51
|
Kong F, Lu S. Soil inorganic amendments produce safe rice by reducing the transfer of Cd and increasing key amino acids in brown rice. J Environ Sci (China) 2024; 136:121-132. [PMID: 37923424 DOI: 10.1016/j.jes.2022.09.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2023]
Abstract
The digestibility of cadmium (Cd) in brown rice is directly related to amino acid metabolism in rice and human health. In our field study, three kinds of alkaline calcium-rich soil inorganic amendments (SIAs) at three dosages were applied to produce safe rice and improve the quality of rice in Cd-contaminated paddy. With the increased application of SIA, Cd content in iron plaque on rice root significantly increased, the transfer of Cd from rice root to grain significantly decreased, and then Cd content in brown rice decreased synchronously. The vitro digestibility of Cd in brown rice was estimated by a physiologically based extraction test. Results showed that more than 70% of Cd in brown rice could be digested by simulated gastrointestinal juice. Based on the total and digestible Cd contents in brown rice to evaluate the health risk, the application of 2.25 ton SIA/ha could produce safe rice in acidic slightly Cd-contaminated paddy soils. The amino acids (AAs) in brown rice were determined by high-performance liquid chromatography. The contents of 5 key AAs (KAAs) that actively respond to environmental changes increased significantly with the increased application of SIA. The structural equation model indicated that KAAs could be affected by the Cd translocation capacity from rice root to grain, and consequently altered the ratio of indigestible Cd in brown rice. The formation of indigestible KAAs-Cd complexes by combining KAAs (phenylalanine, leucine, histidine, glutamine, and asparagine) with Cd in brown rice could be considered a potential mechanism for reducing the digestibility of Cd.
Collapse
Affiliation(s)
- Fanyi Kong
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shenggao Lu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
52
|
Tang T, Lv Y, Su Y, Li J, Gu L, Yang Y, Chang C. The differential non-covalent binding of epicatechin and chlorogenic acid to ovotransferrin and the enhancing efficiency of immunomodulatory activity. Int J Biol Macromol 2024; 259:129298. [PMID: 38199555 DOI: 10.1016/j.ijbiomac.2024.129298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Seeking safe and environmentally friendly natural immunomodulators is a pressing requirement of humanity. This study investigated the differential binding characteristics of two polar polyphenols (PP), namely epicatechin (EC) and chlorogenic acid (CA), to ovotransferrin (OVT), and explored the relationship between structural transformations and immunomodulatory activity of OVT-PP complexes. Results showed that CA exhibited a stronger affinity for OVT than EC, mainly driven by hydrogen bonds and van der Waals forces. Complexation-induced conformational variations in OVT, including static fluorescence quenching, increased microenvironment polarity surrounding tryptophan and tyrosine residues, and the transition from disordered α-helix to stable β-sheet. Furthermore, the structural conformation transformation of OVT-PP complexes facilitated the enhancement of immunomodulatory activity, with the OVT-CA (10:2) complex demonstrating the best immunomodulatory activity. Principal component analysis (PCA) and Pearson correlation analysis revealed the immunomodulatory activities of the OVT-PP complexes were influenced by surface hydrophobicity (negatively correlated), β-sheet percentage and polyphenol binding constants. It could be inferred that PP complexation increased the surface polarity of OVT, consequently enhancing its immunomodulatory activity by promoting cell membrane affinity and antigen recognition. This study provides valuable guidance for effectively utilizing polyphenol-protein complexes in enhancing immunomodulatory activity.
Collapse
Affiliation(s)
- Tingting Tang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuanqi Lv
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China
| | - Yujie Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Junhua Li
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Luping Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yanjun Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Cuihua Chang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
53
|
Ghadiri N, Javidan M, Sheikhi S, Taştan Ö, Parodi A, Liao Z, Tayybi Azar M, Ganjalıkhani-Hakemi M. Bioactive peptides: an alternative therapeutic approach for cancer management. Front Immunol 2024; 15:1310443. [PMID: 38327525 PMCID: PMC10847386 DOI: 10.3389/fimmu.2024.1310443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/08/2024] [Indexed: 02/09/2024] Open
Abstract
Cancer is still considered a lethal disease worldwide and the patients' quality of life is affected by major side effects of the treatments including post-surgery complications, chemo-, and radiation therapy. Recently, new therapeutic approaches were considered globally for increasing conventional cancer therapy efficacy and decreasing the adverse effects. Bioactive peptides obtained from plant and animal sources have drawn increased attention because of their potential as complementary therapy. This review presents a contemporary examination of bioactive peptides derived from natural origins with demonstrated anticancer, ant invasion, and immunomodulation properties. For example, peptides derived from common beans, chickpeas, wheat germ, and mung beans exhibited antiproliferative and toxic effects on cancer cells, favoring cell cycle arrest and apoptosis. On the other hand, peptides from marine sources showed the potential for inhibiting tumor growth and metastasis. In this review we will discuss these data highlighting the potential befits of these approaches and the need of further investigations to fully characterize their potential in clinics.
Collapse
Affiliation(s)
- Nooshin Ghadiri
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Moslem Javidan
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Shima Sheikhi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Özge Taştan
- Department of Food Engineering, Faculty of Engineering, Yeditepe University, Istanbul, Türkiye
| | - Alessandro Parodi
- Scientific Center for Translation Medicine, Sirius University of Science and Technology, Sochi, Russia
| | - Ziwei Liao
- Department of Hematology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Mehdi Tayybi Azar
- Department of Biophysics, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Mazdak Ganjalıkhani-Hakemi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Regenerative and Restorative Medicine Research Center (REMER), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Türkiye
| |
Collapse
|
54
|
Lin J, Liao Y, Yang S, Jin T, Yu B, Zhao K, Sai Y, Lin C, Song Y, Ma H, Wang Z. Identification a novel Ganoderma FIP gene from Ganoderma capense and its functional expression in Pichia pastoris. World J Microbiol Biotechnol 2024; 40:69. [PMID: 38225505 DOI: 10.1007/s11274-023-03869-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 12/07/2023] [Indexed: 01/17/2024]
Abstract
Ganoderma capense is a precious medicinal fungus in China. In this study, a novel fungal immunomodulatory protein gene, named as FIP-gca, was cloned from G. capense by homologous cloning. Sequencing analysis indicated that FIP-gca was composed of 336 bp, which encoded a polypeptide of 110 amino acids. Protein sequence blasting and phylogenetic analysis showed that FIP-gca shared homology with other Ganoderma FIPs. FIP-gca was effectively expressed in Pichia pastoris GS115 at an expression level of 166.8 mg/L and purified using HisTrap™ fast-flow prepack columns. The immunomodulation capacity of rFIP-gca was demonstrated by that rFIP-gca could obviously stimulate cell proliferation and increase IL-2 secretion of murine spleen lymphocytes. Besides, antitumor activity of rFIP-gca towards human stomach cancer AGS cell line was evaluated in vitro. Cell wound scratch assay proved that rFIP-gca could inhibit migration of AGS cells. And flow cytometry assay revealed that rFIP-gca could significantly induce apoptosis of AGS cells. rFIP-gca was able to induce 18.12% and 22.29% cell apoptosis at 0.3 μM and 0.6 μM, respectively. Conclusively, the novel FIP-gca gene from G. capense has been functionally expressed in Pichia and rFIP-gca exhibited ideal immunomodulation and anti-tumour activities, which implies its potential application and study in future.
Collapse
Affiliation(s)
- Jingwei Lin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, China
| | - Yating Liao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, China
| | - Sijia Yang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, China
| | - Taicheng Jin
- School of Life Science, Jilin Normal University, Siping, 136000, China
| | - Boning Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, China
| | - Kai Zhao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, China
| | - Yixiao Sai
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, China
| | - Cheng Lin
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, China
| | - Yanhua Song
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
- Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, China
| | - Hui Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China.
- Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, China.
| | - Zhanyong Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China.
- Liaoning Province Key Laboratory of Agricultural Technology, Shenyang, China.
| |
Collapse
|
55
|
Huang S, Wang K, Hua Z, Abd El-Aty AM, Tan M. Size-controllable food-grade nanoparticles based on sea cucumber polypeptide with good anti-oxidative capacity to prolong lifespan in tumor-bearing mice. Int J Biol Macromol 2023; 253:127039. [PMID: 37742886 DOI: 10.1016/j.ijbiomac.2023.127039] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Liver cancer, a malignancy with a rising global incidence, poses a significant challenge in achieving effective treatment outcomes. As food-derived nutrient, sea cucumber peptide (SCP) has shown promising anticancer effects. Therefore, we explored the nanodelivery systems to encapsulate SCP to enhance its stability in the gastrointestinal tract and improve absorption within the tumor microenvironment. This study aimed to develop size-controllable multifunctional nanoparticles using SCP, procyanidins (PCs), and vanillin through molecular assembly via a one-pot Mannich condensation approach. These food-grade nanoparticles demonstrated water solubility and exhibited a spherical structure with sizes ranging from 441 to 1360 nm, depending on the concentration of the reactants. In vitro cell experiments demonstrated that SCP nanoparticles modified with PCs effectively reduced the generation of reactive oxygen species from H2O2 and acrylamide while maintaining normal levels of mitochondrial membrane potential. Furthermore, in vivo nutrition intervention studies conducted on tumor-bearing mice revealed that mice treated with SCP nanoparticles exhibited a survival rate of 40 %, which was significantly higher than the 0 % and 20 % survival rates observed in the control and SCP-treated groups, respectively. These findings suggest that SCP nanoparticles, possessing antioxidative properties and controllable sizes, hold potential for precision nutrition in the field of cancer treatment.
Collapse
Affiliation(s)
- Shasha Huang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Kuiyou Wang
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Zheng Hua
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Mingqian Tan
- State Key Laboratory of Marine Food Processing and Safety Control, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Academy of Food Interdisciplinary Science, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning, China; National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116034, Liaoning, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
56
|
Lin H, Li W, Sun R, Xu C, Zhang C, Gao J, Cao W, Qin X, Zhong S, Chen Y. Purification and characterization of a novel immunoregulatory peptide from Sipunculus nudus L. protein. Food Sci Nutr 2023; 11:7779-7790. [PMID: 38107114 PMCID: PMC10724601 DOI: 10.1002/fsn3.3695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 12/19/2023] Open
Abstract
This study aimed to purify and characterize immunoregulatory peptides from Sipunculus nudus L. and to explore the underlying mechanisms. Ultrafiltration, gel filtration chromatography, and reverse phase high-performance liquid chromatography (RP-HPLC) were used to purify the peptide following enzymatic hydrolysis. Rates of lymphocyte proliferation and phagocytosis as well as nitric oxide (NO) production levels were used as indicators of immunoregulatory activity to screen the fractions. The amino acid sequence of the peptide, designated as SNLP, was identified as Arg-Val-Lys-Gly-Lys-Ile-Leu-Ala-Lys-Arg-Leu-Asn (RVKGKILAKRLN) by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Treatment with the synthetic SNLP increased the proliferation and phagocytosis of RAW 264.7 macrophages and promoted the secretion of tumor necrosis factor-ɑ (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β), and NO levels. The mRNA levels of these cytokines and iNOS were also increased by SNLP. Our results provide preliminary evidence suggesting that SNLP acts as a dual immunomodulatory peptide with immunostimulatory and anti-inflammatory activities. In summary, SNLP derived from Sipunculus nudus L. is a potent immunoregulatory peptide and represents a potential functional food or immunoregulatory drug.
