food Technology Entrepreneurship & Management Kundli India
| | - Rakhi Singh
- National Institute of Food Technology Entrepreneurship & Management Kundli India
| | - Savita Rani
- National Institute of Food Technology Entrepreneurship & Management Kundli India
| | - Devendra Pratap
- National Institute of Food Technology Entrepreneurship & Management Kundli India
| |
Collapse
|
89
|
Zheng WH, Bai HY, Han S, Bao F, Zhang KX, Sun LL, Du H, Yang ZG. Analysis on the Constituents of Branches, Berries, and Leaves of Hippophae rhamnoides L. by UHPLC-ESI-QTOF-MS and Their Anti-Inflammatory Activities. Nat Prod Commun 2019. [DOI: 10.1177/1934578x19871404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sea buckthorn ( Hippophae rhamnoides L.) is a medicinal plant widely distributed in Asia and Europe, containing plentiful bioactive substances. Our research aimed to promote the comprehensive utilization of the branches, leaves, and berries of sea buckthorn. Qualitative analysis of chemical constituents in branches, leaves, and berries of sea buckthorn was conducted by ultra-high performance liquid chromatography accurate mass quadrupole time-of-flight mass spectrometry with electrospray ionization (UHPLC-ESI-QTOF-MS). As a result, the branch, leaf, and berry samples could be clearly separated in principal component analysis scores plot, and 24 significant markers were found to distinguish these parts by partial least squares regression discrimination analysis in Mass Profiler Professional software. Meanwhile, the compositional similarity of sea buckthorn leaves and branches was higher than that of leaves and berries. In addition, the inhibition of nitric oxide (NO) production of different parts in macrophage RAW 264.7 cells was carried out. At the concentration of 10 μg/mL, sea buckthorn extracts showed good anti-inflammatory activities with NO inhibition values from 73% to 98%.
Collapse
Affiliation(s)
| | | | - Shu Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | - Fang Bao
- School of Pharmacy, Lanzhou University, China
| | | | - Li-Li Sun
- School of Pharmacy, Lanzhou University, China
| | - Hong Du
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, China
| | | |
Collapse
|
90
|
Wu H, Chai Z, Hutabarat RP, Zeng Q, Niu L, Li D, Yu H, Huang W. Blueberry leaves from 73 different cultivars in southeastern China as nutraceutical supplements rich in antioxidants. Food Res Int 2019; 122:548-560. [DOI: 10.1016/j.foodres.2019.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 04/23/2019] [Accepted: 05/12/2019] [Indexed: 11/29/2022]
|
91
|
Black chokeberry (Aronia melanocarpa) and its products as potential health-promoting factors - An overview. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.05.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
92
|
Skalski B, Kontek B, Lis B, Olas B, Grabarczyk Ł, Stochmal A, Żuchowski J. Biological properties of Elaeagnus rhamnoides (L.) A. Nelson twig and leaf extracts. Altern Ther Health Med 2019; 19:148. [PMID: 31238930 PMCID: PMC6591864 DOI: 10.1186/s12906-019-2564-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/13/2019] [Indexed: 01/01/2023]
Abstract
Background Sea buckthorn (Elaeagnus rhamnoides (L.) A. Nelson, SBT) is a valuable plant because of its medical and therapeutic potential. Different bioactive compounds in SBT berries are of special interest to various researchers. However, not only sea buckthorn berries, but also leaves of this plant (both fresh and dried) contain a lot of nutrients and bioactive compounds, including phenolic compounds. The present study was carried out in order to investigate antioxidant and anticoagulant properties of sea buckthorn twig and leaf extracts (0.5–50 μg/mL) by using various in vitro models. Moreover, the aim of present experiments was to compare the biological activity of SBT leaf extract and SBT twig extract with selected berry extracts (a rich source of phenolic compounds): SBT berry extract (flavonoids being the dominant components), a commercial extract from the berries of Aronia melanocarpa (Aronox®), and a grape seed extract. Methods We determined the effect of plant extracts on the oxidative stress using selected markers of this process, i.e. the level of carbonyl groups in proteins. Additionally, we analysed the potential mechanism of modulation of hemostatic properties of human plasma (using selected coagulation times). Results SBT twig and leaf extracts were observed to exhibit an antioxidant activity against two strong biological oxidants: hydrogen peroxide (H2O2) and H2O2/Fe (the donor of hydroxyl radicals), which induced human plasma lipid peroxidation and protein carbonylation. Both extracts also showed anticoagulant properties. Conclusions Our present results have demonstrated that extracts from different parts of SBT, especially berries and twigs, in comparison to well-known berries (aronia and grape), may also be viewed as a good source of active substances – antioxidants for pharmacological or cosmetic applications. Moreover, it is very important from an economic point of view to know that there is a possibility of obtaining phenolic compounds not only from the berries or leaves, but also from twigs, which constitute a production waste.
