51
|
Ombra MN, Nazzaro F, Fratianni F. Enriched pasta incorporating typical vegetables of mediterranean diet: in vitro evaluation of inhibitory potential on digestive enzymes and predicted glycaemic index. Int J Food Sci Nutr 2023; 74:72-81. [PMID: 36534971 DOI: 10.1080/09637486.2022.2158180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Swiss chard (Beta vulgaris L.) and chicory (Cichorium intybus L.) contain biologically active compounds with proven health benefits. Durum wheat noodle-shaped pasta enriched with dried and powder leaves of chard or chicory, at two different levels of supplementation (3%, 6%) was prepared on a laboratory scale. The content of polyphenols, pigments, carotenoids, in vitro inhibition of digestive enzymes and the predicted glycaemic response of the fortified pasta were evaluated. All formulations showed in vitro enzyme inhibition of amylase, glucosidase, and lipase and a low pGI <43. The lowest predicted glycaemic index (pGI = 34 ± 1.1) was found for pasta enriched with 3% beet powder. The incorporation of Beta vulgaris and Cichorium intybus leaf powders improved the nutritional properties of the pasta and also imparted an attractive natural colour to the products.
Collapse
Affiliation(s)
- Maria Neve Ombra
- Institute of Food Science, National Research Council (CNR-ISA), Avellino, Italy
| | - Filomena Nazzaro
- Institute of Food Science, National Research Council (CNR-ISA), Avellino, Italy
| | - Florinda Fratianni
- Institute of Food Science, National Research Council (CNR-ISA), Avellino, Italy
| |
Collapse
|
52
|
Bioactive Properties of Instant Chicory Melanoidins and Their Relevance as Health Promoting Food Ingredients. Foods 2022; 12:foods12010134. [PMID: 36613350 PMCID: PMC9818759 DOI: 10.3390/foods12010134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Instant chicory is a caffeine-free brew worldwide consumed as a coffee substitute. Like coffee grounds processing, chicory roots suffer a roasting process, which may lead to the formation of high-molecular weight nitrogen-brown compounds, the melanoidins. It is hypothesized that similarly to coffee, chicory melanoidins have health promoting potential. In this work, the chemical composition and biological activity of chicory high molecular weight material (HMWM) was evaluated. The chicory HMWM is composed by 28.9% (w/w) of carbohydrates, mainly fructose-rich polysaccharides (18.7% w/w) and 5.7% (w/w) of protein, distinct from coffee. The phenolic compounds constituent of the HMWM were mainly present in glycosidically linked and condensed structures (0.9 g/100 g and 5.8 g/100 g), showing in vitro ABTS•+ scavenging (IC50 = 0.28 mg/mL) and ferric ion reducing capacity (ca. 11 µg Fe2+ eq/mg). Chicory HMWM revealed to be effective against Gram-positive bacteria, mainly Staphylococcus aureus and Bacillus cereus, although not so efficient as coffee. It also showed potential to inhibit α-glucosidase activity (15% of inhibition), higher than coffee HMWM, approaching acarbose activity that is used in type 2 diabetes mellitus treatment. Thus, chicory melanoidins, when used as a food ingredient, may contribute to an antioxidant diet and to prevent diabetes, while increasing the protective effects against pathogenic bacteria.
Collapse
|
53
|
Li N, Amatjan M, He P, Zhang B, Mai X, Jiang Q, Xie H, Shao X. Integration of network pharmacology and intestinal flora to investigate the mechanism of action of Chinese herbal Cichorium intybus formula in attenuating adenine and ethambutol hydrochloride-induced hyperuricemic nephropathy in rats. PHARMACEUTICAL BIOLOGY 2022; 60:2338-2354. [PMID: 36444935 PMCID: PMC9897651 DOI: 10.1080/13880209.2022.2147551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/10/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
CONTEXT Cichorium intybus L. (Asteraceae) formula (CF) has been applied as a folk medicine to treat hyperuricemic nephropathy (HN). However, the exact mechanism remains unclear. OBJECTIVE To explore the therapeutic effect and mechanism of CF on HN. MATERIALS AND METHODS Through network pharmacological methods, the targets of the active component of CF against HN were obtained. Subsequently, Male Wistar rats were divided into control, HN, allopurinol (50 mg/kg), CF high-dose (8.64 g/kg) and CF low-dose (2.16 g/kg) groups. The HN model was induced via intragastric administration of adenine (100 mg/kg) and ethambutol hydrochloride (250 mg/kg) for 3 weeks. After CF treatment, biochemical indicators including UA, UREA and CREA were measured. Then, HE staining, qRT-PCR and gut microbiota analysis were conducted to further explore the mechanism. RESULTS The network pharmacology identified 83 key targets, 6 core genes and 200 signalling pathways involved in the treatment of HN. Compared to the HN group, CF (8.64 g/kg) significantly reduced the levels of UA, UREA and CREA (from 2.4 to 1.57 μMol/L, from 15.87 to 11.05 mMol/L and from 64.83 to 54.83 μMol/L, respectively), and mitigated renal damage. Furthermore, CF inhibited the expression of IL-6, TP53, TNF and JUN. It also altered the composition of gut microbiota, and ameliorated HN by increasing the relative abundance of some probiotics. CONCLUSIONS This work elucidated the therapeutic effect and underlying mechanism by which CF protects against HN from the view of the biodiversity of the intestinal flora, thus providing a scientific basis for the usage of CF.
Collapse
Affiliation(s)
- Na Li
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Mukaram Amatjan
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Pengke He
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Boheng Zhang
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Xianyan Mai
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Qianle Jiang
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| | - Haochen Xie
- Qinghai Tibet Plateau Research Institute, Southwest Minzu University, Chengdu, China
| | - Xiaoni Shao
- Immunotherapy Laboratory, College of Pharmacology, Southwest Minzu University, Chengdu, China
| |
Collapse
|
54
|
Peña-Espinoza M, Romero-Uzqueda Y, Valente AH, de Roode M, Simonsen HT, Thamsborg SM, Williams AR, López-Muñoz R. Anti-protozoal activity and metabolomic analyses of Cichorium intybus L. against Trypanosoma cruzi. Int J Parasitol Drugs Drug Resist 2022; 20:43-53. [PMID: 36037562 PMCID: PMC9440258 DOI: 10.1016/j.ijpddr.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022]
Abstract
Chagas disease, caused by the protozoa Trypanosoma cruzi, is a potentially life-threatening parasitic zoonosis infecting 6-7 million people worldwide, mainly in Latin America. Due to the limited numbers of drugs available against this neglected disease and their frequent adverse effects, novel anti-chagasic agents are urgently needed. Cichorium intybus L. (chicory) is a bioactive plant with potent activity against parasitic nematodes, but its effects on protozoans are poorly known and no studies have explored its trypanocidal potential. Here, we investigated the activity of C. intybus against extracellular and intracellular stages of T. cruzi, including the prediction of trypanocidal compounds by metabolomic analyses and bioactivity-based molecular networking. Purified C. intybus extracts were prepared from leaves and roots of five C. intybus cultivars (cv. 'Benulite', 'Goldine', 'Larigot', 'Maestoso' and 'Spadona'). All C. intybus extracts induced concentration-dependent effects against T. cruzi trypomastigotes. C. intybus leaf extracts had higher trypanocidal selectivity and lower cytotoxicity on mammalian cells than root extracts. The leaf extract of C. intybus cv. Goldine also significantly reduced the number of mammalian cells infected with T. cruzi amastigotes. Metabolomic and bioactivity-based molecular networking analyses revealed 11 compounds in C. intybus leaves strongly linked with activity against trypomastigotes, including the sesquiterpene lactone lactucin, and flavonoid- and fatty acid-derivatives. Furthermore, seven distinct C. intybus molecules (including two sesquiterpene lactone-derivatives) were predicted to be involved in reducing the number of mammalian cells infected with amastigotes. This is the first report of the anti-protozoal activity of C. intybus against trypanosomatid parasites and expands our understanding of the anti-parasitic effects of this plant and its bioactive metabolites. Further studies to elucidate the anti-protozoal compound(s) in C. intybus and their mode(s) of action will improve our knowledge of using this bioactive plant as a promising source of novel broad-spectrum anti-parasitic compounds with associated health benefits and biomedical potential.
Collapse
Affiliation(s)
- Miguel Peña-Espinoza
- Instituto de Farmacologia y Morfofisiologia, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile; Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| | - Yeambell Romero-Uzqueda
- Instituto de Farmacologia y Morfofisiologia, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Angela H Valente
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | | | - Henrik T Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Rodrigo López-Muñoz
- Instituto de Farmacologia y Morfofisiologia, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile.
| |
Collapse
|
55
|
Bioactive, Mineral and Antioxidative Properties of Gluten-Free Chicory Supplemented Snack: Impact of Processing Conditions. Foods 2022; 11:foods11223692. [PMID: 36429284 PMCID: PMC9688964 DOI: 10.3390/foods11223692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/27/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
This study aimed to investigate the impact of chicory root addition (20-40%) and extrusion conditions (moisture content from 16.3 to 22.5%, and screw speed from 500 to 900 rpm) on bioactive compounds content (inulin, sesquiterpene lactones, and polyphenols) of gluten-free rice snacks. Chicory root is considered a potential carrier of food bioactives, while extrusion may produce a wide range of functional snack products. The mineral profiles were determined in all of the obtained extrudates in terms of Na, K, Ca, Mg, Fe, Mn, Zn, and Cu contents, while antioxidative activity was established through reducing capacity, DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) tests. Chicory root addition contributed to the improvement of bioactive compounds and mineral contents, as well as antioxidative activities in all of the investigated extrudates in comparison to the pure-rice control sample. An increase in moisture content raised sesquiterpene lactones and minerals, while high screw speeds positively affected polyphenols content. The achieved results showed the important impact of the extrusion conditions on the investigated parameters and promoted chicory root as an attractive food ingredient in gluten-free snack products with high bioactive value.