Collapse
Affiliation(s)
- Haisheng Lin
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Province Engineering Laboratory for Marine Biological ProductsGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Engineering Technology Research Center of Marine FoodGuangdong Ocean UniversityZhanjiangChina
| | - Wan Li
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Province Engineering Laboratory for Marine Biological ProductsGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Engineering Technology Research Center of Marine FoodGuangdong Ocean UniversityZhanjiangChina
| | - Ruikun Sun
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Province Engineering Laboratory for Marine Biological ProductsGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Engineering Technology Research Center of Marine FoodGuangdong Ocean UniversityZhanjiangChina
| | - Cheng Xu
- Empress TherapeuticsCambridgeMassachusettsUSA
| | - Chaohua Zhang
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Province Engineering Laboratory for Marine Biological ProductsGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Engineering Technology Research Center of Marine FoodGuangdong Ocean UniversityZhanjiangChina
| | - Jialong Gao
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Province Engineering Laboratory for Marine Biological ProductsGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Engineering Technology Research Center of Marine FoodGuangdong Ocean UniversityZhanjiangChina
| | - Wenhong Cao
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Province Engineering Laboratory for Marine Biological ProductsGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Engineering Technology Research Center of Marine FoodGuangdong Ocean UniversityZhanjiangChina
| | - Xiaoming Qin
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Province Engineering Laboratory for Marine Biological ProductsGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Engineering Technology Research Center of Marine FoodGuangdong Ocean UniversityZhanjiangChina
| | - Saiyi Zhong
- College of Food Science and TechnologyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and SafetyGuangdong Ocean UniversityZhanjiangChina
- Guangdong Province Engineering Laboratory for Marine Biological ProductsGuangdong Ocean UniversityZhanjiangChina
- Guangdong Provincial Engineering Technology Research Center of Marine FoodGuangdong Ocean UniversityZhanjiangChina
| | - Yibin Chen
- Hainan Semnl Biotechnology Co. Ltd.ChengmaiChina
| |
Collapse
|
57
|
Guo H, Yang H, Di C, Xu F, Sun H, Xu Y, Liu H, Wu L, Ding K, Zhang T, Xie L, Wang G, Liang Y. Identification and Validation of Active Ingredient in Cerebrotein Hydrolysate-I Based on Pharmacokinetic and Pharmacodynamic Studies. Drug Metab Dispos 2023; 51:1615-1627. [PMID: 37758480 DOI: 10.1124/dmd.123.001443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023] Open
Abstract
Cerebrotein hydrolysate-1 (CH-1), a mixture of small peptides, polypeptides, and various amino acids derived from porcine brain, has been widely used in the treatment of cerebral injury. However, the bioactive composition and pharmacokinetics of CH-1 are still unexplored because of their complicated composition and relatively tiny amounts in vivo. Herein, NanoLC Orbitrap Fusion Lumos Tribrid Mass Spectrometer was firstly used to qualitatively analyze the components of CH-1. A total of 1347 peptides were identified, of which 43 peptides were characterized by high mass spectrometry (MS) intensity and identification accuracy. We then innovatively synthesized four main peptides for activity verification, and the results suggested that Pep72 (NYEPPTVVPGGDL) had the strongest neuroprotective effect on both in vivo and in vitro models. Next, a quantitative method for Pep72 was established based on liquid chromatography tandem mass spectrometry (LC-MS/MS) with the aid of Skyline software and then used in its pharmacokinetic studies. The results revealed that Pep72 had a high elimination rate and low exposure in rats. In addition, a hCMEC/D3-based in vitro model was built and firstly used to investigate the transport of Pep72. We found that Pep72 had extremely low blood-brain barrier permeability and was not a substrate of efflux transporters. The biotransformation of Pep72 in rat fresh plasma and tissues was investigated to explore the contradiction between pharmacokinetics and efficacy. A total of 11 main metabolites were structurally identified, with PGGDL and EPPTVPGGDL being the main metabolites of Pep72. Notably, metalloproteinase and cysteine protease were confirmed to be the main enzymes mediating Pep72 metabolism in rat tissues. SIGNIFICANCE STATEMENT: The NanoLC Orbitrap Fusion Lumos Tribrid Mass Spectrometer was firstly applied to discover the components of CH-1, and one main peptide Pep72 (NYEPPTVVPGGDL) was innovatively synthesized and firstly found to have the strongest neuroprotective effect among 1347 peptides identified from CH-1. Our study is the first time to identify and verify the active ingredient of CH-1 from the perspective of pharmacokinetics and pharmacodynamics, and provides a systematic technical platforms and strategies for the active substance research of other protein hydrolysates.
Collapse
Affiliation(s)
- Huimin Guo
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Huizhu Yang
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Chanjuan Di
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Feng Xu
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Hong Sun
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Yexin Xu
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Huafang Liu
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Linlin Wu
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Ke Ding
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Tingting Zhang
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Lin Xie
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Guangji Wang
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| | - Yan Liang
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China (H.G., H.Y., H.S., Y.X., H.L., L.W., K.D., T.Z., L.X., G.W., Y.L.) and Hebei Zhitong Biopharmaceutical Co., Ltd, Baoding, China (C.D., F.X.)
| |
Collapse
|
58
|
Mu J, Lin Q, Liang Y. An update on the effects of food-derived active peptides on the intestinal microecology. Crit Rev Food Sci Nutr 2023; 63:11625-11639. [PMID: 35791779 DOI: 10.1080/10408398.2022.2094889] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The intestinal microecology is a research hotspot, and neologisms related to the gut such as gut-brain axis, gut-lung axis, gut-bone axis, gut-skin axis, gut-renal axis, and gut-liver axis have emerged from recent research. Meticulous investigation has discovered that food-derived active peptides (FDAPs) are bioactive substances that optimize the structure of the gut microbiota to improve human health. However, few reviews have summarized and emphasized the nutritional value of FDAPs and their mechanisms of action in regulating the composition of the gut microbiota. We aim to provide an update on the latest research on FDAPs by comparing, summarizing, and discussing the potential food sources of FDAPs, their physiological functions, and regulatory effects on the intestinal microecology. The key findings are that few studies have analyzed the potential mechanisms and molecular pathways through which FDAPs maintain intestinal microecological homeostasis. We found that an imbalance in the ratio of Bacteroidetes and Firmicutes in the gut microbiota and abnormal production of short-chain fatty acids are key to the occurrence and development of various diseases. This review provides theoretical support for future comprehensive research on the digestion, distribution, metabolism, and excretion of FDAPs and the mechanisms underlying the interactions between FDAPs and the intestinal microecology.
Collapse
Affiliation(s)
- Jianfei Mu
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Qinlu Lin
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Ying Liang
- Molecular Nutrition Branch, National Engineering Research Center of Rice and By-Product Deep Processing/College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| |
Collapse
|
59
|
Siriwat W, Ungwiwatkul S, Unban K, Laokuldilok T, Klunklin W, Tangjaidee P, Potikanond S, Kaur L, Phongthai S. Extraction, Enzymatic Modification, and Anti-Cancer Potential of an Alternative Plant-Based Protein from Wolffia globosa. Foods 2023; 12:3815. [PMID: 37893708 PMCID: PMC10606862 DOI: 10.3390/foods12203815] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
The global plant-based protein demand is rapidly expanding in line with the increase in the world's population. In this study, ultrasonic-assisted extraction (UAE) was applied to extract protein from Wolffia globosa as an alternative source. Enzymatic hydrolysis was used to modify the protein properties for extended use as a functional ingredient. The successful optimal conditions for protein extraction included a liquid to solid ratio of 30 mL/g, 25 min of extraction time, and a 78% sonication amplitude, providing a higher protein extraction yield than alkaline extraction by about 2.17-fold. The derived protein was rich in essential amino acids, including leucine, valine, and phenylalanine. Protamex and Alcalase were used to prepare protein hydrolysates with different degrees of hydrolysis, producing protein fragments with molecular weights ranging between <10 and 61.5 kDa. Enzymatic hydrolysis caused the secondary structural transformations of proteins from β-sheets and random coils to α-helix and β-turn structures. Moreover, it influenced the protein functional properties, particularly enhancing the protein solubility and emulsifying activity. Partial hydrolysis (DH3%) improved the foaming properties of proteins; meanwhile, an excess hydrolysis degree reduced the emulsifying stability and oil-binding capacity. The produced protein hydrolysates showed potential as anti-cancer peptides on human ovarian cancer cell lines.
Collapse
Affiliation(s)
- Warin Siriwat
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.S.); (K.U.); (T.L.); (W.K.); (P.T.)
| | - Sunisa Ungwiwatkul
- Chemical Industrial Process and Environment Program, Faculty of Science, Energy and Environment, King Mongkut’s University of Technology North Bangkok (Rayong Campus), Rayong 21120, Thailand;
| | - Kridsada Unban
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.S.); (K.U.); (T.L.); (W.K.); (P.T.)
| | - Thunnop Laokuldilok
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.S.); (K.U.); (T.L.); (W.K.); (P.T.)
| | - Warinporn Klunklin
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.S.); (K.U.); (T.L.); (W.K.); (P.T.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pipat Tangjaidee
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.S.); (K.U.); (T.L.); (W.K.); (P.T.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Saranyapin Potikanond
- Department of Pharmacology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Lovedeep Kaur
- School of Food and Advanced Technology, Massey University, Palmerston North 4442, New Zealand;
| | - Suphat Phongthai
- Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; (W.S.); (K.U.); (T.L.); (W.K.); (P.T.)