Collapse
|
93
|
Nordic Diet and Inflammation-A Review of Observational and Intervention Studies. Nutrients 2019; 11:nu11061369. [PMID: 31216678 PMCID: PMC6627927 DOI: 10.3390/nu11061369] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/07/2019] [Accepted: 06/14/2019] [Indexed: 12/21/2022] Open
Abstract
Low-grade inflammation (LGI) has been suggested to be involved in the development of chronic diseases. Healthy dietary patterns, such as the Mediterranean diet (MD), may decrease the markers of LGI. Healthy Nordic diet (HND) has many similarities with MD, but its effects on LGI are less well known. Both of these dietary patterns emphasize the abundant use of fruits and vegetables (and berries in HND), whole grain products, fish, and vegetable oil (canola oil in HND and olive oil in MD), but restrict the use of saturated fat and red and processed meat. The aim of this narrative review is to summarize the results of studies, which have investigated the associations or effects of HND on the markers of LGI. Altogether, only two publications of observational studies and eight publications of intervention trials were found through the literature search. Both observational studies reported an inverse association between the adherence to HND and concentration of high sensitivity C-reactive protein (hsCRP). A significant decrease in the concentration of hsCRP was reported in two out of four intervention studies measuring hsCRP. Single intervention studies reported the beneficial effects on interleukin 1Ra and Cathepsin S. Current evidence suggests the beneficial effects on LGI with HND, but more carefully controlled studies are needed to confirm the anti-inflammatory effects of the HND.
Collapse
|
94
|
Kendir G, Süntar I, Çeribaşı AO, Köroğlu A. Activity evaluation on Ribes species, traditionally used to speed up healing of wounds: With special focus on Ribes nigrum. JOURNAL OF ETHNOPHARMACOLOGY 2019; 237:141-148. [PMID: 30902746 DOI: 10.1016/j.jep.2019.03.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 02/02/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ribes species are usually evergreen shrubs, represented by eight species in Turkey. Although they are known for their fruits with commercial importance, their leaves have been used as folk remedy in various areas in Turkey by rural population owing to their wound healing potential. AIM OF THE STUDY In the present study we aimed to assess the wound healing activity of the leaves of Ribes species growing in Turkey, namely, Ribes alpinum L., R. anatolica Behçet, R. petraeum Wulfen, R. multiflorum Kit. ex Romer & Schultes, R. nigrum L., R. orientale Desf., R. rubrum L., R. uva-crispa L. MATERIALS AND METHODS Wounds were surgically induced on the dorsal parts of the rats and mice. Prepared herbal ointments were topically applied onto the wounds once daily. The effects of the extracts were evaluated by measuring the breaking strength and percentage of reduction in wounded area by comparing the results with the registered reference ointment, FITO Krem®. Histopathological and antioxidant assays were also conducted. Since, R. nigrum was determined to be the most active species, we further investigated the wound healing potential of the subextracts of the methanol extract of R. nigrum leaves. RESULTS R. nigrum and R. multiflorum extracts significantly increased wound breaking strength. Significant reduction in the areas was determined for the wounded tissues treated with the ointments of R. nigrum and R. multiflorum extracts. Oxidative Stress Index was found to be lowest for R. orientale, R. nigrum and R. multiflorum. Among the subextracts of R. nigrum, ethyl acetate subextract was found to have promising effect. CONCLUSIONS Methanol extracts of leaves of R. nigrum and R. multiflorum demonstrated significant wound healing effect. We can suggest that ethyl acetate subextract of R. nigrum may be a potential candidate to be used for the development of a wound healing agent.