Collapse
|
56
|
Oral Cell-Targeted Delivery Systems Constructed of Edible Materials: Advantages and Challenges. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227991. [PMID: 36432092 PMCID: PMC9697699 DOI: 10.3390/molecules27227991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
Cell-targeted delivery is an advanced strategy which can effectively solve health problems. However, the presence of synthetic materials in delivery systems may trigger side effects. Therefore, it is necessary to develop cell-targeted delivery systems with excellent biosafety. Edible materials not only exhibit biosafety, but also can be used to construct cell-targeted delivery systems such as ligands, carriers, and nutraceuticals. Moreover, oral administration is the appropriate route for cell-targeted delivery systems constructed of edible materials (CDSEMs), which is the same as the pattern of food intake, resulting in good patient compliance. In this review, relevant studies of oral CDSEMs are collected to summarize the construction method, action mechanism, and health impact. The gastrointestinal stability of delivery systems can be improved by anti-digestible materials. The design of the surface structure, shape, and size of carrier is beneficial to overcoming the mucosal barrier. Additionally, some edible materials show dual functions of a ligand and carrier, which is conductive to simplifying the design of CDSEMs. This review can provide a better understanding and prospect for oral CDSEMs and promote their application in the health field.
Collapse
|
57
|
Meng XH, Lv H, Ding XQ, Jian TY, Guo DL, Feng XJ, Ren BR, Chen J. Sesquiterpene lactones with anti-inflammatory and cytotoxic activities from the roots of Cichorium intybus. PHYTOCHEMISTRY 2022; 203:113377. [PMID: 35988742 DOI: 10.1016/j.phytochem.2022.113377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Cichorium intybus L. (Asteraceae), belonging to the tribe Cichorieae of the family Asteraceae, has a long history as an edible and medicinal food. Sesquiterpene lactones are commonly considered as its major active constituents. In the current study, five unreported sesquiterpene lactones, including one 12,8-guaianolide and four 12,6-guaianolides were isolated from C. intybus roots, as well as 16 known analogues. The planar structures and relative configurations of these compounds were elucidated by extensive spectroscopic analysis. The absolute configurations were determined by the time-dependent density functional theory (TDDFT)-based electronic circular dichroism (ECD) calculation method. Bioassay results showed that seven of the isolates exhibited remarkable NO production inhibitory activity in LPS-stimulated RAW264.7 macrophages, with IC50 values ranging from 1.83 to 38.81 μM. Some of them can significantly decrease the secretion of inflammatory cytokines (TNF-α and IL-6). Cytotoxicity assays demonstrated that intybusins B, as well as four known compounds, displayed obvious inhibitory activities against four human tumor cells, with IC50 values ranging from 9.01 to 27.07 μM.
Collapse
Affiliation(s)
- Xiu-Hua Meng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Han Lv
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Xiao-Qin Ding
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Tun-Yu Jian
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Da-le Guo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiu-Juan Feng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Bing-Ru Ren
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China
| | - Jian Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China; Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
58
|
Li Q, Zhang X, Du Y, Liu X, Chen G, Xiang P, Wu H, Liu C, Wang D. Brussels Chicory Stabilizes Unstable Atherosclerotic Plaques and Reshapes the Gut Microbiota in Apoe-/- Mice. J Nutr 2022; 152:2209-2217. [PMID: 35524685 DOI: 10.1093/jn/nxac103] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/25/2022] [Accepted: 05/03/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Adherence to a Mediterranean dietary pattern can protect against atherosclerosis in part by reducing intestinal permeability and gut microbial LPS production. Brussels chicory, a typical Mediterranean vegetable, has been shown to inhibit the formation of early-stage atherosclerosis in mice. OBJECTIVES We evaluated whether Brussels chicory affects advanced atherosclerosis progression, intestinal permeability, and gut microbial LPS production. METHODS Thirty-week-old male apoE-deficient mice with unstable atherosclerotic plaques in the brachiocephalic artery were fed the AIN-93G diet alone (control) or supplemented with 0.5% freeze-dried Brussels chicory for 20 wk. Plaque volume and features of plaque stability, plaque macrophage polarization, fecal and serum LPS concentrations, serum lipid profiles and inflammation-related cytokines, and gut microbial profiles were measured. RESULTS Compared with the control treatment, Brussels chicory consumption did not significantly change plaque volume and serum lipid profiles. However, it increased plaque stability (P < 0.05), as evidenced by reduced necrotic core size (42.3%), and increased fibrous cap thickness (55.0%) and collagen content (68.4%). Moreover, Brussels chicory consumption reduced intestinal permeability (56.3%), fecal and serum LPS concentrations (52.2% and 39.4%), serum IL1β and TNFα (52.0% and 33.8%), promoted plaque macrophage polarization towards the M2-like phenotype, and altered gut microbial composition, the latter indicated by increased relative abundance of certain members of the Ruminococcaceae family, such as Ruminiclostridium_9, Ruminiclostridium_5, and Intestinimonas (P < 0.05). Spearman correlation analyses further showed that these bacterial genera were significantly correlated with intestinal permeability, fecal and serum LPS, serum proinflammatory cytokines, and several features of plaque stability. CONCLUSIONS Brussels chicory might help stabilize atherosclerotic plaques in mice by reducing intestinal permeability and gut microbial LPS production. This study provides a promising approach to slow the progression of atherosclerosis.
Collapse
Affiliation(s)
- Qing Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, People's Republic of China
| | - Xu Zhang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, People's Republic of China
| | - Yushi Du
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, People's Republic of China
| | - Xiuping Liu
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, People's Republic of China
| | - Guanyu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, People's Republic of China
| | - Panying Xiang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, People's Republic of China
| | - Hao Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Shandong University, Jinan, People's Republic of China
| | - Chaoqun Liu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou, People's Republic of China
| | - Dongliang Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, People's Republic of China
| |
Collapse
|
59
|
Zahoor I, Anjum N, Ganaie TA, Allai FM, Al-Ghamdi AA, Abbasi AM, Wani SA. Effect of hybrid drying technique on non-traditional Chicory (Cichorium intybus L.) herb: Phytochemical, antioxidant characteristics, and optimization of process conditions. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1002396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This research investigated the influence of microwave-assisted fluidized bed drying (MAFBD) on the antioxidant and phytochemical characteristics of Chicory. Microwave power, temperature, and air velocity were used as process variables varied between 180–540 W, 50–70 °C, and 15–20 m/s, respectively. The responses determined for deciding the optimal criteria were total phenolics content, ascorbic acid, DPPH radical scavenging activity, total chlorophyll, carotene content, total flavonoid content, tannin content, and saponin content of the dried chicory. Statistical analyses were done by using the response surface methodology, which showed that independent variables affected the responses to a varied extent. The design expert predicted 462.30 W microwave power, 70°C temperature, and 15 m/s air velocity as optimum conditions to obtain highest desirability for the dried chicory. Separate validation experiments were conducted, under optimum conditions, to verify the predictions and adequacy of the second-order polynomial models. Under these optimal conditions, the predicted amount of ascorbic acid content was 38.32 mg/100g DW, total phenolic content 216.42 mg/100g DW, total flavonoid content mg/100g DW, DPPH scavenging activity 36.10 μg/ml, total chlorophyll content 311.79 mg/100g, carotene content 7.30 mg/100g, tannin content 2.72 mg/100g, and saponin content 0.46 mg/100g. The investigated parameters had a significant effect on the quality of the dried chicory. Taking the aforesaid results into consideration, our study recommended MAFBD as a promising technique with minimum changes in antioxidant and phytochemical content of chicory.
Collapse
|
60
|
Jaśkiewicz A, Budryn G, Carmena-Bargueño M, Pérez-Sánchez H. Evaluation of Activity of Sesquiterpene Lactones and Chicory Extracts as Acetylcholinesterase Inhibitors Assayed in Calorimetric and Docking Simulation Studies. Nutrients 2022; 14:3633. [PMID: 36079888 PMCID: PMC9459812 DOI: 10.3390/nu14173633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/20/2022] [Accepted: 08/30/2022] [Indexed: 12/03/2022] Open
Abstract
The aim of the study was to explain the effects of sesquiterpene lactones (SLs) from chicory (Cichorium intybus L.) root extracts as inhibitors of acetylcholinesterase (AChE) at the molecular level and to determine the inhibition of AChE activity by specific SLs (lactucin and lactucopicrin) and different chicory extracts. The obtained SLs-rich extracts were purified by the countercurrent partition chromatography (CPC) technique. AChE inhibitors were analyzed using two models: isothermal titration calorimetry (ITC) and docking simulation. The results of ITC analysis of the enzyme and the ligands' complexation showed strong interactions of SLs as well as extracts from chicory with AChE. In a test of enzyme activity inhibition after introducing acetylcholine into the model system with SL, a stronger ability to inhibit the hydrolysis of the neurotransmitter was observed for lactucopicrin, which is one of the dominant SLs in chicory. The inhibition of enzyme activity was more efficient in the case of extracts, containing different enzyme ligands, exhibiting complementary patterns of binding the AChE active site. The study showed the high potential of using chicory to decrease the symptoms of Alzheimer's disease.