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
60
|
Gao PP, Liu HQ, Ye ZW, Zheng QW, Zou Y, Wei T, Guo LQ, Lin JF. The beneficial potential of protein hydrolysates as prebiotic for probiotics and its biological activity: a review. Crit Rev Food Sci Nutr 2023; 64:13045-13057. [PMID: 37811651 DOI: 10.1080/10408398.2023.2260467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Probiotics are not only a food supplement, but they have shown great potential in their nutritional, health and therapeutic effects. To maximize the beneficial effects of probiotics, it is commonly achieved by adding prebiotics. Prebiotics primarily comprise indigestible carbohydrates, specific peptides, proteins, and lipids, with oligosaccharides being the most extensively studied prebiotics. However, these rapidly fermenting oligosaccharides have many drawbacks and can cause diarrhea and flatulence in the body. Hence, the exploration of new prebiotic is of great interest. Besides oligosaccharides, protein hydrolysates have been demonstrated to enhance the expression of beneficial properties of probiotics. Consequently, this paper outlines the mechanism underlying the action of protein hydrolysates on probiotics, as well as the advantageous impacts of proteins hydrolysates derived from various food sources on probiotics. In addition, this paper also reviews the currently reported biological activities of protein hydrolysates. The aim is a theoretical basis for the development and implementation of novel prebiotics.
Collapse
Affiliation(s)
- Ping-Ping Gao
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Han-Qing Liu
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Zhi-Wei Ye
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Qian-Wang Zheng
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Yuan Zou
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Tao Wei
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Li-Qiong Guo
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| | - Jun-Fang Lin
- Department of Bioengineering, College of Food Science, South China Agricultural University, Guangzhou City, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou City, China
| |
Collapse
|
61
|
Zhu S, Cheng Y, Wang J, Liu G, Luo T, Li X, Yang S, Yang R. Biohybrid magnetic microrobots: An intriguing and promising platform in biomedicine. Acta Biomater 2023; 169:88-106. [PMID: 37572981 DOI: 10.1016/j.actbio.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/14/2023]
Abstract
Biohybrid magnetic microrobots (BMMs) have emerged as an exciting class of microrobots and have been considered as a promising platform in biomedicine. Many microorganisms and body's own cells show intriguing properties, such as morphological characteristics, biosafety, and taxis abilities (e.g., chemotaxis, aerotaxis), which have made them attractive for the fabrication of microrobots. For remote controllability and sustainable actuation, magnetic components are usually incorporated onto these biological entities, and other functionalized non-biological components (e.g., therapeutic agents) are also included for specific applications. This review highlights the latest developments in BMMs with a focus on their biomedical applications. It starts by introducing the fundamental understanding of the propulsion system at the microscale in a magnetically driven manner, followed by a summary of diverse BMMs based on different microorganisms and body's own cells along with their relevant applications. Finally, the review discusses how BMMs contribute to the advancements of microrobots, the current challenges of using BMMs in practical clinical settings, and the future perspectives of this exciting field. STATEMENT OF SIGNIFICANCE: Biohybrid magnetic microrobots (BMMs), composed of biological entities and functional parts, hold great potential and serve as a novel and promising platform for biomedical applications such as targeted drug delivery. This review comprehensively summarizes the recent advancements in BMMs for biomedical applications, mainly focused on the representative propulsion modalities in a magnetically propelled manner and diverse designs of BMMs based on different biological entities, including microorganisms and body's own cells. We hope this review can provide ideas for the future design, development, and innovation of micro/nanorobots in the field of biomedicine.
Collapse
Affiliation(s)
- Shilu Zhu
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Yifan Cheng
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Jian Wang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Guangli Liu
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China
| | - Tingting Luo
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China.
| | - Xiaojian Li
- Department of Management, Hefei University of Technology, Hefei 230009, China.
| | - Shanlin Yang
- Key Laboratory of Process Optimization and Intelligent Decision-Making (Ministry of Education), Hefei University of Technology, Hefei 230009, China.
| | - Runhuai Yang
- School of Biomedical Engineering, 3D-Printing and Tissue Engineering Center, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
62
|
Yan Y, Li M, Wei Y, Jia F, Zheng Y, Tao G, Xiong F. Oyster-derived dipeptides RI, IR, and VR promote testosterone synthesis by reducing oxidative stress in TM3 cells. Food Sci Nutr 2023; 11:6470-6482. [PMID: 37823097 PMCID: PMC10563733 DOI: 10.1002/fsn3.3589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/11/2023] [Accepted: 07/22/2023] [Indexed: 10/13/2023] Open
Abstract
Short peptides have gained widespread utilization as functional constituents in the development of functional foods due to their remarkable biological activity. Previous investigations have established the positive influence of oysters on testosterone biosynthesis, although the underlying mechanism remains elusive. This study aims to assess the impact of three dipeptides derived from oysters on the oxidative stress state of TM3 cells induced by AAPH while concurrently examining alterations in cellular testosterone biosynthesis capacity. The investigation encompasses an analysis of reactive oxygen species (ROS) content, antioxidant enzyme activity, apoptotic status, and expression levels of crucial enzymes involved in the testosterone synthesis pathway within TM3 cells, thus evaluating the physiological activity of the three dipeptides. Additionally, molecular docking was employed to investigate the inhibitory activity of the three dipeptides against ACE. The outcomes of this study imply that the oxidative stress state of cells impedes the synthesis of testosterone by inhibiting the expression of essential proteins in the testosterone synthesis pathway. These three dipeptides derived from oysters ameliorate cellular oxidative stress by directly scavenging excess ROS or reducing ROS production rather than enhancing cellular antioxidant capacity through modulation of antioxidant enzyme activity. These findings introduce a novel avenue for developing and utilizing antioxidant peptides derived from food sources.
Collapse
Affiliation(s)
- Yongqiu Yan
- College of Biosystems Engineering and Food ScienceZhejiang UniversityHangzhouChina
- Ningbo Yufangtang Biotechnology Co., Ltd.NingboChina
- Ningbo Yuyi Biotechnology Co., Ltd.NingboChina
| | - Mingliang Li
- School of Food Science and TechnologyJiangnan UniversityWuxiChina
| | - Ying Wei
- Department of Food Science and EngineeringBeijing University of AgricultureBeijingChina
| | - Fuhuai Jia
- Ningbo Yufangtang Biotechnology Co., Ltd.NingboChina
| | - Yanying Zheng
- Department of Food Science and EngineeringBeijing University of AgricultureBeijingChina
| | - Gang Tao
- Ningbo Yufangtang Biotechnology Co., Ltd.NingboChina
| | - Feifei Xiong
- Ningbo Yufangtang Biotechnology Co., Ltd.NingboChina
- Ningbo Yuyi Biotechnology Co., Ltd.NingboChina
| |
Collapse
|
63
|
Maky MA, Zendo T. Identification of a Novel Bioactive Peptide Derived from Frozen Chicken Breast Hydrolysate and the Utilization of Hydrolysates as Biopreservatives. BIOLOGY 2023; 12:1218. [PMID: 37759617 PMCID: PMC10525312 DOI: 10.3390/biology12091218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Frozen chicken breast was hydrolyzed by treatment with thermolysin enzyme to obtain a chicken hydrolysate containing bioactive peptides. After that, a peptide was purified from the chicken hydrolysate utilizing a Sep-Pak C18 cartridge and reversed-phase high-performance liquid chromatography (RP-HPLC). The molecular weight of the chicken peptide was 2766.8. Protein sequence analysis showed that the peptide was composed of 25 amino acid residues. The peptide, designated as C25, demonstrated an inhibitory action on the angiotensin-converting enzyme (ACE) with a half maximal inhibitory concentration (IC50) value of 1.11 µg/mL. Interestingly, C25 showed antimicrobial activity against multi-drug resistant bacteria Proteus vulgaris F24B and Escherichia coli JM109, both with MIC values of 24 µg/mL. The chicken hydrolysate showed antioxidant activity with an IC50 value of 348.67 µg/mL. Furthermore, the proliferation of aerobic bacteria and Enterobacteriaceae as well as lipid oxidation were significantly reduced when the chicken hydrolysate was used as a natural preservative during cold storage of chicken breasts. Hydrolysates derived from muscle sources have the potential to be used in formulated food products and to contribute positively to human health.
Collapse
Affiliation(s)
- Mohamed Abdelfattah Maky
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, South Valley University, Qena 83523, Egypt
| | - Takeshi Zendo
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| |
Collapse
|
64
|
Li H, Gao J, Zhao F, Liu X, Ma B. Bioactive Peptides from Edible Mushrooms-The Preparation, Mechanisms, Structure-Activity Relationships and Prospects. Foods 2023; 12:2935. [PMID: 37569204 PMCID: PMC10417677 DOI: 10.3390/foods12152935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Mushroom bioactive peptides (MBPs) are bioactive peptides extracted directly or indirectly from edible mushrooms. MBPs are known to have antioxidant, anti-aging, antibacterial, anti-inflammatory and anti-hypertensive properties, and facilitate memory and cognitive improvement, antitumour and anti-diabetes activities, and cholesterol reduction. MBPs exert antioxidant and anti-inflammatory effects by regulating the MAPK, Keap1-Nrf2-ARE, NF-κB and TNF pathways. In addition, MBPs exert antibacterial, anti-tumour and anti-inflammatory effects by stimulating the proliferation of macrophages. The bioactivities of MBPs are closely related to their molecular weights, charge, amino acid compositions and amino acid sequences. Compared with animal-derived peptides, MBPs are ideal raw materials for healthy and functional products with the advantages of their abundance of resources, safety, low price, and easy-to-achieve large-scale production of valuable nutrients for health maintenance and disease prevention. In this review, the preparation, bioactivities, mechanisms and structure-activity relationships of MBPs were described. The main challenges and prospects of their application in functional products were also discussed. This review aimed to provide a comprehensive perspective of MBPs.
Collapse
Affiliation(s)
- Haiyan Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (H.L.); (J.G.); (X.L.)
| | - Ji’an Gao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (H.L.); (J.G.); (X.L.)
| | - Fen Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (H.L.); (J.G.); (X.L.)
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China; (H.L.); (J.G.); (X.L.)
| | - Biao Ma
- Beijing Science Sun Pharmaceutical Co., Ltd., Beijing 100176, China;
| |
Collapse
|
65
|
Luz ABS, de Medeiros AF, Bezerra LL, Lima MSR, Pereira AS, E Silva EGO, Passos TS, Monteiro NDKV, Morais AHDA. Prospecting native and analogous peptides with anti-SARS-CoV-2 potential derived from the trypsin inhibitor purified from tamarind seeds. ARAB J CHEM 2023; 16:104886. [PMID: 37082195 PMCID: PMC10085871 DOI: 10.1016/j.arabjc.2023.104886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/03/2023] [Indexed: 04/22/2023] Open
Abstract
The study aimed to prospect in silico native and analogous peptides with anti-SARS-CoV-2 potential derived from the trypsin inhibitor purified from tamarind seeds (TTIp). From the most stable theoretical model of TTIp (TTIp 56/287), in silico cleavage was performed for the theoretical identification of native peptides and generation of analogous peptides. The anti-SARS-CoV-2 potential was investigated through molecular dynamics (MD) simulation between the peptides and binding sites of transmembrane serine protease 2 (TMPRSS2), responsible for the entry of SARS-CoV-2 into the host cell. Five native and analogous peptides were obtained and validated through chemical and physical parameters. The best interaction potential energy (IPE) occurred between TMPRSS2 and one of the native peptides obtained by cleavage with trypsin and its analogous peptide. Thus, both peptides showed many hydrophobic residues, a common physical-chemical property among the peptides that inhibit the entry of enveloped viruses, such as SARS-CoV-2, present in specific drugs to treat COVID-19.