Collapse
Affiliation(s)
- Gülsen Kendir
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Istinye University, 34010, Zeytinburnu, Istanbul, Turkey
| | - Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330, Etiler, Ankara, Turkey.
| | - Ali Osman Çeribaşı
- Department of Pathology, Faculty of Veterinary Medicine, Fırat University, 23119, Elazig, Turkey
| | - Ayşegül Köroğlu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, 06100, Tandogan, Ankara, Turkey; Afyonkarahisar Health Sciences University, Faculty of Pharmacy, Department of Pharmaceutical Botany, 03200, Afyon, Turkey
| |
Collapse
|
95
|
Anggraini T, Wilma S, Syukri D, Azima F. Total Phenolic, Anthocyanin, Catechins, DPPH Radical Scavenging Activity, and Toxicity of Lepisanthes alata (Blume) Leenh. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2019; 2019:9703176. [PMID: 31275958 PMCID: PMC6582855 DOI: 10.1155/2019/9703176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/14/2019] [Accepted: 04/21/2019] [Indexed: 12/17/2022]
Abstract
Anthocyanins and catechin are natural antioxidants presented in many plants. Lepisanthes alata (Blume) Leenh is a plant with fruit that ripens to an intense red. This coloring suggests a high polyphenol content. However, limited information is available regarding the polyphenol or other antioxidant content in this fruit or its suitability as a food additive. The purpose of this research was to determine the total phenolic, total monomeric anthocyanin, catechin, epicatechin and epigallocatechin gallate content, DPPH radical scavenging activity, and toxicity in rind, flesh, seed, and whole fruit of L. alata. This research was conducted using an exploratory method with four analyses; samples from six parts of the plant were analyzed for polyphenols (rind, fruit pulp, seeds, whole fruit, bark, and leaves), four for anthocyanins (rind, fruit pulp, seeds, and whole fruit), and six parts of the plant for DPPH radical scavenging activity in water, methanol, and ethanol (rind, fruit pulp, seeds, whole fruit, bark, and leaves) and toxicity. This plant was found to contain high levels of polyphenol; the lowest level was measured in the flesh (0.64 mg GAE/g of DW) and the highest in the whole fruit (2.87 mg GAE/g of DW). The lowest anthocyanin content is found in the flesh and the highest in the rind with the respective average values of 672.27 mg/100 g FW and 1462.82 mg/100 g FW. Epicatechin is the major catechin in whole fruit and bark of L. alata. L. alata DPPH radical scavenging activity was in the range of 21.23 to 92.5% depending on the solvent, and the highest activity was recorded in bark in ethanol extract. No toxins were found in any part of the plant indicating that an extract from it could be safely used as a natural antioxidant supplement in processed foods to protect against free radicals.
Collapse
Affiliation(s)
- Tuty Anggraini
- Faculty of Agricultural Technology, Andalas University, Padang 25163, Indonesia
| | - Syafni Wilma
- Faculty of Agricultural Technology, Andalas University, Padang 25163, Indonesia
| | - Daimon Syukri
- Faculty of Agricultural Technology, Andalas University, Padang 25163, Indonesia
| | - Fauzan Azima
- Faculty of Agricultural Technology, Andalas University, Padang 25163, Indonesia
| |
Collapse
|
96
|
Quirós AM, Acosta OG, Thompson E, Soto M. Effect of ethanolic extraction, thermal vacuum concentration, ultrafiltration, and spray drying on polyphenolic compounds of tropical highland blackberry (
Rubus adenotrichos
Schltdl.) by‐product. J FOOD PROCESS ENG 2019. [DOI: 10.1111/jfpe.13051] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ana M. Quirós
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA)Universidad de Costa Rica (UCR), Ciudad Universitaria Rodrigo Facio San José Costa Rica
| | - Oscar G. Acosta
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA)Universidad de Costa Rica (UCR), Ciudad Universitaria Rodrigo Facio San José Costa Rica
| | - Eduardo Thompson
- Escuela de Tecnología de AlimentosUniversidad de Costa Rica, Ciudad Universitaria Rodrigo Facio San José Costa Rica