Collapse
Affiliation(s)
- Andrzej Jaśkiewicz
- Faculty of Biotechnology and Food Sciences, Institute of Food Technology and Analysis, Lodz University of Technology, 90-537 Lodz, Poland
| | - Grażyna Budryn
- Faculty of Biotechnology and Food Sciences, Institute of Food Technology and Analysis, Lodz University of Technology, 90-537 Lodz, Poland
| | - Miguel Carmena-Bargueño
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Computer Science Department, Catholic University of Murcia (UCAM), Guadalupe, 30107 Murcia, Spain
| | - Horacio Pérez-Sánchez
- Structural Bioinformatics and High-Performance Computing Research Group (BIO-HPC), Computer Science Department, Catholic University of Murcia (UCAM), Guadalupe, 30107 Murcia, Spain
| |
Collapse
|
61
|
Development and characterization of potato starch/lactucin/nano-TiO2 food packaging for sustained prevention of mealworms. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
62
|
Ávila-Gálvez MÁ, Rafael-Pita C, Fernández N, Baixinho J, Anastácio JD, Cankar K, Bosch D, Nunes Dos Santos C. Targeting proteases involved in the viral replication of SARS-CoV-2 by sesquiterpene lactones from chicory ( Cichorium intybus L.). Food Funct 2022; 13:8977-8988. [PMID: 35938740 DOI: 10.1039/d2fo00933a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SARS-CoV-2 is a highly transmissible and pathogenic coronavirus causing a respiratory disease that emerged in 2019, leading to a public health emergency situation which continues to date. The treatment options are still very limited and vaccines available are less effective against new variants. SARS-CoV-2 enzymes, namely main protease (Mpro) and papain-like protease (PLpro), play a pivotal role in the viral life cycle, making them a putative drug target. Here, we described for the first time the potential inhibitory activity of chicory extract against both proteases. Besides, we have identified that the four most abundant sesquiterpene lactones in chicory inhibited these proteases, showing an effective binding in the active sites of Mpro and PLpro. This paper provides new insight for further drug development or food-based strategies for the prevention of SARS-CoV-2 by targeting viral proteases.
Collapse
Affiliation(s)
- María Ángeles Ávila-Gálvez
- Instituto de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal.
| | - Carlos Rafael-Pita
- Instituto de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal.
| | - Naiara Fernández
- Instituto de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
| | - João Baixinho
- Instituto de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - José D Anastácio
- Instituto de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal.
| | - Katarina Cankar
- Wageningen University and Research, Wageningen Plant Research, BU Bioscience, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Dirk Bosch
- Wageningen University and Research, Wageningen Plant Research, BU Bioscience, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Cláudia Nunes Dos Santos
- Instituto de Biologia Experimental e Tecnológica (iBET), Av. República, Qta. Marquês, 2780-157 Oeiras, Portugal
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal.
| |
Collapse
|
63
|
Shao M, Lu Y, Xiang H, Wang J, Ji G, Wu T. Application of metabolomics in the diagnosis of non-alcoholic fatty liver disease and the treatment of traditional Chinese medicine. Front Pharmacol 2022; 13:971561. [PMID: 36091827 PMCID: PMC9453477 DOI: 10.3389/fphar.2022.971561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/25/2022] [Indexed: 12/01/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease around the world, and it often coexists with insulin resistance-related diseases including obesity, diabetes, hyperlipidemia, and hypertension, which seriously threatens human health. Better prevention and treatment strategies are required to improve the impact of NAFLD. Although needle biopsy is an effective tool for diagnosing NAFLD, this method is invasive and difficult to perform. Therefore, it is very important to develop more efficient approaches for the early diagnosis of NAFLD. Traditional Chinese medicine (TCM) can play a certain role in improving symptoms and protecting target organs, and its mechanism of action needs to be further studied. Metabolomics, the study of all metabolites that is thought to be most closely associated with the patients' characters, can provide useful clinically biomarkers that can be applied to NAFLD and may open up new methods for diagnosis. Metabolomics technology is consistent with the overall concept of TCM, and it can also be used as a potential mechanism to explain the effects of TCM by measuring biomarkers by metabolomics. Based on PubMed/MEDLINE and other databases, this paper retrieved relevant literature NAFLD and TCM intervention in NAFLD using metabolomics technology in the past 5 years were searched, and the specific metabolites associated with the development of NAFLD and the potential mechanism of Chinese medicine on improving symptoms were summarized.
Collapse
Affiliation(s)
- Mingmei Shao
- Baoshan District Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guang Ji
- Baoshan District Hospital of Intergrated Traditional Chinese and Western Medicine, Shanghai, China
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
64
|
Bokić J, Kojić J, Krulj J, Pezo L, Banjac V, Škrobot D, Tumbas Šaponjac V, Vidosavljević S, Stojkov V, Ilić N, Bodroža-Solarov M. Development of a Novel Rice-Based Snack Enriched with Chicory Root: Physicochemical and Sensory Properties. Foods 2022; 11:foods11162393. [PMID: 36010393 PMCID: PMC9407501 DOI: 10.3390/foods11162393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 11/16/2022] Open
Abstract
A novel rice-based snack enriched with chicory root flour (CRF) was developed by twin-screw extrusion. Chicory (Cichorium intybus L.) is one of the promising medicinal plants for the development of innovative food and may be considered a functional food ingredient. Central composite design (CCD) was employed to generate snack formulations by varying feed moisture (M, 16.3–22.5%), screw speed (SS, 500–900 rpm) and CRF content (20–40%). The optimization according to artificial neural network modeling and a genetic algorithm was applied to define optimal process conditions (17.6% moisture, 820 rpm and 24.1% of CRF) for obtaining the product with the highest expansion (3.34), crispiness (3.22 × 10−3), volume (2040 m3), degree of gelatinization (69.70%) and good color properties. Bulk density (110.33 g/L), density (250 kg/m3), and hardness (98.74 N) resulted in low values for the optimal sample. The descriptive sensory analysis evaluated low hardness and bitterness, with high crispiness for the optimal extrudate. This study points to the possibility of a novel chicory enriched extrudate production with desirable physicochemical and sensory properties.
Collapse
Affiliation(s)
- Jelena Bokić
- Faculty of Technology, University of Novi Sad, Bul. Cara Lazara 1, 21000 Novi Sad, Serbia
- Institute of Food Technology, University of Novi Sad, Bul. Cara Lazara 1, 21000 Novi Sad, Serbia
- Correspondence:
| | - Jovana Kojić
- Institute of Food Technology, University of Novi Sad, Bul. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Jelena Krulj
- Institute of Food Technology, University of Novi Sad, Bul. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Lato Pezo
- Institute of General and Physical Chemistry, University of Belgrade, Studentski Trg 12–16, 11000 Beograd, Serbia
| | - Vojislav Banjac
- Institute of Food Technology, University of Novi Sad, Bul. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Dubravka Škrobot
- Institute of Food Technology, University of Novi Sad, Bul. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Vesna Tumbas Šaponjac
- Faculty of Technology, University of Novi Sad, Bul. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Strahinja Vidosavljević
- Institute of Food Technology, University of Novi Sad, Bul. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Viktor Stojkov
- Institute of Food Technology, University of Novi Sad, Bul. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Nebojša Ilić
- Institute of Food Technology, University of Novi Sad, Bul. Cara Lazara 1, 21000 Novi Sad, Serbia
| | - Marija Bodroža-Solarov
- Institute of Food Technology, University of Novi Sad, Bul. Cara Lazara 1, 21000 Novi Sad, Serbia
| |
Collapse
|
65
|
Vilà M, Bedmar À, Saurina J, Núñez O, Sentellas S. High-Throughput Flow Injection Analysis-Mass Spectrometry (FIA-MS) Fingerprinting for the Authentication of Tea Application to the Detection of Teas Adulterated with Chicory. Foods 2022; 11:2153. [PMID: 35885394 PMCID: PMC9320581 DOI: 10.3390/foods11142153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Tea is a broadly consumed beverage worldwide that is susceptible to fraudulent practices, including its adulteration with other plants such as chicory extracts. In the present work, a non-targeted high-throughput flow injection analysis-mass spectrometry (FIA-MS) fingerprinting methodology was employed to characterize and classify different varieties of tea (black, green, red, oolong, and white) and chicory extracts by principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). Detection and quantitation of frauds in black and green tea extracts adulterated with chicory were also evaluated as proofs of concept using partial least squares (PLS) regression. Overall, PLS-DA showed that FIA-MS fingerprints in both negative and positive ionization modes were excellent sample chemical descriptors to discriminate tea samples from chicory independently of the tea product variety as well as to classify and discriminate among some of the analyzed tea groups. The classification rate was 100% in all the paired cases-i.e., each tea product variety versus chicory-by PLS-DA calibration and prediction models showing their capability to assess tea authentication. The results obtained for chicory adulteration detection and quantitation using PLS were satisfactory in the two adulteration cases evaluated (green and black teas adulterated with chicory), with calibration, cross-validation, and prediction errors below 5.8%, 8.5%, and 16.4%, respectively. Thus, the non-targeted FIA-MS fingerprinting methodology demonstrated to be a high-throughput, cost-effective, simple, and reliable approach to assess tea authentication issues.
Collapse
Affiliation(s)
- Mònica Vilà
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; (M.V.); (À.B.); (J.S.); (S.S.)
| | - Àlex Bedmar
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; (M.V.); (À.B.); (J.S.); (S.S.)
| | - Javier Saurina
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; (M.V.); (À.B.); (J.S.); (S.S.)
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Recinte Torribera, Av. Prat de la Riba 171, Edifici de Recerca (Gaudí), Santa Coloma de Gramenet, E08921 Barcelona, Spain
| | - Oscar Núñez
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; (M.V.); (À.B.); (J.S.); (S.S.)