Collapse
Affiliation(s)
- Anna Beatriz Santana Luz
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078970, Brazil
| | - Amanda Fernandes de Medeiros
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078970, Brazil
| | - Lucas Lima Bezerra
- Chemistry Postgraduate Program, Science Center, Federal University of Ceará, Fortaleza, CE 60440900, Brazil
| | - Mayara Santa Rosa Lima
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078970, Brazil
| | - Annemberg Salvino Pereira
- Nutrition Course, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078900, Brazil
| | | | - Thais Souza Passos
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078900, Brazil
| | | | - Ana Heloneida de Araújo Morais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal, RN 59078970, Brazil
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal, RN 59078900, Brazil
| |
Collapse
|
66
|
Lv M, Liu M, Zou S, Yin D, Lv C, Li F, Wei Y. Immune Enhancement of Clam Peptides on Immunosuppressed Mice Induced by Hydrocortisone. Molecules 2023; 28:5709. [PMID: 37570679 PMCID: PMC10420899 DOI: 10.3390/molecules28155709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023] Open
Abstract
Clam peptides, marine-derived biological peptides, have been broadly investigated and applied as health foods, among which immunomodulation is one of their biological activities that cannot be ignored in vivo. In this study, we concentrated on exploring the effects of Ruditapes philippinarum peptides (RPPs) on immunomodulation and the balance of intestinal microbiota in hydrocortisone (HC)-induced immunosuppressed mice. The results revealed that RPPs could increase the thymus and spleen indices and number of white blood cells, promote the secretion level of cytokines (IL-2, IL-6, TNF-α, and INF-γ), repair the morphology of the spleen and thymus, and enhance the proliferation of T-lymphocyte subsets in immunosuppressed mice. Moreover, RPPs improved the abundance of beneficial bacteria and preserved the ecological equilibrium of the gut microbiota. In conclusion, RPPs have significant immunomodulatory effects on immunosuppressed mice and may be developed as immunomodulators or immune adjuvants in functional foods and drugs; they are also beneficial to the utilization of the high value of marine shellfish.
Collapse
Affiliation(s)
- Meibin Lv
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (M.L.); (M.L.)
| | - Mengyue Liu
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (M.L.); (M.L.)
| | - Shengcan Zou
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266105, China; (S.Z.); (D.Y.); (C.L.)
| | - Dongli Yin
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266105, China; (S.Z.); (D.Y.); (C.L.)
| | - Chenghan Lv
- Qingdao Chenlan Pharmaceutical Co., Ltd., Qingdao 266105, China; (S.Z.); (D.Y.); (C.L.)
| | - Fei Li
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (M.L.); (M.L.)
| | - Yuxi Wei
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (M.L.); (M.L.)
| |
Collapse
|
67
|
Liu Y, Chen X, Yang JY, Guo ZJ, Wu Q, Zhang LD, Zhou XW. RNA-seq analysis reveals an immunomodulatory peptide from highland barley activating RAW264.7 macrophages via TNF/NF-κB signaling pathway. Funct Integr Genomics 2023; 23:253. [PMID: 37488420 DOI: 10.1007/s10142-023-01180-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/26/2023]
Abstract
Highland barley (HB) is an important cereal crop distributed in the plateau region. Bioactive peptides (BAPs) derived from cereal proteins have shown biological functions. However, the knowledge of highland barley peptide (HBP) is limited. This study aims to explore the immunomodulatory activity of HBP and the relationship between immunomodulatory activity and related gene expression through RNA-seq. Firstly, HBP is isolated from protease hydrolysates of HB protein, yielding 12.04% of crude HB protein. The molecular weight of HBP is about 1702 Da analyzed by gel filtration chromatography, and HBP has a specific amino acid sequence as Gln-Pro-Gln-Gln-Pro-Phe-Pro-Gln (QPQPFPQ) analyzed by LC-MS. Besides, HBP contains 42.20% hydrophobic amino acids and 10.86% basic amino acids. Next, the immunomodulatory activity of HBP in vitro shows that HBP enhances the phagocytosis of RAW264.7 macrophages, promotes nitric oxide (NO) production and the mRNA expression of pro-inflammatory genes including tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and inducible nitric oxide synthase (iNOS), and decreases the mRNA expression of anti-inflammatory gene, transforming growth factor β1 (TGF-β1). RNA-seq analysis reveals TNF and nuclear factor kappa B (NF-κB) pathways are upregulated, and RT-qPCR is performed to verify RNA-seq analysis. In conclusion, HBP activates RAW264.7 macrophages via TNF/NF-κB signaling pathway. HBP, as a significant immunomodulatory peptide, might be a promising resource for future functional foods.
Collapse
Affiliation(s)
- Yan Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Chen
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Jia-Yi Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhi Jian Guo
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qin Wu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Li-Da Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuan-Wei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
68
|
Qu T, He S, Wu Y, Wang Y, Ni C, Wen S, Cui B, Cheng Y, Wen L. Transcriptome Analysis Reveals the Immunoregulatory Activity of Rice Seed-Derived Peptide PEP1 on Dendritic Cells. Molecules 2023; 28:5224. [PMID: 37446885 DOI: 10.3390/molecules28135224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Some food-derived bioactive peptides exhibit prominent immunoregulatory activity. We previously demonstrated that the rice-derived PEP1 peptide, GIAASPFLQSAAFQLR, has strong immunological activity. However, the mechanism of this action is still unclear. In the present study, full-length transcripts of mouse dendritic cells (DC2.4) treated with PEP1 were sequenced using the PacBio sequencing platform, and the transcriptomes were compared via RNA sequencing (RNA-Seq). The characteristic markers of mature DCs, the cluster of differentiation CD86, and the major histocompatibility complex (MHC-II), were significantly upregulated after the PEP1 treatment. The molecular docking suggested that hydrogen bonding and electrostatic interactions played important roles in the binding between PEP1, MHC-II, and the T-cell receptor (TCR). In addition, the PEP1 peptide increased the release of anti-inflammatory factors (interleukin-4 and interleukin-10) and decreased the release of pro-inflammatory factors (interleukin-6 and tumor necrosis factor-α). Furthermore, the RNA-seq results showed the expression of genes involved in several signaling pathways, such as the NF-κB, MAPK, JAK-STAT, and TGF-β pathways, were regulated by the PEP1 treatment, and the changes confirmed the immunomodulatory effect of PEP1 on DC2.4 cells. This findings revealed that the PEP1 peptide, derived from the byproduct of rice processing, is a potential natural immunoregulatory alternative for the treatment of inflammation.
Collapse
Affiliation(s)
- Tingmin Qu
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| | - Shuwen He
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| | - Ying Wu
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| | - Yingying Wang
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| | - Ce Ni
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| | - Shiyu Wen
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| | - Bo Cui
- School of Food Science and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
- School of Food Science and Engineering, Qilu University of Technology, Jinan 250353, China
| | - Li Wen
- School of Food Science and Bioengineering, Hunan Provincial Key Laboratory of Cytochemistry, Changsha University of Science & Technology, Changsha 410114, China
| |
Collapse
|
69
|
Manzoor M, Mir RA, Farooq A, Hami A, Pakhtoon MM, Sofi SA, Malik FA, Hussain K, Bhat MA, Sofi NR, Pandey A, Khan MK, Hamurcu M, Zargar SM. Shifting archetype to nature's hidden gems: from sources, purification to uncover the nutritional potential of bioactive peptides. 3 Biotech 2023; 13:252. [PMID: 37388856 PMCID: PMC10299963 DOI: 10.1007/s13205-023-03667-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 06/11/2023] [Indexed: 07/01/2023] Open
Abstract
Contemporary scientific findings revealed that our daily food stuffs are enriched by encrypted bioactive peptides (BPs), evolved by peptide linkage of amino acids or encrypted from the native protein structures. Remarkable to these BPs lies in their potential health benefiting biological activities to serve as nutraceuticals or a lead addition to the development of functional foods. The biological activities of BPs vary depending on the sequence as well as amino acid composition. Existing database records approximately 3000 peptide sequences which possess potential biological activities such as antioxidants, antihypertensive, antithrombotic, anti-adipogenics, anti-microbials, anti-inflammatory, and anti-cancerous. The growing evidences suggest that BPs have very low toxicity, higher accuracy, less tissue accretion, and are easily degraded in the disposed environment. BPs are nowadays evolved as biologically active molecules with potential scope to reduce microbial contamination as well as ward off oxidation of foods, amend diverse range of human diseases to enhance the overall quality of human life. Against the clinical and health perspectives of BPs, this review aimed to elaborate current evolution of nutritional potential of BPs, studies pertaining to overcome limitations with respect to special focus on emerging extraction, protection and delivery tools of BPs. In addition, the nano-delivery mechanism of BP and its clinical significance is detailed. The aim of current review is to augment the research in the field of BPs production, identification, characterisation and to speed up the investigation of the incredible potentials of BPs as potential nutritional and functional food ingredient.