| | - Marvin Soto
- Centro Nacional de Ciencia y Tecnología de Alimentos (CITA)Universidad de Costa Rica (UCR), Ciudad Universitaria Rodrigo Facio San José Costa Rica
| |
Collapse
|
97
|
Tian Y, Laaksonen O, Haikonen H, Vanag A, Ejaz H, Linderborg K, Karhu S, Yang B. Compositional Diversity among Blackcurrant ( Ribes nigrum) Cultivars Originating from European Countries. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:5621-5633. [PMID: 31013088 PMCID: PMC6750745 DOI: 10.1021/acs.jafc.9b00033] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Berries representing 21 cultivars of blackcurrant were analyzed using liquid chromatographic, gas chromatographic, and mass spectrometric methods coupled with multivariate models. This study pinpointed compositional variation among cultivars of different origins cultivated in the same location during two seasons. The chemical profiles of blackcurrants varied significantly among cultivars and growing years. The key differences among cultivars of Scottish, Lithuanian, and Finnish origins were in the contents of phenolic acids (23 vs 16 vs 19 mg/100 g on average, respectively), mainly as 5- O-caffeoylquinic acid, 4- O-coumaroylglucose, ( E)-coumaroyloxymethylene-glucopyranosyloxy-( Z)-butenenitrile, and 1- O-feruloylglucose. The Scottish cultivars were grouped on the basis of the 3- O-glycosides of delphinidin and cyanidin, as were the Lithuanian cultivars. Among the Finnish samples, the content of myricetin 3- O-glycosides, 4- O-caffeoylglucose, 1- O-coumaroylglucose, and 4- O-coumaroylglucose were significantly different between the two green-fruited cultivars and the black-fruited cultivars. The samples from the studied years differed in the content of phenolic acid derivatives, quercetin glycosides, monosaccharides, and citric acid.
Collapse
Affiliation(s)
- Ye Tian
- Food
Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Oskar Laaksonen
- Food
Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Heta Haikonen
- Food
Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Anita Vanag
- Food
Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Huma Ejaz
- Food
Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Kaisa Linderborg
- Food
Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
| | - Saila Karhu
- Natural
Resources Institute Finland (Luke), Itäinen Pitkäkatu 4a, FI-20520 Turku, Finland
| | - Baoru Yang
- Food
Chemistry and Food Development, Department of Biochemistry, University of Turku, FI-20014 Turku, Finland
- Institute
of Food Quality and Safety, Shanxi Academy
of Agricultural Sciences, Longcheng Street No. 81, 030031 Taiyuan, China
- E-mail: . Tel: +35823336844
| |
Collapse
|
98
|
Green Synthesis of Silver Nanoparticles Using Bilberry and Red Currant Waste Extracts. Processes (Basel) 2019. [DOI: 10.3390/pr7040193] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The production of silver nanoparticles (Ag-NPs) from bilberry waste (BW) and red currant waste (RCW) extracts was studied. Red fruit extracts were obtained by treating BW and RCW with aqueous ethanol (50% v/v) at 40 °C. The formation of nanoparticles was monitored spectrophotometrically by measuring the intensity of the surface plasmon resonance band (SPR) of silver. The effects of temperature (20–60 °C) and pH (8–12) on the reaction kinetics and on the properties of Ag-NPs were investigated. Characterization by XRD and dynamic light scattering (DLS) techniques showed that Ag-NPs were highly crystalline, with a face-centered cubic structure and a hydrodynamic diameter of 25–65 nm. The zeta potential was in the range of −35.6 to −20.5 mV. Nanoparticles obtained from BW were slightly smaller and more stable than those from RCW. A kinetic analysis by the initial-rate method showed that there was an optimum pH, around 11, for the production of Ag-NPs. Overall, the results obtained suggest that BW and RCW can be advantageously used as a source of reducing and stabilizing agents for the green synthesis of Ag-NPs.