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Recinte Torribera, Av. Prat de la Riba 171, Edifici de Recerca (Gaudí), Santa Coloma de Gramenet, E08921 Barcelona, Spain
| | - Sònia Sentellas
- Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, Martí i Franquès 1-11, E08028 Barcelona, Spain; (M.V.); (À.B.); (J.S.); (S.S.)
- Research Institute in Food Nutrition and Food Safety, University of Barcelona, Recinte Torribera, Av. Prat de la Riba 171, Edifici de Recerca (Gaudí), Santa Coloma de Gramenet, E08921 Barcelona, Spain
- Serra Húnter Fellow, Generalitat de Catalunya, Rambla de Catalunya 19-21, E08007 Barcelona, Spain
| |
Collapse
|
66
|
Li Y, Ju S, Lin Z, Wu H, Wang Y, Jin H, Ma S, Zhang B. Bioactive-Chemical Quality Markers Revealed: An Integrated Strategy for Quality Control of Chicory. Front Nutr 2022; 9:934176. [PMID: 35859756 PMCID: PMC9292578 DOI: 10.3389/fnut.2022.934176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
As a miraculous Xinjiang Uyghur customary traditional Chinese medicine (TCM), Chicory (Cichorium glandulosum Boiss.et Huet and Cichorium intybus L.) has been found to have therapeutic potential for metabolic diseases in recent years. Although it is widely used as an ethnic medicine, there is still a lack of targeted quality control indicators in quality standards. Hence, this study was conducted to further develop a strategy to reveal bioactive-chemical quality markers based on the existing foundation. First, through the comparative screening of fingerprint profiles of a large amount of Cichorium glandulosum Boiss.et Huet and Cichorium intybus L., superiority components were found to be potential indicators of chemical quantitative properties for the roots and above-ground parts. The results of content determination showed that their contents differed among different species and parts. Second, the potential dominant components were further confirmed using network pharmacology and molecular docking techniques. Again, the results of RAW264.7 cells and L02 cells experiments showed that chicory acid and lactucin were the main components that could reflect the anti-inflammatory and uric acid-lowering potential of chicory. Finally, under this strategy, this study reveals that cichoric acid and lactucin have the properties of quality markers and quality control of chicory. In a word, this work contributes to the quality control, standard improvement, and rational clinical use of chicory.
Collapse
Affiliation(s)
- Yaolei Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Shanshan Ju
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Zhijian Lin
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Hongyu Jin
- National Institutes for Food and Drug Control, Beijing, China
| | - Shuangcheng Ma
- National Institutes for Food and Drug Control, Beijing, China
- *Correspondence: Shuangcheng Ma,
| | - Bing Zhang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
- Bing Zhang,
| |
Collapse
|
67
|
Faraji S, Hosseini Azar MRM, Alizadeh M. Brewed chicory leaf consumption has unexpected side effects along beneficial effects on liver enzymes in non-alcoholic fatty liver disease patients. J Herb Med 2022. [DOI: 10.1016/j.hermed.2022.100572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
68
|
Saleh SR, Manaa A, Sheta E, Ghareeb DA, Abd-Elmonem NM. The Synergetic Effect of Egyptian Portulaca oleracea L. (Purslane) and Cichorium intybus L. (Chicory) Extracts against Glucocorticoid-Induced Testicular Toxicity in Rats through Attenuation of Oxidative Reactions and Autophagy. Antioxidants (Basel) 2022; 11:antiox11071272. [PMID: 35883763 PMCID: PMC9311541 DOI: 10.3390/antiox11071272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/10/2022] Open
Abstract
Long-term glucocorticoids can alter sperm motility, vitality, or morphology, disrupting male reproductive function. This study scrutinized the synergistic benefits of two Egyptian plants against dexamethasone (Dexa)-induced testicular and autophagy dysfunction in male rats. Phytochemical ingredients and the combination index were estimated for Purslane ethanolic extract (PEE) and Chicory water extract (CWE). Four control groups received saline and 100 mg/kg of each PEE, CWE, and PEE/CWE, daily for 8 weeks. Dexa (1 mg/kg daily for 6 weeks) induced infertility where PEE, CWE, and PEE/CWE were given. Seminal analysis, male hormones, glycemic and oxidative stress markers, endoplasmic reticulum (ER) stress markers (Sigma 1R and GRP78), and autophagy regulators (Phospho-mTOR, LC3I/II, PI3KC3, and Beclin-1, P62, ATG5, and ATG7) were measured. The in vitro study illustrated the synergistic (CI < 1) antioxidant capacity of the PEE/CWE combination. Dexa exerts testicular damage by inducing oxidative reactions, a marked reduction in serum testosterone, TSH and LH levels, insulin resistance, ER stress, and autophagy. In contrast, the PEE and CWE extracts improve fertility hormones, sperm motility, and testicular histological alterations through attenuating oxidative stress and autophagy, with a synergistic effect upon combination. In conclusion, the administration of PEE/CWE has promised ameliorative impacts on male infertility and can delay disease progression.
Collapse
Affiliation(s)
- Samar R. Saleh
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (A.M.); (D.A.G.); (N.M.A.-E.)
- Correspondence: or ; Tel.: +20-122-573-2849; Fax: +2-(03)-391-1794
| | - Ashraf Manaa
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (A.M.); (D.A.G.); (N.M.A.-E.)
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 21131, Egypt;
| | - Doaa A. Ghareeb
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (A.M.); (D.A.G.); (N.M.A.-E.)
| | - Nihad M. Abd-Elmonem
- Bio-Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21515, Egypt; (A.M.); (D.A.G.); (N.M.A.-E.)
| |
Collapse
|
69
|
Versluys M, Toksoy Öner E, Van den Ende W. Fructan oligosaccharide priming alters apoplastic sugar dynamics and improves resistance against Botrytis cinerea in chicory. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4214-4235. [PMID: 35383363 DOI: 10.1093/jxb/erac140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Carbohydrates such as fructans can be involved in priming or defence stimulation, and hence potentially provide new strategies for crop protection against biotic stress. Chicory (Cichorium intybus) is a model plant for fructan research and is a crop with many known health benefits. Using the chicory-Botrytis cinerea pathosystem, we tested the effectiveness of fructan-induced immunity, focussing on different plant and microbial fructans. Sugar dynamics were followed after priming and subsequent pathogen infection. Our results indicated that many higher plants might detect extracellular levan oligosaccharides (LOS) of microbial origin, while chicory also detects extracellular small inulin-type fructooligosaccharides (FOS) of endogenous origin, thus differing from the findings of previous fructan priming studies. No clear positive effects were observed for inulin or mixed-type fructans. An elicitor-specific burst of reactive oxygen species was observed for sulfated LOS, while FOS and LOS both behaved as genuine priming agents. In addition, a direct antifungal effect was observed for sulfated LOS. Intriguingly, LOS priming led to a temporary increase in apoplastic sugar concentrations, mainly glucose, which could trigger downstream responses. Total sugar and starch contents in total extracts of LOS-primed leaves were higher after leaf detachment, indicating they could maintain their metabolic activity. Our results indicate the importance of balancing intra- and extracellular sugar levels (osmotic balance) in the context of 'sweet immunity' pathways.
Collapse
Affiliation(s)
- Maxime Versluys
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Ebru Toksoy Öner
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| |
Collapse
|
70
|
Spinelli V, Brasili E, Sciubba F, Ceci A, Giampaoli O, Miccheli A, Pasqua G, Persiani AM. Biostimulant Effects of Chaetomium globosum and Minimedusa polyspora Culture Filtrates on Cichorium intybus Plant: Growth Performance and Metabolomic Traits. FRONTIERS IN PLANT SCIENCE 2022; 13:879076. [PMID: 35646045 PMCID: PMC9134003 DOI: 10.3389/fpls.2022.879076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/11/2022] [Indexed: 06/12/2023]
Abstract
In this study, we investigated the biostimulant effect of fungal culture filtrates obtained from Chaetomium globosum and Minimedusa polyspora on growth performance and metabolomic traits of chicory (Cichorium intybus) plants. For the first time, we showed that M. polyspora culture filtrate exerts a direct plant growth-promoting effect through an increase of biomass, both in shoots and roots, and of the leaf area. Conversely, no significant effect on morphological traits and biomass yield was observed in C. intybus plants treated with C. globosum culture filtrate. Based on 1H-NMR metabolomics data, differential metabolites and their related metabolic pathways were highlighted. The treatment with C. globosum and M. polyspora culture filtrates stimulated a common response in C. intybus roots involving the synthesis of 3-OH-butyrate through the decrease in the synthesis of fatty acids and sterols, as a mechanism balancing the NADPH/NADP+ ratio. The fungal culture filtrates differently triggered the phenylpropanoid pathway in C. intybus plants: C. globosum culture filtrate increased phenylalanine and chicoric acid in the roots, whereas M. polyspora culture filtrate stimulated an increase of 4-OH-benzoate. Chicoric acid, whose biosynthetic pathway in the chicory plant is putative and still not well known, is a very promising natural compound playing an important role in plant defense. On the contrary, benzoic acids serve as precursors for a wide variety of essential compounds playing crucial roles in plant fitness and defense response activation. To the best of our knowledge, this is the first study that shows the biostimulant effect of C. globosum and M. polyspora culture filtrates on C. intybus growth and metabolome, increasing the knowledge on fungal bioresources for the development of biostimulants.