Collapse
Affiliation(s)
- Madhiya Manzoor
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, Central University of Kashmir, Tulmulla, Kashmir(J&K) 191131 India
| | - Asmat Farooq
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
- Division of Biochemistry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu (SKUAST-J), Chatha, Jammu (J&K) 180009 India
| | - Ammarah Hami
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| | - Mohammad Maqbool Pakhtoon
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
- Department of Life Sciences, Rabindranath Tagore University, Bhopal, 462045 India
| | - Sajad Ahmad Sofi
- Department of Food Technology, Islamic University of Science and Technology Awantipora, Awantipora, Kashmir(J&K) 192122 India
| | - Firdose Ahmad Malik
- Division of Vegetable Science, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| | - khursheed Hussain
- MAR&ES, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Gurez, Shalimar, Kashmir(J&K) 190025 India
| | - M. Ashraf Bhat
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| | - Najeebul Rehmen Sofi
- MRCFC, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Shalimar, J&K India
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Mohd. Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, 42079 Turkey
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Shalimar, Kashmir(J&K) 190025 India
| |
Collapse
|
70
|
Immunomodulatory effect of ethanol-soluble oligopeptides from Atlantic cod (Gadus morhua). FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
71
|
Riccardi G, Niccolini GF, Bellizzi MG, Fiore M, Minni A, Barbato C. Post-COVID-19 Anosmia and Therapies: Stay Tuned for New Drugs to Sniff Out. Diseases 2023; 11:79. [PMID: 37366867 DOI: 10.3390/diseases11020079] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023] Open
Abstract
Background: Anosmia is defined as the complete absence of olfactory function, which can be caused by a variety of causes, with upper respiratory tract infections being among the most frequent causes. Anosmia due to SARS-CoV-2 infection has attracted attention given its main role in symptomatology and the social impact of the pandemic. Methods: We conducted systematic research in a clinicaltrials.gov database to evaluate all active clinical trials worldwide regarding drug therapies in adult patients for anosmia following SARS-CoV-2 infection with the intention of identifying the nearby prospects to treat Anosmia. We use the following search terms: "Anosmia" AND "COVID-19" OR "SARS-CoV-2" OR "2019 novel coronavirus". Results: We found 18 active clinical trials that met our criteria: one phase 1, one phase 1-2, five phases 2, two phases 2-3, three phases 3, and six phases 4 studies were identified. The drug therapies that appear more effective and promising are PEA-LUT and Cerebrolysin. The other interesting drugs are 13-cis-retinoic acid plus aerosolized Vitamin D, dexamethasone, and corticosteroid nasal irrigation. Conclusions: COVID-19 has allowed us to highlight how much anosmia is an important and debilitating symptom for patients and, above all, to direct research to find a therapy aimed at curing the symptom, whether it derives from SARS-CoV-2 infection or other infections of the upper airways. Some of these therapies are very promising and are almost at the end of experimentation. They also provide hope in this field, which not addressed until recently.
Collapse
Affiliation(s)
- Gabriele Riccardi
- Department of Sense Organs (DOS), Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
| | | | - Mario Giuseppe Bellizzi
- Department of Sense Organs (DOS), Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Unit of Translational Biomolecular Medicine, Department of Sense Organs (DOS), Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
| | - Antonio Minni
- Department of Sense Organs (DOS), Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
- Division of Otolaryngology-Head and Neck Surgery, Ospedale San Camillo de Lellis, ASL Rieti-Sapienza University, Viale Kennedy, 02100 Rieti, Italy
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Unit of Translational Biomolecular Medicine, Department of Sense Organs (DOS), Sapienza University of Rome, Viale del Policlinico 155, 00161 Roma, Italy
| |
Collapse
|
72
|
Hou CY, Hazeena SH, Hsieh SL, Ciou JY, Hsieh CW, Shih MK, Chen MH, Tu CW, Huang PH. Investigation of the optimal production conditions for egg white hydrolysates and physicochemical characteristics. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1600-1611. [PMID: 37033311 PMCID: PMC10076473 DOI: 10.1007/s13197-023-05708-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023]
Abstract
This study aimed to investigate the potential of egg white protein hydrolysate (EWH) as a functional food by identifying the optimum production conditions for EWH with response surface methodology (the results of the sensory evaluation were considered as an essential quality indicator). At the same time, its physicochemical and biological activity was also evaluated. The optimal economic production conditions were selected: substrate concentration of 12.5%, enzyme content of 7.5%, and hydrolysis time at 100 min. The degree of hydrolysis (DH %) was 13.51%. In addition, to the better acceptance of the evaluation, it also helps to reduce the production cost of the protein hydrolysate, which is beneficial to future processing and applications. The antioxidant capacity experiments showed that EWH has good antioxidant activity, which presents a dose-dependent relationship. Hence, this study provides a theoretical basis for future research and application of EWH for processing applications, including dietary supplementation. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05708-0.
Collapse
Affiliation(s)
- Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung, University of Science and Technology, Kaohsiung, 81157 Taiwan, ROC
| | - Sulfath Hakkim Hazeena
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung, University of Science and Technology, Kaohsiung, 81157 Taiwan, ROC
| | - Shu-Ling Hsieh
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung, University of Science and Technology, Kaohsiung, 81157 Taiwan, ROC
| | - Jhih-Ying Ciou
- Department of Food Science, Tunghai University, Taichung City, 407 Taiwan
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung City, 402 Taiwan, ROC
- Department of Medical Research, China Medical University Hospital, Taichung City, 404 Taiwan, ROC
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung, Taiwan, ROC
| | - Min-Hung Chen
- Agriculture & Food Agency Council of Agriculture Executive, Yuan Marketing & Processing Division, No. 8 Kuang-Hua Rd., Chung-Hsing New Village, Nantou City, 54044 Taiwan
| | - Chao-Wen Tu
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung, University of Science and Technology, Kaohsiung, 81157 Taiwan, ROC
| | - Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, No. 4, Meicheng Road, Higher Education Park, Huai’an City, 223003 Jiangsu Province China
| |
Collapse
|
73
|
Li W, Huang J, Zheng L, Liu W, Fan L, Sun B, Su G, Xu J, Zhao M. A fast stop-flow two-dimensional liquid chromatography tandem mass spectrometry and its application in food-derived protein hydrolysates. Food Chem 2023; 406:135000. [PMID: 36463605 DOI: 10.1016/j.foodchem.2022.135000] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 10/10/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
Food-derived bioactive peptides have many outstanding features like high safety, easy absorption, etc. However, explorations of the peptides are suffering from the limited knowledge of sample composition and low efficiency of separation techniques. In this work, a fast stop-flow two-dimensional liquid chromatography tandem mass spectrometry (2DLC-MS) was designed and constructed in-house. For chromatographic system optimization, the effects of column pairs and fraction transfer volumes on separation performance were studied. The pair of Protein BEH SEC and HSS T3 columns was found of high orthogonality. The peak capacity detected by the optimized 2DLC reached 1165 (for corn protein hydrolysates), indicating high resolving power. Moreover, the number of peptides identified from corn, soybean and casein protein hydrolysates reached as high as 8330, 8925 and 7215, respectively, demonstrating the high potential of the system. This would help reveal the peptide composition and facilitate the research on exploring bioactive peptides from food-derived protein hydrolysates.
Collapse
Affiliation(s)
- Wu Li
- School of Biotechnology and Health Sciences & International Healthcare Innovation Institute (Jiangmen), Wuyi University, Jiangmen 529020, China
| | - Junhong Huang
- School of Biotechnology and Health Sciences & International Healthcare Innovation Institute (Jiangmen), Wuyi University, Jiangmen 529020, China
| | - Lin Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China
| | - Wanshun Liu
- School of Biotechnology and Health Sciences & International Healthcare Innovation Institute (Jiangmen), Wuyi University, Jiangmen 529020, China
| | - Liqi Fan
- School of Biotechnology and Health Sciences & International Healthcare Innovation Institute (Jiangmen), Wuyi University, Jiangmen 529020, China
| | - Baoguo Sun
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China
| | - Guowan Su
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China
| | - Jucai Xu
- School of Biotechnology and Health Sciences & International Healthcare Innovation Institute (Jiangmen), Wuyi University, Jiangmen 529020, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Food Green Processing and Nutrition Regulation Technologies Research Center, Guangzhou 510640, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University, Beijing 100048, China.
| |
Collapse
|
74
|
Mao J, Li S, Fu R, Wang Y, Meng J, Jin Y, Wu T, Zhang M. Sea Cucumber Hydrolysate Alleviates Immunosuppression and Gut Microbiota Imbalance Induced by Cyclophosphamide in Balb/c Mice through the NF-κB Pathway. Foods 2023; 12:foods12081604. [PMID: 37107399 PMCID: PMC10137554 DOI: 10.3390/foods12081604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/23/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
This study aimed to investigate the effect of sea cucumber hydrolysate (SCH) on immunosuppressed mice induced by cyclophosphamide (Cy). Our findings demonstrated that SCH could increase the thymus index and spleen index, decrease the serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels, increase the serum IgG and small intestinal sIgA levels, reduce small intestinal and colon tissue damage, and activate the nuclear factor-κB (NF-κB) pathway by increasing TRAF6 and IRAK1 protein levels, as well as the phosphorylation levels of IκBα and p65, thereby enhancing immunity. In addition, SCH alleviated the imbalance of the gut microbiota by altering the composition of the gut microbiota in immunosuppressed mice. At the genus level, when compared with the model group, the relative abundance of Dubosiella, Lachnospiraceae, and Ligilactobacillus increased, while that of Lactobacillus, Bacteroides, and Turicibacter decreased in the SCH groups. Moreover, 26 potential bioactive peptides were identified by oligopeptide sequencing and bioactivity prediction. This study's findings thus provide an experimental basis for further development of SCH as a nutritional supplement to alleviate immunosuppression induced by Cy as well as provides a new idea for alleviating intestinal damage induced by Cy.
Collapse
Affiliation(s)
- Jing Mao
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shunqin Li
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - RongRong Fu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yijin Wang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Jing Meng
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yan Jin
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Min Zhang
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300384, China
| |
Collapse
|
75
|
Hu S, Liu C, Liu X. The Beneficial Effects of Soybean Proteins and Peptides on Chronic Diseases. Nutrients 2023; 15:nu15081811. [PMID: 37111030 PMCID: PMC10144650 DOI: 10.3390/nu15081811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
With lifestyle changes, chronic diseases have become a public health problem worldwide, causing a huge burden on the global economy. Risk factors associated with chronic diseases mainly include abdominal obesity, insulin resistance, hypertension, dyslipidemia, elevated triglycerides, cancer, and other characteristics. Plant-sourced proteins have received more and more attention in the treatment and prevention of chronic diseases in recent years. Soybean is a low-cost, high-quality protein resource that contains 40% protein. Soybean peptides have been widely studied in the regulation of chronic diseases. In this review, the structure, function, absorption, and metabolism of soybean peptides are introduced briefly. The regulatory effects of soybean peptides on a few main chronic diseases were also reviewed, including obesity, diabetes mellitus, cardiovascular diseases (CVD), and cancer. We also addressed the shortcomings of functional research on soybean proteins and peptides in chronic diseases and the possible directions in the future.
Collapse
Affiliation(s)
- Sumei Hu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Caiyu Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
76
|
Metwalli AA, Ismail EA, Elkhadragy MF, Yehia HM. Physicochemical, Microbiological, and Sensory Properties of Set-Type Yoghurt Supplemented with Camel Casein Hydrolysate. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9040353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
The microbiological, rheological, and sensory properties of set-type yoghurt were investigated in the presence of camel and cow casein hydrolysates produced by the action of trypsin enzymes. The hydrolysates significantly decreased the fermentation and coagulation time of the yoghurt production. The rate of pH decrease was significantly (p < 0.05) higher in samples treated with cow casein hydrolysate in comparison with control samples. Compared with the control, the cell growth of the yoghurt culture increased with the supplementation of the casein hydrolysate. Moreover, the survival of lactic acid bacteria (LAB) was enhanced by the addition of hydrolysates. The fortification of cow milk with camel and cow casein hydrolysates contributed to a significant improvement of the rheological and sensory properties of yoghurt. In conclusion, camel and cow casein hydrolysate could be used as a supplement in set-type yoghurt production with a potential beneficial effect on fermentation time, survival of total bacterial count, and overall acceptability.