Collapse
|
99
|
Raudsepp P, Koskar J, Anton D, Meremäe K, Kapp K, Laurson P, Bleive U, Kaldmäe H, Roasto M, Püssa T. Antibacterial and antioxidative properties of different parts of garden rhubarb, blackcurrant, chokeberry and blue honeysuckle. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2311-2320. [PMID: 30324724 DOI: 10.1002/jsfa.9429] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/02/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND It is important to find plant materials that can inhibit the growth of Listeria monocytogenes and other food-spoiling bacteria both in vitro and in situ. The aim of the study was to compare antibacterial and antioxidative activity of selected plant-ethanol infusions: leaves and berries of blackcurrant (Ribes nigrum L.), berries of chokeberry (Aronia melanocarpa (Michx.) Elliott) and blue honeysuckle (Lonicera caerulea L. var. edulis); petioles and dark and light roots of garden rhubarb (Rheum rhaponticum L.) for potential use in food matrices as antibacterial and antioxidative additives. RESULTS The strongest bacterial growth inhibition was observed in 96% ethanol infusions of the dark roots of rhubarbs. In 96% ethanol, nine out of ten studied plant infusions had antibacterial effect against L. monocytogenes, but in 20% ethanol only the infusions of dark rhubarb roots had a similar effect. Chokeberry and other berries had the highest antioxidative activity, both in 20% and 96% ethanol infusions. CONCLUSION The combination of dark rhubarb roots or petioles and berries of black chokeberry, blackcurrant or some other anthocyanin-rich berries would have potential as both antibacterial and antioxidative additives in food. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Piret Raudsepp
- Chair of Food Hygiene and Veterinary Public Health, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia, Kreutzwaldi 56/3
| | - Julia Koskar
- Chair of Food Hygiene and Veterinary Public Health, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia, Kreutzwaldi 56/3
- Department of Food Microbiology, Veterinary and Food Laboratory, Tartu, Estonia
| | - Dea Anton
- Chair of Food Hygiene and Veterinary Public Health, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia, Kreutzwaldi 56/3
| | - Kadrin Meremäe
- Chair of Food Hygiene and Veterinary Public Health, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia, Kreutzwaldi 56/3
| | - Karmen Kapp
- Division of Pharmaceutical Biology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Peeter Laurson
- Faculty of Science and Technology, Institute of Chemistry, University of Tartu, Tartu, Estonia
- Polli Horticultural Research Centre, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Viljandimaa, Estonia
| | - Uko Bleive
- Polli Horticultural Research Centre, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Viljandimaa, Estonia
| | - Hedi Kaldmäe
- Polli Horticultural Research Centre, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Viljandimaa, Estonia
| | - Mati Roasto
- Chair of Food Hygiene and Veterinary Public Health, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia, Kreutzwaldi 56/3
| | - Tõnu Püssa
- Chair of Food Hygiene and Veterinary Public Health, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia, Kreutzwaldi 56/3
| |
Collapse
|
100
|
Antioxidant potential of Hippophae rhamnoides L. extracts obtained with green extraction technique. HERBA POLONICA 2019. [DOI: 10.2478/hepo-2018-0022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Summary
Introduction: Antioxidants, isolated from different plant parts, are widely used due to their ability to prevent the development of so-called oxidative stress. Sea buckthorn (Hippophae rhamnoides L.) is one of the plants with expected antioxidant properties.
Objective: The aim of the study was to evaluate the antioxidant activity of ethanolic, methanolic and acetonic extracts of H. rhamnoides leaves, ripe and unripe fruits obtained by ultrasound-assisted extraction.
Methods: To estimate the antioxidant potential of the extracts the DPPH, FRAP, ABTS and Folin-Ciocalteu methods were applied. Moreover, the influence of the extrahent, as well as extraction time, on this activity was evaluated.
Results: Sea buckthorn leaf extracts showed higher activity, contrary to the fruit extracts. Moreover, higher activity of ripe fruit extracts compared to unripe material extracts was found. To obtain the highest content of antioxidants in the extracts, ultrasound-assisted extraction for 60 min with methanol should be applied.
Conclusions: The presented in vitro results could lead to the conclusion that H. rhamnoides seems to be a valuable source of antioxidants to be applied in various branches of industry.
Collapse
|