Collapse
Affiliation(s)
- Veronica Spinelli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Elisa Brasili
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Andrea Ceci
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| | - Ottavia Giampaoli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Alfredo Miccheli
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Gabriella Pasqua
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy
| | - Anna Maria Persiani
- Department of Environmental Biology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
71
|
Antiosteoporosis Studies of 20 Medicine Food Homology Plants Containing Quercetin, Rutin, and Kaempferol: TCM Characteristics, In Vivo and In Vitro Activities, Potential Mechanisms, and Food Functions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5902293. [PMID: 35399639 PMCID: PMC8989562 DOI: 10.1155/2022/5902293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/28/2022] [Accepted: 03/05/2022] [Indexed: 11/24/2022]
Abstract
Dietary nutraceutical compounds have been evidenced as backbone for bone health in recent years. It is reported that medicine food homology (MFH) plants have multiple nutraceutical compounds. Based on our literature research, 20 MFH plants caught our attention because they contain three popular antiosteoporosis compounds simultaneously: quercetin, rutin, and kaempferol. According to traditional Chinese medicine (TCM), their characteristics including natures, flavors, attributive to meridian tropism, and efficacies were listed. The relationships between TCM efficacies, such as “heat clearing,” “tonic,” and “the interior warming,” and antiosteoporosis pharmacological actions such as antioxidant and immune regulation were discussed. The in vivo antiosteoporosis effects of the 20 MFH plants were summarized. The in vitro antiosteoporosis activities and related mechanisms of the 20 plants and quercetin, rutin, kaempferol were detailed. The TGF-β-Smad signaling, fibroblast growth factor, and Wnt/β-catenin signaling on bone formation and the RANKL signaling, NF-κB signaling, and macrophage-colony-stimulating factor on bone resorption were identified. From food point, these 20 MFH plants could be classified as condiment, vegetable, fruit, tea and related products, beverage, etc. Based on the above discussion, these 20 MFH plants could be used as daily food supplements for the prevention and treatment against osteoporosis.
Collapse
|
72
|
Ding XQ, Jian TY, Gai YN, Niu GT, Liu Y, Meng XH, Li J, Lyu H, Ren BR, Chen J. Chicoric Acid Attenuated Renal Tubular Injury in HFD-Induced Chronic Kidney Disease Mice through the Promotion of Mitophagy via the Nrf2/PINK/Parkin Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2923-2935. [PMID: 35195395 DOI: 10.1021/acs.jafc.1c07795] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As the main factor in the pathogenesis of chronic kidney disease (CKD), the excessive apoptosis of renal tubular epithelial cells (RTECs) and its underlying mechanism of action are worth further investigation. Chicoric acid (CA), a major active constituent of the Uyghur folk medicine chicory, was recorded to possess a renal protective effect. The precise effect of CA on renal tubular injury in obesity-related CKD remains unknown. In the current study, CA was proven to ameliorate metabolic disorders including overweight, hyperglycemia, hyperlipidemia, and hyperuricemia in high fat diet (HFD)-fed mice. Furthermore, the reverse effect of CA on renal histological changes and functional damage was confirmed. In vitro, the alleviation of lipid accumulation and cell apoptosis was observed in palmitic acid (PA)-exposed HK2 cells. Treatment with CA reduced mitochondrial damage and oxidative stress in the renal tubule of HFD-fed mice and PA-treated HK2 cells. Finally, CA was observed to activate the Nrf2 pathway; increase PINK and Parkin expression; and regulate LC3, SQSTM1, Mfn2, and FIS1 expression; therefore, it would improve mitochondrial dynamics and mitophagy to alleviate mitochondrial damage in RTECs of obesity-related CKD. These results may provide fresh insights into the promotion of mitophagy in the prevention and alleviation of obesity-related CKD.
Collapse
Affiliation(s)
- Xiao-Qin Ding
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Tun-Yu Jian
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Ya-Nan Gai
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Guan-Ting Niu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Yan Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Xiu-Hua Meng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jing Li
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Han Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Bing-Ru Ren
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
| | - Jian Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
73
|
Chen Y, Luo L, Hu S, Gan R, Zeng L. The chemistry, processing, and preclinical anti-hyperuricemia potential of tea: a comprehensive review. Crit Rev Food Sci Nutr 2022; 63:7065-7090. [PMID: 35236179 DOI: 10.1080/10408398.2022.2040417] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperuricemia is an abnormal purine metabolic disease that occurs when there is an excess of uric acid in the blood, associated with cardiovascular diseases, hypertension, gout, and renal disease. Dietary intervention is one of the most promising strategies for preventing hyperuricemia and controlling uric acid concentrations. Tea (Camellia sinensis) is known as one of the most common beverages and the source of dietary polyphenols. However, the effect of tea on hyperuricemia is unclear. Recent evidence shows that a lower risk of hyperuricemia is associated with tea intake. To better understand the anti-hyperuricemia effect of tea, this review first briefly describes the pathogenesis of hyperuricemia and the processing techniques of different types of tea. Next, the epidemiological and experimental studies of tea and its bioactive compounds on hyperuricemia in recent years were reviewed. Particular attention was paid to the anti-hyperuricemia mechanisms targeting the hepatic uric acid synthase, renal uric acid transporters, and intestinal microbiota. Additionally, the desirable intake of tea for preventing hyperuricemia is provided. Understanding the anti-hyperuricemia effect and mechanisms of tea can better utilize it as a preventive dietary strategy.HighlightsHigh purine diet, excessive alcohol/fructose consumption, and less exercise/sleep are the induction factors of hyperuricemia.Tea and tea compounds showed alleviated effects for hyperuricemia, especially polyphenols.Tea (containing caffeine or not) is not associated with a higher risk of hyperuricemia.Xanthine oxidase inhibition (reduce uric acid production), Nrf2 activation, and urate transporters regulation (increase uric acid excretion) are the potential molecular targets of anti-hyperuricemic effect of tea.About 5 g tea intake per day may be beneficial for hyperuricemia prevention.
Collapse
Affiliation(s)
- Yu Chen
- College of Food Science, Southwest University, Chongqing, China
| | - Liyong Luo
- College of Food Science, Southwest University, Chongqing, China
- College of Food Science, Tea Research Institute, Southwest University, Chongqing, China
| | - Shanshan Hu
- College of Food Science, Southwest University, Chongqing, China
| | - Renyou Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science & Technology Center, Chengdu, China
| | - Liang Zeng
- College of Food Science, Southwest University, Chongqing, China
| |
Collapse
|
74
|
Makhadmeh GN, Abuelsamen A, Al-Akhras MAH, Aziz AA. Silica Nanoparticles Encapsulated Cichorium Pumilum as Promising Photosensitizer for Osteosarcoma Photodynamic Therapy. Photodiagnosis Photodyn Ther 2022; 38:102801. [DOI: 10.1016/j.pdpdt.2022.102801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/05/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022]
|
75
|
Pouille CL, Ouaza S, Roels E, Behra J, Tourret M, Molinié R, Fontaine JX, Mathiron D, Gagneul D, Taminiau B, Daube G, Ravallec R, Rambaud C, Hilbert JL, Cudennec B, Lucau-Danila A. Chicory: Understanding the Effects and Effectors of This Functional Food. Nutrients 2022; 14:957. [PMID: 35267932 PMCID: PMC8912540 DOI: 10.3390/nu14050957] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/22/2022] [Indexed: 02/06/2023] Open
Abstract
Industrial chicory has been the subject of numerous studies, most of which provide clinical observations on its health effects. Whether it is the roasted root, the flour obtained from the roots or the different classes of molecules that enter into the composition of this plant, understanding the molecular mechanisms of action on the human organism remains incomplete. In this study, we were interested in three molecules or classes of molecules present in chicory root: fructose, chlorogenic acids, and sesquiterpene lactones. We conducted experiments on the murine model and performed a nutrigenomic analysis, a metabolic hormone assay and a gut microbiota analysis, associated with in vitro observations for different responses. We have highlighted a large number of effects of all these classes of molecules that suggest a pro-apoptotic activity, an anti-inflammatory, antimicrobial, antioxidant, hypolipidemic and hypoglycemic effect and also an important role in appetite regulation. A significant prebiotic activity was also identified. Fructose seems to be the most involved in these activities, contributing to approximately 83% of recorded responses, but the other classes of tested molecules have shown a specific role for these different effects, with an estimated contribution of 23-24%.
Collapse
Affiliation(s)
- Céline L. Pouille
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417—Institut Charles Viollette, 59655 Villeneuve d’Ascq, France; (C.L.P.); (S.O.); (E.R.); (J.B.); (M.T.); (D.G.); (R.R.); (C.R.); (J.-L.H.); (B.C.)
- Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Cité scientifique, 59655 Villeneuve d’Ascq, France
| | - Souad Ouaza
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417—Institut Charles Viollette, 59655 Villeneuve d’Ascq, France; (C.L.P.); (S.O.); (E.R.); (J.B.); (M.T.); (D.G.); (R.R.); (C.R.); (J.-L.H.); (B.C.)
- Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Cité scientifique, 59655 Villeneuve d’Ascq, France
| | - Elise Roels
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417—Institut Charles Viollette, 59655 Villeneuve d’Ascq, France; (C.L.P.); (S.O.); (E.R.); (J.B.); (M.T.); (D.G.); (R.R.); (C.R.); (J.-L.H.); (B.C.)
- Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Cité scientifique, 59655 Villeneuve d’Ascq, France
| | - Josette Behra
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417—Institut Charles Viollette, 59655 Villeneuve d’Ascq, France; (C.L.P.); (S.O.); (E.R.); (J.B.); (M.T.); (D.G.); (R.R.); (C.R.); (J.-L.H.); (B.C.)
| | - Melissa Tourret
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417—Institut Charles Viollette, 59655 Villeneuve d’Ascq, France; (C.L.P.); (S.O.); (E.R.); (J.B.); (M.T.); (D.G.); (R.R.); (C.R.); (J.-L.H.); (B.C.)
| | - Roland Molinié
- UMR Transfontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417—BIOlogie des Plantes et Innovation (BIOPI), 80025 Amiens, France; (R.M.); (J.-X.F.)
| | - Jean-Xavier Fontaine
- UMR Transfontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417—BIOlogie des Plantes et Innovation (BIOPI), 80025 Amiens, France; (R.M.); (J.-X.F.)
| | - David Mathiron
- Plateforme Analytique UFR des Sciences, UPJV, Bâtiment Serres-Transfert Rue Dallery-Passage du Sourire d’Avril, 80039 Amiens, France;
| | - David Gagneul
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417—Institut Charles Viollette, 59655 Villeneuve d’Ascq, France; (C.L.P.); (S.O.); (E.R.); (J.B.); (M.T.); (D.G.); (R.R.); (C.R.); (J.-L.H.); (B.C.)
- Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Cité scientifique, 59655 Villeneuve d’Ascq, France
| | - Bernard Taminiau
- Department of Food Sciences–Microbiology, FARAH, University of Liege, 4000 Liege, Belgium; (B.T.); (G.D.)
| | - Georges Daube
- Department of Food Sciences–Microbiology, FARAH, University of Liege, 4000 Liege, Belgium; (B.T.); (G.D.)
| | - Rozenn Ravallec
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417—Institut Charles Viollette, 59655 Villeneuve d’Ascq, France; (C.L.P.); (S.O.); (E.R.); (J.B.); (M.T.); (D.G.); (R.R.); (C.R.); (J.-L.H.); (B.C.)
| | - Caroline Rambaud
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417—Institut Charles Viollette, 59655 Villeneuve d’Ascq, France; (C.L.P.); (S.O.); (E.R.); (J.B.); (M.T.); (D.G.); (R.R.); (C.R.); (J.-L.H.); (B.C.)
- Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Cité scientifique, 59655 Villeneuve d’Ascq, France
| | - Jean-Louis Hilbert
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417—Institut Charles Viollette, 59655 Villeneuve d’Ascq, France; (C.L.P.); (S.O.); (E.R.); (J.B.); (M.T.); (D.G.); (R.R.); (C.R.); (J.-L.H.); (B.C.)
- Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Cité scientifique, 59655 Villeneuve d’Ascq, France
| | - Benoit Cudennec
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417—Institut Charles Viollette, 59655 Villeneuve d’Ascq, France; (C.L.P.); (S.O.); (E.R.); (J.B.); (M.T.); (D.G.); (R.R.); (C.R.); (J.-L.H.); (B.C.)
| | - Anca Lucau-Danila
- UMR Transfrontalière BioEcoAgro N° 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, JUNIA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417—Institut Charles Viollette, 59655 Villeneuve d’Ascq, France; (C.L.P.); (S.O.); (E.R.); (J.B.); (M.T.); (D.G.); (R.R.); (C.R.); (J.-L.H.); (B.C.)
- Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Cité scientifique, 59655 Villeneuve d’Ascq, France
| |
Collapse
|
76
|
Girgis MMF, Fekete K, Homoródi N, Márton S, Fekete I, Horváth L. Use of Complementary and Alternative Medicine Among Patients With Epilepsy and Diabetes Mellitus, Focusing on the Outcome of Treatment. Front Neurosci 2022; 15:787512. [PMID: 35087374 PMCID: PMC8787116 DOI: 10.3389/fnins.2021.787512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 12/08/2022] Open
Abstract
Introduction: Millions all over the world live with epilepsy, and they may require long-term drug treatment. The use and interest in complementary and alternative medicine (CAM) have grown over the previous years. Coadministration of herbal products with medicines may result in adverse drug reactions (ADRs) and/or unfavorable interactions. The aims of this study were to determine the prevalence of CAM use among patients with epilepsy, to compare the results to those of the patients with diabetes mellitus (DM), to reveal factors that may drive the use of CAM, and to measure outcomes and adherence. It was also our intent to have state-of-the-art information on CAM use in our region among patients with the two diseases above. Materials and Methods: We conducted a non-interventional study using a self-developed questionnaire. It was distributed among adult patients with either epilepsy or DM who also suffered from cardiovascular consequences. A database was compiled from the anonymous questionnaires filled in voluntarily by the patients. Basic statistics were used to analyze this database. Results: A total of 227 questionnaires were filled in by 127 patients (55.9%) with epilepsy and 100 patients (44.1%) with DM. Mean age was 54.54 ± 17.33 years. Of the patients, 50.2% were male. Average body weight was 80.3 ± 17.3 kg. Of the patients, 22 (9.7%) used CAM because they believed in CAM. Two of them reported ADRs. Among the patients with epilepsy, the ratio was only 7.9% compared to 12% among those with DM. While the number of CAM users was higher among younger patients with epilepsy, it was the elderly patients with DM who tended to use CAM. Conclusion: Attention should be paid to reliance on CAM during the follow-up. Our finding that health-conscious patients tend to use CAM more often (than the general population) may indicate it is necessary to discuss CAM usage sincerely. CAMs modulating cytochrome P450 (CYP) enzymes were the most common, leading to interactions with medication used and resulting in ADRs. This shows the importance of educating patients and treating team including clinical pharmacists in this field.
Collapse
Affiliation(s)
- Michael Magdy Fahmy Girgis
- Department of Pharmaceutical Surveillance and Economics, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Klára Fekete
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Nóra Homoródi
- Institute of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Sándor Márton
- Institute of Political Science and Sociology, Faculty of Arts, University of Debrecen, Debrecen, Hungary
| | - István Fekete
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Horváth
- Department of Pharmaceutical Surveillance and Economics, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
- *Correspondence: László Horváth,
| |
Collapse
|
77
|
Sulaiman N, Pieroni A, Sõukand R, Polesny Z. Food Behavior in Emergency Time: Wild Plant Use for Human Nutrition during the Conflict in Syria. Foods 2022; 11:foods11020177. [PMID: 35053908 PMCID: PMC8775266 DOI: 10.3390/foods11020177] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
Wild food plants (WFPs) have been an important source of human nutrition since ancient times, and it particularly revives when conventional food is not available due to emergency situations, such as natural disasters and conflicts. The war in Syria has entered 10 years since it started in 2011, and it has caused the largest war-related crises since World War II. Nearly 60% of the Syrian population (12.4 million people) are food-insecure. WFPs are already culturally important in the region, and may be supplementing local diets during this conflict. Our study aimed to uncover the conflict’s effect on the use of WFPs and to know what species are consumed by local people during the current crisis. The fieldwork was carried out between March 2020 and March 2021 in the Tartus governorate located in the coastal region of Syria. Semi-structured interviews were conducted with 50 participants (26 women and 24 men) distributed in 26 villages along the study area. We recorded the vernacular names, uses, plant parts used, modes of preparation and consumption, change in WFP use before and during the conflict, and informants’ perceptions towards WFPs. We documented 75 wild food plant species used for food and drink. Almost two-thirds (64%) of informants reported an increase in their reliance on wild plants as a food source during the conflict. The species of Origanum syriacum, Rhus coriaria, Eryngium creticum, and Cichorium intybus were among the most quoted species by informants. Sleeq (steamed leafy vegetables), Zaatar (breakfast/dinner food), and Louf (soup) were the most popular wild plant-based dishes.
Collapse
Affiliation(s)
- Naji Sulaiman
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic;
| | - Andrea Pieroni
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II, 9, 12042 Pollenzo, Italy;
- Medical Analysis Department, Faculty of Science, Tishk International University, Erbil 44001, Iraq
| | - Renata Sõukand
- Department of Environmental Sciences, Informatics and Statistics, Ca’ Foscari University of Venice, Via Torino 155, 30174 Venezia, Italy;
| | - Zbynek Polesny
- Department of Crop Sciences and Agroforestry, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha-Suchdol, Czech Republic;
- Correspondence:
| |
Collapse
|
78
|
Krepkova LV, Babenko AN, Saybel' OL, Lupanova IA, Kuzina OS, Job KM, Sherwin CM, Enioutina EY. Valuable Hepatoprotective Plants - How Can We Optimize Waste Free Uses of Such Highly Versatile Resources? Front Pharmacol 2021; 12:738504. [PMID: 34867345 PMCID: PMC8637540 DOI: 10.3389/fphar.2021.738504] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/27/2021] [Indexed: 11/13/2022] Open
Abstract
Humans used plants for thousand of years as food, drugs, or fuel to keep homes warm. People commonly used fruits and roots, and other parts of the plant were often wasted. This review aims to discuss the potential of rational stem-to-stern use of three highly versatile and valuable plants with hepatoprotective properties. Milk thistle (Silybum marianum L. Gaertn.), artichoke (Cynara cardunculus), and chicory (Cichorium intybus L.) have well-characterized hepatoprotective properties. These plants have been chosen since liver diseases are significant diseases of concern worldwide, and all parts of plants can be potentially utilized. Artichoke and chicory are commonly used as food or dietary supplements and less often as phytodrugs. Various dietary supplements and phytodrugs prepared from milk thistle (MT) fruits/seeds are well-known to consumers as remedies supporting liver functions. However, using these plants as functional food, farm animal feed, is not well-described in the literature. We also discuss bioactive constituents present in various parts of these plants, their pharmacological properties. Distinct parts of MT, artichoke, and chicory can be used to prepare remedies and food for humans and animals. Unused plant parts are potentially wasted. To achieve waste-free use of these and many other plants, the scientific community needs to analyze the complex use of plants and propose strategies for waste-free technologies. The government must stimulate companies to utilize by-products. Another problem associated with plant use as a food or source of phytodrug is the overharvesting of wild plants. Consequently, there is a need to use more active cultivation techniques for plants.