Collapse
Affiliation(s)
- Ali A. Metwalli
- Department of Dairy Science, College of Agriculture, Minia University, Minia 61519, Egypt
| | - Elsayed A. Ismail
- Department of Dairy Science, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| | - Manal F. Elkhadragy
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hany M. Yehia
- Food Science and Nutrition, College of Food and Agriculture Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
77
|
Mirzaei M, Dodi G, Gardikiotis I, Pasca SA, Mirdamadi S, Subra G, Echalier C, Puel C, Morent R, Ghobeira R, Soleymanzadeh N, Moser M, Goriely S, Shavandi A. 3D high-precision melt electro written polycaprolactone modified with yeast derived peptides for wound healing. BIOMATERIALS ADVANCES 2023; 149:213361. [PMID: 36965401 DOI: 10.1016/j.bioadv.2023.213361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/27/2023] [Accepted: 02/25/2023] [Indexed: 03/12/2023]
Abstract
In this study melt electro written (MEW) scaffolds of poly(ε-caprolactone) PCL are decorated with anti-inflammatory yeast-derived peptide for skin wound healing. Initially, 13 different yeast-derived peptides were screened and analyzed using both in vitro and in vivo assays. The MEW scaffolds are functionalized with the selected peptide VLSTSFPPW (VW-9) with the highest activity in reducing pro-inflammatory cytokines and stimulating fibroblast proliferation, migration, and collagen production. The peptide was conjugated to the MEW scaffolds using carbodiimide (CDI) and thiol chemistry, with and without plasma treatment, as well as by directly mixing the peptide with the polymer before printing. The MEW scaffolds modified using CDI and thiol chemistry with plasma treatment showed improved fibroblast and macrophage penetration and adhesion, as well as increased cell proliferation and superior anti-inflammatory properties, compared to the other groups. When applied to full-thickness excisional wounds in rats, the peptide-modified MEW scaffold significantly enhanced the healing process compared to controls (p < 0.05). This study provides proof of concept for using yeast-derived peptides to functionalize biomaterials for skin wound healing.
Collapse
Affiliation(s)
- Mahta Mirzaei
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles - BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium; Centre for Food Chemistry and Technology, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, South Korea; Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Gianina Dodi
- Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Romania; Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Romania
| | - Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, Romania
| | - Sorin-Aurelian Pasca
- Pathology Department, Faculty of Veterinary Medicine, Ion Ionescu de la Brad Iasi University of Life Sciences, Romania
| | - Saeed Mirdamadi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Gilles Subra
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | | | - Chloé Puel
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Rino Morent
- IBMM, Univ Montpellier, CNRS, ENSCM, Montpellier, France
| | - Rouba Ghobeira
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Architecture and Engineering, Ghent University, St-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Nazila Soleymanzadeh
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), Tehran, Iran
| | - Muriel Moser
- ULB Center for Research in Immunology (U-CRI), Laboratory of Immunobiology, Université Libre de Bruxelles, Gosselies, Belgium.
| | - Stanislas Goriely
- ULB Center for Research in Immunology (U-CRI), Laboratory of Immunobiology, Université Libre de Bruxelles, Gosselies, Belgium.
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles - BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050 Brussels, Belgium.
| |
Collapse
|
78
|
Proteins and their functionalization for finding therapeutic avenues in cancer: Current status and future prospective. Biochim Biophys Acta Rev Cancer 2023; 1878:188862. [PMID: 36791920 DOI: 10.1016/j.bbcan.2023.188862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Despite the remarkable advancement in the health care sector, cancer remains the second most fatal disease globally. The existing conventional cancer treatments primarily include chemotherapy, which has been associated with little to severe side effects, and radiotherapy, which is usually expensive. To overcome these problems, target-specific nanocarriers have been explored for delivering chemo drugs. However, recent reports on using a few proteins having anticancer activity and further use of them as drug carriers have generated tremendous attention for furthering the research towards cancer therapy. Biomolecules, especially proteins, have emerged as suitable alternatives in cancer treatment due to multiple favourable properties including biocompatibility, biodegradability, and structural flexibility for easy surface functionalization. Several in vitro and in vivo studies have reported that various proteins derived from animal, plant, and bacterial species, demonstrated strong cytotoxic and antiproliferative properties against malignant cells in native and their different structural conformations. Moreover, surface tunable properties of these proteins help to bind a range of anticancer drugs and target ligands, thus making them efficient delivery agents in cancer therapy. Here, we discuss various proteins obtained from common exogenous sources and how they transform into effective anticancer agents. We also comprehensively discuss the tumor-killing mechanisms of different dietary proteins such as bovine α-lactalbumin, hen egg-white lysozyme, and their conjugates. We also articulate how protein nanostructures can be used as carriers for delivering cancer drugs and theranostics, and strategies to be adopted for improving their in vivo delivery and targeting. We further discuss the FDA-approved protein-based anticancer formulations along with those in different phases of clinical trials.
Collapse
|
79
|
Zhang R, Jia W. Brown goat yogurt: Metabolomics, peptidomics, and sensory changes during production. J Dairy Sci 2023; 106:1712-1733. [PMID: 36586795 DOI: 10.3168/jds.2022-22654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/02/2022] [Indexed: 12/30/2022]
Abstract
Brown goat milk products have gained popularity for their unique taste and flavor. The emergence of chain-reversal phenomenon makes the design and development of goat milk products gradually tend to a consumer-oriented model. However, the precise mechanism of how browning and fermentation process causes characteristics is not clear. In an effort to understand how the treatments potentially lead to certain metabolite profile changes in goat milk, comprehensive, quantitative metabolomics and peptidomics analysis of goat milk samples after browning and fermentation were undertaken. An intelligent hybrid z-score standardization-principal components algorithm-multimodal denoizing autoencoder was used for feature fusion and hidden layer fusion in high-dimensional variable space. The fermentation process significantly improved the flavor of brown goat yogurt through the tricarboxylic acid-urea-glycolysis composite pathway. Bitter peptides HPFLEWAR, PPGLPDKY, and PPPPPKK have strong interactions with both putative dipeptidyl peptidase IV and angiotensin-converting enzyme, proving that brown goat yogurt can be considered as effective provider of potential putative dipeptidyl peptidase IV and angiotensin-converting enzyme inhibitors. The level of health-promoting bioactive components and sensory contributed to consumer selection. The proposed multimodal data integrative analysis platform was applicable to explain the effect of the dynamic changes of metabolites and peptides on consumer preferences.
Collapse
Affiliation(s)
- R Zhang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - W Jia
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Products Processing Technology, Xi'an 710021, China.
| |
Collapse
|
80
|
Shi L, Hao G, Chen J, Wang J, Weng W. Structural characterization and immunostimulatory activity of a water-soluble polysaccharide from abalone (Haliotis discus hannai Ino) muscle. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
81
|
Ashaolu TJ, Zarei M, Agrawal H, Kharazmi MS, Jafari SM. A critical review on immunomodulatory peptides from plant sources; action mechanisms and recent advances. Crit Rev Food Sci Nutr 2023; 64:7220-7236. [PMID: 36855310 DOI: 10.1080/10408398.2023.2183380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Plant protein components contribute positively to human well-being as they modulate the immune status of a consumer, especially when the enzymatic method is employed in order to release their bioactive peptides. These peptides are derived from plant-based foods such as soy, wheat, barley, rye, oats, rice, corn, sorghum, and millet, the famous staple foods around the world. Since these peptides are crucial to functional food among other key industries, the present study endeavored to scout for relevant information within the past three decades, using the Web of Science, Scopus, and Google search engines. In this review, first, the core of immunomodulation and types of immunomodulatory agents will be discussed, followed by the production of plant-based immunomodulatory peptides and their immunomodulatory mechanisms in cells, animals, and humans are also studied. Finally, applications and challenges associated with plant-based immunomodulatory peptides are put forward.
Collapse
Affiliation(s)
| | - Mohammad Zarei
- Virginia Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Hampton, VA, USA
| | - Himani Agrawal
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | | | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Faculty of Science, Department of Analytical Chemistry and Food Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
82
|
Research progress in lipid metabolic regulation of bioactive peptides. FOOD PRODUCTION, PROCESSING AND NUTRITION 2023. [DOI: 10.1186/s43014-022-00123-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractHyperlipidemia poses a serious threat to human health and evaluating the ability of natural active substances to regulate disorders of lipid metabolism is the focus of food functionality research in recent years. Bioactive peptides are distinguished by their broad range of sources, high nutritional content, ease of absorption and use by the body, and ease of determining their sequences. Bioactive peptides have a wide range of potential applications in the area of medicines and food. The regulation of lipid metabolism disorder caused by bioactive peptides from different sources provides a reference for the development and research of bioactive peptides for lipid reduction.
Graphical Abstract
Collapse
|
83
|
Atilgan HI, Akbulut A, Yazihan N, Yumusak N, Singar E, Koca G, Korkmaz M. The Cytokines-Directed Roles of Spirulina for Radioprotection of Lacrimal Gland. Ocul Immunol Inflamm 2023; 31:271-276. [PMID: 35050831 DOI: 10.1080/09273948.2022.2026409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE To evaluate the radioprotective effect of spirulina (SP) on the lacrimal glands after RAI treatment. METHODS A total of 30 rats were separated into control, RAI and SP group. The radioprotective effect of SP on lacrimal glands was evaluated with histopathological and cytopathological analysis. Lacrimal glands were analyzed for tumor necrosis factor alpha (TNF-α), interleukin-2 (IL-2), IL-4, IL-6, IL-10, nuclear factor-kappa B (NF-κB), total oxidant status (TOS) and total antioxidant capacity (TAC) levels. RESULTS RAI increased TNF-α (p = .001), IL-6 (p = .018), and NF-κB levels (p < .0005). Following the administration of SP, TNF-α (p < .0005), IL-4 (p = .026), and IL-6 (p = .006) levels decreased. RAI decreased the TAC levels (p = .001), and co-administration of SP increased the TAC level, but was not statistically significant. SP decreased the TOS level after RAI (p = .022) . CONCLUSIONS SP protects lacrimal glands from RAI-induced damage.