Collapse
Affiliation(s)
- Lubov V Krepkova
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Aleksandra N Babenko
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Olga L Saybel'
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Irina A Lupanova
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Olga S Kuzina
- Center of Medicine, All-Russian Research Institute of Medicinal and Aromatic Plants (VILAR), Moscow, Russia
| | - Kathleen M Job
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Catherine M Sherwin
- Department of Pediatrics, Boonshoft School of Medicine, Dayton Children's Hospital, Wright State University, Dayton, OH, United States
| | - Elena Y Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, United States.,Department of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
79
|
Multi-Criteria Decision-Making Approach for Nutraceuticals Greener Applications: The Cynara cardunculus Case Study. SUSTAINABILITY 2021. [DOI: 10.3390/su132313483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nutraceuticals are an ever-expanding market worldwide, facing the unstoppable transition towards a green economy. Developing economically feasible and sustainable alternatives to current raw materials for the extraction of nutraceuticals is, therefore, essential to reach these goals and, at the same time, achieve social and economic competitiveness. This paper intends to propose an economical and environmentally sustainable feedstock for chlorogenic acid (CGA) and inulin, whose current extraction from green coffee and chicory, respectively, is unsustainable. Our approach is based on the multi-criteria decision-making approach (MCDA), supported by the analytical hierarchy process (AHP), ranking the performance of competitor biomasses according to economic, social, and technological criteria. The results of this study highlight cardoon (Cynara cardunculus) as a promising raw material for the extraction of CGA and inulin in virtue of the high concentration, low-input growth regime, and the possibility of being grown on marginal lands. Nevertheless, cardoon biomass availability is currently scarce, extraction methods are underdeveloped, and consequently, the obtained product’s price is higher than the benchmark competitors. Policies and investments favoring sustainable cultivations could stimulate cardoon employment, linking economic advantages and land requalification while limiting phenomena such as desertification and food competition in the Mediterranean basin.
Collapse
|
80
|
Nasimi Doost Azgomi R, Karimi A, Tutunchi H, Moini Jazani A. A comprehensive mechanistic and therapeutic insight into the effect of chicory (Cichorium intybus) supplementation in diabetes mellitus: A systematic review of literature. Int J Clin Pract 2021; 75:e14945. [PMID: 34606165 DOI: 10.1111/ijcp.14945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 10/01/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Cichorium intybus is a rich source of terpenoids and phenolic compounds, one of the effective methods in managing and reducing the complications of chronic diseases such as diabetes mellitus. The purpose of this systematic review was to evaluate the evidence obtained from animal and human studies on the effects of chicory on metabolic indicators (such as inflammation, oxidative stress, blood sugar and dyslipidaemia) of diabetes mellitus. MATERIALS AND METHODS This systematic search was performed in ProQuest, PubMed, Google Scholar, Scopus, Cochrane Central Register of Controlled Trials, Embase and Science Direct databases and on articles published until August 2021. All of the animal studies and clinical trials included in this systematic review that assessed the effect of chicory on metabolic risk markers in diabetes were published in English language journals. RESULTS Finally, amongst 686 articles, only 23 articles met the needed criteria for further analysis. Out of 23 articles, 3 studies on humans and 20 studies on animals have been carried out. Fifteen of the 19 studies that evaluated the effect of chicory on the glycaemic index showed that Cichorium intybus improved blood glucose index (it had no effect in two human studies and three animal studies). Ten of the 13 studies evaluating the effect of Cichorium intybus on lipid profiles showed that it improved dyslipidaemia. Also, all 12 studies showed that chicory significantly reduces oxidative stress and inflammation. CONCLUSION According to the available evidence, Cichorium intybus might improve the glycaemic status, dyslipidaemia, oxidative stress and inflammation. However, further studies are recommended for a comprehensive conclusion about the exact mechanism of chicory in diabetic patients.
Collapse
Affiliation(s)
- Ramin Nasimi Doost Azgomi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Arash Karimi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Clinical Nutrition, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Helda Tutunchi
- Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Moini Jazani
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
81
|
Sun J, Ren J, Hu X, Hou Y, Yang Y. Therapeutic effects of Chinese herbal medicines and their extracts on diabetes. Biomed Pharmacother 2021; 142:111977. [PMID: 34364042 DOI: 10.1016/j.biopha.2021.111977] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/15/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
With the improvement of people's living standards and changes in the environment, the incidence of diabetes has increased rapidly. It has gradually become one of the main diseases threatening the health and life of modern people, bringing a great burden to the society. Although the existing treatment methods can effectively control the symptoms of diabetes and delay its progression, they have not brought satisfactory improvement in the quality of life and treatment of patients. Traditional Chinese herbal medicines and their extracts combine thousands of years of experience and the scientific basis provided by modern experimental research, which is expected to bring a qualitative leap in the clinical management of diabetes. Therefore, this article systematically reviews studies on the effects of Chinese herbal medicine and its extracts on diabetes and its complications, and aims to bring new ideas and options for the clinical treatment of diabetes.
Collapse
Affiliation(s)
- Jie Sun
- Department of Diabetes, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Jiangong Ren
- Department of Diabetes, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Xuejian Hu
- Department of Diabetes, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Yuanhua Hou
- Department of Diabetes, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China
| | - Yan Yang
- Department of Diabetes, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China.
| |
Collapse
|
82
|
Phirom-on K, Apiraksakorn J. Development of cellulose-based prebiotic fiber from banana peel by enzymatic hydrolysis. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
83
|
Alizadeh Behbahani B, Falah F, Vasiee A, Tabatabaee Yazdi F. Control of microbial growth and lipid oxidation in beef using a Lepidium perfoliatum seed mucilage edible coating incorporated with chicory essential oil. Food Sci Nutr 2021; 9:2458-2467. [PMID: 34026063 PMCID: PMC8116855 DOI: 10.1002/fsn3.2186] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/17/2022] Open
Abstract
In this study, chicory essential oil (CEO) was obtained by hydrodistillation-based extraction method and it was rich in camphor (31.3%) and phenolic compounds with outstanding antioxidant and antimicrobial properties. The CEO was then incorporated into Lepidium perfoliatum seed mucilage (LPSM) based aqueous solution to prepare an active CEO-loaded LPSM edible coating. The effect of the edible coating was then investigated on the quality and shelf life of beef slices during 7 days storage at 4°C. The results revealed that beef slice coated with CEO-loaded LPSM edible coating had a significant inhibitory effect on its lipid oxidation and microbial growth. The CEO-LPSM coating also inhibited the weight and texture losses of beef slices during display more efficiently compared with the control and CEO-free LPSM coating. Besides, the beef slices coated with CEO-LPSM were the preferred samples in terms of sensory scores throughout the storage. Thus, using CEO-rich LPSM edible coating might inhibit decay and significantly improve the shelf life of fresh beef.
Collapse
Affiliation(s)
- Behrooz Alizadeh Behbahani
- Department of Food Science and TechnologyFaculty of Animal Science and Food TechnologyAgricultural Sciences and Natural Resources University of KhuzestanMollasaniIran
| | - Fereshteh Falah
- Department of Food Science and TechnologyFaculty of AgricultureFerdowsi University of MashhadMashhadIran
| | - Alireza Vasiee
- Department of Food Science and TechnologyFaculty of AgricultureFerdowsi University of MashhadMashhadIran
| | - Farideh Tabatabaee Yazdi
- Department of Food Science and TechnologyFaculty of AgricultureFerdowsi University of MashhadMashhadIran
| |
Collapse
|
84
|
Baixinho JP, Anastácio JD, Ivasiv V, Cankar K, Bosch D, Menezes R, de Roode M, dos Santos CN, Matias AA, Fernández N. Supercritical CO 2 Extraction as a Tool to Isolate Anti-Inflammatory Sesquiterpene Lactones from Cichorium intybus L. Roots. Molecules 2021; 26:2583. [PMID: 33925241 PMCID: PMC8125565 DOI: 10.3390/molecules26092583] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 01/21/2023] Open
Abstract
Cichorium intybus L. or chicory plants are a natural source of health-promoting compounds in the form of supplements such as inulin, as well as other bioactive compounds such as sesquiterpene lactones (SLs). After inulin extraction, chicory roots are considered waste, with most SLs not being harnessed. We developed and optimized a new strategy for SL extraction that can contribute to the conversion of chicory root waste into valuable products to be used in human health-promoting applications. In our work, rich fractions of SLs were recovered from chicory roots using supercritical CO2. A response surface methodology was used to optimize the process parameters (pressure, temperature, flow rate, and co-solvent percentage) for the extraction performance. The best operating conditions were achieved at 350 bar, 40 °C, and 10% EtOH as a co-solvent in a 15 g/min flow rate for 120 min. The extraction with supercritical CO2 revealed to be more selective for the SLs than the conventional solid-liquid extraction with ethyl acetate. In our work, 1.68% mass and a 0.09% sesquiterpenes yield extraction were obtained, including the recovery of two sesquiterpene lactones (8-deoxylactucin and 11β,13-dihydro-8-deoxylactucin), which, to the best of our knowledge, are not commercially available. A mixture of the abovementioned compounds were tested at different concentrations for their toxic profile and anti-inflammatory potential towards a human calcineurin/NFAT orthologue pathway in a yeast model, the calcineurin/Crz1 pathway. The SFE extract obtained, rich in SLs, yielded results of inhibition of 61.74 ± 6.87% with 50 µg/mL, and the purified fraction containing 8-deoxylactucin and 11β,13-dihydro-8-deoxylactucin inhibited the activation of the reporter gene up to 53.38 ± 3.9% at 10 µg/mL. The potential activity of the purified fraction was also validated by the ability to inhibit Crz1 nuclear translocation and accumulation. These results reveal a possible exploitable green technology to recover potential anti-inflammatory compounds from chicory roots waste after inulin extraction.