Collapse
Affiliation(s)
- H I Atilgan
- Faculty of Medicine, Department of Nuclear Medicine, Hatay Mustafa Kemal University, Hatay, Turkey
| | - A Akbulut
- Ankara Training and Research Hospital, Department of Nuclear Medicine, University of Health Sciences, Ankara, Turkey
| | - N Yazihan
- Faculty of Medicine, Department of Pathophysiology, Ankara University, Ankara, Turkey
| | - N Yumusak
- Faculty of Veterinary Medicine, Department of Pathology, Harran University, Sanliurfa, Turkey
| | - E Singar
- Ankara Training and Research Hospital, Department of Ophthalmology, University of Health Sciences, Ankara, Turkey
| | - G Koca
- Ankara Training and Research Hospital, Department of Nuclear Medicine, University of Health Sciences, Ankara, Turkey
| | - M Korkmaz
- Ankara Training and Research Hospital, Department of Nuclear Medicine, University of Health Sciences, Ankara, Turkey
| |
Collapse
|
84
|
Rebouças JSA, Oliveira FPS, Araujo ACDS, Gouveia HL, Latorres JM, Martins VG, Prentice Hernández C, Tesser MB. Shellfish industrial waste reuse. Crit Rev Biotechnol 2023; 43:50-66. [PMID: 34933613 DOI: 10.1080/07388551.2021.2004989] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The global production of aquatic organisms has grown steadily in recent decades. This increase in production results in high volumes of by-products and waste, generally considered to be of low commercial value and part of them are consequently discarded in landfills or in the sea, causing serious environmental problems when not used. Currently, a large part of the reused aquaculture waste is destined for the feed industry. This generally undervalued waste presents an important source of bioactive compounds in its composition, such as: amino acids, carotenoids, chitin and its derivatives, fatty acids and minerals. These compounds are capable of offering numerous benefits due to their bioactive properties. However, the applicability of these compounds may be opportune in several other sectors. This review describes studies that seek to obtain and apply bioactive compounds from different sources of aquaculture waste, thus adding commercial value to these underutilized biomasses.HIGHLIGHTSVolume of aquaculture industrial waste from crustaceans and mollusks.Quantity and quality of bioactive components in aquaculture waste.Applications of recovered proteins, lipids, chitin, carotenoids and minerals.Future prospects for the destination of aquaculture waste.
Collapse
Affiliation(s)
- José Stênio Aragão Rebouças
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Brazil.,Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | | | - Alan Carvalho de Sousa Araujo
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Brazil.,Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Helena Leão Gouveia
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Juliana Machado Latorres
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Vilásia Guimarães Martins
- Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Carlos Prentice Hernández
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Brazil.,Laboratory of Food Technology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, Brazil
| | - Marcelo Borges Tesser
- Marine Station of Aquaculture, Institute of Oceanography, Federal University of Rio Grande, Rio Grande, Brazil
| |
Collapse
|
85
|
Cruz-Casas DE, Aguilar CN, Ascacio-Valdés JA, Rodríguez-Herrera R, Chávez-González ML, Flores-Gallegos AC. Bioactive protein hydrolysates obtained from amaranth by fermentation with lactic acid bacteria and Bacillus species. Heliyon 2023; 9:e13491. [PMID: 36846651 PMCID: PMC9950839 DOI: 10.1016/j.heliyon.2023.e13491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 01/04/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Protein hydrolysates are a promising source of bioactive peptides. One strategy by which they can be obtained is fermentation. This method uses the proteolytic system of microorganisms to hydrolyze the parental protein. Fermentation is a little-explored method for obtaining protein hydrolysates from amaranth. Different strains of lactic acid bacteria (LAB) and Bacillus species isolated from goat milk, broccoli, aguamiel, and amaranth flour were used in this work. First, the total protein degradation (%TPD) of amaranth demonstrated by the strains was determined. The results ranged from 0 to 95.95%, the strains that produced a higher %TPD were selected. These strains were identified by molecular biology and were found to correspond to the genera Enterococcus, Lactobacillus, Bacillus, and Leuconostoc. Fermentation was carried out with amaranth flour and the selected strains. After this process, water/salt extracts (WSE) containing the released protein hydrolysates were obtained from amaranth doughs. The peptide concentration was measured by the OPA method. The antioxidant, antihypertensive and antimicrobial activity of the WSE was evaluated. In the FRAP test, the best WSE was LR9 with a concentration of 1.99 μMTE/L ± 0.07. In ABTS, 18C6 obtained the highest concentration with 19.18 μMTE/L ± 0.96. In the DPPH test, there was no significant difference. In terms of antihypertensive activity, inhibition percentages ranging from 0 to 80.65% were obtained. Some WSE were found to have antimicrobial properties against Salmonella enterica and Listeria monocytogenes. Fermentation of amaranth with LAB and Bacillus spp. allowed the release of protein hydrolysates with antioxidant, antihypertensive, and antimicrobial activity.
Collapse
Affiliation(s)
- Dora Elisa Cruz-Casas
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n, Col. República, 25280, Saltillo, Coahuila, Mexico
| | - Cristóbal N. Aguilar
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n, Col. República, 25280, Saltillo, Coahuila, Mexico
| | - Juan A. Ascacio-Valdés
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n, Col. República, 25280, Saltillo, Coahuila, Mexico
| | - Raúl Rodríguez-Herrera
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n, Col. República, 25280, Saltillo, Coahuila, Mexico
| | - Mónica L. Chávez-González
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n, Col. República, 25280, Saltillo, Coahuila, Mexico
| | - Adriana C. Flores-Gallegos
- Bioprocesses and Bioproducts Research Group, Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Boulevard Venustiano Carranza e Ing, José Cárdenas Valdés s/n, Col. República, 25280, Saltillo, Coahuila, Mexico
| |
Collapse
|
86
|
Wei G, Chitrakar B, Regenstein JM, Sang Y, Zhou P. Microbiology, flavor formation, and bioactivity of fermented soybean curd (furu): A review. Food Res Int 2023; 163:112183. [PMID: 36596125 DOI: 10.1016/j.foodres.2022.112183] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
Soybeans are an important plant-based food but its beany flavor and anti-nutritional factors limit its consumption. Fermentation is an effective way to improve its flavor and nutrition. Furu is a popular fermented soybean curd and mainly manufactured in Asia, which has been consumed for thousands of years as an appetizer because of its attractive flavors. This review first classifies furu products on the basis of various factors; then, the microorganisms involved in its fermentation and their various functions are discussed. The mechanisms for the formation of aroma and taste compounds during fermentation are also discussed; and the microbial metabolites and their bioactivities are analyzed. Finally, future prospects and challenges are introduced and further research is proposed. This information is needed to protect the regional characteristics of furu and to regulate its consistent quality. The current information suggests that more in vivo experiments and further clinical trials are needed to confirm its safety and the microbial community needs to be optimized and standardized for each type of furu to improve the production process.
Collapse
Affiliation(s)
- Guanmian Wei
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei Province 071001, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Bimal Chitrakar
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei Province 071001, China
| | - Joe M Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA
| | - Yaxin Sang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei Province 071001, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, China.
| |
Collapse
|
87
|
Hemp Protein Hydrolysates Modulate Inflammasome-Related Genes in Microglial Cells. BIOLOGY 2022; 12:biology12010049. [PMID: 36671742 PMCID: PMC9855956 DOI: 10.3390/biology12010049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022]
Abstract
A prolonged inflammatory response can lead to the development of neurodegenerative diseases such as Alzheimer's disease. Enzymatic hydrolysis is a sustainable way to increase the value of protein sources by obtaining peptides that can exert bioactivity. Hemp (Cannabis sativa L.) protein hydrolysates have been proven to exert anti-inflammatory activity. In this study, two hemp protein hydrolysate (HPHs), obtained with Alcalase as sole catalyst, or with Alcalase followed by Flavourzyme, were evaluated as inflammatory mediators (TNFα, IL-1β, IL-6, and IL-10), microglial polarization markers (Ccr7, iNos, Arg1, and Ym1), and genes related to inflammasome activation (Nlrp3, Asc, Casp1, and Il18), employing the lipopolysaccharide (LPS)-induced neuroinflammation model in murine BV-2 microglial cells. A significant decrease of the expression of proinflammatory genes (e.g., Tnfα, Ccr7, inos, and Nlrp3, among others) and increase of the expression anti-inflammatory cytokines in microglial cells was observed after treatment with the test HPHs. This result in the cell model suggests a polarization toward an anti-inflammatory M2 phenotype. Our results show that the evaluated HPHs show potential neuroprotective activity in microglial cells via the inflammasome.
Collapse
|
88
|
Ramlal A, Samanta A. In Silico functional and phylogenetic analyses of fungal immunomodulatory proteins of some edible mushrooms. AMB Express 2022; 12:159. [PMID: 36571664 PMCID: PMC9791630 DOI: 10.1186/s13568-022-01503-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022] Open
Abstract
Mushrooms are a well known source of many bioactive and nutritional compounds with immense applicability in both the pharmaceutical and food industries. They are widely used to cure various kinds of ailments in traditional medicines. They have a low amount of fats and cholesterol and possess a high number of proteins. Immunomodulators have the ability which can improve immunity and act as defensive agents against pathogens. One such class of immunomodulators is fungal immunomodulatory proteins (FIPs). FIPs have potential roles in the treatment of cancer, and immunostimulatory effects and show anti-tumor activities. In the current study, 19 FIPs from edible mushrooms have been used for comparison and analysis of the conserved motifs. Phylogenetic analysis was also carried out using the FIPs. The conserved motif analysis revealed that some of the motifs strongly supported their identity as FIPs while some are novel. The fungal immunomodulatory proteins are important and have many properties which can be used for treating ailments and diseases and this preliminary study can be used for the identification and functional characterization of the proposed novel motifs and in unraveling the potential roles of FIPs for developing newer drugs.
Collapse
Affiliation(s)
- Ayyagari Ramlal
- grid.8195.50000 0001 2109 4999Department of Botany, University of Delhi, New Delhi, Delhi 110007 India ,grid.11875.3a0000 0001 2294 3534School of Biological Sciences, Universiti Sains Malaysia (USM), 11800 Georgetown, Penang Malaysia
| | - Aveek Samanta
- Department of Botany, Prabhat Kumar College, Contai, 721401 West Bengal India
| |
Collapse
|
89
|
Rivera-Jiménez J, Berraquero-García C, Pérez-Gálvez R, García-Moreno PJ, Espejo-Carpio FJ, Guadix A, Guadix EM. Peptides and protein hydrolysates exhibiting anti-inflammatory activity: sources, structural features and modulation mechanisms. Food Funct 2022; 13:12510-12540. [PMID: 36420754 DOI: 10.1039/d2fo02223k] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inflammation is the response of the immune system to harmful stimuli such as tissue injury, infection or toxic chemicals, which has the aim of eliminating irritants or pathogenic microorganisms and enhancing tissue repair. Uncontrolled long-lasting acute inflammation can gradually progress to chronic, causing a variety of chronic inflammatory diseases that are usually treated with anti-inflammatory drugs, but most of them are inadequate to control chronic responses and are also associated with adverse side effects. Thus, many efforts are being directed to develop alternative and more selective anti-inflammatory therapies from natural products. One main field of interest is the obtaining of bioactive peptides exhibiting anti-inflammatory activity from sustainable protein sources like edible insects or agroindustry and fishing by-products. This work highlighted the structure-activity relationship of anti-inflammatory peptides. Small peptides with molecular weight under 1 kDa and amino acid chain length between 2 to 20 residues are generally the most active because of the higher probability to be absorbed in the intestine and penetrate into cells when compared with the larger size peptides. The presence of hydrophobic (Val, Ile, Pro) and positively charged (His, Arg, Lys) amino acids is another common occurrence for anti-inflammatory peptides. Interestingly, a high percentage (77%) of these bioactive peptides can be found in alternative sustainable protein sources such as Tenebrio molitor or sunflower, apart from its original protein source. However, not all of these peptides with anti-inflammatory potential in vitro achieve good scores by the in silico bioactivity predictors studied. Therefore, it is essential to implement current bioinformatics tools, in order to complement in vitro experiments with prior prediction of potential bioactive peptides.
Collapse
Affiliation(s)
- Julia Rivera-Jiménez
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | | | - Raúl Pérez-Gálvez
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | | | | | - Antonio Guadix
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| | - Emilia M Guadix
- Department of Chemical Engineering, University of Granada, 18071, Granada, Spain.
| |
Collapse
|
90
|
Release of Bioactive Peptides from Erythrina edulis ( Chachafruto) Proteins under Simulated Gastrointestinal Digestion. Nutrients 2022; 14:nu14245256. [PMID: 36558415 PMCID: PMC9788341 DOI: 10.3390/nu14245256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The estimated and concerning rise in world population over the next few years and the consequent increase in food demand will lead to a deterioration in global food security. To avoid or reduce this world crisis, informed and empowered consumers are turning to sustainable and nutrient-rich foods that substitute animal products, also reducing their associated environmental impact. Moreover, due to the demonstrated influence of diet on the risk of high incidence and mortality of noncommunicable diseases, the current established food pattern is focused on the consumption of foods that have functionality for health. Among these new foods, traditional and underutilized plants are gaining interest as alternative protein sources providing nutritional and biological properties. In this work, the potential of Erythrina edulis (chachafruto) proteins as a source of multifunctional peptides after transit through the gastrointestinal tract has been demonstrated, with antioxidant and immunostimulating effects in both biochemical assays and cell culture. While low molecular weight peptides released during the digestive process were found to be responsible for protection against oxidative stress mediated by their radical scavenging activity, high molecular weight peptides exerted immunostimulating effects by upregulation of immunoresponse-associated biomarkers. The findings of this study support the promising role of chachafruto proteins as a new antioxidant and immunostimulatory ingredient for functional foods and nutraceuticals.
Collapse
|
91
|
Zhou Y, Wang D, Zhou S, Duan H, Guo J, Yan W. Nutritional Composition, Health Benefits, and Application Value of Edible Insects: A Review. Foods 2022; 11:3961. [PMID: 36553703 PMCID: PMC9777846 DOI: 10.3390/foods11243961] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
For thousands of years, edible insects have been used as food to alleviate hunger and improve malnutrition. Some insects have also been used as medicines because of their therapeutic properties. This is not only due to the high nutritional value of edible insects, but more importantly, the active substances from edible insects have a variety of biofunctional activities. In this paper, we described and summarized the nutritional composition of edible insects and discussed the biological functions of edible insects and their potential benefits for human health. A summary analysis of the findings for each active function confirms that edible insects have the potential to develop functional foods and medicines that are beneficial to humans. In addition, we analyzed the issues that need to be considered in the application of edible insects and the current status of edible insects in food and pharmaceutical applications. We concluded with a discussion of regulations related to edible insects and an outlook on future research and applications of edible insects. By analyzing the current state of research on edible insects, we aim to raise awareness of the use of edible insects to improve human health and thus promote their better use and development.
Collapse
Affiliation(s)
- Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Shiqi Zhou
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Hao Duan
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Jinhong Guo
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, No.18, Chaoyang District 3, Futou, Beijing 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, College of Biochemical Engineering, Beijing Union University, 197 North Tucheng West Road, Beijing 100023, China
| |
Collapse
|
92
|
Zhang F, Li J, Chang C, Gu L, Su Y, Yang Y. Immunomodulatory Function of Egg White Peptides in RAW264.7 Macrophage Cells and Immunosuppressive Mice Induced by Cyclophosphamide. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10481-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
93
|
Pickering high internal phase emulsions with excellent UV protection property stabilized by Spirulina protein isolate nanoparticles. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
94
|
Intiquilla A, Jiménez-Aliaga K, Iris Zavaleta A, Gamboa A, Caro N, Diaz M, Gotteland M, Abugoch L, Tapia C. Nanoencapsulation of antioxidant peptides from Lupinus mutabilis in chitosan nanoparticles obtained by ionic gelling and spray freeze drying intended for colonic delivery. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
95
|
Wang J, Fang Z, Li Y, Sun L, Liu Y, Deng Q, Zhong S. Ameliorative Effects of Oyster Protein Hydrolysates on Cadmium-Induced Hepatic Injury in Mice. Mar Drugs 2022; 20:md20120758. [PMID: 36547905 PMCID: PMC9784078 DOI: 10.3390/md20120758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Cadmium (Cd) is a widespread environmental toxicant that can cause severe hepatic injury. Oyster protein hydrolysates (OPs) have potential effects on preventing liver disease. In this study, thirty mice were randomly divided into five groups: the control, Cd, Cd + ethylenediaminetetraacetic acid (EDTA, 100 mg/kg), and low/high dose of OPs-treatment groups (100 mg/kg or 300 mg/kg). After continuous administration for 7 days, the ameliorative effect of OPs on Cd-induced acute hepatic injury in Cd-exposed mice was assessed. The results showed that OPs significantly improved the liver function profiles (serum ALT, AST, LDH, and ALP) in Cd-exposed mice. Histopathological analysis showed that OPs decreased apoptotic bodies, hemorrhage, lymphocyte accumulation, and inflammatory cell infiltration around central veins. OPs significantly retained the activities of SOD, CAT, and GSH-Px, and decreased the elevated hepatic MDA content in Cd-exposed mice. In addition, OPs exhibited a reductive effect on the inflammatory responses (IL-1β, IL-6, and TNF-α) and inhibitory effects on the expression of inflammation-related proteins (MIP-2 and COX-2) and the ERK/NF-κB signaling pathway. OPs suppressed the development of hepatocyte apoptosis (Bax, caspase-3, and Blc-2) and the activation of the PI3K/AKT signaling pathway in Cd-exposed mice. In conclusion, OPs ameliorated the Cd-induced hepatic injury by inhibiting oxidative damage and inflammatory responses, as well as the development of hepatocyte apoptosis via regulating the ERK/NF-κB and PI3K/AKT-related signaling pathways.
Collapse
Affiliation(s)
- Jingwen Wang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Zhijia Fang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Correspondence: (Z.F.); (S.Z.); Tel./Fax: +86-759-2396027 (Z.F.)
| | - Yongbin Li
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Lijun Sun
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Ying Liu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Qi Deng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Zhanjiang 524088, China
- Guangdong Provincial Engineering Technology Research Center of Marine Food, Zhanjiang 524088, China
- Key Laboratory of Advanced Processing of Aquatic Products of Guangdong Higher Education Institution, Zhanjiang 524088, China
- Correspondence: (Z.F.); (S.Z.); Tel./Fax: +86-759-2396027 (Z.F.)
| |
Collapse
|
96
|
Peng Z, Gao J, Su W, Cao W, Zhu G, Qin X, Zhang C, Qi Y. Purification and Identification of Peptides from Oyster ( Crassostrea hongkongensis) Protein Enzymatic Hydrolysates and Their Anti-Skin Photoaging Effects on UVB-Irradiated HaCaT Cells. Mar Drugs 2022; 20:749. [PMID: 36547896 PMCID: PMC9784297 DOI: 10.3390/md20120749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 12/03/2022] Open
Abstract
This study aimed to purify and identify antiphotoaging peptides from oyster (Crassostrea hongkongensis) protein enzymatic hydrolysates (OPEH) and to investigate the possible mechanism underlying its antiphotoaging effect. Multiple methods (Ultrafiltration, G25 Chromatography, RP-HPLC, and LC/MS/MS) had been used for this purpose, and eventually, two peptides, including WNLNP and RKNEVLGK, were identified. Particularly, WNLNP exerted remarkable antiphotoaging effect on the UVB-irradiated HaCaT photoaged cell model in a dose-dependent manner. WNLNP exerted its protective effect mainly through inhibiting ROS production, decreasing MMP-1 expression, but increasing extracellular pro-collagen I content. Furthermore, WNLNP downregulated p38, JNK, ERK, and p65 phosphorylation in the MAPK/NF-κB signaling pathway and attenuated bax over-expressions but reversed bcl-2 reduction in UVB- irradiated HaCaT cells. The molecular docking analysis showed that WNLNP forms five and seven hydrogen bonds with NF-κB (p65) and MMP-1, respectively. This study suggested that a pentapeptide WNLNP isolated from OPEH had great potential to prevent and regulate skin photoaging.
Collapse
Affiliation(s)
- Zhilan Peng
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang 524088, China
| | - Jialong Gao
- College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Weimin Su
- College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Wenhong Cao
- College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Guoping Zhu
- College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Xiaoming Qin
- College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Chaohua Zhang
- College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- National Research and Development Branch Center for Shellfish Processing, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Zhanjiang 524088, China
| | - Yi Qi
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| |
Collapse
|
97
|
Response surface optimization of selenium-enriched Moringa oleifera seed peptides with antioxidant, ACEI and XOI activities. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
98
|
Lee JE, Lee JH, Min B, Kim KT, Ahn DU, Paik HD. Immunostimulatory effect of egg yolk phosvitin phosphopeptides produced by high-temperature and mild-pressure pretreatment and enzyme combinations in RAW 264.7 cells via TLR2/MAPK signaling pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
99
|
Göksu AG, Çakır B, Gülseren İ. Hazelnut peptide fractions preserve their bioactivities beyond industrial manufacture and simulated digestion of hazelnut cocoa cream. Food Res Int 2022; 161:111865. [DOI: 10.1016/j.foodres.2022.111865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/02/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022]
|
100
|
Chen H, Chen X, Chen X, Lin S, Cheng J, You L, Xiong C, Cai X, Wang S. New perspectives on fabrication of peptide-based nanomaterials in food industry: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|