Collapse
Affiliation(s)
- João P. Baixinho
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (J.D.A.); (V.I.); (R.M.); (C.N.d.S.); (A.A.M.)
| | - José D. Anastácio
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (J.D.A.); (V.I.); (R.M.); (C.N.d.S.); (A.A.M.)
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Viktoriya Ivasiv
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (J.D.A.); (V.I.); (R.M.); (C.N.d.S.); (A.A.M.)
| | - Katarina Cankar
- Wageningen University and Research, Wageningen Plant Research, BU Bioscience, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (K.C.); (D.B.)
| | - Dirk Bosch
- Wageningen University and Research, Wageningen Plant Research, BU Bioscience, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; (K.C.); (D.B.)
| | - Regina Menezes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (J.D.A.); (V.I.); (R.M.); (C.N.d.S.); (A.A.M.)
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Matthew de Roode
- Sensus B.V., Oostelijke Havendijk 15, 4704 RA Roosendaal, The Netherlands;
| | - Cláudia Nunes dos Santos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (J.D.A.); (V.I.); (R.M.); (C.N.d.S.); (A.A.M.)
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisboa, Portugal
| | - Ana A. Matias
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (J.D.A.); (V.I.); (R.M.); (C.N.d.S.); (A.A.M.)
| | - Naiara Fernández
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (J.P.B.); (J.D.A.); (V.I.); (R.M.); (C.N.d.S.); (A.A.M.)
| |
Collapse
|
85
|
Girelli CR, Serio F, Accogli R, Angilè F, De Donno A, Fanizzi FP. First Insight into Nutraceutical Properties of Local Salento Cichorium intybus Varieties: NMR-Based Metabolomic Approach. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:4057. [PMID: 33921445 PMCID: PMC8069254 DOI: 10.3390/ijerph18084057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/26/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Plants of genus Cichorium are known for their therapeutic and nutraceutical properties determined by a wealth of phytochemical substances contained in the whole plant. The aim of this paper was to characterize the metabolic profiles of local Salento chicory (Cichorium intybus L.) varieties ("Bianca", "Galatina", "Leccese", and "Otranto") in order to describe their metabolites composition together with possible bioactivity and health beneficial properties. METHODS The investigation was performed by 1H-NMR spectroscopy and Multivariate Analysis (MVA), by which the metabolic profiles of the samples were easily obtained and compared. RESULTS The supervised Partial Least Squares Discriminant Analysis (PLS-DA) analysis showed as "Bianca" and "Galatina" samples grouped together separated by "Leccese" and "Otranto" varieties. A different content of free amino acids and organic acids was observed among the varieties. In particular a high content of cichoric and monocaffeoyl tartaric acid was observed for the "Leccese" variety. The presence of secondary metabolites adds significant interest in the investigation of Cichorium inthybus, as this vegetable may benefit human health when incorporated into the diet. CONCLUSIONS The 1H-NMR (Nuclear Magnetic Resonance Spectroscopy) based characterization of Salento chicory varieties allowed us to determine the potential usefulness and nutraceutical properties of the product, also providing a method to guarantee its authenticity on a molecular scale.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Paolo Fanizzi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Prov.le Lecce-Monteroni, 73100 Lecce, Italy; (C.R.G.); (F.S.); (R.A.); (F.A.); (A.D.D.)
| |
Collapse
|
86
|
Janda K, Gutowska I, Geszke-Moritz M, Jakubczyk K. The Common Cichory ( Cichorium intybus L.) as a Source of Extracts with Health-Promoting Properties-A Review. Molecules 2021; 26:1814. [PMID: 33807029 PMCID: PMC8005178 DOI: 10.3390/molecules26061814] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/21/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
Natural products are gaining more interest recently, much of which focuses on those derived from medicinal plants. The common chicory (Cichorium intybus L.), of the Astraceae family, is a prime example of this trend. It has been proven to be a feasible source of biologically relevant elements (K, Fe, Ca), vitamins (A, B1, B2, C) as well as bioactive compounds (inulin, sesquiterpene lactones, coumarin derivatives, cichoric acid, phenolic acids), which exert potent pro-health effects on the human organism. It displays choleretic and digestion-promoting, as well as appetite-increasing, anti-inflammatory and antibacterial action, all owing to its varied phytochemical composition. Hence, chicory is used most often to treat gastrointestinal disorders. Chicory was among the plants with potential against SARS-CoV-2, too. To this and other ends, roots, herb, flowers and leaves are used. Apart from its phytochemical applications, chicory is also used in gastronomy as a coffee substitute, food or drink additive. The aim of this paper is to present, in the light of the recent literature, the chemical composition and properties of chicory.
Collapse
Affiliation(s)
- Katarzyna Janda
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (K.J.); (K.J.)
| | - Izabela Gutowska
- Department of Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Małgorzata Geszke-Moritz
- Department of Pharmacognosy and Natural Remedies, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Karolina Jakubczyk
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland; (K.J.); (K.J.)
| |
Collapse
|
87
|
The Plants of the Asteraceae Family as Agents in the Protection of Human Health. Int J Mol Sci 2021; 22:ijms22063009. [PMID: 33809449 PMCID: PMC7999649 DOI: 10.3390/ijms22063009] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 02/08/2023] Open
Abstract
The Asteraceae family is one of the largest flowering plant families, with over 1600 genera and 2500 species worldwide. Some of its most well-known taxa are lettuce, chicory, artichoke, daisy and dandelion. The members of the Asteraceae have been used in the diet and for medicine for centuries. Despite their wide diversity, most family members share a similar chemical composition: for example, all species are good sources of inulin, a natural polysaccharide with strong prebiotic properties. They also demonstrate strong antioxidant, anti-inflammatory and antimicrobial activity, as well as diuretic and wound healing properties. Their pharmacological effects can be attributed to their range of phytochemical compounds, including polyphenols, phenolic acids, flavonoids, acetylenes and triterpenes. One such example is arctiin: a ligand with numerous antioxidant, antiproliferative and desmutagenic activities. The family is also a source of sesquiterpene lactones: the secondary metabolites responsible for the bitter taste of many plants. This mini review examines the current state of literature regarding the positive effect of the Asteraceae family on human health.
Collapse
|
88
|
Epure A, Pârvu AE, Vlase L, Benedec D, Hanganu D, Gheldiu AM, Toma VA, Oniga I. Phytochemical Profile, Antioxidant, Cardioprotective and Nephroprotective Activity of Romanian Chicory Extract. PLANTS (BASEL, SWITZERLAND) 2020; 10:E64. [PMID: 33396775 PMCID: PMC7823840 DOI: 10.3390/plants10010064] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/16/2020] [Accepted: 12/25/2020] [Indexed: 12/18/2022]
Abstract
The present study analyzed the methanol extract and tincture obtained from the spontaneous Romanian Cichorium intybus species, in order to evaluate polyphenols content and some biological properties. Chromatographic and spectrophotometric methods were used for the analysis of polyphenols and the antioxidant capacity was assessed in vitro with DPPH● (2,2-diphenyl-picrylhydrazil) and FRAP (ferric-reducing antioxidant power) tests. The cardio-protective effects of Cichorii herba tincture on myocardial ischemia induced by isoprenaline and nephroprotection on renal failure induced by gentamicin were evaluated on rats. Also, aspartate aminotrasferase (AST), alanine aminotransferase (ALT), creatine kinase-MB (CK-MB) and creatinine clearance (CrCl) were measured. The antioxidant effect was evaluated by determining total oxidative stress (TOS), oxidative stress index (OSI, total antioxidant capacity (TAC), malondyaldehide (MDA), total thiols (SH) and total nitrites and nitrates (NOx). Cichoric acid was the main polyphenolic compound. The extracts had moderate in vitro antioxidant activity but the in vivo antioxidant and anti-inflammatory effects were significant and associated with myocardial and renal dysfunction improvement. The results were attributed to the content of polyphenols in the extracts, for which reason C. intybus may be considered an important raw material for pharmaceuticals formulations recommended in the prevention or treatment of heart or kidney diseases.
Collapse
Affiliation(s)
- Alexandra Epure
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania; (A.E.); (D.B.); (D.H.); (I.O.)
| | - Alina E. Pârvu
- Department of Physiopathology, Faculty of Medicine, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania
| | - Daniela Benedec
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania; (A.E.); (D.B.); (D.H.); (I.O.)
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania; (A.E.); (D.B.); (D.H.); (I.O.)
| | - Ana-Maria Gheldiu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Vlad Al. Toma
- Department of Chemistry and Chemical Engineering, “Babeș Bolyai” University, 11 Arany János Street, 400028 Cluj-Napoca, Romania;
| | - Ilioara Oniga
- Department of Pharmacognosy, Faculty of Pharmacy, “Iuliu Hațieganu” University of Medicine and Pharmacy, 8 V. Babeș Street, 400012 Cluj-Napoca, Romania; (A.E.); (D.B.); (D.H.); (I.O.)
| |
Collapse
|